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Abstract 
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1. INTRODUCTION

Benford’s Law states that for commonly observed data, regularities should occur in the

First Significant Digits (FSDs). The FSD of a number x is the leading digit of x in the base

10 numbering, for instance

FSD of π = 3 since π = 3︸︷︷︸
FSD

.14159 . . .

In its strong form, Benford’s law says for the FSDs {1, . . . ,9}, the frequency of each digit

d ∈ {1, . . . ,9} should be approximately log10 (1+1/d). Many papers have detailed oc-

currences of Benford’s Law (see Benford (1938); Berger and Hill (2007); Giles (2007)).

A few papers have also categorized properties characterizing distributions satisfying Ben-

ford’s Law (see Boyle (1994); Hill (1995b); Allaart (1997)), or found distribution families

which satisfy it for particular parameter values (see Leemis et al. (2000); Scott and Fasli

(2001)). Unfortunately, no general principle has been found to explain the Benford phe-

nomenon, nor provide general criteria regarding when Benford’s Law holds.

Benford’s Law has also been used to test for irregularities present in a variety of contexts.

Examples of using Benford’s law for fraud and error detection include tax fraud (Nigrini

1996), reliability of survey data (Judge and Schechter 2009), environmental law compliance

(Marchi and Hamilton 2006) and campaign finance (Cho and Gaines 2007). This paper first

focuses on the testing issues that arise when assessing conformance with Benford’s Law,

then contributes towards general characterizations of the Law, in particular providing a rate

of convergence to the law under an appropriate transformation.

This paper focuses on two testing issues. The first is the suitability of existing tests used

in the literature. Such tests are too conservative and consequently Section 2 derives new

asymptotically valid test values which allow for more powerful tests and evaluates their

small sample properties. Measures of fit have also been used as “rules of thumb” to check

correspondence with Benford’s Law. Section 2 also provides a new interpretation for such
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measures and derives critical values for hypothesis testing. The second testing issue is the

application of tests on data which inherently do not satisfy the law (for a discussion, see

Durtschi et al. (2004)). Clearly, rejection of tests for Benford on data which inherently fails

the law will not uncover fraud or error. Section 3 develops a result that the transformation of

a random variable to a sufficiently high power satisfies Benford within arbitrary precision,

allowing application of the above tests to any sample. Section 4 answers how quickly a

random variable converges to Benford, provides a discussion of the main results, applies

them to common distribution families and concludes.

2. TESTING AND BENFORD’S LAW

One of the most popular applications of Benford’s Law is fraud detection and data quality

testing. A few tests have been constructed, and new tests recently proposed, but at present

it appears that properties of the estimators themselves are not well understood. In fact,

asymptotic results indicate that the test values used in published papers can be made more

powerful at the significance levels used (for example Cho and Gaines 2007; Giles 2007). In

addition, such tests appear rather ad hoc and the power of such tests appears to be unexam-

ined. I now discuss tests in use, provide asymptotically valid test values, and explore their

small sample properties finding that the asymptotic test values are approximately valid for

sample sizes over 80.

2.1. Popular Tests in Use. Pearson’s χ2 test is a natural candidate for testing whether a

sample satisfies Benford’s Law, however, due to its low power for even moderate sample

sizes it is often unsuitable. Consequently, other tests have been devised, and commonly

used tests for conformance with Benford’s Law include the Kolmogorov-Smirnov test and

the Kuiper test. More recently Leemis et al. (2000) have introduced the statistic m (max)

m≡ max
d∈{1,...,9}

|Pr(X has FSD = d)− log10 (1+1/d)|
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Similarly, Cho and Gaines (2007) propose the d (distance) statistic.

d ≡

[
∑

d∈{1,...,9}
[Pr(X has FSD = d)− log10 (1+1/d)]2

]1/2

In both cases the sample analogue of Pr(X has FSD = d) is used for evaluation, although

no test values are known for these statistics.

2.2. Issues with current tests in use: Kolmogorov-Smirnov and Kuiper. The χ2, Kolmogorov-

Smirnov (DN) and Kuiper (VN) tests for a sample of size N appear to be the most common

tests in use. In fact, latter two have a “correction factor” introduced by Stephens (1970)

which when applied to such tests produce fairly accurate test statistics regardless of sample

size. Denote these tests with the correction factor applied as D∗N and V ∗N , respectively. For

instance, for the modified Kuiper test V ∗N presented in Stephens, a 99% confidence set is

produced by all samples {Xi} such that V ∗N < 2.001. However, such tests are based on the

null hypothesis of a continuous distribution, and are generally conservative for testing dis-

crete distributions as discussed by Noether (1963). A simple example where the sample is

drawn from a Bernoulli distribution with p = 1/2 (fair coin tosses) in the supplemental ap-

pendix shows that a V ∗N test at 99% significance generates a .99994% critical region. Thus

values for currents tests can be extremely conservative in rejecting the null.

The Stephens (1970) test values for the modified Kuiper (D∗N) and Kolmogorov-Smirnov

(V ∗N) tests at commonly used significance levels are reported in the first column of Table 1.

New asymptotically valid test values under the specific null hypothesis that Benford’s Law

holds are in the second column of Table 1. These test values are derived from an application

of the Central Limit Theorem to a multivariate Bernoulli variable that corresponds to a

random variable which exactly satisfies Benford’s Law. Inspection shows that in fact the

test values based on the assumption of a continuous underlying distribution are too high,

and thus too conservative. One appropriate test is that of Conover (1972), but is sufficiently

complex and computationally expensive that practitioners have adopted the above tests.
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Furthermore, the test statistics in Table 1 allow easy computation of the relevant test and

evaluation of published literature.

