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Asymptotic Glosten–Milgrom Equilibrium∗

Cheng Li† and Hao Xing†

Abstract. This paper studies the Glosten–Milgrom model whose risky asset value admits an arbitrary discrete
distribution. In contrast to existing results on insider models, the insider’s optimal strategy in this
model, if it exists, is not of feedback type. Therefore, a weak formulation of equilibrium is proposed.
In this weak formulation, the inconspicuous trade theorem still holds, but the optimality for the
insider’s strategy is not enforced. However, the insider can employ some feedback strategy whose
associated expected profit is close to the optimal value, when the order size is small. Moreover,
this discrepancy converges to zero when the order size diminishes. The existence of such a weak
equilibrium is established, in which the insider’s strategy converges to the Kyle optimal strategy
when the order size goes to zero.
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AMS subject classifications. 60G55, 60F05, 49N90
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1. Introduction. In the theory of market microstructure, two models, due to Kyle [16]
and Glosten and Milgrom [13], are particularly influential. In the Kyle model, buy and sell
orders are batched together by a market maker, who sets a unique price at each auction
date. In the Glosten–Milgrom model, buy and sell orders are executed by the market maker
individually, and hence bid and ask prices appear naturally. In both models,1 an informed
agent (insider) trades to maximize her expected profit utilizing her private information on
the asset fundamental value, while another group of noise traders trade independently of the
fundamental value. The cumulative demand of these noise traders is modeled by a Brownian
motion in the Kyle model, cf. [2], and by the difference of two independent Poisson processes,
whose jump size is scaled by the order size, in the Glosten–Milgrom model.

When the fundamental value, described by a random variable ṽ, has an arbitrary continu-
ous distribution,2 Back [2] establishes a unique equilibrium between the insider and the market
maker. Moreover, the cumulative demand process in the equilibrium connects elegantly to the
theory of filtration enlargement; cf. [18]. However, much less is known about equilibrium in
the Glosten–Milgrom model. Back and Baruch [3] consider a Bernoulli distributed ṽ. In this
case, the insider’s optimal strategy is constructed in [9]. Equilibrium with general distribution
of ṽ, as Cho [11] puts it, “will be a great challenge to consider.”

∗Received by the editors October 28, 2013; accepted for publication (in revised form) December 15, 2014;
published electronically March 31, 2015.

http://www.siam.org/journals/sifin/6/94312.html
†Department of Statistics, London School of Economics and Political Science, 10 Houghton St, London, WC2A

2AE, UK (c.li25@lse.ac.uk, h.xing@lse.ac.uk).
1A profit maximizing informed agent is introduced in the Glosten–Milgrom model in [3].
2Models with discrete distributed ṽ can be studied similarly as in [2].
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In this paper, we consider the Glosten–Milgrom model whose risky asset value ṽ has a
discrete distribution,

(1.1) P(ṽ = vn) = pn, n = 1, . . . , N,

where N ∈ N ∪ {∞}, (vn)n=1,...,N is an increasing sequence and pn ∈ (0, 1) with
∑N

n=1 pn =
1. This generalizes the setting in [3], where N = 2 is considered, i.e., ṽ has a Bernoulli
distribution.

In models of insider trading, inconspicuous trade theorem is commonly observed; cf., e.g.,
[16], [2], [4], [3], [10], and [8] for equilibria of the Kyle type, and [9] for the Glosten–Milgrom
equilibrium with Bernoulli distributed fundamental value. The inconspicuous trade theorem
states that when the insider is trading optimally in equilibrium, the cumulative net orders from
both insider and noise traders have the same distribution as the net orders from noise traders,
i.e., the insider is able to hide her trades among noise trades. As a consequence, this allows
the market maker to set the trading price only considering current cumulative noise trades.
Moreover, in all aforementioned studies, the insider’s optimal strategy is of feedback form,
which only depends on the current cumulative total order. This functional form is associated
to optimizers of the Hamilton–Jacobi–Bellman (HJB) equation for the insider’s optimization
problem. However, the situation is dramatically different in the Glosten–Milgrom model
with N in (1.1) at least 3. Theorem 2.6 below shows that, given the aforementioned pricing
mechanism, the insider’s optimal strategy, if it exists, does not correspond to optimizers of
the HJB equation. This result is a consequence of the difference between bid and ask prices
in the Glosten–Milgrom model, which is in contrast to the unique price in the Kyle model.

Therefore, to establish equilibrium in these Glosten–Milgrom models, we propose a weak
formulation of equilibrium in Definition 2.11, which is motivated by the convergence of
Glosten–Milgrom equilibria to the Kyle equilibrium, as the order size diminishes and the
trading intensities increase to infinity; cf. [3] and [9]. In this weak formulation, the insider
still trades to enforce the inconspicuous trading theorem, but the insider’s strategy may not
be optimal. However, the insider can employ some feedback strategy so that the loss to her
expected profit (compared to the optimal value) is small for a small order size. Moreover, this
gap converges to zero when the order size vanishes. We call this weak formulation asymptotic
Glosten–Milgrom equilibrium and establish its existence in Theorem 2.12.

In the asymptotic Glosten–Milgrom equilibrium, the insider’s strategy is constructed ex-
plicitly in section 5, using a similar construction as in [9]. Using this strategy, the insider
trades toward a middle level of an interval, driving the total demand process into this interval
at the terminal date. This bridge behavior is widely observed in the aforementioned studies
on insider trading. On the other hand, the insider’s strategy is of feedback form. Hence,
the insider can determine her trading intensity only using the current cumulative total de-
mand. Moreover, as the order size diminishes, the family of suboptimal strategies converge
to the optimal strategy in the Kyle model; cf. Theorem 2.13. In such an asymptotic Glosten–
Milgrom equilibrium, the insider loses some expected profit. The expression of this profit loss
is quite interesting mathematically: it is the difference of two stochastic integrals with respect
to (scaled) Poisson occupation time. As the order size vanishes, both integrals converge to
the same stochastic integral with respect to Brownian local time, and hence their difference
vanishes.
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244 CHENG LI AND HAO XING

The paper is organized as follows. The main results are presented in section 2. The
mismatch between the insider’s optimal strategy and optimizers for the HJB equation is
proved in section 3. Then a family of suboptimal strategies are characterized and constructed
in sections 4 and 5. Finally, the existence of asymptotic equilibrium is established in section 6,
and a technical result is proved in the appendix.

2. Main results.

2.1. The model. We consider a continuous time market for a risky and a risk free as-
set. The risk free interest rate is normalized to 0, i.e., the risk free asset is regarded as the
numéraire. We assume that the fundamental value of the risky asset ṽ has a discrete distri-
bution of type (1.1). This fundamental value will be revealed to all market participants at a
finite time horizon, say 1, at which point the market will terminate.

The microstructure of the market and the interaction of market participants are modeled
similarly to [3], which we recall below. There are three types of agents: uninformed/noise
traders, an informed trader/insider, and a market maker, all of whom are risk neutral. These
agents share the same view toward future randomness of the market, but they possess different
information. Therefore, the probability space (Ω,P) with different filtration accommodates
the following processes:

• Noise traders trade for liquidity or hedging reasons which are independent of the
fundamental value ṽ. The cumulative demand Z is described by the difference of two
independent jump processes ZB and ZS which are the cumulative buy and sell orders,
respectively. Therefore, Z = ZB − ZS and it is independent of ṽ. Noise traders only
submit orders of fixed sized δ every time they trade. As in [3], ZB/δ and ZS/δ are
assumed to be independent Poisson processes with constant intensity β. Let (FZ

t )t∈[0,1]
be the smallest filtration generated by Z and satisfying the usual conditions. Then
(FZ

t )t∈[0,1] describes the information structure of noise traders.
• The insider knows the fundamental value ṽ at time 0 and observes the market price

for the risky asset between time 0 and 1. The insider also submits orders of fixed size
δ in every trade and tries to maximize her expected profit. The cumulative demand
from the insider is denoted by X := XB −XS, where XB and XS are cumulative buy
and sell orders, respectively. Since the insider observes the market price of the risky
asset, she can back out the dynamics of noise orders; cf. discussions after Definition
2.1. Therefore, the information structure of the insider FI

t includes FZ
t and σ(ṽ) for

any t ∈ [0, 1].
• A competitive market maker only observes the aggregation of the informed and noise

trades, so he cannot distinguish between informed and noise trades. Given Y := X+Z,
the information of the market maker is (FY

t )t∈[0,1] generated by Y and satisfies the
usual conditions. As the market maker is risk neutral, the competition will force him
to set the market price as E[ṽ|FY

t ], t ∈ [0, 1].
In order to define equilibrium in the market, let us first describe admissible actions for the

market maker and the insider. The market maker looks for a Markovian pricing mechanism,
in which the price of the risky asset at time t is set using cumulative order Yt and a pricing
rule p.
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Definition 2.1. A function p : δZ× [0, 1] → R is a pricing rule if
(i) y �→ p(y, t) is strictly increasing for each t ∈ [0, 1);
(ii) limy→−∞ p(y, t) = v1 and limy→∞ p(y, t) = vN for each t ∈ [0, 1];
(iii) t �→ p(y, t) is continuous for each y ∈ δZ.
The monotonicity of y �→ p(y, t) in (i) is natural. It implies that the market price is higher

whenever the demand is higher. Moreover, because of the monotonicity, the insider fully
observes the uninformed orders Z by inverting the price process and subtracting her orders
from the total orders. Item (ii) means that the range of the pricing rule is wide enough to
price in every possibility of fundamental value.

The insider trades to maximize her expected profit. Her admissible strategy is defined as
follows.

Definition 2.2. The strategy (XB ,XS ;FI) is admissible if
(i) FI is a filtration satisfying the usual conditions and generated by σ(ṽ), FZ , and H,

where (Ht)t∈[0,1] is a filtration independent of ṽ and FZ ;

(ii) XB and XS with XB
0 = XS

0 = 0 are FI-adapted and integrable3 increasing point
processes with jump size δ;

(iii) the (FI ,P)-dual predictable projections of XB and XS are absolutely continuous with
respect to time, and hence XB and XS admit FI-intensities θB and θS, respectively;

(iv) E[
∫ 1
0 |p(Yt, t)| |dXi

t − δθitdt|] < ∞ for i ∈ {B,S} and the pricing rule p fixed by the
market maker. Here, |Xi − ∫ ·0 δθidt| is the variation of the compensated point process.

This set of admissible strategies is similar to [9, Definition 2.2]. Item (i) assumes that the
insider is allowed to possess additional information H, independent of ṽ and FZ , which she
uses to generate her mixed strategy. Item (iv) implies δE[

∫ 1
0 |p(Yt, t)| θitdt] < ∞, and hence

the expected profit of the insider is finite. Item (ii) does not exclude the insider trading at
the same time with noise traders. When the insider submits an order at the same time when
an uniformed order arrives but in the opposite direction, assuming the market maker only ob-
serves the net demand implies that such pair of trades goes unnoticed by the market maker.
This pair of opposite orders will be executed without a need for a market maker. Hence, the
market maker only knows the transaction when there is a need for him. Henceforth, when the
insider makes a trade at the same time with an uninformed trader but in an opposite direction,
we say the insider cancels the noise trades. On the other hand, item (ii) also allows the insider
to trade at the same time with noise traders in the same direction. We say that the insider tops
up noise orders in this situation. However, the insider does not submit such orders in equilib-
rium, even when equilibrium is defined in a weak sense; cf. Remark 4.6 below. The assumption
that the insider is allowed to trade at the same time as noise traders is different from assump-
tions for the Kyle model where the insider’s strategy is predictable. This additional freedom
for the insider is not the source for Theorem 2.6 below, which states that optimizers for the
insider’s HJB equation do not correspond to the optimal strategy; see Remark 2.8 below.

As described in the last paragraph, the insider’s cumulative buy orders may consist of
three components: XB,B arrives at different time than those of ZB, XB,T arrives at the same
time as some orders of ZB , and XB,S cancels some orders of ZS. Sell orders XS are defined
analogously. Therefore, XB = XB,B +XB,T +XB,S and XS = XS,S +XS,T +XS,B .

3That is, E[XB
1 ] and E[XS

1 ] are both finite.
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As mentioned earlier, the insider aims to maximize her expected profit. Given an admis-
sible trading strategy X = XB − XS , the associated profit at time 1 of the insider is given
by ∫ 1

0
Xt−dp(Yt, t) + (ṽ − p(Y1, 1))X1.

The last term appears due to a potential discrepancy between the market price and the
liquidation value. Since X is of finite variation and X0 = 0, applying integration by parts
rewrites the profit as

∫ 1

0
(ṽ − p(Yt, t)) dX

B
t −

∫ 1

0
(ṽ − p(Yt, t)) dX

S
t

=

∫ 1

0
(ṽ − p(Yt− + δ, t)) dXB,B

t +

∫ 1

0
(ṽ − p(Yt− + 2δ, t)) dXB,T

+

∫ 1

0
(ṽ − p(Yt−, t)) dX

B,S
t −

∫ 1

0
(ṽ − p(Yt− − δ, t)) dXS,S

t

−
∫ 1

0
(ṽ − p(Yt− − 2δ, t)) dXS,T −

∫ 1

0
(ṽ − p(Yt−, t)) dX

S,B
t ,

where Y increases (resp., decreases) δ when XB,B (resp., XS,S) jumps by δ, Y increases (resp.,
decreases) 2δ when XB,T (resp., XS,T ) jumps at the same time with ZB (resp., ZS), and Y
is unchanged when XS,B (resp., XB,S) jumps at the same time with ZB (resp., ZS). Define

a(y, t) := p(y + δ, t) and b(y, t) := p(y − δ, t),

which can be viewed as ask and bid prices, respectively. Then the expected profit of the
insider conditional on her information can be expressed as

E

[∫ 1

0
(ṽ − a(Yt−, t)) dX

B,B
t +

∫ 1

0
(ṽ − p(Yt−, t)) dX

B,S
t

+

∫ 1

0
(ṽ − a(Yt− + δ, t)) dXB,T

t −
∫ 1

0
(ṽ − b(Yt− − δ, t)) dXS,T

t

−
∫ 1

0
(ṽ − b(Yt−, t)) dX

S,S
t −

∫ 1

0
(ṽ − p(Yt−, t)) dX

S,B
t

∣∣∣ṽ] .
(2.1)

Having described the market structure, an equilibrium between the market maker and the
insider is defined as in [3].

Definition 2.3. A Glosten–Milgrom equilibrium is a quadruplet (p,XB ,XS ,FI) such that
(i) given (XB ,XS ;FI), p is a rational pricing rule, i.e., p(Yt, t) = E[ṽ|FY

t ] for t ∈ [0, 1];
(ii) given p, (XB ,XS ;FI) is an admissible strategy maximizing (2.1).
When N = 2, [9] establishes the existence of Glosten–Milgrom equilibria. In equilibrium

the pricing rule is

(2.2) p(y, t) = EPy
[P (Z1−t)] , (y, t) ∈ δZ× [0, 1].
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Here, Py is a probability measure under which Z is the difference of two independent Poisson
processes and Py(Z0 = y) = 1. P is a nondecreasing function such that P (Z1) has the same
distribution as ṽ. Moreover, the optimal strategy of the insider are given by jump processes
Xi,j, i ∈ {B,S} and j ∈ {B,T, S}, with intensities δ θi,j(Yt−, t), t ∈ [0, 1]. These intensities
are deterministic functions of the state variable Y , and hence this control strategy is a feedback
control and it corresponds to optimizers of the insider’s HJB equation. However, when N ≥ 3,
Theorem 2.6 below shows that, given the pricing rule (2.2), the optimal strategy does not
correspond to optimizers in the HJB equation for some values of ṽ. This result is surprising
because it is contrast to existing results in the Kyle and Glosten–Milgrom equilibria; cf. [16],
[2], [4], [3], [10], [8], and [9]. This mismatch is a consequence of the discrete state space of the
demand process in the Glosten–Milgrom model. The discrete state space yields different bid
and ask prices, which is in contrast to the unique price in the Kyle model. See Remark 2.7
below for more discussion.

