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Abstract 

This paper focuses on the estimation and predictive performance of several estimators for the 

dynamic and autoregressive spatial lag panel data model with spatially correlated 

disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic spatial 

GMM estimator is proposed based on Kapoor, Kelejian and Prucha (2007) for the Spatial 

AutoRegressive (SAR) error model. The main idea is to mix non-spatial and spatial 

instruments to obtain consistent estimates of the parameters. Then, a linear predictor of this 

spatial dynamic model is derived. Using Monte Carlo simulations, we compare the 

performance of the GMM spatial estimator to that of spatial and non-spatial estimators and 

illustrate our approach with an application to new economic geography. 
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1 Introduction

This paper considers spatial panel data models in which there is variation
across time and space involving simultaneous spatial (network) dependence
together with dynamic interaction. Spatial dependence models are popular
in regional science and urban economics, where the cross-sectional units are
typically locations (cities, countries, regions) which are a¤ected by common
factors or spillover e¤ects from neighboring locations. Forecasting studies
using spatial panel data models are rare, and those involving forecasting
with a dynamic component are almost absent from the literature. Recently,
Baltagi and Pirotte (2010) showed that tests of hypotheses based on the usual
panel data estimators that ignore spatial dependence can produce misleading
inference.
For dynamic panel data models with no spatial autocorrelation, it is well

known that the OLS estimator is biased, see Trognon (1978), and Sevestre
and Trognon (1983, 1985). Also, the �xed e¤ects estimator is biased, see
Nickell (1981) and Kiviet (1995). Anderson and Hsiao (1981, 1982) proposed
an IV estimator which is consistent. Subsequent developments focused on
Generalized Method of Moments (GMM) estimators including Arellano and
Bond (1991) and Blundell and Bond (1998) to mention just a few. See
Blundell, Bond and Windmeijer (2000), Arellano and Honoré (2001), Hsiao
(2003) and Baltagi (2008) for good reviews and a textbook treatment of this
subject.
Spatial dependence models deal with spatial interaction and spatial het-

erogeneity (see Anselin (1988), LeSage and Pace (2009)). The structure
of the spatial dependence can be related to location and distance, both in
a geographic space as well as a more general economic or social network
space, see Anselin, Le Gallo and Jayet (2008). Typically, cross-section de-
pendence is modelled as proportional to some observable distance, see Anselin
(1988), LeSage and Pace (2009), introduced through an endogenous spatial
lag variable or via spatially correlated disturbances, or both. Combining
cross-section dependence with autoregressive (temporal) dependence leads
us to Elhorst (2005), who derives a Maximum Likelihood Estimator (MLE).
Another way to estimate autoregressive models with spatial dependence is
to extend the GMM approach to the spatial case in order to obtain con-
sistent parameter estimates. Jacobs, Ligthart and Vrijburg (2009) focus on
a dynamic autoregressive �xed e¤ects model which includes the spatial lag
of the dependent variable together with spatially correlated disturbances.
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They propose a three-step GMM approach. Elhorst (2010) considers the
same model except that the disturbances are not spatially autocorrelated.
He develops Bias Corrected Least Squares Dummy Variables (BCLSDV),
unconditional ML and GMM estimators. Védrine and Bouayad-Agha (2010)
use a GMM spatial estimator, with similar orthogonality conditions to those
of Arellano and Bond (1991), to study the convergence of European regions.
Mutl (2006) extends the Kapoor, Kelejian and Prucha (2007) approach to a
dynamic model with spatially correlated disturbances under less restrictive
assumptions. Yu, de Jong and Lee (2008) propose a Quasi Maximum Like-
lihood Estimator (QMLE) for spatial dynamic panel data with �xed e¤ects
when both N and T are large. Lee and Yu (2010a, b) extend this approach
under di¤erent assumptions about N and T . Kukenova and Monteiro (2009)
consider a system-GMM to estimate a dynamic spatial panel model (i.e. �rst
order spatial autoregressive panel data model). They compare its properties
to those of the usual estimators (MLE, QMLE, LSDV, etc.).
In this paper, we propose a spatial GMM estimator in the spirit of Arel-

lano and Bond (1991) and Mutl (2006) under the assumptions that the model
includes temporal and spatial lags on the endogenous variable together with
SAR-RE disturbances. Only a few articles study the predictive performance
of spatial panel models. Baltagi and Li (2006), Baltagi, Bresson and Pirotte
(2010), Fingleton (2009, 2010) focus on the particular case of a static model
under spatially correlated disturbances. In contrast, Longhi and Nijkamp
(2007), Kholodilin, Siliverstovs and Kooths (2008) use dynamic spatial mod-
els. Longhi and Nijkamp (2007) compare di¤erent models designed to com-
pute short-term ex post forecasts of regional employment in a panel of 326
West German regions observed over the period from 1987 to 2002. They
show that forecasts can be improved by simply taking into account the dis-
tances across regions. Nevertheless, this study is speci�c to the area and
variables under investigation. Kholodilin, Siliverstovs and Kooths (2008) fo-
cus on multi-step forecasts of the annual growth rates of real GDP for each
of the 16 German Länder simultaneously over the period from 2002 to 2006
(estimation period is 1993-2001). They do not consider any explanatory vari-
ables. Moreover, the forecasts are computed using reduced forms and ML
estimates of the parameters. In this article, we present a GMM spatial proce-
dure and derive a Linear Predictor (LP) for the more general case of a spatial
dynamic model (i.e. one that includes a spatial lag together with spatially
correlated disturbances). Using Monte Carlo simulations and an empirical
illustration, we compare the empirical performance of our GMM spatial esti-
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mator to that of OLS, Within and GMM, each of which takes no account of
the spatial structure of the disturbances. We also compare our spatial esti-
mator to other spatial GMM estimators, such as Mutl (2006). Last, we also
evaluate the predictive performance of our dynamic spatial model. The plan
of the paper is as follows: Section 2 presents the model, section 3 focuses on
our spatial GMM estimators. Section 4 derives a Linear Predictor. Section
5 describes the Monte Carlo design. Section 6 presents the results, Section
7 illustrates our approach using an application to new economic geography,
and the last section concludes.

