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Abstract

We provide a novel theoretical analysis of how index investing affects capital market

equilibrium. We consider a dynamic exchange economy with heterogeneous investors and

two Lucas trees and find that indexing can either increase or decrease the correlation

between stock returns and in general increases (decreases) volatilities and betas of stocks

with larger (smaller) market capitalizations. Indexing also decreases market volatility and

interest rates, although those effects are weak. The impact of index investing is particularly

strong when stocks have heterogeneous fundamentals. Our results highlight that indexing

changes not only how investors can trade but also their incentives to trade.
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I. Introduction

Starting from the 1970’s, passive index investing has been gaining popularity among insti-

tutional and individual investors. According to the 2013 Investment Company Fact Book

(http://www.icifactbook.org), 33 percent of households that invested in mutual funds in 2012

owned at least one index mutual fund. The proportion of index funds in all equity mutual fund

assets increased from 8.7 percent in 1998 to 17.4 percent in 2012. Moreover, the funds bench-

marked to the S&P 500 index managed 33 percent of all assets invested in index mutual funds.

Index investing was initially promoted by proponents of the efficient market hypothesis (e.g.,

Malkiel, 1973; Samuelson, 1974) and has an increasing number of supporters due to inability of

money management industry as a whole to outperform the market (e.g., Malkiel, 1995; Fama

and French, 2010; Lewellen, 2011) and high costs of active investment for society (e.g, French,

2008). It is blessed even by successful investors like Warren Buffett, who in his 2013 letter

to Berkshire Hathaway shareholders argues that “the goal of the non-professional should not

be to pick winners – neither he nor his ‘helpers’ can do that – but should rather be to own a

cross-section of businesses that in aggregate are bound to do well. A low-cost S&P 500 index

fund will achieve this goal.”

Despite the growing popularity of index investing, its impact on properties of capital market

equilibrium is not well understood. The objective of our study is to fill this gap. We build

a dynamic general equilibrium model of an exchange economy with two Lucas trees and two

groups of investors dubbed type P investors (professional investors) and type I investors (index

investors). We interpret the type P investors as professional market participants such as hedge

funds, actively managed mutual funds, proprietary traders, etc., who can implement complex

trading strategies that involve individual assets. The type I investors are unsophisticated market

participants, like individuals who manage their savings and retirement accounts, and can trade

only the market portfolio of Lucas trees (index). In practice, indexing can result from inability

of ordinary investors to model stock returns, to keep track of a large number of open trading

positions, to minimize transaction costs while trading individual stocks, etc. To maintain the

generality of our analysis, we do not specify the reason why the type I investors are restricted

to trade the index.

Consistent with our interpretation of the investors, we also assume that the type I investors

are more risk averse than the type P investors, so even without indexing the investors in our

model would trade stocks to share risk. Indexing changes the set of trading strategies that

the type I investors can implement compared to an unconstrained economy (an economy in

which fundamentals are the same but all investors can trade individual stocks) and, therefore,
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affects the equilibrium variables. To identify the effect of indexing, we find the equilibria in

the constrained and unconstrained economies and compare their characteristics including the

risk-free rate, the volatilities and betas of stocks, and the correlation between stock returns.

Our analysis delivers several results. First, we find that in general indexing increases (de-

creases) volatilities and betas of stocks with relatively large (small) market capitalizations.

Second, indexing can either increase or decrease the correlation between stock returns, and this

conclusion challenges a wide-spread belief that indexing always increases the correlation. Third,

indexing decreases market volatility and the risk-free rate, although those effects are relatively

weak. Fourth, the effect of index investing is much stronger when stocks have heterogeneous

fundamentals such as the expected growth rate and volatility of dividends.

To see economic intuition behind these effects, consider first an unconstrained economy in

which all investors can trade all assets. When investors have heterogeneous risk preferences,

they dynamically share risk and this affects statistical properties of stock returns. Assume, for

example, that a positive cash flow shock hits one of the stocks and increases its price. Because

less risk-averse investors in equilibrium hold more stocks than those who are more risk averse,

this shock disproportionally increases their wealth. To maintain their optimal portfolio weights,

less risk-averse investors buy more shares of the affected stock from those who are more risk

averse and drive its price up even further. Thus, dynamic risk sharing tends to increase the

volatility of returns. Moreover, in response to a wealth shock less risk-averse investors buy

shares of all stocks and, as a result, the returns on the stocks become correlated even if their

fundamentals evolve independently.1

When some investors follow an indexing strategy, they hold an equal number of shares of each

stock (the total number of shares of each stock in the model is normalized to one). Therefore, in

response to cash flow shocks the investors can trade only the market portfolio. As a result, risk

sharing is less effective than in the unconstrained economy and its impact on the equilibrium

is subdued. In particular, indexing decreases market volatility inflated by risk sharing. Also,

the risk-free rate decreases because more stocks are held by more risk-averse investors and less

risk-averse investors borrow less from them. These effects are stronger when each tree produces

a nontrivial part of the total dividend but the trees differ in size and portfolio distortions caused

by the inability of agents to trade individual stocks are particularly pronounced.

The effect of indexing on individual stock returns depends on the relative size of the stock.

On the one hand, due to indexing investors rebalance their portfolios less actively in response

1Xiong (2001), Kyle and Xiong (2001), Cochrane, Longstaff, and Santa-Clara (2008), Bhamra and Uppal
(2009), Ehling and Heyerdahl-Larsen (2012), and Longstaff and Wang (2012) discuss how risk sharing among
investors affects the dynamics of stock returns.
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to changes in dividends on a smaller tree, which are less aligned with returns on the market

portfolio and cannot be hedged well when only index is tradable. As a result, the volatility of

returns on a smaller tree and its beta are smaller than in the unconstrained economy. On the

other hand, the price of a larger stock becomes more sensitive to changes in its dividend because

investors respond to all shocks by trading only the index and effectively trade the larger stock

more than in the unconstrained economy. Therefore, the volatility and beta of this stock tend

to be higher than in the economy without indexing.

Indexing also changes the correlation of stock returns and can either increase or decrease it.

When stocks have similar fundamentals, the market portfolio is almost optimal for the investors

and they actively trade it to share risk. Buying and selling the portfolio as a whole, the investors

effectively trade all stocks simultaneously, so the correlation between returns can be higher than

in the unconstrained economy.2 However, the market portfolio can substantially deviate from the

unconstrained optimal portfolio when the stocks have different sizes. In this case, the investors

trade stocks less aggressively, risk sharing is inhibited, and the correlation between stock returns

produced by risk sharing is lower than in the unconstrained economy. This finding highlights

that indexing changes not only how investors can trade but also their incentives to trade and

challenges the perception of indexing as an unambiguous source of positive correlation between

stock returns, which is shared by practitioners (e.g., Sullivan and Xiong, 2012) and appeared in

popular press.3 Also note that there is no contradiction between the decrease in the correlation

of stock returns produced by indexing in our model and numerous studies that document an

increase in the correlation between a stock and an index when the stock is added to the index

(e.g., Vijh, 1994; Barberis, Shleifer, and Wurgler, 2005; Greenwood and Sosner, 2007; Boyer,

2011). Indeed, our model describes the implications of passive indexing as a broad phenomenon

that can inhibit risk sharing, whereas a migration of a single stock in or out of an index has a

minuscule effect on the ability of investors to share risk.

The described effects of indexing exist even when dividends of all stocks have the same

expected growth rate and the same volatility, so the heterogeneity in stocks is solely due to

different realizations of their dividends. The difference in the dividend processes makes the

impact of index investing much stronger. This result is explained by much larger portfolio

distortions brought about by the inability of investors to trade individual stocks when stock

dividends have different dynamics. For example, consider a case in which one stock has a low

expected dividend growth rate and dividend volatility, whereas for the other stock both of these

characteristics are relatively high. The risk-averse investors would hold relatively more shares of

2A similar effect arises in Barberis and Shleifer (2003), Basak and Pavlova (2013, 2014), and Grégoire (2014).
3“Simple Index Funds May Be Complicating the Markets”, The Wall Street Journal, February 18, 2012.
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the first stock in the unconstrained economy but indexing forces them to hold the same number

of the shares of each stock and, hence, makes the portfolio highly suboptimal. To ensure that

the new portfolio satisfies the equilibrium conditions, the expected stock returns and return

volatilities substantially deviate from their values in the unconstrained economy.

The analysis of dynamic economies with multiple trees, heterogeneous investors, and market

frictions is a challenging task and our paper also makes a methodological contribution to the

literature by demonstrating how to find an equilibrium in an economy with indexing. The idea

of our approach is to characterize the equilibrium in terms of quasilinear differential equations

for the price-dividend ratio of the index and the wealth-consumption ratio of the index investors,

which can be solved by a fast and general numerical procedure. The approach works for arbitrary

coefficients of risk aversion and allows us to take into account the effect of hedging demand by

index investors on the equilibrium properties. This is particularly important in our setting

because index investors are identified with individual investors, who tend to be more risk averse

than unconstrained professional market participants.

Our paper belongs to the growing literature that uses a dynamic exchange economy frame-

work with heterogeneous investors to study equilibrium effects of various economic frictions

that make financial markets incomplete.4 Such frictions include restricted stock market par-

ticipation (e.g., Basak and Cuoco, 1998), short-sale and borrowing constraints (e.g., Detemple

and Murthy, 1997; Basak and Croitoru, 2000; Kogan, Makarov, and Uppal, 2007; Gallmeyer

and Hollifield, 2008; Chabakauri, 2014), portfolio concentration constraints (e.g., Pavlova and

Rigobon, 2008), margin constraints (e.g., Gromb and Vayanos, 2002; Gârleanu and Pedersen,

2011; Brumm, Grill, Kubler, and Schmedders, 2013; Chabakauri, 2013; Rytchkov, 2014), and

transaction costs (e.g., Buss and Dumas, 2013; Buss, Uppal, and Vilkov, 2013). Gromb and

Vayanos (2010) survey the literature on the frictions that are sources of limits to arbitrage.