2.2. Nonexistence of a feedback optimal control. To state the aforementioned result,
we introduce additional notation. For each δ > 0, let Ωδ = D([0, 1], δZ) be the space of δZ-

valued càdlàg functions on [0, 1] with coordinate process Zδ; (FZ,δ
t )t∈[0,1] is the minimal right

continuous and complete filtration generated by Zδ, and Pδ is the probability measure under
which Zδ is the difference of two independent Poisson processes starting from 0 with the same
jump size δ and intensity βδ. We denote by Pδ,y the probability measure under which Zδ

0 = y
a.s. Henceforth, the superscript δ indicates the trading size in the Glosten–Milgrom model.

For the fundamental value ṽδ , let us first consider the following family of distributions.
Assumption 2.4. Given ṽδ of type (1.1), there exists a δZ ∪ {−∞,∞}-valued strictly

increasing sequence (aδn)n=1,...,N+1
4 with aδ1 = −∞, aδN+1 = ∞, and

⋃N
n=1[a

δ
n, a

δ
n+1) = δZ ∪

{−∞}, such that

(2.3) P(ṽδ = vn) = Pδ
(
Zδ
1 ∈ [aδn, a

δ
n+1)

)
, n = 1, . . . , N.

For any ṽ with discrete distribution (1.1), Lemma 6.1 below shows that there exists a
sequence (ṽδ)δ>0, each satisfying Assumption 2.4 and converging to ṽ in law as δ ↓ 0. There-
fore, any ṽ of type (1.1) can be approximated by a ṽδ satisfying Assumption 2.4. Given ṽδ

satisfying Assumption 2.4, define

(2.4) hδn(y, t) := Pδ,y
(
Zδ
1−t ∈ [aδn, a

δ
n+1)

)
, y ∈ δZ, t ∈ [0, 1], n ∈ {1, . . . , N},

and

(2.5) pδ(y, t) :=

N∑
n=1

vnh
δ
n(y, t) = Eδ,y

[
P (Zδ

1−t)
]
,

where the expectation is taken under Pδ,y and

(2.6) P (y) = vn when y ∈ [aδn, a
δ
n+1).

4When N = ∞, N + 1 = ∞.
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Then (2.3) implies that ṽδ and P (Zδ
1) have the same distribution. If pδ is chosen as the pricing

rule, it has the same form as in (2.2). Finally, we impose a technical condition on pδ. This
assumption is clearly satisfied when N is finite.

Assumption 2.5. There exist positive constants C and n such that |pδ(y, t)| ≤ C(1 + |y|n)
for any (y, t) ∈ δZ × [0, 1].

Given the pricing rule (2.5), let us first study the insider’s optimization problem and derive
the associated HJB equation via a heuristic argument. In this derivation, the superscript δ
is omitted to simplify notation. Definition 2.2(iii) implies that Xi,j − δ

∫ ·
0 θ

i,j
r dr defines an

FI -martingale for i ∈ {B,S} and j ∈ {B,T, S}. On the other hand, Definition 2.2(iv) and
[7, Chapter I, T6] combined imply that

∫ ·
0(ṽ − p(Yr− + δ, r))(dXB,B

r − δθB,B
r dr) =

∫ ·
0(ṽ −

p(Yr, r))(dX
B,B
r − δθB,B

r dr) is an FI -martingale. A similar argument applied to other terms
allows us to rewrite (2.1) as

δE

[ ∫ 1

0
(ṽ − p(Yr− + δ, r))θB,B

r dr +

∫ 1

0
(ṽ − p(Yr−, r))θB,S

r dr

+

∫ 1

0
(ṽ − p(Yr− + 2δ, r))θB,T

r dr −
∫ 1

0
(ṽ − p(Yr− − δ, r))θS,Sr dr

−
∫ 1

0
(ṽ − p(Yr−, r))θS,Br dr −

∫ 1

0
(ṽ − p(Yr− − 2δ, r))θS,Tr dr

∣∣∣ṽ].
This motivates us to define the following value function for the insider:

V δ(ṽ, y, t) := sup
θi,j ; i∈{B,S},j∈{B,T,S}

δE

[ ∫ 1

t
(ṽ − p(Yr− + δ, r))θB,B

r dr +

∫ 1

t
(ṽ − p(Yr−, r))θB,S

r dr

+

∫ 1

t
(ṽ − p(Yr− + 2δ, r))θB,T

r dr −
∫ 1

t
(ṽ − p(Yr− − δ, r))θS,Sr dr

−
∫ 1

t
(ṽ − p(Yr−, r))θS,Br dr −

∫ 1

t
(ṽ − p(Yr− − 2δ, r))θS,Tr dr

∣∣∣Yt = y, ṽ

]

(2.7)

for ṽ = {v1, . . . , vN}, y ∈ δZ, t ∈ [0, 1). The terminal value of V δ is defined as V δ(ṽ, y, 1) =
limt→1 V

δ(ṽ, y, t).5 Lemma 3.2 and Proposition 4.4 below show that the optimization problem
in (2.7) is well defined and nontrivial, i.e., 0 < V δ < ∞ for each δ > 0. Let us now derive
the HJB equation which V δ satisfies via a heuristic argument. Note that the positive (resp.,
negative) part of Y is Y B := XB,B+XB,T+ZB−XS,B (resp., Y S := XS,S+XS,T+ZS−XB,S).
Hence, Y B − δ ∫ ·0(β− θS,Br − θB,T

r ) dr− δ ∫ ·0 θB,B
r dr− 2δ

∫ ·
0 θ

B,T
r dr (resp., Y S − δ ∫ ·0(β− θB,S

r −
θS,Tr ) dr − δ

∫ ·
0 θ

S,S
r dr − 2δ

∫ t
0 θ

S,T
r dr) is an FI -martingale.6 Then applying Itô’s formula to

5Since the set of admissible control is unbounded, the HJB equation associated to (2.7) usually admits a
boundary layer, i.e., limt→1 V

δ(ṽ, y, t) is not identically zero even if there is no terminal profit in (2.1). Such a
phenomenon also shows up in the Kyle model; see [2].

6As discussed after Definition 2.2, the set of jumps of XB,S and XS,T (resp., XS,B and XB,T ) arrive
at the same time as some jumps of ZS (resp., ZB), and then we necessarily have θB,S + θS,T ≤ β (resp.,
θS,B + θB,T ≤ β).
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V δ(ṽ, Yr, r) and employing the standard dynamic programming arguments yield the following
formal HJB equation for V δ:

(2.8) −Vt(vn, y, t)−H(vn, y, t, V ) = 0, n ∈ {1, . . . , N}, (y, t) ∈ δZ × [0, 1),

where the Hamilton H is defined as (the ṽ argument is omitted in H to simplify notation)

H(vn, y, t, V ) := (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β

+ sup
θB,B≥0

[
V (y + δ, t) − V (y, t) + (vn − p(y + δ, t))δ

]
θB,B

+ sup
θB,T≥0

[
V (y + 2δ, t) − V (y + δ, t) + (vn − p(y + 2δ, t))δ

]
θB,T

+ sup
θB,S≥0

[
V (y, t)− V (y − δ, t) + (vn − p(y, t))δ

]
θB,S

+ sup
θS,S≥0

[
V (y − δ, t)− V (y, t)− (vn − p(y − δ, t))δ

]
θS,S

+ sup
θS,T≥0

[
V (y − 2δ, t) − V (y − δ, t) − (vn − p(y − 2δ, t))δ

]
θS,T

+ sup
θS,B≥0

[
V (y, t)− V (y + δ, t) − (vn − p(y, t))δ

]
θS,B.

(2.9)

Optimizers θi,j, i ∈ {B,S} and j ∈ {B,T, S}, in (2.9), are deterministic functions of vn, y, and
t; hence they are of feedback form. They are expected to be the optimal control intensities
for (2.7). This is indeed the case in many existing results in the Kyle model and the Glosten–
Milgrom model (with N = 2); compare [16], [2], [4], [3], and [9]. However, when N ≥ 3 in
the Glosten–Milgrom model, the following theorem shows any optimizers in (2.9) are not the
optimal intensities when ṽ is neither v1 nor vN .

Theorem 2.6. Let N ≥ 3 and ṽδ satisfy Assumption 2.4. Let pδ in (2.5) be the pricing
rule and satisfy Assumption 2.5. Then any optimizers θi,j(y, t), i ∈ {B,S}, j ∈ {B,T, S},
and (y, t) ∈ δZ × [0, 1), for (2.9) are not the optimal strategy for (2.7) when ṽδ = vn for
1 < n < N .

Remark 2.7. When ṽδ = v1 (resp., vN ), the insider knows the risky asset is always over-
priced (resp., underpriced). Hence she always sells (resp., buys) in equilibrium. This situation
is exactly the same as [9]. For when ṽδ is neither minimal nor maximal, let us briefly describe
the proof of Theorem 2.6 here. To ensure (2.8) is well posed, H must be finite for all (y, t) ∈
δZ× [0, 1). Hence

(2.10) (p(y, t)− vn)δ ≤ V (y+ δ, t)− V (y, t) ≤ (p(y+ δ, t)− vn)δ for all (y, t) ∈ δZ× [0, 1),

where the second inequality comes from the first three maximizations in (2.9) and the first
inequality comes from the last three. Since the optimal value V is positive, then θi,j ≡ 0,
i ∈ {B,S}, and j ∈ {B,T, S} in (2.9) does not correspond to the optimal strategy, hence
there must exist (y0, t0) such that one inequality in (2.10), say, the first one, is an equality.
However, in this case, the discrete state space forces the first inequality to be an equality for
all (y, t) ∈ δZ× [0, 1), which implies the second inequality in (2.10) is strict for all (y, t), due
to p(y+ δ, t) > p(y, t). Therefore the optimizers in the first three maximizations in (2.9) must
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be identically zero, which means the associated point process X does not have positive jumps.
On the other hand, the dynamic programming principle and the boundary layer of (2.8) at
t = 1 force Y1 = Z1 +X1 ∈ [aδn + δ, aδn+1] a.s. This can never happen when X does not have
positive jumps. Therefore, Theorem 2.6 is the joint effort of the discrete state space and the
boundary layer of the HJB equation.

Remark 2.8. The statement of Theorem 2.6 remains valid when the insider is prohibited
from trading with noise traders at the same time; i.e., XB,T ,XB,S ,XS,T , XS,B are all zero. In
this case, the second, third, fifth, and sixth maximizations do not present in (2.9). However,
the first and fourth maximizations therein still lead to (2.10). Hence the same argument as
in the previous remark still applies.

Remark 2.9. Examples of control problems without optimal feedback control exist in the
literature of the optimal control theory; cf., e.g., [21, Chapter 3, p. 246] and [17, Example 1.1].
In these cases, the notion of relaxed control is employed to prove the existence of a relaxed
optimal control; cf. [17] and references therein. For the insider’s optimization problem, instead
of {θ : δZ× [0, 1] → R+}, the control set can be relaxed to {θ : δZ× [0, 1] → M1(R+)}, where
M1(R+) is the set of all probability measures in R+. It is interesting to investigate whether
(2.7) admits an optimal control in this relaxed set. We leave this topic to future studies.

2.3. Asymptotic Glosten–Milgrom equilibrium. To establish equilibrium of Glosten–
Milgrom type when the risky asset ṽ has general discrete distribution (1.1) with N ≥ 3,
we introduce a weak form of equilibrium in what follows. To motivate this definition, we
recall the convergence of Glosten–Milgrom equilibria as the order size decreasing to zero and
intensity of noise trades increasing to infinity; cf. [3, Theorem 3] and [9, Theorem 5.3].

Proposition 2.10. For any Bernoulli distributed ṽ (i.e., N = 2 in (1.1)), there exists a
sequence of Bernoulli distributed random variables ṽδ such that

(i) ṽδ converges to ṽ in law as δ ↓ 0;
(ii) for each δ > 0, model with ṽδ as the fundamental value of the risky asset admits a

Glosten–Milgrom equilibrium (pδ,XB,δ ,XS,δ,FI,δ);

(iii) when the intensity of Poisson process is given by βδ := (2δ2)−1, XB,δ−XS,δ L−→ X0,

as δ ↓ 0, where X0 is the optimal strategy in the Kyle model and
L−→ represents the weak

convergence of stochastic processes.7

This result motivates us to define the following weak form of Glosten–Milgrom equilibrium.
Definition 2.11. For any ṽ with discrete distribution (1.1), an asymptotic Glosten–Milgrom

equilibrium is a sequence (ṽδ , pδ,XB,δ ,XS,δ,FI,δ)δ>0 such that
(i) ṽδ converges to ṽ in law as δ ↓ 0;
(ii) for each δ > 0, given (ṽδ,XB,δ ,XS,δ,FI,δ) and setting Y δ := Zδ +XB,δ −XS,δ, pδ

is a rational pricing rule, i.e., pδ(Y δ
t , t) = E[ṽδ | FY δ

t ] for t ∈ [0, 1];
(iii) given (ṽδ, pδ) and βδ = (2δ2)−1, let J δ(XB ,XS) be an insider’s expected profit asso-

ciated to the admissible strategy (XB ,XS). Then

sup
(XB ,XS) admissible

J δ(XB ,XS)− J δ(XB,δ ,XS,δ) → 0 as δ ↓ 0.

7Refer to [5] or [14] for the definition of weak convergence of stochastic processes.

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTIC GLOSTEN–MILGROM EQUILIBRIUM 251

In the above definition, rationality of the pricing mechanism is not compromised. How-
ever, optimality of the insider’s strategy is not enforced. Instead, item (iii) requires that when
the order size is small, the loss of the insider’s expected profit by employing the strategy
(XB,δ,XS,δ;Fδ,I) is small, compared to the optimal value. Moreover, this discrepancy con-
verges to zero when the order size vanishes. Therefore if the insider is willing to give up a
small amount of expected profit, she can employ the strategy (XB,δ ,XS,δ;FI,δ) to establish
a suboptimal equilibrium. The following result establishes the existence of equilibrium in the
above weak sense.

Theorem 2.12. Assume that ṽ satisfies (1.1) with N < ∞. Then the asymptotic Glosten–
Milgrom equilibrium exists.

