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Abstract 

 Current polymer membrane technology suffers from an inability to overcome 

shape deformation problems caused by intrinsic stresses from the membrane casting and 

mounting processes.  This poses a difficult challenge to the US Air Force, which has a 

critical requirement for parabolic-shaped membrane mirrors for surveillance satellites.  

One method to overcome the shape deformation problem is to coat the membrane mirrors 

with a stressed coating to compensate for the shape deformations caused by the intrinsic 

stresses.  However, previous attempts using sputtering, thermal evaporation, and electron 

beam evaporation met with limited success due to growth technique limitations.  An 

innovative method to grow yttria stabilized zirconia (YSZ) thin films on CP1 polymer 

substrates and silicon substrates using controlled-stress large-area pulsed laser deposition 

(PLD) technique was developed.  In addition, an optical time-of-flight (TOF) sensor 

system for control of the PLD process with respect to YSZ thin film stress was 

investigated and incorporated into the PLD process control systems.  Initially, the PLD-

grown YSZ film stress was controlled using a combination of deposition parameters; 

namely ambient pressure, laser fluence, and target-to-substrate distance.  A theory was 

applied to describe the relationship among these deposition parameters for the conditions 

that produced YSZ films on CP1 polymers that exhibited no stress.  All deposition 

parameters were held as constant as possible throughout the deposition.  In addition to 

constant deposition parameter control, an optical TOF sensor was incorporated into the 

laser fluence feedback loop.  A shifted center-of-mass Maxwell-Boltzmann (SCMMB) 

distribution was used to model the TOF data and the streaming velocity parameter from 
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the SCCMB distribution was extracted.  This streaming velocity was indicative of the 

YSZ film stress and correlated well with the data obtained during the constant deposition 

parameter control experiments.  A streaming velocity of approximately 6250 m/s was 

found to produce YSZ thin films on CP1 that exhibited no stress, while faster streaming 

velocities were found to produce compressively-stressed YSZ thin films.  Likewise, 

slower streaming velocities produced tensilely-stressed YSZ thin films on CP1 polymer 

substrates.  The streaming velocity was then used to control the laser fluence in order to 

compensate for slight variations in deposition conditions.  Thus, controlling the laser 

fluence greatly improved the YSZ film stress run-to-run stability.  Additionally, iterative 

and theoretical experiments produced large-area (6-inch diameter) YSZ thin films on 

silicon substrates with less than ten percent total thickness (typically 75-200 nm) 

variations.  Compressively stressed YSZ thin films were grown on initially flat 6-inch 

diameter suspended CP1 polymer substrates using the ambient pressure, laser fluence, 

and target-to-substrate distance relationship theory and the large-area investigation 

results.  The resulting growths demonstrated desirable shape modification to the polymer 

substrates.  However, the suspended CP1 polymer substrate YSZ film growths were 

limited to a maximum repetition rate of 10 Hz at 1.57 J/cm2 laser fluence to avoid 

substrate damage.  The investigation was repeated using CP1 polymer substrates still 

mounted to the casting mold, which were grown at repetition rates up to 40 Hz without 

damage.  Initial results from the YSZ thin films grown CP1 polymer substrates still 

mounting to the casting mold were promising.  Finally Raman spectroscopy, which has 

the potential to be used as a non-destructive in-situ film stress sensor, was shown to be 

compatible with the PLD process during the growth of silicon carbide.
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CONTROLLED-STRESS LARGE-AREA PULSED LASER 

DEPOSITION OF YTTRIA STABILIZED ZIRCONIA 

 
 
 
 

1 Introduction 

 
 
 
1.1 Introduction 

 Several directorates of the Air Force Research Laboratory (AFRL) are currently 

pursuing large-diameter mirror-based satellite telescopes for surveillance [1].  The project 

vision is to “deploy an Atlas-launched, diffraction limited, visible-to-IR telescope that 

will dramatically enhance current surveillance capabilities” [1].  The project, labeled the 

“Membrane Mirror Experiment” (MMX) [2], is of great importance to the Air Force.  

The 2002 Space Experiments Review Board (SERB) rated the MMX its 15th highest 

priority and approved the MMX project for space tests. 

 The MMX project encompasses a multitude of technical disciplines ranging from 

polymer materials to dynamic waveform correction devices.  The multi-discipline aspect 

of the MMX project is evident in an example satellite system shown in Figure 1-1.  Of 

the many subsystems shown in Figure 1-1, this research will focus on issues relevant to 

the polymer and dielectric laminate membrane mirror. 
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Figure 1-1.  Example Satellite System [1] 
 

 Membrane mirrors comprise a crucial portion of the MMX project.  In fact, 

advances in membrane mirrors have enabled the MMX vision to exist.  According to the 

Scientific Advisory Board Science and Technology Review report on AFRL Directed 

Energy (DE) Directorate in 2000: 

The membrane mirror work is impressive.  Much progress has been made in the 
past two years, and apparently at low cost. … Membrane mirrors are potentially 
a revolutionary enabler to various space-based activities, and the Lab should get 
ready for space experiments.  [1] 

Although membrane mirrors have several of the same advantages found with 

conventional monolithic mirrors, the primary motivation to use membrane mirrors is cost.  

The performance requirements for the MMX project demand a large 25-meter aperture 

mirror.  The size and weight of large aperture monolithic mirrors prohibit their use in 

space-based applications.  Figure 1-2 presents a launch cost comparison between the 
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systems based upon three different mirror types.  Launch costs are primarily based upon 

mirror weight, which is proportional to the square of the aperture diameter [1].  Thus, 

Figure 1-2 provides strong justification for using membrane optics in large-aperture, 

space-based telescopes.  The diameter proposed for the MMX project is 25 meters.  The 

launch cost associated with a 25-meter membrane mirror based-system is approximately 

$275 million [1].  Both the 25-meter monolithic and deployable mirror-based systems are 

so cost prohibitive ($15.2 and $1.7 billion, respectively) that they are outside the range of 

the plot shown in Figure 1-2. 
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Figure 1-2.  Comparison Between Launch Costs and Mirror Aperture Diameter for the 

Three Different Mirror Types [1] 
 

1.2 Problem Statement and Approach 

 The shape and the large-area aspects of the membrane mirror comprise two of the 

critical issues for the MMX project, as described in Section 1.1.  The polymer 

membranes are manufactured using a spin-coating process in which liquid polymer, 
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specifically a colorless, low dielectric, radiation-resistant polyimide, denoted CP1, that 

was developed by NASA Langley Research Center for space-based applications [4; 5; 6], 

is poured into a rotating Pyrex mold and then cured [3].  Figure 1-3 shows a schematic of 

the process and an example of a molded polymer.  SRS Technologies is currently 

investigating the scale-up in diameter of the CP1 polymer for the MMX project, which is 

outside the scope of this research [1]. 

 

Substrate - CP1

mold

Spin    axis

Spinning table

Mold

CP1

CP1

13 inch Parabolic Mold
f/# - 4.6

membrane

 
Figure 1-3.  CP1 Polymer Spin-coating Schematic and Example [1] 

 

 The CP1 polymer shown in Figure 1-3 still resides inside the parabolic mold.  

During mounting to a mounting ring and removal of the CP1 polymer mirror from the 

casting mold, the mirror loses much of its shape.  Thus, the resulting mirror is described 

as a near-net shape membrane mirror.  Another process must compensate for the change 

in shaped due to the intrinsic stresses from membrane mirror mounting and subsequent 

release from the mold.  One possible solution is to coat the membrane mirror, either 

before or after the mounting/release process, as shown in Figure 1-4.  If the stress and 
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uniformity of such a coating can be sufficiently controlled, the shape of the mounted and 

released membrane mirror can be altered back to the desired net shape [1]. 

 

Substrate - CP1

mold

membrane
coating

 
Figure 1-4.  Membrane Mirror Coating Solution [1] 

 

 Attempts to deposit the coating onto the membrane mirror have been and are 

being investigated using a variety of deposition methods, which include: thermal 

evaporation, e-beam evaporation, and sputtering (both RF and DC).  Ion-assisted 

enhancements to these deposition processes and cathodic arc deposition were also 

attempted.  To date, these deposition processes have not produced satisfactory results.  

Pulsed laser deposition (PLD) has several advantages over the previously listed 

deposition techniques, such as the ability to produce films with high packing density and 

high indices of refraction [1], as described in Chapter 2.  To exploit these advantages, this 

research focuses on studies of the deposition of membrane mirror coatings by PLD. 

 The goals of this research were to produce controlled-stress, large-area, pulsed-

laser-deposited thin films on CP1 polymer substrates and to investigate relevant 

monitoring sensors and techniques for the control of the PLD process, specifically with 

respect to deposited thin film stress.  Yttria stabilized zirconia (YSZ) was chosen as a 

suitable material to deposit based on the availability of experts within AFRL and 
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previous PLD research into the characteristics of YSZ [7; 8; 9].  The growth aspect of the 

research goals was accomplished through multiple growths of YSZ on both silicon 

substrates and CP1 polymer films using a wide range of deposition parameters.  In 

addition to these thin film growths, the PLD plume was characterized in terms of stress-

determining parameters using optical emission spectroscopy and fast-imaging 

photography. 

1.3 Dissertation Organization 

 The remainder of this dissertation is divided into eight chapters.  Chapter 2 

presents an overview of the deposition techniques typically used to grow silicon carbide 

and yttria stabilized zirconia, which includes pulsed laser deposition.  In addition, 

Chapter 2 discusses various thin film analysis techniques used in this dissertation.  

Following this background information, Chapter 3 details the PLD system, including both 

the hardware and software used for this research. 

The research goals described in Section 1.2 were divided into four parts, which 

are split into individual chapters.  Chapter 4 reports on the determination of stress-

affecting deposition parameters.  In addition, Chapter 4 derives a physics-based theory 

that describes the relationship among these stress-affecting deposition parameters.  This 

theory allows equivalent-stress films to be deposited using an unlimited variety of 

relevant deposition parameters, as well as specifying the affect of each parameter on film 

stress.  Chapter 5 expands upon this theory by determining the in-situ measurable plume 

parameters that predict the film stress.  A closed-loop PLD process control scheme 

utilizes these parameters to improve the run-to-run stability of the film stress, as also 

described in Chapter 5.  Independent of the stress investigations, Chapter 6 illustrates two 
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large-area PLD investigations and the resulting YSZ thin film growths.  Then, Chapter 7 

incorporates this large-area aspect into the controlled-stress aspect to produce uniform-

thickness controlled-stress YSZ films on undamaged six-inch diameter CP1 polymers 

substrates.  Finally, Chapter 8 summarizes this research, details the contributions 

represented here, and lists additional areas in which this research could be expanded. 