TABLE 1. Continuous vs Benford Specific Test Values

Continuous Benford Specific
Test Statistic α = .10 α = .05 α = .01 α = .10 α = .05 α = .01
Kuiper Test (V ∗N) 1.620 1.747 2.001 1.191 1.321 1.579
KS Test (D∗N) 1.224 1.358 1.628 1.012 1.148 1.420

Considering an example from the Benford literature, Giles (2007) looks for deviations

from Benford’s Law in certain eBay auctions to detect for collusion by buyers or interfer-

ence by sellers. Giles uses the Kuiper Test for continuous distributions (N = 1161) as in

Table 1 with a test value of 1.592 and cannot reject conformance to Benford at any level.

However, we see that the Benford specific tests reject conformance to Benford at α = .01.

Marchi and Hamilton (2006) examine discrepancies in air pollution reporting by testing

for conformance to Benford using the Kolmogorov-Smirnov test. In this case, the authors

point out potential problems with their test values, and their results would change using the

Benford specific α = .01 test level.

2.3. The m and d tests and critical values. As far as the m and d tests are concerned, no

test values have been reported for use which address the above issues. In order to derive

asymptotic test statistics, define the modified test statistics m∗N and d∗N given in Equations

(2.1-2.2), where N is the number of observations.

m∗N ≡
√

N · max
d∈{1,...,9}

|Pr(X has FSD = d)− log10 (1+1/d)|(2.1)

d∗N ≡
√

N ·

[
∑

d∈{1,...,9}
[Pr(X has FSD = d)− log10 (1+1/d)]2

]1/2

(2.2)

The reason for the appearance of the
√

N term is as follows. The true FSD frequencies

Pr(X has FSD = d) correspond to Bernoulli parameters as do the Benford log10 (1+1/d)
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terms. Letting 1FSD=d(X) be the indicator that X has a FSD equal to d, the random vector

TN ≡
[

1FSD=1(X)− log10 (1+1/1) . . . 1FSD=8(X)− log10 (1+1/8)
]

is iid and by the Central Limit Theorem,
√

NTN converges in distribution to a multivariate

normal, say N (0,Σ). Both m∗N and d∗N can be formed as continuous mappings of
√

NTN

in which the
√

N term can be factored out since the functions max and
(
∑x2

i
)1/2 are ho-

mogeneous of degree one. The end result is both m∗N and d∗N converge in distribution to

a continuous function of a N (0,Σ) variable, where Σ can be computed from TN . Reject-

ing the null hypothesis that Benford’s Law holds when m∗N and d∗N are large provides a

consistent test statistic (e.g. Lemma 14.15 of van der Vaart (2000)). Rejection regions for

common test levels are provided in Table 2. The new d∗ test values confirm the conclusions

of Cho and Gaines (2007) who test political contribution data, broadly finding that the data

does not fit Benford’s Law.

TABLE 2. m∗ and d∗ Test Values

Asymptotic Test Level
Test Statistic α = .10 α = .05 α = .01
Max Test (m∗N) 0.851 0.967 1.212
Distance Test (d∗N) 1.212 1.330 1.569

2.4. Test Performance for Small Samples. Naturally, the question arises of how good

the critical values reported in Tables 1 and 2 are in practice for small samples. Figure

1 displays computed test values for a level α = .01 test for all four statistics, based on

106 draws for each sample size. The Figure contains numerical test values in sample size

increments of 5, and horizontally superimposed are the asymptotic test values for each test.

The small sample performance is fairly good in that the simulated test statistics are close

to the asymptotic values, especially for sample sizes over 80. This shows that the critical

regions in Table 2 are reasonable for small as well as large samples.
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FIGURE 1. m∗N and d∗N Test Values for Small Samples

(A) Kuiper and KS Tests (B) Max and Distance Tests

In conclusion, this section has given more powerful tests for the Kolmogorov-Smirnov

and Kuiper statistics as well as valid test statistics for the m and d statistics used in the Ben-

ford literature. However, when these tests are used, they are based on the null hypothesis

that in the absence of fraud or error, Benford’s Law holds. We address the ramifications of

this hypothesis in the next section.

3. ENSURING CONFORMITY TO BENFORD’S LAW

The general approach of using Benford’s Law for fraud detection is to compare FSD fre-

quencies of sample data with the Law, as do the tests discussed above. Of course, whether

Benford’s Law holds for a particular sample depends upon the underlying distribution. One

of the obstacles in using this approach is that often the underlying data distribution does not

satisfy Benford’s Law, regardless of data quality (see Table 3). The results in this section

ameliorate this issue by developing a transformation (Theorem 1) that may be applied to
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data to induce compliance with Benford’s Law. The implications of Theorem 1 are further

developed in the next Section.

Before applying tests to a random variable X , one should first expect that X approxi-

mately satisfies Benford’s Law. This idea is formalized in the following Definition.

Definition. A random variable X ε−satisfies Benford’s Law if for all FSDs d

|Pr(X has FSD = d)− log10(1+1/d)|< ε

Applying the tests in Section 2 implicitly assumes that the sample should ε−satisfy Ben-

ford’s Law. This is best illustrated with an example. Consider a sample composed of two

sub-samples, H and C and hypothesize H comes from an “Honest” data source while C

comes from “Cheaters.” The underlying assumption for fraud detection is that H is closer

to satisfying Benford than C. But to apply the tests of Section 2, a requirement is that H is

approximately Benford, i.e. ε−satisfies Benford’s Law. If the sample could be transformed

to satisfy the Law so that H satisfies the Law while C fails, the transformation would be

a basis for detecting anomalies in C. The main result shown in this Section, Theorem 1,

provides such a means of transforming data.

