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ABSTRACT 

Flow separation on a low pressure turbine blade is explored at Reynolds numbers 

of 25k, 45k and 100k.  Experimental data is collected in a low-speed, draw-down wind 

tunnel using a cascade of eight Pak-B blades.  Flow is examined from measurements of 

blade surface pressures, boundary layer parameters, exit velocities, and total pressure 

losses across the blade.  Two recessed dimple shapes are assessed for suppressing flow 

separation and associated losses.  One dimple is spherical, and the second is asymmetric, 

formed from a full dimple spanwise half-filled.  A single row of each dimple shape is 

tested at 50%, 55% and 65% axial chord.  Symmetric dimples reduce separation losses by 

as much as 28%, while asymmetric dimples reduce losses by as much as 23%.  A 

complementary three-dimensional computational study is conducted to visualize local 

flow structure.  Computational analysis uses Gridgen v13.3 as a mesh generator, Fluent 

v6.0 as a flow solver and FIELDVIEW© v8.0 for graphic display and analysis.  

Computational results for Pak-B blades at a Reynolds number of 25k indicate that both 

dimple shapes cause a span-wise vortex to rollup within the dimple and provide a 

localized pressure drop.



  

1 

USE OF DIMPLES TO SUPPRESS BOUNDARY LAYER 

SEPARATION ON A LOW PRESSURE TURBINE BLADE 

 
CHAPTER 1. INTRODUCTION 

Recent United States Air Force (USAF) use of Unmanned Aerial Vehicles 

(UAVs) such as Global Hawk (Figure 1) for high altitude reconnaissance has been 

constrained by low pressure turbine (LPT) efficiencies.  LPT blades operating at low 

Reynolds numbers, such as occur in flight at high altitudes and low velocities, suffer 

losses in efficiency and loading.  At these flight conditions, the LPT may operate at a 

Reynolds number below 25,000 which produces laminar boundary layers on the turbine 

airfoils. The combination of laminar flow and large turning angles that are typically 

associated with an LPT blade gives rise to flow separation over a broad portion of the 

trailing suction surface.  The resulting drop in turbine efficiency and loading restricts the  

 
Figure 1. TeledyneRQ-4 Global Hawk UAV (illustration by Virginia Reyes) 
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aircraft range, altitude and electrical power extracted from the engine.  Changing blade 

geometries is not a practical solution because of the negative impact at higher Reynolds 

numbers.  Therefore, boundary layer separation control techniques are investigated as a 

more feasible alternative. 

The Pratt and Whitney Pak-B profile was introduced as a means to study and 

improve LPT efficiency at low Reynolds number conditions.  The Pak-B two-

dimensional (2-D) shape is derived from the commercially used Pratt and Whitney Pak 

airfoil.  When this shape is extruded spanwise into a blade, it can be used for local three-

dimensional (3-D) analysis.  It is not a truly 3-D representation of an LPT because it does 

not have taper or twist. 

James Lake investigated various passive control techniques on a Pak-B blade and 

found that recessed spherical dimples prevent separation if positioned just forward of the 

natural chordwise separation location (1).  He reported as much as 51.7% reduction of 

losses while operating at a Reynolds number of 45,000 and a freestream turbulence level 

of 4%.  He speculated that dimples are effective vortex generators, energizing the flow 

and forcing the laminar boundary layer to transition to turbulent before separation can 

occur. 

A passive control technique such as recessed dimples provides great potential for 

reducing losses at low Reynolds number conditions while having a negligible adverse 

impact at higher speeds.  Furthermore, these passive controls do not require additional 

power from the engine or additional weight and can be easily retrofitted into existing 

engine hardware.  A better awareness of the flow mechanisms produced by these passive 

controls is very important to further parametric studies in engine design optimization. 
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This current research investigates further into the use of dimples for suppression 

of boundary layer separation on a low pressure turbine blade.  The Pak-B profile is 

studied in a computational simulation and in a wind tunnel.  The baseline blade (without 

dimples) is tested along with spherical and asymmetric dimple shapes at Re 100k through 

25k.  The computational study is intended to visualize flow structure, and the 

experimental study evaluates performance improvements. 

1.1 Low Pressure Turbine Operation at Low Reynolds Numbers 

Low pressure turbines have historically not been a limiting agent in 

turbomachinery design.  Much of the emphasis is given to compressors for maximum 

pressure ratio and to high pressure turbines for maximum temperature capability.  Any 

focus on the LPT is given to optimize aerodynamic characteristics and maximize loading 

and efficiency.  This is especially true for the low Reynolds operating conditions 

associated with LPTs found in high altitude reconnaissance UAVs. 

The operating environment around the LPT is an inherently unsteady one, in 

which the blades periodically shed wakes.  As these wakes travel downstream and over 

the surface of subsequent blades, they generate high local freestream turbulence intensity 

as great as 20% (2; 3).  Boundary layer separation is suppressed during these momentary 

high turbulence levels.  During periods of low turbulence intensity between wakes, the 

flow is laminar and vulnerable to flow separation at low Reynolds number operation 

(Figure 2).   
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Figure 2. Unsteady wake passing over Pak-B airfoil 

 
 

1.2 Previous Experiments in Flow Separation on LPT Blades 

Previous experiments have helped increase the understanding of boundary layer 

behavior around LPT blades at low Reynolds numbers less than 200k.  Sharma et al, 

revealed that Reynolds numbers less than 95k nearly tripled the loss coefficient compared 

to the loss coefficients for higher Reynolds numbers (4).  Murawski et al. and Qiu and 

Simon linked the deteriorated LPT performance to losses from flow separation for a Pak-

B blade at low Reynolds numbers (5; 6).   Simon and Volino have also documented 

separation losses for the Pak-B blade at Reynolds operating conditions associated with 

high altitude UAVs (7).  Furthermore, Hourmouziadis found severe profile losses and 

reduced efficiency at similar low Reynolds numbers (8).  This general understanding of 

flow separation at low Reynolds numbers and the associated losses was quantified more 

precisely for the Pak-B profile by Lake (1).  He determined a natural chordwise 
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separation location of about 70% on a Pak-B blade at a Reynolds number of 45,000 and 

confirmed a related increase in the total pressure loss coefficient and wake momentum 

deficit (1).  LPT performance at low Reynolds operating conditions is now well 

understood. 

Linear cascade tunnels are often used to simulate and study turbine aerodynamics 

within an engine operating environment.  Linear cascades can be used to study two-

dimensional effects, as the blades are not rotating, and the flow is nearly uniform in the 

spanwise direction as it enters the test section.  A cascade consists of several blades lined-

up pitchwise in a row from inboard to outboard, with the inlet at an angle to the exit flow.  

Chapter 4 discusses the current linear cascade tunnel in greater detail. 

Past experiments using a linear cascade have documented several aspects of flow 

separation on turbine blades at low Reynolds numbers.  Rivir examined turbulent length 

scale effects on transition location on a Langston airfoil (9).  Murawski et al. and Qui and 

Simon showed Pak-B LPT flow separation at low Reynolds numbers, documenting 

velocities, surface pressures, separation location and boundary layer thickness (5; 6).  

Murawski et al. recorded separation from 75% to 90% axial chord at inlet axial chord 

Reynolds numbers as low as 53k (5).  Qui and Simon demonstrated turbulent 

reattachment aft of the 90% axial chord location (6).  These previous experiments have 

set the stage for the current research to investigate the use of dimples as a technique for 

suppressing boundary layer separation. 

Boundary layer separation can be categorized into four major classifications, as 

reported by Werle:  leading edge bubbles, transonic shock induced separation, pressure 

side bubbles, and trailing edge wake separation (10).  Murawski et al. and Qui and Simon 
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found an additional classification at low Reynolds numbers in which laminar flow 

separates in the presence of a strong streamwise pressure gradient (5; 6).  Transition may 

occur subsequent to suction surface laminar flow separation.  Mayle and Halstead 

delineate three modes of boundary layer transition: natural, bypass and separated-flow 

(11; 12).  Lake focused his research on the control of separated-flow transition and 

laminar separation on a Pak-B blade (1).  He investigated the use of trip wires, spanwise 

V-grooves and submerged spherical dimples.  Lake documented successful integration of 

surface modifications which reduced the losses associated with separated flow (1).  Of 

the techniques he explored, dimples proved to be most promising (1). 

1.3 Current Research Objectives 

The objective of the current research is to investigate the flow mechanisms 

associated with the use of dimples in controlling laminar boundary layer separation.  To 

this end, two dimple shapes are considered, a spherical dimple and an asymmetric 

dimple.  The asymmetric dimple is fashioned as a semi-circle with a streamwise straight 

edge, being spanwise half-filled.  Tests are extended to Reynolds numbers as low as 25k. 

The effectiveness of dimple shape is assessed by mounting a single modified Pak-

B blade in a linear cascade of eight total blades.  The total pressure loss coefficient is 

measured for the modified blade at Reynolds numbers of 25, 45 and 100 thousand by 

taking wake traverses.  Other performance indicators that were measured include wake 

velocity magnitude and total pressure loss profiles.  Boundary layer measurements are 

also taken to see the effect of dimples on velocity and turbulence profiles inside the 

boundary layer.  Lake’s previously modified blade (Figure 3) is used in this research for 

comparison. 
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Figure 3. Lake's Pak-B blade with dimples at 50%, 55% and 65% axial chord (1) 

 
 
comparison in loss reduction and validate the experimental set-up (1).  Dimples are 

located at 50%, 55% and 65% axial chord.  Asymmetric dimples are produced by filling a 

spanwise half of the current spherical dimples. 

Flow structure inside and aft of the dimple is analyzed using a computational 

simulation.  The computational study is meant to be a companion to the experimental 

work to aid in performance predictions and data analysis.  The model is based on the Pak-

B blade profile and given infinite span to analyze local three-dimensional phenomena.  

The model also makes use of periodic boundaries to simulate an infinite number of blades 

in a linear cascade arrangement.  A baseline Pak-B blade is investigated along with Pak-

B blades with both types of dimples.  Dimples are set at 60% axial chord.  Inlet axial 

chord Reynolds number is set to 25k.  Dr. Hugh Thornburg ran the solution with laminar, 

as well as Spalart-Allamaras, K-ω and K-ε turbulence settings in Fluent®.  These 
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turbulence models use a nominal 1% inlet turbulence.  Surface pressure coefficients are 

produced along with profile contours for velocity, total pressure and static pressure.  

Surface flow is visualized with lines of separation and reattachment, as well as with lines 

for vortex cores.  Streamlines are placed at two axial chord locations and visualized from 

profile and suction surface viewpoints. 

1.4 Chapter Summary 

Chapter 2 includes a discussion of low pressure turbine performance evaluation 

and boundary layer aerodynamics, including previous experimental and numerical 

research.  This chapter also covers different separation control techniques.  Chapter 3 

covers the computational investigation, discussing the methods results.  The experimental 

investigation is reported in Chapter 4, including the test facility, instrumentation, 

methods, and results. 
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CHAPTER 2. BACKGROUND AND THEORY 

Before embarking on this experimental and computational research it is important 

to determine what data to collect, what fluid behavior is expected and what measure to 

use for comparison.  This study has impact on aircraft flying high and slow.  In this case, 

range, altitude, endurance and extracted power are of greatest interest.  Therefore, 

parameters studied here relate to improvements in these qualities.  Velocity and pressure 

are of particular interest, as they can be used to determine impact on engine and turbine 

efficiency.  Temperature is also of interest; however, for the linear cascade test used in 

this study, it is not investigated directly.  Rather, a correlation can be shown with 

pressure, indirectly indicating thermal performance.   

Airfoil boundary layers are expected to separate at the Reynolds numbers being 

investigated.  To capture this effect in the wind tunnel, boundary layer velocity and 

turbulence are measured.  For a bulk assessment of flow separation, wake velocity and 

total pressure deficit is of interest.  A non-dimensional analysis of these parameters is 

particularly useful in relating improvements to an operating engine environment.   

The computational study investigates flow around the surface of the blade and in 

the passages between blades.  Again, velocities and pressures are of interest, shedding 

light on flow structure and relating to impacts on engine efficiency.  The computational 

study has an especially beneficial attribute in that it can also yield separation and 

reattachment lines, another measure of improvement. 

 

 



  

10 

2.1 Low Pressure Turbine Performance Evaluation 

The Breguet range formula is used to estimate aircraft range and is related to 

engine efficiency: 
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where ηengine is overall engine efficiency, QR is the heat of reaction of the fuel, g is the 

acceleration due to gravity, CL is aircraft lift coefficient, CD is aircraft drag coefficient, 

minitial is aircraft initial mass, and mfinal is final aircraft mass (13:152).  By solving for the 

term inside the natural log and taking the exponential of both sides of the equation, an 

expression is produced for fuel consumption (assuming no fuel reserves upon landing and 

munitions/payload delivered during the mission): 
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where  ∆mfinal = minitial – mfinal.  Therefore, it is apparent that increasing engine efficiency 

translates to decreasing fuel consumption and/or increasing aircraft range.   

The impact of turbine efficiency/performance on overall engine efficiency is well 

illustrated with a T-S diagram, where T is temperature and S is entropy.  The ideal jet 

engine is represented with the Brayton cycle as seen in Figure 4.  In this cycle, 

temperature rises isentropically across the compressor from station 2 to 3.  Accordingly, 

static pressure also rises, as stated in Charles’ law.  This is also consistent with Boyle’s 

Law, which relates increasing pressure to decreasing volume.  Because the Brayton cycle 

represents an ideal engine, no losses are present, and entropy is not produced.  Between 

station 3 and 4, fuel (energy) is added and temperature increases in the combustor.  This 
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is assumed to occur at a constant pressure.  Across the turbine and nozzle (stations 4 to 

9), the hot air is expanded isentropically.  Temperature and pressure both decrease.  Heat 

is then extracted from station 9 to 0 at a constant pressure. 
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Figure 4. Brayton cycle for an ideal gas turbine engine 

 

The first law of thermodynamics for a system can be stated in terms of heat 

transfer, work and internal energy as follows: 

 Q = ∆E0 + W (3) 

where Q is heat transfer, ∆E0 is change in internal energy and W is work (14:27).  

Assuming energy is conserved throughout the Brayton cycle, Q can be expressed in terms 

of temperature, and an expression can be written for power across the compressor and 

turbine such that: 
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where 
.

m  is mass flow rate, cp is the ratio of specific heats at constant pressure and Tt is 

total temperature.  The work of the compressor is balanced by the turbine such that 

t

.

c

.
WW =   in an ideal engine.  In reality, the work from the turbine is less than the ideal.  

Flow separation is one mechanism associated with losses across the turbine.   

Figure 5 shows a T-S diagram for a non-ideal turbine stage.  Total temperature 

does not change over the stator, but entropy is generated and total pressure decreases.  

Entropy also increases over the rotor, while total pressure and temperature decrease.  The 

drop in total pressure translates to a drop in efficiency.  The Gibbs equation relates 

increased entropy to decreased total pressure as follows:  
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where ds is the change in entropy, R is the gas constant, Tt is temperature, dTt is the 

change in temperature, Pt is total pressure and dPt is the change in total pressure (13).  

For constant total temperature as shown in Figure 5, the expression is reduced to: 
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Mattingly relates pressure drop and efficiency for a turbine stage through the 

following expression: 
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Figure 5. T-S diagram for a non-ideal turbine stage 

 

where γ is the ratio of specific heats,  τ = Tt3/Tt1  and  πt = Pt3/Pt1 (14).  This equation 

shows that for a fixed total temperature ratio, decreases in exit total pressure ratio result 

in efficiency reduction.  Therefore, turbine performance is directly linked exit total 

pressure.  Total pressure loss coefficient is a means to evaluate the exit total pressure.  

The equations below show the total pressure loss coefficient as normalized by either the 

inlet or exit dynamic pressure: 
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where γ is defined as the loss coefficient normalized by exit dynamic pressure (qexit), and 

ω is defined as the loss coefficient normalized by inlet dynamic pressure (qinlet).  From 

this expression, it is easy to see that as exit total pressure decreases γ or ω  increase.  

Losses due to separated flow can be mitigated, resulting in higher exit total pressure and a 

smaller total pressure deficit across the stage.  This study considers the use of dimples to 

decrease the ∆Pt across the turbine stage and thereby increase stage efficiency.  Figure 6 

shows a relationship that Lake used to illustrate the impact of an improved exit total 

pressure (1).  A turbine with separation controls (baseline) is depicted with a large 

amount of entropy generation.  With even a small improvement in exit total pressure, the 

illustration shows significantly reduced entropy generation.   
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Figure 6. T-S diagram illustrating possible improvement with higher turbine exit total 

pressure (1) 
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In Figure 7, Lake shows a correlation in a percent increase in efficiency to a percent 

reduction in loss coefficient through the following equation (1:14): 

 







≈
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Figure 7. Linear relationship between reduction in loss coefficient and improvement in 

stage efficiency (1) 

 
 

In his investigation, Lake realized a reduction in loss coefficient using dimples on 

the surface of a Pak-B blade.  This translates to a significant potential improvement in 

turbine efficiency within a gas turbine engine.  The current research shows the way in 

which dimples change the aerodynamics of the turbine suction surface, reducing loss 

coefficient.  This information should prove helpful to future work in optimizing the use 

of dimples as a passive control technique. 
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2.2 Low Pressure Turbine Boundary Layer Aerodynamics 

Low pressure turbine flowfields are difficult to examine.  Halstead et al. 

documented the presence of freestream turbulence levels between 1% and 20% along 

with passing wakes, centrifugal effects and vortices, all of which make flowfield studies 

very challenging (2; 3).  Werle, Mayle, and Addison and Hodson have shown through 

experimental studies that boundary layers on LPT blades operating at low axial chord 

Reynolds numbers undergo a gradual transition process from laminar to turbulent over 

the suction surface of the blade (10; 11; 15).  The process is nearly steady, interrupted by 

time-dependent wake passing due to motion of the downstream rotor in relation to stator.  