2 The Spatial Dynamic Panel Model

Consider a �rst order spatial autoregressive panel data model

yit = 
yit�1 + �1

NX
j=1

wijyjt + xit� + "it i = 1; : : : ; N ; t = 1; : : : ; T , (1)

where yit is the dependent variable for region i at time t, xit is a (1�K)
vector of explanatory (exogenous) variables, 
 and � represent corresponding
(1� 1) and (K � 1) parameters to be estimate. wij is the (i; j) element of
the matrix WN . WN is an (N �N) known spatial weights matrix which
has zero diagonal elements and is row-normalized. If WN is de�ned as �rst
order contiguity, such elements consist of location pairs that have common
border but there is no higher order contiguity. �1 is the spatial lag coe¢ cient.
This parameter is assumed to be restricted to the interval [1=rmin; 1], where
rmin equals the most negative purely real characteristic root of WN after
this matrix is row-normalized, see LeSage and Pace (2009, pp. 88-89). This
ensures stationarity across space. The stationarity assumption also requires
j
j < 1. So, parameter combinations that violate j
j < 1 � �1 for �1 � 0 or
j
j < 1��1rmin for �1 < 0 are excluded, otherwise the model is nonstationary
in time. Moreover, in contrast to the usual panel data framework, we allow "it
to be contemporaneously correlated according to the Spatial AutoRegressive
(SAR) error model with row-normalized matrix MN with similar properties
to WN but with elements mij 6= wij :

"it = �2

NX
j=1

mij"jt + uit, j�2j < 1, (2)
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The stationarity conditions imposed on �2 are like those for �1, in this case
with respect to the real eigenvalues of MN . Moreover, the remainder term
uit follows an error component structure

uit = �i + vit (3)

where �i is an individual speci�c time-invariant e¤ect which is assumed to
be iid

�
0; �2�

�
, and vit is a remainder e¤ect which is assumed to be iid (0; �2v).

�i and vit are independent of each other and among themselves. Combining
(2) and (3), we obtain the SAR-RE speci�cation of the disturbance "it. For
simplicity, in practice, we assume that MN = WN .

3 A Spatial GMM Estimator

Following Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), we
eliminate the individual e¤ect �i in (3), which is correlated with the lagged
dependent variable, by di¤erencing the model (1) yielding

�yit = 
�yit�1 + �1

NX
j=1

wij�yjt +�xit� +�"it: (4)

In contrast to the classical literature on panel data, grouping the data by
periods rather than units is more convenient when we consider the spatial
correlation due to (2). For a cross-section t, we have:

�yt = 
�yt�1 + �1WN�yt +�xt� +�"t (5)

where yt = (y1t; : : : ; yNt)
0 is a (N � 1) vector, and the matrix xt = (x1t; : : : ;

xNt)
0 is of dimension (N �K). For the error vector "t of dimension (N � 1),

we assume E("t) = 0,
E("t"

0
t) = �2" (B

0
NBN)

�1 (6)

where �2" = �2�+�
2
v, BN = (IN��2WN). The matrixBN is assumed to be non-

singular, and the row and column sums of the matrix WN are bounded uni-
formly in absolute value. The corresponding vector (N (T � 1)�N (T � 1))
covariance matrix of " is given by


 =
�
�2�JT�1 + �2vIT�1

�

 (B0

NBN)
�1 (7)
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where JT�1 is a (T � 1� T � 1) matrix of ones, IT�1, an identity matrix of
order T � 1.
Using the Arellano and Bond (1991) methodology, we can obtain a GMM

estimator based on the following moment conditions:

E(yil�vit) = 0 8i; l = 1; 2; : : : ; T � 2; t = 3; 4; : : : ; T (8)

E(xk;im�vit) = 0 8i; k; m = 1; 2; : : : ; T ; t = 3; 4; : : : ; T (9)

where (9) assumes that the explanatory variables xk;im are strictly exoge-
nous. Moreover, we can use spatially dependent and explanatory variables
as instruments. The validity of this strategy requires the following moments
conditions:

E(
X
i6=j

wijyjl�vit) = 0 l = 1; 2; : : : ; T � 2; t = 3; 4; : : : ; T (10)

E(
X
i6=j

wijxk;jl�vit) = 0 8i; k; m = 1; 2; : : : ; T ; t = 3; 4; : : : ; T . (11)

Let us de�ne the matrix Z which contains the non-spatial instruments (i.e.
related to the conditions (8) and (9)) as

Z =

0BBB@
Z3 0 � � � 0

0 Z4
. . .

...
...

. . . . . . 0
0 � � � 0 ZT

1CCCA (12)

where
Zt = (y1; : : : ; yt�2; x1; : : : ; xT ) (13)

is an (N � (t� 2) +KT ) matrix of instruments at time t, yl is a vector of
dimension (N � 1) and xr is a matrix of dimension (N �K). Moreover, we
can de�ne a matrix Zs which contains the spatial instruments (i.e. related
to the conditions (10) and (11)) as

Zs =

0BBB@
Zs3 0 � � � 0

0 Zs4
. . .

...
...

. . . . . . 0
0 � � � 0 ZsT

1CCCA (14)
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with
Zst =

�
ys1; : : : ; y

s
t�2; x

s
1; : : : ; x

s
T

�
(15)

where

ysl =

0BBB@
PN

j=1w1jyjlPN
j=1w2jyjl
...PN

j=1wNjyjl

1CCCA (16)

and

xsr =

0BBB@
PN

j=1w1jx1jr
PN

j=1w1jx2jr � � �
PN

j=1w1jxkjrPN
j=1w2jx1jr

PN
j=1w2jx2jr � � �

PN
j=1w2jxkjr

...
...

...PN
j=1wNjx1jr

PN
j=1wNjx2jr � � �

PN
j=1wNjxkjr

1CCCA . (17)

If we stack the matrices Z and Zs, we obtain the valid instruments for the
model (4), namely Z�. Moreover, we use the weight matrix of moments

AN =
�
E
�
Z 0 (�") (�")0 Z

���1
(18)

with
E
�
(�") (�")0

�
= �2v (IT�2 
HN) (G
 IN) (IT�2 
H 0

N) (19)

and

G =

0BBBBBBB@

2 �1 0 � � � 0 0
�1 2 �1 � � � 0 0

0 �1 . . . . . .
...

...
...