Theorem 1 (Exponential-Scale Families). Let X be a random variable with continuous pdf

and fix ε > 0. There is an α∗ such that for all α ≥ α∗:

(X/σ)α
ε− satisfies Benford’s Law for all σ .

Proof. Developed below. �

In light of the above discussion if one is confident about the distribution of X (say, using

a Kernel Density Estimate), one strategy is to apply Theorem 1 to transform X to ε−satisfy

Benford’s Law and then perform tests. To be concrete, suppose we have a random sample

{Xi} and feel confident that (X−µ)/σ ∼ N (0,1), perhaps by estimating µ and σ from
7



the sample. There are several values of µ and σ where one should not expect that the

sample to follow Benford’s Law. However, fix any ε > 0 and from Theorem 1 we know

there is an α(ε) such that for Y ∼ ((X−µ)/σ)α(ε), the FSD frequencies observed in Y

should be within ε of Benford’s Law. A sufficiently large α (ε) may be calculated from

the distribution of X using the techniques below. This Section proceeds with intermediate

steps leading to a proof of Theorem 1.

3.1. Approximation by step functions. The following definition has an important relation-

ship with Benford’s Law, as will be shown shortly.

Definition. Let Y be a random variable with pdf f . Fix ε > 0 then Y can be ε−approximated

by integer step functions, denoted Y ∈ I (ε) if there exist {ci} s.t.∣∣∣∣∫A
f (y)dy−

∫
A
∑ci1[i,i+1)(y)dy

∣∣∣∣≤ ε for all measurable A

For example, by taking ci ≡ 0 for any random variable X , X ∈ I(1). Although the def-

inition of I(ε) is simple, any continuous random variable X for which log10 X ∈ I(ε) “ap-

proximately” satisfies Benford’s Law. The formal statement of this fact is Lemma 1.

Lemma 1. Suppose X is a positive random variable with continuous pdf. If log10 X ∈ I (ε)

then X ε−satisfies Benford’s Law.

Proof. See Appendix. �

This lemma provides a check of whether a random variable X ε-satisfies Benford’s law

by checking whether log10 X ∈ I (ε). Since Lemma 1 is used throughout the rest of the

paper, some remarks on its hypotheses are in order. First, the assumption of a continuous

pdf is mild and examination of the proofs shows it can be weakened, but is maintained for

brevity. Second, the restriction to positive random variables is not an imposition since the

First Significant Digits of X are identical to those of |X |.
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3.2. Characterization of I (ε). The simplicity of the definition of I(ε) allows for a precise

characterization of the least ε s.t. X ∈ I(ε). By definition, X ∈ I(ε) requires that

(3.1) sup
A measurable

∣∣∣∣∫A
f (x)dx−

∫
A
∑ci1[i,i+1)(x)dx

∣∣∣∣≤ ε,

where f is the pdf of X . In solving for the best choice of {ci} it suffices to consider each

interval [i, i+ 1] individually. The solution to these individual problems is quite simple in

that the optimal ci turn out to be the gross estimates ci≡
∫
[i,i+1] f (x)dx. These ci are optimal

because of the “maxi-min” nature of Equation (3.1): the optimal ci must minimize integrals

of the form |
∫

A[ f (y)− ci]+dy| and |
∫

A[ f (y)− ci]−dy|. This idea leads to a proof of Lemma

2.

Lemma 2. Suppose
∫
| f (x)|dx < ∞. Then c∗ ≡

∫
[0,1] f (y)dy solves

min
c

sup
A measurable

∣∣∣∣∫
[0,1]∩A

[ f (x)− c]dx
∣∣∣∣

and the minimum attained is (1/2)
∫
[0,1] | f (x)− c∗|dx.

Proof. See Appendix. �

One consequence of Lemma 2 is that for random variables Xk with pdfs of the form

f (x) = k1[0, 1
k ]

, Xk ∈ I(1− 1
k ) so considering large k, nothing can be said about X ∈ I(ε)

for ε < 1 without more information about the distribution of X . Another consequence is

that choosing the optimal {ci} allows computation of the least ε such that X ∈ I(ε). This

characterizes the sets I(ε) completely, stated as Theorem 2.

Theorem 2. Let X be a random variable with pdf f . The least ε s.t. X ∈ I(ε) is given by

ε ≡ 1
2 ∑

i

∫
[i,i+1]

| f (x)−
∫
[i,i+1]

f (t)dt|dx(3.2)

Proof. Application of Lemma 2 on each interval [i, i+1]. �
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Paired with Lemma 1 this forms a method to test for conformance with Benford’s Law

within a parametric family using analytic methods: for a random variable X with param-

eter θ , solve Equation (3.2) for log10 X , yielding ε (θ). Lemma 1 implies that X will

ε (θ)−satisfy Benford’s Law, thus providing an analytical tool to find parameters θ which

induce Benford’s Law. The next section applies this result.

3.3. Location-Scale Families and I(ε). By virtue of the fact Y ∈ I(ε) means Y can be

approximated by integer step functions, integer shifts and scaling of Y preserve this ap-

proximation. In particular for integers a,b, let Z ≡ aY +b and then Z can be approximated

by translating the {ci} used to approximate Y . This is summarized as Lemma 3.

Lemma 3. Y ∈ I(ε) iff aY +b ∈ I(ε) for all integers a,b with a 6= 0.