 In addition to the research goals listed previously, Raman spectra were acquired 

during the PLD growth of silicon carbide (SiC), or in-situ.  Analysis of the Raman 

spectra was performed to correlate thin film stress with Raman peak wavenumber shift.  

Appendix A describes this investigation. 
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2 Background 

 
 
 

2.1 Overview 

 This chapter provides an overview of the relationships between thin film 

properties and stress, several physical transport methods used to grow yttria stabilized 

zirconia (YSZ) thin films on various substrates, and several characterization techniques 

used to analyze YSZ.  A basic understanding of various epitaxial growth methods 

provides a better understanding of the benefits pulsed laser deposition (PLD) provides 

over these other growth methods.  In addition, conceptual knowledge of PLD is helpful to 

better understand the research presented in this dissertation.  The remainder of this 

chapter describes the thin film properties/stress relationship, various epitaxial growth 

methods, pulsed laser deposition, and several thin film characterization techniques used 

in this research. 

2.2 Thin Film Stress  

 The origins of thin films stress can be divided into two groups, thermal stress and 

intrinsic stress.  Thermal stress is described in Section 2.2.1.  Both thermal and intrinsic 

stress may be present in physical vapor deposited thin films.  The source of intrinsic 

stress and the correlation with thin film microstructure is discussed in Section 2.2.2.  

Finally, the relationship between thin film microstructure and deposition parameters is 

described in Section 2.2.3. 

2-1 



 

2.2.1 Thermal Stress 

 Thermal stress refers to the stress caused by differential volume changes between 

the substrate and the thin film due to a mismatch in the thermal expansion for thin films 

grown at elevated growth temperatures.  Thermal stresses occur  when the substrate and 

the thin film are cooled from growth temperature to room temperature.  The coefficient of 

thermal expansion α relates the magnitude of the material contraction to the change in 

temperature.  Thus, the difference in the coefficient of thermal expansion between the 

substrate material (αSubstrate) and the thin film material (αThin Film) can be used to estimate 

the amount of thermal stress [1; 2; 3; 4; 5; 6; 7; 8; 9; 10].  Figure 2-1 illustrates the effects 

of thermal stress.  The top row of substrates and thin films shown in Figure 2-1 reveals 

the substrate and the thin film relative change in volume for the each of the three possible 

thermal expansion coefficient combinations after cooling to room temperature from 

growth temperature.  The bottom row illustrates the results when the thin film adheres to 

substrate.  For the conditions in which αThin Film is not equal to αSubstrate, the substrate will 

curve.  The amount of curvature can be used to estimate the stress in the thin film through 

Stoney’s Formula, as shown in Equation (2-1): 

 ( ) ( )
2 1 GPa

6 1
s s

film
s f

E h
h r

σ
υ

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
 (2-1)

 
where σ is the film stress in giga-Pascals (GPa), Es is Young’s modulus of the substrate 

material (GPa), hs is the substrate thickness (meters), hf is the film thickness (meters), υs 

is Poisson’s ratio of the substrate material (unitless), and r is the substrate radius of 

curvature (m).  Substrate curvature measurements are commonly used to estimate the net 

stress of thin films [2; 8].  Other measurements use post-processing techniques to produce 
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stress measurement structures, such as suspended cantilever beams, double clamped 

beams, and suspended membranes.  These measurement structures are used to estimate 

stress on a micro scale, as compared to the macro scale or net stress wafer curvature 

measurement.  X-ray diffraction (XRD) measurements, as described in Section 2.5.5, can 

also be analyzed to calculate stress [6; 7; 8; 10]. 
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Figure 2-1.  Origin of Thermal Stress Diagram 

 

2.2.2 Intrinsic Stress 

 Intrinsic stress refers to the stress caused by the microstructure of the thin film.  

Most evaporation deposition systems produce thin films with tensile intrinsic stress 

caused by crystallographic flaws, microvoids in the thin film material, and/or grain 

boundary interfaces.  Figure 2-2 illustrates the stages of thin film growth.  As material 

arrives at the substrate, localized growth sites form and act as “seeds” for thin film 

growth (nucleation).  As the thin film growth continues, these localized growth sites abut 
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other localized growth sites (island coalescence).  Without a renucleation process, the 

thin film growth evolves into multiple adjacent growths (grain growth) with grain 

boundaries separating the adjacent localized growth sites (grains).  Figure 2-3 depicts a 

thin film cross section.  The grain boundaries appear as voids in the thin film.  These 

voids create tensile stresses due to the attractive interaction of the atoms across the voids.  

In addition to grain boundaries, microvoids are vacancy defects in the thin film.  

Microvoids also produce a tensile stress in the thin film, similar to the grain boundary 

effects [2]. 

 

Nucleation Island 
Coalescence

Grain Growth

 
Figure 2-2.  Thin Film Growth Model Diagram [2] 
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Figure 2-3.  Grain Boundary Intrinsic Stress Diagram [4] 
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 Although most evaporation deposition systems produce thin films that exhibi

tensile intrinsic stress, several internal thin film processes can occur to reduce the ten

stress.  Depending upon the deposition conditions, recrystallization or recovery can 

occur, which increases the size of the grains resulting in a reduced number of grain 

boun

t 

sile 

daries in the thin film.  In addition, recovery can “fills in” the microvoids in the thin 

.  B

d 

he 

t peening, the incorporation of impurities into the 

 

at 

the stress is highly correlated with process/deposition parameters [2; 3; 7] and that 

film oth recrystallization and recovery reduce the tensile stress in thin films [2; 3; 4; 

10]. 

 In addition to reducing the tensile stress in the thin film, compressively-stresse

thin films can be produced, given the appropriate deposition conditions.  Atomic shot 

peening refers to the process in which the surface of the thin film is bombarded with 

heavy ions or energetic particles.  This bombardment compacts the underlying thin films 

to reduce the size of or eliminate microvoids and grain boundaries, which reduces t

tensile stress of the thin film.  Furthermore, relatively high energy bombardment of the 

thin films can compact the thin films sufficiently so that the thin films will exhibit 

compressive stress.  Besides atomic sho

thin film can produce compressive stress, similar to the interstitial atom incorporation

into a crystal lattice [1; 2; 3; 4; 8; 10]. 

 Regardless of the source of thin film stress, all thin films are in some state of 

stress [2; 3; 4; 8; 10].  Forty years of research has produced a number of 

phenomenological models that attempt to explain the sources of residual stress [3; 7].  

However, residual stress is a complex thin film behavior.  As such, the only 

generalizations that can be made about the expected level of stress in a thin film are th
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intrinsic stress originates in the thin film microstructure [1; 2; 3; 4; 5; 6; 7; 8; 9; 10].  

Therefore, Section 2.2.3 discusses the relationship between deposition parameters and the 

resulting thin film microstructure. 

.2.3 s 
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strates 

e thin

 T 

e 

sputtering of the thin film.  The sputtering process and ion bombardment are described in 

2 Microstructure Dependence upon Deposition Parameter

 Movchan and Demchisin [11] first proposed a theory that related the 

microstructure of thin films to the relative substrate temperature during the deposition.  

The ratio of the substrate temperature during deposition (Ts) to the thin film material’s 

melting temperature (Tm) was used to create three growth “zones”.  Zone 1 (Ts/Tm ratio 

less than or equal to 0.3) corresponds to porous thin films exhibiting textured and fibrous 

fine grains with domed tops and large defect densities.  Zone 2 (Ts/Tm ranging from 0.3 to

0.5) describes thin films with columnar grains that have highly faceted tops that produc

a smooth mat surface texture.  Thin films grown under Zone 3 conditions (Ts/Tm ratio 

greater than or equal to 0.5) have columnar grains with larger grain sizes than that of 

Zone 2 due to increased bulk diffusion and recrystallization [4; 10].  Figure 2-4 illu

th  film microstructure for each of the three zones relative to the Ts/Tm ratio. 

 Thornton and Hoffman [4] expanded the Movchan-Demchisin structure zone 

model (SZM) to include sputtering pressure.  In addition, the Thornton-Hoffman SZM 

added a new zone “T,” which is a transition zone between Zone 1 and Zone 2.  Zone T 

characterizes thin films as dense arrays of fibrous grains with voided boundaries.  Zone

thin films have a smoother surface than either the Zone 1 or Zone 2 thin films.  Thes

characteristics of Zone T films have been attributed to ion bombardment during the 
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more detail in Sections 2.3.2 and 0.  Figure 2-5 shows the thin film microstructure for 

each of the four zones in the Thornton-Hoffman SZM. 
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Temperature Ratio (Ts/Tm)
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0.3 0.5

 
Figure 2-4.  Structure Zone Model Correlating Thin Film Microstructure with Substrate 

Temperature to Thin Film Material Melting Temperature Ratio [4; 10]. 
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Figure 2-5.  Schematic Representation of the Thornton-Hoffman Structure Zone Model 

Illustrating the Influence of Argon Pressure for Cylindrical Magnetron Sputtered 
Coatings [4; 10] 

 

2-7 



 

 Messier, et al., also include Zone T in their SZM.  However, the Messier SZM 

relates Zone T to bombardment-induced mobility energies at the substrate surface.  As 

the energy increases, the Zone T width increases and the Zone 1 width decreases.  Zone 2 

is unaffected.  The Messier SZM is in good agreement with the Thornton-Hoffman SZM 

since both models show Zone T increasing with sputtering particle energy. 
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Figure 2-6.  Messier Structure Zone Model Diagram Illustrating the Influence of Surface 

Mobility Energy on Zone T [10] 
 

 Other research has shown that the structure zone model derived from magnetron 

sputtered films can be generically applied to any physical vapor deposition technique that 

includes “super-thermal energy particles striking” the thin film surface [3].  In addition, 

the change in deposition conditions corresponding to the Zone 1 to Zone T transition 

usually includes a stress reversal from tensile to compressive stress.  Initially, this stress 

reversal was incorrectly attributed to sputtering gas incorporation into the thin film.  

