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Abstract

In a symmetric information voting model, an individual (information controller)

can influence voters’ choices by designing the information content of a public signal.

We characterize the controller’s optimal signal. With a non-unanimous voting rule, she

exploits voters’ heterogeneity by designing a signal with realizations targeting di↵erent

winning-coalitions. Consequently, under simple-majority voting rule, a majority of

voters might be strictly worse o↵ due to the controller’s influence. We characterize

voters’ preferences over electoral rules, and provide conditions for a majority of voters

to prefer a supermajority (or unanimity) voting rule, in order to induce the controller

to supply a more informative signal.
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1 Introduction

Uncertainty gives rise to persuasion.

— Anthony Downs (1957)

Information is the cornerstone of democracy, as it allows voters to make better choices.

In many important cases, however, uninformed voters are not free to launch their own in-

vestigations, and must rely on the inquiries of others. For example, in most trials a juror

may not choose which tests are performed during the investigation, or which questions are

asked to a witness — jurors must rely on the prosecutor’s investigation and questions. In

politics, the Legislative branch often must rely on information generated by investigative re-

ports produced by the Executive. In firms, shareholders and the Board of Directors typically

depend on reports commissioned by the CEO. If the individual choosing the questions and

the voters have di↵erent preferences, then she may strategically design her investigation to

persuade voters to choose her preferred alternative.

In this paper we study how an individual (the “information controller”) influences the

decision of voters by strategically designing a public signal, that is, by engaging in infor-

mation control (e.g., Brocas and Carrillo 2007, Duggan and Martinelli 2011, Kamenica and

Gentzkow 2011). We first study how the voting rule and the distribution of voters’ prefer-

ences a↵ect the controller’s choice of a signal. We show that with a non-unanimous voting

rule and heterogenous voters, the controller can design a signal with realizations targeting

di↵erent winning coalitions. That is, the signal exploits preference disagreement across vot-

ers. Consequently, under simple-majority, a majority of voters might be strictly worse o↵ due

to the information supplied by the controller. To prevent this negative impact, voters may

adopt a supermajority voting rule that induces the controller to supply a more informative

signal.

In our model, a group of uninformed voters must choose whether to keep the status

quo (or default) policy, or to implement a proposed new policy. This can be interpreted as

voters choosing between an incumbent politician and a challenger, shareholders choosing to

approve or not a merger, members of a jury choosing between a guilty or not guilty verdict,

or members of a legislature choosing to approve or not a new law. Prior to the election,
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the information controller can sway voters’ decision by designing what voters can learn from

a public signal, i.e. by specifying the statistical relation of the signal with the underlying

state.1 After observing the signal and its realization, voters apply Bayes’ rule and reach a

common posterior belief. They then choose an action (vote) and the electoral rule dictates

the electoral outcome.

We focus on the case of pure-persuasion, where the information controller wants to max-

imize the probability of approval of the proposal, independently of the state (in Section 5.2

we consider a controller with state-dependent payo↵s). We study two classes of institutional

rules. The first is delegation, and serves as a benchmark. Under delegation, one member of

the group acts as a dictator and chooses his preferred policy given his beliefs. The second is

the class of k-voting rules, where a proposal replaces the status quo if it receives k or more

votes. We focus on k -voting rules because they are important and prevalent in practice,

and because they allow us to derive sharp equilibrium characterizations and comparisons.

Since the controller’s signal is public and voters have no private information, there is no

information aggregation problem. Hence, the strategic voting considerations related to the

probability of being pivotal are absent in our model.

We start by characterizing the optimal signal when the approval decision is delegated to

voter i, who absent further information would reject the proposal. The controller maximizes

the probability of approval by designing a signal such that, whenever voter i approves the

proposal, he is just indi↵erent between approval and rejection. This implies that voter i does

not benefit from this signal when he is the decision maker. In fact, voter i would prefer to

delegate the approval decision to a “tougher” voter j to induce the controller to supply a

more informative signal (where voter j is “tougher” than i if, for every belief, approval by j

implies approval by i).

We then characterize the optimal signal under a k-voting rule. We establish that a k-

voting rule is payo↵-equivalent to delegating the decision to a particular “weak representative

voter.” This result allows us to relate the optimal signal under the k-voting rule to that under

delegation. Given a k�voting rule, do voters benefit from the controller’s signal? We show

1In our basic setup we consider an information controller who has no private information. In Section 5.1

we consider a controller who learns the state before choosing the signal.
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that under a simple majority rule, the controller’s influence always makes a majority of voters

weakly worse o↵. We then define conditions such that a majority of voters is strictly worse o↵.

This happens when the controller’s optimal signal targets di↵erent winning coalitions, that

is, when the controller exploits voters’ preference disagreement to increase the probability of

approving the proposal. Interestingly, this can happen even when all voters would agree on

their decision if they knew the true state.

Anticipating the controller’s influence, which k-voting rule do voters prefer? Voting rules

a↵ect outcomes not only by the amount of information voters have of the proposal’s relative

merits, but also by the consensus required to approve the proposal. In particular, requiring

a higher consensus (higher k-voting rule) may lead to an excessive rejection of the proposal.

However, it may also induce the controller to provide a more informative signal. We study

this trade-o↵ between control and information by posing two questions: (i) under delegation,

what are each voter’s preferences over decision makers?, and (ii) when decisions are made

collectively, how do preferences over decisions makers translate into preferences over k-voting

rules?

Consider a set of potential decision makers and a voter who can choose to whom to

delegate the approval decision. The decision makers are totally ordered according to their

“toughness”, and rank states in the same order as the voter, where “higher” states imply

that the proposal delivers a higher net payo↵. For any such set, we show that the voter

has single-peaked preferences over decision makers. Consider now a k-voting rule and an

electorate who shares the same ranking of states. We extend the previous result to show that

each voter has single-peaked preferences over k-voting rules. Moreover, a majority of voters

always prefers a supermajority rule over simple majority. Finally, if voters also agree under

full information, then every voter prefers unanimity over any other k-voting rule. That is,

even heterogenous voters may agree on the optimal electoral rule.

Our paper is related to the recent literature on information control. In Brocas and Car-

rillo (2007), a leader without private information sways the decision of a follower in her favor

by deciding the timing at which a decision must be made. As information arrives sequentially,

choosing the timing of the decision is equivalent to shaping (in a particular way) the informa-

tion available to the follower. Duggan and Martinelli (2011) consider one media outlet that
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can a↵ect electoral outcomes by choosing the “slant” of its news reports. The media in Dug-

gan and Martinelli is constrained in the set of signals it can design (it must be a “slant”). In

contrast, we consider an information controller who is unconstrained in her choice of signal.

Our paper is most closely related to Kamenica and Gentzkow (2011) (KG henceforth). They

develop the fundamental methodology to solve this class of unconstrained information control

problems, when players have common priors. Alonso and Câmara (2014a) study information

control when players have di↵erent prior beliefs. As in our paper, Michaeli (2014), Taneva

(2014) and Wang (2013) focus on information control when there are multiple receivers.2

Our paper also relates to the broad literature on how institutional rules endogenously

a↵ect the information available to voters. Following the work of Austen-Smith and Banks

(1996) and Feddersen and Pesendorfer (1996, 1997, 1998), a large literature has focused

on how voting rules a↵ect information aggregation via the strategic behavior of privately-

informed voters. The literature has also studied the e↵ects of voting rules on the information

available to voters when voters can deliberate (e.g., Austen-Smith and Feddersen 2005, and

Gerardi and Yariv 2007), when voters can postpone a decision in order to wait for more

information (e.g., Messner and Polborn 2012 and Lizzeri and Yariv 2013), and when voters

can acquire costly information (e.g., Li 2001, Persico 2004, Martinelli 2006, and Gerardi

and Yariv 2008). Recent papers focus on how voting rules a↵ect information provision by

privately-informed experts. Jackson and Tan (2013) consider experts who can reveal veri-

fiable information, while Schnakenberg (2014a,b) considers cheap-talk. In these papers ex-

perts are endowed with private information about the state, while in our paper the controller

chooses the informational content of a public signal. Moreover, in Section 5.1 we contrast a

2There are other recent papers that study the strategic design of a public signal. Gill and Sgroi (2008,

2012) consider a privately-informed principal who can subject herself to a test designed to provide public

information about her type, and can optimally choose the test’s di�culty. Li and Li (2013) study a privately-

informed candidate who can choose the accuracy of a costly public signal (campaign) about the qualifications

of the politicians competing for o�ce. Rayo and Segal (2010) study optimal advertising when a company can

design how to reveal the attributes of its product, but it cannot distort this information. Kolotilin (2014)

focus on how the receiver’s private information a↵ects the sender’s choice of a signal. In a somewhat di↵erent

setting, Ivanov (2010) studies the benefit to a principal of limiting the information available to a privately

informed agent when they both engage in strategic communication.
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controller without private information and a controller who privately knows the state.

The rest of the paper is organized as follows. Section 2 presents the basic model. Section

3 solves for the controller’s optimal signal. Section 4 studies voters’ preferences over insti-

tutional rules. Section 5 extends the basic model. Section 6 applies our results to relevant

voting models. Section 7 concludes. All proofs are in the Appendix.

2 The Model

2.1 General Setup

Policy and Decision Makers: A group of n voters must choose one alternative from

a binary policy set X = {x0, x1}, where x0 is the status quo (or default) policy, and x1 is

the proposal. This can be interpreted as voters choosing between an incumbent politician

and a challenger, choosing to approve or not a ballot measure, members of a jury choosing

between a guilty or not guilty verdict, or members of a legislature choosing to approve or

not a new law. The collective decision is made following established institutional rules,

which we discuss momentarily. Each voter i 2 I ⌘ {1, . . . , n} has preferences over policies

that are characterized by a continuous von Neumann-Morgenstern utility function u

i

(x, ✓),

u

i

: X ⇥ ⇥ ! R, with ⇥ a finite state space. State ✓ 2 ⇥ captures the realized value

of payo↵ relevant variables, such as the relative competence of di↵erent politicians, or the

productivity of di↵erent sectors of the economy. All players share a common prior belief

p = {p
✓

}
✓2⇥, which has full support in ⇥.

Information Controller: One information controller C, who is not a member of the group,

has preferences over policies characterized by a continuous von Neumann-Morgenstern utility

function u

C

. We focus on the case of pure-persuasion were the controller’s preferences are

independent of the realized state, u
C

(x) : X ! R (in Section 5.2 we consider a controller

with state-dependent payo↵s). The controller can influence the decision of the group by

designing a public signal that is correlated with the state. Before the group selects a policy,

the controller chooses a signal ⇡, consisting of a finite realization space S and a family

of likelihood functions over S, {⇡(·|✓)}
✓2⇥, with ⇡(·|✓) 2 �(S). Signal ⇡ is “commonly
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understood”: ⇡ is observed by all players who agree on the likelihood functions ⇡(·|✓), ✓ 2

⇥ (see Alonso and Câmara 2014a for a discussion of this assumption). Players process

information according to Bayes rule. Let q(s|⇡, p) be the updated posterior belief3 of every

voter after observing ⇡ and its realization s.

We make two important assumptions regarding the set of signals available to the con-

troller. First, she can choose any signal that is correlated with the state. Thus, our setup

provides an upper bound on the controller’s benefit from information control in settings with

more restricted spaces of signals. In particular, he controller will not engage in designing

a signal when she faces additional constraints if there is no value of information control in

our unrestricted setup. Second, signals are costless to the controller. This is not a serious

limitation if each signal is equally costly, and would not a↵ect the choice of signal if the

controller decides to influence voters. However, the optimal signal may change if di↵erent

signals have di↵erent costs. Gentzkow and Kamenica (2013) o↵er an initial exploration of

persuasion with costly signals, where the cost of a signal is given by the expected relative

entropy of the beliefs that it induces.

2.2 Institutional Rules

After observing the realization of the controller’s signal, the group chooses one policy x 2

X. The institutional rules governing the collective decision process are summarized by a

mechanism � = (�1, . . . ,�n

, h), which defines a strategy set �
i

for each member i and an

outcome function h : �1 ⇥ . . .⇥ �
n

! X. Given belief q, mechanism � and utility functions

{u
i

}
i2I define a Bayesian game G. Let �⇤(q) ⌘ {�⇤

i

(q)}
i2I be a Perfect Bayesian equilibrium

strategy profile played in this game. Together � and �

⇤(q) implement a social choice function

g(q) : �(⇥) ! X, which defines the group’s equilibrium policy choice as a function of beliefs.

Therefore, for any signal ⇡ and realization s 2 S that yields belief q, the controller’s payo↵

is given by

v(q) = u

C

(g(q)). (1)

3We use “posterior belief” to indicate the players’ belief about the state after the signal realization but

before voting. To simplify notation, we use q(s) or q as a shorthand for q(s|⇡, p).
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Our main goal is to study how di↵erent institutional rules a↵ect the optimal choice of

a signal and the equilibrium payo↵ of players. We focus on two classes of institutional

rules: delegation, which serves as a benchmark, and k-voting rules, where a proposal replaces

the status quo if it receives k or more votes. We focus on k-voting rules because they are

important and prevalent in practice, and because they allow us to derive sharp equilibrium

characterizations and comparisons. We now formally define these institutional rules.

Delegation: Decision rights are fully delegated to a particular player d 2 I. Mechanism

� = {�1, . . . ,�n

, h} has �
d

= X, where individual d chooses a policy �

d

(q) and this policy

is implemented, h(�1(q), . . . , �n(q)) = �

d

(q). In equilibrium, player d acts as a dictator and

chooses x 2 X that maximizes his expected payo↵, �⇤
d

(q) 2 argmax
x2X

P
⇥ q

✓

u

d

(x, ✓). If

there are multiple optimal policies, we assume he chooses the one preferred by the information

controller. Delegation implements g(q) = �

⇤
d

(q), and (1) becomes v(q) = u

C

(�⇤
d

(q)). It follows

from Berge’s maximum theorem that v is upper-semicontinuous.

k-voting rule: Proposal x1 is selected if and only if it receives at least k votes, where k 2

{1, . . . , n} is the established electoral rule. Mechanism � = {�1, . . . ,�n

, h} has �
i

= {0, 1},

where �

i

(q) = 1 represents voting for proposal x1, and �

i

(q) = 0 represents voting for x0 —

we abstract from abstention. The outcome function h is

h(�1(q), . . . , �n(q)) =

8
<

:
x1 if

P
i2I �i(q) � k,

x0 if
P

i2I �i(q) < k.

Given a belief q, we apply the following two equilibrium selection criteria in case of multiple

equilibria:

1. If policy x yields voter i a strictly higher expected payo↵ than policy x

0, then he votes

for x;

2. If the two policies yield voter i the same expected payo↵, then he votes for the policy

preferred by the information controller.

The first criterion rules out uninteresting equilibria such as, when k < n, all voters vote

for the status quo independently of expected payo↵s. Importantly, in our model voters have
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no private information about the state, so there is no information aggregation problem.

Hence, the strategic voting considerations related to the probability of being pivotal are

not relevant in our setup. From the set of equilibria satisfying the first criterion, we select

the subset of controller-preferred equibria, which guarantees that the controller’s expected

payo↵ v is an upper semicontinous function of posterior beliefs. Let �⇤
i

(q) be the equilibrium

choice of voter i that satisfies the previous selection criteria. The social choice function is

then g(q) = h(�⇤
1(q), . . . , �

⇤
n

(q)).

As in Alonso and Câmara (2014a), we focus on language-invariant Perfect Bayesian

equilibrium: a Perfect Bayesian equilibrium in which individual decisions depend on posterior

beliefs, but not on the actual signal or realization — for every signals ⇡ and ⇡

0, and signal

realizations s and s

0 for which individual i has the same posterior belief q, he chooses the

same equilibrium strategy �

⇤
i

(q). Note that if game G has multiple equilibria, then the social

choice function g implicitly selects which equilibrium is played.

2.3 Information Controller’s Problem

For any signal ⇡ and realization s 2 S that yields posterior q, the social choice function g

determines the implemented policy — the controller’s payo↵ v(q) is then defined by (1). The

information controller selects a signal that maximizes E

⇡

[v(q)]. Upper-semicontinuity of v

both with delegation and with k-voting rules ensures the existence of an optimal signal (see

KG). Moreover, choosing an optimal signal is equivalent to choosing a probability distribution

� over q, subject to the constraint E
�

[q] = p. That is,

V = max
�

E

�

[v(q)], s.t. E
�

[q] = p.