This periodic environment is characterized by flow that trips quickly through transition to 

turbulent and back to a transitional state (3).  This current study does not simulate the 

periodic wake passing; however, the process from laminar to turbulent boundary layer 

formation is found to become more unsteady when dimples are applied to the surface. 

2.2.1 Experimental Laminar-to-Turbulent Boundary Layer Transition 

Mayle and Walker showed through experimentation that flow enters transition 

through three basic means: natural transition, bypass transition, and separation bubble 

transition (11; 16).  These transition modes depend on Reynolds number, freestream 

turbulence, and pressure gradients.  The mode experienced with the Pak-B blade in this 

research is separation bubble transition.   

Natural transition occurs with low freestream turbulence and no adverse pressure 

gradients.  It begins with the formation of 2-D Tollmien-Schlichting waves that become 

unstable and create 3-D loop vortices and large fluctuations (11).  The 3-D disturbances 

coalesce into turbulent spots, which grow as they move further downstream.  Walker 
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identified the conclusion of natural transition as the creation of a fully turbulent boundary 

layer, resulting from the merging turbulent spots (16). 

Bypass transition occurs in conditions with higher freestream turbulence levels on 

the order of 20%.  In this turbulent environment, the entering laminar flow immediately 

forms turbulent spots without the presence of 2-D Tollmien-Schlichting waves.  Despite 

some limitations, Walker found that linear stability theory can still be used to predict 

disturbances in this transition mode, helping predict the length of transitional flow (16). 

A separation bubble may be formed by flow separating under adverse pressure 

gradients.  The shear layer between the bubble and freestream can then transition to 

turbulent.  While the flow is separated from the blade, it undergoes this transitional 

process.  Qiu and Simon along with Mayle, demonstrated that once the separated flow is 

fully turbulent, the increased fluid energy encourages re-attachment to the blade surface 

(6; 11).  This is the transition mode experienced by the Pak-B blade at low Reynolds 

numbers.  The goal of this research is to identify mechanisms by which upstream dimples 

suppress this separation bubble. 

2.2.2 Numerical Models for Low Pressure Turbine Performance 

Past attempts to numerically model the complex flowfield around a low pressure 

turbine have shown limited success due in large part to the lack of experimental 

validation data for low Reynolds numbers (10).  Halstead et al. tested four numerical 

models: STANX, KEP, a Navier-Stokes solver, and the Fan-Lakshminarayana code.  

Each produced unsatisfactory accuracy in the solutions(3; 17).  Lake used the 2-D Allison 

Vane-Blade Interaction (VBI) code which typically renders good results, but has 

problems in low Reynolds number environments (1).  The code was incapable of 



  

18 

simulating the separated flow region correctly.  In addition, Lake was only able to run 

this code for the baseline blade due to the 3-D nature of the dimples (1). 

Lake demonstrated limited success with the VBI code, using a combination of O-

grids around the airfoil surface and H-grids in the passage (1).  He was able to predict a 

separation bubble at a Reynolds number of 50k, but not for 100k or 200k.  The current 

research uses a similar grid approach, extruding a structured 3-D grid around the blade 

surface in the fashion of an O-grid, generating hexahedral cells.  The blade passages are 

filled unstructured tetrahedral-cells and merged with the structured, extruded surface 

cells.  A viscous model without turbulence modeling demonstrates moderate success in 

predicting the onset of separation and the re-attachment location, as is discussed in 

greater detail in Chapter 3.  Aft of turbulent re-attachment, the solution becomes less 

accurate.  A better approach would likely include a turbulence model aft of the separation 

location.  The use of Reynolds average Navier Stokes (RANS) turbulence models across 

the entire surface was also investigated in this study; however, they did not predict any 

separation, even with a 1% inlet turbulence.  Better transition modeling is needed to 

understand the nature of the flow.  In addition, these models will require experimental 

data to determine accuracy. 

Freestream turbulence level, Reynolds number, and pressure gradients all 

influence numerical predictions.  Reed et al. compared these influences by examining 

methods of predicting the linear stability of fluid flows (18).  Methods examined by Reed 

et al. require prior knowledge of flow characteristics such a initial disturbance amplitude, 

as is the case with the eN method (18).  Sharma et al. found that the nonisotropic nature of 

turbulence within laminar and transitional boundary layers makes flow behavior difficult 
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to predict with numerical models (19).  The difficulty in modeling flow behavior is 

rooted in the ability to predict the evolution and location of separation bubbles. 

2.3 Separation Control on Low Pressure Turbines 

2.3.1 Active and Passive Controls 

Flow control techniques are categorized as either active or passive.  Active 

controls have the advantage that they can be turned off at higher LPT Reynolds operating 

conditions in which flow separation does not occur, decreasing any negative impact on 

performance.  Additionally, many active techniques can offer variable control to adjust 

control intensity depending on a changing separation location.  Johnston and Nishi and 

Compton and Johnston demonstrated the effectiveness of vortex generator jets (VGJs) for 

separation control on flat plates under adverse pressure gradients (20; 21).  Bons et al., 

subsequently applied VGJs to a Pak-B blade, showed that pulsating VGJs have the same 

effectiveness as steady flow jets with an order of magnitude less mass flow (22).  To 

incorporate VGJs into a turbine engine, high pressure air would be required from the 

compressor; however, other active controls do not use additional air flow.  Lin et al. 

explored several other separation control strategies including Helmholtz resonators (23), 

and Boregeson recently attempted use of micro-electromechanical systems (MEMS) to 

trip the flow and delay separation over a cylinder (24).  The disadvantages of all these 

active control techniques are in their application and practicality in a turbine engine 

environment.  MEMS are difficult to manufacture and apply to an LPT and currently 

cannot withstand the associated temperature loads.  Vortex generating jets are not as 

difficult to manufacture; however, they require additional hardware that adds weight to 

the engine, and they are susceptible to clogging from combustor exhaust particulates.  
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Furthermore, both of these techniques are complex and require additional power from the 

engine. 

Passive controls do not require power, are generally more robust, and are usually 

easy to install.  Many possible passive techniques have been considered.  One passive 

technique is the modification of blade shape to effect aerodynamic characteristics of the 

suction surface; however, the cost to overall engine performance is too great.  Though a 

modified blade shape could be beneficial at controlling flow separation in the low 

Reynolds number operating environments, it may not perform as well in higher Reynolds 

number operating conditions of other mission legs.  Another approach is to retain the 

blade shape, only making modifications to the suction surface.  The following discussion 

covers a few examples of passive techniques that have been previously considered.  Lin 

et al. examined submerged vortex-generators, large-eddy breakup devices, and elongated 

boundary-layer arches (23).  Figure 8 shows protruding type passive controls.  Chang, 

Austin and Gamerdinger and Shreeve explored the use of a triangular plow vortex 

generator device, VGD (25; 26; 27).  Semi-circular and simple vane VGDs were studied 

by Rao and Kariya (28).  They also considered parallel 

 

 
Figure 8. Three protruding surface vortex generator devices.  Profile and surface views 

are shown with air flow depicted as an arrow (1). 
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concave slats constructed from Venetian blinds and attached to the surface of a flat plate 

(Figure 9).  The disadvantage to protruding surfaces is the increased drag produced at  

 
Figure 9. Various other vortex generator devices.  Profile and surface views are shown 

with air flow depicted as an arrow (1) 

 

higher Reynolds number operating conditions.  One method to avoiding this drawback 

was considered by McCormick who used of a passive cavity method and a passive 

injection method (Figure 10), trying to taking advantage of the adverse pressure gradient 

behind the separation location (29).  Figure 11 shows other alternatives to protruding 

surfaces which were proposed by Lin et al. who investigated the use of a + 45 deg small- 
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Figure 10. Porous surface separation control devices.  Profile and surface views are 

shown with air flow depicted as an arrow (1) 

 

 

 
Figure 11. Various vortex generator devices with difficult application.  Profile and 

surface views are shown with air flow depicted as an arrow (1) 
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scale riblet pattern, Wheeler doublets and transverse grooves (30).  Wheeler doublets are 

similar to Ogee submerged vortex generators, having a reverse S-shape curve (Figure 9).  

Both were designed by Wheeler (31).  Figure 11 shows another concept design by 

Wheeler in which a V-shaped groove is cut into a surface (31).  Some previously 

techniques were not as easily integrated.  Chang looked into leading edge vane VGDs 

(Figure 11), Walsh and Bacher and Smith investigated the use of small-scale V-groove 

riblets (Figure 9), and Maciejewski and Rivir tested small-scale square ribs and Taylor 

tested a large-scale vortex generator in the shape of a NACA 64-812 airfoil (25, 32-33, 

35-38).  A much simpler approach was proposed by Bloch and Mueller who 

experimented with the application of roughness strips (39).  Lake tested the use of a V-

groove channel, a boundary layer trip wire and spherical dimples (1).  Lake concluded 

that of all these passive controls, each is sensitive to location and that dimples worked 

best (1). 

2.3.2 Previous Research in Dimples for Boundary Layer Control 

In general surface modifications can be categorized as protruding or recessed, as 

shown in the previous section.  Protruding structures energize the boundary layer flow by 

drawing down faster moving freestream air (38).  Furthermore, they produce trailing edge 

vortices that mix the freestream and boundary layer flows as they travel downstream.  Lin 

et al. demonstrated that recessed vortex generators with a depth less than the boundary 

layer thickness have less drag than protruding structures of similar height; however, the 

effective distance of recessed generators is less than that for the protruding structures, 

requiring them to be placed closer to the natural separation location (30).  Submerged 

structures are also more practical for engine application, being more robust and easier to 
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clean and manufacture.  Lake capitalized on this notion, demonstrating great potential for 

the use of recessed spherical dimples as an effective passive control technique (1).  This 

control technique is particularly desirable for the relative ease and low cost of installation 

and is the focus of the current research. 

Lake based his dimple structure on previous experimentation by Bearman and 

Harvey (40; 41).  Bearman and Harvey tested spherical and hexagonal dimples on a 

sphere, concluding that both were effective in generating downstream vortices (40; 41).  

Furthermore, they found that the hexagonal dimples were more efficient generators 

because of their sharp edges.   Bearman and Harvey also tested dimples on a cylinder, 

finding a significant reduction in drag (40; 41).  Their dimple depth was scaled to a non-

dimensional roughness ratio of  k/D = 9 x 10-3  where k is the maximum dimple depth 

and D is the diameter of the sphere/cylinder.  Lake tested the baseline Pak-B blade, 

without modification, measuring the boundary layer thickness.  He then applied the non-

dimensional roughness ratio when milling dimples into the surface of a Pak-B blade.  

Dimples were milled into the blade to a depth of 1.588mm, using a 5.08 cm diameter ball 

end mill.  The resulting impressions were elliptical due to blade curvature and had a 

streamwise length of 15.13 mm and spanwise length of 17.53 mm with a dimple spacing 

of 2.22 cm from center-to-center. 

Lake studied spherical dimples at three axial chord locations using a cascade of 

eight Pak-B blades at Reynolds numbers of 50, 100 and 200 thousand (1).  He positioned 

dimples upstream of the natural expected separation location, placing them at 50%, 55%, 

and 65% axial chord and testing the sensitivity of dimple location on reducing separation 
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losses.  Lake demonstrated significant loss reduction, but did not optimize dimple shape, 

size, spacing or pattern. 

The current research investigated the use of dimples as passive controls to 

suppress boundary layer separation.  Lake’s experimental blade was used to make 

comparison and to extend the ranged of tested Reynolds numbers down to 25k.  The 

blade is tested in a baseline configuration with a thin transparent tape over the dimples.  It 

is also tested with Lake’s spherical dimples and then retrofitted to simulate the 

asymmetric dimple, filling a spanwise half of the full dimple with putty.  Flow is 

examined from measurements for boundary layer profiles, surface static pressures, and 

wake properties.  Furthermore, a complementary computational study is used for flow 

visualization. 
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CHAPTER 3. COMPUTATIONAL RESULTS AND ANALYSIS 

Computational models were constructed for three configurations: the baseline 

unmodified Pak-B blade, the Pak-B blade with spherical dimples and the Pak-B blade 

with asymmetric dimples.  Grid models were constructed from given Pak-B profile 

coordinates.  The 2-D shape was extruded spanwise to generate surface grids.  The 

baseline case was built with structured grids around the blade surface to include the 

boundary layer thickness and separated region, and unstructured grids filled the blade 

passage.  The dimpled configurations were manufactured with a combination of 

structured and unstructured grids around the blade surface.  Unstructured grids were used 

inside and around the dimple, and structured grids were created for leading edge, trailing 

edge, and pressure surfaces.  As with the baseline case, unstructured grids filled the blade 

passage.  Grid topology is discussed in greater detail in section 3.2. 

A steady-state integration technique was initially applied to all three cases.  The 

baseline configuration converged to a realistic solution; however, the dimpled cases 

appeared to be more unsteady, having unnatural results.  A time-accurate technique was 

subsequently applied to the dimpled cases, using the steady-state results as initial 

conditions.  All configurations were simulated with a Reynolds number of 25,000.   

Laminar and turbulent viscous models were investigated.  A Reynolds averaged 

Navier-Stokes (RANS) code incorporated three different turbulence models: K-w. K-e 

and Spalart-Allamaras.  The turbulence models failed to predict any separation.  The 

computations without turbulence showed the expected separation, but did not accurately 

predict flow aft of the separation location. 



  

27 

The primary purpose of the computational results is to help predict and interpret 

wind tunnel results.  The results also give a sense of what might occur in an operating 

engine environment; however, by its very nature, the Pak-B is a 2-D profile and not truly 

representative of a fully 3-D, rotating blade assembly.  The Pak-B profile is characteristic 

for a mid-span section of an operational turbine blade.  The computational blade model is 

extruded spanwise to allow for 3-D flow over this localized blade shape.  To enhance the 

2-D effects, the blade is given infinite span, and the cascade is modeled with infinite 

blades.  The primary utility of the model is to qualifying trends in the flow behavior, 

document relative improvements from surface modifications and visualize flow structure. 

3.1 Computational Software 

Three software packages were used in this study: Gridgen v13.3, Fluent v6.0, 

and FIELDVIEW© v8.0 (42-44).  Gridgen was used to create a grid mesh over and 

around the surface of the blade.  Good grid architecture is essential to flow analysis.  

Each grid point (or node) represents one point in space that will have with it values for 

various properties such as temperature, pressure, density and velocity at any given point 

in time.  If the grid points are too far apart, then the model will not have enough 

resolution to accurately resolve the flow structure.  Too many grid points can require 

excessive run time and memory requirements.  Distribution of grid points is also critical.  

The grid was clustered tightly around regions in which flow gradients required resolution: 

stagnation points and locations of separated flow.  Along with clustering points in 

appropriate locations, cells also need to be at good angles to each other, preferably close 

to orthogonal for hexahedra and equilateral for tetrahedra.  Section 3.2 discusses grid 

topology in greater detail. 
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Fluent is used to simulate flow around the blade.  It uses a finite volume scheme 

to discretize the governing equations.  Fluent was run in a steady state mode, in which 

the time dependent evolution of the flow structure was not preserved.  It was also run 

unsteady, or time-accurate.  This mode ensured that at any one point in time, all grid 

points were assessed at an appropriate time step.  Fluent boundary conditions inputs 

included temperature, pressure, density and velocity.  Periodic boundaries were used to 

allow the computer to simulate infinite span/dimples and infinite blades.  Section 3.3 

discusses flow solver attributes in greater detail. 

FIELDVIEW© was used to graphically display grid structure and flow solver 

results.  It was also be used to evaluate flow properties.  Fluent data files were exported 

to FIELDVIEW© with chosen flow variables: velocities, pressures, and wall shear stress.  

Cross sections of the flow field were taken, displaying contours of various variables, 

integrating values, and taking area weighted averages.  It was also used to produce 2-D 

plots of data across a given cross section.  Particle traces and surface flows were also 

accomplished in FIELDVIEW©, displaying streamlines, separation locations, flow re-

attachment, and vortex cores.  These are useful to visualize flow structure and behavior. 

3.2 Grid Model Characteristics 

Dr. Hugh Thornburg imported 2-D Pak-B profile coordinates are into Gridgen, 

accurately describing the pressure and suction surfaces.  The 2-D profile was then 

extruded in the Z-direction to render a 3-D span of 2.22 cm.  The axial chord length is 

17.78 cm.  The stagger angle is 25o and the inlet angle is 35o.  Combinations of structured 

and unstructured grids were created so that when structured grids were extruded, they 
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produced hexahedral cells, and when unstructured grids were extruded, they produced 

either tetrahedra (within dimples) or prisms (from blade surface).  Where the structured 

and unstructured grids merge, there are mixed cells that include tetrahedral, pyramid and 

wedge cells. 