Further research has shown that the stress reversal is primarily due to thin film 
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densification caused by atomic peening, as described earlier.  Thus, an idealized stress 

and normalized momentum relationship was found, as shown in Figure 2-7.  Relatively 

low momentum bombardment deposition conditions produce tensilely-stressed porous 

thin films that are characterized as Zone 1 growths.  As the normalized momentum is 

increased, the tensile stress reaches a maximum and is then rapidly reversed.  Further 

increases in the normalized momentum produce Zone T compressively-stressed thin films 

[3].  The variation in normalized momentum can be equivalently produced by varying 

one or more of the following variables: the ratio of the target material’s atomic mass to 

the atomic mass of the sputtering gas, the sputtering gas pressure, and/or the angle of the 

sputtering flux [3; 4]. 
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Figure 2-7.  Idealized Stress–Normalized Momentum Curve from Sputtered Thin 

Films [3] 
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2.3 Epitaxial Deposition Overview 

 Although many methods to grow thin films exist, only a few are commonly used 

to grow YSZ, including: electron beam evaporation, sputtering, ion beam assisted 

deposition, vapor phase epitaxy, and pulsed laser deposition [12; 13; 14].  The word 

epitaxy originates from the Greek words “epi,” meaning on, and “taxis,” meaning 

arrangement [15].  During epitaxial growth, molecules of the desired elements are 

deposited at the proper crystallographic location to grow thin films on a compatible 

substrate, which is generally bulk crystalline material with a nearly equivalent lattice 

constant to that of the thin film.  Epitaxially-grown YSZ, as well as many other materials, 

can be grown on substrates that are composed of a different material, such as silicon or 

fused quartz.  For electronic application, this reduces the fabrication costs by allowing 

high quality material to be deposited on lower-cost substrates [15].  In addition, epitaxial 

growth allows alternating structural and sacrificial layers to grown on various substrates 

for microelectromechanical systems [16]. 

2.3.1 Electron Beam Evaporation 

 Electron beam evaporation is a high vacuum thermal deposition process in which 

the material to be deposited is thermally evaporated using an electron beam [10; 17; 18].  

Figure 2-8 illustrates the basic components of an electron beam evaporation system: an 

electron beam source, electron beaming focusing and steering elements, a vacuum 

chamber, a vacuum pump, a source material, and substrate(s).  An electron beam source 

produces electrons that are directed to the surface of the source (material to be deposited) 

by electron beam focusing and steering elements (labeled “Focusing Magnet” and 
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“Deflecting Magnet” in Figure 2-8).  The electrons bombard the surface of the source 

(labeled “Ingot Rod” in Figure 2-8), which heats the source to create a “Molten Pool.”  A 

vacuum chamber and vacuum pump produce a high vacuum in the area between the 

source and the substrate [10; 17].  This vacuum typically ranges from 10-5 to 10-10 Torr, 

which results in a large mean free path (typically 5×102 to 107 cm) relative to the distance 

between the source and the substrate [10; 17; 18].  Thus, evaporated atoms travel from 

the source to the substrate without undergoing any collisions.  A crucible contains the 

molten pool and cools the remaining source material [10; 17; 18].  The electron beam 

evaporation system shown in Figure 2-8 uses an ingot rod as the source material.  As 

material is removed from the molten pool by evaporation, the ingot rod is feed up into the 

crucible so that the surface of the molten pool remains at a fixed distance from the  
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Figure 2-8.  Electron Beam Evaporation System Schematic [10; 17] 

2-11 



 

substrate.  Other configuration may not include such a feed mechanism.  Table 2-1 lists 

the relevant deposition parameters used to deposit YSZ by electron beam evaporation.  

As listed in Table 2-1, YSZ is typically deposited onto a heated substrate, typically above 

500° C.  However, the current literature also describes some research that investigates 

depositing YSZ with the substrate at room temperature [19].  The YSZ crystalline quality 

is highly dependent upon the substrate temperature.  As such, the YSZ films grown at 

room temperature were amorphous, while all the YSZ films grown with substrate 

temperatures greater than or equal to 500° C were crystalline. 

 

Table 2-1.  Electron Beam Evaporation Parameters for YSZ Deposition 
Parameter Values 
Background gas 4% hydrogen/96% argon gas [21; 22] 

None [19; 20; 23] 
Deposition pressure (mTorr) 10 [23] 

20 [21; 22] 
30 [20] 

Substrate temperature (° C) 27, 700, 830 [19] 
500 [20] 

625 [21; 22] 
800-850 [23] 

Deposition rates (nm/s) 0.1 [19] 
400 [20] 

Film thickness (nm) 100 [19] 
130-200 [21; 22] 

700-2000 [23] 
Source-to-substrate distance (cm) 28 [20] 
 

2.3.2 Sputtering Deposition 

 Sputtering deposition is a coating process in which a liquid or solid target surface 

is bombarded with gas ions so that the target material is ejected from the surface and 
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deposited on a substrate [10; 24; 25].  The surface erosion portion of the sputtering 

deposition technique (sputter etching) can be compared to sandblasting at an atomic 

level.  In fact, sputtering is often used to etch a surface for many processes, such as 

surface cleaning, semiconductor wafer patterning, micromachining, and depth profiling 

[25].  As stated previously, sputter etching removes surface atoms through a transfer of 

momentum from the bombarding ion to the target surface, as shown conceptual in Figure 

2-9.  An incident ion is generated and accelerated toward the target surface.  The incident 

ion strikes the target surface and transfers its momentum to the target atoms.  The 

transferred momentum is sufficient to break atomic bonds and dislodge the surface atoms 

[10; 24; 25].  A more conceptual description of sputtering is to consider the target atoms 

as billiard balls stacked together against a billiard table bumper and an incident ion as the 

cue ball.  Thus, when the cue ball strikes one or more of the billiard balls, the cue ball’s 

momentum is transferred into the stack of billiard balls, which causes one or more of the 

billiard balls at the surface to be ejected [24]. 

 The direction in which the sputtered atoms are ejected predominantly depends 

upon the energy at which the ions strike the target surface (knock-on energy).  A cosine 

distribution is often used to describe the angular distribution of sputtered particles, as 

shown in Figure 2-10.  A cosine distribution equates the sputtered atom flux at a given 

angle to product of the sputtered atom flux emitted at normal incidence to the target 

surface and the cosine of the angle from normal incidence.  An over-cosine distribution 

describes an angular distribution in which the sputtered atoms are grouped more closely 

toward normal incidence (forward-peaked).  Likewise, an under-cosine distribution 

denotes the opposite condition where the angular distribution is more widely spread.   
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Figure 2-9.  Physical Sputtering Process Diagram [25] 

 

Sputtering using relatively low knock-on energies typically produces under-cosine 

distributions.  Similarly, sputtering using relatively high knock-on energies produces 

over-cosine distributions [25]. 

 Sputtering deposition consists of sputter etching where a substrate is located near 

the sputtering target so that the sputtered atoms are deposited on the substrate surface.  

The various types of sputtering deposition are defined by the incident ion generation 

sources, such as DC sputtering, magnetron sputtering, RF sputtering, etc.  The simplest 

type of sputtering, DC sputtering, consists of a cathode (the target), an anode (the 

substrate or substrate holder), a vacuum chamber, a background gas, and a DC power 

supply, as shown in Figure 2-11. 
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Figure 2-10.  Angular Sputtering Emission Distribution Diagram [25] 
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Figure 2-11.  DC Sputtering Deposition System Schematic [26] 
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 The chamber is initially evacuated to a relatively low pressure and then filled with 

a background gas.  When an adequate voltage is applied between the anode and the 

cathode, the background gas breaks down into a plasma discharge.  Ions from the plasma 

are rapidly accelerated toward the cathode and strike the target surface.  As described 

previously, the impact of the accelerated ions cause target atoms to be sputtered from the 

surface of the target.  These sputtered atoms traverse through the plasma and are 

deposited on the substrate [10; 24; 25].  Substantial amounts of the background gas can 

be incorporated into the sputtered film due to the relatively high background gas pressure 

and/or outgassing from the sputtering fixtures.  To eliminate or dramatically reduce the 

incorporation of the background gas in the sputtered film, a slight bias or low negative 

charge is applied to the substrate.  This bias creates a light ion “scrubbing” effect at the 

substrate surface that can remove the loosely attached gas atoms without disturbing the 

sputtered film [24].  DC sputtering cannot be used to deposit thin films if the target is 

insulating or if the background gas reacts with the target surface to create an insulating 

layer.  For example, a metal target in an oxygen background gas may form an insulating 

oxide layer on the target surface that prohibits DC sputtering [10; 24]. 

 RF sputtering overcomes the insulator sputtering issue associated with DC 

sputtering by replacing the DC power supply with an RF power supply [10; 24; 25].  RF 

sputtering utilizes the fact that electrons are much more mobile than ions.  Thus, a 

negative voltage is developed on the cathode due to the difference in mobilities between 

the electrons and ions [10].  A secondary effect of RF sputtering is that the field 

oscillations in the plasma produce more electron motion within the plasma [10; 25].  
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These effects allow RF sputtering to be performed at lower background gas pressures and 

at higher yields than DC sputtering [10; 24; 25]. 

 As compared to DC and RF sputtering, magnetron sputtering is currently the most 

commonly used type of sputtering and accounts for approximately 95% of all sputtering 

applications [25].  Magnetron sputtering enhances either the DC or RF sputtering by 

applying a magnetic field parallel to the cathode (and the target surface, typically).  

Secondary electrons, which are emitted from the cathode due to the ion bombardment, 

can only propagate along the E×B drift path, which is normal to both the applied electric 

field and the magnetic field.  Since the E×B drift path is parallel to target surface, the 

secondary electrons are confined to a small spatial region around the cathode.  This 

secondary electron confinement produces a dense plasma near the surface of the target.  

The plasma spatial confinement decreases the probability that the ions generated by the 

plasma will be lost to the vacuum chamber walls or the anode, which increases the 

ionization efficiency.  The increased ionization efficiency allows magnetron sputtering 

systems to operate at low background gas pressures (around 1 mTorr) with relatively low 

power supply voltages, which in turn results in higher sputtering rates.  Although there 

are many different magnetron sputtering system designs, most can be categorized as 

cylindrical post cathode, hollow cylindrical cathode, or planar cathode magnetron 

sputtering systems.  As the names imply, the cathode shaped defines the differences 

among these systems.  The schematic of a cathode post magnetron sputtering deposition 

system, which is capable of depositing thin films on multiple small-area substrates, is 

shown in Figure 2-12.  Also, a schematic of the cylindrical post cathode is illustrated in 

Figure 2-14 b).  For deposit thin films on single planar large-area surface, planar  
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Figure 2-12.  Cylindrical Magnetron (Post Cathode) Sputter Deposition System 

Schematic [10] 
 

magnetron sputtering deposition systems are used more often than the cylindrical cathode 

post systems.  Figure 2-13 shows the schematic of a planar magnetron sputtering cathode.  