In this asymptotic equilibrium, the pricing rule is given by (2.5). When the order size is
δ, the insider employs the strategy (XB,δ,XS,δ;FI,δ) with FI,δ-intensities

δβδ
N∑

n=1

I{ṽδ=vn}

[
hδn(Y

δ
t− + δ, t)

hδn(Y
δ
t−, t)

− 1

]
+

+ δβδ
N∑

n=1

I{ṽδ=vn}

[
hδn(Y

δ
t− − δ, t)

hδn(Y
δ
t−, t)

− 1

]
−
,

δβδ
N∑

n=1

I{ṽδ=vn}

[
hδn(Y

δ
t− − δ, t)

hδn(Y
δ
t−, t)

− 1

]
+

+ δβδ
N∑

n=1

I{ṽδ=vn}

[
hδn(Y

δ
t− + δ, t)

hδn(Y
δ
t−, t)

− 1

]
−
,

(2.11)

respectively. In particular, when the fundamental value is vn, the insider trades toward the
middle level mδ

n := (aδn + aδn+1 − δ)/2 of the interval [aδn, a
δ
n+1): when the total demand is

less than mδ
n, the insider only places buy orders by either complementing noise buy orders

or canceling some of noise sell orders; when the total demand is larger than mδ
n, the insider

does exactly the opposite. More specifically, Lemma 5.2 below shows that y �→ hδn(y, t) is
strictly increasing when y < mδ

n and strictly decreasing when y > mδ
n. Therefore, when

Y δ
t− < mδ

n, (2.11) implies that XB,B,δ has intensity 1
2δ (

hδ
n(Y

δ
t−+δ,t)

hδ
n(Y

δ
t−,t)

− 1), XB,S,δ has intensity

1
2δ (1−

hδ
n(Y

δ
t−−δ,t)

hδ
n(Y

δ
t−,t)

); meanwhile intensities of XS,S,δ and XS,B,δ are both zero. When Y δ
r− > mδ

n,

intensities can be read out from (2.11) similarly. Even though Theorem 2.6 remains valid
when the insider is prohibited from trading at the same time with noise traders, the strategy
constructed above depends on the possibility of canceling orders. However, in this strategy,
the insider never tops up noise orders, i.e., XB,T = XS,T ≡ 0. This allows the market maker
to employ a rational pricing mechanism so that Definition 2.11(ii) is satisfied; cf. Remark 4.6
below.

The processes (XB,δ ,XS,δ;FI,δ) with intensities (2.11) will be constructed explicitly in
section 5. The insider employs a sequence of independent random variables with uniform
distribution on [0, 1] to construct her mixed strategy. This sequence of random variables
is also independent of Zδ and ṽδ. This construction is a natural extension of [9]. In this
construction, whenever a noise order arrives, the insider uses a uniform distributed random
variable to decide whether to submit an opposite canceling order. Hence this strategy is
adapted to insider’s filtration, rather than predictable as in the Kyle model. Such a canceling
strategy is called input regulation and has been studied extensively in the queueing theory
literature; see, e.g., [7, Chapter VII, section 3].
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Figure 1. The mean and standard deviation of the upper bound for the insider’s expected profit loss. The
figure is generated by Monte Carlo simulation with 105 paths.

When the fundamental value is vn and the insider follows the aforementioned strategy, the
total demand at time 1 will end up in the interval [aδn, a

δ
n+1). Therefore the insider’s private

information is fully, albeit gradually, revealed to the public so that the trading price does
not jump when the fundamental value is announced. On the other hand, the total demand,
in its own filtration, has the same distribution of the demand from noise traders, i.e., the
insider is able to hide her trades among the noise trades. This is another manifestation of the
inconspicuous trading theorem commonly observed in the insider trading literature (cf., e.g.,
[16], [2], [4]).

The insider’s strategy discussed above is of feedback form. The insider can determine
her trades only using the current total cumulative demand (and some additional randomness
coming from the sequence of independent and identically distributed (iid) uniform distributed
random variables which are also independent of the fundamental value and the noise trades).
Even though this strategy is not optimal, its associated expected profit is close to the optimal
value when the order size is small. Moreover the discrepancy converges to zero as the order
size diminishes.

The following numeric example illustrates the convergence of the upper bound for the
insider’s expected profit loss as the order size decreases to zero. In this example, ṽ takes
values in {1, 2, 3} with probability 0.55, 0.35, and 0.1, respectively. The expected profit in
the Kyle–Back equilibrium is 0.512. Compared to this, Figure 1 shows that the loss to the
insider’s expected profit is small.

Finally, similar to Proposition 2.10(iii), the insider’s net order in the asymptotic Glosten–
Milgrom equilibrium converges to the optimal strategy in the Kyle model as the order size
decreases to zero.
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Theorem 2.13. Let (XB,δ ,XS,δ,FI,δ)δ>0 be the sequence of the insider’s strategy in Theo-
rem 2.12. Then

XB,δ −XS,δ L−→ X0 as δ ↓ 0,

where X0 is the optimal strategy in Kyle model.

3. Optimizers in the HJB equation are not optimal control. Theorem 2.6 will be proved
in this section. Let us first make the heuristic argument for the HJB equation rigorous by
using the dynamic programming principle and standard arguments for viscosity solutions. To
this end, recall the domain of Hamilton:

dom(H) := {(vn, y, t, V ) ∈ {v1, . . . , vN} × δZ × [0, 1] × R

− valued functions |H(vn, y, t, V ) <∞} .
Observe that control variables for (2.9) are chosen in [0,∞). Hence (vn, y, t, V ) ∈ dom(H) if

V (y + δ, t) − V (y, t) + (vn − p(y + δ, t))δ ≤ 0,(3.1)

V (y − δ, t) − V (y, t)− (vn − p(y − δ, t))δ ≤ 0.(3.2)

Moreover, when (vn, y, t, V ) ∈ dom(H), the Hamilton is reduced to

(3.3) H(vn, y, t, V ) = (V (y + δ, t) − 2V (y, t) + V (y − δ, t))β.

Hence (2.8) reads

(3.4) −Vt − (V (y + δ, t) − 2V (y, t) + V (y − δ, t))β = 0 in dom(H).

Proposition 3.1. The following statements hold for V δ, δ > 0:
(i) V δ is a viscosity solution of (2.8).
(ii) (vn, y, t, V

δ) ∈ dom(H) for any n ∈ {1, . . . , N} and (y, t) ∈ δZ × [0, 1). Hence V δ

satisfies (3.1), (3.2), and is a viscosity solution of (3.4).
(iii) t �→ V δ(y, t) is continuous on [0, 1].

(iv) V δ(y, t) = EPδ,y
[V δ(Zs−t, s)] for any y ∈ δZ, and 0 ≤ t ≤ s ≤ 1.

The proof is postponed to Appendix A, where the dynamic programming principle together
with the definition of viscosity solutions is recalled. The proof of Theorem 2.6 also requires
the following result.

Lemma 3.2. For any δ > 0, n ∈ {1, . . . , N}, and (y, t) ∈ δZ × [0, 1), V δ(vn, y, t) > 0.
Proof. Without loss of generality, we fix δ = 1, ṽ = vn for some n ∈ {1, . . . , N}, and

(y, t) = (0, 0). The superscript δ is omitted throughout this proof. When n > 1, let us
construct a strategy where the insider buys once the asset is underpriced. Consider

τ := inf{r : p(Zr− + 1, r) < vn)} ∧ 1 and σ := inf{r > τ : ΔYr �= 0} ∧ 1.

Here τ is the first time that the asset is underpriced and σ is the arrival time of the first
order after τ . The insider employs a strategy with intensity θB,B

r = I{τ≤r≤σ} and all other
intensities zero. Then the associated expected profit is

E

[∫ 1

0
(vn − a(Yr−, r)) I{τ≤r≤σ}dr

]
= E

[∫ σ

τ
(vn − p(Zr− + 1, r)) dr

]
> 0,
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where the inequality follows from the definition of τ and the fact that P(τ < 1) > 0 due to

Definition 2.1(ii). When n = 1, set τ := inf{t : p(Zt−−1, t) > v1}∧1 and θS,St = I{τ≤t≤σ}. An
argument similar to the above shows that this selling strategy also leads to positive expected
profit. Therefore, in both cases, V > 0 is verified.

Proof of Theorem 2.6. Without loss of generality, we set δ = 1 and omit the superscript
δ throughout the proof.

Step 1. For any n ∈ {1, . . . , N}, either one of the following situations holds:
• (3.1) holds as an equality and (3.2) is a strict inequality at all (y, t) ∈ Z× [0, 1);
• (3.2) holds as an equality and (3.1) is a strict inequality at all (y, t) ∈ Z× [0, 1).

To prove the assertion, observe from (3.1) and (3.2) that

p(y, t)− vn ≤ V (y + 1, t)− V (y, t) ≤ p(y + 1, t)− vn, (y, t) ∈ Z× [0, 1).

Since y �→ p(y, t) is strictly increasing for any t ∈ [0, 1), there exists η(y, t) ∈ [0, 1] such that

V (y + 1, t)− V (y, t) = p(y, t) + η(y, t) (p(y + 1, t) − p(y, t))− vn, (y, t) ∈ Z× [0, 1).

Assume that either (3.1) or (3.2) holds as an equality at some point. If such assumption
fails, both inequalities in (3.1) and (3.2) are strict at all points in Z×[0, 1). Then all optimizers
in (2.9) are identically zero, with the associated expected profit of zero. Since V > 0 (cf.
Lemma 3.2), these trivial optimizers are not optimal strategies for (2.7). Hence the statement
of the theorem is already confirmed in this trivial situation. Let us now assume (3.2) holds
as an equality at (y0 + 1, t0); we will show (3.2) is an identity. On the other hand, combining
the identity in (3.2) and the strict monotonicity of y �→ p(y, t), we obtain

V (y + 1, t)− V (y, t) = p(y, t)− vn < p(y + 1, t)− vn, (y, t) ∈ Z× [0, 1),

and hence the inequality (3.1) is always strict. The other situation where (3.1) is an identity
and (3.2) is strict can be proved analogously.

Since (3.2) holds as an equality at (y0 + 1, t0), then, for any s ∈ (t0, 1),

Ey0 [p(Zs−t0 , s)]− vn = p(y0, t0)− vn = V (y0 + 1, t0)− V (y0, t0)

= Ey0 [V (Zs−t0 + 1, s)− V (Zs−t0 , s)] ,

where the first identity follows from (2.5) and the Markov property of Z, and the third identity
is obtained after applying Proposition 3.1(iv) twice. On the other hand, the definition of η(y, t)
yields

Ey0 [V (Zs−t0 + 1, s)− V (Zs−t0 , s)]

= Ey0 [p(Zs−t0 , s) + η(Zs−t0 , s) (p(Zs−t0 + 1, s)− p(Zs−t0 , s))]− vn.

The last two identities combined imply

(3.5) Ey0 [η(Zs−t0 , s) (p(Zs−t0 + 1, s)− p(Zs−t0 , s))] = 0.

Recall that η ≥ 0, p(· + 1, s) − p(·, s) > 0 for any s < 1, and the distribution of Zs0−t has
positive mass on each point in Z. We then conclude from (3.5) that η(y, s) = 0 for any y ∈ Z.
Since s is arbitrarily chosen,

(3.6) η(y, s) = 0 for any y ∈ Z, t0 < s < 1.
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Now fix s; the previous identity yields, for any t < s and y ∈ Z,

V (y + 1, t)− V (y, t) = Ey [V (Zs−t + 1, s)− V (Zs−t, s)]

= Ey [p(Zs−t, s)]− vn = p(y, t)− vn,

where Proposition 3.1(iv) is applied twice again to obtain the first identity. Therefore η(y, t) =
0 for any y ∈ Z and t ≤ s, which combined with (3.6) implies (3.2) is an identity.

Step 2. Fix 1 < n < N . When (3.2) is an identity, any optimizers in (2.9) are shown not
to be the optimal strategy for (2.7). When (3.1) is an identity, a similar argument leads to
the same conclusion. Combined with the result in Step 1, the statement of the theorem is
confirmed.

When (3.2) is an identity, sending t→ 1, V (y, 1), defined as limt→1 V (y, t), satisfies

V (y − 1, 1)− V (y, 1) = vn − P (y − 1).

The previous identity and (2.6) combined imply that V (y, 1) is strictly decreasing when y <
an+1, constant when y ∈ [an+1, an+1 +1), and strictly increasing when y ≥ an+1 +1. Thus
y �→ V (y, 1) attains its minimum value when y ∈ [an + 1, an+1]. Let (X̂B , X̂S) be the point
processes whose FI -intensities are optimizers θ̂i,j, i ∈ {B,S} and j ∈ {B,T, S}, in (2.9), and
set Ŷ = Z + X̂B − X̂S . Assuming that (X̂B , X̂S) is the optimal strategy for (2.7), DPP (i)
in Appendix A implies

V (y, t) ≥ Ey,t

[
V (Ŷ1, 1) +

∫ 1

t
(vn − p(Ŷr− + 1, r))dX̂B,B

r +

∫ 1

t
(vn − p(Ŷr− + 2, r))dX̂B,T

r

+

∫ 1

t
(vn − p(Ŷr−, r))dX̂B,S

r −
∫ 1

t
(vn − p(Ŷr− − 1, r))dX̂S,S

r

−
∫ 1

t
(vn − p(Ŷr− − 2, r))dX̂S,T

r −
∫ 1

t
(vn − p(Ŷr−, r))dX̂S,B

r

]
,

where the expectation is taken under Py,t with Py,t(Ŷt = y) = 1. However, the value function
V (y, t) is exactly the expected profit when the insider employs the optimal strategy (X̂B , X̂S).
Therefore, the previous identity yields

Ey,t[V (Ŷ1, 1)] = 0.

Recall that V (·, 1), as a limit of positive functions, is nonnegative, and it achieves the minimum
at [an + 1, an+1]. The previous identity implies V (y, 1) = 0 when y ∈ [an + 1, an+1] and

(3.7) Ŷ1 ∈ [an + 1, an+1], Py,t-a.s.,

However, when (3.2) is an identity and (3.1) is a strict inequality, any optimizer of (2.9)
satisfies θ̂B,B = θ̂B,S ≡ 0, i.e., X̂B ≡ 0. Therefore, Ŷ = ZB − ZS − X̂S with only negative
controlled jumps from X̂S cannot compensate ZS to satisfy (3.7), where [an + 1, an+1] is a
finite interval in Z when 1 < n < N .

4. A suboptimal strategy. We start to prepare the proof of Theorem 2.12 from this
section.

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

256 CHENG LI AND HAO XING

For the rest of the paper, N < ∞, assumed in Theorem 2.12, is enforced unless stated
otherwise.

In this section we are going to characterize a suboptimal strategy of feedback form in the
Glosten–Milgrom model with order size δ, such that the pricing rule (2.5) is rational. To
simplify presentation, we will take δ = 1, and hence omit all superscript δ, throughout this
section. Scaling all processes by δ gives the desired processes when the order size is δ.

The following standing assumption on distribution of ṽ will be enforced throughout this
section.

Assumption 4.1. There exists a strictly increasing sequence (an)n=1,...,N+1 such that
(i) an ∈ Z ∪ {−∞,∞}, a1 = −∞, aN+1 = ∞, and ∪N

n=1[an, an+1) = Z ∪ {−∞};
(ii) P(Z1 ∈ [an, an+1)) = P(ṽ = vn), n = 1, . . . , N ;
(iii) the middle level mn = (an + an+1 − 1)/2 of the interval [an, an+1) is not an integer.
Items (i) and (ii) have already been assumed in Assumption 2.4. Item (iii) is a technical

assumption which facilitates the construction of the suboptimal strategy. In the next section,
when an arbitrary ṽ of distribution (1.1) is considered and the order size δ converges to zero,
a sequence (aδn)n=1,...,N+1,δ>0 together with a sequence of random variables (ṽδ)δ>0 will be
constructed, such that Assumption 4.1 is satisfied for each δ and ṽδ converges to ṽ in law. To
simplify notation, we denote by mn := 
(an+an+1−1)/2� the largest integer smaller than mn

and by mn := �(an + an+1 − 1)/2� the smallest integer larger than mn. Assumption 4.1(iii)
implies an ≤ mn < mn < mn < an+1 and mn −mn = 1 when both an and an+1 are finite.