3.2.1 Baseline Pak-B Grid Topology 

For the baseline blade, a square structured grid is projected onto the blade surface 

with 41 nodes across the span.  Surface grid points are clustered around the leading and 

trailing edges, as well as near the expected separation location (Figure12).  The total 

number of streamwise nodes around both the suction and pressure surfaces is 421.  This 

surface grid is then extruded 42 steps with an initial step size of 0.0001m so as to cover 

the boundary layer thickness and expected separation region.  The remaining duct regions 

were created by extruding the surface of the structured grid to mid-passage with a default 

unstructured grid produced by Gridgen such that there are 15 pitchwise nodes at the inlet 

and outlet faces and 231 nodes along either streamwise mid-passage face (Figure 13).  

The pitchwise length (or duct width) is consistent with cascade geometry, rendering an 

axial chord to spacing ratio (solidity) of 1.129.  The Baseline model has a total of 830, 

625 nodes and 1,319,992 cells (688,800 hexahedral and 631,192 mixed pyramid and 

tetrahedral). 

The boundary conditions were set in Gridgen such that the inlet face was a 

“velocity inlet” for all three configurations.  Dr. Thornburg set the spanwise boundaries 

to “periodic” to simulate infinite span.  In the dimpled cases, this also simulates an 

infinite row of dimples.  He also set the pitchwise boundaries to periodic, simulating an 

infinite number of blades in linear cascade form.  The periodic boundary conditions allow  
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Figure 12. Baseline Pak-B surface topology 

 
 
fluid flow in and out of the boundaries.  The exit face was set to an “outflow” boundary 

condition that ensures continuity at the outlet. 

3.2.2 Grid Topology for Pak-B with Spherical Dimples 

Dimples are created in Gridgen by generating a spherical database structure with a 5.08 

cm diameter.  This sphere is then moved into the surface of the blade at 60% axial chord 

to a depth of 1.588 mm along an orthogonal axis.  The surface of the sphere is intersected 

with surface of the blade to cut a circle onto the surface of the blade.  This circle is then  
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Figure 13. Baseline Pak-B mid-passage grid topology 

 
 
given a domain that is subsequently projected onto the surface of the sphere to simulate 

the dimple.  The spanwise surface nodes of the structured grid are increased to 81 for 

better resolution (Figure 14).  The region around the dimple is created with an 

unstructured grid containing 21,408 nodes such that there are 61 streamwise nodes 

located at spanwise ends where there are 31 nodes on the baseline model an 101 nodes 

where there are 51 nodes on the baseline model.  Spanwise between the dimple edge and 

spanwise edge, there are 21 nodes on either side.  Additionally, there are 121 nodes used 

in the streamwise length of the aft structured grid surface.  There are 444 nodes  



  

32 

 

61 Nodes

101 Nodes

61 Nodes

121 Nodes

61 Nodes

101 Nodes

61 Nodes

121 Nodes

 
Figure 14. Grid Topology for the Pak-B blade with spherical dimples 

 
 
around the dimple edge so that there are 25,411 nodes inside the dimple.  The remaining 

grid structures are the same as that created for the baseline model.  There are a total of 

3,361,902 nodes with 1,213,000 hexahedral cells; 3,748,712 wedge cells; and 1,190,194 

mixed cells. 

3.2.3 Grid Topology for the Pak-B with Asymmetric Dimples 

In the case of the asymmetric dimple, the circular intersection that defines the dimple 

edge is split in half down a streamwise axis.  Half of the resulting semicircle is then given 
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a domain that is projected onto the blade surface.  In addition, a vertical semicircular 

domain is created into the dimple to simulate a pitchwise wall oriented in a streamwise 

direction.  In effect, the dimple is half-filled in the spanwise direction.  Nodes are very 

tightly packed around and inside the dimples so that there are 3,064 nodes within the 

dimple, 2998 nodes on the semi-circular blade surface and 1078 nodes on the on the 

vertical semi-circular wall that defines the straight edge (Figure 15).  The streamwise 

number of nodes along the spanwise edges is the same as that for the baseline case; 

2998 Surface Nodes

3064 Surface Nodes

31 Nodes

51 Nodes

31 Nodes

2998 Surface Nodes

3064 Surface Nodes

31 Nodes
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Figure 15. Grid Topology for the Pak-B blade with asymmetric dimples 
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however, the grid around the dimple is unstructured with 231 nodes around the circular 

circumference of the original full dimple circumference and 11 spanwise nodes between 

the spanwise and dimple edges.  The downstream spanwise node distribution includes 81 

nodes.  Further downstream, there are 41 spanwise nodes that merge the unstructured and 

structure grids.  As with the previous two cases mentioned, there are 42 layers extruded 

from the surface.  The grid has a total of 1,132,305 nodes and 2,193,406 cells (508,400 

hexahedral; 89,881 tetrahedral; 909,544 wedge cells; and 685,581 mixed cells). 

3.3 Flow Solver Characteristics 

Fluent was run in 3-D, double precision and parallel mode for this study.  The 

respective case file is read into the solver, and boundary conditions are set.  The inlet face 

was set to a uniform 2.22 m/s, consistent with an inlet Reynolds number of 25,000 based 

on axial chord.  The X-component of flow was 0.8192 and the Y-component was 0.5736, 

consistent with the 35o inlet angle for the Pak-B blade.  The inlet pressure was set to 

101,325 Pa.  The blade surface was set as a no-slip wall.  Therefore, the velocity at the 

surface of the wall is zero.  The corresponding viscous setting was laminar.  Other 

settings investigated included Spalart-Allamaras, K-ω and K-ε turbulence models and 

were incorporated by DR. Thornburg.  The baseline Pak-B was run in steady state, as 

there was little unsteadiness associated with this flow.  Convergence was arbitrarily 

determined when residuals stopped declining.  The other two cases were run both initially 

run in steady-state mode.  A time accurate mode was started from the stalled steady-state 

solution, using a 0.0001 s time step with a maximum of 20 iterations per time step.  Run 

time was based on convergence of the local pressure iteration.  Dr. Thornburg ran several 

cycles and qualitatively determined convergence based on observing random snapshots in 
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time.  Run times were run long enough to ensure that transients were flushed out of the 

solution with confidence.  After partitioning the files across available processors, files 

were then initialized, generating an associated data file.  The case and data files were then 

run across several processors (as many as 24 at a time). 

3.4 Computational Results 

Computational results for the laminar settings follow expected trends with 

separation occurring between 66% and 73% axial chord at a Re 25k.  For the current 

research, the laminar setting best represented the true flow and was chosen for post-

processing flow structure and behavior. 

Results are shown in terms of velocity, static pressure and total pressure profile 

contours, as well as surface pressure coefficient plots.  The velocity and static pressure 

contours are useful in predicting blade performance as they relate to momentum deficit 

and blade loading, respectively.  Total pressure contours are helpful in demonstrating 

locations and magnitudes of energy losses.  The surface pressure coefficient plots are 

particularly important because they can be directly related to experimental results 

because they are normalized by inlet dynamic pressure.  They are also instrumental in 

visualizing flow behavior, pointing separation locations. 

Surface flows and streamlines are also shown to help visualize the airflow over 

the suction surface.  Surface flows include separation and reattachment locations.  

Streamlines depict the particle flow paths and are the best method for viewing flow 

structure.  For steady-state solutions, the particle path does not change with time.  For the 

time-accurate results, a snapshot in time is viewed with the particle path integrated 

through the solution by virtue of velocity gradients. 
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3.4.4 Velocity Profile Contours 

Figures 12 - 14 show velocity magnitude contours for the three Pak-B 

configurations at a Reynolds number of 25,000.  The profile slices are taken at the same 

span-wise position; a location that is at the spherical dimple mid-span and close to the 

straight edge of the asymmetric dimple.  The profiles were generated in FIELDVIEW© 

by first creating a coordinate surface orthogonal to the Z-axis (spanwise axis).  The 

spanwise location was entered as previously noted, and then velocity magnitude was 

selected as the scalar function to be viewed.  The coordinate surface was configured as 

smooth contours, and the legend was set to color spectrum.  NASA-1 was selected as the 

legend type color map.  The maximum value was set to 4.5 m/s (yellow), and the 

minimum value was set to zero (green).  The view was taken from the Z+ direction.  All 

color maps were set to the same scale to compare velocities. 

As the velocity accelerates over the suction surface, static pressure is expected to 

decrease.  When the flow separates, velocity magnitude decreases and static pressure 

rises, corresponding to a decrease in blade effectiveness related to momentum deficit.  

Figure 16 shows the velocity contours for the baseline Pak-B blade.  Low velocity 

contours are present on the suction surface, downstream of 66% axial chord, indicating 

separation and loss in efficiency.  Additionally, two pockets of high velocity appear near 

the trailing edge, hinting at vortical structures.  Figure 17 shows the dramatic change in 

velocity contours with the addition of spherical dimples.  At this particular time step, 

there is only one small pocket of low velocity near the trailing edge, denoting a small 

separation bubble.  The asymmetric dimple offers an improvement over the baseline at 

this time step as seen in Figure 18; however, it is visibly less than the improvement  
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Figure 16. CFD velocity magnitude profile contours for a baseline Pak-B blade at Re 25k 

with the legend shown in m/s 

 
 
 

 
Figure 17. CFD velocity magnitude profile contours for a Pak-B blade with spherical 

dimples at 60% axial chord at Re 25k with the legend shown in m/s 

 
 
shown by the spherical dimple.  The pocket of low velocity contours is noticeably smaller 

than the baseline, beginning at 69% axial chord.  There is one long separation bubble that  
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Figure 18. CFD velocity magnitude profile contours for a Pak-B blade with asymmetric 

dimples at 60% axial chord at Re 25k with the legend shown in m/s 

 
 
extends past the trailing edge, but the boundary layer is significantly smaller that the 

baseline Pak-B blade. 

3.4.5 Total Pressure Profile Contours 

Figures 19 - 21 show total pressure contours of the three Pak-B configurations at 

Re 25k.  The same profile slices were taken as used to view velocity magnitude contours, 

but the scalar function was set to view total pressure.  The legend was set to a maximum 

value of 5.5 Pa and a minimum of -10.5 Pa.  In each case, total pressure at the inlet is 

uniform.  At the separation location, a low total pressure region grows, indicating a loss 

in total pressure and corresponding increase in entropy and reduction in blade efficiency.  

Direct comparison of these figures delineates the best configuration.  Figure 19 shows the 

baseline blade with the largest region of losses, having the thickest region of total 

pressure loss that starts at 66% axial chord.  Figure 20 shows the Pak-B with the spherical 

dimple at 60% axial chord.  This configuration is the best of the three cases considered,  
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Figure 19. CFD total pressure contours for a baseline Pak-B blade at Re 25k with the 

legend shown in Pa 

 
 
 

 
 

Figure 20. CFD total pressure profile contours for a Pak-B blade with spherical dimples 
at 60% axial chord at Re 25k with the legend shown in Pa 
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with only a small region of loss.  The asymmetric dimple has improved performance over 

the baseline blade, but not as good as the spherical dimple (Figure 21).  It delays the on-

set of total pressure deficit to 69% axial chord. 

 

 
Figure 21. CFD total pressure contours for a Pak-B blade with asymmetric dimples at 

60% axial chord at Re 25k with the legend shown in Pa 

 
 
3.4.6 Static Pressure Profile Contours 

The purpose of a low pressure turbine is to expand flow.  To this end, static 

pressure profile contours show how effectively this is accomplished.  Flow is expected to 

accelerate over the suction surface, and static pressure should drop.  Figures 22 - 24 show 

regions of static pressure over the three Pak-B configurations at Re 25k.  The profiles 

were created using the same coordinate surface indicated in the previous two sections 

with the scalar function set to static pressure.  The legend is set to a maximum value of 

3.5 P and a minimum of -10.5 Pa.   
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The baseline Pak-B is depicted in Figure 18.  There is a region of concentrated 

low pressure at about 56% axial chord.  Just aft of this location at about 82% axial chord, 

there is a small pocket of slightly lower pressure centered just off the blade surface.  This 

indicates the possible presence of a weak spanwise vortex.  Further downstream at 92% 

axial chord, there is another pocket of low pressure.  This low pressure region is the 

strongest of the three and is clearly detached from the surface of the blade.  This indicates 

the presence of a stronger spanwise vortex.  It is immediately followed by a region of 

much higher static pressure consistent with detached flow.  These contours are consistent 

with expected trends.  As the flow separates, the velocity is expected to decrease, and 

static pressure rises.  This trade-off also is expected to occur within a vortex core where 

the relative velocity is near zero. 

 

 
Figure 22. Static pressure contours on a baseline Pak-B blade from CFD results at Re 25k 

with the legend in Pa 
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Figure 19 shows the static pressure contours around the Pak-B blade with 

spherical dimples centered at 60% axial chord.  In general, there is more suction 

occurring in this configuration than with the baseline blade.  At 84% axial chord, there is 

a pocket of slightly lower pressure just off the blade surface, constituting the trailing edge 

of a large low pressure zone that extends upstream of the dimple.  Further downstream at 

94% axial chord, there is a small concentrated pocket of low pressure, indicative of a 

strong vortex possibly associated with tripped flow.  The lowest surface static pressures 

reach -10.4 Pa, the lowest of the three blade configurations.  The lowest pressures occur 

around the leading and trailing edges of the dimple.  This indicates the presence of 

relatively high velocity air, consist with the outer edge of a vortex. 

 

 
Figure 23. Static pressure contours on a Pak-B blade with a spherical dimple at 60% axial 

chord from CFD results at Re 25k with the legend in Pa 

 
 

Figure 20 shows the static pressure contours for the Pak-B modified with an 

asymmetric dimple at 60% axial chord.  There is a very large region of suction extending 
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nearly the entire length of the trailing suction surface.  Within this region, there are two 

small pockets of very low pressure air at 93% and 97% axial chord.  Unlike the case with 

the spherical dimple, there is little to no evidence of a downstream spanwise vortex aft of 

the dimple location.   The lowest pressures reach -8.8 Pa as opposed to the -10.4 Pa 

achieved by the blade with the spherical dimple, indicating that the spherical dimple 

performs better. 

 

 
Figure 24. Static pressure contours on a Pak-B blade with an asymmetric dimple at 60% 

axial chord from CFD results at Re 25k with the legend in Pa 

 
 
3.4.7 Surface Pressure Coefficient Profiles 

Surface pressure coefficient plots were created using the 2-D plot function in 

FIELDVIEW®.  The first step was to create a scalar function manually.  In order to create 

the function, values for area-weighted average inlet total pressure and inlet dynamic 

pressure are captured.  A coordinate surface is created one half axial chord length 

upstream of the leading edge.  The coordinate surface is oriented in the axial plane (X+ 
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direction).  Integration tools are used in FIELDVIEW© to compute an area-weighted 

average for a total pressure and for dynamic pressure.  The area-weighted average is 

computed by summing the total number of scalar values within the area of the given 

plane and dividing by the number of samples.  These values are then used to create a new 

function for surface pressure coefficient as follows: 

 
inlet

t

q

""P
Cp inlet

Pressure−
=  (12) 

 
where 

inlettP , area-weighted average inlet total pressure, and inletq , area-weighted average 

inlet dynamic pressure, are fixed numbers entered from the integration output, and 

“Pressure” is a FIELDVIEW© name for static pressure as imported from Fluent© at a grid 

location along the surface of interest.  Within the 2-D plot tool, the blade surface is 

selected for an “XYZ Curve Plot” and a Z-cut is taken and plotted in the X-direction.  

The resulting plot shows Cp on the Y-axis and axial chord distance on the X-axis.   

Surface pressure coefficient is proportional to static pressure as seen in Equation 

12.  Therefore, as static pressure decreases, pressure coefficient increases.  Surface 

pressure plots indicate higher blade loading with higher pressure coefficients, a desirable 

characteristic for turbine blades.  The higher blade load means more work from the 

turbine.  Surface pressure coefficient plots are also useful to determine separation 

location.  Separation is identified as the beginning of the horizontal data following the 

suction surface peak value.  CFD is not expected to model reattached flow with much 

accuracy because re-attached flow is expected to be turbulent.  The laminar integration 

technique is not able to resolve this condition. 
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Figures 25 is a 2-D plot of surface Cp along axial chord length.  It shows a 

comparison of CFD surface pressure coefficient profiles for the three Pak-B blade 

configurations.  Both the pressure and suction side surfaces are shown with the suction 

surface ranging from 0 (stagnation point of the leading edge) to nearly 4.5.  The baseline 

blade has the least amount of loading with the suction surface reaching a maximum value 

of about 4.0.  A plateau is apparent in the data around 65% axial chord, indication flow 

separation.  Aft of 95% axial chord, the results become unrealistically high, showing a 

limitation in the laminar code.  The asymmetric dimple appears to delay separation a little 

further aft to nearly 70% axial chord, where the data flattens.  The asymmetric dimple  
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Figure 25. CFD surface pressure coefficient comparison between Pak-B baseline, Pak-B 

with spherical dimples and Pak-B with asymmetric dimples at Re 25k.  Profiles are 
aligned with the Pak-B profile 
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offers improved blade loading with a maximum Cp value greater than 4.2.  There are two 

peaks in the data on either side of 60% axial chord.  These indicate the edges of the 

dimple which are characterized by low static pressure consistent with relatively higher 

velocity air associated with a vortex.  The slight dip in the data just aft of 60% axial 

chord denotes a possible vortex core.  The spherical dimple performs better than the other 

two cases with a peak value reaching nearly 4.5.  It is also characterized by two peaks on 

either side of 60%, denoting the possible presence of a vortex within the dimple.  It 

appears to delay separation to almost 75 % axial chord.  A feature unique to the Cp plot 

for the symmetric dimple is a higher profile across the leading edge surface from the 

stagnation point to about 50% axial chord.  This indicates that the separation associated 

with the other two cases partially blocks the flow, transmitting higher static pressures 

upstream.  Similarly, the data long the pressure surface leading edge is also lower for the 

spherically dimpled blade.  This shows that the spherical dimple has a positive impact on 

both surfaces. 