. . . . . . . . . �1 0
0 0 0 �1 2 �1
0 0 0 � � � �1 2

1CCCCCCCA
; HN = B�1

N = (IN��2WN)
�1. (20)

A consistent estimate of the autoregressive parameter �2 can be obtained
using the Kapoor, Kelejian and Prucha (2007) approach, hereafter KKP. In
fact, KKP generalized the GM procedure from cross-section data proposed
by Kelejian and Prucha (1999) to panel data and derived its large sample
properties when T is �xed and N ! 1. They proposed three generalized
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moments (GM) estimators of �2, �
2
v and �

2
1

�
= �2v + T�2�

�
based on the fol-

lowing six moment conditions:

E

266666664

1
N(T�1)u

0
NQ0;NuN

1
N(T�1)u

0
NQ0;NuN

1
N(T�1)u

0
NQ0;NuN

1
N
u0NQ1;NuN

1
N
u0NQ1;NuN

1
N
u0NQ1;NuN

377777775
=

26666664
�2v

�2v
1
N
tr (W 0

NWN)
0
�21

�21
1
N
tr (W 0

NWN)
0

37777775 (21)

where

uN = "N � �2"N (22)

uN = "N � �2"N (23)

"N = (IT 
WN) "N (24)

"N = (IT 
WN) "N . (25)

Following (21), (22) to (25), and if we consider the sample moments coun-
terparts based on e"N , we can write:

GN
�
�2; �

2
2; �

2
v; �

2
1

�0 � gN = �N
�
�2; �

2
v; �

2
1

�
(26)

where

GN =

26666664
g011 g012 g013 0
g021 g022 g023 0
g031 g032 g033 0
g111 g112 0 g113
g121 g122 0 g123
g131 g132 0 g133

37777775 , gN =
26666664
g01
g02
g03
g11
g12
g13

37777775 (27)
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and

gi11 =
2

N (T � 1)1�i
e"0NQi;Ne"N , gi12 = � 1

N (T � 1)1�i
e"0NQi;Ne"N ,

gi21 =
2

N (T � 1)1�i
e"0NQi;Ne"N , gi22 = � 1

N (T � 1)1�i
e"0NQi;Ne"N ,

gi31 =
1

N (T � 1)1�i
�e"0NQi;Ne"N + e"0NQi;Ne"N� , gi32 = � 1

N (T � 1)1�i
e"0NQi;Ne"N ,

gi13 = 1, gi1 =
1

N (T � 1)1�i
e"0NQi;Ne"N

gi23 =
1

N
tr
�
W

0

NWN

�
, gi2 =

1

N (T � 1)1�i
e"0NQi;Ne"N

gi33 = 0, gi3 =
1

N (T � 1)1�i
e"0NQi;Ne"N

with

Q0;N =

�
IT �

JT
T

�

 IN (28)

Q1;N =
JT
T

 IN . (29)

KKP speci�ed a static model rather than a dynamic one, i.e. 
 = 0, and
also their model does not have a spatial lag, i.e. �1 = 0 in equation (1).
In this context, under the random e¤ects speci�cation (3), the OLS estima-
tor of � is consistent. Using e�OLS one gets a consistent estimator of the
disturbances e" = y � Xe�OLS: The GM estimators of �21, �

2
� and �2 are the

solution of the sample moments (26). KKP suggest three GM estimators.
The �rst involves only the �rst three moments which do not involve �21 and
yield estimates of �2 and �

2
� . The fourth moment condition is then used to

solve for �21 given estimates of �2 and �
2
� . The second GM estimator is based

upon weighting the moment equations by the inverse of a properly normal-
ized variance-covariance matrix of the sample moments evaluated at the true
parameter values. A simple version of this weighting matrix is derived under
normality of the disturbances. The third GM estimator is motivated by com-
putational considerations and replaces a component of the weighting matrix
for the second GM estimator by an identity matrix. KKP perform Monte
Carlo experiments comparing ML and these three GM estimation methods.
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They �nd that on average, the RMSE of ML estimator and their weighted
GM estimators are quite similar1. �N (�2; �

2
v; �

2
1) can be viewed as a vec-

tor of residuals. The GM estimator of �2 is de�ned as the nonlinear least
squares estimator corresponding to (26). Here, the OLS estimator of (1) is
not consistent. Therefore, we modify the KKP approach as follows:

� In the �rst step, we use an IV or GMM estimator to get consistent esti-
mates of 
, �1 and �. For example, we can use the Anderson and Hsiao
(1981, 1982) IV estimator by addingWNyt�2 to the list of instruments.

� In the second step, the IV or GMM residuals are used to obtain con-
sistent estimates of the autoregressive parameter �2 and the variance
components �2v and �

2
1.

� In the third step, we compute the preliminary one-step consistent Spa-
tial GMM estimator which is given byb�1 = (� eX 0

Z� bANZ�0� eX)�1� eX 0
Z� bANZ�0�y (30)

where � eX = (�y�1; (IT�2 
WN)�y;�x), �
0 = (
; �1; �

0) and

bAN = hZ�0 �IT�2 
 bHN

�
(G
 IN)

�
IT�2 
 bH 0

N

�
Z�
i�1

(31)

with bHN = bB�1
N = (IN � b�2WN)

�1.

� In the fourth step, following Arellano and Bond (1991), we replace (31)
in (30) by

VN =
h
Z�0
�
IT�2 
 bHN

�
(�v) (�v)0

�
IT�2 
 bH 0

N

�
Z�
i�1

.

To operationalize this estimator, �v is replaced by di¤erenced resid-
uals obtained from the preliminary one-step consistent Spatial GMM
estimator (30). The resulting estimator is the two-step Spatial GMM
estimator b�2 = (� eX 0

Z�bVNZ�0� eX)�1� eX 0
Z�bVNZ�0�y. (32)

A consistent estimate of the asymptotic variance-covariance matrix ofb�2 is given by the �rst term of (32).

1In our Monte Carlo experiments, we report the results from the GM estimator called
weighted GM estimator by Kapoor, et al. (2007) in order to save space. The di¤erences
with the other two GM estimators in our Monte Carlo experiments were minor.
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4 Prediction

For the static model with (
 = �1 = 0), Goldberger (1962) showed that, for
a given 
, the best linear unbiased predictor (BLUP) for the ith individual
at a future period T + � is given by:

byi;T+� = xi;T+�b�GLS + !0
�1b"GLS (33)

where ! = E ["i;T+�"] is the covariance between the future disturbance "i;T+�
and the sample disturbances ". b�GLS is the GLS estimator of � based on

 and b"GLS denotes the corresponding GLS residual vector. For the static
RE model with (
 = �2 = �1 = 0); this predictor in (33) was considered by
Wansbeek and Kapteyn (1978), Lee and Gri¢ ths (1979) and Taub (1979).
The BLUP in (33) reduces to:

byi;T+� = xi;T+�b�GLS + �2�
�21
(�0T 
 l0i)b"GLS (34)

where �21 = T�2�+�
2
v and li is the ith column of IN . The typical element of the

last term of equation (34) is
�
T�2�=�

2
1

�
"i:;GLS where "i:;GLS =

PT
t=1b"ti;GLS=T .