Proof. See Supplemental Appendix. �

The last step towards proving Theorem 1 is a method of transforming any random vari-

able within its mean-scale family so that the transformed variable is in I(ε) for arbitrary ε .

This result is given in Theorem 3 and is followed by a sketch of the proof.

Theorem 3 (Mean-Scale Approximation). Let Y be a random variable with continuous

pdf. For each ε > 0 there exists a σ(ε) s.t. σ ≤ σ(ε) implies (Y −µ)/σ ∈ I(ε) for all µ .

Proof. See Appendix for a full proof, a sketch follows. To show that Y/σ ∈ I(ε) consider

σ as a transformation that flattens out the pdf of Y/σ as σ −→ 0. Once Y/σ is sufficiently

flattened out, approximate its pdf via constants {ci} which correspond to appropriately

chosen elements of a Riemann sum, giving an ε approximation to the pdf. In order to show

(Y −µ)/σ =Y/σ−µ/σ ∈ I(ε) appeal to Lemma 3 to argue that without loss of generality

µ/σ ∈ [0,1]. Finally, show that smoothing Y further by dropping σ to σ/2 is enough that

the improved approximation absorbs the µ/σ term. �
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3.4. Proof of Theorem 1. With the above results, it is a simple step to derive Theorem 1.

Let X be a positive random variable with continuous pdf. Fix ε and note

log10 (X/σ)α = (log10 X− log10 σ)/(1/α) .

From Theorem 3, for all sufficiently large α , log10 (X/σ)α ∈ I(ε) for all σ > 0. The result

then follows from an application of Lemma 1.

4. DISCUSSION: EXPONENTIAL-SCALE FAMILIES

This section discusses additional implications of Theorem 1, restated here:

Theorem. Let X be a random variable with continuous pdf and fix ε > 0. There is an α∗

such that for all α ≥ α∗, (X/σ)α
ε− satisfies Benford’s Law for all σ .

Another way of stating this result is that the transformation g(x)= xα induces conformity

to Benford’s Law for all sufficiently large α . More surprising is that this transformation

simultaneously induces approximate scale invariance, in that (X/σ)α satisfies Benford’s

Law for any scaling parameter σ . Scale invariance is a fundamental property that distri-

butions satisfying Benford’s Law should have (see Raimi 1976; Hill 1995a for definitions

and results). Earlier work has detailed experimental evidence of high exponents of random

variables to conform to Benford’s Law independent of scale.1

Raising a random variable Y to the power α has the effect of leveling out the pdf of

log10Y α . Looking back to Theorem 2, this has the effect of scaling the
∫
[i,i+1] | f (x)−∫

[i,i+1] f (t)dt|dx terms in Equation (3.2) to
∫
[i,i+1] | f (x/α)/α−

∫
[i,i+1] f (t/α)/αdt|dx thereby

improving the approximation. More generally, any transformation g which has this effect

on log10Y will eventually make g(Y ) ε−satisfy Benford’s Law. However, the particular

transformation g(x) = xα is of interest due to its simplicity and relevance for common

1For instance, Scott and Fasli (2001) find the Log-Normal distribution satisfies the Law for σ & 1.2).
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distributions. FSD frequencies of common distributions are contrasted with the same dis-

tributions raised to the tenth power in Table 3.

TABLE 3. FSD Frequencies

First Significant Digit
1 2 3 4 5 6 7 8 9

Benford’s Law .301 .176 .125 .097 .079 .067 .058 .051 .046
Normal(0,1) .359 .129 .087 .081 .077 .073 .069 .064 .060
Uniform(0,1) .111 .111 .111 .111 .111 .111 .111 .111 .111
Log-Normal(0,1) .308 .170 .119 .094 .079 .068 .060 .053 .048
Exponential(1) .330 .174 .113 .086 .072 .064 .058 .053 .049
Pareto(1,1) .556 .185 .093 .056 .037 .026 .020 .015 .012
Normal(0,1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Uniform(0,1)10 .277 .171 .126 .100 .084 .072 .063 .056 .051
Log-Normal(0,1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Exponential(1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Pareto(1,1)10 .326 .180 .123 .093 .075 .062 .053 .046 .041
Sample Size of 107 using the default pseudo-random generator in R.

Table 3 shows a striking convergence of FSDs to Benford’s Law following the transfor-

mation of being raised to the tenth power. Table 4 highlights the conformance to Benford’s

Law induced by the transformation x10. The Max Deviation column of Table 4 lists the

maximum FSD frequency deviation from the Benford prediction for each row, showing

that even the Uniform(0,1)10 distribution obeys Benford’s Law reasonably well. The The-

orem 2 Bound column lists the Upper Bound on deviation from Benford’s Law given by

Theorem 2. Although this bound is not terribly good for the first column of distributions in

Table 3, they are reasonable in the second column after the transformation x10 is applied.

TABLE 4. Conformance with Benford’s Law (Sample Size: 107)

Max Theorem 2 Max Theorem 2
Distribution Deviation Bound Distribution Deviation Bound
Normal(0,1) .058 .673 Normal(0,1)10 .000 .056
Uniform(0,1) .190 .538 Uniform(0,1)10 .024 .058
Log-Normal(0,1) .007 .547 Log-Normal(0,1)10 .000 .046
Exponential(1) .029 .520 Exponential(1)10 .000 .042
Pareto(1,1) .255 .538 Pareto(1,1)10 .025 .058

12



We have just seen that the transformation g(x) = xα ensures reasonable conformance

to Benford’s Law for α = 10. More generally, how fast do random variables conform to

Benford’s Law as α increases? Here I first show that under mild conditions, a rate of con-

vergence of O(1/ log10 α) to Benford’s Law holds. I then consider families of distributions

which are closed under the transformation g(x) = xα , i.e. if X is the initial random vari-

able then Xα is again in the distributional family. These considerations allow us to connect

conformance to Benford’s Law with parameter values for some common distributions.