Finally, a hollow cathode magnetron sputtering deposition system is most commonly 

used to deposit thin films on complex or irregularly shaped substrates.  Figure 2-14 a)  
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Figure 2-13.  Planar Magnetron Sputter Deposition System Schematic [10] 
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displays the schematics of hollow cylindrical cathode [10; 25].  Table 2-2 lists several of 

the sputtering deposition parameters reported for the growth of YSZ.  The range of 

several deposition parameters, particularly the substrate temperature and the sputtering 

power, vary considerable among the depositions.  However, most of the other deposition 

parameters are relatively consistent, such as the target-to-substrate distance, sputtering 

pressure, background gas composition, and sputtering target composition. 
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Figure 2-14.  Schematic of a) Hollow Cathode Cylindrical Magnetron and b) Cylindrical 

Post Magnetron [25] 
 

Table 2-2.  Sputtering Deposition Parameters for YSZ Deposition 
Parameter Values 
Sputtering type Planar magnetron [27; 28; 29; 30; 31; 32; 33] 
Target composition YSZ [27; 28; 29; 30; 31; 32; 33] 
Evacuation pressure (Torr) 10-6 [27; 29; 30; 31; 32] 
Sputtering gas Argon/Oxygen mix [27; 28; 29; 30; 31; 32; 33] 

Argon [28; 29] 
Sputtering pressure (mTorr) 0.75-30 [31; 32] 

1.5 [27] 
4 [30] 

10-37 [28; 29] 
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Table 2-2.  Sputtering Deposition Parameters for YSZ Deposition (cont.) 
Parameter Values 
Power supply R.F. [27; 30; 31; 32; 33] 

Pulsed DC [28; 29] 
Sputtering power (W) 75 [27] 

30-100 [32] 
100 [28; 29] 
1000 [30; 31] 

Target-to-substrate distance (cm) 3.5 [27] 
5 [31; 32] 

6 [28; 29; 30] 
7 [33] 

Substrate temperature (°C) 0-530 [31; 32] 
27 [30] 

200-400 [33] 
600 [27] 

800-830 [28; 29] 
 

2.3.3 Ion Beam Deposition 

 Ion beam deposition, like sputtering deposition, bombards a target surface with 

ions so that atoms are ejected from the target surface due to the transfer of the kinetic 

energy from the bombarding ions to the target atoms.  Unlike sputtering deposition in 

which the bombarding ions are generate from a plasma between the target and the 

substrate, ion beam deposition systems generate bombarding ions from a separate ion 

source, as shown in Figure 2-15.  Thus, the substrate is physically separated from the ion 

generation plasma source, which allows the substrate temperature, ambient gas pressure, 

and type of bombardment particle to be controlled independent of the ion generation 

process parameters.  In addition, the energy of the bombarding ions can be controlled 

more precisely than that of conventional plasma sputtering.  However, ion beam 

deposition typically has a lower deposition rate than conventional plasma sputtering [10; 

25]. 
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Figure 2-15.  Ion Beam Sputtering Diagram [10] 

 

 In addition to ion beam deposition, ion beam assisted deposition (IBAD) systems 

use ion bombardment of the substrate to enhance another separate deposition process, 

such as dual ion beam sputtering or pulsed laser deposition [17; 25].  Figure 2-16 shows a 

dual ion IBAD system schematic.  The ion gun for deposition, target, and substrate are 

identical to the ion beam deposition system described previously and shown in Figure 

2-15.  However, a second ion beam source (labeled “Ion Gun for Bombardment”) directly 

bombards the surface of the substrate without sputtering from the target.  Thus, IBAD 

systems can independently control the ion flux and the molecular flux incident upon the 

substrate [17; 25].  The ion flux at the substrate is analogous to a “weak” plasma [17; 25].  

The addition of this “weak” plasma significantly affects many of the thin film parameters, 

such as density, residual stress, index of refraction, electrical resistivity, adhesion, degree 

of crystallinity, crystalline phase, and surface roughness [17; 25].  Table 2-3 lists several 
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typical deposition parameters for depositing YSZ using a dual beam IBAD process.  

IBAD pulsed laser deposition examples are described in Section 2.4. 
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Figure 2-16.  Dual Ion Beam IBAD System Schematic [17] 

 

Table 2-3.  Dual Ion Beam IBAD Parameters for YSZ Deposition 
Parameter Values 
Bombardment source type Kaufman [34; 37] 
Bombardment beam size 2.5 cm diameter [35] 

11 cm diameter [34; 35] 
Bombardment ions Argon [34; 35] 

Oxygen and argon [36; 37] 
Bombardment energy 250 eV [37; 38] 

300 eV [34; 35; 36] 
Bombardment angle 10°-70° [37] 

55° from substrate normal [34] 
Sputtering source type Kaufman [34; 37] 
Sputtering beam size 2.5 cm diameter [35] 

11 cm diameter [34; 35] 
Sputtering ions Xenon [34; 35] 

Argon [35; 36; 37] 
Sputtering energy 1200 eV [37] 

1500 eV [34; 35] 
Sputtering target YSZ [34; 35; 36; 37; 38] 
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Table 2-3.  Dual Ion Beam IBAD Parameters for YSZ Deposition (cont.) 
Parameter Values 
Sputtering pressure (µTorr) 75 [34] 

225 [35] 
250 [37] 

Sputtering ambient Oxygen [34] 
Oxygen, argon, and xenon[35] 

Deposition rate (nm/sec) 0.01-0.1 [37] 
0.05 [36] 
0.3 [35] 
0.4 [38] 

Film thickness (nm) 250-700 [36] 
600-800 [38] 

8000 [35] 
 

2.3.4 Vapor Phase Epitaxy 

 Vapor phase epitaxy (VPE), also referred to as chemical vapor deposition (CVD), 

is an epitaxial growth technique in which thin films are grown from vaporous 

compounds.  These vaporous precursor compounds contain the constituents of the thin 

film along with a carrier gas.  Figure 2-17 shows the growth of a thin film of arsenic-

doped silicon using arsine (AsH3) and silicon dichloride (SiCl2) [15].  The AsH3 and 

SiCl2 molecules are “cracked,” or separated into their elemental forms by heat and then 

may undergo a chemical reaction with the carrier gas hydrogen (H) above the heated 

substrate.  The SiCl2 and the H combine to form solid silicon (Si) and hydrogen chloride 

(HCl).  The AsH3 is “cracked” into the individual elements H and As.  The solid Si and 

As land on the substrate and move to the appropriate crystallographic locations (diamond 

crystal structure atom sites) to form bonds with the existing exposed substrate or epitaxial 

layer. 
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 Figure 2-18 shows an illustration of both horizontal and vertical VPE chambers.  

The stagnant layer provides a location for the constituent gases and the carrier gas to 

“crack.”  Figure 2-19 shows another horizontal VPE schematic, as well as the sources of 

the precusor gases that were not shown in Figure 2-18 [15; 39]. 

 

 
Figure 2-17.  Vapor Phase Epitaxial Growth Process of Arsenic-doped Silicon [15] 

 

 
Figure 2-18.  Horizontal (a) and Vertical (b) Vapor Phase Epitaxy Process [39] 
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Figure 2-19.  Horizontal Vapor Phase Epitaxy Schematic [15] 

 

 The VPE growth technique has several advantages, which make the use of VPE 

very common.  VPE is generally a low temperature deposition process where the 

temperature is typically 30-50% of the melting point of the epitaxial material.  Also, the 

use of high-purity gas sources enables the resultant thin film to have fewer impurities 

than the similar thin film grown using other deposition techniques that deposit material 

from solid sources, such as sputtering deposition.  In addition to the higher purity of the 

thin film, the composition and thickness of the thin film can be made more uniform using 

VPE.  Finally, the VPE process is well suited for mass production due to the high degree 

of automation possible, as well as relatively high growth rates (approximately 1 

µm/minute) [15; 39]. 

 However, these advantages also incur severe costs.  Many of the gases used in a 

VPE system are toxic and require special handling.  In addition, some of the gases are 

very expensive and may require preprocessing before use.  Thus, the overall cost of the 
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VPE system is relatively expensive compared to other epitaxial growth techniques [15; 

39]. 

 Metal-organic chemical vapor deposition (MOCVD) is the most common VPE 

deposition method for growing YSZ thin films [12], although several other VPE 

techniques such as combustion CVD [40] and aerosol-assisted CVD exist [41].  MOCVD 

is a subset of the VPE deposition technique described previously in which the precusor 

are organometallic compounds and hydrides, such as dimethyl cadmium (DMCd), 

trimethyl gallium (TMGa), AsH3, phosphine (PH3), hydrogen selenide (H2Se), hydrogen 

sulfide (H2S), and trimethyl antimony (TMSb) [17; 25].  The use of organometallic 

compounds and hydrides in MOCVD allows the deposition temperature (typically 200°-

800° C) to be lower than that of conventional CVD (typically 350°-1600° C) [10].  In 

addition, MOCVD is typically performed under lower pressures (10-3 Torr to 1 atm) than 

conventional CVD (100 Torr to 1 atm).  Table 2-4 lists several of the MOCVD 

parameters for the deposition of YSZ thin films. 

 

Table 2-4.  MOCVD Parameters for the Deposition of YSZ 
Parameter Values 
Zirconium precursor Zr(OButn)4 [43] 

Zr(O·t–C4H9) [44] 
Zr(thd)4 [42; 45; 46; 47] 

Zirconium precursor temperature (° C) 70 [44] 
125-155 [42; 43; 46; 47] 

Yttrium precursor Y (C11H19O2)3
Y(thd)3 [42; 43; 46; 47] 

Yttrium precursor temperature (° C) 120-180 [42; 43; 45; 46; 47] 
200 [44] 
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Table 2-4.  MOCVD Parameters for the Deposition of YSZ (cont.) 
Parameter Values 
Carrier gas Argon at 150-600 sccm[45; 46; 47] 

Oxygen [43] 
Nitrogen at 80 sccm [44] 
Nitrogen at 150 sccm [42] 

Oxygen flow rate (sccm) 40-50 [47] 
300 [42; 45; 46] 

600 [p2; p6] 
Substrate temperature (° C) 600-850 [42; 43; 44; 45; 46; 47] 
Total pressure (Torr) 4.0 [42] 

5.0 [p4; 46] 
11.3 [43] 

Film thickness (nm) 150-200 [42] 
4000 [46] 
5000 [43] 

Growth rate (nm/h) 300-400 [42] 
1000 [46] 
1250 [43] 

 

2.4 Pulsed Laser Deposition 

 Pulsed Laser Deposition (PLD) is a conceptually and experimentally simple 

technique used to grow high quality thin films [48; 49].  A laser, generally external to the 

vacuum chamber, is focused onto and rastered across the surface of the source material or 

“target,” similar to the sputtering target described in Section 2.3.2.  As the target absorbs 

energy from the laser pulse, material is ejected from the target surface.  For PLD, the 

term ablation is usually applied to this ejection of target material.  The ablated material 

can be comprised of a variety of energetic species, which include atoms, molecules, 

electrons, ions, clusters, micro-sized particulates, and molten globules.  The mean free 

path of the ablated material is relatively short compared to the target-to-substrate 

distance.  As such, the ablated material expands rapidly in the vacuum to form a nozzle 

jet with hydrodynamic flow characteristics.  The term “plume” refers to this nozzle jet of 
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ablated material [49].  After target ablations, the plume constituents are transferred from 

the target to the substrate, analogous to one of the molecular beams of molecular beam 

epitaxy (MBE).  The plume constituents impinge upon the substrate and are deposited to 

form a thin film. 

