
	

	

Diversification and 
Financial Stability 
 

 

Paolo Tasca    
Stefano Battiston    
 
 

SRC Discussion Paper No 10 

February 2014 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/35432963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ISSN 2054-538X 

Abstract  
This paper contributes to a growing literature on the pitfalls of diversification by 
shedding light on a new mechanism under which, full risk diversification can be sub-
optimal. In particular, banks must choose the optimal level of diversification in a market 
where returns display a bimodal distribution. This feature results from the combination 
of two opposite economic trends that are weighted by the probability of being either in 
a bad or in a good state of the world. Banks have also interlocked balance sheets, with 
interbank claims marked-to-market according to the individual default probability of the 
obligor. Default is determined by extending the Black and Cox (1976) first-passage-
time approach to a network context. We find that, even in the absence of transaction 
costs, the optimal level of risk diversification is interior. Moreover, in the presence of 
market externalities, individual incentives favor a banking system that is over-
diversified with respect to the level of socially desirable diversification. 
 
JEL classification: G20, G28 
 
Keywords: Naive Diversification, Leverage, Default Probability 
 
This paper is published as part of the Systemic Risk Centre’s Discussion Paper Series. 
The support of the Economic and Social Research Council (ESRC) in funding the SRC 
is gratefully acknowledged [grant number ES/K002309/1]. 
 
 
Acknowledgements 
We are grateful to Andrea Collevecchio, Co-Pierre Georg, Martino Grasselli, Christian 
Julliard, Helmut Helsinger, Rahul Kaushik, Iman van Lelyveld, Moritz Mϋller, Paolo 
Pellizzari, Loriana Pelizzon, Didier Sornette, Claudio J. Tessone, Frank Schweitzer, 
Joseph Stiglitz, Jean-Pierre Zigrand and participants at various seminars and 
conferences where a preliminary version of this paper was presented. The authors 
acknowledge financial support from the ETH Competence Center “Coping with Crises 
in Complex Socio-Economic Systems" [CHIRP 1 grant no. CH1-01-08-2], the European 
FET Open Project “FOC" [grant no. 255987], and the SNSF project “OTC Derivatives 
and Systemic Risk in Financial Networks" [grant no. CR12I1-127000/1]. The support of 
the Economic and Social Research Council (ESRC) is gratefully acknowledged [grant 
number ES/K002309/1]. A previous version of this paper appears in the CCSS Working 
Paper No. 11-001, ETH Zurich. (*) Correspondence to Paolo Tasca. 
Email:P.Tasca@lse.ac.uk. 
 
Paolo Tasca, Chair of Systems Design, ETH Zurich, Weinbergstrasse 58, 8092 Zurich, 
Switzerland; Systemic Risk Centre, London School of Economics and Political Science 
Stefano Battiston,	Chair of Systems Design, ETH Zurich, Weinbergstrasse 58, 8092 
Zurich, Switzerland 
 
 
Published by 
Systemic Risk Centre 
The London School of Economics and Political Science 
Houghton Street 
London WC2A 2AE 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means without the prior permission in 
writing of the publisher nor be issued to the public or circulated in any form other than 
that in which it is published. 
 



ISSN 2054-538X 

Requests for permission to reproduce any article or part of the Working Paper should 
be sent to the editor at the above address. 
 
© Paolo Tasca, Stefano Battiston submitted 2014 



Diversification and Financial Stability

Paolo Tascaa,b,�, Stefano Battistona

(a) Chair of Systems Design, ETH Zurich, Weinbergstrasse 58, 8092 Zurich, Switzerland,
(b) SRC, London School of Economics, Houghton Street, London WC2A 2AE, UK

Abstract

This paper contributes to a growing literature on the pitfalls of diversification by
shedding light on a new mechanism under which, full risk diversification can be
sub-optimal. In particular, banks must choose the optimal level of diversification
in a market where returns display a bimodal distribution. This feature results
from the combination of two opposite economic trends that are weighted by the
probability of being either in a bad or in a good state of the world. Banks have
also interlocked balance sheets, with interbank claims marked-to-market according
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1. Introduction

The folk wisdom of “not putting all of your eggs in one basket” has
been a dominant paradigm in the financial community in recent decades.
Pioneered by the works of Markowitz (1952), Tobin (1958) and Samuelson
(1967), analytic tools have been developed to quantify the benefits derived
from increased risk diversification. However, recent theoretical studies have
begun to challenge this view by investigating the conditions under which
diversification may have undesired effects (see, e.g., Battiston et al., 2012b;
Ibragimov et al., 2011; Wagner, 2011; Stiglitz, 2010; Brock et al., 2009; Wag-
ner, 2009; Goldstein and Pauzner, 2004). These works have found various
types of mechanisms leading to the result that full diversification may not
be optimal. For instance, Battiston et al. (2012b) assume an amplification
mechanism in the dynamics of the financial robustness of banks; Wagner
(2011) assumes non-constant asset liquidation costs; Stiglitz (2010) assumes
that the default of one actor implies the default of all counterparties; and
Wagner (2009) assumes that in the presence of a systemic default there is an
additional cost of recovery for each bank.

The present paper contributes to the aforementioned literature by shed-
ding light on a new mechanism under which, full risk diversification can be
sub-optimal. In particular, we assume an arbitrage-free market where price
returns are normally distributed and uncorrelated. However, the market may
follow positive or negative trends that are ex-ante unpredictable and persist
over a certain period of time. This incomplete information framework leads
to a problem of portfolio diversification under uncertainty. In fact, portfolio
returns display a bimodal distribution resulting from the combination of two
opposite trends weighted by the probability of being either in a bad or in a
good state of the world.

We find that even in the absence of transaction costs, optimal diversifica-
tion can be interior. This result holds both at the individual and at the social
welfare level. Moreover, we find that individual incentives favor a financial
system that is over-diversified with respect to what is socially efficient.

More in detail, we consider a banking system composed of leveraged and
risk-averse financial institutions (hereafter, “banks”) that invest in two asset
classes. The first class consists of debts issued by other banks in the network
(hereafter, “interbank claims”). The value of these securities depends, in
turn, on the leverage of the issuers. The second class represents risky assets
that are external to the financial network and may include, e.g., mortgages
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on real estate, loans to firms and households and other real economy-related
activities (hereafter, “external assets”). The underlying economic cycle is the
primary source of external asset price fluctuations, but it is unknown ex ante
to the banks and, with a certain probability p, it may be positive (hereafter,
“uptrend”) or negative (hereafter, “downtrend”).

As a first result, we find that if the future economic trend is unknown,
the expected utilities (both at the banking and social system levels) are
inverse U-shaped functions of the diversification level. Thus, optimal risk
diversification is interior and its level depends on the probability p of the
trend and on the magnitude of the expected profit and loss. The intuition
behind this results is as follows. Diversification of idiosyncratic risks lowers
the volatility of a bank’s portfolio and increases the likelihood of the portfolio
to follow the economic trend underlying the price movements. Therefore,
risk diversification is beneficial in the presence of a positive economic trend
because it reduces the downside risk, and it is detrimental in the presence
of a negative economic trend because it reduces the upside potential. As a
result, there exists an optimal intermediate level of risk diversification that
depends on the probability of the stochastic trend to be positive or negative.

As a second result, we find that the incentives of individual banks favor
a banking system that is over-diversified with respect to the level of diver-
sification that is socially desirable. Hence, tension arises between individual
incentives and system efficiency. The fact that the trade-off is more pro-
nounced at the social welfare level stems from the assumption of additional
recovery costs faced by the social planner (hereafter, “regulator”). In other
words, we assume an asymmetry in the expected losses between individual
banks and the system. Although, the losses of individual banks are bounded
from above in the presence of limited liability, externalities associated with
the failure of interconnected institutions amplify the expected losses at a
system level. It follows that the optimal diversification level from the social
system perspective is always smaller than the optimal level for individual
banks.

