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Abstract 
 
 

The purpose of this research was to determine the ability of a dense phase 

membrane bioreactor to remove cyclohexane, a volatile organic compound in JP-8 jet 

fuel, from a contaminated air stream using a biologically active film for degradation.  The 

research answered questions regarding applications of membrane bioreactors, the ability 

of cyclohexane to diffuse through a dense phase membrane, growth of a viable microbial 

culture, and determination of the performance capabilities of the reactor.  To answer 

these questions, a literature review was conducted and laboratory experiments were 

performed.  Through the design, construction, and testing of the dense phase membrane 

bioreactor used for this research, it was determined that the reactor removed cyclohexane 

from a contaminated air stream at an average elimination capacity of 321.4 +/- 76.2 g m-3 

hr-1 with a 95% confidence interval. 

The successful removal of cyclohexane with the dense phase membrane bioreactor 

in this research effort filled a vacant niche in the scientific body of knowledge 

surrounding membrane bioreactor technology.  Current technology applications, 

laboratory techniques, and data analysis are discussed.

 x



 

REMOVAL OF CYCLOHEXANE FROM A CONTAMINATED AIR STREAM 
USING A DENSE PHASE MEMBRANE BIOREACTOR 

 
 

1.0 Introduction 
 

1.1  Background 
 
 The release of volatile organic compounds (VOCs) into the atmosphere is one of 

many challenging environmental problems facing the world today.  When released into 

the atmosphere, VOCs can combine with other gases to form greenhouse gases 

potentially contributing to global warming (Godish, 2004).  Hydrocarbons commonly 

found in fuels and fuel additives may be among the worst of all volatile organic 

compounds due to the adverse health effects associated with these compounds.  Aromatic 

hydrocarbons such as benzene, toluene, ethyl benzene and m, p, and o-xylene (BTEX) 

have all been classified as potential human carcinogens by the American Council of 

Government Industrial Hygienists (ACGIH, 2004).  Because of the hazardous nature of 

these volatile organic hydrocarbons, many have been listed as Hazardous Air Pollutants  

(HAPs) by the Clean Air Act Amendments of 1990, Section 112, Hazardous Air 

Pollutants.  A chemical that has been designated as a HAP is subject to restrictive 

regulations set by the Environmental Protection Agency (EPA) in the National Emission 

Standards for Hazardous Air Pollutants (NESHAPs) (EPA, 1990).    

 Currently in the United States Air Force, jet propulsion fuel 8 (JP-8) is the fuel 

most commonly used in jet powered aircraft (ATSDR, 1998).  JP-8 consists of many 

volatile hydrocarbons to include the benzene, toluene, ethyl benzene, xylene, cumene, 

cyclohexane, and naphthalene, all of which are listed as HAPs (Westbrook, et al, 2001).  

A study performed by the American Toxic Substances and Disease Registry (ATSDR) 
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found that exposure to JP-8 through inhalation can result in nervous system distress 

including headaches, anorexia, poor coordination, and difficulty concentrating (ATSDR, 

1998).  The vast amount of JP-8 stored and handled on Air Force installations throughout 

the world creates the potential for a significant release of hydrocarbons into the 

atmosphere.  For example, volatilization occurs from JP-8 storage tanks.  Currently, open 

venting to the atmosphere through fuel storage tank vent ports releases pressure in the 

tanks (UFC 3-460-03, 2003).  This open venting also releases thousands of pounds of 

VOCs into the atmosphere each year (AFIOH, 2004).   

Another source of JP-8 vapors is the result of purging aircraft fuel cells prior to 

entry.  Fuel cells on aircraft are entered by sheet metal workers for maintenance or for 

repair of damaged cells.  Aircraft fuel cells are considered confined spaces by the 

Occupational Safety and Health Administration (OSHA) due to the fuel cells being large 

enough for a person to get their entire body into, having restricted means of entry and 

exit, and not being designed for continuous employee occupancy (OSHA, 1993).  Prior to 

workers entering a fuel cell, it must be purged, or forcefully flooded with air, for a period 

of time to remove any potentially harmful vapors or gases and to ensure sufficient oxygen 

is present.  During this purging, JP-8 vapors lingering in the cell are forced out and 

released into the atmosphere.  As regulatory pressure increases and studies continue to 

show the adverse health effects of JP-8, the Air Force will be forced to control 

atmospheric releases in an efficient and cost effective manner.   
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1.2 Bioremediation Techniques 

 Bioremediation is an environmental restoration technique that involves 

stimulating the growth of natural organisms, mainly bacteria, which can biodegrade 

contaminants (Masters, 1998).  The bioremediation of environmental releases of 

hydrocarbons is a widely studied and accepted practice for contaminated soil, 

groundwater and liquid impoundments.  Within the last 15 years, bioremediation of waste 

vapor streams has become a mature technique (Attaway, et al, 2001).  Bioremediation of 

contaminated media has developed as an attractive alternative to physicochemical 

techniques due to low cost and complete degradation of the compound of interest 

(Parvatiyar, et al, 1996).   

Systems most commonly studied and used for remediation of waste gases are 

conventional bioreactor designs including bioscrubbers, biotrickling filters, and packed 

beds (Min, et al, 2002).  Bioscrubbers use microorganisms suspended in liquid and rely 

on the transfer of the pollutant from the gas phase to a hydrophobic organic phase for 

bioavailability to the microorganisms (DeVinny, et al, 1999).  Biotrickling filters usually 

employ synthetic, inorganic growth media and receive liquid nutrient and buffer through 

a nozzle system positioned on top of the system (DeVinny, et al, 1999).  In conventional 

packed bed bioreactor designs, microorganisms with the ability to degrade the target 

compound are grown on various media such as peat or compost and kept moist by 

trickling or spraying of water on the developed biofilm.  To remove the compound from 

the waste gas, the gas stream is passed through the reactor where the target compound 

diffuses through the water layer around the microorganisms and is then degraded by 

various metabolic pathways, theoretically ending with the formation of carbon dioxide, 
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water, and adenosine triphosphate (ATP) which the microorganisms use for growth and 

energy (Maier, et al, 2000).  Conventional bioreactor designs are plagued with problems, 

however, to include plugging, or overcrowding of biomass in filter media, gas 

channeling, support media acidification, toxic cometabolism, backpressure fluctuations, 

and difficult moisture control due to evaporation at high flow rates (Attaway, et al, 2001).   

 Though not as widely used as conventional bioreactor designs, membrane 

bioreactors are also used to treat contaminated air.  Membrane bioreactors have a 

diffusive membrane immersed in a liquid bath that provides support for biological growth 

and efficient target compound transport to the biofilm for degradation.  A membrane 

allows separation of the liquid and gas phases of the reactor.  By separating the phases, 

the problems of plugging, gas channeling, toxic cometabolism, and difficult moisture 

control observed in conventional bioreactor designs are eliminated (Reij, et al, 1998).   

Two types of membrane bioreactors have been studied recently, to include hollow 

fiber microporous membranes and dense phase membranes.  Hollow fiber membranes 

utilize hydrophobic, microporous membranes as the support/transport structure.  These 

are membranes with pore sizes of approximately 0.5 µm through which waste gases are 

passed to a biofilm grown on the outside of the membrane which degrades the target 

compounds (Ergas, et al, 1999).  While less problematic than conventional designs, 

hollow fiber membranes are prone to plugging of the pores and often their use is 

prohibited due to high cost.  Dense phase membranes utilize nonporous hydrophobic 

materials such as silicone rubber that exhibit high permeability to oxygen and 

hydrophobic organic compounds (Attaway, et al, 2001).  Dense phase membranes such 

as silicone are readily available from medical suppliers, significantly less expensive than 
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hollow fiber membranes, and not prone to plugging of pores.  Dense phase membranes 

have been shown in recent research to provide similar contaminant removal rates in 

comparison to hollow fiber membranes, and have shown up to 30% better removal of 

contaminants in comparison to conventional bioreactor designs (Attaway, et al, 2001). 

 

1.3 Research 

A dense phase membrane bioreactor was assembled and tested for its removal of 

cyclohexane vapors from a contaminated air stream.  Cyclohexane was used as a 

representative compound of the cyclic alkanes present in JP-8.  Aromatic compounds 

such as benzene and toluene diffuse through silicone resulting in successful bioreactor 

tests similar to the tests performed in this research (England, 2003; Attaway, et al, 2001).  

Cyclohexane is a light non-aqueous phase liquid, so its hydrophobicity made it a prime 

candidate for diffusion through a dense phase membrane.  The biofilm employed for the 

degradation of the cyclohexane vapors was derived from a combination of 

microorganisms in a composted soil sample, microorganisms found by Air Force 

Research Laboratory (AFRL) researchers in a JP-8 storage tank at the Paramount 

Refinery in Los Angeles, California, and from activated sludge obtained from the 

Fairborn, Ohio waste water treatment plant.   

 

1.4 Research Objectives 

The overall objective of this research was to determine if a dense phase 

membrane bioreactor could successfully remove the volatilized components of JP-8 jet 
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fuel, specifically cyclohexane, from a contaminated air stream.  During the course of this 

research effort, a number of questions were answered: 

1.  What is a membrane bioreactor and where is this technology being applied? 

2.  Would cyclohexane diffuse through the dense phase membrane? 

3.  If diffusion occurred, would the biofilm derived from the Paramount Refinery, 

composted soil, and activated sludge grow on the dense phase membrane and eventually 

degrade the cyclohexane? 

4.  If successful degradation occurred, what was the removal rate the membrane 

bioreactor could achieve? 

 

1.5 Methodology 

 The overall research methodology employed to answer the research questions 

involved several components.  The following are the main methodological steps: 

1.  A comprehensive literature review was conducted with emphasis on bioreactor 

technology, specifically current uses of dense phase membrane bioreactors in remediation 

roles. 

2.  A membrane bioreactor was set up to test the removal of cyclohexane vapors 

from a contaminated air stream. 

3.  The diffusion of cyclohexane through the membrane in the reactor, prior to 

biofilm establishment, was tested by analysis of influent and effluent water and air 

streams using gas chromatography and flame ionization detection. 

4.  A viable batch of cyclohexane-degrading microorganisms was grown and used 

to inoculate the bioreactor for growth of the biofilm on the membrane’s outer surface. 
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5.  The removal of cyclohexane from the contaminated air stream was measured 

as the biofilm grew to visible thickness and thereafter for an extended period of time.  

Reactor robustness and response was tested by varying air flow rates and influent load.   

 

1.6 Study Scope and Limitations 

1.  This study focused on dense phase membrane technology, not hollow fiber 

membranes or conventional bioreactors.  In particular, a dual tube dense phase reactor 

was used. 

2.  Cyclohexane was used a compound representative of the cyclic alkanes 

contained in JP-8.  Other compounds, such as aromatics and straight chain alkanes, have 

been shown in recent research to transfer across dense phase membranes (Attaway, et al, 

2001, England, 2003, and Cole, 2001).  By proving the ability of the dense phase 

membrane to transfer cyclic alkanes, a step toward establishing the ability of all 

compounds in JP-8 to transfer and be degraded was made.  However, demonstrating the 

ability of the membrane to transfer isolated compounds does not prove its effectiveness 

when loaded with multiple compounds at the same time. Further research should be 

performed to demonstrate the ability to transfer all compounds together prior to fielding a 

similar design. 

3.  Due to the small scale of the test bioreactor, actual results may not scale up 

directly to a full size operational unit.  Further experimentation should be performed on a 

full scale unit prior to field deployment. 
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1.7 Significance 

 This research expanded the body of knowledge currently existing for membrane 

bioreactor technologies.  The successful demonstration of this system was a step forward 

in the quest for more sustainable control technologies that could some day be used by the 

Air Force, the Department of Defense, and the civilian sector.  Membrane bioreactors 

excel in sustainability, ease of design, construction, and field application.  This 

technology requires very little external input of energy or fuel, allows for complete 

conversion of wastes, and can be adapted to a wide range of pollutants.  Membrane 

bioreactors could be the wave of the future for environmental control technology. 

 

1.8 Summary 

 Jet propellant-8, the jet fuel of choice for the United States Air Force, contains 

many compounds considered hazardous air pollutants due to their volatility and potential 

adverse health effects.  Current practices in use by the Air Force allow for significant 

release of these compounds.  To control these releases, a sustainable, low cost control 

strategy should be developed and employed.  Membrane bioreactor technology could be a 

viable technology to fulfill this role.  This research examined the applicability of a 

membrane bioreactor to this problem and demonstrated the removal efficiency of a 

laboratory scale membrane bioreactor for a representative compound.  Through continued 

research on membrane systems similar to the one tested in this research, the successful 

development and deployment of such systems throughout the Air Force could soon prove 

a viable option for air pollution control in the future. 
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2.0 Literature Review 

 

2.1 Introduction 

 The goal of this research was to examine the impacts of volatile organic 

compounds from JP-8 jet fuel on the environment and human health and to design an air 

pollution control system capable of removing those volatile components from a 

contaminated air stream.  To accomplish these goals, a multidisciplinary research 

approach was pursued.  This research included a study of JP-8 jet fuel including its uses, 

storage, and environmental fate and transport, a study of applicable regulations governing 

potential emissions from JP-8 use and storage, current air pollution control technologies 

capable of controlling volatile organic emissions, and sections devoted to the design of 

the membrane bioreactor used in this project.     

 

2.2 Study of Jet Fuel 

 In this section, JP-8 is examined from its development and use throughout the 

United States Air Force (USAF) and North Atlantic Treaty Organization (NATO) 

operations, the environmental fate and transport of JP-8 in various systems, human health 

effects associated with exposure to jet fuel, and the determination to use cyclohexane as a 

representative compound for JP-8 in laboratory tests. 

 

2.2.1 Development, Usage, and Storage of JP-8 

 Jet propulsion fuel 8 was developed by the USAF following the Vietnam conflict 

in the 1970’s.   During the Vietnam conflict, jet propulsion fuel 4 (JP-4) was used to 
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power the United States’ primary fighter and jet powered bomber aircraft.  JP-4 was 

essentially a mix of aviation gasoline and high flash point kerosene (BP Fuels, 2004).  

While JP-4 was an effective propellant, it was also highly explosive, as observed during 

the Vietnam conflict.  JP-8 was developed as a lower flash point blend similar to Jet A-1 

fuel used in commercial aircraft.  JP-8 is essentially Jet A-1 with added fuel system icing, 

corrosion, and static dissipation inhibitors (Army Fuel Guide, 2000).  The lower flash 

point of JP-8 was desirable due to the increased fire safety of JP-8 in comparison to JP-4 

(BP Fuels, 2004).   

The USAF began its implementation of JP-8 to all jet powered aircraft in 1979, 

and completed this transition in 1995.  JP-8 is covered by the specification MIL-DTL-

83133.  JP-8 is currently the fuel specified for all U.S Air Force and U.S. Army turbine 

powered aircraft, as well as all NATO turbine powered aircraft.  The NATO designation 

for JP-8 is F-34 jet fuel (Army Fuel Guide, 2000).  JP-8 is very similar to kerosene, and 

kerosene data is often used as surrogate data for JP-8 in many environmental remediation 

and health effect roles (ATSDR, 1998).   

 

2.2.2 Environmental and Health Effects of JP-8  

 JP-8 and the Navy’s equivalent fuel, JP-5, were detected at 22 of the 1,445 sites 

listed on the National Priorities Listing (NPL) sites throughout the United States 

(ATSDR, 1998).  NPL sites are those sites designated by the Environmental Protection 

Agency as the country’s most polluted sites under the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, 

which was enacted on December 11, 1980 (CERCLA Overview, 2004).  The detection of 
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jet fuel spurred the need for a comprehensive health effects study.  This study was 

performed and completed by the Agency for Toxic Substances and Disease Registry 

(ATSDR) in August of 1998.   