3.4.8 Location of Separation, Reattachment and Vortex Cores 

FIELDVIEW® was used to view lines of separation and re-attachment, as well as 

vortex cores.  These parameters are useful understanding flow structure and behavior.  

Under the FIELDVIEW® menu for “surface flows”, three surface flows are created 

“separation lines,” “reattachment lines,” and “vortex cores, eigenvalue analysis.”  The X+ 

direction is selected for viewing, and three different geometric colors are used: red for 

separation, blue for reattachment, and yellow for vortex cores. 

Figures 26 - 28 show the axial views of the computational results for separation 

and reattachment locations at Re 25k on three Pak-B configurations.  The baseline Pak-B 
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is shown in Figure 26 with initial separation occurring at 66% axial chord, consistent 

with research conducted by Bons et al. at a Reynolds number of 25,000 (23).  After the 

initial separation, there are two regions of fairly coherent reattachment and subsequent 

separation.  This possibly indicates the presence of vortical structures. 
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Local Reattachment Lines
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Figure 26. Computational results for baseline Pak-B blade at Re 25k.  Red indicates 

separation, and blue indicates reattachment.  The suction surface is shown oriented with 
flow from left to right 

 
 

Figure 27 shows the laminar CFD solution for surface flow characteristics on a 

Pak-B with spherical dimples at 60% axial chord at Re 25k.  The flow separates from the 

leading edge of the dimple and reattaches just before the trailing edge.  There is a 

coherent vortex core within the dimple (vortex image shown later).  The core is concaved 

slightly upstream.  The separation line occurs at 73% axial chord.  This is a 10% 

improvement over the baseline, indicating a related improvement in blade efficiency.  Aft 

of the separation, there is a region of mixed flow structures, indicating energized flow. 
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Figure 27. Computational results for Pak-B blade with spherical dimples at 60% axial 

chord at Re 25k.  Red indicates separation, blue indicates reattachment and yellow 
indicates the location of vortex cores.  The suction surface is shown oriented with flow 

from left to right 

 
 
Figure 28 shows laminar CFD results for the surface flow characteristics on a 

Pak-B with asymmetric dimples at 60% axial chord at Re 25k.  The flow around the 

dimple separates at the leading edge of the dimple and reattaches just before the trailing 

edge.  Furthermore, a spanwise vortex core is present within the dimple.  The vortex core 

appears to turn downstream near the straight edge of the dimple without ever leaving the 

dimple.  There is a clear line of separation at 69% axial chord, indicating an improvement 

over the baseline but not as high as the Pak-B with spherical dimples.  Downstream of 

this location, the flow is very erratic with some reattachment and separation.  Spanwise 

vortex cores are found between and downstream of reattachment and separation lines, as 

well as vortex cores.  On the whole, the spherical dimple does a better job of energizing 

the flow downstream of the separation location. 
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Figure 28. Computational results for Pak-B blade with asymmetric dimples at 60% axial 
chord at Re 25k.  Red indicates separation, blue indicates reattachment and yellow 

indicates the location of vortex cores.  The suction surface is shown oriented with flow 
from left to right 

 
 

3.4.9 Flow Structure Visualization 

Flow structure over the suction surface of the blade is visualized using streamlines 

seeded about one node above the surface at two axial chord locations: just forward of the 

dimple leading edge and near the chordwise centerline of the dimple.  In FIELDVIEW® 

this was accomplished by creating two different rakes and selecting 16 point ribbons to 

view flow direction and twist.  To create a rake, two spanwise end points were chosen 

and then FIELDVIEW® automatically generated points that were evenly distributed 

between the two.  Once the rakes were created, streamlines were calculated by the 

program, generating particle paths along integrated velocity gradients.  Looking down on 

the suction surface of the baseline blade showed that the flow structure of the baseline 

Pak-B remains reasonably straight and parallel.  Figure 29 shows a profile view of the 

flow structure, indicating the presence of a brief re-attachment near the trailing edge.  

This is consistent with the static pressure contours shown in Figure 22.  The flow is  
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Figure 29. CFD profile streamlines for a baseline Pak-B blade at Re 25k 

 
 
clearly separated with a large separation bubble centered around 92% axial chord.  

Further downstream the flow is noticeably detached. 

Figure 30 shows a profile view of the Pak-B blade with spherical dimples at 60% 

axial chord.  Streamlines indicate that the separation bubble is much smaller, increasing 

the overall blade effectiveness.  Furthermore, the flow leaving the trailing edge is less 

detached.  This indicates less momentum deficit and reduction in the pressure loss 

coefficient. 

Figure 31 shows a profile view of streamlines on a Pak-B blade with asymmetric 

dimples at 60% axial chord at Re 25k.  The separation bubble is near the same location as 

the bubble on the baseline blade; however, it appears to be smaller.  The detached region 

near the trailing edge is also improved.  This figure indicates some possible improvement 

to blade efficiency, but the spherical dimple is clearly better. 

Figure 32 shows the blade with spherical dimples from an axial view, looking 

down on the suction surface.  Streamlines show that there is a significant spanwise vortex 
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Figure 30. CFD profile streamlines for a Pak-B blade with spherical dimples at 60% axial 

chord at Re 25k 

 
 
 

 
Figure 31. CFD profile streamlines for a Pak-B blade with asymmetric dimples at 60% 

axial chord at Re 25k 

 
 
trapped within the dimple.  The flow appears to be drawn toward the center of the dimple, 

exiting the dimple axially near centerline.  This indicates the presence of low static 

pressure near the centerline of the dimple.  The spanwise vortex appears to be of equal 

magnitude and opposite sense from either side of the dimple.  This figure indicates that  
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Figure 32. CFD suction surface streamlines for a Pak-B blade with spherical dimples at 

60% axial chord at Re 25k.  The axial view shows flow from left to right 

 
 
there is very little influence from neighboring dimples.  At the separation location, flow 

that initially traveled around the edges of the dimple is entrained toward the centerline 

where the fluid is moving faster, having lower static pressure.  Expanding the view, 

Figure 33 reinforces the notion that there is very little influence between dimples, except 

near the trailing edge.   

 

 
Figure 33. Enlarged view of CFD suction surface streamlines for a Pak-B blade with 
spherical dimples at 60% axial chord.  The axial view shows flow from left to right 

 
 

Figure 34 shows an axial view of the blade with the asymmetric dimple, looking 

down on the suction surface.  Streamlines show that there is a spanwise vortex trapped  
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Figure 34. CFD suction surface streamlines for a Pak-B with asymmetric dimples at 60% 

axial chord at Re 25k.  The axial view is shown with flow from top to bottom 

 
 
within the dimple.  Flow appears to be drawn toward the dimple to leak out mostly from 

both outboard edges.  This denotes a low pressure region within the dimple.  From this 

figure, there appears to be little influence from adjacent dimples.  Figure 35 is an 

enlarged view, showing the presence of some influence between dimples.  It 

 

 
Figure 35. Enlarged view of CFD suction surface streamlines for a Pak-B blade with 

asymmetric dimples at 60% axial chord at Re 25k.  The axial view is shown with flow 
from left to right 
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appears that the aft of the separation point flow is either entrained toward the flow behind 

the dimple or toward flow aft of the adjacent dimple.  This occurs because the fast 

moving air exiting the dimple has a lower static pressure.  Spanwise asymmetry in the 

flow is apparent; however, near the trailing edge, flow becomes more uniform. 

3.5 Summary and Conclusions of Computational Research 

CFD solutions suggest that the spherical dimple is more effective than the 

asymmetric dimple in controlling boundary layer separation and reducing the associated 

losses.  Velocity and total pressure contours show that the dimples are effective in 

reduced momentum deficit and energy loss.  Static pressure contours and Cp profiles 

show that dimples increase blade loading.  Furthermore, the Cp plot indicates that flow 

separation partially blocks the flow, effecting upstream flow. There appears to be two 

contributing mechanisms.  The first and perhaps most significant mechanism is the 

trapped vortex within the dimple.  The asymmetric dimple is less effective in this regard 

because it is only half the size of a full dimple.  The second most effective mechanism 

appears to be the ability of the trapped vortex to entrain the flow.  As mid-passage 

airflow negotiates the dimple, it is entrained and mixes energy into the flow.  Though the 

vortex with the asymmetric dimple may not be as effective, it appears to offer some 

improvement by entraining flow aft of the separation location.  These results are only 

meant as a qualitative measure of what may possibly be happening in the airflow.  

Experimental testing is essential to evaluating one dimple configuration over another. 
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CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Wind Tunnel and Cascade Characteristics 

Wind tunnel tests are conducted in a modified open loop Aerolab Corporation 

draw-down tunnel (Figure 36).  The tunnel is modified to allow for variable turning 

angles within the test section.  Within the test section are 8 Pak-B blades, comprising a 

removable cassette.  Tests are conducted at Re 100k, 45k and 25k with turbulence levels 

of 1% and 4%.  The tunnel and test section are the same as used by Lake with few 

modifications to the instrumentation set-up (1).  National Instruments LabVIEWTM 

software is used as an interface to control instrumentation and collect, reduce and display 

data. 

 
Figure 36. Aerolab Corporation modified draw-down wind tunnel (illustration courtesy of 

AFRL) 
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4.1.1 Wind Tunnel Geometry and Features 

Air is drawn through the wind tunnel by a Joy Technologies Axivane axial flow 

fan with an outer radius of 114.3 cm.  The fan is powered by a 93.2 kilowatt motor 

enclosed in a 124.5 cm long casing which contains the electric motor, axial fan, exit 

vanes and a wire mesh filter screen.  The motor is controlled by a 

Harmon/Commonwealth Corporation variable frequency motor controller. 

The inlet bell-mouth is 305 cm wide and 267 cm high with a honeycomb flow 

straightener and converging nozzle.  The convergent section is 229 cm long and has an 

exit section that is 122 cm wide and 85.1 cm high.  Corner vortices are minimized with 

the use of Styrofoam inserts that each extends into the test section 10.2 cm in the vertical 

plane and 12.7 cm in the horizontal plane (Figure 37).  The inserts allow for freestream 

turbulence level as low as 1% when configured as a clean tunnel. 

 

 
Figure 37. Cross-sectional area of wind tunnel (1) 

 
 

The tunnel is equipped with a turbulence generator housing at 190.7 cm upstream 

of blade #1.  The housing is 76.2 cm long and can be run empty, yielding a clean tunnel 

configuration with freestream turbulence of 1%.  When the turbulence grid is installed, 
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4% turbulence is passively generated between 127 and 254 cm downstream.  The grid is 

comprised of 2.54 cm diameter round stainless steel tubes arranged as a square mesh and 

capable of being run in an active or passive mode (Figure 38).  The tubes are spaced 7.6 

cm apart from center to center and are designed in accordance with Roach’s isotropic 

turbulence grid guidelines (45).  Lake ensured proper isotropy and turbulence length 

scales in accordance with Mayle et al. (1; 46)  Several repeated measurements were taken 

to determine length scales using a single hot-wire probe and Air Force Research 

Laboratory software to integrate and average data. 

 

 
Figure 38. Turbulence grid. Passively generates Tu 4% (illustration courtesy of AFRL) 

 
 
4.1.2 Cascade Features 

The cascade consists of 8 Pak-B blades with 17.78 cm axial chord lengths and an 

axial chord-to-spacing ratio, or solidity, of 1.129 (Figure 39).  True chord length is 

25.995 cm.  The Pak-B profile has a camber angle of 36o and a stagger angle of 25o.  

Lake recorded an incidence angle of -1o at Re 45k, yielding an inlet angle of 35o (1).  He  
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EndbladeEndblade

 
Figure 39. Removable cassette of eight Pak-B blades and endblade (illustration courtesy 

of AFRL) 

 
 
also measured average exit angles, finding agreement with the designed 60o.  The Pak-B 

blade is molded from Ultralloy 108 white resin with a 78.63 cm span to yield an aspect 

ratio of 4.92 to 1.  This aspect ratio allows for a good 2-D flowfield about the mid-span, 

with negligible effects from endwalls.  Blade #1 is furthermost inboard, 198 cm 

downstream of the turbulence grid.  Blade #8 is furthermost outboard, 300 cm 

downstream of the turbulence grid.  Lake modified blade #5 with three rows of nine 

spherical dimples: one row at 50%, one at 55%, and one at 65% axial chord (1).  For the 

current research this same blade is used.  To test the baseline Pak-B, this same blade was 

used with tape over the dimpled rows.  The tape is 19mm wide, and is cut to a spanwise 

length so that there is only 2mm past the edge of the last dimple in a given row.  The tape 

is about 0.1 mm thick.  To create the asymmetric dimples, Playdough® is packed into the 

dimple and then smoothed with a razor to take the same contour of the blade surface.  
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The Playdough® in a spanwise half of each dimple is then removed so that the straight 

edge is parallel to the axial flow.  A small strip of tape is laid over the remaining 

Playdough® to hold it in place.  The Playdough® cures overnight. 

4.1.3 Data Collection Locations 

The wind tunnel has four thermocouples which are suspended from the top of the 

tunnel (Figure 40).  These are used for measuring static temperature and calculating 

density.  Because the flow was incompressible for this experiment, density was calculated 

from ambient room static pressure and tunnel temperature.  Using the perfect gas law: 

 
TR

Pρ =  (13) 

where ρ is density, P is room static pressure, T is tunnel temperature and R is the gas 

constant for air. 

Thermocouple #1 is located at the inlet upstream of the flow straightener screen.  

It is suspended 100 cm from the bottom of the bell-mouth and 61cm from the inboard 

wall.  Thermocouple #2 is suspended 45.7 cm downstream of the turbulence grid and 145 

cm upstream of blade #1.  Thermocouple #3 is suspended at the 40% axial chord line of 

blade #1.  Thermocouple #4 is suspended 76.2 cm downstream of blade #1.  

Thermocouples #2, 3 and 4 are spanwise aligned with inlet and exit flow for blade #1. 

A fixed inlet hot film protrudes through the test section floor one axial chord 

length upstream of blade #5.  This hot film is used to measure velocity and calculate 

Reynolds number.  Tunnel flow speed is set to achieve a desired Reynolds number using 
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Figure 40. Wind tunnel instrumentation locations (courtesy of AFRL) 

 
 
the inlet hot film, ambient pressure, tunnel temperature and the following equation: 

 
µ

cU
RT
P

µ
cUρ

c









==Re  (14) 

 
Where c is axial chord, U is inlet velocity and µ is the viscosity of air. 

Inlet dynamic pressure is based on the direct differential between upstream total 

and static pressure.  This measurement is made from a pitot-static probe that extends 1.5 

axial chord lengths upstream of the cascade.  It is suspended through the ceiling from a 

Velmex traverse at a variable height so as not to influence downstream measurements 

with a wake.  The traverse is capable moving the inlet pressure probe 182.88 cm from 
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inboard to outboard; however, the test section sweep is only 60 cm from inboard of blade 

#4 to outboard of blade #6, centerline-to-centerline of the respective blade passages.  The 

traverse is controlled by a Velmex VP9000 controller, and the location is viewed on a 

Sony LH61 position display.   

The movable pitot-static probe is also used for measuring differential total 

pressure between the upstream and downstream pressure probes.  Total local pressure 

loss coefficient is the differential between inlet and exit total pressure divided by the 

differential between inlet total and static pressure:  

 
( )
( )inletsinlett

exittinlett

PP
PP

,,

,,

−

−
=ω  (15) 

where ( )exittinlett PP ,, −  is a time average of direct differential samples of inlet and exit total 

pressures, and ( )inletsinlett PP ,, −  is a time average of direct differential samples of inlet total 

and static pressures. 