Therefore, the BLUP of yi;T+� for the RE model modi�es the usual GLS
forecasts by adding a fraction of the mean of the GLS residuals corresponding
to the ith individual. Baltagi, Bresson and Pirotte (2010) derived the BLUP
and demonstrated that the second term of (34) is not modi�ed if the structure
of the disturbances is SAR-RE with (
 = �1 = 0). Another interesting case is
when the model (1) is a spatial lag model with an error component structure
(i.e. 
 = �2 = 0). The BLUP is given by

2:

byi;T+� = KX
k=1

b�k NX
j=1

hijxk;j;T+� +
T�2�
�21

NX
j=1

hijb"j: (35)

where hij is the (i; j) element of the matrix G�1N = (IN � �1WN)
�1, �21 =

T�2�+�
2
v and b"j: = (1=T )PT

t=1b"jt. In practice, the variance components and
the spatial lag parameter �1 of (35) are unknown. So, these are replaced by
their ML estimates.
When 
 6= 0 (i.e. a dynamic model), and �1 6= 0 (i.e. including a spatial

lag on the dependent variable) and �2 6= 0 (i.e. including a SAR process

2See the Appendix.
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on the disturbances "), the derivation of the predictor is more complicated
mainly because the lagged endogenous variable is correlated with the individ-
ual e¤ects. Following Chamberlain (1984) and Sevestre and Trognon (1996),
we derive the linear predictor of yit conditional upon (y10,...,yN0,x11,...,xN1,...,
x1T ,...,xNT ) which is given3 by

E� [yitjy10; : : : ; yN0,x11; : : : ; xN1, : : : ,x1T ; : : : ; xNT ]

= 
t
NX
j=1

h
(t)
ij yj0 +

tX
l=1


l�1
NX
j=1

h
(l)
ij xjt�l+1�

+
tX
l=1


l�1
NX
j=1

p
(l)
ij E

� ��jjy10; : : : ; yN0� , (36)

where h(l)ij is the (i; j) element of the matrix
�
G�1N

�l
, p(l)ij is the (i; j) element

of the matrix
��
(GN)

�1�lB�1
N

�
. �j and yj0 are assumed to be uncorrelated

with the sequence (xj1,...,xjT ), 8j. Following Chamberlain (1984), we assume
that:

E�
�
�jjy10; : : : ; yN0

�
=  + �1y10 + � � �+ �NyN0.

5 Monte Carlo Design

In all the experiments the dependent variable yit was generated from a model
of the form:

yit = a+
yit�1+�1

NX
j=1

wijyjt+�xit+"it i = 1; : : : ; N ; t = 1; : : : ; T , (37)

where the disturbance "it follows a SAR process:

"it = �2

NX
j=1

wij"jt + uit (38)

where wij is the (i; j) element of the spatial matrix WN , and uit has an error
component structure

uit = �i + vit (39)

3To facilitate the presentation, we consider only one exogenous variable. See the Ap-
pendix.
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with �i � iid:N
�
0; �2�

�
, vit � iid:N (0; �2v) and

�
�2�; �

2
v

�
= (0:8; 0:2) ; (0:2; 0:8).

The explanatory variable xit is generated as:

xit = �xit�1 + �it (40)

with � = 0:6, �it � iid:N
�
0; �2�

�
, �2� = 5 and xi0 = 0. One sample size

is considered (N; T ) = (100; 7). For the coe¢ cients of (37) and (38), we
assume the values (a; 
; �) = (1; 0:2; 1), (1; 0:5; 1), �1 = 0:7, 0:4, 0:2 and
�2 = 0:4. The �rst ten cross-sections were discarded in order to reduce
the dependency on initial values. Moreover, following Kelejian and Prucha
(1999), two weight matrices are used which essentially di¤er in their degree
of sparseness. The weight matrices are labelled as �j ahead and j behind�
with the non-zero elements being 1=2j, j = 1 and 5, hereafter respectively
W (1; 1) and W (5; 5). For all experiments, 1000 replications are performed.
We compute the mean, standard deviation, bias and RMSE of the coe¢ cientsb
, b�, b�1 and b�2. Following Kapoor, et al. (2007), we adopt a measure of
dispersion which is closely related to the standard measure of root mean
square error (RMSE), but is based on quantiles. It is de�ned as

RMSE =

"
bias2 +

�
IQ

1:35

�2#1=2
(41)

where bias is the di¤erence between the median and the true value of the
parameter, and IQ is the interquantile range de�ned as c1 � c2 where c1
is the 0.75 quantile and c2 is the 0.25 quantile. Clearly, if the distribution
is normal the median is the mean and, aside from a slight rounding error,
IQ/1.35 is the standard deviation. In this case, the measure (41) reduces to
the standard RMSE.
We compare the performance of 8 estimators in our Monte Carlo experi-

ments. These are as follows:

1. Ordinary Least Squares (OLS) which does not deal with the endogene-
ity of the spatial WNy and the endogeneity of the lagged dependent
variable. OLS also ignores the individual e¤ects and the SAR process
for the disturbances.

2. The Within (W) estimator which wipes out the individual e¤ects, but
otherwise does not deal with the endogeneity of the spatial WNy and
the endogeneity of the lagged dependent variable nor the SAR process
for the disturbances.
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3. The Arellano and Bond (1991) GMM (1) estimator which di¤erences
the individual e¤ects, and handles the presence of the lagged dependent
variable by using the orthogonality conditions (8) and (9). However,
this estimator ignores the spatial WNy and the SAR process for the
disturbances.

4. GMM (2) is an application of the Arellano and Bond (1991) estimator
as in GMM (1) but including the spatial WNy as an extra regressor.
This estimator ignores the SAR process for the disturbances.

5. GMM-SAR-RE (1) is the estimator suggested by Mutl (2006) which
accounts for the lagged dependent variable and the SAR-RE process in
the spirit of KKP (2007). However, this estimator ignores the spatial
WNy:

6. GMM-SAR-RE (2) is an application of the Mutl (2006) estimator as in
GMM-SAR-RE (1) but including the spatialWNy as an extra regressor.