 The ATSDR study examined JP-8’s environmental fate and found that 

environmental effects vary widely due to the diverse nature of environmental behavior 

among the chemicals in the fuel (ATSDR, 1998).  JP-8 consists of some highly water 

soluble chemicals that are likely to be transported by groundwater flow following 

releases from underground storage tanks or leaking distribution systems.  Other 

constituents are less soluble, but readily partition and sorb to soil particles due to their 

affinity for organic substrates, calculated for hydrogeological transport systems as Koc, 

the partition coefficient of a compound between organic carbon and water (Domenico 

and Schwartz, 1998).   

This research focused on constituents that are readily volatile and easily released 

from JP-8 storage systems such as benzene, toluene, ethyl benzene, xylene isomers, and 

the four to ten carbon alkanes and low carbon number cyclic alkanes.  These easily 

volatilized chemicals, when released into the atmosphere and combined with nitric oxide 

compounds, undergo a photo oxidation reaction in which the organics are readily 

converted into ozone, the precursor to photochemical smog as shown in Equation 2.1 

(Masters, 1998). 

  

                                         NOx + VOC + Sunlight  O3                                     (2.1) 
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Another potential fate of volatile organic release is the formation of acid rain through a 

two step chemical reaction.  The first step combines the VOCs with water and photo 

oxidizing sunlight to form hydrogen peroxide, and the second step consists of the 

hydrogen peroxide combining with sulfur oxides and ozone to form acidic compounds 

which precipitate out as acid precipitation, as seen in Equations 2.2 and 2.3 (Acid Rain, 

EPA, 2004).   

 

            Step 1:  VOC + sunlight + H2O    H2O2                              (2.2) 

          Step 2:  SO2 + H2O2 + O3   H2SO4                                      (2.3) 

 

A third potential fate for atmospheric release of volatile organic compounds is a surface 

water load created by the volatile compounds solubilizing in airborne precipitation and 

falling back down to the earth, entering into the water cycle (ATSDR, 1998).  Though the 

solubility of most volatile organics is low, on a grand scale this could lead to a significant 

surface water load.   

 Human exposures to constituents of JP-8 released into the environment could 

result from intake of contaminated drinking water, breathing of contaminated air, or 

through dermal contact with contaminated soils.  Though the exact metabolic pathways 

of many jet fuel constituents are not completely understood, research has been conducted 

on kerosene exposure.  Extensive kerosene exposure causes vomiting, diarrhea, swelling 

of the stomach, stomach cramps, drowsiness, restlessness, irritability, and loss of 

consciousness (ATSDR, 1998).  Coughing, pneumonia, and difficult or painful breathing 

after drinking kerosene suggest that kerosene has entered the lungs.  In addition, drinking 
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large amounts of kerosene has resulted in patients entering comas, experiencing 

convulsions, and may even cause death.  Dermal kerosene exposure has shown to make 

skin itchy, red, and sore, and has even shown to result in blistering and peeling of the skin 

in sensitive individuals (ATSDR, 1998).  Case studies of JP-5 exposure have shown 

nervous system effects including headaches, lightheadedness, anorexia (loss of appetite), 

poor coordination, and difficulty concentrating.  Laboratory tests have also shown that 

continual dermal exposure to JP-8 and JP-5 cause cancer in mice, but there have been no 

tests showing development of cancer in humans (ATSDR, 1998).    

The Air Force’s Occupational Exposure Limit (OEL) for exposure to JP-8 

through inhalation is set at 350 mg m-3 averaged over an 8 hour work day, and the Short 

Term Exposure Limit (STEL) is 1800 mg m-3 averaged over a 15 minute exposure period 

(Smith, 1999).  The ATSDR has derived an intermediate-duration inhalation Minimal 

Risk Level (MRL) of 300 mg m-3 for JP-5 and JP-8.  An MRL is an estimate of daily 

human exposure to a noncarcinogenic substance over a specific period that is likely to be 

without an appreciable risk of adverse effects (ATSDR, 1998).  The occupational 

exposure levels set by the Occupational Safety and Health Administration (OSHA) for 

the allowable airborne concentration of petroleum products in a workroom during an 8 

hour day, 40 hour work week is 400 mg m-3 (ATSDR, 1998).  This exposure limit is often 

applied to occupational JP-8 exposure.   

 

2.2.3 Cyclohexane Use and Properties 

 For the purpose of this research, cyclohexane, a cyclic alkane present in JP-8, was 

used as a compound representative of the most volatile constituents of JP-8.  
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Cyclohexane is primarily used in the production of adipic acid, a nylon intermediate.  It is 

also used in many solvent applications, as fuel for camp stoves, and as an ingredient in 

fungicidal applications (Cyclohexane, EPA, 1994).  There are only four producers of 

cyclohexane in the United States, including Champlin, Chevron, Phillips, and Texaco.  

All production plants are located in southeast Texas.  Environmental presence of 

cyclohexane can result from releases of crude oil, volcanoes, tobacco smoke, and exhaust 

gases from automobiles (Cyclohexane, EPA, 1994).  Cyclohexane is considered volatile, 

with a vapor pressure of 77 mm of mercury.  The Henry’s constant for cyclohexane is 

0.195 atm m3 mol-1 at 25 ºC, which indicates that cyclohexane readily partitions from the 

aqueous phase to the gas phase at equilibrium conditions (Cyclohexane, EPA, 1994).  

The estimated KOC for cyclohexane is 482, which indicates a moderate potential for solid 

adsorption (Cyclohexane, EPA, 1994).  Cyclohexane is slightly soluble in water, with a 

solubility of 55 mg L-1 (Cyclohexane, EPA, 1994).   

 Health effects of cyclohexane include microscopic liver and kidney damage from 

dermal exposure in rabbits, and human case studies have shown that approximately 23% 

of inhaled concentrations of cyclohexane are absorbed through the lungs and metabolized 

(Cyclohexane, EPA, 1994).  Distribution of cyclohexane in rabbits was found mostly in 

fatty tissue and some brain distribution, with concentrations 50 to 80 times higher in fatty 

tissue (Cyclohexane, EPA, 1994).  Cyclohexane is metabolized through the hepatic, 

vascular, and renal systems, with microsomal hydroxylases oxidizing cyclohexane to 

cyclohexanol in the presence of nicotinamide adenine dinucleotide phosphate with 

hydrogen (NADPH) and oxygen (Cyclohexane, EPA, 1994; Fox, 2004).  Other 

metabolites of cyclohexane in mammals include trans-cyclohexane-1,2-diol, 
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cyclohexanone, and adipic acid (Cyclohexane, EPA, 1994).  Once metabolized, 

cyclohexane is eliminated either as unchanged cyclohexane or as one of its metabolites in 

the urine.  Cyclohexane has shown to be a nervous system depressant in humans at high 

concentrations causing dizziness and unconsciousness and is listed as a hazardous air 

pollutant (HAP) under the Clean Air Act Amendments of 1990.    OSHA has set a 

permissible exposure limit for cyclohexane at 300 ppm over an 8 hour time weighted 

average work day (Cyclohexane, EPA, 1994).  The American Conference of 

Governmental Industrial Hygienists (ACGIH) has also set a Threshold Limit Value 

(TLV) of 300 ppm over and 8 hour time weighted average (OSHA, 2004).  The 

properties of cyclohexane are summarized in Table 2.1. 
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Table 2.1:  Cyclohexane Properties (Cyclohexane, EPA, 1994) 

Characteristic/Property Data 
CAS No. 110-82-7 
Synonyms hexahydrobenzene, 

hexamethylene, 
hexanapthene 

Molecular Formula C6H12
Physical State Liquid 
Molecular Weight 84.16 
Melting Point 6.47 ºC 
Boiling Point 80.7 ºC @ 1 atm 
Water Solubility 55 mg L-1 at 25 ºC 

Density 0.7781 
Vapor Density (Air = 1) 2.9 
Koc 482 
Log Kow 3.44 
Vapor Pressure 77 mm Hg at 20 ºC

Reactivity flammable, reacts 
with oxidizing 
materials 

Flash Point 18 ºC 
Henry’s Law Constant 0.194 atm m3 mol-1 

@ 25 ºC 
Fish Bioconcentration 
Factor 

240 

Odor Threshold 300 ppm in air 
 

 

2.3 Applicable Rules and Regulations 

 This section presents the rules and regulations governing the release of volatile 

organic compounds.  The overarching federal regulation that governs releases of volatiles 

is the Clean Air Act.  Through various amendments to the Act since its inception in 1970, 

regulations have become increasingly more restrictive as research advances the body of 

knowledge available concerning the pollutants’ impacts on human health and the 

environment.  Many of the most volatile compounds in JP-8 are considered hazardous air 
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pollutants (HAPs) due to their toxicity either to humans or environmental systems.  This 

section includes an analysis of the Clean Air Act, the amendments made in 1990, the 

determination of hazardous air pollutants and regulations pertaining to their control, and 

the application of membrane bioreactors as a viable control technology for JP-8 

emissions.   

 

2.3.1 Air Pollution Regulation 

 The environmental regulatory structure in the United States is best described as 

centralized command with decentralized control.  The Federal government, through the 

Environmental Protection Agency, promulgates Federal regulations that serve as 

minimum standards for state implementation.  The states are then responsible for 

enforcement of Federal laws, as well as establishment of any extra stipulations required 

specifically for those states due to local environmental stresses.  Extra stipulations to 

Federal regulations are enacted by state legislatures and promulgated in state regulations.  

The structure of the environmental regulatory system is set this way due to the nature of 

environmental concerns.  In general, environmental concerns are local issues that require 

local knowledge of polluting systems in relation to sensitive ecosystems or potentially 

exposed populations for effective regulation (Clean Air Act, EPA, 1993).   

 Air pollution regulation in the United States began in 1955 when the Clean Air 

Legislation authorized the Public Health Service, then in the Department of Health, 

Education, and Welfare, to conduct air pollution research and training for state programs 

(Godish, 2004).  In 1963, Congress passed the original Clean Air Act in response to 

declining air quality in the postwar United States.  This original act mainly provided for 

 17



 

increased and better funded research as well as increased regulatory authority from the 

federal government (Godish, 2004).  In 1967, the Air Quality Act was passed.  This act 

required the National Air Pollution Control Administration (NAPCA) to establish air 

quality criteria and issue control technique information.  Since air pollution control was 

still a relatively new science at that time, it took years for NAPCA to develop this 

guidance, and the Air Quality Act of 1967 was largely ineffective at the time (Godish, 

2004).   

The first set of amendments to the Clean Air Act came in 1970, when public 

concern for environmental problems was at the forefront of American life and politics.  

The amendments of 1970 transferred the responsibilities of the NAPCA to the newly 

formed EPA, required the establishment of National Ambient Air Quality Standards 

(NAAQS), and required that states develop State Implementation Plans (SIPs) for control 

of atmospheric releases (Godish 2004).  Another set of amendments to the Clean Air Act 

was passed in 1977.  Of the provisions outlined in these amendments, the most notable 

was the authority given to the EPA to regulate stratospheric ozone destroying chemicals.  

The regulation and banning of these chemicals is widely known as an environmental 

regulatory success story (Godish 2004).  The most significant amendments to the Clean 

Air Act came in 1990.  Under the 1990 amendments, increased emphasis was applied to 

regulations of motor vehicle emissions, regulation of hazardous and toxic air pollutants, 

acidic deposition control, stratospheric ozone protection, permitting requirements, and 

enforcement (Godish 2004). 
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2.3.2 Permitting Challenges 

 The permitting system set in place by the Clean Air Act Amendments of 1990 

requires owners of atmospheric pollution sources to acquire and maintain permits 

restricting the amount of pollution they release over given time periods.  This system 

allows the atmosphere in localized areas to be analyzed and regulated based on total 

pollutant load.   The Clean Water Act controls pollution in much the same way, requiring 

National Pollutant Discharge Elimination System (NPDES) permits prior to release of the 

chemicals of concern for that area (Clean Air Act, EPA, 1993).  Permits are particularly 

stringent in those areas that are out of compliance for release and atmospheric 

concentration of pollutants, known as Non-Attainment Areas (NAAs).  Many military 

bases are located in or near NAAs, and permitting on these bases can present many 

challenges to base operations. 

 

2.3.3 Hazardous Air Pollutants 

The most significant provision of the 1990 amendments was the identification and 

specific regulation of 189 hazardous air pollutants.  Prior to the 1990 amendments, only 7 

HAPs had been identified.  Chemicals were identified as hazardous or toxic air pollutants 

due to their potential for hazard to health (carcinogenicity) or the environment.  By using 

hazard to the environment as a criteria for identification of a chemical as a hazardous air 

pollutant, Congress and the EPA’s intent to protect wildlife, aquatic life, and natural 

resources was illustrated (Godish, 2004).  For control of HAPs, regulations require the 

use of Maximum Available Control Technology (MACT).  MACT is to be achieved 

through process changes, enclosure of polluting operations, collection and treatment of 
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released pollutants, or design, equipment, or work practice modifications (Godish, 2004).  

The use of MACT for the control of HAPs is directly applicable to this research effort.  

Of the volatile emissions identified in JP-8, those listed as hazardous air pollutants 

include benzene, 1,3-butadiene, cumene, ethyl benzene, hexane, naphthalene, toluene, 

2,2,4-trimethylpentane, xylene isomers, and cyclohexane (Westbrook, et al, 2001 and 

Hazardous Air Pollutants, EPA, 2004). 

For sources of hazardous air pollutants, emissions are regulated based on the total 

atmospheric load of the pollutant of concern on a yearly basis.  As of now, none of the 

JP-8 storage tank farms are listed as major sources.  Typical emissions from a 40,000 

gallon storage tank result in atmospheric loads of less than 10 pounds of volatile organic 

load to the atmosphere per year (AFIOH, 2004).  This research effort is specifically 

focused on the development of membrane bioreactor control technology’s application to 

controlling emissions from the hundreds of storage tanks throughout the world.  The 

current practice of open venting of JP-8 storage tanks to release pressure could be 

considered a significant release of volatile organic compounds when viewed on the grand 

scale of loading from all of the storage tanks all over the world (UFC, 2003).  The use of 

a membrane bioreactor to break down these volatile emissions as they are released from 

the storage tanks would serve as a great leap in establishment of an effective, low 

maintenance Maximum Available Control Technology to ease regulatory pressure on 

bases throughout the country and potentially decrease permitting requirements in non-

attainment areas, saving installations money and manpower. 
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2.4 Existing Air Pollution Control Technologies 

In this section, existing air pollution control strategies that could be applied to the 

volatile JP-8 tank release are examined.  Currently there are a number of processes being 

used to remove volatile organic compounds from contaminated effluent gas streams.  

However, of the existing remediation technologies being used today, many require 

disposal of contaminated media, input of additional fuel to operate, or present safety 

hazards that would exclude them as applicable control measures.  In this overview of 

conventional systems, the theory of operation, advantages, and disadvantages of carbon 

adsorption, incineration, conventional bioreactors, and membrane bioreactors will be 

presented.   