Let us now define a function U , which relates to the expected profit of a suboptimal
strategy and also dominates the value function V . First the Markov property Z implies that
p is continuously differentiable in the time variable and satisfies8

pt + (p(y + 1, t)− 2p(y, t) + p(y − 1, t)) β = 0, (y, t) ∈ Z× [0, 1),

p(y, 1) = P (y).
(4.1)

Define

(4.2) U(vn, y, 1) :=

an−1∑
j=y

(vn−A(j)) I{y≤mn}+
y∑

j=an+1

(B(j)−vn) I{y≥mn}, y ∈ Z, 1 ≤ n ≤ N,

where A(y) := P (y + 1) and B(y) := P (y − 1) can be considered as ask and bid pricing
functions right before time 1. Since (vn)n=1,...,N is increasing, U(·, ·, 1) is nonnegative and

(4.3) U(vn, y, 1) = 0 ⇐⇒ y ∈ [an − 1, an+1 + 1).

Given U(·, ·, 1) as above, U is extended to t ∈ [0, 1) as follows:

U(vn, y, t) := U(vn, y, 1) + β

∫ 1

t
(p(y, r)− p(y − 1, r)) dr, y ≥ mn,(4.4)

U(vn, y, t) := U(vn, y, 1) + β

∫ 1

t
(p(y + 1, r)− p(y, r)) dr, y ≤ mn,(4.5)

for t ∈ [0, 1) and n = 1, . . . , N . Since N is finite, p is bounded, and hence U takes finite value.

8This follows from the same argument as in [9, footnote 4].

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTIC GLOSTEN–MILGROM EQUILIBRIUM 257

Proposition 4.2. Let Assumption 4.1 hold. Suppose that the market maker chooses p in
(2.5) as the pricing rule. Then for any insider’s admissible strategy (XB ,XS ;FI), with
FI-intensities θi,j, i ∈ {B,S} and j ∈ {B,T, S}, the associated expected profit function
J (vn, y, t;X

B ,XS) satisfies

(4.6) J (vn, y, t;X
B ,XS) ≤ U(vn, y, t)− L(vn, y, t), n ∈ {1, . . . , N}, (y, t) ∈ Z× [0, 1],

where

L(vn, y, t) := Ey

[ ∫ 1

t
(vn − p(mn, r))

[(
β − θB,S

r + θS,Sr

)
I{Yr−=mn}

+ θS,Tr I{Yr−=mn+1}
]
dr
∣∣∣ṽ = vn

]

− Ey

[ ∫ 1

t
(vn − p(mn, r))

[(
β − θS,Br + θB,B

r

)
I{Yr−=mn}

+ θB,T
r I{Yr−=mn−1}

]
dr
∣∣∣ṽ = vn

]
.

(4.7)

Moreover (4.6) is an identity when the following conditions are satisfied:
(i) Y1 ∈ [an − 1, an+1 + 1) a.s. when ṽ = vn;
(ii) XS,S

t = XS,B
t ≡ 0 when Yt− ≤ mn, X

B,B
t = XB,S

t ≡ 0 when Yt− ≥ mn, θ
B,T ≡ 0

when y ≥ mn, and θ
S,T ≡ 0 when y ≤ mn.

Before proving this result, let us derive equations that U satisfies. The following result
shows that U satisfies (3.4) except when y = mn and y = mn, and U satisfies the identity in
either (3.1) or (3.2) depending on whether y ≤ mn or y ≥ mn.

Lemma 4.3. The function U satisfies the following equations (here ṽ = vn is fixed and the
dependence on ṽ is omitted in U):

Ut + (U(y + 1, t) − 2U(y, t) + U(y − 1, t)) β = 0, y > mn or y < mn,(4.8)

Ut + (U(y + 1, t) − 2U(y, t) + U(y − 1, t)) β = (p(mn, t)− vn)β, y = mn,(4.9)

Ut + (U(y + 1, t) − 2U(y, t) + U(y − 1, t)) β = (vn − p(mn, t))β, y = mn,(4.10)

U(y, t)− U(y + 1, t) − (vn − p(y, t)) = 0, y ≥ mn,(4.11)

U(y, t)− U(y − 1, t) + (vn − p(y, t)) = 0, y ≤ mn.(4.12)

Proof. We will verify these equations only when y ≥ mn. The remaining equations can be
proved similarly. First (4.2) implies

U(y + 1, 1) − U(y, 1) = B(y + 1)− vn = P (y)− vn, y ≥ mn.

Combining the previous identity with (4.4),

U(y + 1, t)− U(y, t) = U(y + 1, 1) − U(y, 1)

+ β

∫ 1

t
(p(y + 1, r)− 2p(y, r) + p(y − 1, r)) dr

= p(y, t)− vn,
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where (4.1) is used to obtain the second identity. This verifies (4.11). When y > mn, summing
up (4.11) at y and y + 1 and taking the time derivative in (4.4) yield

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t)) β

= −β(p(y, t)− p(y − 1, t)) + β(p(y, t)− p(y − 1, t))

= 0,

which confirms (4.8) when y > mn. When y = mn, observe from (4.2), (4.4), and (4.5) that
U(mn, ·) = U(mn, ·). Then

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t)) β

= −β (p(mn, t)− p(mn, t)) + β (U(mn + 1, t) − U(mn, t))

= −β (p(mn, t)− p(mn, t))− β (vn − p(mn, t))

= β (p(mn, t)− vn) ,

where the second identity follows from (4.11).
Proof of Proposition 4.2. Throughout the proof the ṽ = vn is fixed and the dependence on

ṽ is omitted in U . Let Y B = ZB+XB,B+XB,T −XS,B and Y S = ZS+XS,S+XS,T −XB,S be
positive and negative parts of Y , respectively. Then Y B − ∫ ·0(β− θS,Br − θB,T

r )dr− ∫ ·0 θB,B
r dr−

2
∫ ·
0 θ

B,T
r dr and Y S−∫ ·0(β−θB,S

r −θS,Tr )dr−∫ ·0 θS,Sr dr−2
∫ ·
0 θ

S,T
r dr are FI -martingales. Applying

Itô’s formula to U(Y·, ·), we obtain

U(Y1, 1) = U(y, t) +

∫ 1

t
Ut(Yr−, r)dr

+

∫ 1

t
[U(Yr, r)− U(Yr−, r)] dY B

r +

∫ 1

t
[U(Yr, r)− U(Yr−, r)] dY S

r

= U(y, t) +

∫ 1

t
[Ut(Yr−, r) + (U(Yr− + 1, r)− 2U(Yr−, r) + U(Yr− − 1, r)) β] dr

+

∫ 1

t
[U(Yr− + 1, r)− U(Yr−, r)]

(
θB,B
r − θS,Br

)
dr

+

∫ 1

t
[U(Yr− + 2, r)− U(Yr− + 1, r)] θB,T

r dr

+

∫ 1

t
[U(Yr− − 1, r)− U(Yr−, r)]

(
θS,Sr − θB,S

r

)
dr

+

∫ 1

t
[U(Yr− − 2, r)− U(Yr− − 1, r)] θS,Tr dr +M1 −Mt,

(4.13)

where

M =

∫ ·

0
[U(Yr, r)− U(Yr−, r)] d

(
Y B
r −

∫ r

0

(
β − θS,Bu + θB,B

u + θB,T
u

)
du

)

+

∫ ·

0
[U(Yr, r)− U(Yr−, r)] d

(
Y S
r −

∫ r

0

(
β − θB,S

u + θS,Su + θS,Tu

)
du

)
.
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Since (4.11) and (4.12) imply U(y+1, t)−U(y, t) is either p(y, t)−vn or p(y+1, t)−vn, which
are both bounded from below by v1 − vn and from above by vN − vn, M is an FI -martingale
(cf. [7, Chapter I, T6]). On the right-hand side of (4.13), splitting the second integral on
{Yr− ≥ mn}, {Yr− = mn}, and {Yr− < mn}, splitting the fourth integral on {Yr− > mn},
{Yr− = mn}, and {Yr− ≤ mn}, utilizing U(mn, ·) = U(mn, ·), as well as different equations in
Lemma 4.3 in different regions, we obtain

U(Y1, 1) = U(y, t) +

∫ 1

t
(p(mn, r)− vn)βI{Yr−=mn}dr +

∫ 1

t
(vn − p(mn, r)) βI{Yr−=mn}dr

−
∫ 1

t
(vn − p(Yr−, r)) I{Yr−≥mn}(θ

B,B
r − θS,Br )dr

−
∫ 1

t
(vn − p(Yr− + 1, r)) I{Yr−<mn}(θ

B,B
r − θS,Br )dr

−
∫ 1

t
(vn − p(Yr− + 1, r)) I{Yr−≥mn}θ

B,T
r dr

−
∫ 1

t
(vn − p(Yr− + 2, r)) I{Yr−<mn−1}θB,T

r dr

+

∫ 1

t
(vn − p(Yr− − 1, r)) I{Yr−>mn}(θ

S,S
r − θB,S

r )dr

+

∫ 1

t
(vn − p(Yr−, r)) I{Yr−≤mn}(θ

S,S
r − θB,S

r )dr

+

∫ 1

t
(vn − p(Yr− − 2, r)) I{Yr−>mn+1}θS,Tr dr

+

∫ 1

t
(vn − p(Yr− − 1, r)) I{Yr−≤mn}θ

S,T
r dr +M1 −Mt.

Rearranging the previous identity by putting the profit of (XB ,XS) to the left-hand side, we
obtain

U(y, t)− U(Y1, 1) −K − L+M1 −Mt

=

∫ 1

t
(vn − p(Yr− + 1, r))θB,B

r dr +

∫ 1

t
(vn − p(Yr− + 2, r)) θB,T

r dr

+

∫ 1

t
(vn − p(Yr−, r))θB,S

r dr −
∫ 1

t
(vn − p(Yr− − 1, r))θS,Sr dr

−
∫ 1

t
(vn − p(Yr− − 2, r)) θS,Tr dr −

∫ 1

t
(vn − p(Yr−, r))θS,Br dr,

(4.14)
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where

K =

∫ 1

t
(p(Yr− + 1, r)− p(Yr−, r)) I{Yr−≥mn}θ

B,B
r dr

+

∫ 1

t
(p(Yr−, r)− p(Yr− − 1, r)) I{Yr−≥mn}θ

B,S
r dr

+

∫ 1

t
(p(Yr− + 2, r)− p(Yr− + 1, r)) I{Yr−≥mn}θ

B,T
r dr

+

∫ 1

t
(p(Yr−, r)− p(Yr− − 1, r)) I{Yr−≤mn}θ

S,S
r dr

+

∫ 1

t
(p(Yr− + 1, u)− p(Yr−, r)) I{Yr−≤mn}θ

S,B
r dr

+

∫ 1

t
(p(Yr− − 1, r)− p(Yr− − 2, r)) I{Yr−≤mn}θ

S,T
r dr,

L =

∫ 1

t
[vn − p(mn, r)]

[
(β − θB,S

r + θS,Sr )I{Yr−=mn} + θS,Tr I{Yr−=mn+1}
]
dr

−
∫ 1

t
[vn − p(mn, r)]

[
(β − θS,Br + θB,B

r )I{Yr−=mn} + θB,T
r I{Yr−=mn−1}

]
dr.

Taking conditional expectation E[·|FI
t , Yt = y] on both sides of (4.14), the left-hand side is the

expected profit J (XB ,XS), while on the right-hand side, both U(·, 1) and K are nonnegative
(cf. Definition 2.1(i)). Therefore (4.6) is verified. To attain the identity in (4.6), we need (i)
Y1 ∈ [an − 1, an+1 + 1) a.s. so that U(Y1, 1) = 0 a.s. follows from (4.3); (ii) θB,B = θB,S ≡ 0
when y ≥ mn, θ

S,S = θS,B ≡ 0 when y ≤ mn, θ
B,T ≡ 0 when y ≥ mn, and θS,T ≡ 0 when

y ≤ mn.
Come back to the statement of Proposition 4.2. If the insider chooses a strategy such that

both conditions in (i) and (ii) are satisfied, then the identity in (4.6) is attained, hence the
expected profit of this strategy is U − L. On the other hand, define US : {v1, . . . , vN} × Z×
[0, 1] → R via

(4.15) US(vn, y, t) =

{
U(vn, y, t), y ≥ mn,
U(vn, y − 1, t), y ≤ mn.

The next result shows that US dominates the value function V , and therefore US − U + L is
the upper bound of the potential loss of the expected profit. In section 6, we will prove this
potential loss converges to zero as δ ↓ 0. Therefore, when the order size is small, the insider
loses little expected profit by employing a strategy satisfying Proposition 4.2(i) and (ii).

Proposition 4.4. Let Assumption 4.1 hold. Then V ≤ US, hence V <∞, on {v1, . . . , vN}×
Z× [0, 1].
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Proof. Fix vn and omit it as the first argument of US and U throughout the proof. We
first verify

US(y, t)− US(y + 1, t)− (vn − p(y, t)) = 0,(4.16)

US
t +

(
US(y + 1, t)− 2US(y, t) + US(y − 1, t)

)
β = 0,(4.17)

for any (y, t) ∈ Z× [0, 1). Indeed, when y ≥ mn, (4.16) is exactly (4.11). When y = mn,

US(mn, t)− US(mn, t) = U(mn − 1, t)− U(mn, t)

= U(mn − 1, t)− U(mn, t) = vn − p(mn, t),

where the second identity follows from U(mn, t) = U(mn, t) and the third identity holds due
to (4.12). When y < mn,

US(y, t)− US(y + 1, t) = U(y − 1, t)− U(y, t) = vn − p(y, t),

where (4.12) is utilized again to obtain the second identity. Therefore (4.16) is confirmed for
all cases. As for (4.17), (4.16) yields

US(y + 1, t)− 2US(y, t) + US(y − 1, t) = p(y, t)− p(y − 1, t).

On the other hand, we have from (4.4) and (4.5) that

US
t (y, t) =

{
Ut(y, t) = −β(p(y, t)− p(y − 1, t)), y ≥ mn,
Ut(y − 1, t) = −β(p(y, t)− p(y − 1, t)), y ≤ mn.

Therefore (4.17) is confirmed after combining the previous two identities.
Now note that US(·, 1) ≥ 0; moreover US satisfies (4.16) and (4.17). The assertion V ≤ US

follows from the same argument as in the high type of [9, Proposition 3.2].
Having studied the insider’s optimization problem, let us turn to the market maker. Given

(XB ,XS ;FI), Definition 2.11(ii) requires the pricing rule to be rational. This leads to another
constraint on (XB ,XS ;FI).

Proposition 4.5. If there exists an admissible strategy (XB ,XS ;FI) such that
(i) Y B = ZB+XB,B+XB,T −XS,B and Y S = ZS+XS,S+XS,T −XB,S are independent

FY -adapted Poisson processes with common intensity β;
(ii) [Y1 ∈ [an, an+1)] = [ṽ = vn], n = 1, . . . , N .