 Figure 2-20 illustrates the primary components of a PLD system: a laser beam, 

substrate heater, substrate, and target.  Also shown in Figure 2-20, the emission 

spectroscope enables time-of-flight (TOF) emissions spectroscopy.  This is accomplished 

by monitoring the emission from a cross-section of the plume at a given distance from the 

substrate.  TOF emission spectroscopy is discussed later in this chapter and in more detail 

in Chapter 5.  In addition, Chapter 3 describes the experimental setup for two types of 

TOF emission spectroscopes, the TOF emission sensor system and the fast-imaging 

camera system. 

 Despite the conceptual simplicity of PLD, the interaction of the laser pulse with 

the target is extremely complex and difficult to model [49].  In addition, the dynamics of 

the plume as it travels from the target to the substrate are not well understood [48; 49].  

To further complicate the subject, the plume dynamics are affected by the optical, 

topological, and thermodynamic properties of the target, some or all of which may vary 

during a thin film growth [48].  Current research indicates that the collision dynamics of 

the plume can be sensed for process control.  A plume emits light at specific wavelengths 

as the plume constituents travel toward the substrate.  These emissions are monitored as 

they pass a given distance away from the target surface [13; 14; 48].  The time-of-flight 

of the plume is defined as the time between the laser-target interaction and the peak of an 

emission wavelength (“Most Probable Time”) for a given distance from the target 
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Figure 2-20.  Pulsed Laser Deposition Schematic 

 

surface.  A typical TOF waveform is shown in Figure 2-21.  As the laser ablates the 

target, very intense and relatively short-lived optical emissions are produced [49].  The 

fast-rising onset of these optical emissions, labeled “Fireball” in Figure 2-21, can be used 

as a reference to establish the time that the laser beam was incident upon the target (t=0) 

[13; 14; 48].  The term "main plume” in Figure 2-21 refers to the portion of the TOF 

waveform corresponding to the optical emissions of the plume as it passes through the 

cross-sectional area monitored by the TOF emission sensor system. 

 While the TOF emission sensor system monitors a fixed distance from the target 

surface over a range of time, the fast-imaging camera system, as described in Section 3.9, 

monitors a spatial range during a relatively short time interval.  Comparing several 

images of the same spatial region taken at various time intervals after the laser ablates the 
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Figure 2-21.  Slot 1 (64.7 mm From the Target Surface) Time-of-Flight 470±5 nm 

Emissions from YSZ Plume Ablated in 75 mTorr Oxygen using 1.57 J/cm2 Laser Pulses 
 

target reveals the propagation of the emitting portion of the plume (plume dynamics), as 

shown in Figure 2-22.  All the images shown in Figure 2-22 monitor the same spatial 

range.  However, each column presents the optical emissions captured at five different 

times after laser ablation.  The arrows shown in the first column of each row (t=1 µs) 

indicate the direction of the laser beam and the horizontal location of the laser beam on 

the target.  Although the target surface is not shown in any of the images, the distance 

from the target surface is referenced by the distance scale shown on the right side of 

Figure 2-22.  An YSZ target was ablated using 10 J/cm2 248-nm excimer laser pulses.  

The optical emissions were recorded in a 150 mTorr oxygen ambient environment or in a 

150 mTorr argon ambient environment.  In each ambient environment, the optical 

emissions were limited to 480±5 nm spectral range, which corresponds to excited 

zirconium oxide (ZrO*), or a 610±5 nm spectral range, which corresponds to excited 

yttrium oxide (YO*).  The spectral filtering was performed by inserting optical bandpass 
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filters between the plume and the camera.  Thus, the dynamics of the emitting portion of 

the plume as it travels from the target to the substrate for each ambient environment and 

monitoring spectral range are illustrated in each row of images taken of the plume at 

times 1 µs through 5 µs after the laser ablated the target, as shown in Figure 2-22 [13].  

The colors for each image represent the optical intensity.  Black corresponds to little or 

no emissions, while red corresponds to maximum relative intensity.  Thus, the 

“slideshow” of images along each row reveal that the emitting portion of the plume is 

propagating away from the target as time progresses.  In addition, comparing the YO* 

and ZrO* emissions show that each of these plume constituents propagate differently.  

Section 5.2 describes several TOF plume propagation theories in more detail and presents 

an analysis of similar fast-image camera system investigation results. 

 Films with specific material characteristics are much easier to reproduce by 

controlling one or more deposition parameters, so that the most probable time for a 

distribution of one or more particular plume components remains constant as it passes a 

given distance from the substrate surface.  Figure 2-23 illustrates some of the deposition 

parameters and their corresponding effects.  The parameters labeled as colored knobs are 

normally varied to control the deposition process.  The laser excitation voltage, the laser 

pulse repetition rate, the laser pulse footprint (energy density), chamber ambient pressure, 

and chamber/substrate temperature are the primary variables adjusted in real-time to 

control the PLD process. In addition to in-situ emission spectroscopy, Raman 

spectroscopy has the potential to be used as a process control sensor [48], and is 

discussed in more detail in Appendix A. 
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Figure 2-22.  Time-resolved Images of Plumes Produced by Ablating an YSZ Target in 

150 mTorr Oxygen or Argon Ambient Environments using 10 J/cm2 248-nm Laser Pulses 
as Recorded by a Princeton Instruments 576-RBE Fast-imaging Camera System Through 

480±5 nm and 610±5 nm Optical Bandpass Filters [13] 
 

 The versatility of PLD is derived from the range on bombardment energies that 

the plume is capable of delivering.  The typical energies for generic PLD are 

approximately 100 eV.  Ion beam assisted PLD can bombard the substrate with energies 

up to 300 eV.  In addition to ion beam assisted PLD, PLD can be self-ion assisted 

through an appropriate substrate bias voltage.  Applying a negative bias to the substrate 

accelerates the positively charged particles within the plume toward the substrate.  Thus, 

no ion beam source is necessary.  This self-ion assisted PLD can bombard the substrate 
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Figure 2-23.  Pulsed Laser Deposition Variables [48] 
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with energies between 250-300 eV [50].  These energies are almost an order of 

magnitude greater than those of sputtering, which are typically up to 20 eV.  Likewise, 

PLD bombardment energies are almost two orders of magnitude greater than thermal 

evaporation energies, which are typically less than 1 eV [10; 25].  Thus, PLD can grow a 

variety of thin films which cannot be grown using other methods.  Typical PLD growth 

conditions for YSZ are divided into three distinct PLD categories: generic PLD, ion beam 

assisted PLD, and self-ion assisted PLD, as listed in Table 2-5. 

 

Table 2-5.  PLD Parameters for the Deposition of YSZ 
Parameter Generic PLD Ion Beam 

Assisted PLD 
Self-Ion Beam 
Assisted PLD 

Target YSZ [13; 51; 52; 
53] 

YSZ [54] YSZ [13; 50; 55; 
56] 

Ambient gas Oxygen [13; 51; 
52; 53] 

Argon or oxygen 
[54] 

Argon and 
Oxygen [13; 50; 

55; 56] 
Ambient pressure 
(mTorr) 

0.0075-7.5 [13] 
0.4 [51; 53] 

650 [52] 

1 [54]  1.5 and 150 [13; 
50; 55; 56] 

Target-to-substrate 
distance (cm) 

5.5 [53] 
7 [13; 51] 

4 [54] 7 [13; 50; 55; 56] 

Substrate temperature (° 
C) 

650 [52] 
790 [51] 

800 [13; 53] 

70-130 [54] 100-300 [13; 50; 
55; 56] 

Laser wavelength (nm) 248 [53] 
266 [51] 

248 [54] 248 [13; 50; 55; 
56] 

Laser energy (mJ) 60 [51] Not listed 300 [13; 50; 55; 
56] 

Laser fluence (J/cm2) 1-3 [51] 
3 [53] 

2 [54] 10 [13; 50; 55; 
56] 

Laser repetition rate 
(Hz) 

10 [51; 53] 40 [54] 40 [13; 50; 55; 
56] 

YSZ film thickness 
(nm) 

40-50 [51] 
80 [53] 

330, 370, 2000 
[52] 

Not listed 1000-1200 [13; 
50; 55; 56] 
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Table 2-5.  PLD Parameters for the Deposition of YSZ (cont.) 
Parameter Generic PLD Ion Beam 

Assisted PLD 
Self-Ion Beam 
Assisted PLD 

Ion source N/A Argon or oxygen 
[54] 

N/A 

Ion source-to-substrate 
distance (cm) 

N/A 3 [54] N/A 

Ion source angle from 
substrate normal (°) 

N/A 30-60 [54] N/A 

Ion beam diameter (cm) N/A 3 [54; 56] N/A 
Substrate voltage N/A N/A 100-300 [13; 50; 

55; 56] 
 

2.5 Thin Film Analysis Techniques 

 Numerous techniques exist to characterize the material properties of thin films.  

The techniques available to analyze thin films grown as part of this research are discussed 

in this section.  Many other techniques, such as atomic force microscopy and scanning 

tunneling microscopy, are also available [57].  However, these other techniques were not 

used in this research and as such, are not discussed in this section. 

2.5.1 Light Microscopy 

 Dating back to the 17th century, the light microscope or “standard optical 

microscope” is one of the oldest thin film analysis instruments.  Using a light microscope, 

it is possible to visually identify morphology, size, color, refractive indices, crystal 

systems, and opacity.  The spatial resolution with white-light is sufficient to distinguish 

features as small as 0.2 µm.  In typical use the light microscope is non-destructive.  

However, some light microscopy techniques may require the thinning of a material, 

which is a destructive process [57]. 
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2.5.2 Scanning Electron Microscope 

 The scanning electron microscope (SEM) provides greater spatial resolution and 

depth of focus than the light microscope.  The SEM can provide nanometer-level 

resolution and up to 300,000 times magnification.  The primary use of the SEM is high 

magnification imaging.  However, with optional accessories, elemental composition 

analysis is also possible.  The typical use of the SEM is non-destructive [57]. 