 

2.4.1  Carbon Adsorption Systems 

 The process of adsorption involves molecular diffusion of gas phase contaminants 

from the gas stream to the surface of a sorbent medium where they are bound by van der 

Waals forces (Godish, 2004).  Adsorption systems utilize a wide variety of sorbent media 

to include activated carbon, silica gel, activated alumina, and zeolites.  Activated carbon 

is most widely used in adsorption systems due to its high affinity for nonpolar 

compounds with molecular weights of 45 or greater, its low cost, and its relative 

insensitivity to the presence of water vapor in gas streams (Godish, 2004 and Zerbonia, et 

al, 1995).  Carbon is “activated” through high temperature oxidation of wood or coal in 

the absence of oxygen (Godish, 2004).    

Carbon adsorption systems have many advantages.  These systems have proven to 

be very effective, with 99% removal of VOCs attainable (Zerbonia, et al, 1995).  Carbon 
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adsorption systems are predictable, with constant effluent concentrations achievable even 

with widely varying influent loads.  Lastly, carbon adsorption systems are easily tailored 

to the process they are being used to control, with predictable break through times based 

on pollutant load (Zerbonia, et al, 1995).  These advantages have made carbon adsorption 

systems popular for gaseous pollutant control in the past.   

While carbon adsorption systems do a great job of removing the VOC from the 

gas phase, the owner of the process is still responsible for disposal or treatment of the 

contaminated media, which results in increased cost and maintenance.  Carbon adsorption 

systems have also shown variable results in low VOC concentration applications.  For 

virtually every adsorption application, removal efficiency is enhanced by lower operating 

temperatures and higher organic concentration loads (Zerbonia, et al, 1995).  Due to the 

dependence of adsorption systems on particle diffusion as the main transport process 

involved in removal, fewer contaminant particles diffusing (low concentration) results in 

decreased likelihood of interaction with the adsorbing surface (Zerbonia, et al, 1995).  

Due to the difficulty of removal of low concentration VOCs and increased complication 

of remediation from disposal of contaminated media, carbon adsorption systems may not 

be optimal for use in low VOC emission systems, such as JP-8 storage tanks. 

 

2.4.2 Incineration 

 Thermal oxidation, or incineration, is a process that converts hydrocarbon or 

oxygenated waste compounds to carbon dioxide and water (Godish, 2004).  Waste gases 

are preheated and injected into a reaction chamber where they are exposed to extremely 

high temperatures which oxidizes the waste.  There are two main types of incineration 
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systems, thermal oxidation and catalytic oxidation.  Thermal oxidation consists of 

superheating the waste stream to temperatures of 750 to 1000 ºC.  Catalytic oxidation 

consists of passing the waste stream over a catalytic bed which lowers the activation 

energy required to destroy the molecule, then heating the stream to 350 to 500 ºC 

(Zerbonia, et al, 1995).  For low VOC concentration systems, incineration systems 

require extra fuel to sustain combustion of the waste.   

Incineration systems provide complete destruction of waste compounds, so 

secondary treatment of contaminated media is not required, as it is with carbon 

adsorption systems (Zerbonia, et al, 1995).  However, incineration systems are plagued 

with complications.  The fuel required to sustain combustion results in increased 

operating costs and handling of another potentially hazardous product.  Incineration 

systems can also be adversely affected by temperature fluctuations of influent waste 

streams, fluctuations in influent waste concentrations, fouling from particulate matter or 

polymers, as well as deactivation of catalyst materials in catalytic incinerators (Zerbonia, 

et al, 1995).  Another obvious disadvantage of using an incineration system at a fuel tank 

farm is the hazard of explosion.  A localized, tank top system could never be safely 

utilized at the operating temperatures required for thermal oxidation.  Due to the 

explosion hazard, high operating costs, and variability of volatile organic compound 

release from JP-8 storage tanks, incineration is not an applicable control technology.  

 

2.4.3 Conventional Bioreactors 

 Bioreactors are systems which take advantage of the ability of microorganisms to 

destroy most organic compounds and mineralize these compounds into carbon dioxide, 
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water, microbial growth, and inorganic salts.  Bioreactors used for remediation of 

contaminated gas streams utilize either attached boils or aqueous suspended 

microorganisms as the growth medium and require only moisture, a carbon source 

(waste), and macro and micronutrients to support growth.  Boilers rely on the 

establishment of a concentration gradient between the waste stream and the biofilm or 

aqueous biological solution which creates the driving force behind diffusion and 

subsequent degradation.  Three types of conventional bioreactors will be discussed in this 

section: boilers, bioscrubbers, and biotrickling filters.  

 

2.4.3.1 Boilers 

Boilers are systems in which a humid polluted gas stream is passed through a 

packed media bed.  The packed bed typically consists of organic material such as peat or 

wood, covered by a degrading biofilm.  The biofilm is a microcolony of bacterial cells 

attached to a surface and encased in adhesive polysaccharides excreted by the cells.  

Biofilms trap nutrients for growth, and the polysaccharide casing prevents damage to the 

colony that could be the result of hydraulic forces created in flowing environments 

(Madigan, et al, 2003).  The bacterial cells within biofilms communicate via biofilm 

specific genes which encode proteins that serve as communication packets among the 

cells.  Through this intercellular communication, cells within the biofilm begin fulfilling 

their specific roles, from production of the polysaccharide casing to producing 

chemotactic agents whose purpose is to recruit nearby compatible cells (Madigan, et al, 

2003). 
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 The microorganisms in the biofilm obtain macro and micronutrients from the 

organic growth media, obtain carbon from the pollutant, and obtain the moisture needed 

from the humidity in the waste stream.  As the waste stream passes through the bed, 

contaminants are absorbed into the biofilm and to the support media, where they are 

degraded and a favorable concentration gradient is established.  Biofilters utilize 

absorption, adsorption, and degradation processes to remediate contaminated effluents 

(DeVinny, et al., 1999).  Biofilters exhibit rapidly adaptable removal when exposed to 

varying influent concentrations as one would expect from actual processes.  In a matter of 

a few hours, biofilters are capable of “ramping up” effectively to increased pulse or step 

loads (Deshusses, et al, 1996).   

Difficulties associated with conventional biofilter design are the control of 

moisture, prevention of channeling in the system, and controlling increasing pressure 

drop in the reactor.  Constant moisture content must be maintained in the waste stream to 

prevent drying of the bed and ultimately killing of the microorganisms.  Also, the 

biological growth has been observed to build up in areas, essentially increasing resistance 

to flow along some pathways and channeling the flow through the reactor.  Channeling 

leads to increased waste stream velocity through the bed resulting in decreased residence 

time, short-circuiting the removal process.  As the biological growth becomes denser, 

increased pressure drop across the bed is commonly observed (Thalasso et al, 2001).  

Table 2.2, adapted from the DeVinny text, lists advantages and disadvantages of 

conventional biofilters. 
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Table 2.2:  Conventional Biofilter Summary (Devinny, et al, 1999) 

 

  
Advantages Disadvantages 

Simple, flexible design with low operating 
and  capital costs 

Large surface are required 

Low pressure drop Particulate matter may clog 
medium 

No further waste streams produced Moisture and pH difficult 
to control 

Suitable for low pollutant concentrations in 
waste air 

Less suitable for high 
concentrations 

 Dissolution of gas into 
liquid is the rate limiting 
step, long residence times 
required 

 

 

 

 

 

 

 

 

2.4.3.2 Bioscrubbers 

 Bioscrubbers utilize suspended aqueous biological growth to degrade 

contaminants.  Bioscrubbing can be performed in stirred tank, spray tower, or bubble 

column configurations (DeVinny, et al, 1999).  As with biofilters, water solubility of the 

target contaminant often becomes the rate limiting process.  Reliability of bioscrubbers is 

lower than biofilters due to washout of the process.  Washout occurs when the influent 

mass flow rate of the carbon source does not allow for the growth rate of the 

microorganisms to keep up with the effluent mass flow rate of the liquid medium (Yeom 

and Daugulis, 2001).  Table 2.3 lists advantages and disadvantages associated with 

bioscrubbing devices. 
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Table 2.3:  Bioscrubber Summary (Devinny, et al, 1999) 

Advantages Disadvantages 
 

No medium disposal 
required 
 

High operating costs 

Ability to handle 
variable loads 

Need for complex chemical 
growth media 

Moderate capital cost Reliant on good gas dissolution, 
thus, it removes only highly 
soluble contaminants efficiently 
 

Can handle high flow 
rates 

Mechanical maintenance often 
required 
 

   

 

2.4.3.3 Biotrickling Filters 

 Biotrickling filters use both microorganisms fixed in a biofilm and suspended 

microorganisms to degrade contaminants.  Biotrickling filters are generally constructed in 

packed tower arrangements, with a biofilm growing on the packing material and 

suspended microorganisms in water that is constantly recirculated (trickled) over the 

packed media.  Waste gas flows either co-current or counter current to the water flow.  

Contaminants that absorb into the liquid phase from the gas phase are metabolized by the 

suspended organisms, and contaminants that adsorb to the biofilm are degraded by the 

film taking advantage of processes utilized by both biofilters and bioscrubbers (Devinny, 

et al, 1999).  In a study of ethyl acetate removal during polyurethane manufacturing, it 

was observed that biotrickling filters allow for better control of pressure drop, pH, and 

nutrient feed in comparison to other biofiltration techniques, and the use of synthetic 

media provided increased longevity over natural media used in other configurations 
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(Chang, et al, 2001).  While biotrickling filters have advantages over other biofiltration 

devices, excessive biomass growth leading to clogging of the filters remains a problem.  

Clogging was controlled by both decreased nutrient addition (which ultimately led to 

decreased removal) as well as bed washing with sodium hydroxide (Weber and 

Hartmans, 1996).  Table 2.4 lists advantages and disadvantages of biotrickling filters. 

 

Table 2.4: Biotrickling Filter Summary (Devinny, et al, 1999) 

Advantages Disadvantages 
Moderate operating and 
capital costs 

Dissolution of gas into liquid is 
the rate limiting step, so long 
residence times are required 
 

Effective removal of 
pollutants 
 

Further waste streams produced 

Effective removal of 
acid producing 
pollutants 

Clogging by biomass 

Low pressure drop Increased structure maintenance 

 

2.4.4 Membrane Bioreactors 

 Membrane bioreactors utilize a permeable membrane to separate the liquid and 

gas phases of the reactor vessel.  The basic premise of using a membrane is to create a 

controllable, predictable delivery method to transport gaseous nutrients and/or substrate 

to an attached biofilm.  The hydrophobic membrane acts as the contaminant or nutrient 

transport medium, allowing gaseous contaminants to diffuse through the membrane while 

preventing water from passing through (Devinny, et al, 1999).  Membrane technology 

has been applied in many environmental remediation roles including pollutant extraction 

from wastewater, wastewater aeration systems, and recently gas phase contaminant 

 28



 

removal (Reij, et al, 1998).  Membrane bioreactors allow for complete separation of the 

aqueous and gaseous phases in the system, allowing for more reliable control of operating 

parameters in the system.  The moisture control, pH control, and pressure drop increase 

that plague conventional bioreactor configurations are virtually eliminated with 

membrane systems due to the separation of gas and water phases.  Membrane systems 

also have an advantage over conventional reactors because they do not rely on diffusion 

of the contaminant into the water phase prior to degradation.  As the biofilm is 

established on the outer surface of the membrane, the hydrophobic contaminants are able 

to pass from the membrane directly into the biofilm without complete solubilization 

required, greatly increasing mass transfer ability in the reactor (Reij, et al, 1998).  

Disadvantages of membrane systems include high construction costs (particularly due to 

the use of hollow fiber microporous membranes), and lack of data on long term reliability 

of the systems (Reij, et al, 1998).  Table 2.5 lists advantages and disadvantages of 

membrane bioreactor systems (Rishell, 2002). 
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Table 2.5:  Membrane Bioreactor Summary (Rishell, 2002). 

Advantages Disadvantages 
Moisture and pH easily 
controlled 

High construction 
costs of HFMB's 
 

Pressure drop stays 
constant 

Long term reliability 
undetermined 
 

Increased mass transfer 
ability 
 

 

Degradation in biofilm 
and in suspended 
culture 
 

 

Gas and water flow 
rates easily variable for 
exact retention times 
 

 

 

2.5 Membrane Technology  

 Two functional classes of membrane bioreactors are currently in use in 

environmental remediation roles:  extractive membrane bioreactors (EMB’s) and 

membrane aerated systems (Attaway, et al, 2001).  Extractive membrane bioreactors rely 

on contaminant transport across the membrane from a contaminated gaseous phase to a 

microorganism rich water phase where the contaminants are degraded.  A membrane 

aerated system supplies oxygen or essential gaseous nutrients to a liquid solution in 

which a biofilm is being used to degrade a liquid contaminant.  In this section an 

overview of membrane usage in wastewater and groundwater remediation applications 

will be presented as well as an in depth analysis of their applications in gas phase 

pollutant remediation. 

 

 30



 

2.5.1 Membrane Usage in Wastewater Treatment 

  In a 2003 study performed by Semmens, et al. at the University of Minnesota, 

wastewater contaminated with ammonium acetate was remediated.  The most unique 

aspect of the bioreactor used in this research was its ability to remove both chemical 

oxygen demand (COD) and complete mineralization of ammonium acetate in one reactor.  

This is unique because the complete mineralization of ammonium acetate requires both 

nitrification (aerobic process) and denitrification (anaerobic process).  Nitrification is the 

conversion of ammonium to nitrate and nitrite using oxygen as the electron acceptor.  

Denitrification is the conversion of the nitrate and nitrite into nitric oxide, nitrous oxide, 

and nitrogen gas using nitrate as the electron acceptor (Maeir, et al, 2000).  Both are 

accomplished in membrane aerated bioreactors because the biofilm that grows on the 

membrane becomes stratified.  The biofilm closest to the membrane is rich in oxygen 

making nitrification possible.  The nitrification taking place close to the membrane uses 

up most of the oxygen, so the biofilm farthest from the membrane is oxygen poor making 

denitrification possible (Semmens, et al, 2003).   

For Semmens’ research effort, a 7.0 L reactor was constructed using two vertical 

63 mm i.d. polyvinyl chloride (PVC) tubes connected together in parallel.  The 

membrane module inside each PVC tube consisted of four individually potted bundles of 

polyethylene hollow fiber microporous membranes from Mitsubishi Rayon Corporation.  

The membrane fibers had an outside diameter of 280 µm, and each fiber bundle consisted 

of 400 fibers (Semmens et al, 2003).  The bioreactor was seeded with a sample of 

activated sludge from the municipal wastewater treatment plant in St. Paul, MN.  The 

influent consisted of a solution of ammonium acetate with a nutrient solution of basal 
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mineral salts at varying flow rates from 31.4 to 62.8 mL min-1.  Air was supplied to the 

membrane at a rate of 4.2 L min-1 (Semmens, et al, 2003).  Analysis was performed using 

standard methods for pH, alkalinity, total suspended solids, ammonia, nitrate, and COD 

over 190 days of run time.  Results showed that removal of COD and nitrogen rose to 

over 90% for each after 40 days of operation (Semmens, et al, 2003).  Three separate 

stages were run over the course of the 190 day effort, with each stage adding higher 

concentrations of ammonium to the influent.  Removal rates continued to stay high until 

approximately 140 days of run time.  At this time, the researchers observed no sludge 

waste coming from the process, increased biosolids content, and a shift in biofilm color 

from brown to black.  Along with these observations, removal efficiency suffered.  It was 

hypothesized that as the biofilm grew to a thickness of approximately 600µm, the gas 

flow became increasingly channelized reducing the positive effects of biofilm 

stratification (Semmens, et al, 2003).  The researchers ultimately stated that the design of 

the membrane modules used in this bioreactor was clearly inappropriate for this type of 

application and that the reactor failed because it was choked with biomass (Semmens, et 

al, 2003).  Though the bioreactor did ultimately fail under extremely high loading rates, 

final removal rates for nitrogen were as high as 2 g m-2 day-1 and corresponding COD 

removal rates reached 10 g m-2 day-1 (Semmens et al, 2003).  The final results of this 

research showed that membrane aerated bioreactors are adaptable to unique situations in 

which aerobic and anaerobic processes must occur for complete degradation of a waste, 

and final designs must account for significant biofilm growth. 