Similarly, surface pressure coefficients are also based on dynamic pressure 

measured using the inlet pitot-static probe.  Surface pressure coefficient is the differential 

between the inlet total pressure from the upstream pitot-static probe and surface static 

pressure divided by the differential between inlet total and static pressure: 

 
( )
( )inletsinlett

localsinlett

PP
PP

Cp
,,

,,

−

−
=  (16) 

where ( )localsinlett PP ,, −  is a time average of direct differential samples of inlet total and 

local surface static pressures.  Blades #4 and #6 are equipped with surface pressure taps 

to measure static pressure.  There are 40 taps on each blade, though only 37 are usable on 
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blade #4 due to clogged passages from the manufacturing processes.  Taps are staggered 

along a 30o line from each other, extending from leading to trailing edge and covering a 

22.86 cm span across the center of the respective blade.  The stagger limits cross-talk 

between holes so that one hole does not influence the adjacent downstream hole. 

Wake velocity profiles are generated from velocity measured by an exit X-Film 

suspended one axial chord length downstream of the cascade at various heights 

corresponding to particular dimple rows.  For the dimples at 50% and 65%, the probe is 

located 12 cm from blade mid-span.  For the dimples at 55%, the probe is located at mid-

span.  It is connected to the same traverse as the upstream pressure probe, traveling 

across the cascade exit plane as well as in the spanwise direction.  Also connected to the 

traverse and located along side the X-film (approximately 2 cm apart) is a Kiel probe that 

reads total pressure.  The Kiel probe is not as sensitive to orientation angle as the inlet 

pitot-static probe, making it useful in exit flow that generates large angle variations.   

A boundary layer probe containing a single element hot film is inserted through 

the outer tailboard through slots at three spanwise locations.  These locations correspond 

to the dimple locations.  The boundary layer probe is always oriented orthogonal to the 

blade surface (oriented by line of sight) and is moved to five different axial chord 

locations along the suction surface of blade #5.  The five locations include 67.2%, 73.0%, 

79.3% 84.8% and 89.8% axial chord (the same locations used by Lake). 

4.1.4 Test Section Characteristics 

The adjustable test section is capable of a flow turning angle up to 130o.  It is 

hinged at a central pivot joint that allows the inlet and outlet angles to be independently 

adjusted.  For the current research, the tunnel was set to design specifications for the Pak-
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B blade; having a 35o inlet angle relative to the axial direction (normal to the cascade 

inlet plane) and a 60o exit angle(Figure 41).  The innermost and outermost walls of the 

cascade are shaped to approximate the Pak-B suction and pressure surfaces, respectively.   

 

Air Flow 
Direction
Air Flow 
Direction

 
Figure 41. Plan view of test section (illustration courtesy of AFRL) 

 

The blade cassette is fashioned with clear plexiglass top and bottom plates to 

which the blades are bolted.  Each blade is held in place by two bolts positioned near the 

trailing and leading edges.  The top and bottom plates are supported by two steel runners 

so that top and bottom plates are flush with tunnel inner surfaces. 

The top and bottom of the test section are constructed from plexiglass sheets 2.54 

cm thick.  They are supported in a 6.4 mm deep groove so that they are flush with inner 

and outer surfaces.  Traverse slots are cut into the plexiglass sheets so that they are 
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parallel to the leading and trailing edges of the cascade.  The outboard walls are also 

made of plexiglass, allowing for good all-around visibility.  In addition, there are inner 

and outer tailboards fashioned from plexiglass that adjust exit flow angles.  The outer 

tailboard is in two sections such that the upstream section is 109 cm long, and the 

downstream portion is 91.4 cm long (Figure 42).  The test section was tested with and 

without the downstream tailboard section to see the effect on loss coefficient and exit 

velocity profiles.  There was no measurable effect for the Reynolds numbers being 

investigated. 

For the same conditions used in this research, Lake measured air velocity 

magnitude and turbulence intensity across the blade row inlet and exit with a TSI 1210-

T1.5 hot wire probe to ensure periodicity and uniformity (1).  He found good periodicity 

with nearly 15.75 cm between each velocity peak.  He also found good uniformity with 

each velocity minimum being nearly the same magnitude.  Lake also used the hot wire 

data to measure inlet turbulence length scales (1).  For the configuration with the 

turbulence grid removed (Tu 1%), length scales were 77.3 cm, 123.1 cm and 153.3 cm 

for Re 50k, 100k and 200k, respectively.  For the configuration with passive turbulence 

in which the grid is install (Tu 4%), length scales were 2.87 cm, 4.5 cm and 6.93 cm for 

Re 50k, 100k and 200k, respectively.  Pitchwise inlet dynamic and total pressure 

variation is reported in the current study using the upstream pitot-static probe mounted to 

a traverse.  The probe makes a single pass measuring the differential between inlet static 

and total pressure to estimate inlet dynamic pressure.  It makes another pass to measure 

the differential between total inlet pressure and ambient air with one side of the 

transducer vented to room ambient pressure. 
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Figure 42. Test section geometry 

 
 

Figure 43 shows no significant variation in total pressure at Tu 1%.  The 

difference from the average (∆Avg) is within 0.4 Pa.  Figure 44 shows a slight variation 

at Re 45k and Tu 4%, but is always less than 0.4 Pa from the average value.  Figure 45 

shows very little variation in dynamic pressure across the inlet at Tu 1%.  Figure 46 

shows some variation in dynamic pressure at Re 25k and Tu 4%, but not a significant 

amount. 
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Figure 43. Test section inlet total pressure variation at Tu 1% 
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Figure 44. Test section inlet total pressure variation at Tu 4% 
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Figure 45. Test section inlet dynamic pressure variation at Tu 1% 
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Figure 46. Test section inlet dynamic pressure variation at Tu 4% 
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4.2 Instrumentation 

Figure 47 shows a schematic of the instrumentation used in the current research.  

The entire operation is controlled from a Dell Pentium 4 personal computer (PC).  Within 

the Dell, there is an MXI-3 fiber-optic interface board that is connected to a National 

Instruments PXI 1010 chassis.  The PC also contains three other PCI cards used to drive 

the traverses and collect hot/X-film voltage measurements.   
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Figure 47. Instrumentation Schematic 

 
 

The boundary layer traverse, a National Aperture, Inc. motorized 5.08 cm MM-

3M micro traverse, is controlled through the PCI-7344 card inside the PC.  It has a 

movement resolution of 20157.4 steps per cm.  The traverse position encoder provides a 
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linear spatial resolution of +5.08 x 10-5 cm.  Traverse position is controlled and powered 

by a National Aperture, Inc. MC-3SA servo amplifier, which is in-turn connected to the 

PCI-7344 card.   

Similarly, the main traverse which moves the upstream pitot-static probe and 

downstream Kiel probe and X-film is controlled through the PC by way of a standard RS 

232 Com card.  The main traverse is powered and controlled through a Velmex V-9000 

controller with position displayed on a Sony LH61 digital read-out with +0.005 cm 

accuracy.  A TSI, Inc. IFA-100 Flow Analyzer feeds hot film and X-film voltages 

directly to the PC through a National Instruments PCI-6052E A/D card which has a 16 bit 

resolution and a 333 ks/s sampling rate.   

The PXI 1010 chassis contains a PXI-6052E A/D board which has a 16 bit 

resolution over +10 Volts.  For this research, the pressure transducer had a calibration 

slope of 0.1998, yielding a least bit resolution of +0.06 Pa.  The A/D board is connected 

to an SCXI cluster.  This cluster includes an SCXI-1160 relay controller which 

commands the three Scanivalve controllers.  There is an SCXI-1102 thermocouple board 

that is connected to the four reference thermocouples.  A Druck LPM 5481 pressure 

transducer is connected to an SCXI-1121 signal conditioning card.  It has a range of -0.2 

to 0.8 in H2O, requires a 10-30 voltage supply and outputs 0-5 volts.  The pressure 

transducer is differential with one side always fed with the inlet total pressure from the 

upstream pitot-static probe through a manifold.  The other side of the manifold is 

connected to a Scanivalve which selects either inlet static pressure form the upstream 

pitot-static probe, exit total pressure from the downstream Kiel probe, or surface static 

pressures from one of the two tapped blades. 
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4.2.1 Pressure Instrumentation 

The primary interface for all measurements taken during this research is the 

Druck LPM 5481 pressure transducer.  Before any other instrument calibration or data 

collection takes place, the pressure transducer is calibrated using a dead-weight tester.  

Figure 48 shows a schematic of the Pressurements V1600/3D dead-weight tester.   

Force = (m)(g)

Regulator Volume Volume

Supply
Pressure

Pressure
Transducer

Inlet Aperture

Outlet Aperture

Force = (m)(g)

Regulator Volume Volume

Supply
Pressure

Pressure
Transducer

Inlet Aperture

Outlet Aperture

 
Figure 48. Dead-weight tester schematic 

 
 
The operation of the tester is based on dynamic interaction of airflow with a non-

cylindrical piston.  A disk of known weight acts as a piston that is coaxially located in a 

cylinder, transforming force (known mass times local gravitational acceleration) into 

pneumatic pressure.  The high accuracy is achieved by two cascade regulators, which 

also isolate the output pressure from any supply fluctuations.  Air passes between the 

piston and cylinder such that a back-pressure is generated.  A reference pressure to the  
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transducer is calculated as follows: 

 
cylinderA

R
wρ
aρgm

P
+








−

=
1

 (17) 

 
where P is the reference pressure, m is the known mass of the piston, g is the local 

acceleration due to gravity, R is back-pressure, Acylinder is the inner area of the cylinder, 

and the coefficient due to air buoyancy effect is: 
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wρ
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A correlation is then drawn between the known pressure and the voltage output from the 

pressure transducer.  The calibration is accurate to within +0.01 Pa.  Detailed calibration 

procedures are included in Appendix A.  Before a pressure measurement is taken, the 

transducer intercept is reset by opening both manifold vents and reading a voltage across 

the transducer for zero differential. 

Pressure measurements are used for calculating surface pressure coefficients, total 

pressure loss coefficients and dynamic pressure.  Each calculation has the same 

uncertainty analysis because each calculation is merely one differential pressure reading 

divided by another.  Using surface pressure coefficient as an example, the Kline and 

McClintock method for determining uncertainty first requires the calculation of partial 

derivates as follows: 
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where Cp is surface pressure coefficient and equals ∆Psurface/∆Pdynamic (47).  Next, the 

square of each partial is divided by the square of Cp (the parameter being calculated) as 

follows: 
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Therefore, the uncertainty in Cp is determined to be: 
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where ϖ  is the uncertainty of the respective calculation or measurement. 

Figure 49 shows a schematic of the pressure instrumentation.  Note that a 

scanivalve selector sends the differential pressure transducer one of three possible 

pressure sources.  The selected pressure is then fed to the pressure manifold along with 

upstream total pressure.  The manifold then feeds the pressures to the transducer.  The 

manifold is also capable of capping or venting either side of the transducer. 

4.2.2 Velocity Instrumentation 

Velocity measurements are made with hot films.  Boundary layer and inlet 

velocities are measured using a single element hot film (TSI 1210-20), and exit velocity 

is measured with an X-film (TSI 1240-20).  The boundary layer velocities are used to  
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Figure 49. Pressure instrumentation schematic 

 
 
create boundary layer velocity profiles.  The inlet velocity is used to set the tunnel speed.  

The exit velocities are recorded to generate wake velocity profiles. 

Hot film calibrations are conducted after the IFA-100 is properly balanced 

according to procedures described in Appendix A.  The single element hot films are 

calibrated using a non-dimensional curve fit between Nusselt and Reynolds number as 
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described by Bruun (48).  The Nusselt number is based upon heat transfer across the film 

element.  This heat transfer is determined by balancing a Wheatstone bridge within the 

IFA-100.  Heat transfer is a function of velocity such that the non-dimensional 

relationship is as follows: 

 Nu = C + D (Re0.45) (24) 
 
Where Nu is Nusselt number, C is the curve intercept on the Y-axis and D is the slope.  

The exponential value of 0.45 is chosen to provide an acceptable curve fit for measuring 

low speed flow.  Calibration is accomplished using a TSI Model 1127 calibration stand 

and the Druck LPM 5481 pressure transducer.  For the single element hot films, the 

element is placed over the calibrator air jet with a known velocity (based on the pressure 

transducer and regulated manually).  The pressure is incremented and a correlation is then 

drawn between voltage and velocity according to Equation 22.  For the X-film, elements 

are placed over the calibrator air jet at known angles with known velocities.  Correlations 

are then drawn between voltages, velocities and angles.  Detailed procedures for both 

single and dual element hot films are included in Appendix A. 

Figure 50 shows the X-film measurement procedure which begins by comparing a 

measured angle to a known angle at the measured velocity.  The corrected angle is used 

to correlate measured and to known velocities.  The corrected velocity is then applied, 

and a new correlation is made between corrected and known angles, repeating the cycle 

until a specific tolerance is achieved.  The result is an accurate reading for both velocity 

and angle. 
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Figure 50. Process chart for correlating measured X-film angles and velocities 

 
 

Hot films are calibrated using a differential pressure measurement between total 

and static (ambient) pressure, as well as room from pressure and temperature 

measurements.  The relationship for velocity is as follows: 
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where U is velocity, ∆Pdynamic is dynamic pressure as a measured differential between 

total and static pressure, Tamb is based on thermocouple readings for ambient temperature 

and Pamb is measured by a Wallace and Tierman FA-129 pressure gauge which is 

accurate to +3.5 Pa.  Using the same procedure used to calculate uncertainty for the 

surface pressure coefficient, the uncertainty for the velocity is: 
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4.2.3 Temperature Instrumentation 

Temperature measurements within the tunnel are made with J-type 

thermocouples.  Measurements are used in calculations for Reynolds number which is 

subsequently used to set the tunnel speed.  Thermocouples are connected to the PXI 1010 

chassis through the SCXI-1102 which is used as a signal conditioner.  The SCXI-1102 is 

connected to an SCXI-1303 thermocouple block which uses a thermistor for a cold 

junction temperature reference.  The SCXI-1102 makes a differential reading between 

thermocouples and the thermistor inside the SCXI-1303.  Voltages are relayed through 

the PXI 1010 chassis to the A/D board in the PC.  The computer then converts the 

voltages to temperatures. 

4.3 Data Collection Methodology 

All data collection begins with a zero differential reading from the pressure 

transducer to set the intercept.  This is accomplished using a LabVIEWTM continuous 

A/D software program with user input for dew point temperature to account for 

hygroscopic effects.  A LabVIEWTM current conditions software program is used to set 

the wind tunnel speed with inputs from the user for dew point temperature, ambient 

pressure and hotfilm calibration constants, as well as voltage inputs from the inlet hot 

film.  All other collection methods require user input into the respective LabVIEWTM 

software programs for ambient pressure, dew point temperature, pressure transducer 

calibration constants and hotfilm calibration constants. 

4.3.1 Surface Pressure Scans 

Surface pressure measurements are taken on blades #4 and #6.  Each blade is 

molded with 0.76 mm diameter taps leading to tubes within the blades.  The tubes were 
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cast into the blades during the molding process.  Blade #4 has 37 working taps, and blade 

#6 has 40.  The three unusable taps on blade #4 were clogged during the manufacturing 

process and not are included in the current results.  Locations of the taps are discussed in 

the previous section on data collection locations.  Figure 47 shows the instrumentation 

layout for the surface pressure measurements.  The pressure taps are connected to two 

Scanivalve Corporation 48-channel 48J9-1 multiplexers.  Selected tap readings are 

relayed through the pressure manifold and ultimately to the pressure transducer.  The 

multiplexer is powered by a CTRL 10P/S2-S6 Solenoid Controller as seen in Figure 45 

and controlled by the SCXI-1160 within the PXI 1010 chassis.  The PXI 1010 is 

subsequently controlled by the PC.  The pressure transducer uses the upstream total 

pressure for a differential pressure reading with the selected surface static pressure.  The 

differential is used to calculate a local surface pressure coefficient.   

The procedure begins with setting the tunnel to a desired Reynolds number.  

Surface pressure scans are conducted for the baseline Pak-B at Reynolds numbers of 

100k, 45k, and 25k.  The tunnel was configured with the turbulence grid installed and 

removed, producing a total of six surface pressure coefficient profiles.  Note that after 

pressure tap data is acquired, a zero pressure differential reading is made to ensure 

minimal thermal drift in the pressure transducer.  This is accomplished when the 

Scanivalve selector switches to a port open to ambient pressure. 

4.3.2 Boundary Layer Traverses 

A TSI 1210-20 hot film is used to measure boundary layer velocity and 

turbulence.  The hot film is inserted in a probe that is mounted to a National Aperture, 
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Inc. motorized 5.08 cm MM-3M micro-traverse as discussed in the previous section on 

data collection locations. 

The procedure begins with setting the tunnel to a Reynolds number of 100k, 

where the flow is mostly attached.  Setting the tunnel speed is discussed in section 4.1.3.  

The traverse starts away from the blade surface by about 40 mm.  It is slowly 

maneuvered through user inputs, approaching the blade in small increments.  The 

computer screen provides real-time feedback to the operator, displaying up-to-date 

velocity and turbulence profiles.  When the displayed velocity is less than half of the 

freestream velocity (about 7 or 8 m/s), the traverse is stopped, and the nominal wall 

location is recorded.  The traverse is then backed away to the starting location.  The 

tunnel is then reduced to a Reynolds number of 45k.  The procedure is repeated, 

traversing the probe down to the recorded wall location.  This is duplicated for a 

Reynolds number of 25k.  The tunnel is then shutdown, and the turbulence grid is 

installed or removed (as appropriate).  The procedure is repeated again for all three 

Reynolds numbers, using the recorded wall location.  After six total sweeps, the tunnel is 

shutdown, and the traverse is moved to the next axial chord location.  For the baseline 

blade, 30 unique profiles were documented (6 sweeps at 5 axial chord locations).  For the 

blade with asymmetric dimples, 90 unique profiles were documented (6 sweeps, 5 axial 

chord locations and 3 spanwise locations corresponding to 3 dimple axial chord 

locations).  Lake measure profiles behind dimples and behind spaces between dimples, 

noting no significant spanwise variation (1). 