7. GMM-SL-RE is an estimator that uses the orthogonality conditions (8)
and (9) of Arellano and Bond (1991) as well as the spatial orthogonality
conditions (10) and (11). However, this estimator ignores the SAR-
RE process for the disturbances. This GMM estimator uses a similar
orthogonality conditions to that of Elhorst (2010).

8. GMM-SL-SAR-RE is an estimator that uses the orthogonality condi-
tions (8) and (9) of Arellano and Bond (1991) as well as the spatial
orthogonality conditions (10) and (11) as in GMM-SL-RE, but it also
accounts for the SAR-RE structure of the disturbances using a KKP
approach. This estimator is described in Section 3.

Last, we check the prediction-performance of the estimators considered.
We use the RMSE criterion and compute the out of sample forecast errors for
each predictor associated with the alternative estimators for one to �ve step
ahead forecasts, see Baltagi, Bresson and Pirotte (2010). We also compute
the Theil�s U statistic to avoid the scaling problem of RMSE, as discussed
by Trapani and Urga (2009). Average values of RMSE are calculated across
N for all �ve step forecasts.4

4Tables reporting Theil�s U statistic are available upon request from the authors.
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6 Monte Carlo results

6.1 Mean, bias and RMSE of the estimators

Table 1 presents the mean, bias and RMSE of the coe¢ cients b
, b�1, b�2 andb� for (N; T ) = (100; 7) ; ��2�; �2v� = (0:8; 0:2), � = 1, �2 = 0:4 considering a
W(1,1) matrix, one neighbor ahead and one neighbor behind.
The �rst panel in Table 1 shows the results for 
 = 0:2 (low value of the

lagged dependent variable coe¢ cient) and �1 = 0:2 and 0:7, (low and high
values of the spatial lag coe¢ cient). The second panel in Table 1 shows the
results for 
 = 0:5 (high value of the lagged dependent variable coe¢ cient).
In particular, for �1 = 0:2 in Table 1, the GMM estimator associated with
model (1) (i.e. including both the spatial lag variable and SAR-RE process,
namely GMM-SL-SAR-RE) has lower RMSEs for the coe¢ cients �1 and �2
than those obtained for GMM-SAR-RE (2) and GMM spatial lag including
RE disturbances, namely GMM-SL-RE. The RMSEs of 
 and � are simi-
lar. The GMM-SAR-RE (2) estimator is an extension of the Mutl (2006)
estimator (GMM-SAR-RE (1)) with the additional regressor WNy. GMM-
SL-RE is an estimator that uses the orthogonality conditions (8) and (9)
of Arellano and Bond (1991) as well as the spatial orthogonality conditions
(10) and (11). However, this estimator ignores the SAR-RE process for the
disturbances. Note the huge bias and RMSE for OLS, Within and GMM
(1) for the coe¢ cients 
, �1; �. These results are not surprising. OLS does
not deal with the endogeneity of the spatial WNy and the endogeneity of the
lagged dependent variable. OLS also ignores the individual e¤ects and the
SAR process for the disturbances. The Within estimator does not deal with
the endogeneity of the spatial lag WNy and the endogeneity of the tempo-
rally lagged dependent variable nor the SAR process for the disturbances.
Moreover GMM (1) ignores the spatial lagWNy and the SAR process for the
disturbances.
Consider next the outcomes in the top panel of Table 1 for 
 = 0:2 (i.e.

low value of the lagged dependent variable coe¢ cient) but for the high value
of the spatial lag coe¢ cient (�1 = 0:7). In this case, GMM-SL-SAR-RE is
the best in terms of RMSE for the coe¢ cients �1, �2, 
 and �. Note that
the bias and RMSE for OLS, Within and GMM (1) for the coe¢ cients 
,
�1; � increases. It is apparent that the larger value of spatial lag coe¢ cient
improves the results produced by the GMM-SL-SAR-RE estimator.
If we consider the second panel in Table 1, i.e. 
 = 0:5 (high value of the
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lagged dependent variable coe¢ cient) and �1 = 0:2 (low value of the spatial
lag coe¢ cient), GMM-SL-SAR-RE is still the best in terms of RMSE for the
coe¢ cients �1, 
, � and �2. OLS, Within and GMM (1) estimation of the
coe¢ cients 
, �1; � produces more bias and a larger RMSE compared to the
outcomes with 
 = 0:2: If we maintain the value of 
 at 0:5 but increase �1 so
that it takes the value 0:4 (i.e. a higher value for the spatial lag coe¢ cient),
the GMM estimator for the model (1) (i.e. including spatial lag variable and
SAR-RE process) remains the best in terms of RMSE for the coe¢ cients �1,

, � and �2. In other words the results are the same, but the magnitudes are
di¤erent.
Table 2 considers a lower level of individual heterogeneity,

�
�2�; �

2
v

�
=

(0:2; 0:8) but otherwise leaves all the other parameters as in Table 1. In
terms of RMSE, the GMM-SL-SAR-RE estimator remains the best whatever
the values of �1 and 
. Overall, the RMSEs are greater than those of Table
1, where we assumed that

�
�2�; �

2
v

�
= (0:8; 0:2).

6.2 Forecast accuracy

Table 3 gives the RMSEs for the one year and �ve year ahead forecasts along
with the average RMSE for all 5 years. These are out-of-sample forecasts
when the true model is (1) (i.e. including both temporally and spatially
lagged dependent variables) with SAR-RE disturbances. The sample size is
N = 100 and T = 7; the weights matrix is W (1; 1), i.e., one neighbor behind
and one neighbor ahead.
If we consider the case

�
�2�; �

2
v

�
= (0:8; 0:2) and (
; �1) = (0:2; 0:2), the

lowest RMSE is that of GMM-SL-SAR-RE, followed closely by the RSMEs
produced by the GMM-SAR-RE and GMM�SL-RE estimators. It appears
that misspecifying the disturbances a¤ects the forecast performance, since
the RMSEs of the OLS and Within estimators are approximately double
those produced by GMM-SL-SAR-RE. If the spatial lag parameter �1 in-
creases from 0:2 to 0:7, the RMSEs increase sharply, but the ranking remains
intact. If (
; �1) = (0:5; 0:2) or (
; �1) = (0:5; 0:4), the results remain essen-
tially the same, although the magnitudes are di¤erent. The GMM estimators
that take endogeneity and/or heterogeneity into account perfom better than
the OLS and Within estimators that do not. This forecast comparison is
robust to whether we are predicting one period ahead or �ve periods ahead
and is also re�ected in the average over the �ve years. Thus the gain in
forecast performance is substantial once we account for endogeneity and het-
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erogeneity.
If we consider the case a low level of individual heterogeneity, i.e.