1.1. Related work

One of the novelties of our work is the fact that the result about interior
optimal diversification holds even in the absence of asymmetric information,
behavioral biases or transaction costs and taxes. Moreover, we do not need to
impose ad hoc asset price distributions as in the literature on diversification
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pitfalls in portfolios with fat-tailed distributions (to name a few, Zhou, 2010;
Ibragimov et al., 2011; Mainik and Embrechts, 2012).

In our model, because external assets carry idiosyncratic risks, banks
have an incentive to diversify across them. In this respect, similar to Evans
and Archer (1968); Statman (1987); Elton and Gruber (1977); Johnson and
Shannon (1974); Bird and Tippett (1986), we measure how the benefit of
diversification vary as the number of external assets in an equally weighted
portfolio is increased. This benchmark is the so-called 1/n or naive rule.
However, because banks are debt financed, we depart from the methods of
those previous studies by modeling risk not in terms of a portfolio’s standard
deviation but in terms of the default probability. Indeed, in that literature
the relationship between default probability and portfolio size has not been
investigated in depth.

In order to investigate the notion of default probability in a system con-
text, we build on the framework in which banks are connected in a network of
liabilities as in the stream of works pioneered by Eisenberg and Noe (2001).
However, that literature considers only the liquidation value of corporate
debts at the time of default. In particular, in the works based on the no-
tion of “clearing payment vector” (e.g., Cifuentes et al., 2005; Elsinger et al.,
2006), the value of interbank claims depends on the solvency of the counter-
parties at the maturity of the contracts and it is determined as the fixed point
of a so-called “fictitious sequential default” algorithm. Starting from a given
exogenous shock on one or more banks, one can measure ex-post the impact
of the shock in the system and investigate, for instance, which structure are
more resilient to systemic risk (Battiston et al., 2012a; Roukny et al., 2013).

Our object instead here is to derive the default probability of individual
banks, in a system context, that can be computed by regulators and market
players ex-ante, i.e. before the shocks are realized and before the maturity
of the claims. A related question was addressed in (Shin, 2008) where one
assumes that asset values are random variables that move altogether accord-
ing to a same scaling factor. The expected value of the assets is plugged into
the Eisenberg-Noe fixed point algorithm yielding an estimate of the values of
the liabilities before the observation of the shocks. However, the latter ap-
proach does not apply if assets are independent random variables and, more
importantly, it does not address the issue of how the default probability of
the various banks are related.

Strictly speaking, default means that the bank is not able to meet its
obligations at the time of their maturity. Therefore, in principle, it does
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not matter whether, any time before the maturity of the liabilities, the total
asset value of a firm falls beneath the book value of its debts as long as it can
recover by the time of the maturity. In practice, however, it does matter a lot.
This is the case, for instance, if the bank has also some short-term liabilities
and short-term creditors decide to run on the bank. Indeed there is a whole
literature that building on Black and Cox (1976) investigates the notion of
time to default in various settings. Such notion extends the framework of
Merton (1974) by allowing defaults to occur at any random time before the
maturity of the debt, as soon as the firm assets value falls to some prescribed
lower threshold. In this paper, we combine the Eisenberg-Noe approach with
the Black-Cox approach, by modeling the evolution over time of banks assets
as stochastic processes where, at the same time, the value of interbank claims
is a function of the financial fragility of the counterparties as reflected by the
credit-liability network.

Although from a mathematical point of view, the framework requires to
deploy the machinery of continuous stochastic processes, this work offers a
valuable way to compute the default probability in system context under mild
assumptions. The default probability can be written in analytical form in
simple cases and it can be computed numerically in more complicated cases.
An underlying assumption in the model is to consider the credit spread of
counterparties as an increasing function of their leverage, i.e. the higher the
leverage the higher the credit spread. As a benchmark, in this paper we
assume that such a dependence is linear.

In general, the framework developed here allows to investigate how the
probability of defaults depends on certain characteristics of the network such
as the number of interbank contracts and the number of external assets. In
this paper, we focus on the diversification level across external assets and
we look at the limit in which analytical results can be obtained. The as-
sumption we make is that the interbank market is relatively tightly knit and
banks are sufficiently homogeneous in balance sheet composition and invest-
ment strategies. Indeed, it has been argued that the financial sector has
undergone increasing levels of homogeneity, Haldane (2009). Moreover, em-
pirical evidence shows that bank networks feature a core-periphery structure
with a core of big and densely connected banks and a periphery of smaller
banks. Thus, our hypothesis of homogeneity applies to the banks in such a
core (see, e.g., Elsinger et al., 2006; Iori et al., 2006; Battiston et al., 2012c;
Fricke and Lux, 2012).

The paper is organized as follows. In Section 2, we introduce the model.
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Section 3 adopts a marginal benefit analysis by formalizing the single bank
utility maximization problem with respect to the number of external assets in
the portfolio. In Section 4, we compare private incentives of risk diversifica-
tion with social welfare effects. Section 5 concludes the paper and considers
some policy implications.

2. Model

Let time be indexed by t ∈ [0,∞] in a system of N risk-averse leveraged
banks with mean-variance utility function. To ensure simplicity in notation,
we omit the time subscripts whenever there is no confusion. For the bank
i ∈ {1, ..., N}, the balance sheet identity conceives the equilibrium between
the asset and liability sides as follows:

ai = li + ei , ∀ t ≥ 0 (1)

where a := (a1, ..., aN)
T is the column vector of bank assets at market value.

l := (l1, ..., lN)
T is the column vector of bank debts at book face value. There

is an homogeneous class of debt with maturity T and zero coupons, i.e.,
defaultable zero-coupon bonds. e := (e1, ..., eN)

T is the column vector of
equity values. Notably, the market for investment opportunities is complete
and composed of two asset classes that are perfectly divisible and traded
continuously: (i) N interbank claims, and (ii) M external assets related to
the real side of the economy. There are no transaction costs or taxes. How-
ever, there are borrowing and short-selling restrictions. Each bank selects
a portfolio composed of n ≤ N − 1 interbank claims and m ≤ M external
assets. Then, the asset side in Eq. (1) can be decomposed as1:

ai :=
∑
j

zijνj +
∑
k

wik l̂k . (2)

Z := [zij]N×M is the N ×M weighting matrix of external investments in
which each entry zij ≥ 0 is the number of units of external asset j at price νj
hold by bank i. W := [wik]N×N is the N×N adjacency matrix in which each

1Notice that, for the sake of simplicity, we omit the lower and upper bounds of the
summations. It remains understood that, in the summation for external assets, the index
ranges from 1 to M , and that, in the summation for banks, the index ranges from 1 to N
(with the condition that wii = 0 for all i ∈ {1, ..., N}.
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entry wik ≥ 0 is the number of units of bank i’ interbank claim on bank k.
Interbank claims are marked-to-market. In line with the practice, we assume
that bonds are priced according to the discounted value of future payoffs at
maturity:

l̂i =
li

(1 + ri)T−t
(3)

where ri is the rate of return on (T−t)-years maturity obligations. ci = ri−rf
is the credit spread (premium), over the risk free rate rf , paid by the bank to
the bond holders. In a stylized form, each bank’s balance-sheet is as follows:

Bank-i balance-sheet

Assets Liabilities∑
j zijνj li∑
k wik l̂k ei

2.1. Leverage and Default Event
Our approach to define the default event builds on Black and Cox (1976),

who extends Merton (1974) by allowing for a premature default when the
asset value of the firm falls beneath the book value of its debt. From a
technical point of view, what matters is the debt-to-asset ratio:

φi :=
li
ai
, (4)

with natural bound [ε, 1] where

{
1 default boundary
ε→ 0+ safe boundary .