4.3.3 Inlet and Exit Traverses 

Inlet and exit traverses are used to measure wake velocity profiles and calculate 
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 pressure loss coefficients.  An X-film mounted on the downstream traverse is used for 

the exit velocity measurements, a Kiel probe is also mounted downstream to collect exit 

total pressure and a pitot-static tube is mounted upstream of the cascade to collect inlet 

total and static pressure.  Upstream and downstream differential total pressure 

measurements are used along with upstream total and static differential pressure readings 

to calculate total pressure loss coefficients (∆Ptotal/∆Pdynamic).  Traverses are taken across 

blades #4, #5 and #6 centerline-to-centerline, in a 50 cm pitchwise sweep.  Measurements 

are recorded for all three blade configurations: baseline, Pak-B with spherical dimples 

and Pak-B with asymmetric dimples.  For the dimpled configurations, sweeps were made 

at three spanwise locations corresponding to the three dimple axial chord locations.  

Spanwise variation in total pressure differential is assessed for baseline and dimpled 

blades with no significant variation noted.  Lake made traverses across the exit plane, 

collecting upstream total pressure from a fixed location (1).  This configuration was 

tested in the current research, showing no significant difference in measurements made 

with traversing upstream total pressure instrumentation.  Note that both methods average 

the total pressure differentials when calculating total pressure loss coefficients.  As was 

discussed in the previous section on test section characteristics, there is little variation 

dynamic and total pressure across the inlet plane. 

The procedure for collecting data on a pitchwise traverse is simple.  The traverse 

first moves from inboard to outboard in 0.5 cm increments, measuring exit velocity with 

X-film and total pressure differential between the upstream and downstream pressure 

probes.  At the furthermost outboard position, the Scanivalve selector switches to the 

upstream static pressure input.  The traverse returns to the inboard position in 10 equal 
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increments, measuring the upstream total to static differential pressure (dynamic 

pressure).  At the beginning and end of a traverse, the Scanivalve selector switches to an 

ambient pressure port to record zero pressure differential, ensuring minimal thermal drift 

in the pressure transducer. 

4.4 Surface Pressure Coefficient Profiles 

Figures 51 and 52 show comparisons of surface pressure coefficient profiles for 

the baseline Pak-B blade at Reynolds numbers ranging from 25k to 100k and at 

freestream turbulence levels of 1% and 4%, respectively.  Lake’s data is included along 

with the current research (1).  Lake measured Cp using inlet velocity from a hot wire, 

ambient room temperature from a thermocouple, and ambient pressure through a 

scanivalve port open to room air.  The current research takes a direct differential reading 

to measure dynamic pressure.  In both cases, measurements are made with time averaged 

measurements.  The curves are produced using the following definitions: 
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where 

inlettP  is the total pressure measured upstream of the cascade using a fixed pitot-

static probe located 1.5 axial chord lengths ahead of blade #4 at mid-span, and U  is the 

time averaged mean velocity measured upstream of the cascade using a fixed single 

element hot film located one axial chord length ahead of blade #4 at mid-span.  Lake 

squared the average which yields a slightly different result than when averaging the 

square of the velocity.  The local static pressure of each tap is denoted by 
localsP .  Density 
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Figure 51. Comparison of current and previous experimental Cp curves for a baseline 

Pak-B blade at various Reynold's numbers and inlet freestream turbulence of 1% 

 
 
is measured using ambient room pressure (Pamb) and tunnel temperature (Tamb).  inletsP  is 

the static pressure at the inlet and is collected with the aforementioned upstream pitot-

static probe.  Compressibility corrections were not used because the operating Mach 

numbers were very low (on the order of 0.006 to 0.026).  Equation 25 produces positive 

numbers such that as surface static pressure decreases, Cp increases. 

Cp curves are useful in determining the onset of boundary layer separation.  It is 

important to note that Lake’s uncertainties in Cp are +0.59 and +0.18 for Reynolds 

numbers of 43k and 86k, respectively (1).  The uncertainty for the current research is 

+0.015, +0.004 and +0.001for Reynolds numbers of 25k, 45k and 100k, respectively.   
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Figure 52. Comparison of current and previous experimental Cp curves for a baseline 

Pak-B blade at various Reynold's numbers and inlet freestream turbulence of 4% 

 

The current data falls within the uncertainty and demonstrates the same trends.  As the 

flow speeds up, the separation bubble decreases in size, moving further aft.  This trend is 

also observed as inlet freestream turbulence intensity increases.  Increasing inlet velocity 

and turbulence intensity increases the energy of the airflow, encouraging attached flow 

The onset of boundary layer separation is identified on the Cp profile as the first 

point at which the data becomes flat, creating a plateau.  Reattachment is identified to be 

around the last point of the plateau.  Lake shows that at Re 43k, boundary layer 

separation begins to occur between the 62% and 67% axial chord data points, at Tu 1% 

(1).  The current data agrees with this determination at Re 45k.  At Re 25k, it appears that 
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separation occurs earlier than it does at Re 45k, but still within the 62% and 67% data 

points.  Note that as Reynolds number decreases, the peak magnitude of Cp decreases, 

making the curve more level and the separation point more difficult to determine.  Recall, 

the current CFD results indicate flow separation at 66% axial chord, which is consistent 

with the experimental data at a Reynolds number of 25,000 (Figure 53).  At the higher  
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Figure 53. Comparison of CFD and experimental surface pressure coefficient profiles at 

Re 25k 

 
 
Reynolds numbers of 86k and 100k, flow separation begins to occur between 67% and 

71% axial chord.  At the higher turbulence level of 4%, all of the Cp curves show 

separation beginning further downstream between 71% and 75% axial chord.  The only 
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exception to this is at Re 25k which begins to separate between 67% and 71% axial 

chord. 

It appears that reattachment is more significantly affected by the change in 

Reynolds number than does separation.  This is important in that reattachment is central 

in determining the size of the separation bubble and hence the amount of reduction in 

efficiency.  At the low turbulence case of 1%, flow reattaches between 86% and 88% 

axial chord for Re 100k.  Lake’s data for Re 86k shows reattachment beginning between 

88% and 90% axial chord (1).  At Re 45k and below, reattachment does not take place.  

For the higher turbulence case of 4%, flow at Re 100k begins to reattach between 83% 

and 86% axial chord.  Lake’s data for Re 86k shows reattachment begins between 86% 

and 88% axial chord (1).  At Re 45k and 43k, reattachment appears to begin between 

88% and 90% axial chord.  Lastly, at Re 25k flow begins to reattach between 90% and 

92% axial chord.  By general inspection of the curves, it is very apparent that at Re 25k, 

there is a significantly larger separation bubble, indicating higher losses in efficiency as 

expected. 

4.5 Boundary Layer Velocity and Turbulence Profiles 

Boundary layer profiles are another way to determine the onset of flow separation 

and are useful for visualizing flow structure.  For instance, for the same Reynolds 

number, a laminar boundary layer velocity profile is characteristically thinner than a 

turbulent boundary layer profile and has lower unsteadiness.  Separated flow has a 

velocity profile that is nearly vertical near the wall with zero velocity, while an attached 

flow has a profile with more curvature.  The onset of separation is identified when the 

profile has a double inflection.  Turbulence profiles are also helpful in visualizing flow 
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structure.  When the laminar flow is attached, the turbulence profile is nearly vertical 

with a small magnitude.  As flow separates, unsteadiness increases dramatically at the 

surface, giving more shape to the profile.  As the separation bubble forms, turbulence is 

generated in the shear layer between the bubble upper surface and freestream air flow. 

This development is seen in the turbulence profile as increased turbulence at the wall 

followed by a bump in the profile that moves toward freestream.  Lake recorded 

boundary layer profiles for the baseline Pak-B blade and the Pak-B with spherical 

dimples for Reynolds numbers as low as 43k (1).  The current research, presents profiles 

for the baseline blade and the Pak-B with asymmetric dimples for Reynolds numbers as 

lows as 25k.  A complete set of velocity and turbulence profiles from the current research 

is included in Appendix B.  An attempt was also made to compare experimental results 

with the Blasius solution for laminar flow over a flat plate with no angle of attack or 

pressure gradient; however, the results were inconclusive.   

4.5.1 Boundary Layer Profiles for Baseline Pak-B at Tu 1% 

Figure 54 shows the effect of Reynolds number on boundary layer profiles for the 

baseline Pak-B blade at 1% Tu.  The flow at 67.2% axial chord looks very similar for all 

three Reynolds number shown.  By 73% axial chord, the flow at Re 25k clearly changes 

shape, indicating flow separation.  By 79.3% axial chord, a separation bubble is very 

apparent at Re 25k, and the profile is changing for the Re 45k flow, indicating separated 

flow.  At 89.8% axial chord, the Re 25k boundary layer is more than 12 mm thick, a clear 

separation bubble is visible at Re 45k, and flow at Re 100k is visibly separated.  

Turbulence profiles also help illustrate the progression toward separation. At 79.3 % axial 

chord, the Re 25k flow is the first to clearly separate.  At 84.8% axial chord, the Re 45k  
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Figure 54. Reynolds effect on boundary layer profiles of baseline Pak-B at Tu 1% 
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flow is next to follow.  At 89.8% axial chord, the Re 100k increases to a turbulent 

intensity of 25%. 

4.5.2 Boundary Layer Profiles for Pak-B with Asymmetric Dimples at 55% and 
65% axial chord at Tu 1% 

 
Figures 55 and 56 show a comparison between the baseline Pak-B and the Pak-B 

with asymmetric dimples at 55% and 65% axial chord at Re 25k and Re 45k with Tu 1%.  

These two operating conditions were most notable, highlighting the benefits of dimples in 

reducing losses.  At the higher turbulence level and Reynolds number, improvements 

from the baseline are not as dramatic because the flow is more stable with less separation.  

Dimples at 50% are not effective, as Lake reported, and are not shown here, though 

Appendix B contains a complete set (1). 

Figure 55 shows a comparison of boundary layer profiles of the baseline Pak-B 

blade and the blade with asymmetric dimples at Re 45k and Tu 1%.  The baseline blade 

profiles are significantly different from the modified blade profiles.  Asymmetric dimples 

are contrasted at 55% and 65% axial chord.  Between the two locations, there is a lot of 

similarity at the 89.8% axial chord location.  At first, the blade with dimples at 65% axial 

chord has a thicker boundary layer (at 67.2% axial chord).  At 73% axial chord, the 

dimples at 55% axial chord apparently cause separation.  Meanwhile the baseline blade 

appears to remain laminar.  At 79.3% axial chord, the difference between the two profiles 

grows with the dimples at 55% axial chord continuing to generate the thicker boundary 

layer.  The trend continues at 84.8%, but by the time the flow reaches 89.8% axial chord, 

the profiles are nearly directly on top of each other.  It is also very important to note the 

differences in the turbulence profiles.  At 73% axial chord, the dimples located at 55%  
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Figure 55. Boundary layer profiles for Pak-B configurations at Re 45k and Tu 1% 
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produce a higher turbulence level.  At 79.3% axial chord, it appears that the dimples at 

55% axial chord produce a turbulence profile that attempts to reattach.  At this same 

location, the dimples at 65% axial chord produce a higher level of turbulence near the 

surface of the blade.  At the two downstream locations, the turbulence profiles are nearly 

identical.  From this figure, it would appear the dimples at 55% axial chord are more 

effective in tripping the flow and transitioning it to a re-attached turbulent boundary 

layer. 

Figure 56 shows the same comparison of boundary layer profiles at Re 25k.  At 

this operating condition, all three profiles appear to be very different.  At every axial 

chord location, the baseline velocity profile is substantially thinner.  At 67.2% axial 

chord, the profiles for the modified blade are indistinguishable; however, by 73% axial 

there is a dramatic difference.  The boundary layer behind the dimples at 55% axial chord 

is much thicker, having a distinct inflection point near the surface.  At this same location, 

the dimples at 65% produce a profile similar to the baseline with a barely noticeable 

inflection very near the surface.  The trends continue at the 79.3% axial chord location 

with boundary layers continuing to grow thicker.  At the 84.8% axial chord location, the 

velocity profiles behind both dimple locations take on a new shape near the blade surface, 

indicating turbulent re-attachment. Both profiles begin to concave back toward an 

attached profile.  This is even more apparent at 89.8% axial chord, where the flow behind 

the dimples at 65% axial chord is most developed.  These trends are very informative 

when compared to the respective turbulence profiles.  At the 73% axial chord, the 

dimpled blades produce a bubble in the turbulence profile, denoting the shear layer 

between the separation bubble and freestream.  At 79.3% axial chord, the turbulent  
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Figure 56. Boundary layer profiles for Pak-B configurations at Re 25k and Tu 1% 
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bubble moves away from the blade surface.  At 84.8% axial chord, the turbulence profile 

behind the 65% dimples begins to take a shape that concaves downstream, indicating 

flow reattachment.  At 89.8% axial chord, both profiles show this same shape, with the 

dimples at 65% axial chord generating the more developed and smooth curvature.  From 

this figure, it would appear the dimples at 65% axial chord are more effective in tripping 

the flow to turbulent and transitioning it to a re-attached turbulent boundary layer. 

4.6 Wake Velocity Pressure Profiles 

Wake velocity profiles are a means to evaluate blade effectiveness.  As airflow 

passes through the cascade, it exits with a velocity profile, having a peak around the 

centerline of a passage and a valley behind a blade.  At the lower Reynolds numbers, the 

velocity dip is expected to shift outboard such that there is less turning across the cascade 

(Figure 57).  When the inlet flow reaches a critically low Reynolds number, the flow 

separates across the blades, and there is even less turning, effectively changing the shape 

of the airfoil.  In an operating engine, the more the flow is turned, the higher the load on 

the turbine blades, and the more work can be extracted.  Flow is expected to separate at 

the Re 45k and 25k, widening the wake velocity profiles and shifting them outboard.  All 

profiles generated in this study are non-dimensional for comparison sake.  Velocity is 

normalized by the peak velocity recorded across the cascade.  A complete set of profiles 

is included in Appendix C. 

4.6.1 Wake Velocity Profiles for Baseline Pak-B 

Figure 58 shows the effect of Reynolds number on wake velocity profiles.  The 

profile is shown from pitchwise centerline to centerline of the passage on either side of 

blade #5 (19cm to 35 cm), representing one full wake (15.75 cm).  At Re 25k, the  
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Figure 57. Reynolds number effect on exit velocity angles 

 
 
velocity dip reaches 80% of the maximum and is centered around 27.5 cm.  The velocity 

dip at Re 100k reaches 90% of the maximum, a difference of 10% from Re 25k.  

Furthermore, it is shifted further inboard by 6 cm to a dip centered on 21.5 cm, indicating 

a higher blade loading.  At Re 45k, the dip is centered around 23.5 cm at about 85% of 

the maximum exit velocity.  As expected, when the Reynolds number decreases, the 

velocity profiles widen with a growth in suction side wake.  The blade is significantly 

less effective in turning the flow at Re 25k. 

4.6.2 Wake Velocity Profiles for Pak-B with Asymmetric and Spherical Dimples at 
55% and 65% Axial Chord at Tu 1% 
 

Figures 59 and 60 compare the wake velocity profiles of the baseline Pak-B blade and the 

blades modified with asymmetric and symmetric dimples at two different axial chord 
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Figure 58. Reynolds effect on wake velocity profile of a baseline Pak-B blade at Tu 1% 

 
 

locations of 55% and 65%.  Figure 59 compares profiles at Re 45k.  The dimples do not 

offer a notable improvement at this operating condition.  With the exception of the 

asymmetric dimples at 55% axial chord, the other configurations seem to shift the profile 

up 2% of the maximum velocity and shift the center of the dip inboard by 1 cm.  The 

asymmetric dimples at 55% axial chord shift the profile up 2% of the maximum velocity 

but do not shift the dip inboard.  From this figure, it is apparent that the effective range of 

the spherical dimple is larger than for the asymmetric dimple.  It is most noteworthy that 

dimples do not have a significant effect on wake velocity profile at Re 45k. 