4.1. A Rate of Convergence to Benford’s Law. This paper has shown that as α increases,

Xα tends to satisfy Benford’s Law. However, for statistical testing of Benford’s Law, we

need to pick α so that Xα satisfies the Law within, say ε = .01. How large does α need

to be? In other words, if ε(α) denotes the least ε such that Xα ε−satisfies Benford’s Law,

how fast does ε(α) decrease? The answer is provided by the following result.

Theorem 4. Let X be a random variable with a differentiable pdf f . Let ε(α) denote the

least ε such that Xα ε−satisfies Benford’s Law. ε(α) is O(1/ log10 α) provided that

(1) E |log10 X |< ∞

(2) supx
∣∣ d

dxx f (x)
∣∣< ∞

In addition, ε(α) is o(1/ log10 α) when E |log10 X |2 < ∞.

Proof. See Appendix. �

This theorem shows that if ε(α) is the maximum deviation of Xα from Benford’s Law,

then ε(α)≤C/ log10 α for some constant C determined by X . The constant may be deter-

mined from the proof for a given X , but as the Tables above illustrate, actual conformance

to Benford’s Law is superior. However, the result does provide a useful stopping point for

numerical algorithms by bounding α .
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4.2. Particular Families. Motivated by the convergence results above, it is a natural ques-

tion to ask which families of distributions will satisfy Benford’s law for particular parame-

ter values. From Theorem 1, a natural way to start looking is to find families of a variable

X where X s is again within the family. Three such common families are the Log-Normal,

Weibull, and Pareto distributions. The effect of a transformation of X −→ (X/ν)s within

these families are summarized in Table 5. Theorem 1 implies that the transformed variables

(X/ν)s will ε−satisfy Benford’s Law for sufficiently large s and any ν . Table 5 shows it

is no coincidence that the Log-Normal and Pareto families appear in the Table and the

literature on scaling laws. If such distributions commonly occur in data, since for partic-

ular parameter values Theorem 1 applies, Benford’s Law will be commonly observed in

samples drawn from these distributions as well.

TABLE 5. Families Closed under Powers

(X/ν)s

Distribution Functional Form Parameters Var(X)

Log-Normal(µ,σ)
(
xσ
√

2π
)−1

exp
{
−(lnx−µ)2/2σ2} (sµ− lnv,sσ) (exp

{
σ2}−1)exp

{
2µ +σ2}

Weibull(k,λ ) (k/λ )(x/λ )k−1 exp
{
−(x/λ )k} (k/s,λ s/ν) λ 2[Γ(1+2/k)−Γ(1+1/k)2]

Pareto(k,b) kbkx−(k+1)1[b,∞)(x) (k/s,b2/ν) b2k/[(k−1)2(k−2)]

For example, according to Table 5, if X is distributed Log-Normal(µ,σ2) then (X/ν)s

is distributed Log-Normal(sµ − lnv,s2σ2). Appealing to Theorem 1, (X/ν)s
ε−satisfies

Benford’s Law for sufficiently large s, or equivalently, the Log-Normal distribution ε−satisfies

Benford’s Law for sufficiently large σ2. Consequently, for each distribution in Table 5 and

ε > 0 there is a region in the parameter space where the distribution will ε-satisfy Benford’s

Law. Referring to the Variance column in Table 5 this is roughly when the variance or shape

parameter is sufficiently large. This formally confirms observations by Leemis et al. (2000)

that increases in the shape parameter increase compliance with Benford’s Law.

4.3. Conclusion. This paper derives new test values and improves upon existing tests for

evaluating compliance with Benford’s Law. Also provided are new results which broaden

the range of data to which such tests can be applied through a simple transformation. This
14



transformation also induces scale invariance, which frees tests from dependence of choice

of measurement units. A rate of convergence to Benford’s Law is also derived. Methods in

this paper may therefore be used to characterize precisely which particular members of a

family of distributions satisfy Benford’s Law, and have particularly clean implications for

the Log-Normal, Weibull, and Pareto families. Finally, the methods of this paper might

be applied when considering generalized classes of FSD distributions (Rodriguez 2004;

Hurlimann 2006; Grendar et al. 2007) which are other promising avenues for relating lim-

ited distributional information to data quality.
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APPENDIX A. PROOFS

It is useful to partition (0,∞) into sets {Ad,k} related to First Significant Digits.

Definition. For real k define the dth FSD set of order k, Ad,k by

Ad,k ≡ [d ·10k, (d +1) ·10k)

Clearly for any x > 0 the FSD of x is d iff there exists an integer k s.t. x ∈ Ad,k, so that x

has FSD equal to d iff x ∈ Ad where Ad ≡
⋃

k integer Ad,k. In particular

log10 Ad,k = [log10 d ·10k, log10(d +1) ·10k) = [k+ log10 d, k+ log10 (d +1))

so that (where |·| denotes Lebesgue measure when appropriate) | log10 Ad,k|= log10 (1+1/d)

for any k. Carrying over the results to a general base b presents no overwhelming difficul-

ties. However, as the literature has focused on applications using base 10 I stick to base 10

avoiding the extra notational baggage.

A.1. Proofs for the Main Text.

Lemma. Suppose X is a positive random variable with continuous pdf. If log10 X ∈ I (ε)

then X ε−satisfies Benford’s Law.