Definition of Default Event:. The probability of the default event is the
probability that φi, initially at an arbitrary level φi(0) ∈ (ε, 1), exits for the
first time through the default boundary 1, after time t > 0. More precisely, we
use the concept of first exit time, τ , through a particular end of the interval
(ε, 1). Namely,

τ := inf {t ≥ 0 | 11φi(t)≤ε + 11φi(t)≥1 ≥ 1} . (5)

If the default event is defined as (defaulti) := {φi(τ) ≥ 1}, then the default
probability is the probability of this event:

P(defaulti) = P(φi(τ) ≥ 1) .

With a slight abuse of notation we rewrite P(defaulti) as:

P(defaulti) = P(φi ≥ 1). (6)
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Leverage in System Context:. Combining together Eq. (2)-(3)-(4), we
obtain:

φi = li/

(∑
j

zijνj +
∑
k

wik

(
lk

(1 + rk)(T−t)

))
. (7)

Theoretical and empirical evidence have shown that there are multiple
control variables affecting the credit spread, such as the firm’s leverage,
the volatility of the underlying assets or the liquidity risk (see, e.g., Collin-
Dufresne et al., 2001). Since we are interested to study Eq. (6) in a system
context, in order to better isolate the explanatory power of leverage, we
assume that the credit spread depends only on leverage in a linear fashion:

ci = βφi . (8)

In reality, the relation between credit spread and leverage can be more com-
plicated. However, as it will be more clear in the following, we establish a
useful benchmark for a number of exercises.

The parameter β (> 0) is the factor loading on i’s leverage φi and can be
understood as the responsiveness of the rate of return to the leverage. Then,
by replacing Eq. (8) into Eq. (3) we have:

l̂i =
li

(1 + rf + βφi)
(9)

where, w.l.g. T − t = 1. This means that banks issue 1-year maturity
obligations that are continuously rolled over. Notice that, by Eq. (6) and
Eq. (9), even in the case of a high default probability, bank debts are still
priced at a positive market value. Namely, for φi → 1, l̂i > 0. This means
that, creditors are assumed to partially recover their credits in case of default.
The recovery rate can be implicitly determined as shown in Appendix A.

Now, by using Eq. (9) we can rewrite Eq. (7) as:

φi = li/

(∑
j

zijνj +
∑
k

wik

(
lk

1 + rf + βφk

))
. (10)

Eq. (10) highlights a non-linear dependence of φi from the leverage φk=1,...,n

of the other banks to whom i is exposed via the matrix W.2

2The obligation of each bank i can be considered as an n-order derivative, the price of
which is derived from the risk-free rate rf and from the leverage φi of i. The latter, in
turn, depends on the leverage φk=1,...,n of the other banks obligors of i.
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Recent works based on the “clearing payment vector” mechanism (see,
e.g., Eisenberg and Noe, 2001; Cifuentes et al., 2005) provide a “fictitious
sequential default” algorithm to determine the liquidation equilibrium value
of interbank claims at their maturity. In reality, however, defaults may hap-
pen before the maturity of the debts. In this respect, Eq. (9) together with
Eq. (10) captures, even before the maturity of the debts, the market value
of interbank claims in the building up of the distress spreading from one
bank to another. In matrix notation, this value depends on the solution of a
second order polynomial equation in Φ:

ΦHβΦ+ΦHR−W−1βΦ+Φ = W−1R (11)

whereH := ZV(WL)−1 andΦ:= diag (φ1, φ2, ..., φN); L := diag(l1, l2, ..., lN);
V := diag(ν1, ν2, ..., νM); R := diag(R,R, ..., R) with R = 1 + rf ; W :=
[wik]N×N ; Z := [zij]N×M . See Appendix A.

Along this line of reasoning, one can notice that the default probability
of a given bank depends on the likelihood of its leverage to hit the default
boundary. This, in turn, depends on the joint probability of the other banks’
leverages, to whom this banks is connected, of hitting the default boundary.
In order to account for these network effects, in the next section we will pro-
vide an explicit form of default probability in system context. This forward
looking measure of systemic risk estimates at any point in time the likelihood
of a system collapse and combines into a single figure asset values, business
risk, and leverage.

3. Benefits of Diversification in External Assets

Similar to Evans and Archer (1968); Statman (1987); Elton and Gruber
(1977); Johnson and Shannon (1974); Bird and Tippett (1986), in this section
we measure the advantage of diversification by determining the rate at which
risk reduction benefits are realized as the number m (≤M) of external assets
in an equally weighted portfolio is increased. In contrast with those studies,
rather than minimizing the variance of the banks’ assets, we maximize their
expected utility with respect to m. The methodology is explained in the
following subsections. In 3.1 we formalize the equally weighted portfolio of
external assets. 3.2 defines the systemic default event. In 3.3 we formalize
the bank utility function and in 3.4 we maximize the utility function with
respect to the control variable m.
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3.1. Equally Weighted Portfolio of External Assets

From Eq. (2), let bank i’s portfolio of external assets be defined as:

si :=
∑
j

zijνj. (12)

To study the benefits of diversification, in isolation, we need to consider
the 1/m (equally weighted) portfolio allocation. This means that portfolio
allocation is respect to the number. This allocation is adopted as a metric to
measure the rate at which risk-reduction benefits are realized as the number
of assets held in the portfolio is increased. Therefore, external assets are
assumed to be equally weighted in banks’ portfolios. Formally, for every
external asset j ∈ {1, ..,M} and each bank i ∈ {1, ..., N}, the fraction of
portfolio si invested by bank i in the external asset j is:

1

m
=
zijνj
si

. (13)

The minimum conditions that allow us to apply the 1/m rule, as a bench-
mark, without violating the mean-variance dominance criterion, is to assume
the external assets to be indistinguishable, i.e., they have the same drift, the
same variance and they are uncorrelated.3 Thus, the price of external assets
is properly characterised by following time-homogenous diffusion process:4

dνj
νj(t)

= μ dt+ σ dB̃j(t) , j = 1, ...,M (14)

Using the expression in Eq. (13), we arrive after some transformations at
the following dynamics for the the portfolio in Eq. (12):

dsi
si(t)

= μdt+
σ√
m
dBi(t) . (15)

Bi =
1
m

∑
j B̃j is an equally weighted linear combination of Brownian shocks

s.t. dBj ∼ N(0, dt).

3Notice that under those conditions, the 1/m portfolio allocation is Pareto optimal.
See e.g., Rothschild and Stiglitz (1971); Samuelson (1967); Windcliff and Boyle (2004).