Dumas and Lyasoff (2012) develop a general approach for solving incomplete-market models

with one Lucas tree.

The closest to our analysis is the paper by Shapiro (2002), who considers a general equi-

librium model in which a fraction of investors can implement only particular trading strategies

that are consistent with the investor recognition hypothesis (IRH), and the indexing strategy

is one of them. In contrast to our paper, which explicitly characterizes the equilibrium and

examines the volatility of returns and their correlation, Shapiro (2002) does not solve the model

for the equilibrium characteristics and largely focuses on qualitative implications of portfolio

4Dynamic exchange economies with one Lucas tree, heterogeneous investors, and complete markets are studied
by Wang (1996), Chan and Kogan (2002), Weinbaum (2009), Xiouros and Zapatero (2010), Longstaff and Wang
(2012), Cvitanić, Jouini, Malamud, and Napp (2012), Bhamra and Uppal (2014), among others.
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constraints for interest rates and risk premia. Moreover, Shapiro (2002) assumes that the con-

strained investors have logarithmic preferences, which makes his analysis more tractable but

less realistic.

A dynamic model with logarithmic investors and indexing is also considered by Grégoire

(2014), who uses perturbation analysis to approximate the solution to the model and demon-

strates that indexing increases comovement of stock returns. In contrast to Grégoire (2014),

the investors in our model have heterogeneous preferences with arbitrary coefficients of risk

aversion and, therefore, trade to share risk. We show that indexing can hamper risk sharing

and decrease the correlation of stock returns. The model in Grégoire (2014) cannot produce

this effect because of the assumed homogeneity of investors’ preferences.

Our paper is also related to the research on equilibrium effects of institutional investors

whose compensation is benchmarked to a particular index and who can trade multiple risky

assets (e.g., Cuoco and Kaniel, 2011; Basak and Pavlova, 2013; Basak and Pavlova, 2014; Buffa,

Vayanos, and Woolley, 2014). One of the insights of this research is that in the presence of

index-related incentives fund managers tilt their portfolios towards the index, so indexing arises

endogenously and can be partially responsible for the identified effects of institutional investors

on the equilibrium. In contrast to these papers, which study the implications of active money

management by institutional investors on asset prices, we investigate the impact of pure passive

indexing on the capital market equilibrium.

Finally, our paper builds upon the literature on dynamic equilibria in exchange economies

with multiple Lucas trees and homogeneous investors (e.g., Menzly, Santos, and Veronesi, 2004;

Cochrane, Longstaff, and Santa-Clara, 2008; Martin, 2013). As in those papers, the time

variation in the dividend shares of individual trees in our model spills over into equilibrium

characteristics. However, when investors are identical they hold the market portfolio and in-

dexing is irrelevant. This does not happen in our model because we combine the multiple tree

framework, which is necessary for studying the effects of indexing, with the heterogeneity in

investors’ preferences.

The rest of the paper is organized as follows. Section II presents our model and describes its

equilibrium. Section III contains numerical analysis of the model and reports our main findings.

Section IV summarizes the results of the paper and proposes directions for future research.

Appendix contains all proofs.
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II. Model

A. Assets

There are three assets in the economy: a risk-free short-term bond in zero net supply and two

risky stocks. The supply of each stock is normalized to one share, which is a claim to a stream

of dividends produced by a Lucas tree. The dividends D1t and D2t follow geometric Brownian

motions
dDit

Dit

= µDidt+ ΣDidBt, i = 1, 2, (1)

where µDi are constant expected dividend growth rates, ΣDi are constant 1 × 2 matrices of

diffusions, and Bt is a 2× 1 vector of independent Brownian motions. The rate of return on the

bond rt as well as the stock prices S1t and S2t are determined in the equilibrium. The excess

return on each stock i is defined as

dQit =
dSit +Ditdt

Sit

− rtdt

and the vector Qt = [Q1t Q2t]
′ follows a diffusion process

dQt = µQtdt+ ΣQtdBt, (2)

where the matrix of the risk premia µQt = [µQ1t µQ2t]
′ and the matrix of the diffusions ΣQt =

[Σ′
Q1t Σ′

Q2t]
′ are also determined in the equilibrium.

Taken together, the stocks form a market portfolio (index), which pays the aggregate divi-

dend Dt = D1t +D2t and has the price St = S1t + S2t. Using Itô’s lemma and equation (1), the

dynamics of the dividend Dt can be written as

dDt

Dt

= µDtdt+ ΣDtdBt, (3)

where µDt = utµD1 + (1 − ut)µD2, ΣDt = utΣD1 + (1 − ut)ΣD2, and ut = D1t/Dt. The excess

return on the index is defined as

dQIt =
dSt +Dtdt

St

− rtdt

and using equation (2) its dynamics can be described as

dQIt = µItdt+ ΣItdBt, (4)
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where µIt = (µQ1tS1t + µQ2tS2t)/St and ΣIt = (ΣQ1tS1t + ΣQ2tS2t)/St. By construction, the

index is value-weighted and its expected returns and diffusions are value-weighted averages of

expected returns and diffusions of the individual stocks.

B. Agents

The economy is populated by two groups of competitive agents dubbed type P investors (pro-

fessional investors) and type I investors (index investors). Each group consists of a unit mass of

identical investors who have the standard constant relative risk aversion (CRRA) preferences.

The investors differ across the groups in two respects. First, they have different coefficients of

risk aversion, which are γP and γI for the type P and type I investors, respectively. Second, the

trading strategies that the investors can implement depend on their type: the type P investors

can trade all assets individually, whereas the type I investors are constrained and can trade only

the risk-free bond and the index of the stocks. More specifically, the type P investors form an

arbitrary portfolio of the stocks ωPt = [ωP1t ωP2t]
′, where ωP1t and ωP2t are the fractions of

their wealth WPt allocated to stocks 1 and 2, respectively, and invest the rest of their wealth

αPt = 1 − ωP1t − ωP2t in the bond. In contrast, the type I investors allocate their wealth WIt

between the index and the bond, which receive the weights ωIt and αIt = 1− ωIt, respectively.

The two types of investors admit a natural interpretation. The type P investors can be

thought of as professional traders such as hedge funds, actively managed mutual funds, pro-

prietary traders, etc., who are relatively risk tolerant and can implement sophisticated trading

strategies that involve individual assets. The type I investors are unsophisticated market par-

ticipants like individual investors who manage their savings and retirement accounts. They are

more risk averse than professional investors and trade only the index, not individual stocks. In

practice, indexing can be an optimal response of investors to various factors like information

processing costs, organizational and management costs, transaction costs, etc. For example,

investors with limited attention may allocate their learning capacity to market factors rather

than firm-specific information (e.g., Peng and Xiong, 2006) and invest in a market as a whole.

Investors may prefer to categorize assets in particular classes and invest in indexes because this

simplifies the asset choice (e.g., Barberis and Shleifer, 2003). Even mutual fund and pension

fund managers whose compensation is related to the index performance directly or indirectly

through the response of the fund flows to the fund performance may find it optimal to partially

allocate assets under management to index portfolios (e.g., Basak and Pavlova, 2013). We do

not specify the reason why the type I investors can trade only the index because this preserves

the generality of our analysis and allows us to study the implications of pure passive indexing

7



that is not contaminated by other economic frictions.

The optimization problem of the investors has the standard form: each investor j = P, I

chooses a consumption stream Cjt and portfolio weights ωjt that maximize the expected CRRA

utility

Ut = Et

[∫ ∞

t

e−βs
C

1−γj
js

1− γj
ds

]
(5)

subject to a budget constraint, which is

dWPt = (rtWPt − CPt)dt+WPtω
′
Pt(µQtdt+ ΣQtdBt) (6)

for the type P investors and

dWIt = (rtWIt − CIt)dt+WItωIt(µItdt+ ΣItdBt) (7)

for the type I investors.

C. State variables

The model has two Lucas trees and two types of investors. Therefore, it is natural to assume

that the state of the economy is described by two variables. The first one measures relative

importance of each investor type and we choose it to be the consumption share of the type I

investors st = CIt/Dt. In general, st follows a diffusion process

dst = µstdt+ ΣstdBt, (8)

where the scalar µst and the 1× 2 matrix Σst are determined by equilibrium conditions.5

The other state variable measures relative size of each tree and is chosen to be the share

of the dividend on the first stock in the aggregate dividend: ut = D1t/Dt.
6 The stochastic

equation for ut follows from applying Itô’s lemma to the definition of ut and using equations (1)

and (3):

dut = µutdt+ ΣutdBt, (9)

where the drift µut and the diffusion Σut are determined by exogenous model parameters and

5The consumption share of one of the agents is often used as a state variable in economies with heterogeneous
agents (e.g., Bhamra and Uppal, 2009, 2014; Longstaff and Wang, 2012; Chabakauri, 2013; Rytchkov, 2014).

6This state variable is standard in the models with multiple Lucas trees (e.g., Menzly, Santos, and Veronesi,
2004; Cochrane, Longstaff, and Santa-Clara, 2008; Martin, 2013).
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given by

µut = ut(1− ut)(µD1 − µD2 − (ΣD1 − ΣD2)(utΣD1 + (1− ut)ΣD2)
′), (10)

Σut = ut(1− ut)(ΣD1 − ΣD2). (11)

As the state variable st, the variable ut takes values in the range from 0 to 1. When 0.5 < ut < 1,

the first tree contributes to the aggregate dividend more than the second tree, so we refer to

the former as a larger tree and to the latter as a smaller tree. The terminology is opposite when

0 < ut < 0.5.