Proof. Let f denote the pdf of Y , and by definition of Ak,d and Ad we have that

Pr(X has FSD = d) = Pr(Y ∈ log10 Ad) =
∞

∑
k=−∞

∫
log10 Ad,k

f (y)dy(A.1)
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By assumption Y ∈ I(ε) so there exist constants {ci} such that for each FSD d,

ε ≥ |
∞

∑
k=−∞

∫
log10 Ad,k

f (y)dy−
∫

log10 Ad
∑ci1[i,i+1)(y)dy|

= |Pr(X has FSD = d)−
∞

∑
k=−∞

∫
log10 Ad,k

∑ci1[i,i+1)(y)dy|(A.2)

where the second line follows from Equation (A.1). Since log10 d < 1 we know that [k+

log10 d,k + log10 d + 1)∩ [i, i+ 1) = /0 unless k = i so letting 1A denote the set indicator

function,

1[k+log10 d,k+log10 d+1](y)∑ci1[i,i+1)(y) = ck1log10 Ad,k(y)(A.3)

Using Equation (A.3), we have

∞

∑
k=−∞

∫
log10 Ad,k

∑ci1[i,i+1)(y)dy =
∞

∑
k=−∞

∫
log10 Ad,k

ckdy = [
∞

∑
k=−∞

ck] log10(1+1/d)(A.4)

Pairing Equations (A.4) with Equation (A.2) we have that

ε ≥ |Pr(X has FSD = d)− [
∞

∑
k=−∞

ck] log10(1+1/d)|(A.5)

Finally from Lemma 2 we may assume WLOG that ci =
∫
[i,i+1] f (x)dx so that ∑ck = 1,

giving the desired inequalities. �

Lemma. Suppose
∫
| f (x)|dx < ∞. Then c∗ ≡

∫
[0,1] f (y)dy solves

min
c

sup
A measurable

∣∣∣∣∫
[0,1]∩A

[ f (x)− c]dx
∣∣∣∣

and the minimum attained is 1
2
∫
[0,1] | f (x)− c∗|dx.

Proof. This holds for the same reason that the median is a minimum absolute distance

estimator. See the supplemental appendix for details. �
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A useful bound on the minimum 1
2
∫
[0,1]

∣∣∣ f (x)− ∫[0,1] f (y)dy
∣∣∣dx in the last Lemma is the

following:

Lemma 4. Let Y be a random variable with continuous pdf f.

1
2

∫
[0,1]

∣∣∣∣ f (x)−∫
[0,1]

f (y)dy
∣∣∣∣dx≤min

{∫
[0,1]

f (y)dy,
1
2

sup
y∈[0,1]

f (y)− 1
2

inf
y∈[0,1]

f (y)

}

Proof. The last Lemma showed that

1
2

∫
[0,1]

∣∣∣∣ f (x)−∫
[0,1]

f (y)dy
∣∣∣∣dx = min

c
sup

A

∣∣∣∣∫
[0,1]∩A

[ f (x)− c]dx
∣∣∣∣

where A is any measurable set, so clearly for c= 0 we have 1
2
∫
[0,1]

∣∣∣ f (x)− ∫[0,1] f (y)dy
∣∣∣dx≤∫

[0,1] f (y)dy. Alternatively, consider estimating c∗ ≡
∫
[0,1] f (y)dy by ĉ≡ 1

2 supy∈[0,1] f (y)+

1
2 infy∈[0,1] f (y). In this case, | f (x)− ĉ| ≤ 1

2 supy∈[0,1] f (y)− 1
2 infy∈[0,1] f (y) so

sup
A

∣∣∣∣∫
[0,1]∩A

[ f (x)− ĉ]dx
∣∣∣∣≤ sup

A

∫
[0,1]∩A

| f (x)− ĉ|dx≤ 1
2

sup
y∈[0,1]

f (y)− 1
2

inf
y∈[0,1]

f (y)

Putting the two bounds together gives the result. �

Theorem (Mean-Scale Approximation). Let Y be a random variable with continuous pdf.

For each ε > 0 there exists a σ(ε) s.t. σ ≤ σ(ε) implies (Y −µ)/σ ∈ I(ε) for all µ .

Proof. I first show rY ∈ I(ε) for sufficiently large r. Fix ε > 0 and denote the pdf of Y as

f . For any fixed r, the pdf of rY is f (x/r)/r so from Lemma 2, it is sufficient to show that

∑
k

1
2

∫
[k,k+1]

∣∣∣∣ f (x/r)/r−
∫
[k,k+1]

f (y/r)/rdy
∣∣∣∣dx≤ ε

Since limn−→∞ Pr(|Y | ≤ n) = 1 there exists an N s.t. Pr(|Y | ≥ N− 2) < ε/2. Now from

Lemma 4 we know that

∑
|k|≥rN−1

1
2

∫
[k,k+1]

∣∣∣∣ f (x/r)/r−
∫
[k,k+1]

f (y/r)/rdy
∣∣∣∣dx≤ ∑

|k|≥rN−1

∫
[k,k+1]

f (y/r)/rdy =
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∑
|k|≥rN−1

∫
[k/r,(k+1)/r]

f (y)dy≤ ∑
|k|≥N−2

∫
[k,k+1]

f (y)dy < ε/2

So to show rY ∈ I(ε) it is sufficient that for all sufficiently large r,

∑
|k|≤rN

1
2

∫
[k,k+1]

∣∣∣∣ f (x/r)/r−
∫
[k,k+1]

f (y/r)/rdy
∣∣∣∣dx < ε/2

Again from Lemma 4 we know

∑
|k|≤rN

1
2r

∫
[k,k+1]