2.5.3 Transmission Electron Microscopy 

 Transmission electron microscopes (TEM) are used to analyze the atomic 

structure and microstructure of solid materials.  TEM systems analyze the diffraction of 

highly focused, monoenergetic electrons that bombard a thin specimen of material.  This 

diffraction information is equivalent to an X-ray diffraction pattern, which is discussed in 

Section 2.5.5.  In addition, TEM systems can image the thin sample.  This image can 

show variations in mass, non-uniformity in sample thickness, structural defects in 

crystalline material, and phase contrasts.  The typical lateral resolution is less than 0.2 

µm.  TEM analysis, which requires a thin sample that is typically less than 200 nm-thick, 

is destructive due to the sample preparation [57]. 

2.5.4 Energy-Dispersive X-Ray Spectroscopy 

 The collection and energy detection of X-ray spectra from a sample is defined as 

energy-dispersive X-ray spectroscopy (EDS).  Atoms emit characteristic X-rays when 

ionized with high-energy radiation.  EDS systems radiate samples and collect the X-ray 

spectra from the sample.  Analysis of the collected X-ray spectra is used to determine 
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elemental composition of the sample.  EDS systems are generally attached to an SEM or 

other electron column instruments.  EDS is a non-destructive analysis technique.  

However, as with other electron beam tools, electron beam damage may occur.  The 

typical lateral resolution of EDS is 0.5 µm to 1 µm.  The depth of penetration is 

dependent upon the density of the sample and the intensity of the radiation source.  EDS 

can detect a range of elements from boron to uranium [57]. 

2.5.5 X-Ray Diffraction 

 X-ray diffraction (XRD) can be used to identify the crystalline phase, orientation, 

and size of a thin film.  XRD systems radiate a specimen with a collimated beam of X-

rays.  Crystalline materials will defract the X-ray radiation according to Bragg’s law, as 

shown in Equation (2-2): 

 ( )2 sind θλ = ⋅ ⋅  (2-2)
 
where d is spacing between crystal planes, λ is the wavelength of the X-ray radiation, and 

θ is the diffraction angle.  XRD systems measure the intensity of the diffracted X-ray 

radiation as a function of twice the off normal incidence diffraction angle θ.  In addition, 

the crystalline phase and orientation can also be calculated by an analysis of the refracted 

intensities as a function of the angle θ.  Since the X-ray radiation is collimated, there is 

typically no lateral resolution.  The penetration depth of the X-ray radiation is material 

and X-ray radiation source dependence.  However, the penetration depth is typically 

limited to a few micrometers.  XRD analysis is non-destructive for most materials [57]. 
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2.5.6 Auger Electron Spectroscopy 

 Auger electron spectroscopy (AES) is used to identify the elemental composition 

at the surface of a thin film.  Secondary electrons are created near the surface of the thin 

film by a focused electron beam.  Auger electrons are secondary electrons that have the 

same energy characteristics of the elements.  In many cases, Auger electrons can be used 

to identify the chemical bonds of the surface atoms in the material being measured.  

Thus, AES is defined as the detection and analysis of these Auger electrons.  The shallow 

penetration depth of AES, typically 5 Å to 100 Å, provides information about the surface 

of the thin film only.  In addition, the lateral resolution of AES is sufficient to distinguish 

features as small as 300 Å.  AES is non-destructive.  However, AES is often combined 

with ion sputtering to perform depth profiling, which provides chemical composition 

information as a function of the depth from the original thin film surface.  In this process, 

the surface of the thin film is continually etched away by ion sputtering to expose a new 

surface, which is then analyzed by AES.  Thus, depth profiling AES is destructive [57]. 

2.5.7 Mechanical and Optical Profiling 

 Mechanical profiling uses the movement of a diamond stylus over the test surface 

to determine surface roughness.  Mechanical profiling can also be used to measure 

relative changes in thin film thickness.  Mechanical profiling can map an entire area of a 

sample or a path along the sample.  Typical depth resolution is 0.5 nm, with 

approximately 5 nm and 150 µm minimum and maximum step size, respectively.  Lateral 

resolution is between 0.1 µm and 25 µm.  Mechanical profiling is typically non-

destructive for most materials [57]. 
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 Optical profiling uses optical interferometry to provide the same information as 

mechanical profiling.  However, optical profiling has difficulty measuring multiple thin 

films, optically transparent, or extremely rough surfaces.  Multiple thin films and 

optically transparent thin films cause phase errors in the reflected interference pattern, 

which prohibits topology measurements.  Coating the sample with a thin optically opaque 

layer may solve this problem.  Also, if the surface is too rough, the interference pattern 

will become so scattered that no topology can be measured.  Optical profiling has a depth 

resolution of 0.1 nm, with 0.3 nm and 15 µm minimum and maximum step size, 

respectively [57]. 

2.6 Chapter Summary 

 An overview of thermal and intrinsic stresses in thin films was given in this 

chapter.  In addition, the relationship between thin film microstructure and intrinsic stress 

was also described.  Several typical methods for the growth of yttria stabilized zirconia 

were presented in this chapter.  This chapter also described the PLD concept in general.  

Chapter 3 builds upon the general description of PLD presented here by giving details 

about the individual components that comprise the PLD system used in this research.  In 

addition to the deposition systems discussed in this chapter, an overview of several thin 

film analysis techniques was given.  These techniques were used throughout this research 

effort. 
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3 Experimental Setup 

 
 
 
3.1 Overview 

 All the pulsed laser depositions and experiments conducted in this research were 

performed in the large area chamber located at the Air Force Research Laboratory 

Materials and Manufacturing Directorate (AFRL/ML), Wright-Patterson Air Force Base, 

Ohio, Area B, Building 651 Room 193.  An excimer laser, optics, scanning mirror, in-

chamber energy meter, target carousel, substrate manipulator system, and quartz lamp 

heater system comprise the majority of the pulsed laser deposition (PLD) system, as 

shown in Figure 3-1.  In addition, the pressure control system, time-of-flight emission 

sensor system, fast-imaging camera system, retractable Raman probe, and software  
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Figure 3-1.  Pulsed Laser Deposition System Diagram 
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control are part of the PLD system but are omitted from Figure 3-1 for clarity.  The 

remainder of this chapter describes each of these components in detail. 

3.2 Excimer Laser 

 The PLD system utilizes a Lambda Physik LPX® 305i excimer laser to produce 

the laser ablation pulses.  Table 3-1 summarizes the capabilities of the Lambda Physik 

LPX® 305i. 

 

Table 3-1.  Lambda Physik LPX® 305i Specifications [1] 
 ArF KrF XeF 

Wavelength 193 nm 248 nm 351 nm 
Maximum Energy 650 mJ 1200 mJ 400 mJ 

Average Power 25 W 50 W 15 W 
Maximum 

Repetition Rate 
50 Hz 50 Hz 50 Hz 

Pulse Duration 20 ns 25 ns 30 ns 
Pulse-to-Pulse 

Stability 
±5% ±3% ±3% 

 

 The LPX® 305i emits rectangular pulses at rates up to 50 Hz with full-width half-

maximum (FWHM) pulse widths of 10 to 15 mm in the vertical direction and 30 mm in 

the horizontal direction [1].  The laser beam diverges 1 mrad in the vertical direction and 

3 mrad in the horizontal direction [1].  This divergence constrains the optical system, 

which is more thoroughly discussed in Section 3.3.  The LPX® 305i was configured for 

248 nm using a KrF gas fill for all of the research reported in this dissertation. 

The LPX® 305i operates in one of two modes, constant voltage or constant 

energy.  In constant voltage mode, the LPX® 305i maintains the excitation voltage at a 

constant user-defined level between 14.5 kV and 21.0 kV [1].  The number of pulses 

since a gas refill, the age of the current gas fill, and the repetition rate commanded 
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determine the laser pulse energy for a commanded constant excitation voltage [1].  In 

constant energy mode, the LPX® 305i monitors the laser pulse energy with a built-in 

energy detector and adjusts the excitation voltage to maintain the commanded laser 

energy.  The LPX® 305i will stop firing if the excitation voltage required to maintain the 

commanded laser energy falls outside the excitation voltage operating range [1].  Both 

the constant voltage and the constant energy modes were used for the research presented 

in this dissertation. 

3.3 Laser Optic System 

 A rectangular aperture, optional optical attenuator, horizontal and vertical turning 

mirrors, focal lens, programmable beam steering mirror, entrance window, and in-

chamber energy meter comprise the laser optic system, as shown in Figure 3-2.  A 25 mm 

horizontal by 20 mm vertical rectangular aperture placed 130 mm in front of the LPX® 

305i clips the laser pulse to ensure that the laser pulse remains on the optics and to limit 

the laser pulse to the central portion of the beam.  As discussed in Section 3.2, the laser 

excitation voltage must lie between 14.5 and 21.0 kV.  Growth conditions may require a 

laser pulse with energy less than that produced using a 14.5 kV excitation voltage.  An 

optional barium fluoride window placed after the aperture can be inserted to attenuate the 

laser pulse, which lowers the laser pulse energy in the chamber while maintain an 

exciting voltage greater than 14.5 kV.  Following the optional attenuator, a 3.5-inch 

diameter mirror, labeled “horizontal turning mirror” in Figure 3-2, reflects the laser pulse 

toward the focal lens.  A magnesium fluoride 1000-mm lens focuses the laser pulse onto 

the target.  After the lens, another first-surface reflecting mirror, labeled “vertical turning 

mirror,” in Figure 3-2, directs the laser pulse toward the programmable scanning mirror.  
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The horizontal and vertical turning mirrors are first-surface reflecting mirrors comprised 

of optically flat glass substrates coated with aluminum and magnesium fluoride films. 
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Figure 3-2.  Optical Path Diagram 

 

The aluminum films reflect approximately 90 percent of the 248-nm laser pulse.  The 

magnesium fluoride films prevent the aluminum films from oxidizing.  The 

programmable scanning mirror controls the radial location of the laser pulse on the target.  

The laser pulse enters the chamber through the magnesium fluoride entrance window.  A 

retractable mirror placed between the entrance window and the target directs the laser 

pulse to either the target or an energy meter sensor.  A Moletron Energy Max 500 energy 

meter monitors the laser pulse energy inside the chamber when the retractable mirror is 

inserted.  Typical laser pulse energies inside the chamber range from 100 to 400 mJ per 
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laser pulse at 10-40 Hz repetition rates.  The laser pulse is focused to produce a footprint 

of approximately 2 mm by 7 mm. 