D. Equilibrium

We define an equilibrium in the model as a set of processes for the risk-free rate rt, expected

excess returns µQt, diffusions of returns ΣQt, consumption streams Cjt, j = P, I, and portfolio

strategies ωjt, j = P, I, such that

1. Cjt and ωjt solve the utility optimization problem of investor j;

2. the aggregate consumption is equal to the aggregate dividend: CIt + CPt = Dt;

3. the markets for the stocks and bond clear:

ωPitWPt + ωIitWIt = Sit, i = 1, 2, (12)

αPtWPt + αItWIt = 0, (13)

where ωIit ≡ ωItSit/(S1t + S2t) is the fraction of the type I investors’ wealth allocated to stock

i through investing in the index.

Assuming that the state of the economy is fully described by the two variables st and ut,

we look for the equilibrium processes rt, µQt, ΣQt, µIt, and ΣIt as functions of the state vari-

ables: rt = r(st, ut), µQt = µQ(st, ut), ΣQt = ΣQ(st, ut), µIt = µI(st, ut), and ΣIt = ΣI(st, ut).

The same representation should exist for the drift and diffusion of st: µst = µs(st, ut), Σst =

Σs(st, ut). For the characterization of the equilibrium, it is convenient to introduce i) the

price-dividend ratios of the index and individual stocks as functions of the state variables:

St/Dt = f(st, ut), Sit/Dit = fi(st, ut), i = 1, 2 and ii) the wealth-consumption ratios of

the type I and type P investors as functions of the state variables: WIt/CIt = h(st, ut) and
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WPt/CPt = hP (st, ut). Finally, we introduce the risk aversion of a representative investor as

Γt =

(
st
γI

+
1− st
γP

)−1

. (14)

The following proposition characterizes the equilibrium in the model and indicates how to

compute various equilibrium characterisitcs. To simplify notation, in the rest of the paper we

omit the subscript t for all variables as well as the arguments s and u of all functions.

PROPOSITION 1 The equilibrium in the model is characterized by the functions r, µs, Σs,

ΣI , f , and h that solve a system of algebraic and differential equations (A1) – (A6). The market

price of risk η and the expected excess returns on the index µI are given by equation (A7). The

price-dividend ratio fi of stock i = 1, 2 solves equation (A8). The expected excess returns on

individual stocks µQi, i = 1, 2, and return diffusions ΣQi, i = 1, 2, are given by equation (A9).

The optimal portfolio weights ωI and ωP and the numbers of the shares held by the type I and

type P investors NIi and NPi, i = 1, 2, are given by equations (A10), (A11), and (A13).

Proof. See Appendix.

To identify the effect of index investing, it is insightful to compare the equilibrium from

Proposition 1 with the equilibrium in an identical unconstrained economy, that is, an economy

in which the fundamentals are the same but all investors can trade all individual assets. The

equilibrium in the unconstrained economy with heterogeneous agents and two Lucas trees is

described by Proposition 2 in Chabakauri (2013), which shows that the differential equations

for the price-dividend and wealth-consumption ratios as well as the expressions for the risk-free

rate r, expected excess stock returns µQi, diffusions ΣQi, and market prices of risk η appear to

be identical in the economies with and without indexing. The difference between the economies

comes from the diffusion of the consumption share s, which in the unconstrained economy has

a closed form representation

Σunc
s =

γP − γI
γPγI

s(1− s)ΓΣD, (15)

where Γ is defined in equation (14). In contrast, in the economy with indexing it is given by

equation (A3), which can be written as

Σs = Σunc
s ΠI −

s

h+ shs

(hΣD + huΣu)(I2 − ΠI), (16)

where ΠI = (Σ′
IΣI)/(ΣIΣ

′
I) is the projection operator on the space of index returns (on the

vector of diffusions ΣI) and I2 is a 2× 2 identity matrix.
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Equation (16) deserves several comments. First, it highlights the role of market incomplete-

ness for the type I investors, who face two-dimensional uncertainty associated with the shocks

dB1 and dB2 but can trade only one risky asset. Equation (15) implies that without indexing

the variation in the consumption share s is driven by the total dividend D (associated with the

total risk in the economy) and this is the result of risk sharing between investors with different

risk preferences. However, the composition of D in terms of the individual dividends D1 and D2

does not matter because all investors trade all risky assets and thereby perfectly hedge shocks to

the relative dividend shares.7 In contrast, equation (16) shows that in the presence of indexing

the diffusion Σs contains two terms. The first is the projection of Σunc
s on the index returns; it

represents the variation in the total dividend that can be shared by investors using index as the

only tradable asset. The second term in equation (16) contains the projector I2 − ΠI , so it is

orthogonal to the space of index returns and captures the variation in s produced by the vari-

ation of the total dividend that cannot be shared by investors. Effectively, the type I investors

face additional exposure to the unhedgeable part of the fundamental shocks and absorb it by

changing their consumption.8

Second, equation (16) shows how the magnitude of the variation in the state variable s

is affected by indexing. On the one hand, because some changes in the total dividend are

unspanned by index returns, indexing hampers risk sharing between investors and the volatility

of s produced by it decreases (the projection of Σunc
s on the index in the first term of equation (16)

is smaller than Σunc
s ). On the other hand, the state variable is affected by the unspanned part

of the fundamental shocks (as indicated by the second term in equation (16)) and the volatility

of s increases. Which effect dominates depends on various factors including the fundamentals

of the assets, the magnitude of portfolio distortions brought by indexing, etc. In Section III we

consider the situations of both types.

Third, equations (15) and (16) show why it is more difficult to find the equilibrium in the

economy with indexing than in the unconstrained economy. Because Σunc
s does not depend

on the price-dividend and wealth-consumption ratios, the differential equations for these ratios

in the unconstrained economy are linear, decoupled, and easy to solve. In contrast, equation

(A4) implies that the projection operator ΠI in equation (16) is determined by the values of f

and h, so in the presence of indexing the dynamics of the state variable s are entangled with

the dynamics of the price-dividend and wealth-consumption ratios. As a result, the differential

equations (A5) and (A6) are quasilinear, not linear, and do not have a closed-form solution.

7Note that the dividend share u is still a state variable because it affects the expected growth rate and
volatility of the total dividend.

8Loosely speaking, the projection operator on the space of tradable assets ΠI becomes the identity operator
in the unconstrained economy and equation (16) reduces to equation (15).
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The formulas from Proposition 1 also reveal several technical tricks that help us simplify the

description of the equilibrium. In general, the computation of an equilibrium in an economy

with two trees and two types of investors involves the solution of three differential equations:

two of them are for the price-dividend ratios of the stocks and the third is for the wealth-

consumption ratio of one of the investors. In the unconstrained economy, those equations can

be solved independently from each other but this is not the case in an economy with restrictions

on portfolio weights in which the equations for the ratios typically become entangled and should

be solved simultaneously (e.g., Chabakauri, 2013). Proposition 1 implies that in the presence

of the indexing constraint the computation of the equilibrium can be simplified by sequentially

solving two sets of differential equations: the first is a pair of quasilinear equations for the

price-dividend ratio of the index and the wealth-consumption ratio of the type I investors; the

second is a pair of linear equations for the price-dividend ratios of the individual stocks. This

simplification occurs because the projection operator ΠI , which modifies the dynamics of the

state variable s, depends only on the price-dividend ratio of the index, not individual stocks.

The latter immediately follows from the definition of ΠI and equation (A4).

Indexing changes the equilibrium because it distorts portfolios of the type I investors. There-

fore, the directions and magnitudes of the effects of indexing on the equilibrium variables can

be interpreted by comparing the numbers of the shares of each stock held by each type of the in-

vestors in the benchmark economy and the economy with indexing. Equation (A13) shows that

those numbers can be inferred from the investors’ portfolio weights and wealth-consumption

ratios. We use them in the next section to quantify portfolio distortions produced by indexing.

III. Numerical results

A. Model parameters

In our numerical analysis, we consider two specifications for the dynamics of Lucas trees. In

the first one, the dividend growth rates and volatilities of the trees are identical and set as

µD1 = µD2 = 0.018, ΣD1 = [0.045 0], and ΣD2 = [0 0.045]. We refer to this specification as

a model with homogeneous trees and use it to identify the effects of indexing that exist only

due to the difference in the relative size of the stocks. In the second specification, the growth

rates and volatilities of the trees are different: µD1 = 0.01, µD2 = 0.03, ΣD1 = [0.01 0],

and ΣD2 = [0 0.08]. This is a model with heterogeneous trees and it allows us to explore

the consequences of constructing an index from stocks with different fundamentals. We follow

previous studies (e.g., Basak and Cuoco, 1998; Dumas and Lyasoff, 2012; Chabakauri, 2013) and
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identify the aggregate dividend with the aggregate consumption and the chosen values of the

parameters are in the ballpark of the estimated mean and volatility of the consumption growth

rate in the United States. In both specifications the dividends of the trees are uncorrelated.

Because we interpret the type P investors as financial professionals and the type I investors

as individual investors, we set γP = 1 and γI = 5, and this choice reflects that individual

investors are more risk averse than professionals. In contrast to the vast majority of the papers

that study equilibria in incomplete markets, we do not assume that constrained investors have

logarithmic preferences. On the one hand, this complicates the analysis because hedging demand

of such investors affects the properties of the equilibrium and should be taken into account. On

the other hand, the choice of γI > 1 makes the analysis more realistic. The time preference

parameter β is 0.03 for all investors.