∣∣∣∣ f (x/r)−
∫
[k,k+1]

f (y/r)dy
∣∣∣∣dx≤(A.6)

∑
|k|≤rN

1
2r

[
sup

y∈[k,k+1]
f (y/r)− inf

y∈[k,k+1]
f (y/r)

]

Since f is uniformly continuous on [−N,N] compact, ∃δ ∈ (0,1) s.t.

sup
y∈B(x,δ )

f (y)− inf
y∈B(x,δ )

f (y)< ε/2N ∀x ∈ [−N,N](A.7)

where B(x,δ ) denotes a closed ball of radius δ around x. Equation (A.6) implies for all

r ≥ 1/δ ,

sup
y∈B(x,1)

f (y/r)− inf
y∈B(x,1)

f (y/r)< ε/2N ∀x ∈ [−N,N]

combining this with Equation (A.6), we have

∑
|k|≤rN

1
2r

[
sup

y∈[k,k+1]
f (y/r)− inf

y∈[k,k+1]
f (y/r)

]
≤ 2rN

2r
ε

2N
=

ε

2

and we conclude rY ∈ I(ε) for all r ≥ 1/δ .

I now show that for sufficiently large r, r(Y −µ)∈ I(ε) for all µ . From Lemma 3 for any

particular r it is sufficient to consider only rµ ∈ [0,1) and since r ≥ 1, WLOG µ ∈ [0,1).
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The proof proceeds as above, but now we must show that

∑
|k|≤rN

1
2

∫
[k,k+1]

∣∣∣∣ f (x/r+µ)/r−
∫
[k,k+1]

f (y/r+µ)/rdy
∣∣∣∣dx < ε/2

Following the proof exactly, simply choose δ̃ ≡ δ/2 so that Equation (A.7) holds and for

all r ≥ 1/δ̃ we have

sup
y∈B(x,2)

f (y/r)− inf
y∈B(x,2)

f (y/r)< ε/2N ∀x ∈ [−N,N]

This implies for all µ ∈ (−1,1) that

sup
y∈B(x,1)

f (y/r+µ)− inf
y∈B(x,1)

f (y/r+µ)< ε/2N ∀x ∈ [−N,N]

which when substituted into the proof above gives the result. �

Theorem. Let X be a random variable with a differentiable pdf f . Let ε(α) denote the

least ε such that Xα ε−satisfies Benford’s Law. ε(α) is O(1/ log10 α) provided

(1) E |log10 X |< ∞

(2) supx
∣∣ d

dxx f (x)
∣∣< ∞

In addition, ε(α) is o(1/ log10 α) when E |log10 X |2 < ∞.

Proof. WLOG assume X is positive. Let Yα be the random variable defined by Yα ≡

log10 Xα so by Lemma 1, ε(α) is bounded above by ε(α), where ε(α)≡ inf{ε : Yα ∈ I(ε)}.

Letting gα denote the pdf of Yα , Lemma 4 shows that ε(α) is bounded above by the fol-

lowing equation

ε(α)≤∑
i

min

{∫
[i,i+1]

gα(y)dy, sup
y∈[i,i+1]

gα(y)/2− inf
y∈[i,i+1]

gα(y)/2

}
(A.8)

The first expression in the min of this is expression is exactly

∫
[i,i+1]

gα(y)dy = Pr(Yα = log10 Xα ∈ [i, i+1]) .
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For the second expression, fix i and consider the change of variable

sup
y∈[i,i+1]

gα(y) = sup
y∈[i,i+1]

d
dy

Pr(log10 Xα ≤ y) = sup
y∈[i,i+1]

d
dy

Pr
(

X ≤ 10y/α

)
= sup

y∈[i,i+1]
ln10 ·10y/α f (10y/α)/α = sup

y∈[10i/α ,10i+1/α ]

ln10 · y f (y)/α

Similar reasoning holds for the inf term. Since by assumption M ≡ sup
∣∣ d

dxx f (x)
∣∣< ∞, the

mean value theorem implies

sup
y∈[a,b]

y f (y)− inf
y∈[a,b]

y f (y)≤M(b−a)

and therefore

sup
y∈[i,i+1]

gα(y)− inf
y∈[i,i+1]

gα(y)

= sup
y∈[10i/α ,10i+1/α ]

ln10 · y f (y)/α− inf
y∈[10i/α ,10i+1/α ]

ln10 · y f (y)/α

≤M ln10 ·
(

10i+1/α −10i/α

)
/α

Substitution of these expressions into Equation (A.8) yields

ε(α)≤∑
i

min
{

Pr(log10 Xα ∈ [i, i+1]) ,M ln10 ·
(

10i+1/α −10i/α

)
/α

}
Now for any positive real number k we have

ε(α)≤ ∑
|i|≥k

Pr(log10 Xα ∈ [i, i+1])+ ∑
i<k+1

M ln10 ·
(

10i+1/α −10i/α

)
/α

≤ Pr(|log10 Xα | ≥ k)+M ln10 ·10(k+1)/α/α(A.9)

A Chebyshev type inequality shows that

Pr(|log10 Xα | ≥ k) = Pr(|log10 X | ≥ k/α)≤ αE |log10 X |/k
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Using this bound in Equation (A.9) yields the following bound on ε(α):

ε(α)≤ αE |log10 X |/k+M ln10 ·10(k+1)/α/α

Consider the choice k = α log10 α/2 so that

ε(α)≤ 2E |log10 X |/ log10 α +101/αM ln10 ·α−1/2

Clearly then limα−→∞ ε(α) log10 α ≤ 2E |log10 X | < ∞ so ε(α) ≤ ε(α) is O(1/ log10 α).