For an arbitrary real-valued function f define e
f as the concave closure of f ,

e
f(q) = sup {w|(q, w) 2 co(f)} ,

where co(f) is the convex hull of the graph of f . The following remarks follow immediately

from KG:

(R1) An optimal signal exists;

(R2) If the approval decision is delegated to one voter, then there exists an optimal signal
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with card(S)  2. With a k-voting rule, there exists an optimal signal with card(S) 

min{ n!
(n�k)!k! + 1, card(⇥)};

(R3) The information controller’s expected utility under an optimal signal is

V = ev(p); (2)

(R4) The value of information control is V � v(p) = ṽ(p)� v(p).

For the remaining of the paper we focus on the case where u

C

(x0) < u

C

(x1)4. Without

loss of generality, set u
C

(x1) = 1 and u

C

(x0) = 0. Therefore, the controller’s expected payo↵

V is simply the equilibrium approval probability under an optimal signal.

2.4 Definitions and Notation

We next present a series of definitions and notation that will be useful in our analysis.

Notational Conventions: For vectors q, w 2 RJ , we denote by hq, wi the standard inner

product in RJ , i.e. hq, wi =
P

J

j=1 qjwj

, and we denote by qw the component-wise product

of vectors q and w, i.e. (qw)
j

= q

j

w

j

.

Voter’s Type: Define the conditional net payo↵ for voter i when the state is ✓ as

�

i

✓

⌘ u

i

(x1, ✓)� u

i

(x0, ✓).

The vector �i = {�i
✓

}
✓2⇥ captures the preferences of the voter, and we call �i the type of voter

i. When voter i holds belief q, he votes for x1 if and only if
P

⇥ q

✓

(u
i

(x1, ✓)� u

i

(x0, ✓)) � 0,

that is, if and only if hq, �ii � 0. Hence, equilibrium voting strategies �⇤
i

are fully defined by

�

i and q,

�

⇤
i

(q) ⌘ a(q, �i) =

8
<

:
1 if hq, �ii � 0,

0 if hq, �ii < 0.

Since a voter’s type defines his voting behavior, we use the term “voter �” to refer to a voter

with type �.

4The remaining case uC(x0) > uC(x1) is equivalent to a proposal x̂1 = x0 and a status quo x̂0 = x1, with

the corresponding relabeling of the collective decision process and social choice function.
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Relevant Sets — Individual Voter: Consider a voter with type �. Define the set of

approval states D(�) = {✓ 2 ⇥|�
✓

� 0} and the set of rejection states D

C(�) = ⇥ \ D(�).

Define the set of approval beliefs A(�) = {q 2 �(⇥)| hq, �i � 0} and the set of rejection

beliefs A

C(�) = �(⇥) \ A(�). Under full information, voter � approves x1 if and only if

✓ 2 D(�); while under uncertainty he approves x1 if and only if q 2 A(�). Finally, define

the set of strong rejection beliefs R(�) = {q 2 �(⇥)|✓ 2 D(�) ) q

✓

= 0}, that is, the set of

beliefs that assign probability zero to every approval state.

Relevant Sets — Electorate: Consider an electorate {�1, . . . , �n} and a k-voting rule.

Define the win set

W

k

= {q 2 �(⇥)|
nX

i=1

a(q, �i) � k}.

That is, voters implement x1 if and only if q 2 W

k

. Given the k-voting rule, there are

n!
(n�k)!(k!) possible minimal winning coalitions of k voters. The win set is then the union of

all possible minimal winning coalitions. Under unanimity rule k = n, the win set is the

intersection of all approval sets, W
n

= \
i2IA(�i). If k = 1, then the win set is the union of

all approval sets, W1 = [
i2IA(�i). Note that W

n

is convex, but W
k

might be a non-convex

set when k < n. Given the electorate, define B as the collection of all coalitions of at least

n� k + 1 voters, with typical element b 2 B. Define the set of strong rejection beliefs

R

k

= [
b2B (\

�2bR(�)) .

That is, R
k

is the set of beliefs such that there exists a “blocking” coalition b, with voters

� 2 b assigning probability zero to every approval state.

Finally, we use V (�) and V (W
k

) to denote the equilibrium approval probability with

delegation to voter � and with a k-voting rule with win set W
k

.

Classes of Voters’ Types: It is useful to group voters according to their types. To this

end, let z be a permutation z : ⇥! {1, . . . , card(⇥)} that strictly orders the states. Define

the class of types

F
z

= {� 2 Rcard(⇥)|�
✓

> �

✓

0 () z(✓) > z(✓0)}.

That is, class F
z

includes all voter types who (strictly) rank states according to the condi-

tional net payo↵ �

✓

in the order defined by z. We say that voter �i “ranks states” according
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to z if �i 2 F
z

.

Ordering Voters: We introduce two orders on the space of voter types. First, we say

that voter � is “tougher” than voter �

0 if A(�) ⇢ A(�0). Second, we say that voter � is

(weakly) “harder-to-persuade” than voter �

0 if V (�)  V (�0). That is, under the optimal

signal, the equilibrium approval probability under an optimal signal with delegation to voter

� is (weakly) lower than with delegation to �

0.

Representative Voter: Fix a k-voting rule and an electorate {�1, . . . , �n}. Voter � is a

“representative voter” if A(�) = W

k

, that is, the proposal is approved with a k-voting rule if

and only if it would be approved with delegation to voter �. Voter � is a “weak representative

voter” if V (�) = V (W
k

), that is, if the information controller’s equilibrium expected payo↵

is the same when she only has to convince voter � and when she has to convince at least k

voters.

3 Information Control

In this section we first solve for the controller’s optimal signal both with delegation and with

a k-voting rule. We then study how the controller’s gain from designing the signal varies

with the electoral rule and the distribution of voters’ preferences.

3.1 Information Control with Delegation

Suppose that the approval decision is delegated to voter �. Which signal would the controller

optimally supply? If p 2 A(�), then the controller provides a completely uninformative sig-

nal, as the voter approves the proposal in the absence of additional information. Now suppose

p /2 A(�) and A(�) 6= ;. The characterization of the optimal signal obtains from two obser-

vations. First, the controller would never benefit from providing additional information after

the realization of an optimal signal. Therefore, after observing a signal realization that in-

duces rejection voter � must assign zero probability to every approval state ✓ 2 D(�) (see also

Proposition 4 in KG), and thus his posterior belief must lie in the strong rejection set R(�).

Second, any signal realization that leads to approval must induce a posterior belief in A(�).
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While there is a multiplicity of optimal signals, under delegation one can always construct

an optimal signal with only two signal realizations. To do so, starting with an arbitrary

optimal signal ⇡⇤ one can group all approval signal realizations into a single realization

associated to a posterior that is the probability-weighted convex combination of all approval

posteriors. One can likewise obtain a single signal realization by grouping all rejection signal

realizations in a similar fashion. Importantly, A(�) and R(�) are both convex sets, so the

posterior belief obtained from combining all approval realizations still leads the voter to

approve, and combining all rejection realizations still leads the voter to reject, so that the

probability of approval remains the same.

We now provide a geometric interpretation of the controller’s optimal signal. Consider

a signal ⇡ supported on {s�, s+}, where s

+ induces approval posterior q

+ 2 A(�) and s

�

induces strong rejection posterior q� 2 R(�). Holding constant q�, s+ becomes more likely as

the posterior q+ becomes closer to the prior p. Conversely, holding constant q+, s� becomes

less likely as q

� is further away from p. Consequently, the controller would like to resort

to both an approval belief q+ in A(�) that is closest to the prior, and a rejection belief

q

� in R(�) that is farthest from the prior. The martingale property of Bayesian updating

requires, however, that q+, q� and p must all be collinear. The following lemma shows that

the optimal signal balances these two goals as it corresponds to lines through the prior that

maximize the ratio of the distances described in (3).

Lemma 1 Consider delegation to voter �, with p /2 A(�) and A(�) 6= ;. Let ⇡

⇤ be any

controller’s optimal signal supported on {s�, s+}, where voter � approves the proposal if and

only if s = s

+, with l

⇤ = q(s+) � p. Let d

l

(p, A(�)) and d

l

(p,R(�)) be the (Euclidean)

distances from the prior to the sets A(�) and R(�) along the line l. Then

d

l

⇤(p,R(�))

d

l

⇤(p, A(�))
= max

l

d

l

(p,R(�))

d

l

(p, A(�))
, (3)

and

Pr[Approval] =
d

l

⇤(p,R(�))

d

l

⇤(p,R(�)) + d

l

⇤(p, A(�))
.

The next Proposition shows that the solution to (3) can be understood as the optimal

choice of a cuto↵ state.

12



Proposition 1 Consider delegation to voter �, with p /2 A(�) and A(�) 6= ;. Let ⇡⇤ be any

controller’s optimal signal supported on {s�, s+}, where voter � approves the proposal if and

only if s = s

+. Letting ↵

✓

= Pr [s+|✓] , there exists ✓

0 2 ⇥ such that

↵

✓

=

8
<

:
0 �

✓

< �

✓

0

1 �

✓

> �

✓

0

, and
X

✓2⇥

↵

✓

p

✓

�

✓

= 0. (4)

Moreover, while voter � never gains by making decisions with the signal ⇡⇤, the controller’s

expected utility under ⇡

⇤ is V (�) =
P

✓2⇥ ↵

✓

p

✓

.

To understand (4), first consider the voter’s ideal signal. Voter � would like to know

whether an approval state occurred; thus his best signal would induce s

+ if �
✓

� 0, and s

�

if �
✓

< 0. With this signal, the approval probability is
P

{✓:�✓�0} p✓, and the voter’s net

value from approval is
P

{✓:�✓�0} p✓�✓. If �
✓

> 0 for at least one ✓, then the controller can

increase the probability of approval by distorting this signal in a way that rejection states

with a small incremental loss (i.e. small |�
✓

| ) still induce approval. The controller can do

so until the voter’s net value from approval is identically zero, as indicated by (4). This

also implies that the voter gains nothing from making decisions with ⇡

⇤, as he is indi↵erent

between approval and rejection after observing s

+.

Example 1: Consider three states, ⇥ = {✓1, ✓2, ✓3}, and a single voter � such that �

✓1 <

�

✓2 < 0 < �

✓3 . Figure 1 depicts on the simplex the approval set A(�) and the strong rejection

set R(�), which is the bottom line segment. The prior p is such that p3�✓3 + p2�✓2 < 0.

Figure 1(a) shows the approval posterior q

+ 2 A(�) that is closest to the prior, and the

strong rejection posterior q

� 2 R(�) that is furthest from the prior. However, there is no

binary signal that induces these posteriors, since q

+, p and q

� must be collinear. Figure

1(b) shows the posterior beliefs induced by an optimal signal satisfying condition (3). Using

(4), ✓2 is the cuto↵ state: Pr[s+|✓3] = 1, Pr[s+|✓2] =
p3�✓3
p2|�✓2 |

, Pr[s+|✓1] = 0. The maximum

approval probability is then V (�) = 1 · p3 +
p3�✓3
p2|�✓2 |

· p2. ⇤

3.2 Information Control with a k-Voting Rule

A basic insight of information control under delegation is the existence of a binary optimal

signal: one realization leading to approval, and the other leading to rejection. This is possible

13
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Figure 1: Optimal Signal for Example 1

as the set of approval beliefs of any voter is convex. However, with a k-voting rule the set of

approval beliefs W
k

is, in general, not convex. Nevertheless, persuading voters with approval

beliefs W

k

is payo↵-equivalent for the controller to persuading voters with approval beliefs

equal to the convex hull of W
k

. To see this, note that any belief in co(W
k

) can be expressed

as a convex combination of posterior beliefs each of which ensures approval. Therefore, if

q 2 co(W
k

), then there is a signal that ensures approval with certainty. Lemma 2 shows that

the same logic of Lemma 1 holds with a k-voting rule, replacing A(�) and R(�) with the sets

co(W
k

) and R

k

.

Lemma 2 Fix a k-voting rule and electorate {�1, . . . , �n}. The probability of approval under

an optimal signal is

Pr[Approval] =
d

l

⇤(p,R
k

)

d

l

⇤(p,R
k

) + d

l

⇤(p, co(W
k

))
, with

d

l

⇤(p,R
k

)

d

l

⇤(p, co(W
k

))
= max

l

d

l

(p,R
k

)

d

l

(p, co(W
k

))
. (5)

We now contrast equilibrium payo↵s with a k-voting rule to equilibrium payo↵s with

delegation to a voter �. Voter � is a representative voter if A(�) = W

k

: in this case, the

expected utility of all players with the k-voting rule is equivalent to delegating the decision

to voter �.5 In many situations, however, a representative voter does not exit. Nevertheless,

5A representative voter exists for each k�voting rule if all voters in the electorate are totally ordered

according to toughness. This is the case, for example, if there are only two states and voters have the same

ranking of states.
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the next proposition establishes that one can always construct a weak representative voter.

Proposition 2 Fix a k-voting rule and electorate {�1, . . . , �n}. There exists a weak repre-

sentative voter �

⇤(k), such that {q : hq, �⇤(k)i = 0} is a supporting hyperplane of co(W
k

). If

�

⇤
✓

(k) 6= �

⇤
✓

0(k) for ✓ 6= ✓

0, then the expected utility of all players under a k-voting rule is the

same as under delegation to voter �

⇤(k).

Typically voter �⇤(k) is not part of the electorate. As {q : hq, �⇤(k)i = 0} is a supporting

hyperplane of W
k

, then W

k

⇢ A (�⇤(k)). That is, a k-voting rule is equivalent, from the

controller’s perspective, to delegation to a “less tough” decision maker. Notwithstanding,

�

⇤(k) is also the hardest-to-persuade among all voters with approval beliefs containing W

k

.

To see this, let G(W
k

) = {� : W
k

⇢ A(�)} be the set of voters who are “less tough” than the

k�voting rule. The proof of the Proposition shows that

Pr[Approval] = inf
�2G(Wk)

Pr[Approval(�)] = Pr[Approval(�⇤(k))].

Moreover, if the weak representative voter �

⇤(k) strictly ranks states, then the ex-ante

expected utility of all voters is the same with the k-voting rule as with delegation to voter

�

⇤(k). This reflects the fact that if �⇤
✓

(k) 6= �

⇤
✓

0(k) for ✓ 6= ✓

0, then the optimal signal in

Proposition 1 is unique and provides the same expected utility to all voters as the outcome

of a k-voting rule.

An important di↵erence between delegation and k-voting rules is that, except for una-

nimity, the controller can exploit conflict between voters to increase the chance of approving

the proposal. This is always the case if the optimal binary signal for �

⇤(k) would not in-

duce approval under a k-voting rule, i.e. letting q

+(�⇤(k)) be the approval posterior belief

associated to (4), then q

+(�⇤(k)) 2 co(W
k

) but q+(�⇤(k)) /2 W

k

. Letting Q

+(⇡⇤) be the set

of approval posterior beliefs induced by an optimal signal, we must have hq, �⇤(k)i = 0 for

q 2 Q

+(⇡⇤). Therefore, the representative voter �

⇤(k) describes precisely the direction of

voters conflict: if an approval realization doesn’t secure the support of one winning coalition,

it must secure the support of another. Essentially, the controller exploits the change in the

identity of the winning coalition (and hence the identity of the pivotal voter) with the signal

realization by tailoring the signal to persuade winning coalitions with opposing interests on

the hyperplane hq, �⇤(k)i = 0.
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In many important applications, voters have di↵erent preferences but agree on the ranking

of the states — for example, state ✓ represents the “quality” of the proposal, as in the public

good example in Section 6.1. The next lemma characterizes the weak representative voter

from Proposition 2 when all voters agree on the ranking of the states.

Lemma 3 Consider an electorate {�1, . . . , �n} with all n � 2 voters on the same class,

�

i 2 F
z

for some permutation z. Given a k-voting rule, there exists a weak representative

voter �

⇤(k) in the same class as the electorate, �⇤(k) 2 F
z

.

By establishing that �⇤(k) must be in the same class as the electorate, Lemma 3 allows us

to relate the optimal signal with a k-voting rule to the optimal signal with delegation. With

delegation to �

⇤(k), there is an optimal signal supported on {s�, s+}, with a cuto↵ state ✓

0

as described in Proposition 1. As voters rank states in the same order as �

⇤(k), they all

agree that s+ is “good news” about the proposal, while s

� is “bad news”. Although signal

s

+ is enough to persuade �

⇤(k) to approve, it might not secure k votes from the electorate.

As the next example shows, the controller then decomposes s

+ into realizations targeting

di↵erent winning coalitions.