4Where B̃j(t) is a standard Brownian motion defined on a complete filtered probability

space (Ω;F ; {Ft};P), with Ft = σy{B̃(s) : s ≤ t}, μ is the instantaneous risk-adjusted

expected growth rate, σ > 0 is the volatility of the growth rate and E(dB̃j , dB̃y) := ρjy = 0.
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Properties of the Portfolio:. There exist two states of the world, θ =
{0, 1}. This captures a situation in which the economy is either in a boom
(θ = 1) or in a bust (θ = 0) state and is reminiscent of a stylized economic
cycle. The probability that the world is in state θ is denoted as P({θ}) with
P({0}) = p and P({1}) = 1 − p. According to the state of the world, the
market of external assets is assumed to follow a given constant stochastic
trend under a certain probability space (Ωμ,A,P). The sample space Ωμ =
{μ−, μ+} is the set of the outcomes. We use the convention:{

μ < 0 := μ− if θ = 0,
μ ≥ 0 := μ+ if θ = 1

with |μ+| = |μ−|. The σ-algebra A is the power set of all the subsets of
the sample space, A = 2Ωμ = 22 = {{μ−}, {μ+}, {μ−, μ−}, {}}. P is the
probability measure, P : A → [0, 1] with P({}) = 0, P({μ−}) = p, P({μ+}) =
1 − p and P({μ−, μ+}) = 1. That is, p and (1 − p) are the probabilities
of having a downtrend and an uptrend, respectively. To conclude, portfolio
returns display a mixture distribution expressed by the convex combination
of two normal distributions weighted by p and 1− p. Namely,

dsi
si

∼ pN

(
μ−,

σ√
m

)
+ (1− p)N

(
μ+,

σ√
m

)
(16)

with

{
E[dsi

si
] := μ̂ = pμ+ + (1− p)μ−

E

[
(dsi
si

− μ̂)2
]
:= σ̂2 = p

[
(μ+ − μ̂)2 + σ2

m

]
+ (1− p)

[
(μ− − μ̂)2 + σ2

m

]
.
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Figure 1: Distribution of portfolio returns (mixture model).
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Figure 1 illustrates this result by comparing two probability density func-
tions (pdf). The first (gray color) curve represents the pdf of a portfolio
with returns X normally distributed, i.e., X ∼ N(0, 1). The second (black
color) curve represents the pdf of a portfolio with returns distributed as
Y 1 ∼ N(0.5, 1) with probability p = 0.5 and as Y 2 ∼ N(−0.5, 1) with prob-
ability 1−p = 0.5. Notice that in a world where the market displays a normal
distribution, the middle part of the distribution range (the “belly”) is the
most likely outcome. In contrast, in a bimodal world, the belly is the least
likely outcome. Moreover, the tails of the bimodal distribution are higher
than those of the normal distribution. This indicates the higher probability
of severe left and right side events. The distance between the two peaks de-
pends on the difference between the means of the two normal distributions,
|(μ+) − (μ−)|. The (possible) asymmetry between the two peaks and the
skewness of the bimodal distribution depends on the difference between the
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probability of having an uptrend or a downtrend, |(1 − p) − p|. As a re-
sult, portfolio diversification choice is subject to much more uncertainty in a
bimodal world than in a normal one. The next sections show how the statis-
tical properties of the bimodal distribution impact on the risk diversification
effects.

3.2. Systemic Default Probability

Interbank Network structure and Contagion. We leave aside issues
related to endogenous interbank network formation, optimal interbank net-
work structures and network efficiency. See Leitner (2005), Gale and Kariv
(2007), Castiglionesi and Navarro (2007) and the survey by Allen and Babus
(2009) for discussion of these topics.

In our analysis, we assume the presence of a tightly knit network of homo-
geneous banks holding balance sheets and portfolios that look alike. Indeed,
it has been argued that the financial sector has undergone increasing levels
of homogeneity, Haldane (2009). Moreover, empirical evidence shows that
bank networks feature a core-periphery structure with a dense core of fully
connected banks and a periphery of small banks. Thus, our hypothesis of
homogeneity is realistic for the banks in the core (see, e.g., Elsinger et al.,
2006; Iori et al., 2006; Battiston et al., 2012c).

Despite, one might distinguish between two channels of contagion by
which shocks may propagate: direct asset price contagion (via overlapping
portfolios) and indirect asset price contagion (via interbank claims), strict
interdependencies make it difficult to characterize the propagation of conta-
gion in the system. The potential spread of contagion is high and immediate.
Since, the size and structure of interbank linkages are hold constant, all the
banks are likely to be hit as defaults propagate through the system.5

Relation between Individual and Systemic Default. Under the prop-
erty of homogeneity, banks are assumed to adopt the same capital structure:

- the portfolio of external assets is similar across banks, i.e., si = s for
all i ∈ {1, ..., N};
- the book value of promised payments at maturity is equal for every
bank, i.e., li = l for all i ∈ {1, ..., N}.

5Arguably, it is appropriate to assume that the network remains static, especially in
downtrend periods. See Gai and Kapadia (2007).
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Under those conditions, leverage ratios may differ across banks and over time,
but they will remain close to the mean leverage over all banks. Namely, the
leverage of every bank “converges” in distribution to the market leverage:

φi
d
 1

N

N∑
j

φj := φ ,

for all i ∈ {1, ..., N}. The above assumption, together with the results from
the previous section allow us to rewrite Eq. (10) as:

φ = l/

(
s+

l

1 + rf + βφ

)
. (17)

which is a quadratic expression in φ:

φ2βs+ φ (sR + l(1− β))− lR = 0 , R = 1 + rf . (18)

Heuristically, we can proof that Eq. (18) has always one positive and one
negative root for any values of the parameters (β > 0, R ≥ 1, s > 0, l > 0)
in their range of variation:⎧⎨

⎩
φpos = 1

2βs

[
l(β − 1)−Rs+

(
4βlRs+ (l(1− β) +Rs)2

)1/2]
,

φneg = 1
2βs

[
l(β − 1)−Rs− (

4βlRs+ (l(1− β) +Rs)2
)1/2]

.

Since, by definition φ can only be positive, we exclude the negative solution.
Therefore, one can always find a unique positive solution to Eq. (18):

φ := φpos. (19)
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Figure 2: Parabolic expression of the market leverage.
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β = 0.5.

The parabola in Eq. (18) is depicted in Figure 2. For different values of
s the roots are those points crossing zero in the interval [ε, 1], which is the
natural bound of the leverage, see Eq. (4).

Under the setting described above, we assign a systemic meaning to the
concept of default probability:

P(defaulti) = P(φi ≥ 1) 
 P(default) = P(φ ≥ 1), (20)

for all i ∈ {1, ..., N}.
Remark 1. Let P(φi ∈ C) and P(φ ∈ C) represent the default probability
of a single bank and the system, respectively. Since, under the mean-field

approximation, φi
d
 φ, for the simplified version of the Continuous Mapping
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Theorem, P(φi ∈ C) 
 P(φ ∈ C) for all continuity sets C ⊆ Ωφ := [ε, 1] and
all i ∈ {1, ..., N}.

P(default) depends on the distribution of φ that, in turn, depends on the
distribution of s. Hence, the systemic default probability can be also defined
w.r.t. s:

P(default) = P(φ ≥ 1) ≡ P(s ≤ s−) (21)

with

{
s+ = l(βε−ε+1)

(βε2+ε)
safe boundary

s− =
l(rf+β)

R+β
default boundary .

See Appendix A. Given the distribution properties of the portfolio in Eq. (16)
and the default conditions in Eq.(21), P(default) can be expressed as:

P(default) =

(∫ s+

s0

dsψ(x)

)
/

(∫ s+

s−
dxψ(x)

)
, where ψ(x) = exp

(∫ x

0

−2μ̂

σ̂2
ds

)
.

(22)

Eq. (22) has the following closed form solution:

P(default) =

(
exp

[
−2μ̂s0

σ̂2

]
− exp

[
−2μ̂s+

σ̂2

])
/

(
exp

[
−2μ̂s−

σ̂2

]
− exp

[
−2μ̂s+

σ̂2

])
.