3.4 Target Carousel 

 The target carousel, capable of handling three six inch targets, moves to one of six 

default positions: three are load positions and three are ablate positions.  Each of the three 

load positions allows access to one of the three targets from the front of the chamber.  

Each of the three ablate positions coaxially align one of the three targets directly under 

the substrate.  In addition to selecting which target to load or ablate, the target carousel 

also rotates in place all three targets at a constant user-commanded rate.  A magnetic 

coupler weakly connects the carousel to stepper motors on the outside of the chamber.  

When the targets are rotating, the carousel rocks slightly from one of the six target 

positions.  This slight rocking motion imparts some randomness to the position of the 

laser pulse footprint on the target but does not change the location of the laser pulse 

footprint with respect to the substrate.  Thus, the rocking motion is beneficial for large 

diameter targets (targets greater than three inches in diameter).  However, with smaller 

diameter targets, the rocking motion creates the possibility for the laser pulse footprint to 

drift off the edge of the target and strike the target carousel.  An optional manual carousel 

lock prevents the target carousel from rocking during growths using small diameter 

targets, but also limits the deposition to a single target since the carousel is not allowed to 

move to another target selection. 
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3.5 Substrate Manipulation System 

 The substrate shutter, variable substrate height control, substrate holder/rotation 

system, and substrate biasing system comprise the substrate manipulation system.  The 

substrate shutter, when inserted between the target and the substrate, shields the substrate 

from the plume, which prevents any deposition on the substrate.  Ablating the target with 

the substrate shutter inserted removes contamination from the surface of the target and 

allows deposition conditions to be initialized without affecting the subsequent film 

growth.  For example, the time-of-flight sensor system, which is discussed in Section 3.8, 

can be used to control the LPX305i laser excitation voltage so that the time-of-flight for a 

specific plume constituent remains constant throughout the deposition process.  However, 

the constant time-of-flight control algorithm requires initialization (typically a few 

hundred laser pulses) during which the excitation voltage is varied to produce the desired 

time-of-flight.  During this initialization, the plume is depositing material under 

conditions that may not be the desired deposition conditions.  Until the initialization is 

completed, the substrate shutter is inserted and the plume deposits material on the 

substrate shutter rather than on the substrate.  Once the control algorithm stabilizes the 

plume, the substrate shutter is retracted, and the uncoated substrate is exposed to the 

plume. 

 The variable substrate height control allows the target-to-substrate distance to be 

varied from 55 mm to 145 mm.  Activation of the substrate shutter and in-situ Raman 

spectroscopy for substrates less than four inches in diameter both require the substrate to 

be raised to the near maximum position, which is an atypical growth position for both 

silicon carbide and yttria stabilized zirconia (YSZ).  A Hastelloy substrate holder holds 
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the substrate inverted above the target, so that the substrate surface faces down toward 

the target surface.  For six-inch diameter substrates, C-shaped clamps hold the substrate 

to the substrate holder.  For smaller substrates, Hastelloy substrate masks clamp the 

substrate to the substrate holder.  The substrate rotation shaft connects the substrate 

holder to the substrate rotation system.  Since the laser pulse scanning is limited to 

motion along the radius of the target and substrate, uniform thickness films require 

rotation of the substrate.  A stepper motor rotates the substrate at a constant commanded 

rate.  A Stanford Research PS310 power supply and a brush assembly, which allows the 

substrate to be biased while rotating, comprise the substrate biasing system.  The PS310 

is capable of delivering up to either 1250 V or 20 mA [2].  The substrate is negatively 

biased with respected to the chamber so that positively charged ions within the plume are 

accelerated toward the substrate. 

3.6 Pressure Control System 

 A roughing pump, turbomolecular pump, valve control panel, pressure gauges, 

multi-gas controller, gas sources, and various valves comprise the pressure control 

system.  Figure 3-3 illustrates the general configuration of the pressure system.  A Varian 

Turbo-V 550 eight-inch turbomolecular pump and controller produce a vacuum of less 

than 10-6 Torr when exposed to the chamber through the main valve.  A Leybold Trivac 

D16BCS mechanical pump, labeled “Roughing Pump” in Figure 3-3, either evacuates the 

chamber down to vacuum levels suitable for turbomolecular pumping or removes the 

back pressure from the turbomolecular pump (“backs”), as determined by the mutually-

exclusive operation of the two rougher valves.  An Epion valve control panel manages all 

vacuum valves in the system by allowing only three modes of operation: back turbo only, 
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Figure 3-3.  Pressure Control Vacuum Diagram 

 

pump down, and up to air.  The back turbo only mode closes all valves, except the 

rougher valve to the turbomolecular pump.  The up to air mode operates as back turbo 

only mode, but also opens the vent valve to purge the chamber with compressed nitrogen.  

In pump down mode, the valve control panel closes all valves except the rougher valve so 

that the roughing pump evacuates the chamber down below one Torr.  Once the chamber 

reaches less than one Torr in pump down mode, the valve control panel switches the 

roughing pump to back the turbomolecular pump and opens the main valve.  A Granville-

Phillips 307 Vacuum Gauge Controller monitors the vacuum using a Granville-Phillips 

model 274006 ionization vacuum gauge for the chamber and two Granville-Phillips 

model 275 Convectron  vacuum®  gauges, one for the roughing line and one for the 

chamber.  In addition to monitoring these gauges, the vacuum gauge controller also 

commands the valve control panel, when in pump down mode, to switch from roughing 

the chamber to pumping with the turbomolecular pump.  This vacuum set point is 

programmable and is currently set at one Torr. 
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 In addition to the pumping portion of the pressure control system, a multi-gas 

controller, gas sources, variable turbo valve, and adaptive pressure controller enable the 

chamber to maintain a constant pressure and gaseous composition.  The MKS 647B 

multi-gas controller provides a constant flow of any combination of up to four gas 

sources [3].  Currently only three of the four channels are utilized to provide oxygen, 

nitrogen, and argon ambient environments for the deposition environments.  The MKS 

647B controls three MKS Type 1179A Mass-Flo® Controllers, one for each gas source, 

to provide flow rates of up to 10 standard cubic centimeters per minute (sccm) each [4].  

As shown in Figure 3-3, the gases enter the chamber near the laser window, which helps 

prevent plume particles from depositing on the laser window.  The variable turbo valve, 

which bypasses the main turbo valve, controls the flow of gas into the turbo when the 

valve control panel operates in back turbo only mode.  Using an MKS type 120A 

Baratron® Vacuum Gauge to monitor pressure in the chamber, a VAT PM5 Adaptive 

Pressure Controller commands the position of the variable turbo valve to maintain a 

given pressure.  The MKS type 120A Baratron® Vacuum Gauge and VAT adaptive 

pressure control both have dynamic pressure ranges that are currently configured for up 

to one Torr [5; 6], which limits the pressure levels to the mTorr range. 

3.7 Temperature Control 

 Quartz lamps, a lamp power supply, a water-cooled heater chamber, a 

thermocouple, and a temperature controller comprise the temperature control system.  

Twelve General Electric QH1200T3/Cl/HT quartz lamps wired in parallel provide heat to 

the substrate.  The lamps are arranged six above the substrate, two above and beside the 
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substrate, and four below the substrate.  A Power Ten, Inc. P63C-8083 power supply 

generates a constant voltage to all twelve lamps.  A Eurotherm EPC900 temperature 

controller senses the heater chamber temperature using a Chromel-Alumel K-type 

thermocouple and adjusts the output voltage of the lamp power supply to produce the 

commanded temperature.  The water-cooled heater chamber limits the area to be heated 

to a small volume surrounding the substrate.  The valve control panel, described in 

Section 3.6, enables the lamp power supply only when there is sufficient water flow and a 

vacuum exists in the chamber.  Loss of either water flow or vacuum will immediately 

disable the lamp power supply as a safety precaution.  The Hastelloy substrate holder and 

stainless steel substrate rotation shaft, as described in Section 3.5, limit the chamber’s 

operating temperature range to 900°C and below. 

3.8 Time-of-Flight Emission Sensor System 

 An optical bandpass filter, a photo multiplier tube (PMT), a PMT power supply, 

spatial filters, a signal amplifier, and a Tektronics TDS 540D digital oscilloscope 

comprise the time-of-flight (TOF) emission sensor system.  An optical bandpass filter 

limits the wavelengths of light exposed to the PMT.  For example, excited zirconium 

(Zr*) emits at several wavelengths, including 468.8 nm, 471.0 nm, and 473.9 nm [7].  

Thus, for YSZ, an optical bandpass filter centered at 470 nm with a 10-nm spectral width 

allows the Zr* emissions to be monitored independently of the other species in the YSZ 

plume [7].  A Hamamatsu R7400U-04 PMT, which is sensitive to emissions in a UV to 

near IR spectral range of 185 nm to 850 nm [8], detects the optical emissions that are 

transmitted through the optical bandpass filter.  A DC bias voltage applied to the PMT 

determines the gain of the PMT [8].  Typical bias voltages range from 500 to 750 V for 
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the YSZ plume detection.  A Fluke 415B high voltage power supply produces the bias 

voltage for the PMT.  Inside the chamber, twelve horizontal stainless steel plates spaced 

approximately 1.83 mm apart and aligned parallel to the target and substrate spatially 

filter the plume into eleven distinct horizontal cross sections or “slots.”  The PMT detects 

emission through only one of the eleven slots at any given time, as determined by the 

manual positioning of the PMT, which is external to the chamber, as shown in Figure 3-4.  

Table 3-2 lists the distances between the spatial filters and the target surface.  A change 

in either capacitance or load on the PMT output can alter the TOF signal.  A Kota 

Microcircuits, Inc. E104 low-noise signal amplifier buffers the PMT output from 

transmission-line effects and adds 14 dB of gain [9].  A Tektronics TDS 540D four 

channel digital oscilloscope digitizes the PMT output and allows the software to record 

the signal, as described in Section 3.11.  Time jitter between the trigger output signal 

from the LPX® 305i excimer laser and the actual time of the laser pulse has been 

observed to vary up to one microsecond, which can create significant TOF signal error 

especially when averaging multiple TOF signals to reduce systematic noise.  The laser 

pulse detection and trigger conditioning circuit, as shown in Figure 3-5, reduces the time 

jitter errors.  The circuit is placed behind the horizontal turning mirror, shown in Figure 

3-2, and detects the small fraction of the laser pulse that is transmitted through the mirror.  