B. Numerical technique

As follows from Proposition 1, all equilibrium processes in our model can be expressed in terms

of the price-dividend ratio f and the wealth-consumption ratio h, which satisfy the system of

quasilinear differential equations (A5) and (A6). To solve these equations, we use the standard

finite-difference approach, which prescribes to approximate our infinite-horizon economy by

an economy with a large finite horizon T , discretize the time interval [0, T ] and domains of

state variables, and solve the discretized equations backward as a sequence of systems of linear

algebraic equations (e.g., Lapidus and Pinder, 1999).

More specifically, we introduce a vector of functions F = [f h]′, denote the first and second

partial derivatives of F with respect to the state variables s and u as Fs, Fu, Fss, Fuu, and Fus,

and write the system of equations (A5) and (A6) adjusted for a finite horizon economy as

Ass(F, Fs, Fu, s, u)Fss + Auu(F, Fs, Fu, s, u)Fuu + Aus(F, Fs, Fu, s, u)Fus + As(F, Fs, Fu, s, u)Fs

+ Au(F, Fs, Fu, s, u)Fu + A(F, Fs, Fu, s, u)F + 1 +
∂F

∂t
= 0, (17)

where Ass, Auu, Aus, As, Au, and A are diagonal matrices with elements that correspond to

the coefficients of differential equations (A5) and (A6). Note that equation (17) includes the

time derivative ∂F/∂t, which appears as an additional term in Itô’s lemma applied to the time-

dependent price-dividend ratio and indirect utility function in the derivation of equations (A5)

and (A6) presented in Appendix.

Next, we set T = 500 and using a backward recursion solve equation (17) at discrete

moments t = T, T − ∆t, . . . ,∆t, 0 and in discrete states s = 0, ∆s, 2∆s, . . . , 1, and
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u = 0, ∆u, 2∆u, . . . , 1, where ∆t = 0.1, ∆s = 0.01, and ∆u = 0.01. In particular, the

time t solution F(t) is found by solving discretized equation (17) in which all derivatives of

F(t) are replaced with their finite-difference approximations and the equation coefficients are

computed using the solution F(t+∆t) at time t + ∆t obtained in the previous step. Thus, the

coefficients of the discretized equation do not depend on the time t solution and F(t) solves a

system of linear algebraic equations. Because the time horizon T is large, the sequence F(t),

t = T, T − ∆t, . . . ,∆t, 0, converges to a time-independent solution F , which describes an

equilibrium in the infinite-horizon economy. We verify the convergence by observing that the

discrete approximation of the derivative ∂F/∂t has the order of magnitude 10−7 at t = 0.

The iteration procedure starts from the terminal solution F(T ) = [∆t ∆t]′, which follows from

the index price and the type I investors’ wealth at the terminal date being equal to ST = DT∆t

and WIT = CIT∆t, respectively, so the price-dividend and wealth-consumption ratios at time

T are f(T ) = ∆t and h(T ) = ∆t. The spacial boundary conditions for the discretized version of

equation (17) are obtained by taking the limits s → 0, u → 0, s → 1, and u → 1 in equation

(17). The computation of the boundary conditions is incorporated directly into the numerical

algorithm. Appendix B in Chabakauri (2013) provides further details.

Having solved equation (17) and obtained f and h, we find r, µs, Σs, and ΣI as functions

of the state variables using equations (A1) – (A4). Also, we compute η and µI from equation

(A7). To find the price-dividend ratios fi, we solve differential equations (A8). Note that those

equations are linear because their coefficients are known functions of the state variables, so

they are solved using the finite-difference approximation that no longer requires a backward

recursion. The remaining equilibrium variables are obtained from equations (A9) – (A13).

To find the equilibrium in the benchmark economy without indexing, we also use the finite-

difference approximation. However, in this case the differential equations for the price-dividend

ratios and wealth-consumption ratios are linear and decoupled, so each of them is solved indi-

vidually without a backward recursion. These computations closely follow Chabakauri (2013).

C. Benchmark: economy without index investing

Consider first an unconstrained economy in which all investors can trade all assets individually.

An equilibrium in such an economy is characterized by Chabakauri (2013) and we use it as a

benchmark for identifying and quantifying the impact of indexing. The equilibrium variables in

the unconstrained economy with homogeneous trees are presented in Figure 1.

FIGURE 1 IS HERE
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Figure 1 demonstrates that the stock volatilities and the volatility of the index tend to be

higher than the volatilities of the dividends and this is an outcome of dynamic risk sharing

between agents with different risk preferences (e.g., Bhamra and Uppal, 2009; Longstaff and

Wang, 2012).9 Indeed, when a positive cash flow shock hits one of the stocks, it disproportionally

increases wealth of the type P investors, who are less risk averse and invest a higher fraction

of their wealth in stocks. To maintain their optimal portfolio weights, they buy more stocks

from the more risk-averse type I investors and drive the price up even further. The effect is

stronger for the larger stock (e.g., the first stock when u > 1/2) since this stock is traded more

actively when the type P investors rebalance their portfolios. Also, the larger stock has a higher

beta and shocks to its dividend have a higher price of risk. This is not surprising because

the larger stock is a better proxy for the whole market and the risk associated with it has a

bigger effect on the investors’ consumption. Because the type P investors trade both stocks in

response to a shock to one of them, the stock returns are positively correlated even though the

correlation between dividends is zero (e.g., Cochrane, Longstaff, and Santa-Clara, 2008; Ehling

and Heyerdahl-Larsen, 2012).10

Even though the total number of the shares of each stock in our economy is normalized

to one and the stocks have identical dividend processes, their sizes as well as the statistical

properties of their returns are different in all states except those with u = 1/2. As a result, the

investors tend to hold more shares of one stock than of the other. In particular, the graph for

the ratio of the number of shares NI2/NI1 demonstrates that the type I investors prefer to hold

more shares of the larger stock because it provides a better combination of risk and return.

FIGURE 2 IS HERE

Figure 2 presents the equilibrium in an economy with heterogeneous trees. It confirms many

observations made in the case of homogeneous trees and reveals new effects. In particular, the

volatilities of both individual stocks and the index tend to be higher when the economy is dom-

inated by the more volatile second tree. This happens because both the fundamental volatility

and the volatility produced by risk sharing are higher. The most interesting observation from

Figure 2 is that stock returns can be negatively correlated even though the dividends are uncor-

related. To the best of our knowledge, this possibility has not been reported in the literature,

which mainly considers economies with homogeneous trees and documents only positive excess

correlation of stock returns produced by risk sharing (as in Figure 1).

9The volatilities of the stocks and index are computed as σi =
√

Σ2
Qi,1 +Σ2

Qi,2 and σind =
√
Σ2

I,1 +Σ2
I,2.

10The correlation between stock returns is computed as ρ = (ΣQ1,1ΣQ2,1 +ΣQ1,2ΣQ2,2)/(σ1σ2).
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To better understand the sign of the correlation, we follow Cochrane, Longstaff, and Santa-

Clara (2008) and decompose the covariance between stock returns as

cov (dQ1, dQ2) = cov

dD1

D1

,
dD2

D2

+ cov

df1

f1
,
df2

f2


+ cov

dD1

D1

,
df2

f2

+ cov

dD2

D2

,
df1

f1

 . (18)

Equation (18) demonstrates that the covariance depends not only on the covariances of dividends

and changes in the price-dividend ratios but also on how dividends on one stock covary with

changes in the price-dividend ratio of the other stock. In our economy, the first term in equation

(18) is zero because dividends are uncorrelated. The second term is small, so, as in Cochrane,

Longstaff, and Santa-Clara (2008), the covariance between stock returns is mainly determined

by the last two terms. We find that the negative correlation between stock returns in the

economy with heterogeneous trees arises because the last term in equation (18) is negative and

large for a wide range of realizations of the state variables s and u. Indeed, a negative shock

dD2 increases the share of the first tree u. Figure 2 shows that the price-dividend ratio f1 is an

increasing function of u in many states of the economy (the pattern is particularly pronounced

around s = 0 and u = 1), so in those states cov(dD2/D2, df1/f1) < 0. The absolute value of

the covariance is large due to the large volatility σD2, which substantially exceeds σD1. This

contrasts with the case of homogeneous trees in which f1 is an increasing function of u in a

smaller region and the volatility σD2 is the same as σD1, so the last two terms in equation (18)

have similar magnitudes, their sum is positive, and the correlation between stock returns is

positive.

It remains to explain why the price-dividend ratios f1 and f2 increase with u. Figure 2 shows

that the risk-free rate r is a decreasing function of u around u = 1 and the pattern is stronger

than in the case of homogeneous trees because interest rates are lower in economies with lower

expected dividend growth rates and µD1 < µD2. As a result, the cash flows are discounted at a

lower rate around u = 1 (where the first tree dominates the economy) and the price-dividend

ratios tend to be higher. Thus, the ratios fi are increasing functions of u around u = 1 and

this gives rise to the negative correlation between stock returns. Note that the described effect

crucially relies on the heterogeneity of both drifts and diffusions of the dividend processes: when

either of them is homogeneous, the correlation is positive in all states of the economy.
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D. Main analysis: economy with index investors

In this section, we study the equilibrium effects of indexing by comparing the equilibrium

variables in the constrained and unconstrained economies. We separately discuss the cases with

homogeneous and heterogeneous trees.

D.1. Homogeneous trees

Consider first the economy with homogeneous trees. Because the fundamentals of the trees

follow the processes with identical parameters, indexing changes the equilibrium only because

the trees have different sizes produced by different realizations of the dividends.

FIGURE 3 IS HERE

Figure 3 shows the changes in the equilibrium variables produced by indexing. For the

majority of the variables we plot relative changes but for those variables that can be equal or

close to zero we present absolute changes.