See Appendix A. Eq. (22) is the probability that s, initially at an arbitrary
level s(0) := s0 ∈ (s−, s+), exits through s− before s+ after time t > 0. This
can be related to the problem of first exit time through a particular end of the
interval (s−, s+), see Gardiner (1985). Now, we define the systemic default
probability, conditional to a given trend followed by the external assets, as:{

q := P(default | μ−) def. prob. in the case of a downtrend ,
g := P(default | μ+) def. prob. in the case of an uptrend

with the following closed form solutions:⎧⎨
⎩

q =
(
exp

[
− (2μ−)s0

σ2/m

]
− exp

[
− (2μ−)s+

σ2/m

])
/
(
exp

[
− (2μ−)s−

σ2/m

]
− exp

[
− (2μ−)s+

σ2/m

])
,

g =
(
exp

[
− (2μ+)s0

σ2/m

]
− exp

[
− (2μ+)s+

σ2/m

])
/
(
exp

[
− (2μ+)s−

σ2/m

]
− exp

[
− (2μ+)s+

σ2/m

])
.

See Appendix A.
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Figure 3: Conditional Default Prob. for different levels of risk diversification.
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Parameters: |μ+| = |μ−| ∈ {0.005, 0.01, 0.02, 0.025, 0.03}, l = 0.9, s0 = (s+ − s−)/2,
σ = 0.5, rf = 0.01, ε = 0.1, β = 0.2.

Diversification effects on Default Probability.. An asymptotic analy-
sis of q and g reveals that, in an idealized world without transaction costs and
infinite population size of external assets (i.e., M → ∞), at increasing levels
of risk diversification (i.e., m → M), the default probability exhibits a bi-
furcated behavior. Precisely, g (q) decreases (increases) with diversification.6

See Figure 3. We conclude with the following general proposition:

6In both cases, trends are assumed to be persistent (i.e., approximately constant during
a given period Δt).
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Proposition 1. Consider a debt-financed portfolio subject to a fix default
threshold. Then, the mitigation of idiosyncratic risks via portfolio diversi-
fication is desirable when asset prices uptrend and undesirable when asset
prices downtrend. The degree of (un)desirability, which is measured in terms
of default probability, increases with the level of diversification.

See Appendix A. The intuition behind the polarization of the proba-
bility to “survive” and the probability to “fail” is beguilingly simple, but
its implications are profound. In brief, the diversification of idiosyncratic
risks reduces the volatility of the portfolio. The lower volatility increases the
likelihood of the portfolio to follow an underlying economic trend. Therefore:

- in uptrend periods, diversification is beneficial because it reduces the
downside risk and highlights the positive trend; thus, the default prob-
ability decreases;

- in downtrend periods, diversification is detrimental because it reduces
the upside potential and highlights the negative trend; therefore, the
default probability increases.

Figure 4 explains this intuition by showing how the pdf of portfolio returns is
influenced by the downtrend probability and by the level of diversification. As
one may observe, for increasing diversification, viz., lower volatility, the pdf
changes shape by moving from the thick black curve (σ = 0.7), to the medium
black curve (σ = 0.4), and finally to the thin black curve (σ = 0.2). In Figure
4 a) the probability of a positive trend is greater than the probability of a
negative trend, p = 0.2. Therefore, diversification is desirable because it
reduces the volatility and, by doing so, it shifts to the right the density of
the distribution of portfolio returns. Instead, In Figure 4 b) the probability
of a negative trend is greater than the probability of a positive trend, p = 0.8.
In this case, diversification is undesirable because, by reducing the volatility,
it shifts to the left the density of the distribution.
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Figure 4: Distribution of portfolio returns for different levels of volatility and
different prob. of downtrend.
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Comparison between the probability density functions of three portfolios with returns

following a bimodal distribution with the same expected value but decreasing volatility.

Thick black curve (σ = 0.7), medium black curve (σ = 0.4), thin black curve (σ = 0.2). (a)

Each curve represents the pdf of a portfolio with returns distributed as Y 1 ∼ N(−0.5, σ)

with probability p = 0.2 and as Y 2 ∼ N(0.5, σ) with probability 1 − p = 0.8. (b) Each

curve represents the pdf of a portfolio with returns distributed as Y 1 ∼ N(0.5, σ) with

probability p = 0.8 and as Y 2 ∼ N(0.5, σ) with probability 1− p = 0.2.

3.3. Bank Utility Function

In this section we formalize the bank utility maximization problem with
respect to the number m of external assets held in the equally weighted
portfolio described in Section 3.1.

The bank’s payoff from investing in external assets is a random variable
Πm that depends on the number m of external assets in portfolio and on
their values. It takes the value π in the set Ωπ = [π−, ..., π+], where:{

π− := s− − s0 max attainable profit,
π+ := s+ − s0 max attainable loss.
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More specifically, given m mutually exclusive choices (i.e., the bank portfolio
can be composed of 1, 2, ... external assets) and their corresponding random
return Π1,Π2, ..., with distribution function F1(π), F2(π), ..., preferences that
satisfy the von Neumann-Morgenstern axioms imply the existence of a mea-
surable, continuous utility function U(π) such that Π1 is preferred to Π2 if
and only if EU(Π1) > EU(Π2). We assume that banks are mean-variance
(MV) decision makers, such that the utility function EU(Πm) may be writ-
ten as a smooth function V (E(Πm), σ

2(Πm))
7 of the mean E(Πm) and the

variance σ2(Πm) of Πm or

V
(
E(Πm), σ

2(Πm)
)
:= EU(Πm) = E(Πm)− (λσ2(Πm))/2

such that Π1 is preferred to Π2 if and only if 8

V
(
E(Π1), σ

2(Π1)
)
> V

(
E(Π2), σ

2(Π2)
)
.

Then, the maximization problem is as follows:

max
m

EU(Πm) = E(Πm)− λσ2(Πm)

2
(23)

s.t.:

⎧⎪⎪⎨
⎪⎪⎩

1 ≤ m ≤M
l > 0
s− < s0 < s+

pμ−
s + (1− p)μ+

s > 0

with

⎧⎪⎪⎨
⎪⎪⎩

E(Πm) = p [qπ− + (1− q)π+] + (1− p) [gπ− + (1− g)π+]

σ2(Πm) = p
[
q (π− − E(Πm))

2
+ (1− q) (π+ − E(Πm))

2
]

+(1− p)
[
g (π− − E(Πm))

2
+ (1− g) (π+ − E(Πm))

2
]
.

Notice that Eq.(23) is a static non-linear optimization problem w.r.t. m,
with inequality constraints. The first constraint means that m can take only
positive values between 1 andM . The second constraint requires banks to be

7To describe V as smooth, it simply means that V is a twice differentiable function of
the parameters E(Πm) and σ2(Πm).

8Only the first two moments are relevant for the decision maker; thus, the ex-
pected utility can be written as a function in terms of the expected return (increas-
ing) and the variance (decreasing) only, with ∂V

(
E(Πm), σ2(Πm)

)
/∂E(Πm) > 0 and

∂V
(
E(Πm), σ2(Πm)

)
/∂ σ2(Πm) < 0.
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debt-financed. The third constraint requires that banks are not yet in default
when implementing their asset allocation, i.e., the initial portfolio value must
lie between the lower default boundary and the upper safe boundary. The last
constraint represents the “economic growth” condition. That is, the expected
economic trend of the real economy-related assets has to be positive. Since by
definition, |μ−

s |=|μ+
s |, this condition is equivalent to impose an upper bound

to the downtrend probability, namely p ∈ Ωp := [0, 1
2
). Then, given the

above constraints, at time t banks randomly select (and fix) the number m
of external assets to hold in their portfolio in order to minimize their default
probability. This, in turn, maximizes their expected utility.