 Ahn et al. (2001) directly compared a membrane bioreactor wastewater 

treatment system to a membrane filtration system.  The membrane filtration system tested 
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in this research was similar in operation to a reverse osmosis filter, in that high vacuum 

pressure was applied to one side of the membrane to create a driving force for the 

wastewater across the membrane.  Particles larger than the pore size of the membrane are 

physically filtered out of the wastewater.  Removal of biochemical oxygen demand 

(BOD) and COD were used as indicators of performance.  During this research, it was 

observed that filtration resistance in the membrane bioreactor was over one order of 

magnitude less than the resistance to filtration in the direct membrane separation system.  

Results of the research showed that due to the steady concentration of dissolved carbon in 

the membrane bioreactor system from active biodegradation, the effluent from the 

membrane bioreactor was consistently of higher quality than the effluent from the direct 

filtration unit (Ahn, et al, 2001). 

 

2.5.2 Membrane Usage in Groundwater Remediation 

 Gas transfer through membranes is also gaining popularity in groundwater 

remediation roles due to the ability to reliably transfer exact dissolved gas concentrations 

required for given remediation scenarios over a wide range of depths in the soil and to 

minimize gas losses to the vadose zone in soil systems (Roggy, et al, 2002).  However, 

studies focusing on oxygen transfer for remediation of benzene, toluene, ethylbenzene, 

and xylene as well as injecting oxygen and methane for remediation of trichloroethene 

have shown gas transfer losses due to buildup of biofilms and inorganic precipitates on 

membranes (Chiang, et al, 1999; Hartley, et al, 1999; Benner, et al, 2000; and Newell, et 

al, 2000).   
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In a 2002 Strategic Environmental Research Development Program (SERDP) 

funded study, performed by Roggy, et al. at the University of Minnesota, membranes 

were used to transfer hydrogen to a laboratory-scale soil system contaminated with 

tetrachloroethene for reductive dehalogenation.  The focus of the Roggy study was to 

quantify the effects of biofouling and iron sulfide buildup on the membrane surfaces with 

respect to mass transfer of the injected gas to a groundwater system.  This study showed 

that biofouling and precipitate buildup increase resistance to mass transfer by creating 

tortuous paths of transfer to the contaminated groundwater.  While resistance was 

increased, causing nearly an 80% decrease in mass transfer in stagnant systems, in 

systems flowing at velocities typical of groundwater systems, the increased resistance 

resulted in negligible changes to mass transfer of the gas into the groundwater (Roggy, et 

al, 2002).  The Roggy research also concluded that in groundwater systems using 

membranes to transfer gases, the systems should be installed in a manner that would 

make them easily removable for acid washing to periodically remove biological buildup 

to prevent channeling. 

In a study by Bruce and Schroeder (2002), groundwater contaminated with nitrate 

was remediated using a hollow fiber membrane bioreactor.  The system was an ex-situ 

treatment process, which passed the nitrate contaminated groundwater along a membrane 

separating the contaminated groundwater from a denitrifying culture.  The nitrate 

diffused through the membrane and was eliminated by hydrogenotrophic denitrification.  

The hydrogenotrophic denitrification culture was used to circumvent the addition of an 

organic substrate to the culture (Bruce and Schroeder, 2002).  Removal ranged from 92% 

to 96% with influent concentrations of 20 to 40 mg L-1 nitrate as nitrogen.  Removal 

 34



 

capacities achieved ranged from 2.7 to 5.2 g NO3 - -N m-2 d-1 (Bruce and Schroeder, 

2002).   

 

2.5.2 Membrane Usage in Gas Phase Pollutant Remediation 

 Throughout the research conducted on membrane extraction of gaseous pollutants 

for biodegradation, two types of membranes are typically used.  The first is the hollow 

fiber microporous membrane (HFMB), and the second is the dense phase membrane.  A 

hollow fiber membrane bioreactor (HFMB) utilizes a hydrophobic microporous 

membrane bundle immersed in water as both a support structure for the growth of the 

biofilm and as a method to transport the substrate and electron acceptor to the 

microorganisms in the biofilm (Ergas, et al, 1999).  The microscopic pores are too small 

for bacteria and water to enter into the membrane, but large enough to allow gaseous 

substances to pass through to the attached biofilm.  A dense phase membrane differs from 

the hollow fiber microporous membrane in that it does not have micropores in the 

membrane.  Instead, it depends on the dissolution and consequent diffusion of the 

gaseous contaminant into and through the membrane structure to reach the biofilm 

attached to the outer wall.  For successful membrane applications, it is essential that the 

contaminant of concern is 100 – 10,000 times more permeable through the membrane 

than air (Yeow, et al, 2002). 

 

2.5.2.1 Hollow Fiber Microporous Membrane Applications 

   In a 1999 study performed by Ergas, et al., a polypropylene HFMB was tested.  

The HFMB consisted of 2,400 membrane fiber bundles with an inner diameter of 200 
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µm, an outer diameter of 250 µm, and length of 19.5 cm.  The overall surface area of the 

HFMB was 0.37 m2 (Ergas, et al, 1999).  This membrane was immersed in water in a 

glass cylinder with aluminum end caps.  The system was configured in a counter current 

flow pattern, with water and air flows traveling in opposite directions along the length of 

the vessel.  The reactor was inoculated with microorganisms obtained from the activated 

sludge unit of the Amherst, MA wastewater treatment facility.  A basal mineral salts 

solution was also added to the liquid phase of the reactor to support biofilm growth.  

Samples of influent and effluent water and gas were analyzed using a Varian 3500 gas 

chromatograph (GC) and a flame ionization detector.  During the course of the research, 

toluene was passed through the reactor at an influent concentration of 200 ppmv at a flow 

rate set to achieve a gas residence time of 1.8 seconds inside the reactor.   

Samples were taken every two days during the course of the test.  Sample results 

showed toluene removal as high as 62% in the first three days, with a sharp decline to 

only 28% removal on day four.  Following the sharp decrease in removal seen on day 

four, a gradual increase in removal efficiency was observed and reached a peak removal 

of 72%.  The sharp decrease and gradual increase observed in removal efficiency were 

attributed to starvation conditions in the liquid phase followed by slow growth of the 

biofilm on the hollow fiber membrane leading to more efficient removal (Ergas, et al, 

1999).  The maximum elimination capacity reported from this study was 42 g m-3 min-1.   

In a 1996 study performed by Parvatiyar, et al., a bioreactor similar to the one 

used in the previous study was employed using a polysulfone hollow fiber membrane 

cartridge to biodegrade a toluene contaminated air stream (Parvatiyar, et al, 1996).  The 

Parvatiyar study varied influent toluene concentrations from 200 ppmv to 600 ppmv at air 
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flow rates from 40 to 80 milliliters per minute.  The maximum toluene removal achieved 

was 84%, observed at an influent flow rate of 80 milliliters per minute at 600 ppmv 

(Parvatiyar, et al., 1996).   

Another application of a HFMB system used to remove contaminants from a 

contaminated effluent was the 2002 study performed by Min, et al. in which a HFMB 

was used to nitrify (aerobically convert) nitric oxide to nitrate (Min et al., 2002).  A 

synthetic effluent stream designed to mimic that resulting from coal burning applications 

was created in the laboratory.  The influent gas consisted of 15% CO2, 5% O2, 77% N2 

and 100 ppm NO (Min, et al., 2002).  This influent was directed through a reactor 

containing a bundled fibrous membrane with inner diameter of 200µm, outer diameter of 

284 µm, and porosity of 42%.  The influent gas was transferred through the membrane to 

nitrifying bacteria which quickly oxidized the NO to nitrate (NO3
-).  Maximum removal 

was achieved with an elevated influent gas temperature of 55 ºC, and ranged from 69% to 

73% removal. 

 

2.5.2.2 Dense Phase Membrane Applications 

 Hollow fiber membranes have proven to be effective, but researchers have 

experienced problems such as biomass plugging at high organic load rates, requirement 

of constant back flushing, and significant material expense (Attaway, et al, 2001).  Dense 

phase membranes eliminate the problem of biofilm plugging due to their lack of pores 

and are constructed from common rubber materials such as silicone and latex, keeping 

their costs low.  Dense phase membranes, specifically silicone rubber or 

polydimethylsiloxane (PDMS), have been primarily utilized for aeration purposes due 
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their high oxygen permeability (Reij, et al, 1998).  Dense phase membranes can also be 

tailored more effectively for the transport of specific compounds.  Dense phase 

membranes rely on a compound’s solubility into the dense phase material itself for 

transport, so selected contaminants can be extracted from influent mixtures through 

preferential transfer in the membrane.  Preferential removal can be a major advantage of 

using dense phase membranes over hollow fiber membranes, which rely on bulk transport 

of contaminants through the micropores in the HFMB (Reij, et al, 1996).   

A 2001 study examined the effectiveness of using a dense phase membrane to 

degrade BTEX compounds (benzene, toluene, ethylbenzene, m-xylene, o-xylene, and p-

xylene) using microorganisms obtained from an industrial portage site in Charleston, 

South Carolina (Attaway, et al, 2001).  For this research two distinct BTEX degrading 

isolates were defined by plating them on basal salts agar exposed to BTEX vapors 

(Attaway, et al, 2001).  The reactor was inoculated with only the two Pseudomonas 

putida isolates, which were fed a basal mineral salts solution and liquid BTEX, directly 

into the liquid phase of the reactor to establish the biofilm.  Oxygen was used as the 

electron acceptor and was supplied by diffusion through the membrane.  The dense phase 

membrane bioreactor was constructed from two 15.24 meter lengths of Dow-Corning 

Silastic tubing with inner diameter of 1.02 mm and outer diameter of 2.15 mm.  The 

membrane tubing was arranged in a spiral configuration inside a cylindrical 

polypropylene shell with dimensions of 6.5 cm x 18.5 cm (Attaway, et al, 2001).  This 

reactor was set up with counter current water/air flow.   

Analysis of influent and effluent gas and liquid was performed with a Hewlett-

Packard 5890-A gas chromatograph and a flame ionization detector.  Influent 
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concentration of BTEX vapors was set at 600 ppmv at a flow rate of 250 ml min-1.  This 

flow rate equates to a residence time of 6 seconds inside the reactor.  Required residence 

times are typically longer for dense phase systems than HFMB systems due to the lower 

mass transfer due to the decreased mass flow rate across the membrane material 

(Attaway, et al, 2001).  Influent concentration was varied up to 2600 ppmv, and 

additional biofilm growth was observed during increased influent concentration 

(Attaway, et al, 2001).  Overall removal of the BTEX substrate was found to be as high 

as 98% removal at influent concentration of 700 ppmv, or 30 µg cm-2 hr-1.  To obtain 

consistent performance greater than 98% for BTEX removal, a loading rate of 

approximately 23 µg cm-2 hr-1 or less was required (Attaway, et al, 2001).  At the 

beginning of testing of the reactor, Attaway et al observed high removal efficiency 

followed by a sharp decrease, then a gradual increase in removal efficiency much like 

that observed by Ergas, et al (1999).  The observance of this phenomenon further 

emphasizes the theory that suspended organisms are in a starvation state prior to the 

introduction of the substrate and rapidly remove all of the substrate until mass transfer 

through the liquid phase becomes limiting.  Once liquid phase mass transfer is limiting, 

removal increases as the biofilm is established on the outer wall of the membrane 

(Attaway, et al, 2001).   

In a 1995 study performed by Frietas dos Santos, et al., a dense phase membrane 

reactor was used to aerobically degrade 1,2-dichloroethane (DCE).  A spirally wound 

silicone membrane with overall surface area of 2.5 m2 was used to transfer the DCE to 

the degrading biofilm on the outer surface of the membrane.  Influent DCE 

concentrations of 0.65 mg L-1 were optimally reduced to 0.06 mg L-1 for a removal 

 39



 

efficiency of 91% (Freitas dos Santos, et al, 1995).  The main advancement this research 

made to membrane bioreactor technology was the development of a way to control toxic 

byproducts created through metabolism of wastes.  During the destruction of DCE, the 

microorganisms produced hydrochloric acid (HCl), which could have created an acidic 

aqueous environment for the microorganisms, eventually inactivating the degradation 

process or even killing off the microorganisms completely.  However, since the gas and 

water phases in a membrane bioreactor are kept separate, pH was easily controlled in the 

liquid medium during recirculation with the addition of a buffer solution (Frietas dos 

Santos, et al, 1995).  This would be virtually impossible in a conventional bioreactor 

configuration, making the advantage of membrane systems obvious.  Frietas dos Santos, 

et al. (1995) also compared the membrane bioreactor directly to a bioscrubber in terms of 

overall mass transfer efficiency, and found that the membrane bioreactor was 289% more 

efficient at mass transfer than the bioscrubber (Frietas dos Santos, et al, 1995). 

Later work was performed with a variety of compounds in dense phase membrane 

systems, including the removal of benzene and toluene using silicone and latex 

membranes by Cole (2001), removal of methane using a silicone membrane by Rishell 

(2002), and removal of toluene using a silicone membrane performed by England (2003).   

Cole (2001) found that with low liquid flow rates (2.5 mL min-1) and exact influent 

concentrations of benzene and toluene, near 100% removal efficiency could be achieved.  

Another important finding during the Cole (2001) study was that removal achieved by 

membrane bioreactors does not directly scale up.  In his research, two bioreactors were 

constructed, one exactly twice the length of the other.  Identical influent concentrations 

and water and air flow rates were set for both reactors, but the larger reactor removed 
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only slightly more of the VOC’s than the smaller reactor, implying that there are 

limitations to the amount of contaminated gas that bioreactors can remove (Cole, 2001). 

Rishell (2002) found in the growth of a methanotrophic culture on silicone 

membrane for removal of methane from a contaminated air stream, transfer of oxygen 

across the membrane was the rate limiting process, similar to conventional bioreactors.  

Rishell (2002) concluded that two distinct, independent factors could be altered to 

increase oxygen transfer to the biofilm:  increasing mass transfer through the membrane 

or increasing mass transfer through the liquid film between the membrane and the 

biofilm.  To increase mass transfer across the membrane, the mass transfer resistance 

across the membrane must be decreased by using thinner membranes or applying 

pressure on the gas phase side of the membrane.  To increase mass transfer through the 

liquid film, the liquid film resistance must be decreased, most efficiently by increasing 

the water velocity through the reactor, increasing the Reynolds number to above 1500 

(Rishell, 2002).  Cole (2001) and Rishell (2002) show there is a trade-off to be 

considered between low liquid flow rates to increase contact time with the membrane and 

the biofilm, resulting in more degradation as observed by Cole (2001), and higher liquid 

flow rates to decrease the liquid film resistance resulting in increased oxygen transport to 

the biofilm as observed by Rishell (2002). 