First of all, the change in the ratio NI2/NI1 shows how indexing distorts investors’ portfolios.

Because only the market portfolio and the risk-free bond are held by both types of investors in

the equilibrium with indexing and the market portfolio contains an equal number of the shares

of each stock, indexing implies that NI2/NI1 = 1 in all states of the economy. Since in the

unconstrained economy the type I investors prefer to hold more shares of the larger stock (see

the discussion of Figure 1), indexing increases (decreases) the relative number of the shares

of the smaller (larger) stock in their portfolio. The graphs for the changes in the number of

the shares NP1 and NP2 held by the type P investors further indicate that in total the type

I investors hold more stocks in the economy with indexing than in the benchmark economy

because the increase in the number of the shares of the smaller stock is not offset by only a

slight decrease in the number of the shares of the larger stock.

An immediate consequence of a more uniform distribution of the shares across investors is

the reduction in risk sharing among them. Indeed, because the type P investors hold fewer

stocks than in the benchmark economy, their incentives to rebalance portfolios in response to

cash flow shocks are subdued. As a result, indexing decreases the volatility of the index σind,

which is inflated by risk sharing in the unconstrained economy. A lower volatility of the index

implies that the market portfolio is safer than in the unconstrained economy and this is why

the more risk-averse type I investors hold more equity. The effect is particularly strong when

the stocks have unequal sizes and the type P investors notably decrease their holdings of the
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smaller stock but disappears as u → 0 or u → 1 because in these limits the market coincides

with one of the stocks and indexing is irrelevant.

Figure 3 shows that the portfolio distortions brought about by indexing also affect the risk-

free rate r, which is lower in the constrained economy. This happens because the stock holdings

of the less risk-averse investors, who maintain leveraged positions in stocks in many states of the

economy, decrease and they borrow less to finance their portfolio. As for the index volatility,

the effect is particularly strong when the stocks differ in size.

The impact of indexing on betas and volatilities of individual stocks as well as on the market

prices of risk is less straightforward. As follows from Figure 3, indexing decreases the beta and

volatility of the smaller stock but the effect is opposite for the larger stock. Also, the market

price of risk associated with the shock dBi, i = 1, 2, is higher when stock i is larger. These

observations also admit an intuitive explanation. Because the leveraged type P investors hold

a smaller number of the shares of the smaller stock, they are more reluctant to rebalance their

portfolios in response to its dividend shocks. As a result, returns on this stock become less

volatile and less related to the returns on the market, that is, have a lower beta. Effectively,

the smaller stock becomes safer due to indexing and, hence, the shocks associated with it have

a lower price of risk. The effect is opposite for the larger stock but it is weaker because the type

P investors only slightly increase their holdings of this stock compared to the unconstrained

economy. Note that the beta, volatility, and price of risk are higher for the larger stock in

the unconstrained economy, so our results imply that indexing increases the cross-sectional

dispersion in these characteristics.

Figure 3 also shows that the price-dividend ratios fi increase relative to the unconstrained

economy when stock i is smaller and this is explained by the effects of indexing on r and ηi.

Indeed, the approximate Gordon formula fi ≈ 1/(r+ηΣ′
Di−µDi) shows that the price-dividend

ratio increases when both the risk-free rate and the market price of risk become lower but may

decrease when the decrease in the risk-free rate is offset by an increase in the market price of

risk. As follows from the discussion above, the former happens for the smaller stock and the

latter may happen for the larger stock.

The effects of indexing on the volatilities can also be tracked down to the changes in the

dynamics of the state variable s. Consider equation (A9), which decomposes the diffusions ΣQi

into three components: one of them represents the fundamental diffusion ΣDi and the two others

are associated with the diffusions of the state variables s and u. The changes in ΣQ1,1 (the first

element in the matrix diffusion ΣQ1) and its components produced by indexing are presented

in the upper panels of Figure 4. Because the stocks have identical fundamental processes, we

consider the volatility only of the first of them. Also, we focus only on the diffusions associated
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with the innovation dB1 because the changes in the diffusions associated with dBi are the main

determinants of the changes in the volatility of stock i. This follows from the approximation

∆σ2
i ≈ 2(ΣQi,1∆ΣQi,1 + ΣQi,2∆ΣQi,2) and the inequalities ΣQ1,1 > ΣQ1,2 and ΣQ2,1 < ΣQ2,2,

which hold due to the presence of large constant dividend diffusions in the components ΣQ1,1

and ΣQ2,2. The dominant role of ∆ΣQ1,1 in shaping the change in the volatility of the first stock

is evident from the comparison of its graph and the graph for ∆σ1/σ
unc
1 in Figure 3.

FIGURE 4 IS HERE

Figure 4 demonstrates that the effect of indexing on the volatility is primarily determined by

the second component (f1s/f1)Σs,1 in equation (A9): the deviation from its unconstrained coun-

terpart is an order of magnitude larger than the same deviation of the component (f1u/f1)Σu,1

and almost perfectly coincides with ∆ΣQ1,1. The center right panel and the bottom right panel

of Figure 4 further decompose the change in (f1s/f1)Σs,1 into two parts related to the changes

in the ratio f1s/f1 and in Σs,1 using the approximation ∆((f1s/f1)Σs,1) ≈ ∆(f1s/f1)Σs,1 +

(f1s/f1)∆Σs,1. Comparing these graphs with the graph for the total change in (f1s/f1)Σs,1 we

conclude that the latter is largely determined by the change in Σs,1 but the effect is also shaped

by the factor f1s/f1.

Figure 4 also shows the graphs for f1s/f1 and Σs,1 in the benchmark economy and how they

change in the economy with indexing. In particular, Σs,1 is negative and its absolute value

increases with u. Indeed, because the less risk-averse type P investors hold more stocks, any

positive shock dB1 increases disproportionally their wealth and consumption, so the consump-

tion share of the more risk-averse type I investors s goes down. Therefore, Σs,1 is negative.

The magnitude of the effect grows with the contribution of the asset to the aggregate dividend

volatility, and this explains why it is stronger for larger u. Indexing decreases the absolute

value of Σs,1 for the smaller stock (the first stock when u is small) because the necessity to

trade the whole index (both stocks) makes investors less responsive to changes in its dividend.

The effect is opposite but weaker for the larger tree. The ratio f1s/f1 is also negative because

the price-dividend ratio decreases with s: for higher s the proportion of the more risk-averse

investors in the economy and the required risk premium are higher and prices are lower. As a

result, the effect of indexing is stronger when the economy is dominated by the risk averse type

I investors (s is large).

Indexing has an ambiguous effect on the correlation of stock returns. Figure 3 demonstrates

that the correlation increases when the stocks have comparable sizes (around u = 0.5) but
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decreases when the sizes are notably different. In general, the impact of indexing on the corre-

lation is determined by the relative strength of the following two effects that work in opposite

directions. On the one hand, indexing increases the correlation because each investor holds an

equal number of the shares of each stock and trades both stocks in lockstep. On the other hand,

indexing reduces the correlation because it hampers risk sharing between investors, which is

the main source of the correlation when stocks can be traded individually and their dividends

are uncorrelated (as explained in Section III.C). The latter effect is strong when the stocks

have different sizes and it dominates, so the correlation becomes lower than in the benchmark

economy. When the stocks have comparable sizes, risk sharing is almost unaffected, so the

former effect dominates and the correlation between stocks appears to be higher than without

indexing.

D.2. Heterogeneous trees

Although indexing changes various equilibrium characteristics, the magnitudes of the effects

in an economy with homogeneous trees tend to be relatively small. Indeed, the inability of

some investors to rebalance the portfolio of individual stocks matters only when returns on the

stocks have different statistical properties. When the dividends follow stochastic processes with

identical parameters, only different realizations of dividend shocks and ensuing heterogeneity

in stock sizes contributes to the heterogeneity in stock returns, which appears to be limited.

As a result, the impact of indexing is also relatively weak. The outcome can be substantially

different when the heterogeneity in the stock sizes is accompanied by the heterogeneity in the

dividend processes.

FIGURE 5 IS HERE

Figure 5 shows how the equilibrium characteristics change due to indexing in the model

with heterogeneous trees. On the one hand, many effects are qualitatively similar to those

observed in the economy with homogeneous trees. In particular, indexing reduces the risk-free

rate r and the volatility of index returns σind. On the other hand, the heterogeneity in the

fundamentals brings about several new important effects. To understand why this happens,

consider the graph for the change in the ratio NI2/NI1, which provides two observations. First,

except for a small area around the point u = 0, s = 1 indexing forces the type I investors to

hold relatively more shares of the second stock (the stock with more volatile dividends) than

they would in the unconstrained economy. This contrasts with the homogeneous asset economy

20



in which investors are bound to hold more shares of a smaller stock. Second, the portfolio

distortion is much larger than in the case with homogeneous trees. This explains why indexing

has a stronger impact on the equilibrium as evidenced by other graphs in Figure 5. For example,

the correlation between stock returns can decrease by almost 0.15, whereas the effect does not

exceed 0.01 in the economy with homogeneous trees. Similarly, the changes in the volatilities,

betas, and risk-free rate reported in Figures 3 and 5 differ by an order of magnitude.

Because index investors have to tilt the composition of their portfolios towards the more

volatile stock, they respond to the distortion in the risk-return tradeoff by reducing their total

exposure to stocks in many states of the economy. As follows from the graphs for ∆NP1/N
unc
P1

and ∆NP2/N
unc
P2 , the type P investors substantially increase their holdings of the first stock but

do not change the holdings of the second stock when the stocks are comparable in size or the first

stock is slightly larger than the second one. In those states the type I investors effectively reduce

their exposure to stocks by holding fewer shares of the first of them. This effect disappears only

when one of the stocks is much larger than the other (when u → 0 or u → 1) and the type I

investors hold more shares of the smaller stock as in the case with homogeneous trees.