Figure 60 compares wake velocity profiles at Re 25k.  It is very apparent that the 

both dimples offer an improvement when placed at 65% axial chord, shifting the wake 
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Figure 59. Wake velocity profile comparison of a Pak -B blade with asymmetric and 

spherical dimples at 55% and 65% axial chord at Re 45k and Tu 1% 

 
 
profile inboard.  At this location, there is very little difference between the velocity 

profiles of the asymmetric and spherical dimples.  The dimples located at 55% axial 

chord match wake velocity profiles with the baseline blade having a dip centered around 

27.5 cm at 80% maximum velocity.  In contrast, the dimples located at 65% axial shift 

the wake profile inboard so that the dip is centered around 24 cm at 86% maximum 

velocity.  From this figure, it would seem that the best location for a dimple at Re25k is 

65% axial chord. 
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Figure 60. Wake velocity profile comparison of a Pak-B blade with asymmetric and 

spherical dimples at 55% and 65% axial chord at Re 25k and Tu 1% 

 
 
4.7 Pressure Loss Coefficient 

The total pressure loss coefficient is used to evaluate Pak-B blade performance.  It 

is a non-dimensional quantity that takes into account total pressure deficit from inlet to 

exit and is normalized by dynamic pressure, which is related to the incoming kinetic 

energy.  There are two approaches to calculating this coefficient; one is normalized by 

inlet dynamic pressure and the other is normalized by exit dynamic pressure.  Lake 

measured the area-weighted average total pressure loss coefficient using the exit dynamic 

pressure based on exit velocity measured with a hot wire located one axial chord 
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downstream of the cascade along with a density calculated from room temperature and 

pressure, as seen below: 
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where ( )

exitinlet tt PP −  is a time averaged direct total pressure differential between a fixed 

upstream pressure probe and a downstream traversing pressure probe, Pamb ambient static 

room pressure, Tamb is static temperature within the wind tunnel and exitU  is a time 

averaged exit velocity (1).  Because of the very low operating Mach numbers, Lake did 

not apply compressibility corrections for density. 

The current research measures the area-weighted average total pressure loss 

coefficient using the inlet dynamic pressure based on the differential of inlet total and 

static pressure.  The equation for this is measurement is seen below: 
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where the time-averaged total pressure differential is measured between an upstream and 

downstream pressure probe, traversing simultaneously such that they are both read from 

approximately the same streamline for each point. 

The two different definitions for total pressure loss coefficient can be related to 

each other by applying the Pak-B designed speed-up ratio of 1.64.  The speed up ratio is 

the ratio of exit velocity to inlet velocity and is unique to blade geometry.  To correlate 
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the current research to Lake’s results, the current calculation for loss coefficient is 

divided by 2.6896 (or 1.64 squared).  It is important to note that the best correlation 

between the data is to measure the improvement of a modified blade over the baseline 

(γ/γbaseline or ω/ωbaseline).  This method of evaluation normalizes the already non-

dimensional quantities so as to account for any variations between measurement set-ups 

(atmospheric variations, unique tunnel characteristics, instrumentation variation, etc.), 

allowing an evaluation of relative improvement.  As with the wake velocity profiles, the 

loss coefficient is evaluated pitchwise from centerline-to-centerline of the passages on 

either side of blade #5.  A complete set of profiles is included in Appendix D. 

4.7.1 Total Pressure Loss Coefficient Profiles for Baseline Pak-B 

Local total pressure loss coefficient is presented to evaluate the flow structure.  

Whereas wake velocity profiles aid in the visualization of momentum deficit, total 

pressure loss coefficient profiles evaluate energy deficit, showing the deficit in total 

pressure (and hence energy) as normalized by velocity.  Figure 61 shows the effect of 

Reynolds number on total pressure loss coefficient for a Pak-B blade at Tu 1%.  As 

expected, the highest peak loss coefficient occurs at Re 25k.  At this Reynolds number, 

the profile is widest with a peak centered at 30.5 cm.  At Re 100k, the loss coefficient 

peaks at 25.5 cm, a 5 cm shift.  The peak at Re 25k is more than two times greater than at 

Re 100k.  Lastly, it is important to note that the curves generated at Re 25k and 45k are 

not symmetric, as opposed to the curve generated at Re 100k.  This illustrates how 

dramatically losses increase on the suction side of the blade, where the boundary layer 

separates. 
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Figure 61. Reynolds effect on total pressure loss coefficient of baseline Pak-B at Tu 1% 

 
 

Figure 62 shows a comparison between the experimental and computational local 

total loss coefficient profiles for the baseline Pak-B at Re 25k.  Magnitudes of the 

computational numbers are not expected to match up exactly with test cell data.  The 

computational model is an infinite cascade without wall effects or exit tailboards which 

influence inlet and exit flow angles.  To compare trends, the loss coefficient is 

normalized with the maximum value in the wake traverse.  Using this technique, the 

computational and experimental profiles match reasonably well.  Some errant data 

appears in the inboard passage of the computational model, possibly from unsteady flow.  

Unsteady effects in the CFD solution would show data at different points in time, so that 

the steady results would artifacts from unsteady flow.  Furthermore, the CFD profile is  
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Figure 62. Comparison between experimental and computational local total pressure loss 

coefficient profiles for a baseline Pak-B at Re 25k 

 
 
more symmetric than the experimental data.  The symmetry suggests that the model is not 

handling the separated flow very precisely, as might be expected from a laminar CFD 

solution.  The computational model appears to be useful, however, and is a good starting 

point for future research. 

Figure 63 shows a comparison between the experimental results for the two 

dimpled Pak-B configurations and the time accurate dimpled Pak-B CFD results at a 

Reynolds number of 25,000 in terms of local total pressure loss coefficient profiles.  The 

data is reasonably consistent, giving credibility to the other CFD results for velocity and 

pressure contours, as well as streamline images. 
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Figure 63. Comparison of dimpled Pak-B CFD and experimental local total pressure loss 
coefficient profiles at Re 25k 

 

4.7.2 Total Pressure Loss Coefficient Profiles for a Pak-B with Asymmetric and 
Spherical Dimples at 55% and 65% Axial Chord at Tu 1% 

 
Figures 64 and 65 compare the local total pressure loss coefficient profiles of the 

baseline Pak-B blade and the blades modified with asymmetric and symmetric dimples at 

two different axial chord locations of 55% and 65%.  Figure 64 compares profiles at Re 

45k and Tu 1%.  All of the profiles are relatively close together; however, it is clear that 

the spherical dimples at 55% axial chord are most effective, having the lowest peak loss 

coefficient and the narrowest profile.  It is also the most symmetric, suggesting minimal 

separation loss.  The asymmetric dimple at 65% axial chord is undoubtedly the worst  
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Figure 64. Local total pressure loss coefficient profile comparison of Pak-B blade with 
asymmetric and spherical dimples at 55% and 65% axial chord at Re 45k and Tu 1% 

 
 
performer, even having a negative impact on blade performance compared to baseline.  

Looking back at Figure 55, the related boundary layer profile, may indicate that the 

boundary layer is tripped to turbulent but does not transition to an attached turbulent 

boundary layer, remaining separated.  The spherical dimples located at 65% axial chord 

and the asymmetric dimples at 55% axial chord both seem to be somewhat effective at 

reducing losses and should not be ruled out as candidates for further study. 

Figure 65 compares local total pressure loss coefficient profiles at Re 25k and Tu 

1%.  There is a definite distinction between the profiles in this figure.  Evidently, 55% 

axial chord is an ineffective location for dimples, spherical or asymmetric.  Unlike the  
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Figure 65. Local total pressure loss coefficient profile comparison of Pak-B blade with 
asymmetric and spherical dimples at 55% and 65% axial chord at Re 25k and Tu 1% 

 
 

previous figure at Re 45k, the spherical dimple is the worst performer at this operating 

condition and location.  Ironically, the spherical dimple is also the best performer when 

placed at 65% axial chord.  It has the lowest peak value for loss coefficient and is the 

narrowest profile.  The asymmetric dimple is very nearly as effective when placed at the 

same location.  This figure plainly suggests that the best location for a dimple at Re 25k 

is 65% chord (for those locations tested). 

4.7.3 Comparison of Average Total Pressure Loss Coefficients 

Averaging the pressure loss coefficients across the wake gives a bulk evaluation 

of performance.  This is accomplished by summing the data points across a 16 cm 
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pitchwise distance and dividing by the number of samples.  Lake did this by averaging 

total pressure differential, density and velocity.  In this study, the mean loss coefficient is 

calculated by simply averaging the local total pressure loss coefficients (1).  Figure 66 

shows a comparison of average pressure loss coefficients from experimental data and  
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Figure 66. Comparison of previous and current average total pressure loss coefficients for 

baseline Pak-B related blades 

 
 
curve fits (1; 49-54).  Because the loss coefficients of the previous work are based on exit 

dynamic pressure, the speed-up ratio (1.64) is applied to the current data for correlation.  

The correlation is not perfect because it is based on the flow acceleration for attached 

flow; however, this figure demonstrates the validity of the current baseline data, placing 

it closely in relation to previous work.  Figure 67 shows the improvement of the  
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Figure 67. Comparison of current and previous experimental results for loss reduction on 

a Pak-B blade using spherical dimples 

 
 
spherically dimpled blade over the baseline blade, the best configuration of those tested 

in the current research. 

Figure 68 shows a comparison of the asymmetric and spherical dimples at Tu 1% 

and Tu 4%.  Note that the figure does not indicate the optimal dimple location, but rather 

how one dimple performs compared to another at a specific location and operating 

condition.  In nearly all cases, the spherical dimple out performs the asymmetric dimple.  

The only case in which the reverse is true is when the dimple is located at a less than 

optimal location.  For instance, at Re 25k dimples are generally ineffective at 50% and 

55% axial chord; however, the asymmetric dimple has less of a negative impact at these 
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Figure 68. Comparison of asymmetric and spherical dimple loss reduction on a Pak-B 

blade 

 
 
locations under this condition.  This indicates that while the spherical dimple is more 

effective in controlling boundary layer separation at the optimal location under conditions 

where separation is known to occur, the asymmetric dimple has less of a negative impact 

under conditions where separation does not occur.  This is important when considering 

the ultimate goal.  Loss reduction is desirable when separation is having a very negative 

impact on blade efficiency; however, at other flight conditions the surface treatment can 

produce a negative impact, acting like surface roughness.  Therefore, the overall mission 

of the aircraft will delineate the best use of dimples 
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4.8 Summary and Conclusions of Experimental Research 

Empirical analysis of boundary layer profiles, wake velocity profiles, local total 

pressure loss coefficient profiles, and average total pressure loss coefficient are all 

consistent within themselves and confirm computational trends.  In general, experimental 

results show that spherical dimples out-perform asymmetric dimples, agreeing with 

computational results. 

Whereas the computational study showed suction to be a flow mechanism present 

with dimples, experimental boundary layer profiles indicate that the mechanism by which 

dimples suppress separation losses is through tripping the incoming laminar boundary 

layer to turbulent and transitioning it to a re-attached boundary layer ahead of the trailing 

edge.  Turbulence profiles are particularly useful in observing boundary layer 

development, depicting a large turbulence bubble associated with the shear layer between 

the separation bubble and freestream and showing development of a re-attached 

turbulence profile.  At Re 25k, asymmetric dimples delay separation until about 73% 

axial chord and transition flow to turbulent re-attachment around 89% axial chord.   

Taken together, wake velocity profiles and boundary layer profiles are very 

helpful in explaining flow structure.  The boundary layer thickness explains the effective 

shape of the blade, while wake velocity profiles show the impact of the effective shape on 

momentum loss.  The bulk performance effect, is best assessed using the total pressure 

loss coefficient, a good measure for energy deficit.  Total pressure loss coefficient 

profiles indicate the origin of losses, while average total pressure loss coefficients give a 

good bulk determination of loss reduction. 
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CHAPTER 5. SUMMARY AND RECOMMENDATIONS 

Aircraft operating at high altitudes and low velocities are vulnerable to laminar 

flow separation over suction surface of low pressure turbine (LPT) blades.  Associated 

separation losses have a significant impact on turbine efficiency, limiting aircraft range, 

endurance, altitude and power extracted from the engine.  Laminar boundary layer 

separation has been observed on a Pratt and Whitney Pak-B LPT blade at low Reynolds 

numbers.  Passive techniques to control flow separation offer improvement in turbine 

efficiency without the need for additional power or hardware and are relatively easy to 

manufacture and maintain.  Spherical dimples have been proposed as a passive control to 

suppress flow separation and reduce associated losses. 

Mechanisms by which dimples reduce separation losses are the focus of the 

current research.  An experimental investigation is combined with computational 

modeling to study two different dimple shapes on a Pak-B LPT blade at low Reynolds 

numbers.  A cassette of eight Pak-B blades are tested in a linear cascade tunnel at 

Reynolds numbers of 100k, 45k and 25k with freestream turbulence levels of 4% and 1%.  

Configurations are tested for the baseline blade, and the blade with asymmetric and 

spherical dimples at 50%, 55% and 65% axial chord.  The asymmetric dimple is a 

spherical dimple that is spanwise half-filled with a straight edge parallel to axial flow.   

Surface pressure coefficients, boundary layer profiles, wake velocity profiles and total 

pressure loss coefficient are documented.  Experimental results are useful in evaluating 

loss reduction.  A local 3-D computational model is created for each of the three 

configurations, placing dimples at 60% axial chord.  Laminar Reynolds averaged 
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numerical simulations are conducted at a Reynolds number of 25k.  The three turbulence 

models used here are ineffective in capturing flow separation.  Flow is found to be very 

unsteady for configurations with dimples.  Computational results are useful in visualizing 

flow structure and behavior. 

Computational results indicate that dimples create a spanwise vortex.  The vortex 

is centered within the dimple and generates suction.  Suction is determined to be one of 

the primary mechanisms by which dimples delay separation and reduce associated losses.  

The spherical dimples are found to be most effective in energizing the flow and delaying 

separation.  Asymmetric dimples offer similar benefit, indicating the presence of more 

than one flow mechanism by which dimples suppress separation.  Additionally, flow 

visualization suggest little to no influence between neighboring dimples. 

Experimental results indicate that dimples trip the flow from laminar to turbulent 

and transition the flow to a re-attached turbulent boundary layer.  Both dimple shapes 

prove to be effective, but the spherical dimples are determined to have a more effective 

range and strength.  Optimal dimple location is critical to loss reduction and changes with 

Reynolds number. 

More investigation into the unsteady nature of the flow should be conducted.  The 

computational results indicate that unsteady effects may shift separation location.  Further 

unsteady computational modeling is warranted to assist in parametric studies.  

Experimental studies should also assess the unsteady nature of the flow.  For example, 

surface taps behind dimples would be helpful in establishing shedding frequencies and 

could be compared to baseline wake shedding behavior.  Future parameters that should be 

considered include dimple spacing, multiple dimple row patterns, and dimple depth.  
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Asymmetric dimples should not be ruled-out at this juncture.  Future testing should also 

include asymmetric dimples with tighter spacing and at different orientations, ranging 

from 0o to 90o from the axial flow. 

In conclusion, this research sheds new light onto flow mechanisms produced by 

dimples in suppressing flow separation losses.  These new revelations are useful in future 

parametric studies but should be coupled with more analysis of unsteady flow structure.  

Dimples are clearly shown to be effective in reducing separation losses, and merit further 

attention.  Aircraft mission effectiveness could be significantly improved through the 

application of dimples as passive separation controls on low pressure turbine blades. 
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APPENDIX A. Experimental Data Collection Procedures 

A.1 Pressure Transducer Calibration 
 

Hardware Setup 

1. Carefully unpack the deadweight pressure reference device. 

2. Set up pressure calibrator following instructions with deadweight reference device. 

3. Connect output from positive pressure reference on calibrator to high side (+) of transducer. 

4. Unhook or vent low side (-) of transducer. 

Software Setup 

1. Open LabVIEWTM. 

2. Open the ‘Pressure Cal’ vi. 

3. Set device to ‘2’ (MIO board controlling SCXI). 

4. Set ‘Pxdcr Ch’ to ‘sc1 ! md1 ! 0’ (SCXI device 1, module 1, channel 0). 

5. Select sample rate and number (recommend 1000Hz max & 30,000 samples min). 

Calibration Procedure 

1. Place reference weight for max desired pressure on reference. 

2. Run ‘Pressure Cal’ vi and enter data filename. 

3. Enter reference pressure determined by reference weight and hit OK. 

4. Wait for data acquisition. 

5. Change out reference weight to reduce pressure. 

6. Allow approximately 15 seconds for pressure to stabilize (watch pressure readout). 

7. Press ‘TAKE DATA’ button to take next data point. 

8. Repeat steps 3 to 7 until data taken at minimum reference pressure. 

9. Shut off reference device and vent both sides of transducer (zero pressure point). 

10. Press ‘TAKE DATA’ button. 
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11. Enter ‘0’ for pressure setting and hit OK. 

12. Wait for data acquisition. 

13. Press ‘DONE DO FIT’ button. 

14. Record calibration constants in notebook (Slope, Intercept, MSE).  Flag with RED ink. 

Hardware Takedown 

1. Carefully disconnect and repack deadweight pressure reference. 

2. Reconnect instruments to transducer. 

3. Reset valves on transducer appropriately (all vents open if you are not using it immediately). 

 
A.2 Hot Wire and Hot Film Calibration 
 
IFA SET-UP PROCEDURE 

Begin by ensuring that you have proper cables; Anemometer channel is set for proper 

length and sensor type; Anemometer is given sufficient time to stabilize temperature (30 min.).  

Record identifying information for the probe in the notebook. 