�
�2�; �

2
v

�
=(0:2; 0:8), the lowest RMSE remains that of GMM-SL-SAR-RE. However,
the di¤erence between the GMM-SL-SAR-RE and GMM-SL-RE outcomes is
reduced.

6.3 Sensitivity Analysis

For the various estimators considered, Tables 4 and 5 report the mean, bias
and RMSE results, as was done for Tables 1 and 2 except that the weight
matrix is changed from a W (1; 1) to W (5; 5), i.e., �ve neighbors behind and
�ve neighbors ahead. Table 6 reports the forecast RMSE results in the same
way as those of Table 3 except that again the weight matrix isW (5; 5) rather
thanW (1; 1). To summarize, we �nd that the results are essentially the same,
although the magnitudes are di¤erent.

7 Empirical illustration

7.1 The Model

Our empirical illustration is motivated by recent work seeking to apply, and
test the viability of, contemporary economic geography theory, as presented
in the seminal work of Fujita, Krugman and Venables (1999). This is com-
monly referred to as the new economic geography (NEG). We draw on one
of the model speci�cations of Fingleton and Fischer (2010), although we do
not make a formal link to the NEG theory in this paper. More formally we
estimate the following dynamic spatial panel model:

ln yit = a+ 
 ln yit�1 + �1
PN

j=1wij ln yjt + �1 lnPit + �2 lnSit
+�3 lnnit + �4 ln sit + "it i = 1; :::; N ; t = 1; :::; T

(42)

where yit is Gross Value Added (GVA) per worker for the ith region (i =
1; :::; N) and t-th time period (t = 1; :::; T ): Pit is market potential5, Sit is
schooling, nit is the (adjusted) population growth rate, and sit is the invest-
ment rate. Moreover, following Koch (2008), who extended the neoclassical

5The measurement of market potential is di¢ cult and complex. For simplicity, we
use an earlier de�nition of market potential initially attributed to Harris (1954), which is
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growth model to pick up spatial spillover e¤ects, we also include the spa-
tial lag of the dependent variable, given by the matrix product of the WN

matrix and yit. WN is a �rst order contiguity matrix, which considers that
two geographic regions i and j are neighbors if they directly share a border.
More precisely, the weights matrix is binary, with wij = 1 when i and j are
neighbors and wij = 0 when they are not. By convention, diagonal elements
are null: wii = 0 and the weights are normalized such that the elements of
each row sum to 1 (i.e. row-normalized). As in Fingleton and Fischer (2010),
our panel speci�cation also includes a spatial SAR error process with

"it = �2

NX
j=1

wij"jt + uit (44)

and
uit = �i + vit (45)

in which the remainder term uit is composed of a region-speci�c individual
e¤ect �i and an idiosyncratic random shock vit.

7.2 Data Description

The data, which originate from Eurostat�s Region database, Statistics Nor-
way and the Swiss O¢ ce Féderal de la Statistique, comprise 255 NUTS-2
regions, observed over the period 1995-2003, and covering 25 European coun-
tries, hence N = 255 and T = 9. The short time dimension is a consequence
of the lack of reliable data for Central and Eastern Europe regions, and also
because of the fundamental reorganization of some formerly centrally planned
command economies. The data cover Austria (nine regions), Belgium (11 re-
gions), Czech Republic (eight regions), Denmark (one region), Estonia (one
region), Finland (�ve regions), France (22 regions), Germany (40 regions),
Greece (13 regions), Hungary (seven regions), Ireland (two regions), Italy (20

regularly used in the applied literature:

Pit =
NX
i 6=j

Gitd
��
ij (43)

in which Git is the �size� of the economy in region i; and dij is the �distance�between
region i and region j.
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regions), Latvia (one region), Lithuania (one region), Luxembourg (one re-
gion), Netherlands (12 regions), Norway (seven regions), Poland (16 regions),
Portugal (�ve regions), Slovakia (four regions), Slovenia (one region), Spain
(16 regions), Sweden (eight regions), Switzerland (seven regions), and UK
(37 regions).6

The dependent variable yit is measured by Gross Value Added (GVA) per
worker. GVA is the net result of output at basic prices minus intermediate
consumption at purchasers�prices, following the approach used in the Euro-
pean System of Accounts [ESA] 1995. The adjusted population growth rate
nit is based on the rate of growth of the working-age population in region i at
time t, with working age de�ned as 15 to 64 years. For details, see Fingleton
and Fischer (2010). The investment rate sit is the share of gross investment
in gross regional product. We proxy labour e¢ ciency and workforce skill
by the level of educational attainment variable Sit, which is de�ned as the
share of population (15 years and older) with higher education as given by
the ISCED 1997 classes 5 and 6.
Market potential is a product of the total regional GVA, Git, and d��ij in

which dij is the great-circle distance from (the economic centre of) region i
to (the economic centre of) region j. For region i; we sum across all other
regions, excluding region i, so as to maximize exogeneity of Pit with respect
to yit. We assume that the rate of discount with distance (� = 0:5): We
experimented with alternative values of � and they gave similar outcomes to
those described below.7

7.3 Results

We estimate our model (42) using the period 1995-2001, leaving out the last
two years for the purpose of out-of-sample forecasting. Given the dynamic
speci�cation, one�s �rst instinct could be to apply the well-known Arellano
and Bond (1991) estimator. However, as we have already shown in our Monte
Carlo study, the GMM (2) estimator does not produce satisfactory estimates.
This is con�rmed again in the empirical example in Table 7. Note that out
of the four estimators summarised in Table 7, two ignore the spatial error
process (i.e. GMM (2) and GMM-SL-RE), and two take the error process into

6We are grateful to Professor Manfred Fischer for his help in producing these data.
7Note that our model di¤ers from that of Fingleton and Fischer (2010) in two respects.