Then the pricing rule (2.5) is rational.
Proof. For any t ∈ [0, 1],

p(Yt, t) = EYt[P (Z1−t)] = E [P (Z1) |Zt = Yt] = E
[
P (Y1) | FY

t

]
= E[ṽ | FY

t ],

where the third identity holds since Y and Z have the same distribution, and the fourth
identity follows from (ii) and (2.6).

Remark 4.6. If the insider places a buy (resp., sell) order when a noise buy (resp., sell)
order arrives, Proposition 4.5(i) cannot be satisfied. Therefore in the asymptotic equilibrium
the insider will not trade in the same direction as the noise traders, i.e., XB,T = XS,T ≡ 0,
so that the market maker can employ a rational pricing rule.
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Concluding this section, we need to construct point processes (XB ,XS ;FI) which si-
multaneously satisfy conditions in Proposition 4.2(ii) and Proposition 4.5(i) and (ii).9 This
construction is a natural extension of [9, section 4], where N = 2 is considered, and will be
presented in the next section.

5. Construction of a point process bridge. In this section, we will construct point pro-
cesses XB and XS on a probability space (Ω,FI , (FI

t )t∈[0,1],P) such that XB,T = XS,T ≡ 0,
due to Remark 4.6, and satisfy

(i) Y B = ZB +XB,B −XS,B and Y S = ZS +XS,S −XB,S are independent FY -adapted
Poisson processes with common intensity β;

(ii) XB,B
t = XB,S

t ≡ 0 when Yt− ≥ mn, X
S,S
t = XS,B

t ≡ 0 when Yt− ≤ mn;
(iii) [Y1 ∈ [an, an+1)] = [ṽ = vn] P-a.s. for n = 1, . . . , N .

The construction is a natural extension of [9], where N = 2 is considered. As in [9], XB

and XS are constructed using two independent sequences of iid random variables (ηi)i≥1

and (ζi)i≥1 with uniform distribution on [0, 1]; moreover they are independent of Z and ṽ.
The insider uses (ηi)i≥1 to randomly contribute either buy or sell orders and uses (ζi)i≥1 to
randomly cancel noise orders. Throughout this section Assumption 4.1 is enforced. Moreover,
we set δ = 1 and hence suppress the superscript δ. Otherwise XB and XS can be scaled by δ
to obtain the desired processes.

In the following construction, we will define a probability space (Ω,FI , (FI
t )t∈[0,1], P) on

which Y takes the form

(5.1) Y = Z +

N∑
n=1

IAn(X
B −XS).

Here Z is the difference of two independent FI -adapted Poisson processes with intensity β,
An ∈ FI

0 such that P(An) = P(Z1 ∈ [an, an+1)) for each n = 1, . . . , N .
Before constructing XB and XS satisfying desired properties, let us draw some intuition

from the theory of filtration enlargement. Let us define (D([0, 1],Z),F , (F t)t∈[0,1], P) as the

canonical space where D([0, 1],Z) is Z-valued càdlàg functions, P is a probability measure
under which ZB and ZS are independent Poisson processes with intensities β, (F t)t∈[0,1] is
the minimal filtration generated by ZB and ZS satisfying the usual conditions, and F =
∨t∈[0,1]F t. Let us denote by (Gt)t∈[0,1] the filtration (F t)t∈[0,1] enlarged with a sequence of
random variables (I{Z1∈[an,an+1)})n=1,...,N .

In order to find the G-intensities of ZB and ZS, we use a standard enlargement of fil-
tration argument which can be found, e.g., in [18]. To this end, recall hn(y, t) = P[Z1 ∈
[an, an+1) |Zt = y]. Note that hn is strictly positive on Z × [0, 1). Moreover the Markov
property of Z implies hn is continuously differentiable in the time variable and satisfies

∂thn + (hn(y + 1, t)− 2hn(y, t) + hn(y − 1, t)) β = 0, (y, t) ∈ Z× [0, 1),

hn(y, 1) = I{y∈[an,an+1)}.
(5.2)

9Note that Proposition 4.5(ii) implies Proposition 4.2(i).
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Lemma 5.1. The G-intensities of ZB and ZS at t ∈ [0, 1) are given by

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zt− + 1, t)

hn(Zt−, t)
β and

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zt− − 1, t)

hn(Zt−, t)
β,

respectively.
Proof. We will calculate only the intensity for ZB . The intensity of ZS can be obtained

similarly. All expectations are taken under P throughout this proof. For s ≤ t < 1, take an
arbitrary E ∈ Fs and denote MB

t := ZB
t − βt. The definition of hn and the F-martingale

property of MB imply

E
[
(MB

t −MB
s )IEI{Z1∈[an,an+1)}

]
= E

[
(MB

t −MB
s )IEhn(Zt, t)

]
= E

[
IE(〈MB , hn(Z·, ·)〉t − 〈MB , hn(Z·, ·)〉s)

]
= E

[
IE

∫ t

s
β (hn(Zr− + 1, r)− hn(Zr−, r)) dr

]

= E

[
IE

∫ t

s
β I{Z1∈[an,an+1)}

hn(Zr− + 1, r)− hn(Zr−, r)
hn(Zr−, r)

dr

]
.

These computations for each n = 1, . . . , N imply that

MB −
∫ ·

s
β

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zr− + 1, r)− hn(Zr−, r)

hn(Zr−, r)
dr

defines a G-martingale. Therefore the G-intensity of ZB follows from ZB
t =MB

t + βt.
To better understand intensities in the previous lemma, let us collect several properties

for hn.
Lemma 5.2. Let Assumption 4.1 hold. The following properties hold for each hn, n =

1, . . . , N :
(i) hn(·, ·) = hn(2mn − ·, ·); in particular, hn(mn, ·) = hn(mn, ·).
(ii) y �→ hn(y, t) is strictly increasing when y ≤ mn and strictly decreasing when y ≥ mn.

Here, when n = 1 (resp., n = N), mn = mn = −∞ (resp., mn = mn = ∞).
Proof. Recall that an + an+1 − 1 = 2mn. Then

hn(y, t) = P[Z1 ∈ [an, an+1) |Zt = y] = P[y + Z1−t ∈ [an, an+1)]

= P[2mn − y − Z1−t ∈ (2mn − an+1, 2mn − an]]

= P[2mn − y − Z1−t ∈ [an, an+1)] = hn(2mn − y, t),

where the last identity holds since Z and −Z have the same distribution. This verifies (i).
To prove (ii), rewrite hn(y, t) = P[Z1−t ∈ [an − y, an+1 − y)]. Then the statement (ii) follows
from the fact that y �→ P(Z1−t = y) is strictly increasing when y ≤ 0 and strictly decreasing
when y ≥ 0.

In what follows, given An ∈ FI
0 such that P(An) = P(Z1 ∈ [an, an+1)), (X

B ,XS ; FI) on
An will be constructed so that FI -intensity of Y B (resp., Y S) on An match G-intensities of
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ZB (resp., ZS) on [Z1 ∈ [an, an+1)]. Matching these intensities ensures that (XB ,XS ;FI)
satisfies desired properties; cf. Proposition 5.5 below. Recall Y B = ZB +XB,B − XS,B and
Y S = ZS +XS,S −XB,S . Subtracting β from G-intensities of ZB (resp., ZS) in Lemma 5.1,
we can read out intensities of XB,B −XS,B (resp., XS,S −XB,S). Since property (ii) at the
beginning of this section implies that θB and θS are never positive at the same time, when
the intensity of XB,B −XS,B is positive, the insider contributes buy orders XB,B with such
intensity; otherwise the insider submits sell orders XS,B with the same intensity to cancel
some noise buy orders from ZB. Applying the same strategy to XS,S − XB,S and utilizing
Lemma 5.2, we read out FI -intensities for Xi,j , i, j ∈ {B,S}:

Corollary 5.3. Suppose that FI-intensities of Y B and Y S match G-intensities of ZB and
ZS, respectively; moreover XB,B

t = XB,S
t ≡ 0 when Yt− ≥ mn and XS,S

t = XS,B
t ≡ 0 when

Yt− ≤ mn. Then FI -intensities of Xi,j , i, j ∈ {B,S}, have the following form on An when
Yt− = y:

θB,B(y, t) =

(
hn(y + 1, t)

hn(y, t)
− 1

)
+

β, θB,S(y, t) =

(
hn(y − 1, t)

hn(y, t)
− 1

)
−
β,

θS,S(y, t) =

(
hn(y − 1, t)

hn(y, t)
− 1

)
+

β, θS,B(y, t) =

(
hn(y + 1, t)

hn(y, t)
− 1

)
−
β.

In particular, θi,j, i, j ∈ {B,S}, satisfies the following properties:
(i) θB,B(y, ·) = θB,S(y, ·) ≡ 0, θS,S(y, ·) > 0, and θS,B(y, ·) > 0, when y ≥ mn; θ

S,S(y, ·) =
θS,B(y, ·) ≡ 0, θB,B(y, ·) > 0, and θB,S(y, ·) > 0, when y ≤ mn;

(ii) θB,B(·, ·) = θS,S(2mn − ·, ·), θB,S(·, ·) = θS,B(2mn − ·, ·);
(iii) θB,B(mn, ·) = θS,S(mn, ·) ≡ 0.
As described in Corollary 5.3, when An ∈ F0 is fixed, the state space is divided into two

domains, S := {y ∈ Z : y ≥ mn} and B := {y ∈ Z : y ≤ mn}. As Y makes excursions into
these two domains, either XS or XB is active. In the following construction, we will focus
on the domain B and construct inductively jumps of XB until Y leaves B. When Y makes
excursions into S, XS can be constructed similarly.

When Y is in B, one of the goals of XB is to make sure that Y1 ends up in the interval
[an, an+1). In order to achieve this goal, XB will add some jumps in addition to the jumps
coming from ZB . However, this by itself will not be enough since Y also jumps downward due
to ZS. Thus, XB also needs to cancel some of the downward jumps from ZS. Therefore XB

consists of two components XB,B and XB,S , where XB,B complements jumps of ZB and XB,S

cancels some jumps of ZS. Let us denote by (τi)i≥1 the sequence of jump times for Y . These
stopping times will be constructed inductively as follows. Given τi−1 < 1 and Yτi−1 ≤ mn, the
next jump time τi happens at the minimum of the following three random times:

• the next jump of ZB,
• the next jump of XB,B ,
• the next jump of ZS which is not canceled by a jump of XB,S .

Here XB,B and XB,S need to be constructed so that their intensities θB,B(Yt−, t) and
θB,S(Yt−, t) match the forms in Corollary 5.3. This goal is achieved by employing two inde-
pendent sequences of iid random variables (ηi)i≥1 and (ζi)i≥1 with uniform distribution on
[0, 1]. They are also independent of F and (An)n=1,...,N . These two sequences will be used to
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generate a random variable νi and another sequence of Bernoulli random variables (ξj,i)j≥1

taking values in {0, 1}. Let (σ+i )i≥1 and (σ−i )i≥1 be jump time of ZB and ZS, respectively.
Then, after τi−1, the next jump of ZB is at σ+

ZB
τi−1

+1
, the next jump of XB,B is at νi, and the

next jump of ZS not canceled by jumps of XB,S is at τ−i = min{σ−j > τi−1 : ξj,i = 1}. Then
the next jump of Y is at

τi = σ+
ZB
τi−1

+1
∧ νi ∧ τ−i .

The construction of νi and (ξj,i)j≥1 using (ηi)i≥1 and (ζi)i≥1 is exactly the same as in [9,
section 4], only replacing h therein by hn.

All aforementioned construction is performed in a filtrated probability space (Ω,FI ,
(FI

t )t∈[0,1],P) such that there exist (An)n=1,...,N ∈ FI
0 with P(An) = hn(0, 0) and two indepen-

dent sequences of iid FI -measurable random variables (ηi)i≥1 and (ζi)i≥1 with uniform distri-
bution on [0, 1]; moreover these two sequences are independent of both Z and (An)n=1,...,N .
These requirements can be satisfied by extending F0 (resp., F) to FI

0 (resp., FI). As for the
filtration (FI

t )t∈[0,1], we require that it is right continuous and complete under P, and more-
over Z, as the difference of two independent Poisson processes with intensity β, is adapted to
(FI

t )t∈[0,1]. Therefore Z is independent of (An)n=1,...,N , since Z has independent increments.

Finally, we also assume that (FI
t )t∈[0,1] is rich enough so that (νi)i≥1 and (τ−i )i≥1 discussed

above are FI -stopping times.
An argument similar to [9, Lemma 4.3] yields the following.
Lemma 5.4. Given point processes (XB ,XS ;FI) constructed above, the FI -intensities of

Y B and Y S at t ∈ [0, 1) are given by

N∑
n=1

IAn

hn(Yt− + 1, t)

hn(Yt−, t)
β and

N∑
n=1

IAn

hn(Yt− − 1, t)

hn(Yt−, t)
β,

respectively.
Now we are ready to verify that our construction is as desired.
Proposition 5.5. The process Y as constructed above satisfies the following properties:
(i) [Y1 ∈ [an, an+1)] = An a.s. for n = 1, . . . , N ;
(ii) Y B and Y S are independent Poisson processes with intensity β with respect to the

natural filtration (FY
t )t∈[0,1] of Y ;

(iii) (XB ,XS ;FI) is admissible in the sense of Definition 2.2.
Proof. To verify that Y satisfies the desired properties, let us introduce an auxiliary process

(�t)t∈[0,1):

�t :=

N∑
n=1

IAn

hn(0, 0)

hn(Yt, t)
, t ∈ [0, 1).

When n = 2, . . . , N−1, there is only almost surely a finite number of positive (resp., negative)
jumps of Y on An when Y· ≥ mn (resp., Y· ≤ mn). Therefore Yt is finite on these An when
t < 1 is fixed. When n = 1 (resp., n = N), there is a finite number of positive (resp., negative)
jumps of Y on A1 (resp., AN ) before t. Hence Yt < ∞ on A1 (resp., Yt > −∞ on AN ). This
analysis implies hn(Yt, t) > 0 on An for each n = 1, . . . , N and t < 1. Therefore (�t)t∈[0,1) is a
well-defined positive process with �0 = 1.
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To prove (i), we first show that � is a positive FI -local martingale on [0, 1). To this end,
the Itô formula yields that

d�t =

N∑
n=1

IAn�t−
[
hn(Yt−, t)− hn(Yt− + 1, t)

hn(Yt− + 1, t)
dMB

t +
hn(Yt−, t)− hn(Yt− − 1, t)

hn(Yt− − 1, t)
dMS

t

]
,

where t ∈ [0, 1). Here

MB = Y B − β

∫ ·

0

N∑
n=1

IAn

hn(Yr− + 1, r)

hn(Yr−, r)
dr,

MS = Y S − β

∫ ·

0

N∑
n=1

IAn

hn(Yr− − 1, r)

hn(Yr−, r)
dr

are all FI -local martingales. Define ζ+m = inf{t ∈ [0, 1] : Yt = m} and ζ−m = inf{t ∈ [0, 1] :
Yt = −m}. Consider the sequence of stopping time (ηm)m≥1:

ηm :=
(
I∪N−1

n=2 An
ζ+m ∧ ζ−m + IA1ζ

+
m + IAN

ζ−m
)
∧ (1− 1/m).

It follows from the definition of hn that each hn(Yt, t) on An is bounded away from zero
uniformly in t ∈ [0, ηm]. This implies that �ηm is bounded, hence �ηm is an FI -martingale.
The construction of Y yields limm→∞ ηm = 1. Therefore, � is a positive FI -local martingale,
hence also a supermartingale, on [0, 1).