The increase in the holdings of the first stock by the type P investors implies that they use

more shares of this stock when they rebalance their portfolios in response to cash flow shocks.

As a result, the first stock is more volatile, has a higher beta, and shocks to its dividends

command a higher price of risk. The increase in the latter is not offset by the decrease in the

risk-free rate and explains the decline in the price-dividend ratio of the first stock.

The effects are opposite for the second stock, which has the same allocation across investors

as in the unconstrained economy when it is large and held more by the type I investors when

it is small (this immediately follows from the graph for ∆NP2/N
unc
P2 ). In the latter case, it is

used less for risk sharing by the type P investors, so its volatility, beta, and associated price of

risk decrease compared to the unconstrained economy. Together with the lower risk-free rate,

the lower price of risk explains why the price-dividend ratio of the second stock is higher in the

economy with indexing.

Note that the effect of indexing on many variables is pronounced only when s > 0.5 and u >

0.5. Indeed, when s is large the index investors consume a substantial fraction of the aggregate

dividend and have a strong impact on the properties of the equilibrium. The dependence on u

is less straightforward. As follows from the graph for ∆(NI2/NI1), the magnitude of portfolio

distortions caused by indexing increases with u. As discussed above, the type I investors decrease

their holdings of the index to partially offset the constraint to hold more shares of the second

stock in many states of the economy and especially when u > 0.5. As a result, the type P

investors hold more shares of the first stock and this causes the effects described above. When
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u is low, there are two effects. On the one hand, as in the case with homogeneous trees indexing

forces the type I investors to hold more shares of the smaller stock, which is the first stock when

u is small. On the other hand, because the type I investors reduce their exposure to the index

compared to the unconstrained economy they hold fewer shares of the first stock. Overall, these

effects approximately offset each other, the impact of indexing is mitigated, and the equilibrium

characteristics are almost the same as in the unconstrained economy.

As in Section III.D.1, the effect of indexing on the volatilities can be explained by changes in

the dynamics of the state variable s. Again, the volatilities of the individual stocks are largely

determined by the diffusions ΣQ1,1 and ΣQ2,2 and as before we decompose them according to

equation (A9). The results are presented in Figures 6 and 7. Because now the dividend processes

of the two stocks are different, we consider the decomposition of diffusions for both of them.

FIGURES 6 AND 7 ARE HERE

As in the model with homogeneous trees, the dominant role in the changes of ΣQ1,1 and

ΣQ2,2 is played by the components ∆((f1s/f1)Σs,1) and ∆((f2s/f2)Σs,2), respectively. In their

turn, these components are almost exactly equal to (f1s/f1)∆Σs,1 and (f2s/f2)∆Σs,2, so indexing

affects the volatilities mostly through the changes in the diffusions Σs,1 and Σs,2. Also, as before

the absolute values of the factors f1s/f1 and f2s/f2 increase with s, so the effect of indexing is

particularly pronounced when the proportion of index investors is relatively large.

However, the effect of indexing on Σs,1 and Σs,2 is different from that in Figure 4. First, it is

strong only when the first (less volatile) stock is larger. Second, indexing decreases the absolute

value of Σs,2 but in most states increases the absolute value of Σs,1. This pattern is totally

consistent with the logic discussed above. Due to indexing, in many states of the economy more

shares of the first stock are held by the type P investors who become more exposed to the cash

flow shocks dB1 but cannot efficiently hedge them because the first stock can be traded only

as a part of the index. As a result, the relative consumption ratio s becomes more sensitive

to dB1. The decrease in the absolute value of Σs,2 has the same nature as the decrease in the

diffusions of s in the case with homogeneous trees.

The effect of indexing on the correlation between stock returns is also qualitatively different

from what we observe when the trees are homogeneous. In the vast majority of the states, the

decrease in the correlation produced by hampered risk sharing dominates the lockstep trad-

ing effect responsible for the increase in the correlation (these effects are discussed in Section

III.D.1), so in the economy with indexing the returns are less correlated than in the uncon-
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strained economy. As almost all other effects, the decrease in the correlation is strong when the

first stock is relatively large.

IV. Conclusion

In this paper we investigate the impact of index investing on various characteristics of capital

market equilibrium. It is widely believed that the tendency of many market participants to trade

indexes instead of individual securities makes returns more volatile and increases the correlations

between them. Our analysis reveals that this logic is theoretically flawed because it does not take

the equilibrium effects of index investing into account. We argue that indexing changes not only

how investors can trade but also their investment opportunities, which determine the incentives

to trade. In particular, we demonstrate that indexing can hamper risk sharing among investors,

which is responsible for excessive volatility of returns and makes them correlated even when the

asset fundamentals are independent. As a result, indexing can decrease the correlations between

returns and their volatilities.

Our results also highlight the role of the heterogeneity in the assets’ market capitalizations

and dividend processes in shaping the impact of indexing. We show that in general indexing

increases (decreases) volatilities and betas of stocks with relatively large (small) market capital-

izations and its impact is especially strong when stocks differ in their expected dividends and

dividend volatilities. The latter case is particularly realistic and empirically relevant.

Our analysis can be extended in several ways. In particular, our model can accommodate

alternative types of indexes such as fundamental indexes, which were proposed in the literature

and implemented in practice (e.g., Arnott, Hsu, and Moore, 2005). Also, it would be interesting

to consider a setting with multiple trees in which only a subset of all trees is included in the

index. Such a model could help to investigate how the choice of assets that are included in the

index affects the equilibrium properties as well as to provide a fully-fledged general equilibrium

analysis of the correlations between the assets included and excluded from the index. This

extension is likely to be more technically complicated than our model due to a larger number

of state variables. Finally, it may be interesting to endogenize the dividend processes using

a production economy framework and examine the impact of indexing on the firms’ behavior.

The analysis of how portfolio constraints affect corporate policies could be a particularly fruitful

direction for future research.
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Appendix. Proof of Proposition 1.

The equilibrium functions r, µs, Σs, ΣI , f , and h solve the following system of equations:

r = β + Γ

(
µD − 1

2
(γI + 1)s

(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

−1

2
(γP + 1)(1− s)

(
ΣD − 1

1− s
Σs

)(
ΣD − 1

1− s
Σs

)′)
, (A1)

µs = −ΣsΣ
′
D +

s(1− s)

γIγP
Γ

(
µD(γP − γI) +

γI(γI + 1)

2

(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

−γP (γP + 1)

2

(
ΣD − 1

1− s
Σs

)(
ΣD − 1

1− s
Σs

)′)
, (A2)

Σs =
γP − γI
γIγP

s(1− s)ΓΣDΠI −
s

h+ shs

(hΣD + huΣu)(I2 − ΠI), (A3)

ΣI =

(
fΣD + fuΣu + fs

γP−γI
γIγP

s(1− s)ΓΣD

)(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)′
(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)′ ×
×
(
ΣD +

fu
f
Σu −

fs
f

s

h+ shs

(hΣD + huΣu)

)
, (A4)

1

2
fssΣsΣ

′
s +

1

2
fuuΣuΣ

′
u + fsuΣsΣ

′
u + fs(µs + (1− Γ)ΣDΣ

′
s)

+ fu(µu + (1− Γ)ΣDΣ
′
u) + (µD − r − ΓΣDΣ

′
D)f + 1 = 0, (A5)

1

2
hssΣsΣ

′
s +

1

2
huuΣuΣ

′
u + husΣuΣ

′
s

+ hs

(
µs − (γI − 1)

(
ΣD +

1

s
Σs

)
Σ′

s

)
+ hu

(
µu − (γI − 1)

(
ΣD +

1

s
Σs

)
Σ′

u

)
−
(
γI − 1

2

(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

+
(γI − 1)r + β

γI

)
h+ 1 = 0, (A6)
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where ΠI = (Σ′
IΣI)/(ΣIΣ

′
I) and the subscripts s and u of the functions f and h indicate

derivatives. The market price of risk η and the expected returns on the index µI are

η = γP

(
ΣD − 1

1− s
Σs

)
, µI = ΓΣIΣ

′
D. (A7)

The price-dividend ratio fi of stock i = 1, 2 solves the following differential equation:

1

2
fissΣsΣ

′
s +

1

2
fiuuΣuΣ

′
u + fisuΣsΣ

′
u + fis(µs + (ΣDi − η)Σ′

s)

+ fiu(µu + (ΣDi − η)Σ′
u) + (µDi − r − ηΣ′

Di)fi + 1 = 0. (A8)

The expected excess returns on individual stocks µQi and return diffusions ΣQi are

µQi = γPΣQi

(
ΣD − 1

1− s
Σs

)′

, ΣQi = ΣDi +
fis
fi

Σs +
fiu
fi

Σu. (A9)

The optimal portfolio weights of the type I and type P investors are

ωI =
1

ΣIΣ′
I

(
µI

γI
+

hs

h
ΣIΣ

′
s +

hu

h
ΣIΣ

′
u

)
, (A10)

ωP = (ΣQΣ
′
Q)

−1

(
µQ

γP
+

hPs

hP

ΣQΣ
′
s +

hPu

hP

ΣQΣ
′
u

)
, (A11)

where the wealth-consumption ratio of the type P investors hP is

hP =
1

1− s

(
uf1 + (1− u)f2 − sh

)
. (A12)

The numbers of the shares of each stock NIi and NPi held by the type I and type P investors

are

NIi =
sωIih

sωIih+ (1− s)ωPihP

, NPi =
(1− s)ωPihP

sωIih+ (1− s)ωPihP

, (A13)

where

ωI1 =
ωIuf1

uf1 + (1− u)f2
, ωI2 =

ωI(1− u)f2
uf1 + (1− u)f2

. (A14)

We derive equations (A1) – (A14) in several steps.