They estimate a static model whereas our model is dynamic. They use a di¤erent NEG
market potential than our Harris measure.
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account (i.e. GMM-SAR-RE (2) and GMM-SL-SAR-RE). The estimated �2
is equal to 0.877 and 0.714 respectively for GMM-SAR-RE (2) and GMM-
SL-SAR-RE. Also GMM (2) relies only on the orthogonality conditions (8)
and (9), whereas GMM-SL-RE and GMM-SL-SAR-RE employ the additional
spatial orthogonality conditions (10) and (11). Table 7 clearly shows con-
siderable di¤erences among the estimators. In particular, the temporal lag
coe¢ cient estimates of 
 are smaller for the estimators that exclude the SAR
disturbance process. In contrast, the spatial lag (�1) estimates are larger for
estimators that exclude the SAR disturbance process. The larger estimated
�1 produced under GMM (2) and GMM-SL-RE suggest that the spatial lag
is capturing spatial e¤ects that would otherwise be partially captured by an
error process model. Note that while the point estimates di¤er, both tempo-
ral and spatial lags are statistically signi�cant for all four estimators. Note
also that the Harris-market potential variable is only signi�cant for GMM-
SL-SAR-RE. Moreover, the stationarity conditions are only satis�ed for this
estimator. This is in line with what the NEG theory suggests, and ties in
with the interpretation provided by the static panel estimates of Fingleton
and Fischer (2010). The educational attainment variable Sit is signi�cant
for GMM-SAR-RE (2) and GMM-SL-RE. As the schooling variable only
changes slowly through time, it appears that the anticipated positive impact
of schooling may not be particularly well identi�ed. Of the other variables,
population growth nit and the investment rate sit, these represent the rival
non-nested neoclassical growth model, so we do not anticipate signi�cant
parameter estimates, but expect the neoclassical model to be encompassed
by the dominant rival, as found in the formal NEG context by Fingleton
and Fischer (2010). In the current dynamic setting, it turns out that while
adjusted population growth is insigni�cant, so that we cannot reject the null
hypothesis that �3 = 0, on the whole and contrary to expectation the invest-
ment rate is a signi�cant variable, with �4 > 0. On re�ection this is perhaps
not surprising given the absence of capital investment in basic NEG theory.
The superiority of our GMM-SL-SAR-RE estimator, which has already

been highlighted in our Monte Carlo analysis, is also apparent for our em-
pirical example. This is illustrated using the RMSE for the out-of-sample
forecast period. This RMSE is calculated for each of the 255 NUTS-2 re-
gions for each of the two years. The last three lines of Table 7 give the
across-region RMSE means for each year, and the two-year average. From
this it is clear that, when one compares model predictions and the actual
GVA per worker outcomes, the GMM-SL-SAR-RE produces by far the best
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RMSE forecasts.

8 Conclusion

Our Monte Carlo study �nds that when the true model is a dynamic �rst
order spatial autoregressive speci�cation with SAR-RE disturbances, estima-
tors that ignore the endogeneity of the spatial lag WNy and the endogeneity
of the temporally lagged dependent variable perform badly in terms of bias
and RMSE. For our experiments, accounting for heterogeneity and endogene-
ity improve the forecast performance by a big margin; accounting only for
spatial correlation in the disturbances also improves the forecast, but by a
smaller margin. Recognising the presence of a spatially lagged dependent
variable among the regressors has an important e¤ect. Ignoring both sources
of spatial dependence signi�cantly worsens the forecasting performance and
leads to a huge bias in the estimated coe¢ cients. So, a misspeci�ed estima-
tor, especially in terms of spatial e¤ects, has severe consequences in terms
of estimation and forecasting for the applied economist. We come to the
conclusion, supported by our empirical example, that our dynamic spatial
GMM estimator performs well and is recommended in practice.
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Appendix
In matrix form, we can write (1), (2) and (3) as

y = 
y�1 + �1 (IT�1 
WN) y +X� + " (46)

with
" = �2 (IT�1 
WN) "+ u (47)

or
" =

�
IT�1 
B�1

N

�
u (48)

with BN = (IT�1 � �2WN), and

u = (�T�1 
 IN)�+ v (49)

where y = (y02; : : : ; y
0
T )
0, y�1 =

�
y01; : : : ; y

0
T�1
�0
, X = (X 0

2; : : : ; X
0
T )
0, � =

(�1; : : : ; �N)
0, v = (v02; : : : ; v

0
T )
0, �T�1, a ((T � 1)� 1) vector of ones. The

variance-covariance matrix of (49) is given by:


u = �2� (JT�1 
 IN) + �2vI(T�1)N = �2vQ0;N + �21Q1;N (50)

where

Q0;N =

�
IT�1 �

JT�1
T � 1

�

 IN , Q1;N =

JT�1
T � 1 
 IN , (51)

�21 = (T � 1)�2� + �2v. (52)

Following the properties of the operators Q0;N and Q1;N , we can write:


�1u = ��2v Q0;N + ��21 Q1;N (53)

and

�1=2u = ��1v Q0;N + ��11 Q1;N (54)

or
�v


�1=2
u = I(T�1)N � �Q1;N (55)

where � = 1� �v=�1; see Baltagi (2008).
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� For the static case �1 = 
 = 0, Baltagi, Bresson and Pirotte (2010)
derived the Best Linear Unbiased Predictor (BLUP). More precisely,
this predictor is given by:

byi;T+� = xi;T+�b�GLS + �2�
�21
bi

�
�
0

T 
BN

�b"GLS (56)

where bi is the ith row of the matrix B�1
N = (IN � �2WN)

�1. They
showed that the second term of (56) has the same form as that of the
RE model whatever the structure of the disturbances (i.e. SAR-RE,
�2 6= 0, or SMA-RE, � 6= 0). Thus, for a cross-section, the second term
of (56) in matrix form is:

�2�
�21
B�1
N

�
�
0

T 
BN

�b"GLS = �2�
�21

�
�
0

T 
 IN

�b"GLS. (57)

� When 
 = 0, the model in (46) reduces to the spatial lag model with
SAR disturbances. Thus, the term in (57) reduces to:

�2�
�21
G�1N

�
�
0

T 
 IN

�b" =
�2�
�21

�
�
0

T 
G�1N

�b" (58)

=
T�2�
�21

0BBB@
PN

j=1 h1jb"j:PN
j=1 h2jb"j:
...PN

j=1 hNjb"j:

1CCCA (59)

where b"j: = (1=T )PT
t=1b"jt, hij is the (i; j) element of the matrix G�1N =

(IN � �1WN)
�1 and �21 = T�2� + �2v. Using (56) and (59), the Best

Linear Unbiased Predictor for yT+� is given by:

yT+� = G�1N

�
XT+�

b� + �2�
�21

�
�
0

T 
 IN

�b"� . (60)

This can be written for region i at time T + � as follows:

byi;T+� = KX
k=1

b�k NX
j=1

hijxk;j;T+� +
T�2�
�21

NX
j=1

hijb"j:. (61)