Measuring Cable Resistance 

1.   Install the shorting plug(s) in the end of the probe holder to be used during testing. 

2.   Press RES MEAS to select the NULL DISPL mode. 

3.   Adjust the OPERATE RES knob to zero the display (balance the bridge) 

4.   Press RES MEAS to select the DISPL RES mode.  The measured cable resistance will be 

displayed - record this value. 

5.   Press ENTER to store the value of the cable resistance in the IFA-100 Memory. 

Measuring Probe Resistance And Calculating the Overheat Ratio 

1.   CAREFULLY install the probe to be calibrated in the probe holder.  Tighten the probe holder 

into the probe holder traverse of the calibration jet so that the probe is: less than one jet 
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diameter (~0.25in.) from the exit of the jet, centered over the jet, and perpendicular to the 

flow. 

2.   With the pressure tap disconnected, balance the base and zero-adjust the manometer.  Connect 

the pressure tap from the calibration jet to the manometer. 

3.   Adjust the flow regulator on the calibration jet to = 0.05 in. H20. 

4.   Press RES MEAS to select the NULL DISPL mode and adjust the OPERATE RES to zero 

the display (balance the bridge). 

5.   Press RES MEAS to select the DISPL RES to display the measured probe resistance - record 

this value. 

6.   Calculate operating resistance: 

  Operating Resistance = ((Probe Resistance - Internal Probe Ω (Rint)) * OHR)+Rint 

   where:  OHR = 1.5 for a film probe (- 10/- 20) 

     OHR = 1.8 for a wire probe (- T1.5) 

7.   Press OPERATE RES and adjust the OPERATE RES knob until the display value matches 

your calculated value. 

8.   Press ENTER to store the value. 

Adjust The Bridge Frequency Compensation 

1.   Press BRIDGE COMP and adjust the BRIDGE knob until the displayed value matches the 

correct value where:  BRIDGE COMP ≅ 115 for a film probe (- 10/- 20) 

     BRIDGE COMP ≅ 35 for a wire probe (- T1.5) 

2.   Press ENTER to store the value. 

3.   Increase the calibration jet flow to the maximum expected flow while testing. 

4.   Press RUN/STANDBY to go to “RUN” mode. 

5.   Turn the CABLE knob fully CCW.  If the OSC light is off, then go to step 7. 

6.   Turn the CABLE knob CW until the OSC light goes out.  Go to step 7. 
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7.   Turn the CABLE knob CW until the OSC light turns on.  Turn the CABLE knob CCW until 

the OSC light turns off.  Frequency Compensation is roughly adjusted. 

8.   Connect the signal out to an oscilloscope to monitor the OUTPUT.  Set the oscilloscope to 10 

mV / div., ≅200µSec / div. and normal trigger. 

9.   Press TEST SIGNAL and adjust the CABLE knob until a desirable waveform without 

oscillations is visible on the oscilloscope. 

SINGLE ELEMENT PROCEDURES 

Hardware setup 

1. Verify calibration of pressure transducer if required. 

2. Connect hotwire calibrator rig pressure tap to pressure transducer high side (+). 

3. Vent both sides of pressure transducer, shut measure side valves. 

4. Blow dust out of calibrator rig by opening valves fully. 

5. Shut valves. 

6. Follow instructions for IFA100 hotwire/hotfilm setup. 

7. Mount hotwire/hotfilm in calibrator with sensor centered over nozzle perpendicular to flow. 

Software Setup 

1. Open LabVIEWTM 

2. Open ’Continuous AtoD’ vi. 

3. Set device to ‘2’ (MIO board controlling SCXI). 

4. Set ‘Pxdcr Ch’ to ‘sc1 ! md1 ! 0’ (SCXI device 1, module 1, channel 0). 

5. Input latest calibration constants (slope and intercept) for transducer. 

6. Open ‘Hot Wire cal’ vi. 

7. Set dewpoint and barometric pressure. 

8. Set number of samples and sample rate. 

9. Set correct MIO channel for wire/film (depends on IFA channel – Check IFA note or wiring). 
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10. Enter probe parameters from IFA100 setup procedure into hotwire block on panel. 

Calibration Procedure 

1. Verify that both sides of pressure transducer are vented (zero pressure) 

2. Run ’Continuous AtoD’ vi. 

3. Verify that pressure transducer reads zero.  If not, press ‘set zero intercept’. 

4. Stop ’Continuous AtoD’ vi. 

5. Enter slope and new intercept from (3) into ‘Hotwire Cal’ vi. 

6. Run ‘Hot Wire Cal’ vi. 

7. Enter data filename.  

8. Set IFA HW channel to “RUN”. 

9. Open valves on calibrator until jet is at maximum desired calibration velocity. 

DO NOT EXCEED TRANSDUCER MAXIMUM PRESSURE 

10. When reading has stabilized, hit ‘TAKE DATA’ button. 

11. Wait for ‘Taking Data’ light to go out. 

12. Reduce calibrator flow to next desired calibration point. 

13. When reading has stabilized, hit ‘TAKE DATA’ button. 

14. Wait for ‘Taking Data’ light to go out. 

15. Repeat steps 12-14 until desired calibration range has been covered. 

16. Press ‘DONE DO FIT’ button. 

17. Record calibration constants (C, D, MSE) in notebook.  Flag with RED ink. 

Hardware Takedown 

1. Shut off isolator valve to calibrator. 

2. Mount hotwire/hotfilm in tunnel. 

3. Disconnect calibrator pressure tap from transducer. 

4. Reconnect instrumentation lines to transducer. 
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5. Reset valves on transducer appropriately (all vents open if you are not using it immediately). 

DUAL ELEMENT PROCEDURES 

Hardware setup 

1. Verify calibration of pressure transducer if required. 

2. Connect hotwire calibrator pressure tap to pressure transducer high side (+). 

3. Vent both sides of pressure transducer. 

4. Blow dust out of calibrator by opening valves fully. 

5. Shut valves. 

6. Follow instructions for IFA100 hotwire/hotfilm setup for each element (two channels) 

7. Mount hotwire/hotfilm in calibrator with sensor centered over nozzle and both elements 

perpendicular to the flow 

a. For an x-wire, insert probe into probe holder arm such that the probe is vertical, insuring 

that both wires are perpendicular to the flow, and that the rotating collar is set to the R6 

pin hole position 

b. For a split film… 

Software Setup 

1. Open LabVIEWTM 

2. Open ’Continuous AtoD’ vi. 

3. Set device to ‘2’ (MIO board controlling SCXI). 

4. Set ‘Pxdcr Ch’ to ‘sc1 ! md1 ! 0’ (SCXI device 1, module 1, channel 0). 

5. Input latest calibration constants (slope and intercept) for transducer. 

6. Open ‘X Wire Probe Cal’ vi. 

7. Set dewpoint (Tdew) and barometric pressure (Patm) 

8. Set ‘Type of Cal’ switch to ‘90’ 

9. Set number of samples and sample rate 
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10. Set DAQ channel to correct MIO channels (depends on IFA channels) 

11. Enter probe sensor parameters from IFA100 setup procedure 

Calibration Procedure 

1. Verify that both sides of pressure transducer are vented (zero pressure) 

2. Run ’Continuous AtoD’ vi. 

3. Verify that pressure transducer reads zero.  If not, press ‘set zero intercept’. 

4. Stop ’Continuous AtoD’ vi. 

5. Enter slope and new intercept from (3) into ‘X Wire Probe Cal’ vi. 

6. Set IFA HW channels to “RUN”. 

7. Run ‘X Wire Probe Cal’ vi. 

8. Open valves on calibrator until jet is at maximum desired calibration velocity  

DO NOT EXCEED TRANSDUCER MAXIMUM PRESSURE 

9. Allow approximately 15 seconds for pressures to stabilize (watch velocity chart) 

10. Run ’hotwire probe calibration – bmodmatt.vi’ 

11. Press ‘TAKE DATA’ button 

12. Enter data filename.  First data is taken as soon as file is created.  

13. Wait for ‘Taking Data’ light to go out 

14. Reduce calibrator flow to next desired calibration point 

15. Allow approximately 15 seconds for pressures to stabilize (watch velocity chart) 

16. Press ‘TAKE DATA’ button 

17. Wait for ‘Taking Data’ light to go out 

18. Repeat steps 13-20 until full calibration range covered 

19. Press ‘DONE DO FIT’ button 

20. Record initial calibration constants in notebook (C, D, MSE).  Flag with RED ink. 

21. Move Probe holder arm to the horizontal position  
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22. Set calibrator flow to a medium speed (approximately half maximum) 

23. Run ‘Xwire-checkvelocity’ vi. 

24. Rotate the probe in its sheath until the indicated angle is 0 degrees and lock it down 

25. Stop ‘Xwire-checkvelocity’ vi. 

26. Return to ‘X Wire Probe Cal’ vi. 

27. Set “Type of Cal” switch to “45” (enables yaw compensation) 

28. Run ‘X Wire Probe Cal’ vi. 

29. Enter data filename.  First data is taken as soon as file is created.  

30. Wait for ‘Taking Data’ light to go out 

31. Reduce calibrator flow to next desired calibration point 

32. Allow approximately 15 seconds for pressures to stabilize  

33. Press ‘TAKE DATA’ button 

34. Wait for ‘Taking Data’ light to go out 

35. Repeat steps 31-34 until full calibration range covered 

36. Press ‘DONE DO FIT’ button (At this point the angle compensation window will pop up) 

37. Set jet to highest expected velocity 

38. Hit “OK” button 

39. Move rotating collar to the R1 pin hole 

40. Hit ‘Take Data’ button 

41. Wait for ‘Taking Data’ light to go out  

42. Move rotating collar to next pin hole 

43. Hit ‘Take Data’ button 

44. Wait for ‘Taking Data’ light to go out 

45. Repeat steps 42-44 until data has been taken at the last pin location (R11).  A this point a new 

window will pop up asking you to change velocity  
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46. Set jet to a medium velocity  

47. Hit “OK” button 

48. Move rotating collar to the R1 pin hole 

49. Hit ‘Take Data’ button 

50. Wait for ‘Taking Data’ light to go out  

51. Move rotating collar to next pin hole 

52. Hit ‘Take Data’ button 

53. Wait for ‘Taking Data’ light to go out 

54. Repeat steps 51-53 until data has been taken at the last pin location (R11).  A this point a new 

window will pop up asking you to change velocity 

55. Set jet to a low velocity  

56. Hit “OK” button 

57. Move rotating collar to the R1 pin hole 

58. Hit ‘Take Data’ button 

59. Wait for ‘Taking Data’ light to go out  

60. Move rotating collar to next pin hole 

61. Hit ‘Take Data’ button 

62. Wait for ‘Taking Data’ light to go out 

63. Repeat steps 60-62 until data has been taken at the last pin location (R11).   

64. Lucky you, that is the end!    

65. Record final calibration data.  Flag with RED ink. 

66. Backup calibration file (this takes too long to do very often) 

Hardware Takedown 

1. Shut off isolator valve to calibrator  
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2. Before removing hotwire/hotfilm from calibrator indicate flow direction on shaft (a 90deg 

rotation changes the calibration constants) 

3. Mount hotwire/hotfilm in tunnel making sure you attach the same sensor to the same IFA 

channel 

4. Disconnect calibrator pressure tap from transducer 

5. Reconnect instrumentation lines to transducer 

6. Reset valves on transducer (vents closed, measure open) 
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APPENDIX B. Boundary Layer Profiles 
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Figure 69. Boundary layer profiles for baseline Pak-B at Re 100k and Tu 1% 
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Figure 70. Boundary layer profiles for baseline Pak-B at Re 45k and Tu 1% 
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Figure 71. Boundary layer profiles for baseline Pak-B at Re 25k and Tu 1% 
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Figure 72. Boundary layer profiles for baseline Pak-B at Re 100k and Tu 4% 
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Figure 73. Boundary layer profiles for baseline Pak-B at Re 45k and Tu 4% 
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Figure 74. Boundary layer profiles for baseline Pak-B at Re 25k and Tu 4% 
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Figure 75. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 100k and Tu 1% 
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Figure 76. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 45k and Tu 1% 
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Figure 77. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 25k and Tu 1% 
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Figure 78. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 100k and Tu 4% 
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Figure 79. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 45k and Tu 4% 
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Figure 80. Boundary layer profiles for Pak-B with asymmetric dimples at 50% axial 

chord at Re 25k and Tu 4% 
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Figure 81. Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial 

chord at Re 100k and Tu 1% 
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Figure 82. Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial 

chord at Re 45k and Tu 1% 

 
 



  

139 

67.2% Axial Chord

0

5

10

15

20

25

0 5

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

5

10

15

20

25

0 50 100

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

73.0% Axial Chord

0

5

10

15

20

25

0 5

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

5

10

15

20

25

0 50 100

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

79.3% Axial Chord

0

5

10

15

20

25

0 5

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

5

10

15

20

25

0 50 100

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

84.8% Axial Chord

0

5

10

15

20

25

0 5

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

5

10

15

20

25

0 50 100

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

89.8% Axial Chord

0

5

10

15

20

25

0 5

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

5

10

15

20

25

0 50 100

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

 
Figure 83. Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial 

chord at Re 25k and Tu 1% 
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Figure 84. Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial 

chord at Re 100k and Tu 4% 

 
 



  

141 

67.2% Axial Chord

0

1

2

3

4

5

6

7

8

0 5 10

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

1

2

3

4

5

6

7

8

0 50

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

73.0% Axial Chord

0

1

2

3

4

5

6

7

8

0 5 10

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

1

2

3

4

5

6

7

8

0 50

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

79.3% Axial Chord

0

1

2

3

4

5

6

7

8

0 5 10

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

1

2

3

4

5

6

7

8

0 50

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

84.8% Axial Chord

0

1

2

3

4

5

6

7

8

0 5 10

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

1

2

3

4

5

6

7

8

0 50

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

89.8% Axial Chord

0

1

2

3

4

5

6

7

8

0 5 10

Velocity (m/s)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

0

1

2

3

4

5

6

7

8

0 50

Turbulence (%)

D
ist

an
ce

 fr
om

 B
la

de
 S

ur
fa

ce
 (m

m
)

 
Figure 85. Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial 

chord at Re 45k and Tu 4% 
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Figure 86 Boundary layer profiles for Pak-B with asymmetric dimples at 55% axial chord 

at Re 25k and Tu 4% 
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Figure 87. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 100k and Tu 1% 
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Figure 88. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 45k and Tu 1% 
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Figure 89. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 25k and Tu 1% 
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67.2% Axial Chord
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Figure 90. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 100k and Tu 4% 
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Figure 91. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 45k and Tu 4% 
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Figure 92. Boundary layer profiles for Pak-B with asymmetric dimples at 65% axial 

chord at Re 25k and Tu 4% 
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APPENDIX C. Wake Velocity Profiles 
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Figure 93. Wake velocity profiles for baseline Pak-B at Tu 1% 
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Figure 94. Wake velocity profiles for baseline Pak-B at Tu 4% 
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Figure 95. Wake velocity profiles for Pak-B with asymmetric dimples at 50% at Tu 1% 
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Figure 96. Wake velocity profiles for Pak-B with asymmetric dimples at 50% at Tu 4% 
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Figure 97. Wake velocity profiles for Pak-B with asymmetric dimples at 55% at Tu 1% 
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Figure 98. Wake velocity profiles for Pak-B with asymmetric dimples at 55% at Tu 4% 
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Figure 99. Wake velocity profiles for Pak-B with asymmetric dimples at 65% at Tu 1% 
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Figure 100. Wake velocity profiles for Pak-B with asymmetric dimples at 65% at Tu 4% 
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Figure 101. Wake velocity profiles for Pak-B with spherical dimples at 50% at Tu 1% 
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Figure 102. Wake velocity profiles for Pak-B with spherical dimples at 50% at Tu 4% 
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Figure 103. Wake velocity profiles for Pak-B with spherical dimples at 55% at Tu 1% 
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Figure 104. Wake velocity profiles for Pak-B with spherical dimples at 55% at Tu 4% 
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Figure 105. Wake velocity profiles for Pak-B with spherical dimples at 65% at Tu 1% 
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Figure 106. Wake velocity profiles for Pak-B with spherical dimples at 65% at Tu 4% 
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APPENDIX D. Local Total Pressure Loss Coefficient Profiles 
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Figure 107. Total pressure loss coefficient profiles for a baseline Pak-B at Tu 1% 
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Figure 108. Total pressure loss coefficient profiles for a baseline Pak-B at Tu 4% 
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Figure 109. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 50% axial chord at Tu 1% 
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Figure 110. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 50% axial chord at Tu 4% 
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Figure 111. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 55% axial chord at Tu 1% 
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Figure 112. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 55% axial chord at Tu 4% 
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Figure 113. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 65% axial chord at Tu 1% 
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Figure 114. Total pressure loss coefficient profiles for a Pak-B with asymmetric dimples 

at 65% axial chord at Tu 4% 
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Figure 115. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

50% axial chord at Tu 1% 
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Figure 116. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

50% axial chord at Tu 4% 
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Figure 117. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

55% axial chord at Tu 1% 
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Figure 118. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

55% axial chord at Tu 4% 
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Figure 119. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

65% axial chord at Tu 1% 
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Figure 120. Total pressure loss coefficient profiles for a Pak-B with spherical dimples at 

65% axial chord at Tu 4% 
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