Example 2: Consider 3 states, ⇥ = {✓1, ✓2, ✓3}, and two voters, �A and �

B, where prior

beliefs and net values are as follows:

State Prior �

A

✓

�

B

✓

✓3 0.2 +1 +1

✓2 0.1 -0.5 -1.5

✓1 0.7 -6 -2

Without further information voters strictly prefer to reject the proposal. First suppose

that the voting decision is delegated to voter �

A. Figure 2(a) depicts the posterior beliefs

induced by an optimal signal ⇡⇤
A

, using Proposition 1.6 The equilibrium probability of ap-

proval is 0.325. Signal ⇡⇤
A

is also optimal if the decision is delegated to �

B. In both cases,

the controller’s influence does not change voters’ expected payo↵.

6Formally, S = {s�, s+}, Pr(s+|✓3) = Pr(s+|✓2) = 1, and Pr(s+|✓1) = 1
28 . The possible posterior beliefs

are q� = (1, 0, 0) and q

+ = ( 1
13 ,

4
13 ,

8
13 ). Probability of approval is Pr(s = s

+) = 1
28 ⇥0.7+1⇥0.1+1⇥0.2 =

0.325.
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Figure 2: Optimal Signal for Example 2

Now consider simple majority (k = 1). Figure 2(b) depicts the posterior beliefs induced

by an optimal signal ⇡⇤
1 supported on S = {s�, s+

A

, s

+
B

}.7 Voter �

A approves if and only if

s

+
A

occurs, while �

B approves if and only if s+
B

occurs. Realizations s

+
A

and s

+
B

occur with

probabilities 0.15 and 0.225, respectively, hence the probability of approval is 0.375.

To understand this optimal signal, we first analyze the weak representative voter �⇤ with

simple majority. Voter �

⇤ = (�2,�0.5, 1) is represented in 2(c) by the dotted line, which

delineates the convex hull of the win set W1. The optimal signal ⇡⇤
�

⇤ with delegation to �

⇤

induces posteriors q+⇤ and q

�.8 Note that belief q+⇤ is the weighted average of beliefs q+
A

and

q

+
B

. With posterior q+⇤ , voter �
⇤ approves, but voters �A and �

B strictly prefer to reject. This

implies that the controller’s influence strictly reduces the expected payo↵ of both voters �A

and �

B.

We now use ⇡⇤
�

⇤ to decompose ⇡⇤
1 into two components: collective persuasion and targeted

persuasion. The straight line connecting q

� and q

+
⇤ in Figure 2(c) is a direction of common

interest : all voters agree that moving beliefs from q

� in the direction of q+⇤ represents “good

news” about the proposal. The collective persuasion component of ⇡⇤
1 is the belief change

7Formally, S = {s�, s+A, s
+
B}, Pr(s�|✓3) = 0, Pr(s+B |✓3) = 3

4 , Pr(s+A|✓3) = 1
4 , Pr(s�|✓2) = Pr(s+B |✓2) =

0, Pr(s+A|✓2) = 1, Pr(s�|✓1) = 25
28 , Pr(s+B |✓1) = 3

28 , Pr(s+A|✓1) = 0. The possible posterior beliefs are

q

� = (1, 0, 0), q+B = ( 13 , 0,
2
3 ), and q

+
A = (0, 2

3 ,
1
3 ). Probability of approval is Pr(s = s

+
B) + Pr(s = s

+
A) =

( 3
28 ⇥ 0.7 + 0⇥ 0.1 + 3

4 ⇥ 0.2) + (0⇥ 0.7 + 1⇥ 0.1 + 1
4 ⇥ 0.2) = 0.225 + 0.15 = 0.375.

8Formally, S = {s�, s+⇤ }, Pr(s+⇤ |✓3) = Pr(s+⇤ |✓2) = 1, and Pr(s+⇤ |✓1) = 3
28 . The possible posterior beliefs

are q� = (1, 0, 0), q+⇤ = ( 3
15 ,

4
15 ,

8
15 ). Probability of approval is Pr(s = s

+
⇤ ) =

3
28⇥0.7+1⇥0.1+1⇥0.2 = 0.375.
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along this common interest direction. However, although belief q+⇤ is good news about the

proposal, it is not enough to convince voters �A and �

B. The controller then relies on targeted

persuasion. Starting from q

+
⇤ , signal ⇡

⇤
1 moves the belief to either q

+
A

or q

+
B

. The straight

line connecting q

+
A

and q

+
B

in Figures 2(b) is a direction of opposing interest : moving beliefs

from q

+
A

in the direction of q+
B

represents “good news” about the proposal to voter �B, but

“bad news” to voter �A. Importantly, the weak representative voter corresponds precisely to

this direction of opposing interest — as Figures 2(b) and (c) illustrate. From belief q+⇤ the

controller ensures approval by exploiting the opposing interests of voters.

3.3 Value of information control

The next Corollary provides comparative statics of k-voting rules on the value of information

control.

Corollary 1 Consider an electorate {�1, . . . , �n} and a k�voting rule. Then

(i) Information control is not valuable if and only if the set W
k

is empty or p 2 W

k

.

(ii) Information control is most valuable when p /2 W

k

and p 2 co(W
k

).

(iii) Equilibrium probability of approval weakly decreases with k.

(iv) The value of information control is a single-peaked function of k, possibly non-monotone.

Parts (i) to (iii) follow immediately from Lemma 2. To understand (iv), suppose that

the value of information control strictly decreases from rule k to rule k0 = k+1. This means

that the value of information control was strictly positive under k. From (i) this implies

p /2 W

k

, yielding p /2 W

k̂

for any k̂ > k. From (iii) we know that the probability of approval

decreases in k, hence the value of information control must weakly decrease from rule k on.

3.4 Voter Heterogeneity and Information Control

Proposition 2 showed that the controller can, under non-unanimous voting rules, exploit voter

heterogeneity by designing a signal that induces approval from di↵erent winning coalitions.

In e↵ect, under a k-voting rule the controller designs approval signal realizations along

directions of voter disagreement in such a way that there is always a coalition of at least k

voters willing to approve the proposal.
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A natural question then is: would the controller prefer to persuade a group of voters

rather than an individual voter to whom the decision is delegated? To make this statement

precise, suppose that voters are ordered according to how “hard” it is for the controller

to persuade them, i.e., if i < i

0 then V (�i) � V (�i
0
). Thus, voter �

1 is the easiest voter

to persuade, while voter �

n is the hardest. The following proposition provides a su�cient

condition for the controller to prefer a k�voting rule to delegation to the k-th hardest voter.

Proposition 3 Consider an electorate {�1, . . . , �n}, and index voters according to how hard

it is to persuade them individually, V (�i
0
)  V (�i) for i < i

0. Then

(i) For any voter �

i, V (W
n

)  V (�i) and V (W1) � V (�i);

(ii) If voters rank states in the same order, �i 2 F
z

, i 2 I, then V (W
n

) = V (�n) and

V (W
k

) � V (�k). (6)

Part (i) captures the immediate observation that the controller can do no worse if she

only requires one vote, regardless of the voter’s identity, rather than the vote of a given

voter. Conversely, the controller cannot benefit from securing the approval of all voters

simultaneously rather than the approval of a given voter.

Part (ii) states that if voters are su�ciently aligned — i.e., all voters rank states in the

same order — then the controller would prefer a decision process where he needs to persuade

at least k voters, rather than persuading the k�th hardest-to-persuade voter. That is, the

controller benefits from some heterogeneity, but requires some alignment between voters.

The intuition is that, when voters rank states in the same order, then the approval signal

realization under an optimal signal to the k-th hardest-to-persuade voter also induces ap-

proval for any voter i < k. Therefore, V (W
k

) cannot fall below V (�k). Finally, the controller

su↵ers no loss from persuading a collection of voters under a unanimity rule rather than the

hardest-to-persuade individual. That is, under unanimity (6) is satisfied with equality.

Inequality (6) holds whenever voters agree on the ranking of states. If voters rank states

di↵erently, then the reverse inequality to (6) may hold. The reason is that an optimal signal

when facing the k-th hardest-to-persuade voter may not secure approval from all easier-to-

persuade voters i < k (see Example 5 in the online Appendix B). Interestingly, sometimes an
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optimal signal does not target the easiest-to-persuade voter, even when voters agree under

full information and rank states in the same order (see Example 6 in the online Appendix B).

4 Institutional Design

We start this section with a simple question: given a voting rule, do voters benefit from

the signal chosen by the controller? We then study how di↵erent voting rules a↵ect the

payo↵s of di↵erent voters. Importantly, voting rules a↵ect outcomes not only through the

consensus required to approve a proposal, but also by the amount of information that voters

endogenously receive. For example, under delegation the controller provides the sole decision

maker with some information about the state, although the signal has no value for the latter

(cf. Proposition 1). As a result, a single decision maker may prefer to delegate the choice to

someone with di↵erent preferences than himself, but who will elicit more information about

the benefits of the proposal.9 Voters face a similar trade-o↵ between control and information

when evaluating di↵erent k-voting rules: a higher consensus (i.e. higher k) may lead to ex-

cessive rejection of the proposal, but may induce the controller to provide a more informative

signal. We study this trade-o↵ by posing two questions: (i) under delegation, what are each

voter’s preferences over decision makers?, and (ii) when decisions are made collectively, how

do preferences over decision makers translate into preferences over k-voting rules?

4.1 Do voters benefit from the controller’s signal?

We start by comparing each voter’s ex ante expected payo↵ under two scenarios: their

equilibrium payo↵ when the controller provides signal ⇡⇤, and their equilibrium payo↵ if

there was no controller providing a signal, and voters had to choose a policy solely on the

basis of their prior beliefs.

Clearly, if there is a single voter, then he cannot be made worse o↵ be the controller’s

9In the context of organizations, Jensen and Meckling (1976) are among the first to point out that

delegation decisions are guided by a fine balance between the loss of control owing to conflict of interest, and

the gain of information when delegating to experts (see also, Holmstrom (1982), Dessein (2002), Alonso and

Matouschek (2008), and Armstrong and Vickers (2010)).
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influence. In fact, the controller’s optimal signal does not change his expected payo↵. Simi-

larly, if all voters in the electorate have the same type, then the expected payo↵ of all voters

is the same with or without the controller, independently of the k-voting rule. This is not

the case when voters have di↵erent preferences, as summarized by the next Corollary.

Corollary 2 Fix a k-voting rule and consider the electorate {�1, . . . , �n}. Compare voters’

ex ante expected payo↵ under the controller’s optimal signal ⇡⇤ and under no signal.

(i) If the voting rule is unanimity, then all voters are weakly better o↵ under the controller’s

influence, independently of the prior belief;

(ii) If k < n and p 2 W

k

, then the controller’s influence does not a↵ect payo↵s;

(iii) If k < n and p /2 W

k

, then at most k�1 voters are strictly better o↵ under the controller’s

influence. Thus, at least n�k+1 voters are weakly worse o↵ under the controller’s influence.

These voters are strictly worse o↵ if there is no optimal signal with a binary realization space.

In particular, with a simple majority voting rule, a majority of voters is weakly worse o↵

because of the controller’s influence.

For any given k-rule, if p 2 W

k

, then the controller’s optimal signal reveals no relevant

information and voters approve the proposal. In this case, the controller’s influence has no

impact on voters’ expected payo↵s — which concludes part (ii). Part (i) follows from the

same logic when p 2 W

n

, and the veto power of voters when p /2 W

n

: if the rule is unanimity,

then in order to approve the proposal the controller must convince all voters at the same

time. However, for any non-unanimous voting rule, the controller can exploit preference

disagreement by choosing signal realizations that target di↵erent winning coalitions. Part

(iii) highlights that it cannot be the case that k voters are strictly better o↵ by the controller’s

influence. Otherwise, the controller could strictly increase the probability of approval by

choosing a less informative signal that leaves the same k voters weakly better o↵, but at least

one of them indi↵erent. Moreover, whenever the posterior belief q+ 2 co(W
k

) obtained from

combining all approval realizations of ⇡⇤ is such that q+ /2 W

k

, then n�k+1 voters are strictly

worse o↵. This is the case if there is no optimal signal with only two signal realizations,

which implies that the controller must be targeting di↵erent winning coalitions.10

10There is always an optimal signal with only one realization that leads to rejection — therefore, if every
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Finally, with a simple majority rule, a majority of voters can be made strictly worse o↵

by the controller’s signal even when all voters agree under full information and rank states

in the same order (see Example 4 in Section 6.1) .

4.2 Voter preferences over decision makers

Suppose that the approval decision is made by a single voter �: the controller only needs to

persuade this voter. Now suppose that voter � can choose whom to delegate the approval

decision. How would voter � rank di↵erent decision makers? As mentioned earlier, voter �

faces a well known trade-o↵ between the gain in information and a loss of control: delegating

to someone with di↵erent preferences can lead to inferior decisions, but may induce the

controller to provide a more valuable signal. To study this trade-o↵, we first characterize

voter preferences over decision makers for a suitably-defined restricted domain. We then

show that, in these domains, a voter can always resolve the previous trade-o↵ perfectly as

a voter’s preferred decision maker would (i) induce from the information controller a most

valuable signal for voter �, and (ii) for that signal, there is no loss of control.

The next proposition describes the preferences of a voter over decision makers that belong

to the same class F
z

, that is, rank states in the same order z.

Proposition 4 Fix a permutation z and let �v 2F
z

. Consider any totally ordered (according

to toughness) set of voters D ⇢F
z

, and suppose that the approval decision is delegated to a

voter in D prior to the controller supplying a signal ⇡. Then,

(i) Voter �

v has single-peaked preferences over decision makers in D. That is, there exist

�̄ 2 D such that for �, �

0 2 D, voter �

v would (weakly) prefer to delegate to voter �

0 instead

of voter � if either A(�̄) ⇢ A(�0) ⇢ A(�) or A(�) ⇢ A(�0) ⇢ A(�̄).

(ii) If all voters in D agree with �

v under full information, then voter �

v has monotone

preferences over decision makers in D. That is, for �, �0 2 D, voter �v would (weakly) prefer

to delegate to voter �

0 instead of voter � if �0 is tougher.

(iii) The maximum expected utility of voter �v when delegating to any decision maker in R|⇥|,

optimal signal must have at least three signal realizations, then the controller needs at least two di↵erent

signals leading to approval, which implies that the controller must be targeting di↵erent winning coalitions.
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is achieved by any voter �

⇤
⇣
�̂, �

v

⌘
= �̂ � �̂(�̂)1 2 F

z

, where �̂ 2 F
z

and

�̂(�̂) =
X

✓2{✓:�v✓�0}
p

✓

�̂

✓

. (7)

Parts (i) and (ii) of the proposition describe the preferences of voter �

v over decision

makers who share his ranking of states and are ordered according to toughness. This con-

dition on alignment does not guarantee that there is no loss of control under delegation, as

these decision makers may not have the same approval set as �v. Part (i) shows that a voter

has single-peaked preferences over such decision makers. That is, the set inclusion ordering

derived from toughness translates naturally to single-peaked preferences when one restricts

attention to voters in the same class. Part (ii) shows that the voter’s preferences become

monotone when the decision makers agree with �

v under full information.

These results follow from the basic structure of an optimal signal with delegation to a

voter in F
z

: the controller sets a threshold state and the optimal signal induces approval if a

state with a higher net value occurs. Then, switching to a tougher decision maker implies a

(weakly) higher threshold state and a (weakly) smaller set of approval states. Importantly, a

tougher decision maker induces a signal that discriminates better between states of higher net

value and states of lower net value for all voters in F
z

. Therefore, switching to a marginally

tougher decision maker benefits voter �v whenever the current threshold state has a negative

net payo↵, but it proves detrimental whenever this net payo↵ is positive. If all decision

makers agree with �

v under full information, then this net payo↵ is always negative.

Part(iii) identifies in F
z

an ideal decision maker for voter �

v. If voter �

v could both

choose the signal ⇡ and decide whether to approve the proposal, then he only needs to learn

whether the realized state corresponds to a positive net value. He can induce the controller

to produce such a signal by delegating to a voter �

⇤
⇣
�̂, �

v

⌘
= �̂ � �̂(�̂)1, with �̂(�̂) given

by (7). Note however that voter �

⇤
⇣
�̂, �

v

⌘
and voter �

v disagree under full information:

voter �

⇤
⇣
�̂, �

v

⌘
would reject the proposal more often than �

v if they perfectly learned the

state. Nevertheless, they fully agree on the decision given the controller’s optimal signal. In

this sense, the fact that the signal is not fully revealing eliminates the loss of control when

delegating to a tougher voter. Therefore, by delegating to �

⇤
⇣
�̂, �

v

⌘
voter �

v achieves the

same expected value as if he both made decisions and controlled the signal himself.
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4.3 Voter preferences over k-voting rules

How does each voter rank di↵erent voting rules? Recall that voting rules a↵ect voters’ payo↵s

via two channels: the consensus required to approve a proposal, and the endogenous signal

chosen by the controller. The following result follows from Corollary 2.