In practice, the variance components and the spatial lag parameter �1
are unknown. So, these are replaced by their estimated values.
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� When 
 6= 0 (i.e. a dynamic model) and �1 = �2 = 0 (i.e. no spatial
lag on dependent variable and no SAR process on the disturbances "),
the derivation of the predictor is more complicated, see Sevestre and
Trognon (1996)8. The lagged endogenous variable is correlated with
the individual e¤ects. In this case, the autoregressive error components
model9 can be rewritten as follows:

yit = 
tyi0 + �

t�1X
l=0


lxit�l +
1� 
t

1� 

�i +

t�1X
l=0


lvit�l (62)

Sevestre and Trognon (1996) give the linear predictor of yit conditional
upon yi0; xi1; : : : ; xiT . This predictor is given by:

E� [yitjyi0; xi1; : : : ; xiT ] = 
tyi0 + �
t�1X
l=0


lxit�l

+
1� 
t

1� 


E [�iyi0]

V [yi0]
(yi0 � E [yi0]) , (63)

if the individual e¤ect �i is uncorrelated with the sequence (xi1; : : : ; xiT )
and yi0 is predetermined. The last term of equation (63) is obtained
using:

E� [vit�ljyi0; xi1; : : : ; xiT ] = 0, l = 0; : : : ; t� 1 (64)

and
E� [�ijyi0; xi1; : : : ; xiT ] = E� [�ijyi0] . (65)

Following Chamberlain (1984, p. 1255), if we consider the least squares
regression of �i on yi0, the population counterpart is:

E� [�ijyi0] = �0 + �1yi0 (66)

where

�1 =
E [�iyi0]

V [yi0]
(67)

and

�0 = E [�i]� �1E [yi0] = ��1E [yi0] since E [�i] = 0, 8i. (68)

8See also Harris, Màtyàs and Sevestre (2008).
9To facilitate the presentation, they considered only one exogenous variable.
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Substituting (67) and (68) in (66), we obtain:

E� [�ijyi0] = �0 + �1yi0

= ��1E [yi0] + �1yi0

= �1 (yi0 � E [yi0])

=
E [�iyi0]

V [yi0]
(yi0 � E [yi0]) . (69)

Under stationarity assumptions, see Sevestre and Trognon (1983, p.
34), we can use:

yi0 =
�i
1� 


+
vi0p
1� 
2

, (70)

E
�
y2i0
�
=

�2�

(1� 
)2
+

�2v
1� 
2

, (71)

E [�iyi0] =
�2�
1� 


. (72)

� When 
 6= 0, �1 6= 0 and �2 6= 0, equation (46) can be also written as
y � �1 (IT�1 
WN) y = 
y�1 +X� + "

y =
�
IT�1 
G�1N

�
[
y�1 +X� + "] (73)

and GN = (IN � �1WN), or

y = 
y��1 +X�� + "� (74)

where

y��1 =
�
IT�1 
G�1N

�
y�1 (75)

X� =
�
IT�1 
G�1N

�
X (76)

"� =
�
IT�1 
G�1N

�
" (77)

or
"� =

�
IT�1 
 (BNGN)�1

�
u. (78)

The recurrent equation (74) leads for a cross-section t to:

yt = 
tAty0 + 
t�1AtX1� + � � �+ 
0AXt�

+
t�1At"1 + � � �+ 
0A"t

= 
tAty0 +

tX
l=1


l�1AlXt�l+1� +

tX
l=1


l�1Al"t�l+1 (79)
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where y0 is an N � 1 vector of initial observations and A = G�1N . If
we consider only one exogenous variable, equation (79) gives for an
individual i at time t:

yit = 
t
NX
j=1

h
(t)
ij yj0 +

tX
l=1


l�1
NX
j=1

h
(l)
ij xjt�l+1� +

tX
l=1


l�1
NX
j=1

h
(l)
ij "jt�l+1

(80)
where h(l)ij is the (i; j) element of the matrix

�
G�1N

�l
. If we consider the

SAR-RE structure of the disturbances " (i.e. (78) and (49)), the last
term of (80) can be rewritten as

tX
l=1


l�1
NX
j=1

h
(l)
ij "jt�l+1 =

tX
l=1


l�1
NX
j=1

p
(l)
ij �j +

tX
l=1


l�1
NX
j=1

p
(l)
ij vjt�l+1

(81)

with p(l)ij is the (i; j) element of the matrix
��
(GN)

�1�lB�1
N

�
. The linear

predictor of yit conditional upon (y10,...,yN0,x11,...,xN1,...,x1T ,...,xNT ) is
given by

E� [yitjy10; : : : ; yN0,x11; : : : ; xN1, : : : ,x1T ; : : : ; xNT ]

= 
t
NX
j=1

h
(t)
ij yj0 +

tX
l=1


l�1
NX
j=1

h
(l)
ij xjt�l+1�

+E� ["�itjy10; : : : ; yN0,x11; : : : ; xN1, : : : ,x1T ; : : : ; xNT ] , (82)

�j and yj0 are assumed to be uncorrelated with the sequence (xj1,...,xjT ),
8j. If we use similar assumptions to those of (64) and (65), we obtain:

E� [yitjy10; : : : ; yN0,x11; : : : ; xN1, : : : ,x1T ; : : : ; xNT ]

= 
t
NX
j=1

h
(t)
ij yj0 +

tX
l=1


l�1
NX
j=1

h
(l)
ij xjt�l+1�

+

tX
l=1


l�1
NX
j=1

p
(l)
ij E

� ��jjy10; : : : ; yN0� . (83)

Following Chamberlain (1984, p. 1257), we assume that:

E�
�
�jjy10; : : : ; yN0

�
=  + �1y10 + � � �+ �NyN0

=  + �
0
y0 (84)
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where � is an N � 1 vector with

� = V [y0]
�1 cov

�
�j; y0

�
= V [y0]

�1E
�
�jy0

�
(85)

and
 = E

�
�j
�
� �1E [y10]� � � � � �NE [yN0] : (86)

Following Sevestre and Trognon (1983), Chamberlain (1984) and Mutl
(2006), we can write:

E�
�
�jjy10; : : : ; yN0

�
= �

0
[y0 � E [y0]] (87)

with

y0 =
1

1� 

PN�N +

1p
1� 
2

PNv0 (88)

V [y0] =

�
�2�

(1� 
)2
+

�2v
1� 
2

�
PNP

0

N (89)

E
�
�jy0

�
=

�2�
1� 


PN lj (90)

where PN = (BNGN)
�1 and lj is the jth column of IN .
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