Figure 5: Expected MV Utility for different levels of risk diversification.
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Fixed downtrend probability, p = 0.4. The figure compares the expected MV utility of

the banking system vs. the expected MV utility of the regulator. The curves represent

different initial asset values, s0, and different drifts, μ. (a) Exp. MV Utility of the banking

system EU(Πm). (b) Exp. MV Utility of the regulator EUr(Πm). Parameters: σ2 = 0.5,

rf = 0.001, ε = 0.1, λ = 0.1, β = 0.2, l = 0.5, k = 2, m ∈ {1, ..., 100}, s0 ∈ {3.7, 4, 4.5},
|μ+| = |μ−| ∈ {0.003, 0.005}.
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3.4. Solution of the Bank Max Problem

The analysis of Eq. (23) leads to the following proposition:

Proposition 2. Given the probability interval Ωp := [0, 1
2
), there exists a

subinterval Ωp� ⊂ Ωp s.t., to each p� ∈ Ωp� corresponds an optimal level of di-

versification m� in the open ball B
(
1+M
2
, r
)
=

{
m� ∈ R | d

(
m�, 1+M

2

)
< r

}
with center 1+M

2
and radius r ∈ [0, α] where α = f(q, g). Then, EU(Πm) ≤

EU(Πm�), for all m /∈ B
(
1+M
2
, r
)
.

See Appendix A. Proposition 2 states that optimal diversification may
be an interior solution. Namely, when banks maximize their MV utility they
may choose an intermediate level of diversification, viz., m� ∈ (1,M). m�

is the unique optimal solution and its level depends on the market size and
on the likelihood of incurring in a negative or positive trend. In the words
of Haldane (2009), we show that diversification is a double-edged strategy.
Values of m ≷ m� are second-best choices. Precisely, by increasing m to ap-
proachm� from below, banks increase their utility. However, by increasingm
beyond m�, banks decrease their utility. In summary, the MV utility exhibits
inverse U-shaped non-monotonic behavior with respect to m. These results
hold under the market structure described in the previous sections. Briefly,
banks are fully rational agents with incomplete information about the future
state of the world. There are no transaction costs, negative externalities or
market asymmetries. Market returns exhibit a bimodal distribution.

For a fixed probability p, Figure 5 a) shows how the utility changes for
different levels of diversification m, different magnitudes of the trend and
different initial asset values, s0. Instead, for a fixed initial asset value s0,
Figure 6 a) shows how the utility changes for different levels of diversification
m, different magnitudes of the trend and different probability of downtrend,
p. Notice that, m enters into the maximization problem via Eq. (15). In
particular, the portfolio volatility decreases with m. Therefore, an outward
movement along the x-axis in Figures 5–6, i.e., increasing m, is equivalent
to a market condition where the volatility of the assets is low, σ = σlow.
Conversely, an inward movement along the x-axis in Figures 5–6, i.e., de-
creasing m, is equivalent to a market condition where the volatility of the
assets is high, σ = σhigh. To conclude, one might observe that if banks are
already in m�, an abrupt increases in the volatility of the assets (equivalent
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to an inward movement from m�) decreases the utility of the banks.9 In a
optimization problem similar to our own, but with endogenous equilibrium
asset pricing, Danielsson and Zigrand (2008) show that an increase in the
volatility of both assets and portfolios can be generated by imposing strict
risk-sensitive constraints of the VaR type.

Figure 6: Expected MV Utility for different levels of risk diversification.
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(b)

Fixed initial asset value, s0 = 3.69. The figure compares the expected MV utility of

the banking system vs. the expected MV utility of the regulator. The curves represent

different probabilities of downtrend, p and different drifts, μ. (a) Exp. MV Utility of the

banking system EU(Πm). (b) Exp. MV Utility of the regulator EUr(Πm). Parameters:

σ2 = 0.5, rf = 0.001, ε = 0.1, λ = 0.1, β = 0.2, l = 0.5, k = 2, m ∈ {1, ..., 100},
p ∈ {0.2, 0.3, 0.4}, |μ+| = |μ−| ∈ {0.003, 0.005}.

9This result could uprise as a possible explanation for the empirical findings that sol-
vency condition across financial institutions, in the recent US 2007-08 crises, has been
driven by an increase in the volatility of the firm’s assets, Atkeson et al. (2013).
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4. Private Incentives vs. Social Welfare

Consider a sophisticated bank that, differently from the other banks,
internalizes in its maximization problem the social costs due to multiple
bank failures. These are negative externalities that limited-liability banks
commonly do not account for. The definition of social losses is rather flexible
since it depends on the characteristics of the financial system under analysis.
In our model, we remain generic regarding the structure of these social costs.

In this section, we formulate the utility maximization problem of this
sophisticated bank that we call “regulator” and compare it to the utility
maximization problem of individual banks in Eq. (23). Let K be the num-
ber of simultaneously crashing banks. Then, it is reasonable to assume the
followings:

Assumption 1. The total loss to be accounted for by the regulator in down-
trend periods is a monotonically increasing function f(k, π−) := kπ− of: (i)
the expected number k of bank crashes given a collapse of at least one bank
E(K|K ≥ 1) = k, (ii) the magnitude of the loss π−.

4.1. Regulator Utility Function

Therefore, the regulator’s utility maximization problem is as follows,

max
m

EUr(Πm) = Er(Πm)− λσ2
r(Πm)

2
(24)

s.t.:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ≤ m ≤M
l > 0
s− < s0 < s+

pμ−
s + (1− p)μ+

s > 0
k > 1

with

⎧⎪⎪⎨
⎪⎪⎩

Er(Πm) = p [qkπ− + (1− q)π+] + (1− p) [gπ− + (1− g)π+]

σ2
r(Πm) = p

[
q (kπ− − E(Πm))

2
+ (1− q) (π+ − E(Πm))

2
]

+(1− p)
[
g (π− − E(Πm))

2
+ (1− g) (π+ − E(Πm))

2
]
.

Notice that, with respect to the optimization in Eq. (23), the regulator is
subject to the additional constraint k > 1 that amplifies both the expected
loss and its variance. In summary, we compare the general solution of the
maximization problem in Eq. (23) with that in Eq. (24).
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4.2. Results

The analysis shows that the optimal level of diversification for the regu-
lator, mr, is left-shifted with respect to the one desirable from the financial
system point of view, m�. Therefore,

Proposition 3. The incentives of individual banks favor a banking system
that is over-diversified in external assets w.r.t. to the level of diversification
that is socially desirable:

m� ≥ mr . (25)

See Appendix A. This result can be also illustrated by comparing Figure 5
a) with Figure 5 b) and Figure 6 a) with Figure 6 b).

To conclude, our model suggests that over-diversification occurs because
banks do not internalize in their utility maximization problem the fact that
their failure may also drag down other banks causing generalized losses to the
whole system. As a final result, as soon as the probability of downtrend is
moderately high, diversification turns to be a negative strategy that decreases
the utility of the system.

5. Concluding Remarks

This paper provides a new modeling framework to measure the benefits
that are associated with holding a diversified portfolio of assets in a system
context of banks with interlocked balance sheets. In particular, we use the
Black-Cox first-passage-time approach to measure the default probability of
individual banks in a network context a‘ la Eisenberg and Noe. Indeed,
we model the evolution over time of banks assets as stochastic processes
where, at the same time, interbank assets value are a function of the financial
fragility of the counterparties.

A first contribution of our dynamic and stochastic portfolio approach
lies in measuring the benefits of risk diversification not in terms of portfolio
variance but in terms of default probability and expected utility. The advan-
tage of the stochastic approach is to provide an ex-ante estimation of default
probability as opposed to what is usually done in the works building on the
Eisenberg-Noe approach.

A second contribution is to compare the optimal diversification at indi-
vidual and system levels. In contrast with previous studies, we find that
even in the absence of transaction costs, the optimal level of diversification
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is interior both for the individuals and the system. The mechanism behind
this result functions as follows. The mitigation of idiosyncratic risks reduces
the volatility of the portfolio of assets in the balance sheet. A lower level of
volatility reduces the likelihood of the portfolio return to deviate from the
underlying economic trend. Therefore, if the assets in portfolio are trend-
ing upward, then increasing diversification is a good strategy that reduces
the default probability and increases the expected utility. Conversely, if the
assets are in a downtrend, then increasing diversification is a poor strategy
that increases the default probability and reduces the expected utility.