Define �1 := limt→1 �t, which exists and is finite due to Doob’s supermartingale convergence
theorem. This implies hn(Y1−, 1) > 0 on An. On the other hand, the construction of Y yields
Y S (resp., Y B) does not jump at time 1 P-a.s. when Y1− ≤ mn (resp., Y1− ≥ mn). Therefore
hn(Y1, 1) > 0 on An. However, hn(·, 1) by definition can only be either 0 or 1. Hence
Y1 ∈ [an, an+1) on An for each n = 1, . . . , N , and the statement (i) is confirmed.

As for the statement (ii), we will prove that Y B is an FY -adapted Poisson process. The
similar argument can be applied to Y S as well. In view of the FI -intensity of Y B calculated
in Lemma 5.4, one has that, for each i ≥ 1,

Y B
·∧τi∧1 − β

(∫ ·∧τi∧1

0

N∑
n=1

IAn

hn(Yu− + 1, u)

hn(Yu−, u)
du

)

is an FI -martingale, where τi is the ith jump time of Y . We will show in the next paragraph
that, when stopped at τi ∧ 1, Y B is a Poisson process in FY by showing that (Y B

τi∧t − β(τi ∧
t))t∈[0,1] is an FY -martingale. (Here note that τi is an FY -stopping time.) This in turn will

imply that Y B is a Poisson process with intensity β on [0, τ ∧ 1) where τ = limi→∞ τi is the
explosion time. Since Poisson process does not explode, this will further imply Y B

τ∧1 <∞ and,
therefore, τ ≥ 1, P-a.s.

We proceed by projecting the above martingale into FY to see that

Y B − β

∫ ·

0

N∑
n=1

P(An|FY
r )
hn(Yr− + 1, r)

hn(Yr−, r)
dr
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is an FY -martingale when stopped at τi ∧ 1. Therefore, it remains to show that, for almost
all t ∈ [0, 1), on [t ≤ τi],

(5.3)

N∑
n=1

P(An|FY
t )
hn(Yt− + 1, t)

hn(Yt−, t)
= 1, P-a.s..

To this end, we will show, on [t ≤ τi],

(5.4) P(An|FY
t ) = hn(Yt, t) for t ∈ [0, 1).

Then (5.3) follows since Yt �= Yt− only for countably many times.
We have seen that (�u∧τi)u∈[0,t] is a strictly positive FI -martingale for each i. Define a

probability measure Qi ∼ P on FI
t via dQi/dP|FI

t
= �τi∧t. It follows from Girsanov’s theorem

that Y B is a Poisson process when stopped at τi∧ t and with intensity β under Qi. Therefore,
they are independent from An under Qi. Then, for t < 1, we obtain from the Bayes’s formula
that

I{r≤τi∧t}P(An|FY
r ) = I{r≤τi∧t}

EQi
[IAn�

−1
r |FY

r ]

EQi [�−1
r |FY

r ]

= I{r≤τi∧t}
EQi

[IAn

hn(Yr ,r)
hn(0,0)

|FY
r ]

EQi
[
∑N

n=1 IAn

hn(Yr ,r)
hn(0,0)

|FY
r ]

= I{r≤τi∧t}hn(Yr, r),

(5.5)

where the third identity follows from the aforementioned independence of Y and An under Qi

along with the fact that Qi does not change the probability of FI
0 measurable events so that

Qi(An) = P(An) = hn(0, 0). As result, (5.4) follows from (5.5) after sending i→ ∞.
Since Y B and Y S are FY -Poisson processes and they do not jump simultaneously by their

construction, they are then independent. To show the strategy (XB ,XS ;FI) constructed is
admissible, it remains to show both E[XB

1 IAn ] and E[XS
1 IAn ] are finite for each n = 1, . . . , N .

To this end, for each n, E[XB
1 IAn ] = E[XB,B

1 IAn ]+E[XB,S
1 IAn ], where E[X

B,S
1 IAn ] ≤ E[ZS] <

∞ and E[XB,B
1 IAn ] ≤ E[Y B

1 IAn ] + E[XS,B
1 IAn ] ≤ E[ZB

1 |Z ∈ [an, an+1)] + E[ZS
1 ] < ∞. A

similar argument also implies E[XS
1 IAn ] <∞. Finally, since N <∞, p is bounded, Definition

2.2(iv) is verified using E[XB
1 IAn ],E[X

S
1 IAn ] <∞ for each n ∈ {1, . . . , N}.

6. Convergence. Collecting results from previous sections, we will prove Theorems 2.12
and 2.13 in this section. Let us first construct a sequence of random variables (ṽδ)δ>0, each
of which will be the fundamental value in the Glosten–Milgrom model with order size δ.

Adding to the sequence of canonical spaces (Ωδ,FZ,δ, (FZ,δ
t )t∈[0,1],Pδ), defined at the be-

ginning of section 2.2, we introduce (Ω0,F0, (F0
t )t∈[0,1],P0), where Ω0 = D([0, 1],R) is the

space of R-valued càdlàg functions on [0, 1] with coordinate process Z0, and P0 is the Wiener
measure. Denote by P0,y the Wiener measure under which Z0

0 = y a.s. Let us now define a
R ∪ {−∞,∞}-valued sequence (a0n)n=1,...,N+1 via

a01 = −∞, a0n = Φ−1 (p1 + · · ·+ pn−1) , n = 2, . . . , N + 1,
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where Φ(·) = ∫ ·−∞
1√
2π
e−x2/2 dx. Using this sequence, one can define a pricing rule following

the same recipe in (2.5):

(6.1) p0(y, t) :=

N∑
n=1

vnh
0
n(y, t), y ∈ R, t ∈ [0, 1], n ∈ {1, . . . , N},

where h0n(y, t) := P0,y(Z0
1−t ∈ [a0n, a

0
n+1)) = Φ(a0n+1 − y)− Φ(a0n − y).

As we will see later, this is exactly the pricing rule in the Kyle–Back equilibrium. Moreover,
the sequence (aδn)n=1,...,N+1, associated to (ṽδ)δ>0 constructed below, converges to (a0n)n=1,...,N+1

as δ ↓ 0, helping to verify Definition 2.11(i).
Lemma 6.1. For any ṽ with distribution (1.1) where N may not be finite, there exists a

sequence of random variables (ṽδ)δ>0, each of which takes value in {v1, . . . , vN}, such that
(i) Assumption 4.1 is satisfied when ṽ therein is replaced by each ṽδ;10

(ii) Law(ṽδ) =⇒ Law(ṽ), as δ ↓ 0. Here =⇒ represents the weak convergence of probability
measures.

Proof. For each δ > 0, ṽδ will be constructed by adjusting pn in (1.1) to some pδn, n =
1, . . . , N . Starting from [ṽ = v1], choose a

δ
1 = −∞, aδ2 = inf{y ∈ δZ : Pδ(Zδ

1 ≤ y) ≥ p1},
and set Pδ(ṽδ = v1) = Pδ(Zδ

1 ∈ [aδ1, a
δ
2)). Moving on to [ṽδ = v2], choose a

δ
3 = inf{y ∈ δZ :

Pδ(Zδ
1 ≤ y) ≥ p1 + p2 and (aδ2 + y − δ)/2 /∈ δZ} and set Pδ(ṽδ = v2) = Pδ(Zδ

1 ∈ [aδ2, a
δ
3)).

Following this step, we can define aδn inductively. When N < ∞, we set aδN+1 = ∞. This

construction gives a sequence of random variables (ṽδ)δ>0 taking values in {v1, . . . , vN} such
that Pδ(ṽδ = vn) = pδn := Pδ(Zδ

1 ∈ [aδn, a
δ
n+1)) with

∑N
n=1 p

δ
n = 1; moreover each sequence

(aδn)n=1,...,N+1 satisfies Assumption 4.1.
It remains to show Law(ṽδ) =⇒ Law(ṽ) as δ ↓ 0. To this end, note that aδn is either

the (
∑n−1

i=1 pi)th quantile of the distribution of Zδ
1 or δ above this quantile. When βδ is

chosen as 1/(2δ2), it follows from [12, Chapter 6, Theorem 5.4] that Pδ =⇒ P0, in particular,
Law(Zδ

1) =⇒ Law(Z0
1 ). Therefore,

(6.2) lim
δ↓0

aδn = a0n, n = 1, . . . , N + 1.

For any ε > 0 and n ∈ {1, . . . , N}, the previous convergence yields the existence of a sufficiently
small δε,n such that [a0n + ε, a0n+1 − ε) ⊆ [aδn, a

δ
n+1) ⊆ [a0n − ε, a0n+1 + ε) for any δ ≤ δε,n. Hence

Pδ
(
Zδ
1 ∈ [aδn, a

δ
n+1)

)
≤ Pδ

(
Zδ
1 ∈ [a0n − ε, a0n+1 + ε)

)
→ P0

(
Z0
1 ∈ [a0n − ε, a0n+1 − ε)

)
,

Pδ
(
Zδ
1 ∈ [aδn, a

δ
n+1)

)
≥ Pδ

(
Zδ
1 ∈ [a0n + ε, a0n+1 − ε)

)
→ P0

(
Z0
1 ∈ [a0n + ε, a0n+1 − ε)

)
,

as δ ↓ 0, where both convergences follow from Law(Zδ
1) =⇒ Law(Z0

1 ) and the fact that the
distribution of Z0

1 is continuous. Since ε is arbitrarily chosen, utilizing the continuity of the
distribution for Z0

1 again, we obtain from the previous two inequalities

lim
δ↓0

Pδ
(
Zδ
1 ∈ [aδn, a

δ
n+1)

)
= P0

(
Z0
1 ∈ [a0n, a

0
n+1)

)
.

Hence limδ↓0 pδn = p0n for each n ∈ {1, . . . N} and Law(ṽδ) ⇒ Law(ṽ).

10When the order size is δ, Assumption 4.1(iii) reads (aδ
n + aδ

n+1 − δ)/2 /∈ δZ.
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After (ṽδ)δ>0 is constructed, it follows from sections 4 and 5 that a sequence of strategies
(XB,δ,XS,δ;FI,δ)δ>0 exists, each of which satisfies conditions in Proposition 4.5. Hence pδ in
(2.5) is rational for each δ > 0. It then remains to verify Definition 2.11(iii) to establish an
asymptotic Glosten–Milgrom equilibrium.

Before doing this, we prove Theorem 2.13 first. Let us recall the Kyle–Back equilibrium.
Following arguments in [16] and [2], the equilibrium pricing rule is given by (6.1) and the
equilibrium demand satisfies the SDE

Y 0 = Z0 +
N∑

n=1

I{ṽ=vn}
∫ ·

0

∂yh
0
n(Y

0
r , r)

h0n(Y
0
r , r)

dr,

where Z0 is a P0-Brownian motion modeling the demand from noise traders. Hence the
insider’s strategy in the Kyle–Back equilibrium is given by

X0 =
N∑

n=1

I{ṽ=vn}
∫ ·

0

∂yh
0
n(Y

0
r , r)

h0n(Y
0
r , r)

dr.

Proof of Theorem 2.13. As we have seen in Lemma 6.1, Assumption 4.1 is satisfied by each
ṽδ. It then follows from Proposition 5.5(i) and (ii) that the distribution of Y δ on [ṽδ = vn] is
the same as the distribution of Zδ conditioned on Zδ

1 ∈ [aδn, a
δ
n+1). Denote Y 0,n = Y 0I{ṽ=vn}

as the cumulative demand in the Kyle–Back equilibrium when the fundamental value is vn.
The same argument as in [9, Lemma 5.4] yields

Law(Zδ |Zδ
1 ∈ [aδn, a

δ
n+1)) =⇒ Law(Y 0,n), as δ ↓ 0,

for each n ∈ {1, . . . , N}. It then follows

(6.3) Law(Y δ;FI,δ) =⇒ Law(Y 0;FI,0), as δ ↓ 0,

where the filtration FI,0 is F0 initially enlarged by ṽ. Recall from (5.1) that Y δ = Zδ +
XB,δ −XS,δ, and moreover Y 0 = Z0 +X0. Combining (6.3) with Law(Zδ) =⇒ Law(Z0), we
conclude from [14, Proposition VI.1.23] that Law(XB,δ −XS,δ) =⇒ Law(X0) as δ ↓ 0.

In the rest of the section, Definition 2.11(iii) is verified for strategies (XB,δ,XS,δ; FI,δ)δ>0,
which concludes the proof of Theorem 2.12. We have seen in Proposition 4.2 that the expected
profit of the strategy (XB,δ ,XS,δ;FI,δ), constructed in section 5, satisfies

J δ(vn, 0, 0;X
B,δ ,XS,δ) = U δ(vn, 0, 0) − Lδ(vn, 0, 0), n ∈ {1, . . . , N},

where

Lδ(vn, 0, 0) = δβδ Eδ,0

[∫ 1

0
(vn − pδ(mδ

n, r)) I{Y δ
r−=mδ

n}dr
∣∣∣∣ ṽδ = vn

]

− δβδ Eδ,0

[∫ 1

0
(vn − pδ(mδ

n, r)) I{Y δ
r−=mδ

n}dr
∣∣∣∣ ṽδ = vn

]
.

(6.4)

This expression for Lδ follows from changing the order size in (4.7) from 1 to δ and utilizing
θB,S,δ(mδ

n, ·) = θS,S,δ(mδ
n, ·) = θS,B,δ(mδ

n, ·) = θB,B,δ(mδ
n, ·) = 0 from Corollary 5.3(i) and (iii),
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θB,T,δ = θS,T,δ ≡ 0 from Remark 4.6, and the expectations are taken under Pδ,0. Here mδ
n :=

δ
(an + an+1 − δ)/2δ� is the largest integer multiple of δ smaller than mδ
n and mδ

n := δ�(an +
an+1 − δ)/2δ� is the smallest integer multiple of δ larger than mδ

n. To prove Theorem 2.13,
let us first show

(6.5) lim
δ↓0

Lδ(vn, 0, 0) = 0, n ∈ {1, . . . , N}.

In the following development, we fix vn and denote Lδ = Lδ(vn, 0, 0).
Before presenting technical proofs for (6.5), let us first introduce a heuristic argument.

First, since βδ = 1/(2δ2), (6.4) can be rewritten as

(6.6) Lδ = Eδ,0
[
I
δ,n
1

∣∣∣ ṽδ = vn

]
− Eδ,0

[
Iδ,n1

∣∣∣ ṽδ = vn

]
,

where

I
δ,n
· =

∫ ·

0
(vn − pδ(Y δ

r− − δ, r)) dLδ,mδ
n

r , Iδ,n· =

∫ ·

0
(vn − pδ(Y δ

r− + δ, r)) dLδ,mδ
n

r ,

and Lδ,y
· = 1

2δ

∫ ·
0 I{Y δ

r−=y}dr is the scaled occupation time of Y δ at level y. Here Y δ is, in its

natural filtration, the difference of two independent Poisson Y B,δ and Y S,δ with jump size δ

and intensity βδ; cf. Proposition 5.5(ii). For the integrands in I
δ,n

and Iδ,n, we expect that

vn−pδ(Y δ· ±δ, ·) L−→ vn−p0(Y 0· , ·), where Y 0 is a P0-Brownian motion. As for the integrators,

we will show both Lδ,mδ
n· and Lδ,mδ

n· converge weakly to Lmn· , which is the Brownian local time
at level mn := (a0n + a0n+1)/2. Then the weak convergence of both integrands and integrators
yields

I
δ,n
· and Iδ,n·

L−→ I0,n· :=

∫ ·

0
(vn − p0(Y 0

r , r)) dLmn
r , as δ ↓ 0.