 England (2003) used different bioreactor designs and operating conditions to 

perform a number of experiments related to dense phase membrane bioreactors.  These 

experiments examined impacts of recirculated vs. stagnant water flow, determined 

impacts of nutrient limitation to the biofilm, ability of membrane bioreactors to scale up, 

effects of increased temperature operation, and the performance of membrane bioreactors 
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used with transient loading.  The same bioreactor used in this study to remove JP-8 

components was used by England (2003) to remove toluene from a contaminated air 

stream.  The toluene-removing bioreactor employed 3/8” I.D., 1/2" O.D., 1/16” wall 

thickness silicone tubing membrane(s).  The large, dual tube module was a 77.5 cm in 

length, 5.72 cm outer diameter clear polyvinyl chloride (PVC) pipe, with two plastic end 

caps, and a reactor volume of 1990 cm3.  Each silicone tube had an external tube surface 

area of 263.5 cm2, for a total surface area of 527 cm2, with a total lumen volume of  94.11 

mL.  The reactor had an air flow of 1370 mL min-1 and a gas residence time of 4.1 s.  

Liquid flow rates were maintained at 10 mL min-1 throughout the course of experiments 

run on this reactor.  All samples were analyzed using gas chromatography with flame 

ionization detection of influent and effluent concentrations of toluene.   

 In many of the experiments, England (2003) showed flexibility of dense phase 

membrane bioreactor systems.  These experiments included the recirculated vs. stagnant 

water experiment, the nutrient limitation experiment, and the temperature change 

experiment.  In the first, England (2003) tested the effects of water circulation on two 

different bioreactors, a single silicone tube reactor and the dual silicone tube system 

described above, used to remove toluene from a contaminated air stream.  The first phase 

of the recirculation experiment was performed by setting up the reactor systems with 

counter current water recirculation.  During this phase of the test, removal rates of 32 mg 

m-2 h-1 for the single tube system and 42 mg m-2 h-1 for the dual tube system were 

achieved.  During the second phase, the water flow was turned off and the water in the 

reactor was left stagnant.  Removal efficiencies of 41 mg m-2h-1 for the single tube and 40 

mg m-2h-1 for the dual tube system were observed.  These results suggest that bioreactor 
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systems do not require flowing water to be effective, decreasing the potential energy 

requirements of the system and potentially expanding applicability to scenarios in which 

power supply could be a considerable difficulty (England, 2003). 

 In the second experiment, nutrient solutions were altered to examine the effect of 

nutrient starvation on the degrading biofilms.  In the first phase of this experiment, a full 

compliment of nutrients in a solution of nitrogen, phosphorous, sulfur, potassium, 

magnesium, calcium, sodium and iron were fed to the biofilms.  Removal rates were 

observed at 19 mg m-2 h-1  for the single tube reactor and 42 mg m-2 h-1 for the dual tube 

reactor.  In the second phase, the nitrogen in the single tube reactor’s nutrient solution 

was removed.  Results showed removal of 13 mg m-2 h-1.  The phosphorous in the dual 

tube reactor’s nutrient solution was removed, and results of 40 mg m-2 h-1 removal were 

observed.  Through the study of this system as well as other nutrient starved biofilm 

scenarios, it was concluded that nutrient cycling occurs within established biofilms, so 

external nutrient supplementation is not necessary for some systems once viable biofilms 

have been established.   

 The third experiment determined the effects of increased temperature on the 

toluene removal ability of a small single tube membrane bioreactor.  During the first 

phase of this experiment, the reactor was operated at ambient temperature (23º C) for two 

weeks.  During this operation, removal of 17 g m-3 h-1 toluene was attained.  During 

increased temperature operation, the liquid flow into the reactor was heated to a 

temperature of 37.5 ºC.  The reactor was operated at this temperature for 36 days, during 

which removal of 20 g m-3 h-1 toluene was attained.  Though the increased temperature 

reactor removal rates did increase to a small extent, the increase was expected to be more 
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pronounced than the results showed.  The increase was expected, due to the expected 

increase in biological activity that occurs at higher temperatures, typically on the order of 

twice the biological activity at a 10 ºC temperature increase (DeVinny, et al, 1999).  

Ultimately, it was deduced that an increase in the Henry’s Law Coefficient due to the 

temperature increase may have resulted in less solubilized toluene, as well as lower 

diffusion rates into the membrane, preventing removal from increasing as expected 

(England, 2003). 

2.6 Conclusion 

 Throughout the study of the literature surrounding this research effort, three 

things have become clear:  volatile components of JP-8 can be a significant 

environmental and health threat if released untreated, the flexibility exhibited by 

membrane bioreactor systems are the reason they have such exciting possibilities in an 

unlimited number of environmental remediation roles, and a successful dense phase 

membrane bioreactor appears to be a viable option for the treatment of the volatile 

components found in JP-8.  Membrane systems, whether microporous or dense phase, 

have been successfully tailored to remediate air pollution, groundwater, and wastewater.  

The successful completion of this thesis effort will serve as a step forward toward the 

goal of establishing a remediation system that is easy to design, inexpensive to construct, 

requires little maintenance, and allows for complete degradation of the target compounds. 
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3.0 Methods and Materials 

 

3.1 Overview 

 This research demonstrated the ability of a membrane bioreactor to transfer and 

degrade cyclohexane.  The bioreactor vessel used consisted of a clear polyvinyl chloride 

(PVC) outer shell with two inner silicone tube membranes passing through white PVC 

end caps.  Contaminated air was passed through the inside of the tubes, and liquid with 

nutrient salts solution was passed through the inside of the PVC, outside of the silicone 

tubes.  The bioreactor inoculum was prepared using seed from a microbial consortium 

known to degrade JP-8 fuel, soil microbes, and activated sludge from the Fairborn, Ohio 

Wastewater Treatment Plant.  Daily measurement of influent and effluent gas 

concentration was performed.  Analysis was accomplished using gas chromatographic 

separation and flame ionization detection.   

 

3.2 Bioreactor Construction 

 The dual silicone tube bioreactor used in this project was constructed by 

laboratory technicians at the University of Missouri-Rolla for use in doctoral research 

(England, 2003).  The dual tube module was a 77.5 cm long, 5.72 cm outer diameter clear 

PVC pipe with two PVC end caps.  The overall reactor volume was 1990 mL.  Each 

silicone tube had an external tube surface area of 263.5 cm2, for a total surface area of 

527 cm2, with a total lumen volume of 94.11 mL.  The silicone tubes employed as the 

membrane of the reactor were 3/8” I.D., 1/2" O.D., 1/16” wall thickness silicone tubing 

membranes (Cole-Parmer Incorporated, catalog number 06411-12).   
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 The reactor was constructed in a counter current gas/liquid flow configuration.  

The liquid was fed into the reactor from a 1.0 L Erlenmeyer flask by a Fisher Scientific 

Variable Flow Mini-Pump (S/N 230215961) peristaltic pump.  The flow rate was set at 

2.0 L min-1 and turned off during initial biofilm growth stages.  The liquid flow rate was 

determined by measuring the amount of time the liquid flow filled a 500 mL graduated 

cylinder and dividing the volume filled by the time required to fill it.  Once the biofilm 

was established, the liquid flow rate was not altered.  In previous studies, it was observed 

that liquid flow rate did not make a significant difference to the performance of similar 

bioreactor designs (England, 2003).  Once the liquid flowed through the reactor, it was 

routed back to the Erlenmeyer flask which functioned as a bubble catcher.  Figure 3-1 

shows the liquid phase schematic. 
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Figure 3-1: Liquid Phase Schematic.  Samples ports were installed up and down stream, 
and a flask was used as a bubble catcher. 
 

The water sample ports were constructed of “T” style Swagelok fittings inserted at 

upstream and downstream locations in the liquid flow path.  Septa for the sample ports 

were obtained from VOC sample bottles with Teflon® and silicone layers.  Valves were 

also inserted at upstream and downstream locations in the liquid line to seal the reactor 

when not in use.   

Gas flow through the reactor is shown in Figure 3-2.  Gas flow was routed from 

the exhaust port of a Gilian Hi Flow Sampler model HFS-513A air pump (S/N 112-140) 

through a Swagelok “T” fitting with the flow passing to either a metered valve (as a 
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bypass) or to a gas tight stopper in a 1.0 liter volumetric flask which contained pure 

liquid phase cyclohexane.  The stopper in this flask had two ports:  one for the air coming 

in from the pump, and the other going out to the second metered valve.  This 

configuration allowed the cyclohexane in the gas phase above the liquid cyclohexane to 

be directed to the reactor.  The flow was then directed to the reactor vessel, and branched 

off into both silicone tubes by another “T” fitting.  All gas flow was routed through Cole 

Parmer 1/8” outside diameter stainless steel tubing (Catalog Number 03300-05).  Sample 

ports were installed upstream and downstream of the reactor vessel to allow for sampling 

of the gas phase contaminants.  These sample ports were constructed in like manner to 

the liquid sample ports, using VOC sampling bottle septa in a “T” fitting.  The septa were 

changed out weekly throughout the course of the project.   

Once the air flow passed through the reactor, it was directed out of the reactor and 

channeled through silicone tubing to a Gilmont model GF-120 rotameter.  The rotameter 

was placed downstream from the reactor in the system to prevent any obstruction to the 

feed flow upstream of the reactor, and was used as a visual reference for air flow rate in 

the reactor.  Once the air had passed through the rotameter, it was directed out of the 

building through a fume hood.  The rotameter was calibrated by recording readings 

during air flow calibration with a Bios Dry Cal and ensuring the reading stayed constant 

throughout the course of the research. 
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Figure 3-2: Gas Phase Schematic.  Needle valves were used to control concentrations 
entering the reactor, sample ports were installed up and down stream, and a rotameter 
was used to verify flow rate daily. 

 

Gas flow rates were varied from 1,100 to 1,410 mL per minute, resulting in residence 

times of 4.0 to 5.1 seconds.  This flow rate was calibrated daily with a Bios Dry-Cal 

primary flow rate standard.  Additionally, the rotameter was checked daily as an 

operational check to ensure the flow rate stayed constant.  Figure 3-3 shows the reactor 

configuration. 
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Figure 3-3:  Completed Reactor Configuration 

 

3.3.  Bacterial Inoculum 

The bacteria used to degrade the cyclohexane in this study were obtained from 

three separate sources and combined:  a JP-8 storage tank located at the Paramount 

Refinery in Los Angeles, California; composted soil from Dr. Charles Bleckmann’s 

residence; and activated sludge from the Fairborn Wastewater Treatment Plant in 

Fairborn, Ohio.  The JP-8 degrading consortium was obtained from personnel working at 

the Air Force Research Laboratory (AFRL) Fuels Division.  The research focus of the 

Fuels Division personnel was to determine all of the organisms present in the sample 

through 16s RNA analysis.  The Paramount Refinery sample was chosen because, out of 
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24 samples analyzed by the AFRL personnel, the Paramount sample was the most 

completely identified.  The organisms known to exist in the sample were 

Caulobacteraceae bacterium, Rhodococcus species, Aquabacterium species, Bacillus 

lichenformis, and Alicaligenes species (AFRL, 2004).   

Initially, only the bacterial consortium from the Paramount Refinery sample was 

used as a seed to degrade cyclohexane.  Due to the limited success of this consortium 

degrading cyclohexane, 50 mL of the composted soil sample was added to the seed 

culture.  The addition of the soil allowed for slightly better degradation of the 

cyclohexane, but it was decided that the addition of the activated sludge to the seed 

culture would provide the highest probability of selecting for an organism or organisms 

capable of aerobically degrading cyclohexane.  Ultimately, all three bacterial sources 

were added to a solution of deionized water and mineral salts to support growth.  100 mL 

of each bacterial source was added to 600 mL of deionized water in a 1 L container.  100 

mL of cyclohexane was added to the solution as a carbon source.   

A Hach Biochemical Oxygen Demand (BOD) buffer nutrient solution was also 

added to support the growth of the culture with essential nutrients.  The buffer pillow 

used was intended for a 3.0 liter BOD buffer solution.  The buffer pillow consisted of 

ammonium chloride, calcium chloride, ferric chloride, magnesium sulfate, monobasic 

and dibasic potassium phosphate, dibasic sodium phosphate, and deionized water.  This 

culture was placed on a stir plate and stirred at 300 revolutions per minute for 7 days with 

the cap on loosely to allow oxygen to penetrate the solution.  After the initial 7 day 

mixing period, clouding of the solution was observed, an indication of biological growth.  
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This solution was constantly stirred for 14 days prior to inoculation of the reactor vessel. 

Cultures are shown in Figures 3-4 a and b. 

 

           

a.) Paramount Refinery                b.) Mixed Culture 

 
Figure 3-4:  Bacterial Cultures. a.) Biofilm in Paramount Refinery sample. b.) Bacterial 
inoculum culture during stirred growth. 
 
 
 
3.4 Gas Chromatography Methods 
 
 For measurement of the cyclohexane in the gas phase, gas chromatographic 

separation was used in association with flame ionization detection.  An Agilent 6890 gas 

chromatograph (GC) with a flame ionization detector (FID) (S/N US10339021) was used 

for this work.  The column used in the gas chromatograph was an Agilent DB-624 

column designed for fuel hydrocarbon analysis.  Helium was used as the carrier gas for 

this application due to its inertness and high resolution qualities, and nitrogen, hydrogen, 

and compressed air were used as combustion gases for the FID.  Gas chromatography 

procedures are listed in Appendix A.  The method used for cyclohexane measurement is 

shown in Table 3-1. 
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Table 3-1:  Gas Chromatography Method 

Inlet    

 Temperature (ºC): 235  
 Pressure (psi): 14.1  
 Flow Rate (mL min-1): 44.2  
 Split Ratio 25 to 1  
 Split Flow (mL min-1): 40  
    
Column   

 Description: Agilent # 123-1334, DB-624 
  260 ºC Max  
  0.32 mm x 30 m x 1.8 µm 
 Capillary 30.0 m x 320 µm x 1.80 µm 

nominal 
    
 Mode: Constant Pressure  
 Inlet:  Front  
 Detector: FID  
 Outlet Pressure: Ambient  
 He Flow:   
  Pressure (psi): 15.1 
  Flow (mL min-1): 1.6 
  Velocity (cm sec-

1): 
37 

    
Oven    

 Setpoint (ºC): 240  
 Hold (min): 2.5  
    
Detector   

 Heater (ºC): 260  
 H2 Flow (mL min-1): 40.0  
 Air Flow (mL min-1): 450.0  
 N2 Flow (mL min-1): 25.0  
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3.4.1 Standards and Calibration Procedures 

 Calibration of the GC/FID was accomplished by analyzing the headspace of 

varying concentrations of cyclohexane in water.  The gas phase concentration of the 

cyclohexane in the headspace of the sample vials was calculated using the universal 

Henry’s constant for cyclohexane shown in Equation 3.1 (Benjamin, 2002).   

 

                                                     HCliquid = Cair                                                     (3.1) 

H = Universal Henry’s Constant (unitless) 
Cliquid = Aqueous Concentration of Cyclohexane (mg L-1) 
Cair = Gas Phase Concentration of Cyclohexane (mg L-1) 

 
 

A Henry’s constant of 0.195 atm m3 mol-1 was converted to a dimensionless Henry’s 

constant of 7.9 (Cyclohexane, EPA, 1994).  To calibrate the instrument, four varying 

aqueous concentrations of cyclohexane were analyzed.  To prepare these standards, 

varying amounts of High Pressure Liquid Chromatography (HPLC) grade cyclohexane 

were added to 200 mL of deionized water in a 250 mL amber glass bottle, capped with 

Mini-nert® valves, and allowed to equilibrate for 30 minutes.  To prepare the standards, 

aqueous concentrations were determined by converting the volume of cyclohexane 

injected to mass injected using the specific gravity of cyclohexane (779 µg µL-1), and 

dividing the injected mass by the volume of the solution to determine the aqueous 

concentration in milligrams of cyclohexane per liter of solution.  Each calibration 

standard was analyzed six times, averaged, then plotted in Microsoft Excel™ to 

determine the slope of the calibration curve using linear least squares regression analysis 
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(Skoog et al, 1998).  Two point calibration checks were run daily throughout the course 

of the project.   