Corollary 3 Consider an electorate {�1, . . . , �n} with an odd number n � 3 of voters. If p /2

W

n+1
2
, then a majority of voters weakly prefer unanimity voting rule over simple majority.11

To draw stronger inferences about voters’ equilibrium payo↵ under di↵erent voting rules,

we need to consider the nature of voters’ preference heterogeneity. The next lemma shows

that, if voters belong to the same class, then each voter has single peaked preferences over k.

Lemma 4 Consider an electorate {�1, . . . , �n}, with �

i 2 F
z

, for some permutation z. Then

each voter �

i has single peaked preferences over k, in the sense that there exists k

⇤ (�i) such

that his expected utility is non-decreasing in k for k < k

⇤ (�i), and it is not increasing for

k > k

⇤ (�i).

Proposition 2 shows that voters’ expected utilities with a k�voting rule are the same as

with delegation to the weak-representative voter �⇤(k), as long as �⇤(k) strictly ranks states.

Lemma 3 established that if all voters are in the same class, then the weak representative

voter also belongs to that class. The intuition behind Lemma 4 is that since the weak-

representative voter �⇤(k) also belongs to the same class F
z

, then a voting rule requiring a

higher consensus is equivalent to delegating to a tougher voter. As a result, the collection of

representative voters �⇤(k) describes a totally ordered set of voters in F
z

, and Proposition

4(i) implies that each voter has single-peaked preferences over these decision makers, and

hence, over k-voting rules.12

An important implication of Lemma 4 is that a majority of voters prefer a supermajority

voting rule over a simple majority voting rule.

11If p 2 W

n+1
2
, then a majority of voters might prefer simple majority over unanimity when unanimity

makes approving the project too unlikely, e.g., if the win set Wn is empty.
12If voters do not agree on the ranking of the states, then preferences might not be single-peaked even

when voters agree under full information and are totally ordered according to toughness. See Corollary 4

and Example 7 in the online Appendix B.
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Lemma 5 Consider and electorate {�1, · · · , �n} with an odd number n � 3 of voters in the

same class �

i 2 F
z

, and p /2 W

n+1
2
. Then a majority of voters:

(i) weakly prefer any supermajority voting rule k

0
>

n+1
2 over simple majority k = n+1

2 ; and

(ii) strictly prefer supermajority k

0 over simple majority if it leads to a lower (but positive)

equilibrium probability of approval, 0 < V (W
k

0) < V (Wn+1
2
).

The next Proposition provides su�cient conditions for all voters to have the same pref-

erences over k-voting rules.

Proposition 5 Suppose that all voters are in F
z

and they agree under full information.

Then every voter weakly prefers a (k+1)-voting rule to a k-voting rule, for k 2 {1, ..., n� 1}.

This proposition implies that even heterogenous voters may have the same preferences

over electoral rules. In fact, as long as there is agreement under full information and voters

rank states in the same order, then they all prefer a unanimity rule to any other k-voting rule.

Essentially, su�cient alignment among voters can induce perfect agreement over electoral

rules if information is endogenous to the electoral rule. Indeed, while voters may disagree

under uncertainty, if they agree under full information, then they also agree on the signal

they would choose if they were in control of decisions and could design the signal them-

selves. The intuition is that the weak representative voters {�⇤(1), . . . , �⇤(n)} (i) belong to

the same class, (ii) agree under full information, and (iii) are totally ordered according to

toughness. Therefore, the conditions of Proposition 4(ii) apply and every voter has mono-

tone preferences: as a higher k corresponds to a tougher weak-representative voter, voters

prefer rules that require more consensus only because they induce the controller to supply a

more valuable signal.

5 Extensions

5.1 Controller knows the State

In our basic setup the controller has no private information. Suppose instead that the

controller privately observes the true state ✓ before choosing signal ⇡. In this case, the
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choice of ⇡ by the informed controller may itself convey information to voters. We ask

two questions: does the controller benefit from her private information? and what is the

signal that maximizes the expected payo↵ of the informed controller, when expectation over

controller’s types is taking according to the prior p? In the online Appendix B we first apply

the results from Alonso and Câmara (2014b) to show that the controller cannot benefit from

privately observing the state. We then show that the maximum expected payo↵ is achieved

in pooling equilibria where: (i) all controller’s types choose the same signal ⇡⇤, and (ii)

⇡

⇤ is also an optimal signal in the case of an uninformed controller. Together these two

results imply that the equilibrium probability of approving the proposal is una↵ected by the

controller privately learning the state.

5.2 Controller’s Payo↵ Depends on the State

In our basic setup we focus on the case of pure-persuasion. We now consider a controller

with a state-dependent payo↵ u

C

(x, ✓) : X ⇥ ⇥ ! R. Let �

C

✓

= u

C

(x1, ✓) � u

C

(x0, ✓) and

define the controller’s type �

C = {�C
✓

}
✓2⇥. To simplify presentation, suppose �

C

✓

6= 0.

First suppose that the approval decision is delegated to voter �. Proposition 6 in the online

Appendix B generalizes Proposition 1. It shows that the optimal signal always induces an

approval realization for states such that both controller and voter agree on approval, and it

always induces a rejection realization for states such that both agree on rejection. In the set of

states where there is disagreement, the optimal signal again defines a cuto↵ state. However,

in the case of pure persuasion the cuto↵ state was defined by ordering the states solely

according to the voter’s net payo↵ �

✓

; now the cuto↵ is defined by ordering the disagreement

states according to the absolute value of the ratio of players preferences,
��� �

C
✓
�✓

���.

In many important cases the controller ranks states in the same order as the voter. For

example, the controller receives the same payo↵ as the voter, plus some private benefit from

approving the proposal (see also our application in Section 6.1). Proposition 7 in the online

Appendix B shows that if the information controller and the electorate rank states in the same

order, then each voter has single-peaked preferences over k-voting rules. Moreover, if voters

also agree under full information, then the payo↵ of every voter is weakly increasing in k.

To understand the result, consider delegation to the weak representative voter �⇤(k). If
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all players agree on the ranking of the states, then �

⇤(k) also agrees. The controller’s cuto↵

state is then defined according to this common ranking. A higher k-voting rule implies a

tougher �⇤(k) and a weakly higher cuto↵ state, without changing the ranking. Consequently,

all the results of Lemmas 4 and 5, and Proposition 5 continue to hold. Moreover, the proof

of Proposition 7 shows that if all players rank states in the same order and the controller is

su�ciently biased towards approval, then ⇡

⇤ is an optimal signal for a controller with type

�

C if and only if ⇡⇤ is an optimal signal in the case of pure-persuasion.

5.3 Preference Shocks

In our basic setup the controller knows the preference profile of the electorate. However,

in some instances voters are subject to idiosyncratic preference shocks, in which case the

controller faces a probability distribution over preference profiles. To study the e↵ects of

preference shocks, assume that voter i’s preferences are given by u

i

(x, ✓, µ
i

) and the condi-

tional net payo↵ from approval with state ✓ and private shock µ

i

is

u

i

(x1, ✓, µi

)� u

i

(x0, ✓, µi

) = �

i

✓

� µ

i

.

Shocks µ
i

are i.i.d. and jointly independent with ✓, with each shock distributed according to

F (µ) with support in [�µ̄, µ̄]. The controller chooses the signal before shocks are realized.

Proposition 8 in the online Appendix B shows that if preference shocks are small and high

shocks are su�ciently likely, then with unanimity the controller behaves as if she is facing the

toughest electorate. That is, the controller benefits from choosing a more informative signal

that persuades even the electorate profile where each voter received the worst possible shock

µ̄. Under this optimal signal, voters have almost surely a strict preference between approval

and rejection of the proposal, so that voters obtain a strictly positive gain with probability 1

when they approve the proposal. Therefore, unlike the case of non-probabilistic voting, with

unanimity all voters can strictly benefit from the controller’s influence. For non-unanimous

voting rules, the results from Corollary 2 carry over to cases with a small µ̄. In particular,

with a simple majority voting rule, a majority of voters can be made strictly worse o↵ by

the controller’s signal.
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The same is true with delegation: the controller’s signal targets to persuade the voter

with the worst possible shock. Hence, the voter can strictly benefit from the signal.

5.4 Heterogenous Prior Beliefs

In our base model, players share a common prior belief about the consequences of di↵erent

policies. As argued by Alonso and Câmara (2014a), however, heterogeneous priors provide

a powerful motive for persuasion, as a controller typically gains from shaping the learning of

decision makers in the face of open disagreement. We can extend our main analysis to the case

of heterogenous priors as follows. Suppose players hold di↵erent prior beliefs pl 2 int(�(⇥)),

with l 2 {C, 1, . . . , n}. Suppose that the controller’s signal is commonly understood in that

all players agree on the conditional probabilities generating each realization. Then we can

use the results from Alonso and Câmara (2014a) to characterize the controller’s optimal

signal and her gain from information control. We now briefly discuss how heterogenous

priors a↵ects our insights from Sections 3 and 4.

With delegation to voter � and common priors, the controller’s optimal signal defines a

cuto↵ state where states are ordered solely according to the voter’s net payo↵ �

✓

. In the

case of heterogeneous priors, the optimal signal continues to define a cuto↵ state. However,

the ordering of states might change depending on prior beliefs. Formally, the controller

ranks states according to �

i

✓

p

i
✓

p

C
✓

and induces rejection only for the negative states with the

lowest �

i

✓

p

i
✓

p

C
✓
. For example, the controller might now find it optimal to have a state ✓ with

a very negative �

✓

inducing an approval signal simply because the controller assigns a very

high prior belief to ✓, while the voter believes that ✓ is very unlikely. In other words, the

controller favors approval realizations for states with negative payo↵s whose likelihood he

believes the voter underestimates.

Proposition 5 showed that if voters share the same ranking of states and agree under

full information, then they all have the same preferences over voting rules. In particular,

unanimity is preferred to any other k-voting rule. This does not hold, however, if voters have

heterogenous prior beliefs. Note that open disagreement does not per se induce disagreement

over the public signal. Indeed, under the conditions of Proposition 5 all voters have the

same preferences over the class of binary “approve-reject” signals that preserve the ranking
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of states — i.e., signals with a cuto↵ state with higher ranked states always inducing the

approval realization. The fact that Proposition 5 no longer holds with heterogenous priors

owes to the fact that the controller’s signal no longer follows a cuto↵ on the ranking of states

given by �

i

✓

, but rather in the ranking according to �

i

✓

p

i
✓

p

C
✓
. Nevertheless, if the two rankings

coincide, then the results of Proposition 5 still hold with heterogenous priors.

6 Applications

6.1 Voting on a Public Good

Consider a one-period k-voting model where an odd number n � 3 of voters must choose

whether to approve (x = x1) or not (x = x0) the investment on a new public good, e.g.,

construction of a new highway overpass to improve tra�c. If implemented, the cost c of the

project is paid through a proportional tax t. Each voter i has a pre-tax income w

i

and the

government budget must balance. For simplicity, suppose there are no other government

expenditures. Hence, the status quo tax is t0 ⌘ 0, and it increases to t1 ⌘ cP
i2I wi

if the

project is implemented. Voters’ payo↵ from the project depends on state ✓ 2 ⇥ ⇢ R. This

represents the uncertainty about how the overpass will a↵ect the overall tra�c flow. A

voter-specific payo↵ y

i

: ⇥ ! R captures how each voter is a↵ected by tra�c flow changes,

depending on factors such as where the voter lives and works. Let y
i

be strictly increasing,

so that a higher “quality” ✓ means a better tra�c outcome. The utility function of each

voter is then

u

i

(x, ✓) =

8
<

:
(1� t1)wi

+ y

i

(✓) if x = x1,

w

i

if x = x0.

For each voter i compute the net payo↵ from approval

�

i

✓

= (1� t1)wi

+ y

i

(✓)� w

i

= y

i

(✓)� t1wi

. (8)

All voters belong to the same class F
z

since �i
✓

strictly increases in ✓. Voter i with posterior

belief q votes to approve the project if and only if the expected payo↵ from the tra�c outcome

is greater than how much he has to pay in taxes to implement it, E[y
i

(✓)|q] � t1wi

.
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Consider an information controller who has vested interests on the project — e.g., the

controller is the Governor who proposed the project, but she needs voters to approve the

ballot measure. Suppose that the Governor ranks states in the same order as voters. For

example, her net payo↵ is proportional to the change in her “political capital,” which is

increasing in the quality of the project. Moreover, suppose she receives additional private

benefits (e.g., ego rents) from approving the project.13

Lemma 3 imply that for each k�voting rule there is a weak representative voter �⇤(k) 2

F
z

, and from the point of view of all players the k-voting rule is payo↵-equivalent to dele-

gating the approval decision to �

⇤(k). Moreover, the controller’s optimal signal ⇡⇤ defines a

cuto↵ quality ✓

⇤
k

such that the project is always rejected if the quality is below the cuto↵,

✓ < ✓

⇤
k

, and the project is approved with certainty if the quality is above the cuto↵, ✓ > ✓

⇤
k

.

If it is optimal to target di↵erent winning coalitions, then ⇡

⇤ contains multiple signal realiza-

tions that lead to approval. Cuto↵ ✓

⇤
k

weakly increases with k. Importantly, if the controller

is more biased towards approval than voters, that is,
P

✓2D(�C) p✓�
⇤
✓

(k) < 0, then a signal is

optimal for controller �

C if and only if it is optimal under the pure-persuasion benchmark

(see the proof of Proposition 7 in the online Appendix B).

Next we present two examples based on this general setup. Example 3 considers voters

with homogenous preferences for the public good but di↵erent incomes, which a↵ects their

tax burden. It shows that the voter with the median income can benefit from delegating

the approval decision to a richer voter. Example 4 considers voters with heterogeneous

preferences. It shows that under a simple majority voting rule a majority of voters can be

made strictly worse o↵ by the controller’s influence, even when voters have the same income,

agree under full information, and rank states in the same order.

Example 3: Suppose voters have homogeneous quality preferences y
i

= y, i 2 I. Voter i

approves the project if and only if E[y(✓)|q] � t1wi

. Therefore, voters are totally ordered

— voters with higher income are both harder-to-persuade and tougher, w
i

< w

j

implies

V (�i) � V (�j) and A(�i) � A(�j). Let �

k be the voter with the k�th lowest income.

Voter �

k is then a representative voter and a k-voting rule is equivalent to delegating the

13Note that the controller’s ranking of the states does not change if her private benefit from approving the

project is either constant or strictly increasing with the project’s quality.
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decision to him. Increasing the k-voting rule implies that the controller must target a richer

voter. Suppose that the controller is more biased towards approval than the median voter �m,
P

✓2D(�C) p✓�
m

✓

< 0. Lemma 5 implies that a majority of voters (the median and richer voters)

weakly prefer any supermajority voting rule over simple majority. Moreover, this preference

relation is strict if voter �k is strictly richer than the median voter and his approval set is not

empty. By delegating the approval decision to a richer voter, who pays more to implement

the project, the electorate induces the controller to supply a more informative signal. This

result does not require the median voter to agree with �

k under full information. ⇤

Example 4: Suppose y
i

= ✓

�i , and consider three voters with �1 = 0.1, �2 = 0.5, �3 = 0.9.