A. Price-dividend ratios

First, we derive equations for the price-dividend ratios f1, f2, and f . By definition, Si = Difi.
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Applying Itô’s lemma to this equation, we get

dSi

Si

=
dDi

Di

+
dfi
fi

+
dDi

Di

dfi
fi

,

where

dfi = fis(µsdt+ ΣsdB) + fiu(µudt+ ΣudB) +
1

2
fissΣsΣ

′
sdt+

1

2
fiuuΣuΣ

′
udt+ fiusΣuΣ

′
sdt.

Using equation (1),

dSi +Didt

Si

− rdt =

(
µDi − r +

1

2

fiss
fi

ΣsΣ
′
s +

1

2

fiuu
fi

ΣuΣ
′
u +

fius
fi

ΣuΣ
′
s

+(µs + ΣDiΣ
′
s)
fis
fi

+ (µu + ΣDiΣ
′
u)
fiu
fi

+
1

fi

)
dt+

(
ΣDi +

fis
fi

Σs +
fiu
fi

Σu

)
dB.

This process should coincide with the process for excess returns from equation (2), so

µQi = µDi − r +
1

2

fiss
fi

ΣsΣ
′
s +

1

2

fiuu
fi

ΣuΣ
′
u +

fius
fi

ΣuΣ
′
s

+ (µs + ΣDiΣ
′
s)
fis
fi

+ (µu + ΣDiΣu)
fiu
fi

+
1

fi
, (A15)

ΣQi = ΣDi +
fis
fi

Σs +
fiu
fi

Σu. (A16)

Equation (A15) is effectively a differential equation for fi:

1

2
fissΣsΣ

′
s +

1

2
fiuuΣuΣ

′
u + fisuΣsΣ

′
u + fis(µs + ΣDiΣ

′
s)

+ fiu(µu + ΣDiΣ
′
u) + (µDi − r − µQi)fi + 1 = 0. (A17)

By definition of the market price of risk η, µQi = ΣQiη
′. Plugging this representation for µQi in

equation (A17) and using equation (A16), we arrive at equation (A8). The same steps applied

to the index yield the differential equation for the index price-dividend ratio f :

1

2
fssΣsΣ

′
s +

1

2
fuuΣuΣ

′
u + fsuΣsΣ

′
u + fs(µs + ΣDΣ

′
s)

+ fu(µu + ΣDΣ
′
u) + (µD − r − µI)f + 1 = 0. (A18)
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The index diffusion is related to the diffusions of the state variables as

ΣI = ΣD +
fs
f
Σs +

fu
f
Σu (A19)

and this equation is similar to equation (A16).

B. Utility maximization problem of the type P investors

Next, consider the consumption and portfolio problem of the type P investors. Recall that

they can invest in any combination of stocks, so from their perspective the market is complete.

The first order conditions of their optimization problem can be interpreted as pricing equations

that relate the risk-free rate r and the expected excess returns µQ to their discount factor Λ

(e.g., Cochrane, 2005):

r = − 1

dt
E

(
dΛ

Λ

)
, µQi = − 1

dt
E

(
dΛ

Λ

dSi

Si

)
, i = 1, 2. (A20)

Since the investors have the CRRA preferences, their discount factor is Λ = exp(−βt)(CP )
−γP .

Hence,
dΛ

Λ
= −βdt− γP

dCP

CP

+
γP (γP + 1)

2

(
dCP

CP

)2

.

Using the definition of the consumption share s, the consumption of the type P investors is

CP = (1− s)D. Itô’s lemma applied to this equation together with equations (3) and (8) yields

dCP

CP

=

(
µD − µs + ΣDΣ

′
s

1− s

)
dt+

(
ΣD − 1

1− s
Σs

)
dB.

Therefore,

dΛ

Λ
= −βdt− γP

(
µD − µs + ΣDΣ

′
s

1− s
− γP + 1

2

(
ΣD − 1

1− s
Σs

)(
ΣD − 1

1− s
Σs

)′)
dt

− γP

(
ΣD − 1

1− s
Σs

)
dB.

Using equation (A20), we find the risk-free rate r and the expected excess returns µQ and µI :

r = β + γPµD − γP
1− s

(µs + ΣsΣ
′
D)−

γP (γP + 1)

2

(
ΣD − 1

1− s
Σs

)(
ΣD − 1

1− s
Σs

)′

, (A21)

µQ = γPΣQ

(
ΣD − 1

1− s
Σs

)′

, µI = γPΣI

(
ΣD − 1

1− s
Σs

)′

. (A22)
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C. Utility maximization problem of the type I investors

The type I investors maximize the CRRA utility from equation (5) subject to the budget

constraint from equation (7). Because they can trade only the index and the risk-free bond,

from their perspective the market is incomplete and the utility maximization problem should be

solved directly. In particular, their indirect utility function J satisfies the standard Hamilton-

Jacobi-Bellman (HJB) equation

max
{CI ,ωI}

[
e−βt C

1−γI
I

1− γI
+DJ

]
= 0, (A23)

where DJ = E[dJ ]/dt is given by

DJ = JW (rWI − CI + ωIWIµI) +
1

2
JWWW 2

I ω
2
IΣIΣ

′
I + JWsωIWIΣIΣ

′
s + JWuωIWIΣIΣ

′
u

+ Jsµs + Juµu +
1

2
JssΣsΣ

′
s +

1

2
JuuΣuΣ

′
u + JusΣsΣ

′
u + Jt

and the subscripts of J denote derivatives with respect to the corresponding variable. When

investors have the CRRA preferences, it is standard to look for the indirect utility in the

following form:

J =
1

1− γI
W 1−γI

I hγI exp(−βt), (A24)

where the function h depends on the state variables s and u. The maximization in equation

(A23) with respect to CI together with equation (A24) yields the optimal consumption:

CI = WIh
−1, (A25)

so h is the optimal wealth-consumption ratio. Similarly, the maximization in (A23) with respect

to ωI gives the optimal weight of the index:

ωI =
1

ΣIΣ′
I

(
µI

γI
+

hs

h
ΣIΣ

′
s +

hu

h
ΣIΣ

′
u

)
. (A26)

This is equation (A10). The substitution of equations (A25) and (A26) back into equation
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(A23) yields a differential equation for h:

1

2
hssΣsΣ

′
s +

1

2
huuΣuΣ

′
u + husΣuΣ

′
s + hsµs + huµu

+
γI − 1

2

((
hs

h
Σs +

hu

h
Σu

)(
hs

h
Σs +

hu

h
Σu

)′

− 1

ΣIΣ′
I

(
µI

γI
+

hs

h
ΣIΣ

′
s +

hu

h
ΣIΣ

′
u

)2
)
h

+
1

γI
((1− γI)r − β)h+ 1 = 0. (A27)

D. Dynamics of the state variable s and returns on the index

Next, we find expressions for µs, Σs, µI , and ΣI . The definition of the consumption share s

implies that CI = sD, so using Itô’s lemma

dCI

CI

= µCdt+ ΣCdB,
dC−γI

I

C−γI
I

=

(
−γIµC +

1

2
γI(γI + 1)ΣCΣ

′
C

)
dt− γIΣCdB, (A28)

where

µC = µD +
µs + ΣsΣ

′
D

s
, ΣC = ΣD +

1

s
Σs. (A29)

Note that using CI = WIh
−1, the indirect utility function from equation (A24) can be rewritten

as

J =
1

1− γI
C−γI

I WI exp(−βt).

Applying Itô’s lemma to this equation and taking into account equations (7) and (A28), we get

dJ

J
=
(
−β−γIµC+

1

2
γI(γI+1)ΣCΣ

′
C+r−h−1+ωI(µI−γIΣIΣ

′
C)
)
dt+(ωIΣI−γIΣC)dB. (A30)

Alternatively, Itô’s lemma applied to equation (A24) yields

dJ

J
=

DJ

J
dt+

(1− γI)ωIΣI + γI
hs

h
Σs + γI

hu

h
Σu

 dB. (A31)

Noting that equations (A24) and (A25) imply that

e−βt C
1−γI
I

1− γI
= Jh−1
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and using the HJB equation (A23), we get DJ = −Jh−1 and rewrite equation (A31) as

dJ

J
= −h−1dt+

(
(1− γI)ωIΣI + γI

hs

h
Σs + γI

hu

h
Σu

)
dB. (A32)

Matching the drifts and diffusions in equations (A30) and (A32) and using µC and ΣC from

equation (A29), we get

1 + γI
2

(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

+
r − β

γI
+ ωI

(
µI

γI
−
(
ΣD +

1

s
Σs

)
Σ′

I

)
= µD +

1

s
(µs + ΣsΣ

′
D), (A33)

ωIΣI −
hs

h
Σs −

hu

h
Σu = ΣD +

1

s
Σs. (A34)

Equation (A34) helps to derive a system of equations for ΣI and Σs. Plugging the optimal

portfolio weight ωI from equation (A26) into equation (A34) yields

µIΣI

γI(ΣIΣ′
I)

−
(
hs

h
Σs +

hu

h
Σu

)(
I2 −

Σ′
IΣI

ΣIΣ′
I

)
= ΣD +

1

s
Σs, (A35)

where I2 is a 2× 2 unit matrix. Multiplying this equation by Σ′
I , we get

µI = γI

(
ΣD +

1

s
Σs

)
Σ′

I , (A36)

which together with the expression for µI from (A22) gives

ΣsΣ
′
I =

(
γI
s

+
γP

1− s

)−1

(γP − γI)ΣDΣ
′
I . (A37)

The substitution of this equation in equation (A36) yields µI = ΓΣDΣ
′
I , where Γ is defined

in equation (14). This expression for µI is a part of equation (A7). Plugging it into equation

(A35), introducing the matrix ΠI = (Σ′
IΣI)/(ΣIΣ

′
I), which is a projector operator on the vector

ΣI , and rearranging the terms, we get

Σs = (γP − γI)

(
γI
s

+
γP

1− s

)−1

ΣD − s

(
hs

h
Σs +

hu

h
Σu +

1

γI
ΓΣD

)
(I2 − ΠI) . (A38)
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The resolution of this equation for Σs yields

Σs = (γP − γI)

(
γI
s

+
γP

1− s

)−1

ΣDΠI −
s

h+ shs

(hΣD + huΣu)(I2 − ΠI). (A39)

Using the definition of Γ, we obtain equation (A3).