 

3.5 Sampling Plan 

 To effectively observe the diffusion of the cyclohexane across the silicone 

membrane and destruction by the microorganisms, a two phased sampling plan was 

employed.  Phase I focused on the ability of the cyclohexane to diffuse across the 

membrane by calculating mass closure in the reactor, and the focus of Phase II was to 

observe the behavior of the reactor with the active biofilm in place.   

 

3.5.1 Phase I:  Membrane Diffusion 

 A cyclohexane contaminated airstream was passed through the system prior to 

inoculation with the microorganisms to determine the integrity of the reactor as well as 

the ability of the cyclohexane to diffuse across the silicone membrane.  This portion of 

the sampling plan consisted of operating the reactor system at set flow rates and 

analyzing influent and effluent gas phase concentrations as well as effluent water phase 

concentrations to ensure mass closure within the reactor system.  Determination that all 

of the mass of contaminants entering the reactor in the vapor phase was accounted for in 

either the effluent vapor or water phase indicates there were no leaks in the reactor or 

diffusion through the PVC shell or end caps.  During the mass closure experiment, the 

water phase was not recirculated. The effluent water was disposed of and fresh deionized 

water was fed into the reactor.  This change eliminated the possibility of biasing the water 
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phase effluent samples through continued mass transport into but not out of the water 

phase.   

For the mass closure experiment, the reactor was set up to run at the set flow rates 

(1410 mL min-1 air flow, 2.0 L min-1 water flow), and allowed to operate this way for 4 

hours to achieve steady state mass transfer conditions.  Three vapor phase influent, vapor 

phase effluent, and water phase effluent samples were then collected.  All vapor phase 

samples taken during the course of this research effort were obtained using VICI 

Precision Sampling 250 µL Pressure-Lok® Precision Analytical Syringes, with a sample 

size of 100 µL per sample.  Liquid phase samples were obtained using 5.0 mL syringes.  

50 mL of liquid was collected in a 100 mL VOC tight sampling vial and head space 

analysis was performed.  Mass closure was calculated based on percentage of influent 

mass flow rate compared to effluent mass flow rate, seen in equation 3.2 (England, 2003). 

                            

                                                                                                                 (3.2) %100
InFlowMass

ClosureMass% xOutFlowMass
=

 

3.5.2 Phase II: Active Biofilm Sampling 

For the remainder of the research effort, sampling was performed throughout the 

period of growth and establishment of the biofilm on the silicone membrane.  Samples 

were collected each day for 38 days.  The sampling plan instituted for Phase II included 

daily analysis of six influent and six effluent gas samples.  Occasional effluent water 

samples were analyzed, however, water sample results were deemphasized since the 

exact metabolic pathways of the microorganisms are not fully understood.  Results were 

reported on basis of mass removal rate per membrane surface area (Equation 3.3), mass 
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removal rate per reactor volume or elimination capacity (E.C., Equation 3.4), and percent 

removal (Equation 3.5) (DeVinny, et al, 1999). 

 

 

                                                                               (3.3) 
Air Flow Rate*Amount RemovedMass Removal per Area =

Me Ambrane rea
 

 

                                                                             (3.4) 
VolumeModule

RemovedRateFlowAir
=

Amount*Capacity Elim.

 

 

Effluent Concentration% Removal =  * 100%
Influent Concentration

      (3.5) 

3.5.3 pH Monitoring 

During the active biofilm sampling phase, the pH of the liquid in the reactor was 

also monitored daily using an Oakton Instruments pH Testr 3 + pH meter (S/N 35624-

86).  Three point calibration checks were run daily in accordance with the manufacturer’s 

instructions using Yellow Springs Instruments standard pH 4, 7, and 10 buffer solutions. 

 

3.6 Statistical Analysis 

 For each set of samples run during Phase I and Phase II of the project, statistical 

analysis was performed to establish confidence in the sampling results.  The method limit 

of detection for the GC/FID method was calculated using Equation 3.6 (Christian, 2003): 
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                                                         3.3 * σLOD=
m

                              (3.6) 

LOD = Limit of Detection 
σ = Standard Deviation of Blanks 
m = Slope of Calibration Curve 

 
Also useful to this research was the method limit of quantitation (LOQ), using the y-

intercept of the calibration curve as a value representative of the LOQ.  The y-intercept 

was used because any response below that value resulted in a non-real negative 

concentration using the equation of the line for the calibration curve, presented in 

equation 3.7. 

 
                                                    y= mx + b                                                (3.7) 

 
y = response from GC 

m = slope of calibration curve 
x = corresponding gas phase concentration 

b = y-intercept 
 
 

Other statistical analysis determined 95% confidence intervals around the mean of 

influent and effluent samples taken.  By calculating confidence intervals, more complete 

analysis of system performance was obtained due to the inclusion of standard deviation 

of the samples taken (Gilbert, 1987).  Throughout the statistical analysis used in this 

research, it was assumed that the distribution of samples was approximately normally 

distributed.  With that assumption and relatively small numbers of samples, the use of the 

t-statistic was deemed most appropriate for the calculation of the confidence intervals 

(McClave, 2001).  Equation 3.8 was used to calculate the confidence intervals (McClave, 

2001). 
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                                                                                                          (3.8) 

     

- sX ± t * 
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

−

X = Sample Mean 
t = t statistic value for 95% confidence level for given degrees of freedom 

s = sample set standard deviation 
n = number of samples collected 

 

Error was tracked throughout the course of the project using the summed squares method, 

in which error for values subtracted are accounted for by calculating the square root of 

the those errors squared, using Equation 3.9 (Christian, 2003). 

                   2 2
Overall Influent EffluentError = Error +Error

                      (3.9) 
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4.0 Results and Discussion 

 
4.1 Overview 
  
 This section discusses the results of gas chromatography and mass closure 

experiments performed with JP-8 and n-pentane, and the challenges faced in the 

remediation of these chemicals in contaminated air.  The reasons for using cyclohexane 

as the compound representing JP-8 are presented.  Then, cyclohexane gas 

chromatography results, mass closure, and removal capabilities of the membrane 

bioreactor are displayed and discussed.  The order of this chapter is as follows: 

 

 4.2:  JP-8 Analysis, Transfer, and Challenges 

 4.3:  n-Pentane Analysis, Transfer, and Challenges 

 4.4:  Cyclohexane Gas Chromatography Results 

 4.5:  Cyclohexane Mass Closure Results 

 4.6:  Cyclohexane Removal with Active Biofilm 

 4.7:  Cyclohexane Liquid Phase Results 

 

4.2 JP-8 Analysis, Transfer, and Challenges 

 The original intent of this research was to determine the ability of the dual 

silicone membrane bioreactor to remove the volatile compounds from a JP-8 

contaminated airstream.  Gas chromatographic analysis of these volatiles was attempted 

by mixing varying concentrations of JP-8 in deionized water and analyzing the headspace 

of these aqueous solutions.  The primary difficulty encountered in this analysis was 

quantifying the large number of different compounds in the fuel.  Each head space 

 60



 

analysis resulted in approximately 100 different peaks in the chromatogram.  Using the 

Autointegration function of the gas chromatograph’s software, the area under all of the 

peaks was summed to create a value representing the concentrations analyzed.  The 

values of the summed areas varied widely between duplicate analyses.  Accuracy was no 

better than 30% between any two given runs at equal concentrations, and often 

confidence intervals for different concentrations overlapped.  The difficulty in 

reproducible analyses was likely due to several factors, including human error from 

manual injections, variable volatilities of the different chemicals in JP-8, and depletion of 

the most volatile compounds from the head space through the repeated analyses. 

 During the mass closure analysis of JP-8, it became apparent that the peak 

summation method would not result in an accurate representation of the reactor’s removal 

capability.  Each compound in JP-8 has unique permeability properties in the silicone 

material.  Due to these unique properties, some of the compounds exhibited excellent 

transfer, while others exhibited virtually no transfer across the membrane.  For the peak 

summation method to have given an accurate representation of the removal in the reactor, 

transfer properties for all of the compounds would have had to be identical.   

Chromatograms of the gas phase effluent were very different from gas phase influent 

chromatograms, and did not provide accurate comparisons between influent and effluent 

concentrations.     

 Another challenge to the reactor’s successful removal of JP-8 was that the 

microbial culture that had been grown to mineralize the JP-8 had been grown on an 

aqueous solution of JP-8.  In the solution, all of the soluble compounds present in JP-8 

were available to the organisms.  In the reactor system, the organisms only had access to 
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those compounds capable of successful transfer through the membrane.  Since the exact 

metabolic pathways of the microbial culture were unknown, it was unclear if the culture 

would have been able to survive in the reactor.  However, since most microbial 

communities are adaptable to a wide range of different systems, the likelihood of the 

culture’s complete demise was low (Maier, et al, 2000). 

 Because of the difficulties in analysis and varied transfer properties of the JP-8 

across the membrane, the focus of the research was changed to examine only one of the 

compounds found in JP-8.  N-pentane was originally chosen as a representative of the 

volatile organic compounds present in JP-8.  N-pentane is a five carbon straight chain 

alkane, and was believed to represent a large portion of the most volatile straight chain 

compounds present in JP-8, from C4 to C16.  JP-8 consists of 28% C4 to C16 by weight 

(Pleil, et al, 2000).  Also present in JP-8 are polynuclear aromatic hydrocarbons (PAH) 

and alkyl PAHs like naphthalene and alkyl naphthalene, cyclic ringed molecules such as 

cyclohexane, hydrazine, mercaptans, chloroform , trichloroethene, tetrachloroethene, and 

multiple benzene, ethylbenzene, xylene, and toluene variations (Pleil, et al, 2000). 

 

4.3 n-Pentane Analysis, Transfer, and Challenges 

 Analysis of n-pentane was much more straightforward than JP-8.  Instead of a 

large number of peaks to analyze, the chromatograms consisted of only one well defined 

peak.  Retention time in the column was 2.0 minutes.  Replicate analyses of the standard 

concentrations used to create a calibration curve resulted in a maximum of only 3.4% 

variablity among 6 replicates.  The calibration curve was also precise, with a correlation 

coefficient of 0.9975.  The calibration curve is presented in Figure 4.1. 
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n-Pentane Calibration Curve
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Figure 4.1:  n-Pentane Calibration Curve.  n-Pentane analysis was accurate and precise, 
resulting in a calibration curve correlation of 0.9975. 
 

 Mass closure analysis was accomplished through analysis and comparison of 

influent gas phase to combined effluent gas and liquid phases.  Mass closure was 

performed to establish the ability of the membrane to transfer the contaminant and to 

ensure that no mass was escaping the system through leaks, cracks, or diffusion through 

the PVC outer shell.  N-pentane mass closure accounted for 98.8 +/- 1.06% of the mass 

introduced into the system with a 95% confidence interval.  This result gave good 

indication that no mass was escaping the system, and presence of n-pentane in the liquid 

samples indicated mass transfer was occurring across the membrane.  N-pentane 

sampling data, calibration data, and mass closure analysis data is presented in Appendix 

B. 
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 Despite accurate calibration and good mass transfer in the reactor, n-pentane 

proved to be too volatile for realistic use in this research.  N-pentane is very volatile, with 

a vapor pressure of 420 mmHg (NIOSH, 2004).  Due to the high volatility, the reactor 

system was eliminating approximately 1 L of n-pentane every 5 days, most of it passing 

through the reactor and not removed.  The cost of the continued use of n-pentane 

prohibited further use in this project.  Due to the large available supply in the AFIT 

laboratory, it was decided that cyclohexane would be used as another representative 

compound for JP-8.  Cyclohexane was representative of the ring compounds in JP-8. 

 

4.4 Cyclohexane Gas Chromatography Results 

 Chromatography of standard aqueous cyclohexane standards proved to be very 

similar to chromatography of n-pentane.  Retention time for cyclohexane was 2.1 

minutes.  The largest variability between replicates was 7.7%, most likely due to human 

error of manual injections.  The calibration resulted in a curve with a correlation 

coefficient of 0.99.  The calibration curve is presented in Figure 4.2. 
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Cyclohexane Calibration Curve
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Figure 4.2:  Cyclohexane Calibration Curve.  Results were accurate and precise, with a 
correlation of 0.99 achieved. 
 

The method limit of detection, calculated using equation 3.6, resulted in positive 

detection capable at a response of 3981 response units.  The y-intercept of the calibration 

curve line was 40,131,447 response units, corresponding to a gas phase concentration of 

0 mg L-1.  This value was used as the method limit of quantitation.  All influent and 

effluent gas phase samples resulted in responses well above the method LOQ.  All data 

used to determine the calibration curve for cyclohexane can be seen in Appendix C. 

 

4.5  Cyclohexane Mass Closure  

 Mass closure analysis was performed using cyclohexane in the membrane 

bioreactor.  Six replicate analyses each of the influent gas phase, effluent gas phase, and 

effluent liquid phase were run.  In this mass closure analysis, 97.5 +/- 10.6% of the mass 

introduced into the reactor was accounted for in the effluent gas and liquid phases with a 
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95% confidence interval.  The average influent concentration during the mass closure 

analysis was 114.2 mg L-1, and the average effluent concentration was 111.1 mg L-1.  

Liquid samples returned a detectable, but not a quantifiable result.  Like the n-pentane 

mass closure, the result of the cyclohexane mass closure analysis gave good indication 

that no mass was escaping the system and that mass transfer was occurring across the 

membrane.  All cyclohexane mass closure data can be seen in Appendix D. 

 

4.6   Cyclohexane Removal with Active Biofilm 

Following the mass closure analysis, the bioreactor was inoculated with 500 mL 

of a viable batch of cyclohexane degrading organisms.  Sampling began 72 hours after 

inoculation.  Initial results showed very little removal of cyclohexane in the system.  

Initially, the water phase of the reactor became supersaturated and the concentration 

gradient drove cyclohexane from the water phase to the gas phase.  The result of 

undesirable concentration gradient was higher effluent gas phase concentrations than 

influent gas phase concentrations.  After 5 days of operation, the organisms in the reactor 

mineralized enough of the cyclohexane in the system to permanently change the 

concentration gradient in the desired direction, from gas phase to liquid phase.  From day 

5 through day 38, the reactor continued to increase in removal performance as the biofilm 

was established on the membrane.  The biofilm was slightly noticeable on day five, and 

by day ten, a clearly visible biofilm approximately 1-2 mm thick had grown on the 

membrane.  Figure 4.3 presents the gas phase influent and effluent concentrations over 

the course of the research.  Tabular concentration data is presented in Appendix E. 
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Figure 4.3:  Influent and Effluent Timeline.  Reactor performance improved throughout 
the course of the research. 
 