Voters have the same income w
i

= 5. If implemented, the project costs 1.5, so the proposed

tax t1 = 0.1 runs against the status quo t0 = 0. There are three possible quality levels for

the project: it does not improve tra�c (✓ = 0), it moderately improves tra�c (✓ = 0.7), or it

greatly improves tra�c (✓ = 1.4), so that ⇥ = {0, 0.7, 1.4}. From (8) we have �i
✓

= ✓

�i � 0.5,

so �

1 ⇡ {�0.5, 0.46, 0.53}, �2 ⇡ {�0.5, 0.34, 0.68}, �3 ⇡ {�0.5, 0.23, 0.85}. Voters would like

to reject the project if it does not improve tra�c, and approve if it has a moderate or great

impact on tra�c. Figure 3 depicts the prior belief p, the approval set of each voter, and

the win set with simple majority. Note that there is no representative voter. The win set is

not convex and the dotted lines delineate the convex hull of W2. Consider a controller who

prefers to approve the project in every state, which implies that she is more biased towards

approval than voters. There is no optimal signal with only two signal realizations, but there

is a ⇡

⇤ with three signal realizations. One realization induces posterior q

� and all voters

reject the project. Another induces posterior q+1 : voters 1 and 3 approve the project, while

voter 2 strictly prefers to reject. The remaining realization induces posterior q

+
2 : voters 2

and 3 approve the project, while voter 1 strictly prefers to reject. Note that the weighted

average of the two approval posterior beliefs is a belief on the dotted line connecting q

+
1

and q

+
2 . This average approval belief belongs to the convex hull of W2, but it does not

belong to W2. Consequently, a majority of voters (voters 1 and 2) are made strictly worse

o↵ by the controller’s influence. They strictly prefer the controller not to release the signal

⇡

⇤, so that voters keep their prior and vote to reject the proposal. Even though all voters
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agree under full information and rank states in the same order, they sometimes disagree

under uncertainty because of the di↵erences in the curvature of their utility functions. The

information controller exploits this disagreement by designing a partially informative signal

that targets di↵erent winning coalitions. Finally, all voters strictly prefer unanimity over

simple majority, to induce the controller to provide a more informative signal. ⇤

Win$set$when$k=2$

Voter$1$
Voter$2$
Voter$3$

θ=0$

θ=0.7$ θ=1.4$

q+2q−1
+

p

q−

Figure 3: Win Set and Optimal Signal from Example 4

6.2 Spatial Model of Elections

Consider an election where a left-wing incumbent politician is running for re-election against

an untried challenger from the opposing right-wing party. Let X = {L,R}, where L rep-

resents re-electing the incumbent and R electing the challenger. Each voter has a utility

function u

i

(x, ✓) = �(y
x

� y

i

)2, where y

i

captures the ideology of voter i and y

x

is the pol-

icy implemented by politician x. There is an odd number n � 3 of voters with ideologies

symmetrically distributed around the median voter ymedian = 0. Voters know more about

the incumbent than the challenger. Formally, voters know that the incumbent is committed

to a policy y

L

< 0, but they are uncertain about the policy y

R

> 0 that the challenger

would implement if elected. Voters’ prior belief is that y

R

= ✓ with probability p

✓

, where

✓ 2 ⇥ ⌘ {✓1, . . . , ✓M}, 0  ✓1 < . . . < ✓

M

, and ✓1 < |y
L

| < ✓

M

. Suppose that without further

information the median voter strictly prefers the incumbent.
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For each voter i the net payo↵ from electing the challenger is

�

i

✓

= �(y
R

� y

i

)2 + (y
L

� y

i

)2 = �(✓2 � y

2
L

) + 2(✓ � y

L

)y
i

. (9)

Voter i strictly prefers the challenger if (✓2 � y

2
L

) + 2(✓ � y

L

) > 0, that is, if y
i

>

✓+yL

2 ,

and he strictly prefers the incumbent if y

i

<

✓+yL

2 . Therefore, the voter with the k-th

lowest ideology y

i

is the representative voter. Consider a simple majority rule, so that

the median voter is decisive. Under full information, the median voter strictly prefers the

challengers if y
R

< |y
L

|, and strictly prefers the incumbent if y
R

> |y
L

|. From the median

voter’s perspective, the relevant information for his decision is: who is more moderate, the

challenger or the incumbent?

Let the information controller be a right-wing Interest Group (IG) with ideology y

C

> 0

and payo↵ u

C

(x, ✓) = �(y
x

� y

C

)2. In this spatial model, the controller and voters rank

states in di↵erent orders.14 Nevertheless, in the online Appendix B we show that the op-

timal signal ⇡⇤ defines a cuto↵ state ✓

⇤
R

> |y
L

|: the challenger losses for sure if he is “too

radical”, ✓
R

> ✓

⇤
R

, and he wins for sure if ✓
R

< ✓

⇤
R

. Importantly, we also show that there

exists an ideology cuto↵ ȳ > 0 such all radical IG’s with ideology y

C

> ȳ behave as in the

pure-persuasion benchmark. That is, ⇡⇤ is an optimal signal for these policy-motivated IGs

if and only if ⇡⇤ is an optimal signal for a purely o�ce-motivated IG.

Suppose that the IG is radical, y
C

> ȳ. Proposition 1 implies that the IG’s influence

does not a↵ect the payo↵ of the decisive median voter. However, voters to the left of the

median are hurt by the IG’s influence, while voters to the right are better o↵. Although

players do not rank states in the same order, the results from Lemma 5 continue to hold: a

strict majority of voters (the median voter and all left-wing voters) prefer any supermajority

voting rule over simple majority. Supermajority implies that a voter to the left of the median

becomes decisive, which induces the IG to provide a more informative signal.

If the IG is moderate, y
C

< ȳ, then the IG’s preferences are su�ciently aligned with the

median voter. In this case, the more informative signal provided by the IG strictly benefits

the median voter.

14Note that @�i✓
@✓ = 2(yi � ✓). Therefore, a strict majority of voters — voters with ideology yi < ✓1 — rank

all states in the same decreasing order. Voters yi > ✓M rank all states in the same increasing order.
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6.3 Winners and Losers

We now study an application inspired by the model of Fernandez and Rodrik (1991), who

highlight the role of individual-specific uncertainty when voters must decide whether or not

to engage in an economic reform.15

There are three sectors in the economy, L, M and R. The population of workers, who

are also voters, is distributed uniformly across the sectors. Voters must decide whether to

implement an economic reform x1 (e.g., sign a trade agreement with other countries) that

increases the productivity of one sector, but decreases the productivity of the other sectors.

Players have a uniform prior believe over which sector ✓ 2 ⇥ = {L,M,R} will benefit from

the reform. The reform increases the payo↵ of workers in sector ✓ by +1, and decreases the

payo↵ of all other workers by �1.

Consider a simple majority voting rule. Without further information, each worker believes

that he is more likely to be a loser than a winner. Therefore, the proposal delivers a negative

expected payo↵ and all voters reject the proposal. With full information about the state,

voters in the winning sector ✓ vote to approve, but voters in the two losing sectors form a

majority and reject the proposal.

Consider an information controller who wants to maximize the probability of approval.

The controller can design a partially informative signal that guarantees the approval of the

proposal. The optimal signal does not reveal the identity of the winning sector. Instead, it

reveals the identity of one losing sector.16 Upon learning this information, the losing sector

votes to reject, but the two other sectors vote to approve. They now believe that there is an

equal chance of being a winner or a loser.

With the controller’s influence and a simple majority rule, the proposal is approved

independently of the state. Consequently, the controller’s strategic information provision

strictly lowers the expected payo↵ of all voters. All voters would strictly prefer a unanimity

voting rule to block the influence of the controller. With unanimity, the win set is empty

15We are also grateful for suggestions by Navin Kartik.
16Formally, let s 2 S = {L,M,R}, Pr[s|✓] = 0 if s = ✓, and Pr[s|✓] = 0.5 if s 6= ✓. Therefore, upon

observing s, all players know that sector s is not the winner ✓, and the two remaining sectors are equally

likely to be the winner.

34



and the reform cannot be implemented.

7 Conclusion

In important cases, acquiring information is infeasible or prohibitively expensive for indi-

vidual voters. Voters must then rely on the information generated by certain individuals,

who control the design of a public signal (e.g., jurors and prosecutor, voters and media,

shareholders and CEO). Obviously, if the controller and voters share the same preferences,

then the controller’s signal always benefits voters, as it allows them to make better decisions.

However, this is not true if there is a conflict of interest between the controller and voters.

We show that, with a simple majority rule, a majority of voters is always weakly worse o↵ by

observing the information provided. In fact, all voters can be strictly worse o↵, even when

they would agree on their decision if they knew the true state. This is so because the con-

troller strategically designs a signal with realizations targeting di↵erent winning coalitions.

To prevent this negative impact, voters may adopt a supermajority voting rule that induces

the controller to supply a more informative signal. We also provide conditions for unanimity

to be the rule preferred by all voters.

We extend our analysis in a number of ways. We show that the controller cannot benefit

from privately observing the state prior to choosing her signal. We study situations in which

the controller also cares about the state and situations where voters are subject to idiosyn-

cratic preference shocks. In these cases, a voter may now strictly benefit from the controller’s

signal if he is the sole decision maker, although a majority of voters can still be worse o↵ un-

der a simple majority rule. We also extend the analysis to allow voters to have heterogeneous

prior beliefs, so that they openly disagree about the likelihood of the state. Importantly,

even if they all share the same ranking over states and agree under full information, belief

disagreement can translate into disagreement over the optimal electoral rule.

Two interesting extensions are to allow for voters’ to privately acquire information and

then deliberate prior to voting, and to allow voters to choose among multiple policy options.

We see these extensions as promising and leave them for future work.
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A Appendix

Proof of Lemma 1: Under the assumptions, the set A(�) is non empty and the voter

rejects the proposal if he has no additional information. Let ⇡0 be an arbitrary binary signal

that induces posterior beliefs {q�(⇡0), q+(⇡0)} such that q

�(⇡0) 2 R(�) and q

+(⇡0) 2 A(�)

with
P

✓2⇥ q

+
✓

(⇡0)�
✓

= 0. Define the vector l as l = q

+(⇡0) � p. Then, Bayesian rationality

implies that average posteriors must equal the prior so that

Pr[Approval]
⌦
q

+(⇡0)� p, l

↵
+ (1� Pr[Approval])

⌦
q

�(⇡0)� p, l

↵
= 0,

and q

�(⇡0)� p and q

+(⇡0)� p are collinear so

⌦
q

�(⇡0)� p, q

+(⇡0)� p

↵
= �

���
q

+(⇡0)� p

��� ���
q

�(⇡0)� p

���
.

Therefore,

Pr[Approval] =
hp� q

�(⇡0), li
hq+(⇡0)� p, li+ hp� q

�(⇡0), li =
k(q�(⇡0)� p)k

k(q+(⇡0)� p)k+ k(q�(⇡0)� p)k ,

where, by construction, k(q+(⇡0)� p)k = d

l

(p, A(�)) and k(q�(⇡0)� p)k = d

l

(p,R(�)). As

the optimal signal maximizes Pr[Approval], it must be that the optimal signal corresponds

to a vector l⇤ that maximizes the ratio k(q�(⇡0)� p)k / k(q+(⇡0)� p)k . ⌅

Proof of Proposition 1: The existence of an optimal binary signal is established in KG

(Proposition 1, p. 2595). Let ⇡ be an optimal binary signal supported on S = {s�, s+}

where the voter approves the proposal if and only if he observes s+, and let ↵
✓

= Pr[s+|✓] so

that Pr[Approval] =
P

✓2⇥ ↵

✓

p

✓

. A Bayesian voter � will approve after observing s

+ if and

only if

E[�|s+] =
X

✓2⇥

q

+
✓

�

✓

=
X

✓2⇥

↵

✓

p

✓

�

✓

Pr[Approval]
� 0

Therefore, ↵ must solve the following linear program

X

✓2⇥

↵

✓

p

✓

= max
X

✓2⇥

↵

0
✓

p

✓

, s.t. 0  ↵

0
✓

 1,
X

✓2⇥

↵

0
✓

p

✓

�

✓

� 0. (10)

Note that for any ✓

0 such that �
✓

0 � 0 we must then have ↵
✓

0 = 1, as increasing ↵

✓

0 whenever

↵

✓

0
< 1 relaxes the approval constraint and increases the approval probability. Therefore,
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suppose that �

✓

< �

✓

0
< 0 for ✓, ✓

0 2 ⇥. If ↵

✓

> 0 but ↵

✓

0
< 1, then increasing ↵

✓

0

by " (|�
✓

|p
✓

/|�
✓

0 |p
✓

0) while reducing ↵

✓

by " leaves unchanged the approval constraint but in-

creases the probability of approval by "p
✓

(|�
✓

|/|�
✓

0 |)�"p

✓

> 0, thus leading to a contradiction.

Therefore, if ↵
✓

> 0, then ↵

✓

0 = 1 for any �

✓

0
> �

✓

.

Now suppose that voter � strictly ranks states so that �
✓

6= �

✓

0 for ✓ 6= ✓

0. Then there can

only be one “cuto↵” state that satisfies (4), and given that the approval constraint is met

with equality, the optimal binary signal must be unique.

If p 2 A(�) then ↵

✓

= 1, ✓ 2 ⇥, and the voter receives a completely uninformative signal.

If p /2 A(�) then the solution to (10) must have a binding approval constraint, implying

that the voter is indi↵erent between approval and rejection after observing s

+. That is, his

expected gain from making decisions with ⇡ is again zero. ⌅

Proof of Lemma 2: Follows immediately by replacing A(�) with co(W
k

), and R(�) with

R

k

, in Lemma 1 and then applying the same reasoning as in the proof of Lemma 1. ⌅

Proof of Proposition 2: Let W

k

be the win set under a k-voting rule and suppose that

p /2 co(W
k

). Define G(W
k

) as

G(W
k

) = {� : q 2 W

k

) hq, �i � 0}

Note that each � 2 G(W
k

) corresponds to a “less tough” voter than the k-voting rule, in the

sense that any voter in G(W
k

) would approve the proposal if the electorate does so under a

k-voting rule. Moreover, as G(W
k

) describes all hyperplanes that contain W

k

, then we have

(i) co(W
k

) = \
�2G(Wk)A(�), and (ii) V (W

k

)  inf
�2G(Wk) V (�). We now show that there is

a �

⇤ 2 G(W
k

) with V (co(W
k

)) = V (�⇤) so that �⇤ is a weak representative voter when the

win set is co(W
k

). As explained in the text, for any belief in co(W
k

) the controller can find

a signal that induces approval with probability 1. Therefore V (W
k

) = V (co(W
k

)), and �

⇤ is

also a representative voter for W
k

.

Define the function f(↵) = inf
�2G(Wk) h↵, �pi, 0  ↵  1, which is concave as it is the

infimum of a�ne functions. The function f(↵) provides a representation of co(W
k

), since q =

↵p

h↵,pi 2 co(W
k

) if and only if f(↵) � 0.17 Let s+ be the event corresponding to approval of the

17For every q 2 � (⇥), the existence of a corresponding ↵  1 is guaranteed by simply choosing ↵✓ =
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proposal under an optimal signal, and let ↵⇤
✓

= Pr[s+|✓] so that Pr[Approval] =
P

✓2⇥ ↵

⇤
✓

p

✓

.

Since the expected approval posterior must be in co(W
k

), then we must have f(↵⇤) � 0.

Thus, the controller’s optimal signal must maximize Pr[Approval], i.e.

X

✓2⇥

↵

⇤
✓

p

✓

= max
↵

X

✓2⇥

↵

✓

p

✓

, s.t. 0  ↵

✓

 1, f(↵) � 0. (11)

Program (11) is concave (as it maximizes a concave function over a convex set). Consider

the Lagrangian L associated to (11)

L =< ↵, p > �
X

✓

⌫

✓

< ↵, 1
✓

> +
X

✓

µ

✓

< ↵� 1, 1
✓

> �f(↵),

with ⌫

✓

, µ

✓

, � 0, and 1
✓

is the unitary vector whose ✓-component equals 1. Suppose that

W

k

is non-empty and has at least two di↵erent elements. This implies that W
k

has a non-

empty relative interior, so that the constraint qualification is satisfied and the Karush-Kuhn-

Tucker conditions are both necessary and su�cient for optimality (Boyd and Vandenberghe

2004). In particular, when p /2 co(W
k

), ↵⇤ is an optimal solution if and only if there exist

�

⇤
, ⌫

⇤
✓

, µ

⇤
✓

> 0, ✓ 2 ⇥, such that

�̃ ⌘ ��

⇤
p�

X

✓

⌫

⇤
✓

< ↵

⇤
, 1

✓

> +
X

✓

µ

⇤
✓

< ↵

⇤ � 1, 1
✓

>2 @f(↵⇤) and f(↵⇤) = 0, (12)

where @f(↵⇤) is the set of subgradients of f at the point ↵⇤, Define

�

⇤ =

⌧
�̃,

↵

⇤
p

< ↵

⇤
, p >

�
,

and consider the voter �⇤ = �̃� �

⇤1. By construction, h�⇤, qi = 0 is a supporting hyperplane

of co(W
k

). Now consider the optimal signal ↵0 under delegation to voter �⇤ which must satisfy

X

✓2⇥

↵

0
✓

p

✓

= max
↵

X

✓2⇥

↵

✓

p

✓

, s.t. 0  ↵

✓

 1, h↵, �⇤pi � 0.