Finally passing the previous convergence to conditional expectation, the two terms on the
right-hand side of (6.6) cancel each other in the limit.

Proposition 6.2. On the family of filtration (FY,δ
t )t∈[0,1],δ≥0, generated by (Y δ)δ≥0,

pδ(Y δ
· ± δ, ·) L−→ p0(Y 0

· , ·) on D[0, 1) as δ ↓ 0.

Proof. To simplify presentation, we will prove

(6.7) pδ(Y δ
· , ·) L−→ p0(Y 0

· , ·) as δ ↓ 0.

The assertions with ±δ can be proved by replacing Y δ by Y δ±δ. First, applying Itô’s formula
and utilizing (4.1) yield

pδ(Y δ
· , ·) = pδ(0, 0) +

∫ ·

0

1

δ

(
pδ(Y δ

r− + δ, r)− pδ(Y δ
r−, r)

)
dY

B,δ
r

+

∫ ·

0

1

δ

(
pδ(Y δ

r− − δ, r)− pδ(Y δ
r−, r)

)
dY

S,δ
r ,

(6.8)
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where Y
B,δ
· = Y B,δ

· −δβδ · and Y S,δ
· = Y S,δ

· −δβδ · are compensated jump processes. For pδ(0, 0)
on the right-hand side, the same argument in Lemma 6.1 yields limδ↓0 pδ(0, 0) = p0(0, 0). As
for the other two stochastic integrals, we will show that they converge weakly to

1√
2

∫ ·

0
∂yp

0(Y 0
r , r)dW

B
r and − 1√

2

∫ ·

0
∂yp

0(Y 0
r , r)dW

S
r , respectively,

where WB and W S are two independent Brownian motions. These estimates then imply the
right-hand side of (6.8) converges weakly to

p0(0, 0) +

∫ ·

0
∂yp

0(Y 0
r , r) dWr,

whereW =WB/
√
2−W S/

√
2 is another Brownian motion. Since p0 satisfies ∂tp

0+ 1
2∂

2
yyp

0 =
0, the previous process has the same law as p0(Y 0· , ·). Therefore (6.7) is confirmed.

To prove the aforementioned convergence of stochastic integrals, let us first derive the
convergence of (pδ(·+ δ, ·) − pδ(·, ·))/δ on R× [0, 1). To this end, it follows from (2.5) that

1

δ
(pδ(y + δ, t)− pδ(y, t))

=
1

δ

N∑
n=1

vn

[
Pδ,y+δ(Zδ

1−t ∈ [aδn, a
δ
n+1))− Pδ,y(Zδ

1−t ∈ [aδn, a
δ
n+1))

]

=
1

δ

N∑
n=1

vn

[
Pδ,y(Zδ

1−t = aδn − δ)− Pδ,y(Zδ
1−t = aδn+1 − δ)

]

=
1

δ

N∑
n=1

vn

[
P1,0

(
Z1
1−t =

aδn − δ − y

δ

)
− P1,0

(
Z1
1−t =

aδn+1 − δ − y

δ

)]

=

N∑
n=1

vn

⎡
⎣1
δ
e−

1−t
δ2 I∣∣

∣
∣

aδn−δ−y
δ

∣
∣
∣
∣

(
1− t

δ2

)
− 1

δ
e−

1−t
δ2 I∣∣

∣
∣

aδ
n+1

−δ−y

δ

∣
∣
∣
∣

(
1− t

δ2

)⎤⎦

→
N∑

n=1

vn

[
1√

2π(1− t)
exp

(
−(a0n − y)2

2(1 − t)

)
− 1√

2π(1 − t)
exp

(
−(a0n+1 − y)2

2(1− t)

)]

= ∂yp
0(y, t), as δ ↓ 0.

Here Z1
1−t is the difference of two independent Poisson random variables with common param-

eter (1 − t)βδ = (1 − t)(2δ2)−1 under P1,0. Hence the fourth identity above follows from the
probability distribution function of the Skellam distribution: P1,0(Z1

1−t = k) = e−2μI|k|(2μ),
where I|k|(·) is the modified Bessel function of the second kind and μ = (1− t)(2δ2)−1; cf. [20].
The convergence above is locally uniformly in R× [0, 1) according to [1, Theorem 2]. The last

identity above follows from taking y derivative to p0(y, t) =
∑N

n=1(Φ(
a0n+1−y√

1−t
)− Φ(a

0
n−y√
1−t

)); cf.

(6.1). Combining the previous locally uniform convergence of (pδ(· + δ, ·) − pδ(·, ·))/δ with

the weak convergence Y δ L−→ Y 0 in their natural filtration, we have from [5, Chapter 1,
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Theorem 5.5]

1

δ

(
pδ(Y δ

· + δ, ·) − pδ(Y δ
· , ·)
) L−→ ∂yp

0(Y 0
· , ·) on D[0, 1) as δ ↓ 0.

As for the integrators in (6.8), Y
B,δ L−→ WB/

√
2 and Y

S,δ L−→ W S/
√
2. Moreover, both

(Y
B,δ

)δ>0 and (Y
S,δ

)δ>0 are predictable uniform tight (P-UT), since 〈Y B,δ〉t = 〈Y S,δ〉t = t/2,
for any δ > 0; cf. [14, Chapter VI, Theorem 6.13(iii)]. Then combining weak convergence of
both integrands and integrators, we obtain from [14, Chapter VI, Theorem 6.22] that∫ ·

0

1

δ
(pδ(Y δ

r− + δ, r)− pδ(Y δ
r−, r)) dY

B,δ
r

L−→ 1√
2

∫ ·

0
∂yp

0(Y 0
r , r) dW

B
r on D[0, 1) as δ ↓ 0.

A similar weak convergence holds for the other stochastic integral in (6.8) as well. There-
fore the claimed weak convergence of stochastic integrals on the right-hand side of (6.8) is
confirmed.

Having studied the weak convergence of integrands in I
δ,n

and Iδ,n, let us switch our
attention to the integrators Lδ,mδ

n and Lδ,mδ
n .

Proposition 6.3. On the family of filtration (FY,δ
t )t∈[0,1],δ≥0, for any n ∈ {1, . . . , N},

Lδ,mδ
n

L−→ Lmn and Lδ,mδ
n

L−→ Lmn on D[0, 1] as δ ↓ 0.

Proof. For simplicity of presentation, we will prove

(6.9) Lδ,0 L−→ L0 as δ ↓ 0.

Since limδ↓0mδ
n = limδ↓0mδ

n = mn follows from (6.2), the statement of the proposition follows
from replacing Y δ by Y δ −mδ

n (or by Y δ −mδ
n) and Y

0 by Y 0 −mn in the rest of the proof.
To prove (6.9), applying Itô’s formula to |Y δ· | yields

|Y δ
· | =

∑
r≤·

(
|Y δ

r | − |Y δ
r−|
)

=

∫ ·

0

(
|Y δ

r− + δ| − |Y δ
r−|
)
d(Y B,δ

r /δ − βδr)

+

∫ ·

0

(
|Y δ

r− − δ| − |Y δ
r−|
)
d(Y S,δ

r /δ − βδr)

+

∫ ·

0

(
|Y δ

r− + δ|+ |Y δ
r− − δ| − 2|Y δ

r−|
)
βδdr

=

∫ ·

0

(
|Y δ

r− + δ| − |Y δ
r−|
)
dY

B,δ
r /δ +

∫ ·

0

(
|Y δ

r− − δ| − |Y δ
r−|
)
dY

S,δ
r /δ

+

∫ ·

0

1

δ
I{Y δ

r−=0}dr,

(6.10)

where the third identity follows from |y+ δ|+ |y− δ| − 2|y| = 2δ I{y=0} for any y ∈ R. On the
other hand, the Tanaka formula for Brownian motion is

(6.11) |Y 0
· | =

∫ ·

0
sgn(Y 0

r ) dY
0
r + 2L0

· ,

where sgn(x) = 1 when x > 0 or −1 when x ≤ 0.
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The convergence (6.9) is then confirmed by comparing both sides of (6.10) and (6.11). To

this end, since Y δ L−→ Y 0 and the absolute value is a continuous function, then |Y δ| L−→ |Y 0|
follows from [5, Chapter 1, Theorem 5.1]. Then (6.9) is confirmed as soon as we prove the
martingale term on the right-hand side of (6.10) converges weakly to the martingale in (6.11),
which we prove in the next result.

Lemma 6.4. LetM δ :=
∫ ·
0

(|Y δ
r− + δ| − |Y δ

r−|
)
dY

B,δ
r /δ+

∫ ·
0

(|Y δ
r− − δ| − |Y δ

r−|
)
dY

S,δ
r /δ and

M0 :=
∫ ·
0 sgn(Y

0
r ) dY

0
r . Then M δ L−→M0 on D[0, 1] as δ ↓ 0.

Proof. Define f δ(y) := 1
δ (|y + δ| − |y|) for y ∈ R and observe

f δ(y) =

⎧⎨
⎩

1, y ≥ 0,
2y/δ + 1, −δ < y < 0,
−1, y ≤ −δ.

It is clear that f δ converges to sgn(·) locally uniformly on R \ {0}. On the other hand,

Y δ L−→ Y 0 and the law of Y 0 is continuous. It then follows from [5, Chapter 1, Theorem 5.5]

that f δ(Y δ)
L−→ sgn(Y 0). As for the integrators (Y

B,δ
)δ>0, as we have seen in the proof

of Proposition 6.2, they converge weakly to WB/
√
2 and are P-UT. Then [14, Chapter VI,

Theorem 6.22] implies

∫ ·

0

(
|Y δ

r− + δ| − |Y δ
r−|
)
dY

B,δ
r /δ

L−→ 1√
2

∫ ·

0
sgn(Y 0

r ) dW
B
r .

A similar argument yields

∫ ·

0

(
|Y δ

r− − δ| − |Y δ
r−|
)
dY

S,δ
r /δ

L−→ − 1√
2

∫ ·

0
sgn(Y 0

r ) dW
S
r .

Here WB and W S are independent Brownian motions. Defining W =WB/
√
2−W S/

√
2, we

obtain from the previous two convergences that

M δ L−→
∫ ·

0
sgn(Y 0

r ) dWr, which has the same law as M0.

Propositions 6.2 and 6.3 combined yield the weak convergence of (I
δ,n

)δ>0 and (Iδ,n)δ>0.
Moreover the sequence of local time in Proposition 6.3 also converges in expectation.

Corollary 6.5. On the family of filtration (FY,δ
t )t∈[0,1],δ≥0, for any n ∈ {1, . . . , N},

I
δ,n

and Iδ,n
L−→ I0,n on D[0, 1) as δ ↓ 0.

Proof. The statement follows from combining Propositions 6.2 and 6.3 and appealing to
[14, Chapter VI, Theorem 6.22]. In order to apply the previous result, we need to show that

both (Lδ,mδ
n)δ>0 and (Lδ,mδ

n)δ>0 are P-UT. This property will be verified for (Lδ,mδ
n)δ>0. The

same argument works for (Lδ,mδ
n)δ>0 as well. To this end, since Lδ,mδ

n is a nondecreasing

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

274 CHENG LI AND HAO XING

process, (Lδ,mδ
n)δ>0 is P-UT as soon as (V ar(Lδ,mδ

n)1)δ>0 is tight, where V ar(X) is the vari-

ation of the process X, cf. [14, Chapter VI, 6.6]. Note V ar(Lδ,mδ
n)1 = Lδ,mδ

n
1 , since Lδ,mδ

n is

nondecreasing. Then the tightness of (V ar(Lδ,mδ
n)1)δ>0 is implied by Proposition 6.3.

Corollary 6.6. For any n ∈ {1, . . . , N} and t ∈ [0, 1],

lim
δ↓0

Eδ,0
[
Lδ,mδ

n
t

]
= lim

δ↓0
Eδ,0

[
Lδ,mδ

n
t

]
= E0,0 [Lmn

t ] .

Proof. For simplicity of presentation, we will prove limδ↓0 Eδ,0[Lδ,0
t ] = E0,0[L0

t ]. Then the
statement of the corollary follows from replacing Y δ

t by Y δ
t −mδ

n or Y δ
t −mδ

n in the rest of the
proof. Since the stochastic integrals in (6.10) are Pδ,0-martingales,

2Eδ,0[Lδ,0
t ] = Eδ,0[|Y δ

t |].

Since E[(Y δ
t )

2] = t for any δ > 0, (|Y δ
t |;Pδ,0)δ>0 is uniformly integrable. It then follows

from [12, Appendix, Proposition 2.3] and Law(|Y δ
t |) =⇒ Law(|Y 0

t |) that limδ↓0 Eδ,0[|Y δ
t |] =

E0,0[|Y 0
t |]. Therefore the claim follows since E0,0[|Y 0

t |] = 2E0,0[L0
t ]; cf. (6.11).

Collecting the previous results, the following result confirms (6.5).
Proposition 6.7. For the strategies (XB,δ,XS,δ;FI,δ)δ>0 constructed in section 5,

lim
δ↓0

Lδ(vn, 0, 0) = 0, n ∈ {1, . . . , N}.

Proof. Fix any ε ∈ (0, 1). Corollary 6.5 implies that Law(I
δ,n
1−ε;FY,δ) =⇒ Law(I0,n1−ε;F0).

Recall Law(ṽδ) =⇒ Law(ṽ) from Lemma 6.1. It then follows that

Law
(
I
δ,n
1−ε I{ṽδ=vn};FY,δ

)
=⇒ Law

(
I0,n1−ε I{ṽ=vn};F0

)
.

On the other hand, since N is finite, pδ is bounded uniformly in δ. Then there exists constant

C such that |Iδ,n1−ε| I{ṽδ=vn} ≤ CLδ,mδ
n

1−ε , where the expectation of the upper bound converges; cf.

Corollary 6.6. Therefore appealing to [12, Appendix, Theorem 1.2] and utilizing limδ↓0 Pδ(ṽδ =
vn) = P0(ṽ = vn) from Lemma 6.1, we obtain

Eδ,0
[
I
δ,n
1−ε | ṽδ = vn

]
=

Eδ,0
[
I
δ,n
1−ε I{ṽδ=vn}

]
Pδ(ṽδ = vn)

→
E0,0

[
I0,n1−ε I{ṽ=vn}

]
P0(ṽ = vn)

= E0,0
[
I0,n1−ε | ṽ = vn

]
,

(6.12)

as δ ↓ 0. On the other hand, since limδ↓0 Pδ(ṽδ) = P0(ṽ = vn) > 0, there exists a constant C
such that

Eδ,0
[
|Iδ,n1 − I

δ,n
1−ε|
∣∣∣ ṽδ = vn

]
≤ C Eδ,0

[
Lδ,mδ

n
1 −Lδ,mδ

n
1−ε

]
→ C E0,0

[Lmn
1 − Lmn

1−ε

]
,
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as δ ↓ 0, where the convergence follows from applying Corollary 6.6 twice. For the difference
of Brownian local time, Lévy’s result (cf. [15, Chapter 3, Theorem 6.17]) yields

E0,0
[Lmn

1 − Lmn
1−ε

]
= E0,−mn

[L0
1 − L0

1−ε

]
=

1

2
E0,−mn

[
sup
r≤1

Y 0
r − sup

r≤1−ε
Y 0
r

]
=

√
2

π
(1−√

1− ε),

where Y 0 is a P0-Brownian motion and E0,y[supr≤t Y
0
r ] =

√
2t/π + y is utilized to obtain the

third identity. Now the previous two estimates combined yield

(6.13) lim sup
δ↓0

Eδ,0
[
|Iδ,n1 − I

δ,n
1−ε|
∣∣∣ ṽδ = vn

]
≤ C(1−√

1− ε) for another constant C.