Notice that, to better isolate the effectiveness of diversification in mit-
igating idiosyncratic risks to which banks are exposed via external assets
holding, in our setting the interbank diversification is fixed and homoge-
nous. However, one could introduce some heterogeneity in the balance sheet
structure and in the portfolio holdings of the banks and answer the question
whether external diversification and interbank diversification are substitutes
or complements.

Overall, an important point stemming from our analysis lies in the recog-
nition that the objective of a regulator is not to target a specific diversification
level of risk but rather to manage the trade-off between the social losses from
defaults (because of excessive risk spreading in economic downturn) and the
social costs of avoiding defaults (because of excessive risk diversification in
economic booms).

Appendix A. Proofs

Proof. Implicit Recovery Rate The recovery rate is the proportion of face value
that is recovered through bankruptcy procedures in the event of a default. There-
fore, the general formula for the discounted recovery rate δ̂ is

δ̂ =
li

(1 + rf + βφi)

(
1

li

)
(A.1)

=
1

(1 + rf + βφi)
.

That is

δ̂ =

{
1

1+rf in case of no default
1

1+rf+β in case of default
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The actual recovery rate at the maturity of the debt is δ = δ̂(1 + rf ). That is

δ =

{
1 in case of no default
1+rf

1+rf+β in case of default

Proof. Quadratic leverage The leverage at banking system level can be derived
from Eq. (10) rewritten as:

li = φi ×
⎛
⎝∑

j

zijsj +
∑
k

wiklk/ (1 + rf + βφk)

⎞
⎠ . (A.2)

In vector notaton, Eq.(A.2) is equivalent to

L = Φ× [
ZV + (R+ βΦ)−1WL

]
that we explicit for Φ:

L = ΦZV +Φ(R+ βΦ)−1WL

L(WL)−1 = ΦZV(WL)−1 +Φ(R+ βΦ)−1WL(WL)−1

W−1 = ΦZV(WL)−1 +Φ(R+ βΦ)−1

W−1(R+ βΦ) = ΦZV(WL)−1(R+ βΦ) +Φ(R+ βΦ)−1(R+ βΦ)

W−1(R+ βΦ) = ΦZV(WL)−1(R+ βΦ) +Φ

W−1R+W−1βΦ = ΦZVL−1W−1R+ΦZVL−1W−1βΦ+Φ

ΦHβΦ+ΦHR−W−1βΦ+Φ = W−1R

where H := ZV(WL)−1.

Proof. Systemic Default Probability In compact form, Eq. (19) reads as φ =
f(s, l, rf , β). The dynamics of φ depends directly on the dynamics of s in Eq. (15)
because both rf and l are real const. and β is a coefficient. Therefore, to derive
the systemic default probability P(φ ≥ 1) in a close form, one could find, via
Ito’s Lemma, the dynamics of φ from the dynamics of s and observe whether
φ(0) ∈ (ε, 1) exits after time t ≥ 0 through the upper default boundary fixed at
one. However, f is highly non linear in s, see Eq. (19). Thus, it is convenient to
derive the systemic default probability directly from the dynamics of s by mapping
the sample space of φ into the sample space of s. Since the partial derivative of f

w.r.t. s, i.e, ∂f
∂s = −l/

(
2s
√
lRs

)
, is negative for all s and for any value of rf , l in
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their range of variation, the Inverse Function Theorem implies that f is invertible
on R

+:

f−1(φ) =
l(2φ+R)

φ(φ+R)
, s.t. (f−1)′(φ) =

1

f ′(s)
.

Observe that, by definition, the value of external assets cannot be negative, s ∈ R
+.

The partial derivative f ′(s) w.r.t. s is negative for all s and for any value of (l, rf ,
β) in their range of variation:

f ′(s) =
−l

(
(β − 1)2l + (1 + β)Rs+ (−1 + β)

√
(−1 + β)2l2 + 2(1 + β)pRs+R2s2

)
2βs2

√
4βlRs(l − βl +Rs)2

< 0

Then, by the Inverse Function Theorem f is invertible on R
+

f−1(φ) =
l(φ+ βφ+R)

φ(βφ+R)
, s.t. (f−1)′(φ) =

1

f ′(y)
.

Moreover, one can show that the inverse f−1 is continuous. Given the above result,
we obtain the following mapping between the values of φ and s:{

f(s) = 1 iff f−1(φ) =
l(rf+β)
(R+β) := s−

f(s) = ε iff f−1(φ) = l(βε−ε+1)
(βε2+ε)

:= s+ .

Hence, the systemic default probability can be defined also w.r.t. s:

P(default) = P(φ ≥ 1) ≡ P(s ≤ s−).

This is the probability that s, initially at an arbitrary level s(0) := s0 ∈ (s−, s+),
exits through the lower default boundary s− after time t ≥ 0. From Gardiner
(1985), P(s ≤ s−) has the following explicit form:

P(s ≤ s−) =

(∫ s+

s0

dsψ(x)

)
/

(∫ s+

s−
dxψ(x)

)
. (A.3)

with ψ(x) = exp
(∫ x

0 −2μ̂
σ̂2 ds

)
. Eq. (A.3) has the following closed form solution:

P(s ≤ s−) =
(
exp

[
− 2μ̂s0

σ̂2

]
− exp

[
− 2μ̂s+

σ̂2

])
/

(
exp

[
− 2μ̂s−

σ̂2

]
− exp

[
− 2μ̂s+

σ̂2

])
,

(A.4)

with μ̂ = pμ++(1−p)μ− and σ̂2 = p
[
(μ+ − μ̂)2 + σ2

m

]
+(1−p)

[
(μ− − μ̂)2 + σ2

m

]
.

During a downtrend, Eq. (A.3) yields the conditional default probability given a
downtrend

q := P(default | μ−) = P(s ≤ s− | μ−)
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with the following closed form solution:

q =

(
exp

[
− (2μ−)s0

σ2/m

]
− exp

[
− (2μ−)s+

σ2/m

])
/

(
exp

[
− (2μ−)s−

σ2/m

]
− exp

[
− (2μ−)s+

σ2/m

])
.

(A.5)
During an uptrend, Eq. (A.3) yields the conditional default probability given an
uptrend:

g := P(default | μ+) = P(s ≤ s− | μ+)
with the following closed form solution:

g =

(
exp

[
− (2μ+)s0

σ2/m

]
− exp

[
− (2μ+)s+

σ2/m

])
/

(
exp

[
− (2μ+)s−

σ2/m

]
− exp

[
− (2μ+)s+

σ2/m

])
.