Again, this is a concave program (in fact a linear program) with non-empty relative interior

if co(W
k

) has a non-empty relative interior. Therefore ↵0 is optimal if and only if there exist

�

⇤
, ⌫

⇤
✓

, µ

⇤
✓

> 0, ✓ 2 ⇥, such that

��

⇤
p�

X

✓

⌫

⇤
✓

< ↵

0
, 1

✓

> +
X

✓

µ

⇤
✓

< ↵

0 � 1, 1
✓

>= �̃ (13)

⇣
q✓
p✓

⌘
/max q✓0

p✓0
.
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In particular, as ↵

⇤ satisfies (12) it also satisfies (13) and thus provides an optimal signal

when delegating to voter �⇤. Therefore �

⇤ is a weak representative voter. Finally, suppose

that the representative voter �⇤(k) strictly ranks states. Then, following Proposition 1 the

binary optimal signal is unique and thus the expected utility of every player is the same

under delegation to �

⇤ or under a k-voting rule. ⌅

Proof of Lemma 3: We will prove the lemma by showing that if all voters in the elec-

torate belong to F
z

for some permutation z, then if {q 2 � (⇥) : hq, vi = 0} is a supporting

hyperplane of co(W
k

) then v 2 F
z

.

Let S

k

be the set of all k�coalitions of voters with generic element s. Then \
�2sA(�)

describes the win set associated with a unanimous decision when the electorate is restricted to

the coalition s, and W

k

= [
s2Sk

\
�2sA(�). As \�2sA(�) is the finite intersection of half-spaces

{q 2 � (⇥) : hq, �i � 0} , then any supporting hyperplane of \
�2sA(�) at q 2 int(� (⇥)) can

be represented as a convex combination of {� : � 2 s}. Moreover, co(s) ⇢ F
z

, as ranking of

states is preserved under convex combinations. Thus any supporting hyperplane of \
�2sA(�)

at an interior belief corresponds to a voter in F
z

.

Turning to co(W
k

), consider any point q

0 2 int(� (⇥)) with q

0 2 @ (co(W
k

)) and a

supporting hyperplane {q : hq, v(q0)i = 0} of co(W
k

) at q0. Since q0 2 co(W
k

), Caratheodory’s

theorem guarantees the existence of J  card(⇥)+1 points, {qi}, i = {1, ..., J}, with q

i 2 W

k

and q

0 2 co(qi, i = {1, ..., J}). We consider two possibilities: (i) at least one of the points

q

i is in int(� (⇥)), (ii) any representation of q

0 as a convex combination of points {qi}

with q

i 2 W

k

must correspond to points on the faces of the simplex � (⇥), i.e. for each

i = {1, ..., J 0} there exists ✓
i

such that qi
✓i
= 0.

Consider first case (i) in which q

i 2 int(� (⇥)) for some i. Then {q : hq, v(q0)i = 0}

must also be a supporting hyperplane of W

k

at q

i. Furthermore, since q

i 2 W

k

there

exists a k�coalition s such that qi 2 \
�2sA(�) and thus {q : hq, v(q0)i = 0} is a supporting

hyperplane of \
�2sA(�). However, as all supporting hyperplanes to \

�2sA(�) in int(� (⇥))

can be associated to a voter in F
z

, then v(q0) 2 F
z

.

Consider now case (ii) where every representation of q0 as a convex combination of points

in W

k

involves points that lie on (possibly di↵erent) faces of the simplex � (⇥), and let {qi},
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i = {1, ..., J} be such a collection of points. As each q

i 2 W

k

, and {q : hq, v(q0)i = 0} is a

supporting hyperplane of co(W
k

) then there exists a coalition s

i

such that min
�2si hqi, �i = 0,

and let �i be a voter at which this minimum is achieved. That is, coalition s

i

would support

approval for belief qi with at least one voter being indi↵erent between approval and rejection.

Now suppose by way of contradiction that v(q0) /2 F
z

. This means that there exist

two states ✓ and ✓

0 with (�i
✓

0 � �

i

✓

) (v
✓

0(q0)� v

✓

(q0)) < 0 for all i 2 {1, ..., J} . Now consider

the edge of beliefs  (✓, ✓0) that put positive probability only on ✓ and ✓

0, i.e.  (✓, ✓0) =

{q : q = ↵1
✓

0 + (1� ↵)1
✓

} and let q̃ 2  (✓, ✓0) be such that hq̃, v(q0)i = 0. As v(q0) is a

support hyperplane, we must have hq̃, �ii = 0 for some i = {1, ..., J}. The fact that �i and

v(q0) rank ✓ and ✓

0 di↵erently implies that either v

✓

0(q0) < 0 < �

i

✓

0 or v

✓

(q0) < 0 < �

i

✓

. In

either case, it implies that there is one state that belongs to W

k

(as it is approved by the

coalition represented by ) but does not lead to approval by voter v(q0). Therefore, v(q0)

cannot be a supporting hyperplane of co(W
k

) and we reach a contradiction. ⌅

Proof of Corollary 1: In the text.

Proof of Proposition 3: Part (i)- Follows immediately as any optimal signal under

unanimity must induce approval of every voter, while an optimal signal for a voter �i would

also induce approval if k = 1.

Part (ii)- Note that if all �i 2 F
z

, then Proposition 1 shows that the structure of the

optimal signal is the same for all voters: if ↵
✓

(�i) = Pr[approval|✓] represents the optimal

signal under delegation to voter �i, where ↵

✓

(�i) is given by (4), then ↵

✓

(�i0) � ↵

✓

(�i)  0,

✓ 2 ⇥ if V (�i
0
)  V (�i). This implies that signal ↵(�k) would induce approval for any

i < k such that V (�k)  V (�i). Therefore, the optimal signal to persuade voter �

k has an

approval signal realization that would induce the approval vote of at least k voters. Therefore

V (W
k

) � V (�k). ⌅

Proof of Corollary 2: In the text.

Proof of Proposition 4: Without loss of generality, suppose that z(i) = i so that for

� 2 F
z

we have �

✓i < �

✓i+1 , i 2 {1, ..., card(⇥)� 1}. From Proposition 1, the controller’s

optimal signal when the decision is made by voter � 2 F
z

is characterized by the approval
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conditional probabilites ↵
✓

(�) = Pr[approval|✓] such that there exists i↵(�) with (i) ↵
✓i(�) = 0

if i < i

↵(�), (ii) ↵

✓i(�) = 1 if i > i

↵(�), and (iii)
P

↵

✓

(�)p
✓

�

✓

= 0. Also, for � 2 F
z

let

i(�) = min {i : �
✓i � 0}. In words, if the realized state is ✓

i

then voter � would approve the

proposal under full information as long as i � i(�), while the optimal signal induces approval

by voter � only if i � i

↵(�).

Part (i)- The increment in the expected utility of voter �v under delegation to � rather

than choosing always the status quo is

�U = E[u
i

(x(�), ✓)]� E[u
i

(x0, ✓)] = P (q+(�))
⌦
q

+(�), �v
↵
=

X
↵

✓

(�)p
✓

�

v

✓

.

We now show that voter �v has single peaked preferences among voters in D. Select two

voters �, �0 2 D with A(�0) ⇢ A(�). From Proposition 1, this implies that ↵
✓

(�0)�↵

✓

(�)  0,

✓ 2 ⇥. First, suppose that i↵(�), i↵(�0) < i(�v). Then, ↵
✓i(�) = ↵

✓i(�
0) = 1 if i � i

0(�v), and

thus

�U(�0)��U(�) =
X

i<i

0(�v)

(↵
✓i (�

0)� ↵

✓i (�)) p✓i�
v

✓i
� 0,

where the inequality follows from �

v

✓i
< 0 if i < i

0(�v). Second, suppose that i↵(�), i↵(�0) �

i(�v). Then, ↵
✓i(�) = ↵

✓i(�
0) = 0 if i < i

0(�v), and thus

�U(�0)��U(�) =
X

i�i

0(�v)

(↵
✓i (�

0)� ↵

✓i (�)) p✓i�
v

✓i
 0,

where the inequality follows from �

v

✓i
� 0 if i � i

0(�v).

Finally, divide voters inD into two groupsD+(�v) = {� 2 D : i↵(�) � i(�v)} andD

�(�v) =

{� 2 D : i↵(�) < i(�v)}. Then, for any �, �

0 2 D

�(�v), voter �v preferences over decision mak-

ers are given by their toughness, while if �, �0 2 D

+(�v), voter �v prefers decision makers that

are less tough. Therefore, �v has single peaked preferences over voters in any totally ordered

chain (ordered according to toughness).

Part (ii)- Let F (D)
z

be the set of voters that rank states according to z and who share

the same set of approval states D. For any �, �

0 2 F (D)
z

we have that i↵(�) < i(�0) (equality

is ruled out as voters strictly rank states). In words, if voters both agree on the ranking of

states and on decisions under full information, then the controller would provide voter � with

a signal that always induces approval in states for which voter �

0 would want to approve.
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Therefore, Proposition 4 implies that all voters in F (D)
z

have monotone preferences over

totally ordered chains in F (D)
z

.

Part (iii)- The maximum expected gain to voter �v (with respect to always selecting the

status quo) if he can design the signal himself is

�U

⇤ =
X

i�i

0(�v)

p

✓

�

v (✓) .

This corresponds to (i) a signal that reveals whether or not a state with a non-negative

net value occurred, i.e. if a state ✓
i

with i � i

0(�v) occurred, and (ii) the proposal is selected

in that case. But, this is precisely the signal that the controller provides to a voter �⇤
⇣
�̂, �

v

⌘
,

as to induce approval the controller would need to supply a signal such that

E[�⇤
⇣
�̂, �

v

⌘
|s+] =

X

✓2⇥

q

+
✓

�

✓

� �̂(�̂) =
X

✓2⇥

⇣
↵

✓

� 1{✓:�v✓�0}
⌘
p

✓

�

✓

= 0,

which implies that ↵
✓

= 1 only if �v
✓

� 0, which corresponds to the optimal signal to voter

�

v. ⌅

Proof of Corollary 3: Corollary 2(i) implies that all voters weakly prefer unanimity with

the controller’s influence than rejecting the proposal without further information; assumption

p /2 W

n+1
2

and Corollary 2(iii) imply that a majority of voters prefers to reject the proposal

without further information than having simple majority under the controller’s influence.

Corollary 3 then follows immediately. ⌅

Proof of Lemma 4: Lemma 3 implies that if all voters are in the same class F
z

, then

for each k there exists a representative voter �

⇤(k) 2 F
z

and, furthermore, A (�⇤(k0)) ⇢

A (�⇤(k)) for k

0
> k. Therefore D = {�⇤(k) : k 2 {1, ..., n}} forms a totally ordered chain,

and Proposition 4 implies that each voter in the electorate has single-peaked preferences in

D. Finally, since �

⇤(k) 2 F
z

, Proposition 2 implies that the expected utility of each voter

under a k-voting rule is the same as delegating to �

⇤(k). This implies that each voter has

single peaked preferences over k. ⌅

Proof of Lemma 5: Consider the optimal binary signal targeting the weak representative

voter �⇤(W
k

). Let q+
k

be the posterior belief after the approval signal. Under simple majority
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rule there is a setM of voters, card(M) � n+1
2 , such that for each � 2 M we have

D
q

+
n+1
2

, �

E


0. Hence the expected payo↵ of those voters under simple majority is weakly lower than

their expected payo↵ from always rejecting the proposal. Moreover, since W

n

6= ;, under

unanimity the payo↵ of all voters � 2 M is weakly higher than their payo↵ from always

rejecting the proposal, since unanimity implies < q

+
n

, � >� 0. Therefore all voters in M

weakly prefer unanimity over simple majority. Using Lemma 4, single-peaked preferences

over k implies that all voters in M weakly prefer k

0 over simple majority, concluding the

proof of part (i). Part (ii) follows from 0 < V (W
k

0) < V (Wn+1
2
) because it implies that the

optimal signal under k0 is not the same as the signal under simple majority.

To see that the set M must exist, suppose by contradiction that it does not exist. Then

there are at least n � n+1
2 + 1 = n+1

2 voters such that
D
q

+
n+1
2

, �

E
> 0. Therefore, after

observing q

+
n+1
2

a majority of voters strictly prefer to approve the proposal, a contradiction

to the optimality of the signal. ⌅

Proof of Proposition 5: Proposition 4(ii) applied to Lemma 3 implies that all voters have

monotone preferences over voters in D = {�⇤(k) : k 2 {1, ..., n}} when they all agree under

full information. Since �

⇤(k) 2 F
z

, Proposition 2 implies that the expected utility of each

voter under a k-voting rule is the same as delegating to �

⇤(k). This implies that each voter

has monotone preferences over k. ⌅
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B Online Supplemental Material

This online Appendix complements “Persuading Voters,” by Alonso and Câmara (2014).

B.1 Additional Examples

Example 5: This example illustrates that when voters disagree on the ranking of states,

a signal realization that convinces one voter to support the proposal sometimes does not

guarantee the support of all easier-to-persuade voters (see Proposition 3). Consider 3 states,

⇥ = {✓1, ✓2, ✓3}, and n = 6 voters. All voters agree that ✓3 is the only approval state, but

they disagree on the ranking of rejection states ✓2 and ✓1. Specifically, voters are divided

into two groups. Group A has voters {�A1
, �

A2
, �

A3}, who rank state ✓2 higher than ✓1

(�Ai

✓3
> �

Ai

✓2
> �

Ai

✓1
). Group B has voters {�B1

, �

B2
, �

B3}, who rank state ✓1 higher than ✓2

(�Bi

✓3
> �

Bi

✓1
> �

Bi

✓2
). Figures 4(a) and (b) depict voters’ approval sets, which are rotations

around the same point. Voters with a lower numerical index are easier to persuade — voter

�

Ai is easier to persuade than voter �A(i+1), while voter �Ai is as easy to persuade as voter �Bi.

Importantly, voters from both groups are so misaligned that an optimal signal to persuade

a voter from one group never induces approval from any voter from the other group. In

Figure 4(a), the optimal signal when the decision is delegated to voter �A3 induces approval

posterior q

+. Belief q+ convinces voter �

A3 and the easier-to-persuade voters �

A1 and �

A2

that the proposal is better than the status quo. However, it does not convince any voter in

group B, including the easier-to-persuade voters �B1 and �

B2. Moreover, no single group has

enough votes to approve the proposal when the voting rule requires a strict majority k >

n

2 .

Consequently, any k > 3 is payo↵-equivalent to requiring a unanimous vote. Figure 4(b)

depicts the posterior beliefs induced by an optimal signal with unanimity rule, which is also

optimal given any k > 3. ⇤

1



Voter&
q+

Prior&Belief& q−

Approval&Set&

θ1θ2 Strong&Rejec6on&Set&

θ3

δ A1

Voter&δ A2
Voter&δ A3

R(δ A3)

A(δ A3)

p
Voter&δ B1

Voter&δ B2
Voter&δ B3

(a) Example 5, approval delegated

to �

A3

Voter&

q+

Prior&Belief&
q−

Win&Set&

θ1θ2 Strong&Rejec3on&Set&

θ3

δ A1

Voter&δ A2
Voter&δ A3

R6

W6

p
Voter&δ B1

Voter&δ B2
Voter&δ B3

(b) Example 5, with unanimity

q+A

q−
Prior%Belief% p

R1

W1

θ1θ2 Strong%Rejec1on%Set%

θ3

Voter% δ A

Voter% δ B

Win%Set%

q+B

Voter% δC

(c) Example 6, with k = 1

Figure 4: Optimal Signals for Examples 5 and 6

Example 6: We now extend Example 2 to illustrate that sometimes an optimal signal

does not target the easiest-to-persuade voter, even when voters agree under full information

and rank states in the same order. Consider 3 states, ⇥ = {✓1, ✓2, ✓3}, and in addition to

voters �A and �

B from Example 2, consider a third voter �C as follows:

State Prior �

A

✓

�

B

✓

�

C

✓

✓3 0.2 +1 +1 +1

✓2 0.1 -0.5 -1.5 -0.8

✓1 0.7 -6 -2 -3

We know from Example 2 that if the decision is delegated do either �A or �B, then the

equilibrium probability of approval is 32.5%. If the decision is delegated to �

C , then the

equilibrium probability of approval18 is 34%. Therefore, �C is the easiest-to-persuade voter.