Apply a similar Chebyshev type inequality when E |log10 X |2 < ∞ for the same choice of k

shows ε(α) is O(1/(log10 α)2) and therefore o(1/ log10 α). �

APPENDIX B. SUPPLEMENTAL APPENDIX (NOT FOR PUBLICATION)

B.1. An Example of conservative Kolmogorov-Smirnov and Kuiper tests. Our exam-

ples are as follows. Let Xi be a Bernoulli random variable with parameter p = 1/2. Under

H0, the empirical cdf of a sample of size N, FN is FN(x) = [1− X ]1[0,1)(x) + 1[1,∞)(x)

while the true cdf is F(x) = (1/2)1[0,1)(x)+1[1,∞)(x). The definitions of the Kolmogorov-

Smirnov (DN) and Kuiper (VN ≡ D+
N +D−N ) are given by

DN = sup
x
|FN(x)−F(x)| = |1/2−X |

D+
N = sup

x
[FN(x)−F(x)]+ = max{1/2−X ,0}

D−N = sup
x
[FN(x)−F(x)]− = max{X−1/2,0}

So that DN = VN = |1/2−X |. By the Central Limit Theorem,
√

NDN and
√

NVN both

converge in distribution to a N(0,1/4), giving asymptotic test values for a .99 level test of

≈ 2.58/2 = 1.29. This shows that the respective test levels based on the assumption of a

continuous F , namely 1.628 for DN and 2.001 for VN are much too large. In particular for

VN and large N, Pr(|
√

N(X − 1/2)| ≤ 2.001) ≈ .99994. In other words instead of falsely
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rejecting the null 1% of the time, by using the 2.001 cutoff rule will falsely reject it only

.006% of the time which is far too conservative.

B.2. Proofs.

Lemma. Suppose
∫
| f (x)|dx < ∞. Then c∗ ≡

∫
[0,1] f (y)dy solves

min
c

sup
A measurable

∣∣∣∣∫
[0,1]∩A

[ f (x)− c]dx
∣∣∣∣

and the minimum attained is 1
2
∫
[0,1] | f (x)− c∗|dx.

Proof. We define two set mappings A+(c),A−(c) respectively by

A+(c)≡ {x : f (x)− c > 0}, A−(c)≡ {x : f (x)− c < 0}

and since f is measurable, both A+(c) and A−(c) are measurable. For any fixed c we also

have

sup
A measurable

|
∫
[0,1]∩A

[ f (x)− c]dx|= max{
∫
[0,1]∩A+(c)

[ f (x)− c]dx,−
∫
[0,1]∩A−(c)

[ f (x)− c]dx}

Define functions B+(c),B−(c) corresponding to the sets A+(c),A−(c) by

B+(c)≡
∫
[0,1]∩A+(c)

[ f (x)− c]dx, B−(c)≡−
∫
[0,1]∩A−(c)

[ f (x)− c]dx

Since c′ > c implies A+(c′) ⊂ A+(c), [ f (x)− c]1A+(c) is decreasing in c so that B+(c) is

decreasing and similarly B−(c) is increasing. Since we have

sup
A measurable

|
∫
[0,1]∩A

[ f (x)− c]dx|= max{B+(c),B−(c)}(B.1)

any c̃ s.t. B+(c̃) = B−(c̃) minimizes Equation (B.1). Note that identically we have

B+(c)−B−(c) =
∫
[0,1]

[ f (x)− c]dx =
∫
[0,1]

f (x)dx− c(B.2)
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so that c∗ ≡
∫
[0,1] f (x)dx minimizes Equation (B.1) and |c∗| < ∞ since

∫
| f (x)|dx < ∞.

Furthermore, c∗ is unique (proof omitted). The second claim follows from Equation (B.1)

and B+(c∗) = [B+(c∗)+B−(c∗)]/2. �

Lemma. Y ∈ I(ε) iff aY +b ∈ I(ε) for all integers a,b with a 6= 0.

Proof. One direction is obvious by taking a = 1,b = 0. Considering the other direction, fix

Y ∈ I(ε) and by assumption there exist positive constants ci s.t. for every measurable set A,

(B.3) |
∫

A
f (y)dy−

∫
A
∑ci1[i,i+1)(y)dy| ≤ ε

and for any strictly monotone transformation T of Y with differentiable inverse we have∫
A f (y)dy =

∫
TA f ◦T−1(y) · (T−1)′(y)dy where g(y)≡ f ◦T−1(y) · (T−1)′(y) is the pdf of

T (Y ). Referring to Equation (B.3), we also have

∫
A
∑ci1[i,i+1)(y)dy =

∫
TA

∑ci1[T (i),T (i+1))(y) · (T−1)′(y)dy

Assuming T is measurable, since Equation (B.3) holds for any A, in particular T−1(A), we

have for any measurable A that

(B.4) |
∫

A
g(y)dy−

∫
A
∑ci1[T (i),T (i+1))(y) · (T−1)′(y)dy| ≤ ε

Considering T (x)≡ ax+b for a,b ∈ Z and appealing to Equation (B.4), we have for every

A that

|
∫

A
g(y)dy−

∫
A
∑aci1[ai+b,a(i+1)+b)(y)dy| ≤ ε

Defining d j ≡ ∑aci1[ai+b,a(i+1)+b)( j), from the last equation we have

|
∫

A
g(y)dy−

∫
A
∑d j1[ j, j+1)(y)dy| ≤ ε

so that T (Y ) ∈ I(ε) as claimed. �
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