In Figure 4.3, an overall trend of increasing removal is displayed.  The graph also 

depicts the fluctuating influent concentrations.  The average influent concentration was 

44.5 +/- 5.8 mg L-1, and the average effluent concentration was 35.4 +/-4.9 mg L-1, both 

with a 95% confidence interval giving an average removal of 20.4%.  The influent 

concentrations fluctuated as a result of the amount of liquid cyclohexane in the 

volumetric head space flask and the amount of bypass flow allowed in the system.  As the 

liquid cyclohexane was depleted throughout the research and the flask was refilled, 

influent concentrations would rise as seen on days 7, 12, 18, 25, and 34.  At day 22, the 

bypass flow in the system was considerably decreased driving more flow directly from 

the head space flask to the reactor, effectively increasing the influent concentration.  The 

influent concentration was increased in an attempt to find the maximum removal 

capabilities of the reactor. 
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Another useful representation of any environmental remediation system’s 

performance is to analyze the concentration leaving the reactor (Cout) in comparison to 

the concentration that entered the reactor (Cin).  This data is presented over the course of 

the research in Figure 4.4, and depicts the improvement in performance observed over the 

course of the research. 
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Figure 4.4:  Cout/Cin Timeline.  Displays decreases seen in reactor performance related to 
reactor draining and decreased liquid flow rate on days 9, 12, 17, and 37. 
 

A difficulty encountered in the course of this research was keeping the liquid 

flowing correctly through the reactor.  The peristaltic pumps being used to pump the 

liquid through the reactor often wore through the tubing used in the peristaltic portion of 

the pump.  As the tubing was worn through, the liquid would leak out of the tubing, 

draining the reactor and often dislodging the biofilm from the surface of the membrane.  

This occurred on days 9, 12, 17, and 37.  Figure 4.4 depicts the results of this occurrence 

on those days, with cyclohexane removal suffering significantly.  As soon as the water 
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flow was started again, mass transfer was restored.  This supports the findings of Rishell 

(2002), by demonstrating an increase in mass transfer with an increase in liquid flow in 

the reactor. 

Reactor performance was primarily measured in mass removal rate, or mass 

removed per time per surface area of the membrane.  Mass removal rate accounts for 

influent load, flow rate (thus residence time) in the reactor, and surface area of the 

membrane, and is a commonly used performance parameter for membrane bioreactors 

(Cole, 2001; England, 2003; Ergas, et al, 1999).  Influent load, or the mass flow rate 

entering the reactor divided by the membrane surface area, ranged from 395.8 to 2189.4 

mg min-1 m-2.  The average influent load was 1020.8 +/- 138.6 mg min-1 m-2, with a 95% 

confidence interval.  The average removal rate of the membrane bioreactor in this 

research was 202.3 +/- 47.9 mg min-1 m-2 with a 95% confidence interval.  Figure 4.5 

presents the mass removal rate of the reactor over the course of the experiment.  A trend 

line was added to this figure using linear least squares analysis to depict the increase in 

mass removal rate observed over the course of the experiment. 
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Figure 4.5:  Mass Removal Rate Timeline.  Cyclohexane removed based on membrane 
surface area.  The trend line was added to depict the overall increase in performance over 
the course of the research. 
 

Another measurement taken to represent reactor performance is elimination 

capacity, measured in units of mass per time per volume of reactor.  Elimination capacity 

is very similar to mass removal rate, but uses the reactor volume instead of the membrane 

surface area as a dimensional measurement.  Elimination capacity is often used as a 

performance descriptor in conventional bioreactor designs (DeVinny, et al, 1999).  The 

average elimination capacity of this reactor was 321.4 +/- 76.2 g m-3 hr-1, with a 95% 

confidence interval.  Figure 4.6 presents the elimination capacity achieved by the reactor 

over time. 
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Figure 4.6:  Elimination Capacity Timeline.  Cyclohexane removal based on total reactor 
volume.  Similar in appearance to Figure 4.3, differing only in y-axis scale and units. 
 

The decrease in removal from draining the reactor can also be observed in Figures 4.5 

and 4.6 on days 9, 12, 17, and 37.  Also, fluctuation in mass removal rate can be observed 

in Figures 4.5 and 4.6, primarily due to fluctuation of influent concentration. 

The results of the research showed that removal rate (thus elimination capacity) 

was proportional to the influent load rate.  Increasing mass removal rates were observed 

with higher influent load rates.  The maximum removal rate achieved (596.6 mg min-1 m-

2) was observed at the maximum influent load rate introduced to the system (2189.5 mg  

min-1 m-2).  Figure 4.7 presents this correlation graphically, and tabular data is presented 

in Appendix E. 
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Figure 4.7:  Influent Load Rate vs. Mass Removal Rate.  Data based on surface area of 
membrane.  Direct correlation between influent load and mass removal rate displayed 
through increased removal rate occurring at increase influent load rates.  
 

The overall trend of data presented in Figure 4.7 shows increasing removal 

correlated to increasing influent load.  The data resembles expected removal rates in 

conventional bioreactor systems as depicted in DeVinny, et al, (1999), exhibiting 

increased removal rate with increased influent load.  Conventional bioreactors exhibit this 

same trend, reaching a maximum point at which the removal rate does not increase 

further with increased influent load (DeVinny, et al, 1999).  Figure 4.8, adapted from the 

DeVinny text, displays the conventional bioreactor trend graphically. 
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Figure 4.8:  DeVinny Elimination Capacity Curve (DeVinny, et al, 1999).  Displays trend 
for conventional bioreactors to exhibit 100% elimination capacity to a maximum 
elimination capacity, at which elimination capacity levels off. 
 

Figure 4.7 also displays five points with no removal, occurring at influent loads of 

1197, 957, 1744, 1530, and 593 mg min-1 m-2.  Four of these points (1197, 957, 1744, and 

1530 mg min-1 m-2) occurred during the first five days of the reactor’s testing, prior to 

establishment of the biofilm.  The fifth point (593 mg min-1 m-2) occurred on day 17 

following a drainage episode which completely removed the biofilm.  There are also four 

points at influent loads (1939, 1755, 1222, and 1252 mg min-1m-2) which exhibited 

removal rates less than 200 mg min-1m-2.  This low removal rate does not seem to fit the 

removal curve.  These four data points occurred on days 6, 7, 8, and 9, as the biofilm in 

the reactor was initially establishing itself on the membrane and was not fully developed, 

perhaps explaining the decreased removal rates.  Also presented in Figure 4.7 is a line 

representing 100% removal.  The membrane bioreactor in this research never achieved 
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100% removal of the influent cyclohexane, possibly due to the gas phase flow rate set at 

a rate too high to allow for all of the cyclohexane to transfer through the membrane, or 

limited by the degradation rate of the microorganisms in the reactor.  The inability to 

achieve 100% removal was also observed in other work (England, 2003, Rishell, 2002). 

 Reactor performance was higher than performance observed in conventional 

bioreactor designs, as reported by DeVinny, et al (1999), but not as efficient as some 

others listed in this report.  In comparison to England’s work (2003), the reactor in this 

research was loaded at a much higher influent load rate, which is a possible explanation 

for the increased removal observed in this research.  England’s (2003) highest load rate 

was approximately 550 g m-3 h-1, while the reactor in this research was maximally loaded 

at almost 3,500 g m-3 h-1.  However, a much lower elimination capacity was observed in 

this research than in Ergas, et al, (1999) and Attaway, et al, (2001).  The decreased 

elimination capacity could have been due to cyclohexane having lower membrane 

permeability in comparison to aromatics like BTEX compounds, the air flow rate set too 

high (resulting in a low residence time), the membrane thickness limiting diffusion, or 

resistance to biological degradation at low concentrations.  Table 4.1 presents the results 

of this research in comparison to others. 
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Table 4.1:  Comparison of Bioreactor Performance:  While in the range of comparable 
conventional systems, the membrane bioreactor in this research achieved lower 
elimination capacity than others in the literature. 

 
 Study Bioreactor Type Contaminant Max Elimination Capacity 

(g hr-1 m-3 ) 
DeVinny, et al, 
1999 

Conventional VOC's 5-229 

Ergas, et al, 
1999 

MBR, Polypropylene 
HFMB 

Toluene 2520 

Attaway, et al, 
2001 

MBR, Silicone BTEX 2580 

England, 2003 MBR, Silicone Toluene 220 
Roberts, 2005 MBR, Silicone Cyclohexane 947.8 

 

4.7   Cyclohexane Liquid Phase Results 

The liquid phase of the reactor was sampled on 5 separate occasions throughout 

the course of the research.  Each liquid sample resulted in a detectable, but not 

quantifiable amount of cyclohexane in the liquid phase.  The average liquid response was 

4287235 response units.  The limited amount of cyclohexane in the liquid indicates that 

degradation is occurring by organisms suspended in the liquid culture. Periodic pH data 

was collected throughout the research.  Liquid phase pH measurements varied slightly, all 

falling between pH’s of 6.94 and 7.05.  All data gathered to determine cyclohexane active 

biofilm and liquid phase results can bee seen in Appendix E.
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5.0 Conclusion and Recommendations 

5.1 Conclusion 

 The purpose of this research was to examine the ability of a membrane bioreactor 

to remove and degrade volatilized components from a JP-8 contaminated airstream.  

Cyclohexane was used as a representative compound of those volatile components of JP-

8 jet fuel.    The research questions answered throughout the course of this research were: 

1.  What is a membrane bioreactor and where is this technology being applied? 

2.  Would cyclohexane diffuse through the dense phase membrane? 

3.  If diffusion occurred, would the biofilm derived from the Paramount Refinery, 

composted soil, and activated sludge grow on the dense phase membrane and eventually 

degrade the cyclohexane? 

4.  If successful degradation occurred, what was the removal rate the membrane 

bioreactor could achieve? 

Each question was answered.  A summary of those answers, research limitations, 

recommendations for improvement, and suggestions for further research are presented in 

this section. 

5.2 Research Questions Answered 

 Membrane bioreactors are systems which use porous hollow fiber membranes or 

dense phase membranes to supply either degradable substrate or vital nutrients or gases to 

an active biological community.  Membrane bioreactors are being used widely 

throughout environmental remediation roles, to include wastewater, groundwater, and air 

pollution systems.  Their advantages include separation of phases, large surface areas for 
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transport, and increased control over system parameters such as liquid and gas phase flow 

rates, pH, and pressure drop. 

 Cyclohexane successfully diffused through the dense phase silicone membrane 

used in the membrane bioreactor, as indicated by the mass closure experiment.  As the 

concentration gradient was increased, cyclohexane transfer across the membrane 

increased as well.  The concentration gradient was increased through increased biological 

degradation, increased liquid flow rate in the reactor, and increased influent load rate 

introduced into the reactor.      

 The biological culture grown to degrade cyclohexane successfully formed a 

biofilm on the silicone membrane and established a favorable concentration gradient in 

the reactor system within 5 days of inoculation.  Throughout the course of the research, 

the biofilm proliferated and cyclohexane removal in the system continued to improve.  

The biofilm was essentially destroyed four different times due to the reactor draining, but 

each time the biofilm re-established itself on the membrane and continued to remove 

cyclohexane from the airstream. 

 The maximum removal rate achieved (596.5 mg min-1 m-2) was observed at the 

maximum influent load rate introduced to the system (2189.4 mg min-1 m-2).  Though the 

maximum removal was only attained one day, it indicated that this membrane bioreactor 

system was capable of removing and successfully degrading considerable amounts of 

cyclohexane.  As influent load rate increased driving the concentration gradient higher, 

removal rate increased as well.  Maximum elimination capacity achieved was 947.8 g hr-1 

m-3.  The elimination capacity achieved was higher than England’s (2003) due to 

significantly higher load rates applied to the reactor during this research.  However, the 
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elimination capacity was significantly lower than those achieved by Ergas, et al. (1999) 

and Attaway, et al. (2001).  The elimination capacity could have been lower due to less 

efficient mass transfer through the silicone membrane or less efficient degradation of 

cyclohexane by the biofilm. 

 

5.3 Research Limitations 

 This research was limited primarily by the use of cyclohexane as a representative 

compound of JP-8 jet fuel.  The results of this research should not be directly applied to a 

JP-8 remediation scenario without further research.  The difficulty in maintaining an 

efficient water flow through the system presented a major limitation.  Each time the water 

flow was interrupted, removal suffered and the biofilm was often dealt a major setback.  

Another limitation to this research was the lack of complete understanding of the 

metabolic pathways and degradation rates of the microorganisms.  Metabolic pathways 

should be determined to ensure no harmful byproducts were being formed, and 

degradation rates should be determined to predict a quantifiable concentration gradient in 

the system to understand its loading and removal capabilities.  Also, this research was 

limited in the ability to adequately supply enough influent load to test the maximum 

removal capabilities of the reactor.  Only one data point was obtained at an influent load 

above 2000 mg min-1 m-2, and the highest removal rate was consequently attained at this 

high load rate.  This result indicates that the reactor was capable of more removal, and 

was limited by the load rates tested. 
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5.4 Suggestions for Improvement  

To improve future research on this membrane bioreactor, the reactor should be 

configured with a failsafe liquid pump.  Each time the liquid pump developed an air 

bubble, that air bubble was transported into the reactor.  To remove the air bubbles, the 

reactor had to be tipped up in the direction of the effluent water port.  Each time the 

reactor was tipped and the air bubble traveled along the length of the reactor tube, the 

bubble removed large amounts of the biofilm attached to the silicone membrane.  This 

removal required the biofilm to re-establish itself periodically, essentially starting the 

growth process over each time.  The biofilm was also removed by draining of the reactor 

as mentioned in section 4.5.  The draining was also due to the liquid peristaltic pump.  

These problems could have been eliminated by using a submersible jet drive pump. 

Another suggestion for improvement is to configure the reactor in a vertical 

arrangement, as configured by England (2003).  The horizontal arrangement used in this 

research allowed air bubbles that entered into the reactor from the liquid pump to stay in 

the reactor.  When dealing with volatile chemicals that readily partition from aqueous 

solution to gas phase, it is likely that any air bubbles in the reactor could form pockets 

where the cyclohexane could partition into the gas phase, making it unavailable for the 

suspended organisms to degrade.  With the reactor configured vertically, air bubbles 

would simply pass through the reactor and out the top without staying in the reactor for a 

long period of time. 
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5.5 Recommendations for Future Research 

 Future research on this membrane bioreactor system should include determination 

of biological degradation rates and mass transfer rates of the silicone membrane.  

Knowledge of these parameters would allow the researcher to model the system, taking a 

step toward accurate prediction of the system’s capabilities at given influent load rates. 

 In pressing on toward the goal of determining the ability of a membrane 

bioreactor to remove and degrade JP-8 from a contaminated air stream, I would suggest 

this same project be attempted using the dense phase membrane bioreactor’s ability to 

remove a complex polynuclear aromatic hydrocarbon present in JP-8, like naphthalene.  

Past research has shown the ability of similar reactors to remove BTEX compounds, 

straight chain compounds, and now cyclic structured compounds.  The successful 

removal of a complex PAH would complete the body of research for all classes of 

volatile compounds present in JP-8. 

 Another future research focus should be on testing a porous hollow fiber 

membrane instead of a dense phase silicone membrane for JP-8 removal.  Hollow fiber 

membranes more efficiently transfer bulk materials, and do not rely on the ability of the 

contaminants to diffuse into and through the membrane like silicone membranes.   