However, if the voting rule is k = 1, then the signal described in Example 2 remains optimal:

realization s

+
A

convinces voter �

A to approve the proposal but it does not convince voters

�

B and �

C ; realization s

+
B

convinces voter �B but not voters �A and �

C ; realization s

� does

not convince any voter; the probability of approval is then 37.5%. Therefore, the optimal

signal does not target the approval of the easiest-to-persuade voter — it is optimal for the

controller to instead exploit the disagreement between voters �

A and �

B. As Figure 4(c)

18Formally, S = {s�, s+}, Pr(s+|✓3) = Pr(s+|✓2) = 1, and Pr(s+|✓1) = 2
35 . The possible posterior beliefs

are q� = (1, 0, 0) and q

+ = ( 2
17 ,

5
17 ,

10
17 ). Probability of approval is Pr(s = s

+) = 2
35 ⇥0.7+1⇥0.1+1⇥0.2 =

0.34.
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illustrates, when k = 1 the weak-representative voter �⇤ = (�2,�0.5, 1) is supported on the

approval sets of voters �A and �

B, but not on the approval set of �C . ⇤

Example 7: This example highlights that in order to obtain the results in Lemmas 4 and

5, one may not replace the same class assumption with an agreement under full information

assumption. Consider an electorate with five voters, {�A, �B, �C , �D, �E}, and three states

⇥ = {✓1, ✓2, ✓3}. All voters agree under full information — they want to approve the proposal

if the state is ✓3, and to reject if the state is ✓2 or ✓1. However, they do not have the same

ranking of states. Voters �A and �

B (who have the same type) and voter �C rank �

✓2 > �

✓3 ,

while voters �

D and �

E (who have the same type) rank �

✓2 < �

✓3 . Approval sets and win

sets for di↵erent voting rules are depicted in Figure 5. The optimal signal under simple

majority k = 3 induces posteriors {q�3 , q+3 }, the optimal signal under supermajority k = 4

induces posteriors {q�4 , q+4 }, and the optimal signal under unanimity k = 5 induces posteriors

{q�5 , q+5 }. Di↵erently than Lemma 4, voters �A, �B and �

C have non-single-peaked preferences

over voting rules: they consider k = 4 strictly worse than k = 3 and k = 5. To see this,

note that voters �A and �

B strictly prefer to approve the proposal under beliefs q+3 and q

+
5 ,

but they are indi↵erent under q+4 . Voter �
C weakly prefers to approve under beliefs q+3 and

q

+
5 , and he strictly prefers to reject under q

+
4 . Di↵erently than Lemma 5, a majority of

voters (voters �A, �B and �

C) strictly prefer simple majority over the supermajority k = 4.

Nevertheless, in accordance with Corollary 3, a majority of voters (voters �

C , �D and �

E)

weakly prefer unanimity over simple majority. ⇤

θ1#θ2#

θ3#

R3

q+3

q−3

p

W3

δ A,δ B

δD,δE

δC

θ1#θ2#

θ3#

R4

q+4

q−4

p

W4

δ A,δ B

δD,δE

δC

θ1#θ2#

θ3#

R5

q+5

q−5

p

W5

δ A,δ B

δD,δE

δC

Figure 5: Optimal Signal for Example 7
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B.2 Voter preferences over k-voting rules

Corollary 4 Consider an electorate {�1, . . . , �n}.

(i) Suppose that �i 2 F
z

, i 2 I, and there is a toughest voter, i.e. there exists j 2 {1, ..., n}

such that A (�j) ⇢ A (�i), i 2 I. If unanimity is not a Condorcet winner, then �

j disagrees

with a majority of voters under full information.

(ii) Suppose that A (�i+1) ⇢ A (�i) and all voters agree under full information. If unanimity

is not a Condorcet winner, then �

n must rank states di↵erently than a majority of voters.

Proof of Corollary 4: Part (i)- If there is a toughest voter, say �

j, then this voter is a

representative voter under unanimity. If a majority of voters does not prefer unanimity then

the conditions of Proposition 5 are violated and we must have that a majority of voters must

have a set of approval states di↵erent from the set of approval states of voter �j.

Part (ii)- If all voters are totally ordered then a representative voter exists for any

k�voting rule. If a majority of voters does not prefer unanimity then the conditions of

Proposition 5 are violated and we must have that the toughest voter �

n must rank states

di↵erently than the majority of voters. ⌅

B.3 Controller Knows the State

Consider our basic model of pure-persuasion where all players have a common prior p, and

suppose that before choosing signal ⇡ the controller privately observes the true state ✓ 2 ⇥.

We can apply the results from Alonso and Câmara (2014b) to conclude that the controller

cannot benefit from observing ✓. Moreover, our voting model allows us to derive a second

result: if ⇡⇤ is an optimal signal when the controller has no private information, then there is

a pooling equilibrium where all controller’s types supply the same ⇡

⇤. Therefore, a pooling

equilibrium with ⇡

⇤ maximizes the controller’s expected payo↵ in the case when the controller

can observe the state.

To understand the second result, let ⇡⇤ be an optimal signal in the case when the controller

has no private information. Consider an electorate {�1, . . . , �n} and a k-voting rule. We can

partition the realization space S into two sets: the set of approval signals that induce a

4



posterior belief in the win set W

k

, and the set of rejection signals that induce a posterior

belief in the strong rejection set R
k

. Consequently, signal ⇡⇤ also partitions the state space

⇥ into three sets: the set of states ⇥1 that induce an approval realization with probability

one, the set of states ⇥2 that induce a rejection realization with probability one, and the set

of states ⇥3 that induce an approval signal with probability strictly between zero and one.

Importantly, since any state ✓ in the sets ⇥2 and ⇥3 can induce a posterior in the strong

rejection set, it must be the case that a blocking coalition of at least n� k+ 1 voters would

reject the proposal if they knew that ✓ 2 ⇥2 [⇥3.

Now suppose that the controller knows the state prior to choosing the signal. We con-

struct the following equilibrium strategies and beliefs. The controller’s equilibrium strategy

is to choose the original signal ⇡⇤, independently of her private information. Along the equi-

librium path, upon observing the choice of ⇡⇤ voters do not update their priors (since all

controllers’ types choose the same ⇡⇤ in equilibrium), so they use ⇡⇤ and the realized signal s

to vote as in the original equilibrium. Before we define the out-of-equilibrium-path behavior,

note that if the controller knows that the state is in ⇥1, then she knows that the proposal

will be approved for sure with the signal ⇡⇤. Therefore, these types have no incentive to

deviate from the original signal. The only types who could possibly benefit are the ones who

know that ✓ 2 ⇥2[⇥3. Therefore, out of the equilibrium path, when voters observe a choice

of signal ⇡0 di↵erent than ⇡

⇤, we let them update their beliefs as follows: they assign prob-

ability zero to the controller’s types that know that ✓ 2 ⇥1. Therefore, upon observing any

choice of signal ⇡0 di↵erent than ⇡

⇤, voters belief that ✓ 2 ⇥2 [ ⇥3 and reject the proposal.

Hence, no controller benefits from deviating, and pooling is indeed an equilibrium.

The case of delegation follows since it is equivalent to unanimity with a homogeneous

electorate.

B.4 Controller’s Payo↵ Depends on the State

In this section we study the case when the controller’s payo↵ depends on the realized state.

Consider the controller’s payo↵ u

C

(x, ✓) : X ⇥ ⇥ ! R. Let �C
✓

= u

C

(x1, ✓) � u

C

(x0, ✓) and

define the controller’s type �C = {�C
✓

}
✓2⇥. The controller prefers the proposal to be approved

in states ✓ 2 D(�C), and rejected in states ✓ /2 D(�C). To simplify presentation, suppose the

5



controller is never indi↵erent, �C
✓

6= 0.

First suppose that the approval decision is delegated to voter �, with p /2 A(�) and

A(�) \ A(�C) 6= ;. As in the case of pure-persuasion with delegation, there is a multiplicity

of optimal signals. However, one can always construct an optimal signal with only two signal

realizations: the voter approves if s+ is realized, and rejects if s�. There are two possible

cases: preference alignment and preference misalignment. We say that there is preference

alignment if the controller su↵ers no loss of control by the fact that the voter makes the ap-

proval decision. This is the case if and only if
P

✓2D(�C) p✓�✓ � 0. In this case, the controller’s

optimal signal induces approval realization s

+ for every �

C

✓

> 0, and rejection realization s

�

for every �

C

✓

< 0. Consequently, the controller’s preferred policy is implemented in each

state. Moreover, the voter benefits from this signal. The more interesting case is preference

misalignment,
P

✓2D(�C) p✓�✓ < 0, when the information controller can no longer guarantee

implementation of her preferred policy in each state. The following Proposition generalizes

the optimal signal from Proposition 1.

Proposition 6 Consider controller �

C and suppose that the approval decision is delegated

to voter �, p /2 A(�), A(�) \ A(�C) 6= ;, and
P

✓2D(�C) p✓�✓ < 0. Let ⇡⇤ be any controller’s

optimal signal supported on two realizations {s�, s+}, where voter � approves the proposal if

and only if s = s

+. Letting ↵

✓

= Pr[s+|✓], for each state ✓ we have:

(i) If players agree on approval, ✓ 2 ⇥
A

⌘ {✓ 2 ⇥|�C
✓

> 0, �
✓

� 0}, then ↵

✓

= 1;

(ii) If players agree on rejection, ✓ 2 ⇥
R

⌘ {✓ 2 ⇥|�C
✓

< 0, �
✓

 0}, then ↵

✓

= 0;

(iii) If players disagree, ✓ 2 ⇥
D

⌘ {✓ 2 ⇥|�C
✓

> 0, �
✓

< 0 or �

C

✓

< 0, �
✓

> 0}, then there

exists ✓0 2 ⇥
D

such that

↵

✓

=

8
<

:
1 if �

C

✓

> 0,
��� �

C
✓
�✓

��� >
��� �

C
✓0
�✓0

��� or �

C

✓

< 0,
��� �

C
✓
�✓

��� <
��� �

C
✓0
�✓0

���

0 if �

C

✓

> 0,
��� �

C
✓
�✓

��� <
��� �

C
✓0
�✓0

��� or �

C

✓

< 0,
��� �

C
✓
�✓

��� >
��� �

C
✓0
�✓0

���
, and

X

✓2⇥

↵

✓

p

✓

�

✓

= 0. (14)

Moreover, while voter � never gains by making decisions with the signal ⇡⇤, the controller’s

value of information control is V � v(p) =
P

✓2⇥ ↵

✓

p

✓

�

C

✓

.

Proof of Proposition 6: The existence of an optimal binary signal is established in KG

(Proposition 1, p. 2595). Let ⇡ be an optimal binary signal with S = {s�, s+} where the

6



voter approves the proposal if and only if he observes s

+, and let ↵

✓

= Pr[s+|✓] so that

Pr[Approval] =
P

✓2⇥ ↵

✓

p

✓

. A Bayesian voter � will approve after observing s

+ if and only

if

E[�|s+] =
X

✓2⇥

↵

✓

p

✓

�

✓

Pr[Approval]
� 0.

The information controller’s payo↵ with signal ⇡ is

X

✓2⇥

h
↵

✓

p

✓

u

C

(x1, ✓) + (1� ↵

✓

)p
✓

u

C

(x0, ✓)
i

=
X

✓2⇥

↵

✓

p

✓

�

C

✓

+
X

✓2⇥

p

✓

u

C

(x0, ✓).

The last term
P

✓2⇥ p

✓

u

C

(x0, ✓) is not a function of ↵
✓

, hence the optimal signal must solve

the following linear program:

max
X

✓2⇥

↵

✓

p

✓

�

C

✓

, s.t. 0  ↵

✓

 1,
X

✓2⇥

↵

✓

p

✓

�

✓

� 0. (15)

We can write the Lagrangian and the first order condition with respect to ↵

✓

,

L =
X

✓2⇥

↵

✓

p

✓

�

C

✓

+ �

X

✓2⇥

↵

✓

p

✓

�

✓

+
X

✓2⇥

⌫

+
✓

↵

✓

+
X

✓2⇥

⌫

�
✓

(1� ↵

✓

),

@L
@↵

✓

= p

✓

�

C

✓

+ �p

✓

�

✓

+ ⌫

+
✓

� ⌫

�
✓

= 0. (16)

It must be the case that
P

✓2⇥ ↵

✓

p

✓

�

✓

= 0 and � > 019. If players agree on approval, �C
✓

> 0

and �

✓

� 0, then (16) implies ⌫�
✓

> 0 and ↵

✓

= 1. If players agree on rejection, �C
✓

< 0 and

�

✓

 0, then (16) implies ⌫+
✓

> 0 and ↵

✓

= 0. Now consider the set of disagreement states

such that the controller prefers approval, �C
✓

> 0 and �

✓

< 0. If p
✓

�

C

✓

+ �p

✓

�

✓

> 0 (hence
�

C
✓

��✓
> �), then (16) implies ⌫�

✓

> 0 and ↵

✓

= 1. If p
✓

�

C

✓

+ �p

✓

�

✓

< 0 (hence
�

C
✓

��✓
< �), then

(16) implies ⌫+
✓

> 0 and ↵

✓

= 0. Now consider the set of disagreement states such that the

controller prefers rejection, �C
✓

< 0 and �

✓

> 0. If p
✓

�

C

✓

+ �p

✓

�

✓

> 0 (hence
��

C
✓

�✓
< �), then

(16) implies ⌫

�
✓

> 0 and ↵

✓

= 1. If p
✓

�

C

✓

+ �p

✓

�

✓

< 0 (hence
��

C
✓

�✓
> �), then (16) implies

⌫

+
✓

> 0 and ↵

✓

= 0.

Therefore, the cuto↵ state ✓

0 2 ⇥
D

defined by the Proposition is the state ✓

0 with the

absolute value of the ratio
��� �

C
✓
�✓

��� closest to �. ⌅

19By contradiction, suppose � = 0. From (16) we have: if �C✓ > 0, then ⌫

�
✓ > 0 and ↵✓ = 1; if �C✓ < 0,

then ⌫

+
✓ > 0 and ↵✓ = 0. In this case, signal s+ violates the approval constraint

P
✓2⇥ ↵✓p✓�✓ � 0, since the

proposition considers the misalignment case
P

✓2D(�C) p✓�✓ < 0.
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In many important cases the controller ranks states in the same order as the voter. For

example, the controller receives the same payo↵ as the voter, plus some private benefit from

approving the proposal (see also our application in Section 6.1). We find that if all players

rank states in the same order, then our results on voters’ preferences over k-voting rules

continue to hold.

Proposition 7 Consider an information controller �

C and an electorate {�1, . . . , �n}, with

�

C

, �

i 2 F
z

. Then each voter has single-peaked preferences over k-voting rules. If voters also

agree under full information, then the payo↵ of every voter is weakly increasing in k.

Proof of Proposition 7: To prove this Proposition, we start by solving the delegation

benchmark. Suppose that the approval decision is delegated to a voter � who ranks the state

in the same order as the controller. If there is no preference misalignment,
P

✓2D(�C) p✓�✓ � 0,

then the controller su↵ers no loss of control: her optimal signal leads to approval in every

approval state �

C

✓

> 0, and rejection in every rejection state �

C

✓

< 0. If there is preference

misalignment, then ⇡

⇤ is an optimal signal for controller �C if and only if ⇡⇤ is an optimal

signal in the case of pure-persuasion. To see this, first note that since both players rank

states in the same order z, misalignment implies that there is no state ✓ such that �C
✓

< 0

and �

✓

� 0.20 Therefore, in every disagreement state ✓ 2 ⇥
D

it must be that �

C

✓

> 0 and

�

✓

< 0. Consequently, for every ✓ 2 ⇥
D

, the absolute value of the ratio
��� �

C
✓
�✓

��� is increasing

in �

✓

(the positive term �

C

✓

increases, while the negative term �

✓

goes to zero). In this case,

the controller’s problem in Proposition 6 becomes equivalent to the problem in Proposition

1 with pure-persuasion: the controller seeks a cuto↵ state ✓

0 2 ⇥ such that the proposal is

approved in every state �
✓

> �

✓

0 , rejected in every state �
✓

< �

✓

0 , and voter’s expected payo↵

conditional on approval equals the expected payo↵ of rejection. Also note that if controller �C

and voter � are misaligned, then the controller is also misaligned with any tougher voter �0,

A(�0) ⇢ A(�). Therefore, we can extend the results from Proposition 4 as follows. Take any

totally ordered (according to toughness) set of voters D 2 F
z

. Then any voter � 2 F
z

has

20By contradiction, suppose there is a state ✓ such that �C✓ < 0 and �✓ � 0. Then every state ✓

0 such that

z(✓0) > z(✓) is also an approval state for the voter. Moreover, for the controller there is no approval state ✓

0

such that z(✓0) < z(✓). Hence, D(�C) ⇢ D(�), which contradicts misalignment,
P

✓2D(�C) p✓�✓ < 0.
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single-peaked preferences over decision makers in D. Now consider a k-voting rule. Lemma

3 continues to hold — if all voters rank states in the same order, then there is a weak

representative voter �⇤(k) who also rank states in the same order. Moreover, recall that in

this case the weak representative voters are ordered by toughness, A(�⇤(k + 1)) ⇢ A(�⇤(k)).