(A.6)

Proof. Bifurcation of the conditional default probability
We provide an asymptotic analysis that explains the results presented in Propo-

sition 1. Let rewrite Eq. (A.5) and Eq. (A.6) as

q =
M s0

(−) −M s+

(−)

M s−
(−) −M s+

(−)

=M
(s0−s+)
(−)

[
M

(s−−s+)
(−) − 1

]
− 1

M
(s−−s+)
(−) − 1

(A.7a)

g =
M s0

(+) −M s+

(+)

M s−
(+) −M s+

(+)

=M
(s0−s+)
(+)

[
M

(s−−s+)
(+) − 1

]
− 1

M
(s−−s+)
(+) − 1

(A.7b)

withM(−) = exp
[−(2μ−)m

σ2

]
andM(+) = exp

[−(2μ+)m
σ2

]
. Then, the following result

is straightforward: {
lim

m→+∞ q = 0− (−1) = 1

lim
m→+∞ g = 0− 0 = 0

To conclude, for any arbitrary small number ε ∈ (0, 1)

∃ m̄ > 1 | (q − g) > 1− ε ∀ m > m̄
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Proof. Existence Proof of the Optimal Intermediate Diversification Level Propo-
sition 1 shows that in a (arbitrage free) complete market of assets with a stochastic
trend, even in the absence of transaction costs banks maximize their MV utility
by selecting an intermediate level of diversification m�. To prove it, let rewrite
Eq. (A.5) and Eq. (A.6) as

q =
exp

[
− (2μ−)s0m

]
− exp

[
− (μ−)m

]
1− exp

[
− (μ−)m

] (A.8a)

g =
exp

[
− (2μ+)s0m

]
− exp

[
− (μ+)m

]
1− exp

[
− (μ+)m

] (A.8b)

where, we discard the trivial case μ = 0, and w.l.g. we set σ2 = 1. The partial
derivatives of (A.8a) and (A.8b) w.r.t. m are positive and negative, respectively:

∂q

∂m
=

(μ−) exp
[
m(1− 2s0)(μ

−)
] (

exp
[
(2μ−)s0m

]
− 2s0

(
exp

[
(μ−)m

]
− 1

)
− 1

)
(
exp

[
(μ−)m

]
− 1

)2 > 0 ,

(A.9a)

∂g

∂m
=

(μ+) exp
[
m(1− 2s0)(μ

+)
] (

exp
[
(2μ+)s0m

]
− 2s0

(
exp

[
(μ+)m

]
− 1

)
− 1

)
(
exp

[
(μ+)m

]
− 1

)2 < 0 .

(A.9b)

Now, we decompose the MV utility in Eq. (23) as follows:

EU(Πm)μ− = p

[(
qπ− + (1− q)π+

)− λ

2

(
q
(
Δ−

−
)2

+ (1− q)
(
Δ+

−
)2)]

, (A.10a)

EU(Πm)μ+ = (1− p)

[(
gπ− + (1− g)π+

)− λ

2

(
g
(
Δ−

+

)2
+ (1− g)

(
Δ+

+

)2)]
(A.10b)

where

{
π+ := s+ − s0,
π− := s− − s0,

and

⎧⎪⎪⎨
⎪⎪⎩

Δ−
− := π− − p [qπ− + (1− q)π+] ,

Δ+
− := π+ − p [qπ− + (1− q)π+] ,

Δ−
+ := π− − (1− p) [gπ− + (1− g)π+] ,

Δ+
+ := π+ − (1− p) [gπ− + (1− g)π+] .
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Let observe that Eq. (A.10a) is decreasing in m, while Eq. (A.10b) is increasing
in m:

∂EU(Πm)μ−

∂m
= p

(
∂q

∂m

)(
π− − π+

)
< 0 (A.11a)

∂EU(Πm)μ+

∂m
= (1− p)

(
∂g

∂m

)(
π− − π+

)
> 0 (A.11b)

Eq. (23) can be interpreted as a linear combination of Eq. (A.10a) and Eq. (A.10b)
that are weighted by p and (1 − p), respectively. Then, when the partial deriva-
tive in Eq. (A.11a) is equal to the partial derivative in Eq. (A.11b), EU(Πm) is
maximized w.r.t. m. The condition to be verified is to find the probability p� that
makes the two equations to be equivalent:

FOC: p

(
∂q

∂m

)(
π− − π+

)
= (1− p)

(
∂g

∂m

)(
π− − π+

)
.

The condition is satisfied for all

p� = 1/

(
1 +

∂q

∂g

)
∈ Ωp� ⊂ ΩP := [0, 1] (A.12)

with q = q(m�), g = g(m�). In a more general form, Eq. (A.12) can be written
as p� = f [g(m�); q(m�)]. Since g, q and f are all one-to-one, for the Inversion
Function Theorem are invertible functions. Hence, for a fixed value of p�, must
exists an m� such that:

m� =
[
(g−1; q−1) ◦ f−1

]
(p�) ⇒ ∃ EU(Πm�) ≥ EU(Πm) ∀m ≷ m�.

The economic growth condition implies p� < 1
2 . From (A.12), this is equivalent

to write:

1

2
>

∂g
∂m

∂q
∂m + ∂g

∂m

∂g

∂m
<

1

2

[ ∂q
∂m

+
∂g

∂m

]
∂g

∂m
+
∂g

∂m
<

∂q

∂m
+
∂g

∂m
∂g

∂m
<

∂q

∂m

which is always true because from Eq. (A.9a)–(A.9b) ∂g
∂m < 0 and ∂q

∂m > 0. To
conclude, to each p� ∈ Ωp� ⊂ Ωp := [0, 12) corresponds an optimal level of diver-

sification m� in the open ball B
(
1+M
2 , r

)
=

{
m� ∈ R | d

(
m�, 1+M

2

)
< r

}
with
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center 1+M
2 and radius r ∈ [0, α] where α = f(q, g). Then, EU(Πm) ≤ EU(Πm�),

for all m /∈ B
(
1+M
2 , r

)
.

Proof. Banks are Over-Diversified: m� ≥ mr. Following the same line of
reasoning used in the previous proof, we decompose EUr(Πm) as follows:

EUr(Πm)μ− = p

[(
qkπ− + (1− q)π+

)− λ

2

(
q
(
kΔ−

−
)2

+ (1− q)
(
Δ+

−
)2)]

(A.13a)

EUr(Πm)μ+ = (1− p)

[(
gπ− + (1− g)π+

)− λ

2

(
g
(
Δ−

+

)2
+ (1− g)

(
Δ+

+

)2)]
.

(A.13b)

Eq. (A.13b) is not affected by Assumption 1 in Section 4 and remains equivalent
to (A.10b). Hence, the partial derivative w.r.t. m of Eq. (A.13b) is equal to
Eq (A.11b):

∂EUr(Πm)μ+

∂m
≡ ∂EU(Πm)μ+

∂m
= (1− p)

(
∂g

∂m

)(
π− − π+

)
.

However, because of the factor k, the partial derivative w.r.t. m of Eq. (A.13a) is
steeper than Eq (A.11a) . It is easy to see that for any k > 1,

∂EUr(Πm)μ−

∂m
= p

(
∂q

∂m

)(
kπ− − π+

)
<
∂EU(Πm)μ−

∂m
= p

(
∂q

∂m

)(
π− − π+

)
< 0

The condition to be verified is to find the probability pr that makes the two
equations to be equivalent:

FOC: (1− p)

(
∂g

∂m

)(
π− − π+

)
= p

(
∂q

∂m

)(
kπ− − π+

)
.

Discarding the trivial solution μs = 0, the condition is satisfied for all

pr = 1/

(
1 +

(
∂q

∂g

)
υ

)
∈ ΩP r ⊂ ΩP := [0, 1] (A.14)

with q = q(mr), g = g(mr) and υ = (kπ−−π+)
(π−−π+)

.

In a more general form, (A.14) can be written as

pr = f (υ[g(m�); q(m�)]) .

32



Since g, q, υ and f are all one-to-one and hence invertible functions, for a fixed
value of pr, must exists an mr such that

mr =
[
(g−1; q−1) ◦ υ− ◦ f−1

]
(pr).

Eq.(A.14) is a decreasing function w.r.t. υ which is a constant function bigger
than one because k > 1. Then, pr < p�. This implies that the diversification level
mr is lower than the level m�:

mr =
[
(g−1; q−1) ◦ υ−1 ◦ f−1

]
(pr) < m� =

[
(g−1; q−1) ◦ f−1

]
(p�)
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