  

5.6 Significance  

 This research filled a vacant niche in the body of knowledge regarding membrane 

bioreactor applications: transport and removal of cyclic ring structured compounds.  By 

demonstrating the ability of a dense phase membrane to successfully transport the cyclic 

structured cyclohexane to an active biofilm, future researchers and engineers can have 
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confidence in applications involving many different ring structured compounds, including 

those found in JP-8 and many solvents used throughout the Air Force.  This research has 

completed another step toward application and field deployment of a simple and effective 

air pollution control system that could be successfully tailored to a number of different 

applications. 
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Appendix A: Gas Chromatography Procedures 
 

Part I: Daily Operating Instructions 
 

1. Open Chemstation from Desktop of GC Computer 
 
2. Load Method (###.M) File, Cyclohexane.M 

-If no method exists for operation, see Part II, Establishing a Method 
 

3.  Turn on gases in Gas Storage Closet nearest GC (turn valves counter clockwise 
until regulator shows pressure) 

 -Set Compressed Air to 60 psi 
 -Set Hydrogen to 25 psi 
 -Set Helium to 40 psi 
 -Set Nitrogen to 60 psi 
 -These flows set to work with Cyclohexane.M method, pressure may need to be 

tailored for other methods 
 
       4.  Allow GC to warm to operating temperatures and light the FID 
 Monitor flows and temperatures from control panel on “Instrument #1” window 
 

5. From “Instrument #1” window, click on “Method” dropdown 
 
6. Select “Run” 

-Instrument #1 MSTop/Enhanced window will pop up 
 

      7.  Choose Data File Path for results to be directed to 
 
      8.  Name Data File (###.D)  DateEffluent/Influent#x.D   
 Example:  15 Jan Effluent #1.D 
 

9. Ensure “Data Acquisition” and “Data Analysis” are checked 
 
10. Click on “Run Method” 

 
11. Machine will cycle, ask you to press “Prep Run” and then “Start”.  Instructions 

will pop up on the computer screen. 
 

12. When GC readout (on the GC itself, above the key pad) says “Ready for 
Injection”, press “Prep Run” key 

 
13. Obtain sample, inject into appropriate inlet 

 
14. Press “Start” key to start the run 

 
15. Observe run from “Instrument #1” Window 
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-At completion of run, auotintegrated results file (xxx.txt) will automatically pop 
up 
 

      16.  Save results file as in/out#.txt on flash drive for Excel import (example, out1.txt) 
 
      17.  Return to step # 5 and repeat until all samples are completed 
 
      18.  When all samples are completed, load “Sleepmode.M” file 
 
      19.  Turn off all gases (tighten all valves clockwise until you can’t turn them      

anymore) 
 
 
 
Part II:  Establishing a Method 
 

1. Click on “Instument #1” Window 
 
2. Choose Method Pulldown 

 
3. Click on “Edit Entire Method” 

 
4. Edit all three choices, Method Information, Instrument/Acquisition, and Data 

Analysis 
 

5. Enter any notes you want in the Method Comments section 
 

6. Hit OK 
 

7. Inlet and Injection Parameters Screen: 
a. Choose Inlet 
b. Choose Source 
c. Check “Use MS” if you want to use the Mass Spectrum Detector 

 
8. Hit OK 

-Control Panel will pop up 
 

      9.  Click on each section to change that parameter 
 -As you review settings and go to next parameter, notice a blue check comes up in 
the box you just checked if you didn’t change anything.  If you changed something in the 
last section, a blue x will appear 
 
      10.  Injector 
 -only applicable if you’re using the autoinjector 
 
      11.  Values 
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 -Not Applicable 
 
      12.  Inlets 
 -Set Front and Back inlets to desired values (flows, temps, splits, gases) 
 
      13.  Columns 
 -Ensure correct inlet and detector for each column 
 -Changing flow rates in this screen can affect flow rates in inlet screen, be sure to 

double check if changes are made 
 
      14.  Oven 
 -Set temperatures and ramps 
 
      15.  Detectors 
 -Front  Flame Ionization Detector 
 -Back  Electron Capture Detector 
 -Set temperature and flow rates 
 -Rules of thumb/starting values: 
 -Temperature of FID must be at least 20 degrees higher than maximum 

oven temperature in method 
  -Hydrogen flow should be around 40.0 mL/min 
  -Compressed Air should be around 400-450 mL/min 
  -Make up flow (Nitrogen) should be around 25.0 mL/min 
  -Make sure flame is “On” 
 
      16.  Signals 
 -Will determine what graphs you see on the instrument panel 
 
      17.  Auxilliary 
 -Not Applicable 
 
      18.  Runtime 
 -Leave at set mode 
 
      19.  Options 
 -Allows you to change units, lock down keyboard, and change column 

compensation 
 
      20.  When done with all changes, click “Apply” 
 -Notice that all blue checks and x’s disappear 
 
      21.  Hit OK 
 
      22.  GC Real Time Plot 
 -Will determine what graph you will see in real time on the instrument panel 

(from the signals chosen in step 16) 
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      23.  Select Reports 
 -Percent Report Gives Areas under Peaks 
 -LibSearch Report is only used with Mass Spectrum Detector (MSD), searches 

results against known values 
 -Quant Report is also only used with MSD, quantifies values 
 
      24.  Hit OK 
 
      25. Report Options 
 -For each report you picked in step 23, allows you to pick and choose options 
 
      26.  Hit OK 
 
      27.  Select Printer 
 
      28.  Hit OK 
 
      29.  Save Method As 
 -Establish Data File Path 
 -Name Method File (.M) files 
 
      30.  Hit OK 
 
      31.  Return to Part I to continue running samples 
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Appendix B: n-Pentane Information 
 
 

Calibration Data: 
 
Run # Response Response Response Response 
Aqueous Conc (mg L-1) 5 50 150 300
1 172983114 1960149573 4605500438 9103424231
2 174303328 1959600423 4568703101 9138530880
3 168580620 1919557795 4552170107 9049095238
4 169721500 1933585497 4489907354 9068328846
5 170087392 1932552434 4469592567 8958060852
6 168368112 1933364268 4475031898 8965313164
Average 170674011 1939801665 4526817578 9047125535
% Error 3.41 2.07 2.95 1.97
Standard Deviation 2427128.08 16422390.97 56403835.67 72943433.15
95% UCL 173221540 1957038711 4586019402 9123687426
95% LCL 168126482 1922564619 4467615753 8970563644
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Mass Closure Data: 
 

Influent     
 Run  Area   
 1 609292927   
 2 620819184   
 3 586161228   
 4 612434020   
 Ave 607176840   
 stdev 14831108   
 95% UCL 626457280   
 95% LCL 587896400   
     
Effluent 1 618559995   
 2 590317506   
 3 583349535   
 4 610073186   
 Ave 600575056   
 stdev 16488465   
 95% UCL 622010060   
 95% LCL 579140051   
     
Water Effluent 1 3890590   
 2 1623462   
 3 1178153   
 4 828402   
 Ave 1880151.8   
 stdev 1379218.5   
 95% UCL 3673135.9   
 95% LCL 87167.644   
     
 Effluent Total Response Conc (mg L-1) 
 95% UCL 625683196  14.42381 
 Ave 602455207  13.63559 
 95% LCL 579227219  12.84738 
     
 Influent    
 95% UCL 626457280  14.45008 
 Ave 607176840  13.79582 
 95% LCL 587896400  13.14156 
     
 Mass Closure (%)   
 95% UCL 99.818218   
 Ave 98.838612   
 95% LCL 97.761466   
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Appendix C: Cyclohexane Calibration Data 
 
 

Run# Area Area Area Area Area 
Gas Phase Conc (mg L-1) 0 19.75 39.5 197.5 395
Aqueous Conc (mg L-1) 0 2.5 5 25 50
1 8515 95523015 126415455 415286259 740332314
2 8523 98938355 125740717 433013667 780888326
3 8289 97570866 127472032 429769399 778112075
4 11428 101917746 133466935 436381354 760609761
5 7763 98351634 124811217 430329410 788754199

6 6812 97145215 123070298 428700755 776465707
Average Response 8555 98241139 126829442 428913474 770860397
% Difference 40.39202 6.2744039 7.7896724 4.8340963 6.1390336
Standard Deviation 1548.73 2147290 3578556.6 7225849.9 17560144
Minimum Detection Limit 3981.785     
Limit Of Quantitation  40131448     
95% UCL 10180.56 100494948 130585518 436497772 789291635
95% LCL 6929.443 95987329 123073367 421329176 752429159
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Appendix D:  Cyclohexane Mass Closure Data 
 
 

Run # Influent Response Effluent 
Response 

Liquid Response 

1 269052329 259670081 856939 
2 244624918 251385333 1154289 
3 252237878 264261301 7076210 
4 260932543 261231705 7121045 
5 243931030 244431985 6742811 
6 257205135 187504545 1169928 
    
Average Response 254663972 244747492 4020204 
    
Standard Deviation 9743120 28969353 3246868 
95%UCL 264890412 275153909 7428137 
95% LCL 244437532 214341074 612270 
    
 Influent Total  Effluent Total 
95% UCL 264890412 95% UCL 282582046 
Ave 254663972 Ave 248767695 
95% LCL 244437532 95% LCL 214953345 
    
 Influent Conc (mg L-1)  Effluent Conc (mg L-1) 
95% UCL 119.6595073 95% UCL 129.0783626 
Ave 114.2150491 Ave 111.0759281 
95% LCL 108.7705909 95% LCL 93.07349362 
    
    
 Mass Closure (%)   
95% UCL 1.078713807   
Ave 0.972515697   
95% LCL 0.855686201   
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Appendix E:  Active Removal Information 
 
 

Day # Influent Average 
Response 

Effluent Average 
Response 

Cin (mg L-1) Cout (mg L-1) 

1 124210452 128200981 44.76 46.89
2 125926797 117824335 45.68 41.36
3 107350278 110504226 35.79 37.47
4 162579238 169233015 65.19 68.73
5 147562211 153507345.2 57.20 60.36
6 128060603 123584796 46.81 44.43
7 176327008 165024908 72.51 66.49
8 163372092 152745783 65.61 59.95
9 83511303 81218672 23.10 21.87
10 73941756 68772669 18.00 15.25
11 137921980 122395929 52.06 43.80
12 85170596 83107808 23.98 22.88
13 77158286 70555164 19.71 16.20
14 78249807 69991909 20.29 15.90
15 88003314 76612051 25.49 19.42
16 75757225 72238050 18.97 17.09
17 93554808 94221336 28.44 28.80
18 106889102 84389151 35.54 23.56
19 100102472 82114709 31.93 22.35
20 85000382 75151011 23.89 18.64
21 86086971 76594090 24.47 19.41
22 131398884 104544881 48.59 34.29
23 142848833 114619366 54.69 39.66
24 154113962 120484303 60.68 42.78
25 130372893 100776082 48.04 32.29
26 102278842 82984695 33.09 22.81
27 106401586 84615475 35.28 23.68
28 146688810 113443580 56.73 39.03
29 142412295 103897129 54.45 33.95
30 138168028 106090718 52.19 35.12
31 154573027 121193315 60.93 43.16
32 148348712 115005746 57.61 39.86
33 139913644 108258296 53.12 36.27
34 237159245 183476282 104.90 76.32
35 160718158 125458608 64.20 45.43
36 136431596 107780362 51.27 36.02
37 114845350 95338390 39.78 29.39
38 109437481 86569182 36.90 24.72
Average 123759159 106645377 44.52 35.41
Standard 
Deviation 

34762233.7 29300763.1 18.5 15.6

95% UCL 134811949.3 115961671.9 50.4 40.4
95% LCL 112706367.8 97329083.1 38.6 30.5
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Day # Delta C Cout/Cin Flow Rate (L 
min-1) 

Membrane Area 
(m2) 

1 -2.1 1.05 1.41 0.0527 
2 4.3 0.91 1.41 0.0527 
3 -1.7 1.05 1.41 0.0527 
4 -3.5 1.05 1.41 0.0527 
5 -3.2 1.06 1.41 0.0527 
6 2.4 0.95 1.41 0.0527 
7 6.0 0.92 1.41 0.0527 
8 5.7 0.91 1.41 0.0527 
9 1.2 0.95 1.41 0.0527 
10 2.8 0.85 1.41 0.0527 
11 8.3 0.84 1.41 0.0527 
12 1.1 0.95 1.41 0.0527 
13 3.5 0.82 1.41 0.0527 
14 4.4 0.78 1.41 0.0527 
15 6.1 0.76 1.1 0.0527 
16 1.9 0.90 1.1 0.0527 
17 -0.4 1.01 1.1 0.0527 
18 12.0 0.66 1.1 0.0527 
19 9.6 0.70 1.1 0.0527 
20 5.2 0.78 1.1 0.0527 
21 5.1 0.79 1.1 0.0527 
22 14.3 0.71 1.1 0.0527 
23 15.0 0.73 1.1 0.0527 
24 17.9 0.70 1.1 0.0527 
25 15.8 0.67 1.1 0.0527 
26 10.3 0.69 1.1 0.0527 
27 11.6 0.67 1.1 0.0527 
28 17.7 0.69 1.1 0.0527 
29 20.5 0.62 1.1 0.0527 
30 17.1 0.67 1.1 0.0527 
31 17.8 0.71 1.1 0.0527 
32 17.8 0.69 1.1 0.0527 
33 16.9 0.68 1.1 0.0527 
34 28.6 0.73 1.1 0.0527 
35 18.8 0.71 1.1 0.0527 
36 15.3 0.70 1.1 0.0527 
37 10.4 0.74 1.1 0.0527 
38 12.2 0.67 1.1 0.0527 
Average 9.1 0.80   
Standard Deviation 7.8 0.1   
95% UCL 11.6 0.8   
95% LCL 6.6 0.8   
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Day # Influent Load  
(mg m-2 min-1) 

Mass Removal Rate 
(mg m-2 min-1) 

Reactor Volume 
(m3) 

Elimination 
Capacity  
(g m-3 h-1) 

1 1197.6 0.0 0.00199 0.0
2 1222.1 115.4 0.00199 183.4
3 957.5 0.0 0.00199 0.0
4 1744.2 0.0 0.00199 0.0
5 1530.3 0.0 0.00199 0.0
6 1252.5 63.8 0.00199 101.3
7 1940.0 161.0 0.00199 255.8
8 1755.5 151.4 0.00199 240.5
9 617.9 32.7 0.00199 51.9
10 481.6 73.6 0.00199 117.0
11 1392.9 221.2 0.00199 351.4
12 641.5 29.4 0.00199 46.7
13 527.4 94.1 0.00199 149.5
14 543.0 117.6 0.00199 186.9
15 532.0 126.6 0.00199 201.1
16 395.9 39.1 0.00199 62.1
17 593.7 0.0 0.00199 0.0
18 741.8 250.0 0.00199 397.3
19 666.4 199.9 0.00199 317.6
20 498.6 109.5 0.00199 173.9
21 510.7 105.5 0.00199 167.6
22 1014.2 298.4 0.00199 474.2
23 1141.4 313.7 0.00199 498.5
24 1266.6 373.7 0.00199 593.8
25 1002.8 328.9 0.00199 522.6
26 690.6 214.4 0.00199 340.7
27 736.4 242.1 0.00199 384.7
28 1184.1 369.4 0.00199 587.0
29 1136.6 428.0 0.00199 680.1
30 1089.4 356.5 0.00199 566.4
31 1271.7 370.9 0.00199 589.4
32 1202.6 370.5 0.00199 588.7
33 1108.8 351.8 0.00199 558.9
34 2189.5 596.6 0.00199 947.9
35 1340.0 391.8 0.00199 622.6
36 1070.1 318.4 0.00199 505.9
37 830.3 216.8 0.00199 344.4
38 770.2 254.1 0.00199 403.8
Average 1020.8 202.3  321.4
Standard 
Deviation 

436.1 150.8  239.6

95% UCL 1159.4 250.2  397.6
95% LCL 882.1 154.3  245.2
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