Equations (A19) and (A39) jointly determine Σs and ΣI . The substitution of Σs from (A19)

in (A39) yields an equation for ΣI :

ΣI =
fs
f

[
(γP − γI)

(
γI
s

+
γP

1− s

)−1

ΣD +
s

h+ shs

(hΣD + huΣu)

]
ΠI

+

[
ΣD +

fu
f
Σu −

fs
f

s

h+ shs

(hΣD + huΣu)

]
. (A40)

To solve this equation, we use the following lemma.

LEMMA. Consider a linear space with a scalar product (·, ·) and denote by Πx the orthogonal

projection on vector x. Also, let a and b be two vectors and assume that (b, b) > 0. Then, the

equation for x

x = Πxa+ b (A41)

has the unique solution

x =
(a+ b, b)

(b, b)
b.

Proof of Lemma. The application of the operator Πx to both sides of equation (A41) gives

x = Πxa+Πxb, which together with the initial equation (A41) implies that Πxb = b. Hence, the

vector b belongs to the subspace spanned by the vector x, so x = λb, λ ∈ R. The substitution

of this expression in equation (A41) yields λb = Πba + b, which implies λ = (Πba + b, b)/(b, b).

Finally, (Πba, b) = (a−(I−Πb)a, b) = (a, b), where I is the identity operator, and this completes

the proof. Q.E.D.

Equation (A40) has exactly the form of equation (A41) with ΣI corresponding to x. Hence,

ΣI =

(
fΣD + fuΣu + fs(γP − γI)

(
γI
s
+ γP

1−s

)−1
ΣD

)(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)′
(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)(
fΣD + fuΣu − sfs

h+shs
(hΣD + huΣu)

)′ ×

×
(
ΣD +

fu
f
Σu −

fs
f

s

h+ shs

(hΣD + huΣu)

)
.
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This is equation (A4). To derive the expression for µs, we use equation (A33), which together

with equation (A36) yields

1 + γI
2

(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

+
r − β

γI
= µD +

1

s
(µs + ΣsΣ

′
D). (A42)

Equations (A21) and (A42) can be viewed as a system of linear equations for r and µs. Its

solution is given by equations (A1) and (A2).

E. Differential equations for f and h

Equation (A5) for the price-dividend ratio f follows from (A18) after noting that µI =

ΓΣDΣ
′
I and ΣI is given by equation (A19). Equation (A6) for the wealth-consumption ratio h

is derived from equation (A27). Using the expression for µI from (A36) and noting that (A38)

implies that (
hs

h
Σs +

hu

h
Σu + ΣD +

1

s
Σs

)
(I2 − ΠI) = 0,

we get

(
hs

h
Σs +

hu

h
Σu

)(
hs

h
Σs +

hu

h
Σu

)′

− 1

ΣIΣ′
I

(
µI

γI
+

hs

h
ΣIΣ

′
s +

hu

h
ΣIΣ

′
u

)2

=

(
hs

h
Σs +

hu

h
Σu

)(
hs

h
Σs +

hu

h
Σu

)′

−
(
ΣD +

1

s
Σs +

hs

h
Σs +

hu

h
Σu

)
ΠI

(
ΣD +

1

s
Σs +

hs

h
Σs +

hu

h
Σu

)′

=

(
hs

h
Σs +

hu

h
Σu

)(
hs

h
Σs +

hu

h
Σu

)′

−
(
ΣD +

1

s
Σs +

hs

h
Σs +

hu

h
Σu

)(
ΣD +

1

s
Σs +

hs

h
Σs +

hu

h
Σu

)′

= −2

(
ΣD +

1

s
Σs

)(
hs

h
Σs +

hu

h
Σu

)′

−
(
ΣD +

1

s
Σs

)(
ΣD +

1

s
Σs

)′

.

This transformation allows us to eliminate the quadratic terms with hs and hu from equation

(A27) and get equation (A6).

F. Optimal portfolios and numbers of shares

The optimal portfolio policy of the type I investors is given by equation (A26). The optimal

portfolio of the type P investors stated in (A11) is derived from their utility optimization problem

following exactly the same steps that are used to derive equation (A26). To find the wealth-

consumption ratio function hP , we exploit the market clearing conditions. Indeed, summing
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up equations (12) and (13), we get that WP + WI = S1 + S2. Using the definitions of the

price-dividend ratios Si = fiDi and the wealth-consumption ratios WI = hCI , WP = hPCP ,

this equation can be rewritten as (1 − s)hP + sh = uf1 + (1 − u)f2. After resolving it for hP ,

we get (A12).

Finally, we derive the numbers of the shares NIi and NPi. The definition of the portfolio

weights implies that NIiSi = ωIiWI and NPiSi = ωPiWP , so

NIi

NPi

=
ωIiWI

ωPiWP

=
ωIiCIh

ωPiCPhP

=
sωIih

(1− s)ωPihP

, (A43)

where the second equality uses the definition of the wealth-consumption ratio and the last

equality uses the definition of the state variable s. Together with the market clearing condition

NIi +NPi = 1, equation (A43) yields the expressions from (A13). The portfolio weights of the

individual stocks in the index are proportional to Si/(S1 + S2), i = 1, 2, which in terms of the

price-dividend ratios f1 and f2 are

S1

S1 + S2

=
uf1

uf1 + (1− u)f2
,

S2

S1 + S2

=
(1− u)f2

uf1 + (1− u)f2
.

Taking into account that the type I investors allocate ωI to the index, we get the expressions

from (A14). Q.E.D.
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Figure 1. The equilibrium in the model with homogeneous trees (no indexing).

This figure presents equilibrium variables in the model without indexing as functions of the

consumption share s of the type I investors and the share u of the first dividend D1 in the

aggregate dividend D. The model parameters are as follows: µD1 = µD2 = 0.018, ΣD1 =

[0.045 0], ΣD2 = [0 0.045], β = 0.03, γI = 5, γP = 1.
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Figure 2. The equilibrium in the model with heterogeneous trees (no indexing).

This figure presents equilibrium variables in the model without indexing as functions of the

consumption share s of the type I investors and the share u of the first dividend D1 in the

aggregate dividend D. The model parameters are as follows: µD1 = 0.01, µD2 = 0.03, ΣD1 =

[0.01 0], ΣD2 = [0 0.08], β = 0.03, γI = 5, γP = 1.
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Figure 3. The effect of indexing on equilibrium characteristics in the model with

homogeneous trees. This figure shows how equilibrium changes due to indexing in an economy

with homogeneous trees. All variables are functions of the consumption share s of the type I

investors and the share u of the first dividend D1 in the aggregate dividend D. The model

parameters are as follows: µD1 = µD2 = 0.018, ΣD1 = [0.045 0], ΣD2 = [0 0.045], β = 0.03,

γI = 5, γP = 1.
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Figure 4. The effect of indexing on ΣQ1,1 in the model with homogeneous

trees. This figure presents the impact of indexing on the first component of the diffusion

ΣQ1 = ΣD1 + (f1s/f1)Σs + (f1u/f1)Σu. All variables are functions of the consumption share s

of the type I investors and the share u of the first dividend D1 in the aggregate dividend D.

The model parameters are as follows: µD1 = µD2 = 0.018, ΣD1 = [0.045 0], ΣD2 = [0 0.045],

β = 0.03, γI = 5, γP = 1.
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Figure 5. The effect of indexing on equilibrium characteristics in the model

with heterogeneous trees. This figure shows how equilibrium changes due to indexing in an

economy with heterogeneous trees. All variables are functions of the consumption share s of

the type I investors and the share u of the first dividend D1 in the aggregate dividend D. The

model parameters are as follows: µD1 = 0.01, µD2 = 0.03, ΣD1 = [0.01 0], ΣD2 = [0 0.08],

β = 0.03, γI = 5, γP = 1.
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Figure 6. The effect of indexing on ΣQ1,1 in the model with heterogeneous

trees. This figure presents the impact of indexing on the first component of the diffusion

ΣQ1 = ΣD1 +(f1s/f1)Σs +(f1u/f1)Σu. All variables are functions of the consumption share s of

the type I investors and the share u of the first dividend D1 in the aggregate dividend D. The

model parameters are as follows: µD1 = 0.01, µD2 = 0.03, ΣD1 = [0.01 0], ΣD2 = [0 0.08],

β = 0.03, γI = 5, γP = 1.
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Figure 7. The effect of indexing on ΣQ2,2 in the model with heterogeneous

trees. This figure presents the impact of indexing on the second component of the diffusion

ΣQ2 = ΣD2 +(f2s/f2)Σs +(f2u/f2)Σu. All variables are functions of the consumption share s of

the type I investors and the share u of the first dividend D1 in the aggregate dividend D. The

model parameters are as follows: µD1 = 0.01, µD2 = 0.03, ΣD1 = [0.01 0], ΣD2 = [0 0.08],

β = 0.03, γI = 5, γP = 1.
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