Estimates in (6.12) and (6.13) also hold when I
δ,n

is replaced by Iδ,n. These estimates
then yield

Eδ,0
[
I
δ,n
1 − Iδ,n1 | ṽδ = vn

]
≤ Eδ,0

[
I
δ,n
1−ε − Iδ,n1−ε | ṽδ = vn

]
+ Eδ,0

[
|Iδ,n1 − I

δ,n
1−ε|

∣∣∣ ṽδ = vn

]
+ Eδ,0

[
|Iδ,n1 − Iδ,n1−ε|

∣∣∣ ṽδ = vn

]
.

Sending δ ↓ 0 in the previous inequality, the first term on the right side vanishes in the limit,
and because both conditional expectations converge to the same limit, the limit superior of
both second and third terms are less than C(1 − √

1− ε). Now since ε is arbitrarily choose,

sending ε → 1 yields lim supδ↓0 Eδ,0[I
δ,n
1 − Iδ,n1 | ṽδ = vn] ≤ 0. A similar argument leads to

lim infδ↓0 Eδ,0[I
δ,n
1 − Iδ,n1 | ṽδ = vn] ≥ 0, which concludes the proof.

Finally the proof of Theorem 2.12 is concluded.
Proof of Theorem 2.12. It remains to verify Definition 2.11(iii). Fix vn and (y, t) = (0, 0)

throughout the proof. We have seen from Proposition 4.4 that V δ ≤ US,δ. On the other hand,
Proposition 4.2 yields J (XB,δ ,XS,δ) = U δ − Lδ. Therefore

sup
(XB ,XS) admissible

J δ(XB ,XS)−J δ(XB,δ,XS,δ) ≤ US,δ − U δ + Lδ.

Since limδ↓0 Lδ = 0 is proved in Proposition 6.7, it suffices to show limδ↓0 US,δ − U δ = 0. To
this end, from the definition of US,δ,

(6.14) US,δ(0, 0) − U δ(0, 0) = (U δ(−δ, 0) − U δ(0, 0)) I{0≤mδ
n} = δ(vn − pδ(0, 0))I{0≤mδ

n}.

The second identity above follows from (4.12), which reads U δ(y, t) − U δ(y − 1, t) + δ(vn −
pδ(y, t)) = 0 for y ≤ mδ

n when the order size is δ. Therefore limδ↓0 US,δ −U δ = 0 is confirmed
after sending δ ↓ 0 in (6.14).

Appendix A. Viscosity solutions. Proposition 3.1 will be proved in this section. To
simplify notation, δ = 1 and ṽ = vn are fixed throughout this section. First let us recall the
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definition of the (discontinuous) viscosity solution to (2.8). Given a locally bounded function11

v : Z × [0, 1] → R, its upper-semicontinuous envelope v∗ and lower-semicontinuous envelope
v∗ are defined as

(A.1) v∗(y, t) := lim sup
t′→t

v(y, t′), v∗(y, t) := lim inf
t′→t

v(y, t′), (y, t) ∈ Z× [0, 1].

Definition A.1. Let v : Z× [0, 1] → R be locally bounded.
(i) v is a (discontinuous) viscosity subsolution of (2.8) if

−ϕt(y, t)−H(y, t, v∗) ≤ 0

for all y ∈ Z t ∈ [0, 1) and any function ϕ : Z× [0, 1] → R continuously differentiable
in the second variable such that (y, t) is a maximum point of v∗ − ϕ.

(ii) v is a (discontinuous) viscosity supersolution of (2.8) if

−ϕt(y, t)−H(y, t, v∗) ≥ 0

for all y ∈ Z, t ∈ [0, 1) and any function ϕ : Z× [0, 1] → R continuously differentiable
in the second variable such that (y, t) is a minimum point of v∗ − ϕ.

(iii) We say that v is a (discontinuous) viscosity solution of (2.8) if it is both subsolution
and supersolution.

For the insider’s optimization problem, let us recall the dynamic programming princi-
ple (cf., e.g., [19, Remark 3.3.3]). Given an admissible strategy (XB ,XS), any [t, 1]-valued
stopping time τ , and the fundamental value vn, denote the associated profit by

In
t,τ :=

∫ τ

t
(vn − p(Yr− + 1, r))dXB,B

r +

∫ τ

t
(vn − p(Yr− + 2, r))dXB,T

r

+

∫ τ

t
(vn − p(Yr−, r))dXB,S

r −
∫ τ

t
(vn − p(Yr− − 1, r))dXS,S

r

−
∫ τ

t
(vn − p(Yr− − 2, r))dXS,T

r −
∫ τ

t
(vn − p(Yr−, r))dXS,B

r ,

where Y = Z +XB −XS . Then the dynamic programming principle reads as follows:
DPP (i) For any admissible strategy (XB ,XS) and any [t, 1]-valued stopping time τ ,

V (y, t) ≥ Ey,t[V (τ, Yτ ) + In
t,τ ].

DPP (ii) For any ε > 0, there exists an admissible strategy (XB ,XS) such that for all
[t, 1]-valued stopping time τ ,

V (y, t)− ε ≤ Ey,t[V (τ, Yτ ) + In
t,τ ].

11Since the state space Z is discrete, v is locally bounded if v(y, ·) is bounded in any bounded neighborhood
of t and any fixed y ∈ Z.
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The viscosity solution property of the value function V follows from the dynamic program-
ming principle and standard arguments in viscosity solutions (see, e.g., [19, Propositions 4.3.1
and 4.3.2]12). Therefore Proposition 3.1(i) is verified.

Remark A.2. The proof of DPP (ii) utilizes the measurable selection theorem. To avoid
this technical result, one could employ the weak dynamic programming principle in [6]. For
the insider’s optimization problem, the weak dynamic programming principle reads as follows:

WDPP (i) For any [t, 1]-valued stopping time τ ,

V (y, t) ≤ sup
(XB ,XS)

Ey,t
[
V ∗(τ, Yτ ) + In

t,τ

]
.

WDPP (ii) For any [t, 1]-valued stopping time τ and any upper-semicontinuous function
ϕ on Z× [0, 1] such that V ≥ ϕ, then

V (y, t) ≥ sup
(XB ,XS)

Ey,t
[
ϕ(τ, Yτ ) + In

t,τ

]
.

Conditions A1, A2, and A3 from Assumption A in [6] are clearly satisfied in the current
context. Condition A4 from Assumption A can be verified following the same argument in [6,
Proposition 5.4]. Therefore the aforementioned weak dynamic programming principle holds.
Hence the value function is a viscosity solution to (2.8) following from arguments similar to
[6, section 5.2].

Now the proof of Proposition 3.1(ii) is presented. To prove (vn, y, t, V ) ∈ dom(H), observe
from the viscosity supersolution property of V that H(vn, y, t, V∗) < ∞, hence (vn, y, t, V∗) ∈
dom(H). On the other hand, for any integrable intensities θi,j, i ∈ {B,S} and j ∈ {B,T, S},
due to Definition 2.2(iv), one can show Ey,t[In

t,1] is a continuous function in t. As a supremum
of a family of continuous function (cf. (2.7)), V is then lower-semicontinuous in t. Therefore
V∗ ≡ V , which implies (vn, y, t, V ) ∈ dom(H) for any vn, (y, t) ∈ Z × [0, 1). It then follows
from (3.1) and (3.2) that

(A.2) V (y−1, t)+p(y−1, t)−vn ≤ V (y, t) ≤ V (y−1, t)+p(y, t)−vn for any (y, t) ∈ Z×[0, 1).

Taking limit supremum in t in the previous inequalities and utilizing the continuity of t �→
p(y, t), it follows that the previous inequalities still hold when V is replaced by V ∗, which
means (vn, y, t, V

∗) ∈ dom(H) for any vn, (y, t) ∈ Z × [0, 1). As a result, H(vn, y, t, V∗) and
H(vn, y, t, V

∗) have the reduced form (3.3), where V is replaced by V∗ and V ∗, respectively.
Hence Definition A.1 implies that V is a viscosity solution of (3.4).

To prove Proposition 3.1(iii) and (iv), let us first derive a comparison result for (3.4). The
function v : Z× [0, 1] → R has at most polynomial growth in its first variable if there exist C
and n such that |v(y, t)| ≤ C(1 + |y|n) for any (y, t) ∈ Z× [0, 1].

Lemma A.3. Assume that u (resp., v) has at most polynomial growth and that it is upper-
semicontinuous viscosity subsolution (resp., lower-semicontinuous supersolution) to (3.4). If
u(·, 1) ≤ v(·, 1), then u ≤ v in Z× [0, 1).

12Therein the stopping time τm can be chosen as the first jump time of Y , where Ytm = y for a sequence
(tm)m → t.
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Assume this comparison result for a moment. Inequality (A.2) and Assumption 2.5 com-
bined imply that V is of at most polynomial growth. Then Lemma A.3 and (A.1) combined
yield V∗ ≤ V ∗ ≤ V∗, which implies the continuity of t �→ V (y, t), and hence Proposition 3.1(iii)
is verified. On the other hand, one can prove Ṽ (y, t) := Ey,t [V (Z1, 1)] is of at most polynomial
growth and is another viscosity solution to (3.4).13 Then Lemma A.3 yields

V (y, t) = Ṽ (y, t) = Ey,t [V (Z1, 1)] ,

which confirms Proposition 3.1(iv) via the Markov property of Z.
Proof of Lemma A.3. For λ > 0, define ũ = eλtu and ṽ = eλtv. One can check ũ (resp., ṽ)

is a viscosity subsolution (resp., supersolution) to

(A.3) −wt + λw − (w(y + 1, t)− 2w(y, t) + w(y − 1, t)) β = 0.

Since the comparison result for (A.3) implies the comparison result for (2.8), it suffices to
consider u (resp., v) as the viscosity subsolution (resp., supersolution) of (A.3).

Let C and n be constants such that |u|, |v| ≤ C(1+ |y|n) on Z× [0, 1]. Consider ψ(y, t) =
e−αt(y2n + C̃) for some constants α and C̃. It follows that

−ψt + λψ + (ψ(y + 1, t)− 2ψ(y, t) + ψ(y − 1, t)) β

> e−αt
(
(α+ λ)(y2n + C̃)− 2βy2n

)
> 0

when α+ λ > 2β. Choosing α satisfying the previous inequality, then v + ξψ, for any ξ > 0,
is a viscosity supersolution to (A.3). Once we show u ≤ v + ξψ, the statement of the lemma
then follows after sending ξ ↓ 0.

Since both u and v have at most linear growth

(A.4) lim
|y|→∞

(u− v − ξψ)(y, t) = −∞.

Replacing v by v + ξψ, we can assume that u (resp., v) is a viscosity subsolution (resp.,
supersolution) to (A.3) and

sup
Z×[0,1]

(u− v) = sup
O×[0,1]

(u− v) for some compact set O ⊂ Z.

Then u ≤ v follows from the standard argument in viscosity solutions (cf., e.g., [19, Theo-
rem 4.4.4]), which we briefly recall below.

Assume M := supZ×[0,1](u − v) = supO×[0,1](u − v) > 0 and the maximum is attained at
(x, t) ∈ O × [0, 1]. For any ε > 0, define

Φε(x, y, t, s) := u(x, t)− v(y, s)− φε(x, y, t, s),

where φε(x, y, t, s) :=
1
ε [|x− y|2 + |t− s|2]. The upper-semicontinuous function Φε attains its

maximum, denoted by Mε, at (xε, yε, tε, sε). One can show, using the same argument as in
[19, Theorem 4.4.4],

Mε →M and (xε, yε, tε, sε) → (x, x, t, t) ∈ O2 × [0, 1]2 as ε ↓ 0.

13Write Ṽ (y, t) = E0 [V (Z1−t + y, 1)]. One can utilize the Markov property of Z to show that Ṽ is continuous
differentiable and Ṽ is a classical solution to (3.4).
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Here (xε, yε, tε, sε) ∈ O2 × [0, 1]2 for sufficiently small ε. Now observe that
• (xε, tε) is a local maximum of (x, t) �→ u(x, t)− φε(x, yε, t, sε);
• (yε, sε) is a local minimum of (y, t) �→ v(y, s) + φε(xε, y, tε, s).

Then the viscosity subsolution property of u and the supersolution property of v imply, re-
spectively,

− 2

ε
(tε − sε) + λu(xε, tε)− (u(xε + 1, tε)− 2u(xε, tε) + u(xε, tε)) β ≤ 0,

− 2

ε
(tε − sε) + λv(yε, sε)− (u(yε + 1, sε)− 2v(yε, sε) + v(yε, sε)) β ≥ 0.

Taking difference of the previous inequalities yields

(λ+ 2β)(u(xε, tε)− v(yε, sε))

≤ β (u(xε + 1, tε) + u(xε − 1, tε))− β (v(yε + 1, sε) + v(yε − 1, sε)) .

Sending ε ↓ 0 on both sides, we obtain

(λ+ 2β)M = (λ+ 2β)u(x, t)

≤ β
(
u(x+ 1, t)− v(x+ 1, t)

)
+ β

(
u(x− 1, t)− v(x− 1, t)

) ≤ 2βM,

which contradicts with λM > 0.
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[10] L. Campi and U. Çetin, Insider trading in an equilibrium model with default: A passage from reduced-

form to structural modelling, Finance Stoch., 11 (2007), pp. 591–602.
[11] K.H. Cho, Continuous auctions and insider trading: Uniqueness and risk aversion, Finance Stoch., 7

(2003), pp. 47–71.
[12] S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, Probab. Math.

Statist., John Wiley & Sons, New York, 1986.

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

280 CHENG LI AND HAO XING

[13] L.R. Glosten and P.R. Milgrom, Bid, ask, and transaction prices in a specialist market with hetero-
geneously informed traders, J. Financ. Econ., 14 (1985), pp. 71–100.

[14] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd ed., Grundlehren Math.
Wiss. 2888, Springer-Verlag, Berlin, 2003.

[15] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1988.
[16] A.S. Kyle, Continuous auctions and insider trading, Econometrica, 53 (1985), pp. 1315–1335.
[17] H. Lou, Existence and nonexistence results of an optimal control problem by using relaxed control, SIAM

J. Control Optim., 46 (2007), pp. 1923–1941.
[18] R. Mansuy and M. Yor, Random Times and Enlargements of Filtrations in a Brownian Setting, Lecture

Notes in Math. 1873, Springer-Verlag, Berlin, 2006.
[19] H. Pham, Continuous-Time Stochastic Control and Optimization with Financial Applications, Stoch.

Model. Appl. Probab. 61, Springer-Verlag, Berlin, 2009.
[20] J.G. Skellam, The frequency distribution of the difference between two Poisson variates belonging to

different populations, J. Roy. Statist. Soc. (N.S.), 109 (1946), p. 296.
[21] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Xing_Asymptotic Glosten-Milgrom _2016_cover
	Xing_Asymptotic Glosten-Milgrom _2016_author


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