Therefore, all the results of Lemmas 4 and 5 and Proposition 5 continue to hold.

B.5 Preference Shocks

In our setup, voters’ preferences depend on a common state ✓ and the controller can influence

voters’ behavior by providing a signal correlated with ✓. The controller’s ability to predict

each vote leads her to resort to signals with realizations that just guarantee approval by

the required number of votes. In many instances, however, voters’ behavior may not be

completely pinned down by the realization of the controller’s signal. This is the case when

voters are subject to idiosyncratic shocks that a↵ect the relative benefits of the proposal and

the status quo.

To study the e↵ect of preference shocks, we assume that voter i’s preferences are given

by u

i

(x, ✓, µ
i

) and the conditional net payo↵ from approval with state ✓ and private shock

µ

i

is

u

i

(x1, ✓, µi

)� u

i

(x0, ✓, µi

) = �

i

✓

� µ

i

.

Then, when voter i observes µ
i

and holds belief q regarding the realization of ✓, he votes for

x1 if and only if hq, �ii � µ

i

. To simplify exposition, we assume that each voter i observes

the realization of µ
i

after observing the realization of the controller’s signal. Shocks µ
i

are

i.i.d. and jointly independent with ✓, with each shock distributed according to F (µ) with

support in [�µ̄, µ̄].

When designing the signal, the controller must now consider how the joint distribution of

private shocks a↵ects voters’ willingness to side with the proposal. Given independence, we

summarize this information in the form of a function P

i

(q) that determines the probability

that voter i approves the proposal if he has belief q, i.e. P
i

(q) = Pr [µ
i

 hq, �ii]. Define the

set of guaranteed-approval beliefs AP (�i) = {q 2 �(⇥) : P
i

(q) = 1}.

The next proposition shows that if preference shocks are small and high shocks are

9



su�ciently likely, then under both delegation and unanimity the controller behaves as if she

is facing non-probabilistic voters with approval sets AP (�i).

Proposition 8 Suppose that for every voter i we have �

i

✓

/2 [�µ̄, µ̄] with at least one state

with �

i

✓

> µ̄, and F (µ)  F

U

(µ) where U is uniformly distributed in [�µ̄, µ̄] . Then,

(i) Suppose that decisions are delegated to voter i. Then the controller’s expected utility and

optimal signal are the same as if the decision was delegated to a voter with no private shock

and type �̌i = �

i�1µ̄. Furthermore, if p /2 A

P (�i), then the value to voter i of the controller’s

optimal signal is strictly positive.

(ii) Suppose that decisions are made under unanimity rule. Then the controller’s expected

utility and optimal signal are the same as if decisions are made under unanimity by an

electorate of voters
�
�̌

i

 
i2I , with �̌

i = �

i � 1µ̄, for i 2 I. Furthermore, if for all i 2 I,

p /2 A

P (�i), then every voter is strictly better o↵ with the controller’s optimal signal.

Part (i) of the proposition considers delegation to voter i. For any belief q such that

|hq, �ii| < µ̄, we have 0 < P

i

(q) < 1, and voter i takes into account the realization of

his private shock when deciding whether to approve the proposal. In designing approval

signal realizations, the controller must trade-o↵ a higher probability of approval of any belief

that increases hq, �ii with a lower probability that the optimal signal induces that belief.

Proposition 8(i) states that the controller resolves this trade-o↵ with a signal such that voter

i

0
s behavior does not depend on his private shock; in particular, the optimal signal induces

beliefs q
s

such that P
i

(q
s

) 2 {0, 1}. That is, the controller behaves as if she is facing a voter

that, with certainty, either approves or rejects the proposal, i.e. a voter not subject to a

preference shock. Since P
i

(q) = 1 i↵ µ̄  hq, �ii, the controller acts as if she needs to persuade

the non-probabilistic voter of type �̌

i = �

i � 1µ̄, i.e., the voter that always experiences the

most adverse possible shock. This is true as long as F (µ)  F

U

(µ), which is satisfied for

any convex distribution of support contained in [�µ̄, µ̄] and implies that high values of the

private shock are more likely.21 Proposition 8(ii) shows that these insights carry over to the

case of a unanimous voting rule. With unanimity, the controller behaves as if she faces a

non-probabilistic electorate with types �̌i = �

i � 1µ̄.

21This condition is also necessary in the sense that if it is violated, then there exists a prior belief p such

that the optimal signal induces beliefs that do not guarantee either approval or rejection, ie. Pi(qs) /2 {0, 1} .
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Under our distributional assumptions, the presence of small private shocks changes nei-

ther the controller’s behavior nor her expected utility. However, it does impact voters’

welfare. To begin with, voters have almost surely a strict preference between approval and

rejection of the proposal, so that voters obtain a strictly positive gain with probability 1

when they side with the proposal. Therefore, unlike the case of non-probabilistic voting,

voter i strictly benefits from the controller’s signal with delegation (cf. Proposition 1). If

all voters would reject the proposal under the prior belief, the same would be true under a

unanimity rule. Proposition 8(ii) shows that in this case all voters strictly benefit from the

signal. In summary, if decisions need the approval of all decision makers, then all decision

makers benefit from the controller’s influence.

For non-unanimous voting rules, the results from Corollary 2 carry over to cases with a

small µ̄. In particular, with a simple majority voting rule, a majority of voters can be made

strictly worse o↵ by the controller’s signal.

Proof of Proposition 8 : Consider an electorate {�i}
i2I and let V

PV

i

(q) = P

i

(q) and

V

PV

U

(q) = ⇧
i2IPi

(q) be the indirect utility of the controller when decisions are delegated

to voter i and when decisions are made under unanimity. Similarly, consider the electorate

of voters
�
�̌

i

 
i2I that are not subject to a preference shock, with �̌

i

✓

= �

i

✓

� µ̄1 so that the

set of approval beliefs of each voter is A(�̌i) = {q 2 �(⇥) : µ̄  hq, �ii} = A

P (�i), and let

V

NPV

i

(q) = 1{q2A(�̌i)} and V

NPV

U

(q) = 1{q2\i2IA(�̌i)} be the indirect utility of the controller

when decisions are delegated to voter i and when decisions are made under unanimity. Recall

that f̃ denotes the concave closure of function f . KG show that if V (q) is the controller’s

indirect utility then the controller’s expected utility under an optimal signal when the prior

belief is p is Ṽ (p). We will show that (i) Ṽ

PV

j

(q) = Ṽ

NPV

j

(q), for j = {1, .., N, U} , and

(ii) V

NPV

j

(q) = Ṽ

NPV

j

(q) if and only if V PV

j

(q) = Ṽ

PV

j

(q), for j = {1, .., N, U}. Identity

(i) implies that the controller’s expected utility is the same if he faces probabilistic or if

he faces non-probabilistic voters, while (ii) and (i) imply that the set of optimal signals for

probabilistic and non-probabilistic voters coincides.

Because approval is more likely for the case of preference shocks, then V

PV

j

(q) � V

NPV

j

(q)

and the monotonicity of the concave closure operator implies that Ṽ PV

j

(q) � Ṽ

NPV

j

(q). We
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now show that Ṽ NPV

j

(q) � V

PV

j

(q) for j = {1, .., N, U}, which implies Ṽ NPV

j

(q) � Ṽ

PV

j

(q).

These inequalities together establish that Ṽ PV

j

(q) = Ṽ

NPV

j

(q).

Consider first the case of delegation to voter �

i. Suppose that q 2 A

P (�i). Because

A(�̌i) = A

P (�i) and the maximum indirect utility is achieved in these sets, we have that

V

NPV

i

(q) = Ṽ

NPV

i

(q) = V

PV

i

(q). Now suppose that q /2 A

P (�i). Since shocks are small so

that �i
✓

/2 [�µ̄, µ̄], then V

PV

i

(1
✓

) = 0 for any state ✓ 2 D

C

i

whereDC

i

(�i) = {✓ 2 ⇥ : �i
✓

< �µ̄}

is the set of rejection states. As the indirect utility achieves is lowest value for any belief

q 2 R

P

i

(�i) ⌘ co(DC

i

(�i)), then V

NPV

i

(q) = Ṽ

NPV

i

(q) = V

PV

i

(q) = 0. Finally, suppose that

0  P

i

(q) < 1. Note that Ṽ

NPV

i

(q) = � for some � such that q = �q

+ + (1 � �)q�, with

q

+ 2 A

P (�i), hq+, �ii = µ̄, and q

� 2 R

P

i

(�i) . For any state ✓ 2 D

C

i

, we have �

i

✓

< �µ̄

implying that hq�, �ii < �µ̄. Since hq+, �ii = µ̄, then hq+ � q

�
, �

ii > 2µ̄. Overall, because

F (µ)  F

U

(µ) we obtain the following inequality

F

U

(
⌦
q, �

i

↵
) = 1� hq+ � q, �

ii
2µ̄

= 1� (1� �) hq+ � q

�
, �

ii
2µ̄

< �, (17)

which leads to

V

PV

i

(q) = P

i

(q) = F

�⌦
q, �

i

↵�
 F

U

(µ) < � = Ṽ

NPV

i

(q).

Consider now the case of unanimity. By the same reasoning as before we have that

V

NPV

U

(q) = Ṽ

NPV

U

(q) = V

PV

U

(q) for q 2 \
i2IA

P (�i), and for any belief , then V

NPV

i

(q) =

Ṽ

NPV

i

(q) = V

PV

i

(q) = 0 for q 2 [
i2IR

P

i

(�i) . Finally, suppose that 0  ⇧
i2IPi

(q) < 1.

Again, we can write Ṽ

NPV

i

(q) = � with q = �q

+ + (1 � �)q�,and q

+ 2 \
i2IA

P (�i), with

hq+, �ii � µ̄ for i 2 I with at least one strict equality, and q

� 2 [
i2IR

P

i

(�i) . Let i

0 be a

voter that always rejects for q�, i.e.
⌦
q

�
, �

i

0↵
< �µ̄. Since for this voter

⌦
q

+
, �

i

0↵ � µ̄ then
⌦
q

+ � q

�
, �

i

0↵
> 2µ̄. From (17) and F (µ)  F

U

(µ), we have F (
⌦
q, �

i

0↵
) < � and

V

PV

i

(q) = ⇧
i2IPi

(q) = ⇧
i2IF

�⌦
q, �

i

↵�
 F (

D
q, �

i

0
E
) < � = Ṽ

NPV

i

(q).

Finally, note that under delegation, in all the cases that q /2 A

P (�i) and q /2 R

P

i

(�i), we

had Ṽ

NPV

j

(q) 6= V

PV

j

(q). Since in all these cases we also had Ṽ

NPV

j

(q) = � 6= V

NPV

j

(q),

then V

NPV

j

(q) = Ṽ

NPV

j

(q) if and only if V PV

j

(q) = Ṽ

PV

j

(q), for j = {1, .., N}. The same

reasoning can be translated to the case of unanimity to prove that V NPV

U

(q) = Ṽ

NPV

U

(q) if

and only if V PV

U

(q) = Ṽ

PV

U

(q). ⌅
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B.6 Spatial Model of Elections

We now solve for the optimal signal in the spatial electoral model described in Section 6.2.

Consider a simple majority rule, so that the median voter is the representative voter. A

player with ideology y prefers a right-wing challenger with policy ✓ � 0 over the left-wing

incumbent with policy y

L

< 0 if the challenger is no too radical, ✓  |y
L

|+ 2y
C

. Therefore,

a player with ideology y and corresponding type � (defined by (9)) has a set of approval

states D(�) = {✓ 2 ⇥|✓  |y
L

| + 2y
C

}. If player �

0 has an ideology to the right of �, then

D(�) ⇢ D(�0). For any ideology y � 0, define T (y) = {max ✓ 2 ⇥|✓  |y
L

|+2y}, that is, the

most right-wing policy of the challenger that a player y would prefer over the incumbent.

Since the example assumes ✓1 < |y
L

|, this set is not empty. Moreover, T weakly increases in

y.

Next we define a cuto↵ ȳ on the ideology of the controller, and then characterize the

optimal signal of moderate (y
C

< ȳ) and radical (y
C

> ȳ) controllers.

Step 1 - Ideology cuto↵: Let ✓⇤ to be the smallest ✓ 2 ⇥ such that
P

{✓2⇥|✓✓

⇤} p✓�
median

✓

<

0. The example assumes ✓1 < |y
L

|, therefore
P

{✓2⇥|✓|yL|} p✓�
median

✓

> 0 and ✓

⇤
> |y

L

|. Since

without further information the median voter keeps the incumbent,
P

✓2⇥ p

✓

�

median

✓

< 0, then

✓

⇤  ✓

M

. Define the ideology cuto↵ ȳ = ✓

⇤�|yL|
2 , and note that a player with ideology ȳ is

just indi↵erent between electing challenger ✓⇤ or the incumbent. Moreover, T (ȳ) = {max ✓ 2

⇥|✓  |y
L

|+ 2ȳ} = ✓

⇤. Since |y
L

| < ✓

⇤  ✓

M

, it must be the case that 0 < ȳ  ✓M�|yL|
2 .

Step 2 - Moderate Controller: Suppose that the controller is moderate, y
C

< ȳ. This

implies that the controller strictly prefers not to elect challenger ✓⇤ (and every challenger to

the right). In this case, the controller is able to persuade the median to elect the challenger

by simply revealing that ✓ 2 D(�C). Therefore, any optimal signal ⇡⇤ induces an approval

realization for every state ✓  T (y
C

), and a rejection signal for every state ✓ > T (y
C

).

Note that even if the controller does not agree with the median under full information,

T (0) < T (y
C

), the controller still does not su↵er loss of control. That is, she achieves her

maximum payo↵ as if she could both choose the signal and decide whether to approve the

proposal (elect the challenger). The median strictly benefits from this signal.
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Step 3 - Radical Controller: Suppose that the controller is radical, y
C

> ȳ. Then by

simply revealing that ✓ 2 D(�C) the controller cannot persuade the median voter. We can

then apply the results from Proposition 6 as follows. For any state ✓  T (0), both the median

and the controller agree on approval, while for any ✓ > T (y
C

) both agree on rejection. Hence,

the only disagreement states are ✓ 2 (T (0), T (y
C

)]. Using �

✓

as defined by (9), in all these

state we have �

C

✓

> 0, �median

✓

< 0 and

�

C

✓

|�median

✓

|
=

�(✓2 � y

2
L

) + 2(✓ � y

L

)y
C

(✓2 � y

2
L

)
=

2y
C

✓ + y

L

� 1.

Since y

C

> 0, the ratio
�

C
✓

|�median
✓ | strictly decreases with ✓. Using Proposition 6(iii), there

is a cuto↵ state ✓

0 such that every state ✓ > ✓

0 (hence a lower ratio) induces an rejection

signal and every state ✓ < ✓

0 (hence a higher ratio) induces an approval signal. Moreover,

14 requires the median voter to be indi↵erent when electing the challenger (hence he does

not benefit from the signal). In other words, the disagreement does not change the ordering

of the states, and the optimal cuto↵ defined by (14) is the same as (4) in the case of pure-

persuasion.

Finally, note that a higher k-voting rule is equivalent to delegating the decision to a

representative voter with ideology y  0. Every voter y  0 ranks states in the same

order (a higher ✓ is bad news about the challenger), and the controller’s signal continues

to take the form of a cuto↵ rule on the state. A higher k-voting rule implies that, to

persuade the tougher decision maker, the controller’s approval signals must show that the

challenger is more moderate. Similar argument used on Proposition 7 reveals that the

median and all left voters then have single-peaked preferences over k-voting rules above

simple majority. Moreover, the median and all left voters weakly prefer unanimity over

simple majority. Together these two results imply that any supermajority is weakly better

than simple majority, from the point of view of the median and left voters.

14


	Alonso_Camara_Persuading-voters_2014_cover
	Alonso_Camara_Persuading-voters_2014_published
	Alonso_Camara_Persuading-voters_2014_publishedAnnex