When diode D1 is exposed to the laser pulse, current flows into the base of transistor Q1, 

which allows Q1 to conduct.  This current produces a voltage across resistor R2.  Diode 

D2 and resistor R3 apply this voltage pulse to the input of the Schmitt triggered inverter 

U1A.  The Schmitt triggered inverter reduces signal bounce and conditions the signal into 

a clean inverted pulse.  Schmitt triggered inverter U1B inverts the pulse to produce a 
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positive-logic TTL compatible trigger output.  The delay through the circuit is less than40 

ns, which is equal to temporal data resolution of the digital oscilloscope.  In addition, the 

40-ns delay is similar to the laser pulse width, which varies between 20 to 30 ns [1]. 
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Figure 3-4.  Time-of-Flight Emission Sensor System Diagram 

 

Table 3-2.  Distance of Photo Multiplier Tube Spatial Filters from Target 
Slot Minimum (mm) Mean (mm) Maximum (mm) 

1 63.8 64.7 65.6 
2 68.3 69.2 70.1 
3 70.3 71.2 72.1 
4 74.3 75.2 76.1 
5 77.3 78.2 79.1 
6 80.8 81.7 82.6 
7 83.3 84.2 85.1 
8 87.3 88.2 89.1 
9 90.3 91.2 92.1 
10 93.8 94.7 95.6 
11 97.3 98.2 99.1 
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Figure 3-5.  Laser Pulse Detector and Trigger Conditioning Circuit Schematic 

 

3.9 Fast-imaging Camera System 

 A Princeton Instruments® PI-MAXTM 512 fast-imaging camera and optical 

bandpass filters provide images of the plume emissions for optical diagnostics.  The 

camera utilizes an intensified charge-coupled device (ICCD) with nanosecond-level gate 

timing to acquire multiple images of the plume at discrete time intervals [10].  The PI-

MAXTM 512 captures time-resolved images whose spectra range from 450 nm to 900 nm 

[10].  Stacking these time-resolved images together produces a “slide-show” of the plume 

emissions as the plume propagates from the target to the substrate.  The images are 

typically acquired at 200 ns intervals with 100 ns integration times.  The circuit shown in 

Figure 3-5 synchronizes the Princeton Instruments® ST133A Camera Controller with a 

Pulse Timing Generator (PTG) card to the laser pulse so that the camera’s time origin 

coincides with the start of the laser pulse with less than a 40 ns delay.  A square two-inch 

optical bandpass filter limits the plume emissions to a small spectral region of interest, 
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currently centered at 470 nanometer with a spectral width of 10 nm for YSZ plumes.  

This optical region contains only excited zirconium (Zr*) emissions when ablating from 

an YSZ target in an oxygen ambient environment [7].  Thus, the fast-imaging camera and 

optical filter provide insight into the spatial and temporal distribution of the Zr* 

emissions in the plume.  This is similar to multiple TOF sensors monitoring the emissions 

at numerous discrete distances from the target surface. 

3.10 Raman Spectroscopy System 

 A Raman probe [11], an Echelle spectrometer [12], excitation laser, fiber optic 

cabling, and acquisition computer comprise the Raman spectroscopy system.  PLD has 

been described as “an interrupted deposition process with multiple repetitions” [13].  An 

EIC Laboratories Raman probe [11] enables Raman spectra to be taken during such 

interruptions in the PLD growth process.  The principle components of the Raman probe 

are shown in Figure 3-6.  A Coherent DPSS 532-200 Nd:YAG excitation laser [14] 

produces a 200-mW, 532.0-nm excitation signal that is transmitted to the Raman probe 

via a fiber optic cable.  A coupling lens focuses the excitation signal through a dichroic 

filter and onto the focusing lens.  The 1 cm focusing lens tightly focuses the excitation 

signal onto the substrate at an approximately 35-degree angle of incidence from the 

substrate normal.  The focusing lens also collects the Raman signal but not the reflected 

excitation signal since the excitation signal is not at normal incidence to the substrate.  

The bandpass dichroic filter transmits the excitation wavelength, 532 nm, and reflects all 

other wavelengths near 532 nm.  This allows the Stokes and anti-Stokes Raman signal to 

be reflected while the dominant portion of the Rayleigh scattering signal passes through 

the dichroic filter.  Thus, the return signal that is monitored by the spectrometer has a 
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Figure 3-6.  Raman Probe Schematic 

 

greatly attenuated Rayleigh scattering component.  Another coupling lens directs the 

Raman signal into a fiber optic that transmits the Raman return signal to the 

spectrometer.  An EIC Laboratories VIS500 Echelle [15] spectrometer acquires the 

Raman spectra and an Andor DU-420BV CCD camera [16] digitizes the Raman spectra.  

The entire Raman probe is retractable, as shown by the vacuum bellows and vacuum 

flange in Figure 3-6.  This allows the Raman probe to be inserted to a position where the 

focusing lens is near the substrate for acquisition, and then retracted when not in use to 

avoid depositing on the focusing lens.  A Raman acquisition computer oversees the 

Raman spectra acquisition and responds to remote requests from the system control 

computer through a Microsoft ActiveX® software interface [17]. 

3.11 Software Control and Logging 

 Software routines written using LabVIEW® from National Instruments [18] 

provide a user interface and data logging capability for the deposition system when 
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executed on the system control computer.  A separate LabVIEW® [18] routine controls 

each of the systems described in the Sections 3.2 through 3.10 using a National 

Instruments PCI-GPIB IEEE 488.2 interface card, a National Instruments PCI-232/8 

multiport RS-232 interface card, or a TCP/IP interface to a remote computer.  Each of the 

system routines operates in parallel with and independent of the other system routines.  

This distributed system control allows the removal of unneeded systems or the addition 

of new systems without the need to recode the entire software.  Each system routine can 

be controlled locally from the front panel of the associated system routine (local mode) or 

globally from a single top-level routine (global mode).  When in global mode, the top-

level routine manages each system routine by scheduling operations based upon times 

specified in a deposition “recipe.”  The global mode allows minimal user interaction and 

improved run-to-run control consistency, while local mode provides the ease of operation 

and flexibility preferred for simple depositions and recipe development.  In addition to 

the control and system routines, a separate logging routine polls each of the system 

routines at a user-defined rate and records the variables of interest to a single log file per 

deposition cycle. 

3.12 Chapter Summary 

 The pulsed laser deposition (PLD) system and the associated diagnostic sensor 

systems were presented in this chapter.  This chapter also described the PLD system’s 

software logging and control.  All depositions performed for this dissertation were grown 

using the PLD system described in this chapter.  In addition, this chapter described the in-

situ Raman spectroscopy system used for the research presented in Appendix A. 
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4 Controlled-Stress Deposition of Yttria Stabilized Zirconia 

 
 
 
4.1 Overview 

 An initial and essential step, in developing large area controlled stress growths 

using pulsed laser deposition (PLD), is to determine which of the many potential 

deposition parameters significantly contribute to the stress of the deposited film.  Figure 

2-23 shows the typical deposition parameters and the associated effects of these 

deposition parameters on the deposition process.  This chapter describes the investigation 

into the typical deposition parameters that significantly affect film stress. 

 In addition to determining which typical deposition parameters affect film stress, 

a physical theory relating the film stress to the influence of the relevant deposition 

parameters is necessary to develop a process control method.  Without a physical theory, 

the entire parameter space for the relevant deposition parameters must be explored.  

Although much of this parameter space must be investigated in order to validate the 

theory, a few PLD growths using well-chosen points within the entire parameter space 

can characterize the process, once the theory has been validated.  Thus, the two goals of 

this chapter are to determine which deposition parameters significantly affect film stress 

and to derive/apply a relevant physical theory to the film stress control process.  This 

chapter focuses on yttria stabilized zirconia (YSZ) depositions.  YSZ was chosen as the 

material to be deposited due its excellent mechanical and optical properties, as described 

in Chapter 2.  In addition, other research within the Air Force Research Laboratory 
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Materials and Manufacturing Directorate (AFRL/ML) investigated PLD-grown YSZ for 

superconducting film buffer layers [1; 2].  Thus, the YSZ stress characterization 

presented in this chapter was chosen to be compatible with these ongoing efforts. 

 The two goals of this chapter (determine which deposition parameters 

significantly affect film stress and to derive/apply a relevant physical theory to the film 

stress control process) were achieved.  Laser fluence, ambient pressure, target-to-

substrate distance, and target surface condition were found to be the PLD variables that 

most significantly affect yttria stabilized zirconia (YSZ) film stress.  A model was 

developed to correlate film stress with laser fluence, ambient pressure, and target-to-

substrate distance.  The target surface condition was held constant by sanding the target 

surface before each deposition.  In addition to the previously listed deposition parameters, 

the impact of laser repetition rates between 10 and 40 Hz on film stress was investigated 

and found to have no significant effect.  The influence of initial substrate heating on film 

stress was also investigated.  The effect of initial substrate heating was not determined 

since initial substrate heating, when combined with substrate heating from the plume, was 

found to damage the polymer substrates. 

4.2 Theory 

 The PLD model described in Section 2.4 relates the 17 deposition parameters to 

film parameters through characteristics of the plume constituents [3].  Often there exists a 

direct correlation between film properties and plume parameters [3; 4].  Plume velocity, 

more specifically the change in plume velocity with distance from the target surface and 

time (plume dynamics), is one such plume parameter [3].  Thus, an understanding of 

plume dynamics is essential to correlate plume velocity with film properties. 
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 One proposed theory of plume dynamics, the “blast wave model,” models the 

relationship between distance and ambient pressure as a function of time [5; 6; 7; 8], as 

shown in Equation (4-1): 

 ( ) ( ) ( )0.2
0 mmnD t E P tξ= ⋅ ⋅  (4-1)

 

where D is distance (mm), ξ0 is a scaling constant (mm⋅µs-n⋅mTorr0.2⋅ J-0.2), E is 

explosion energy (J), P is pressure (mTorr), t is time (µs), and n is an exponential 

constant.  The blast wave model was initially derived to describe the propagation of 

shock waves resulting from the detonation of an explosive charge.  There are at least two 

noteworthy differences between a shock wave propagating through air and a plume 

propagating in a vacuum or low-pressure environment: relative particle velocity 

distribution difference and variations in the shape/direction of the propagation between 

the shock wave and the PLD plume.  The shock wave is characterized by a sharp change 

in pressure that is defined as the shock front [8].  In context of explosive detonations, the 

distance D in Equation (4-1) represents the distance of the shock front from the 

detonation origin.  When Equation (4-1) is used to describe plume velocities, the distance 

D in Equation (4-1) represents distance of the plume from the target surface.  However, 

the distance D is not as clearly defined for plume dynamics as it is for explosive 

detonations.  As shown in Figure 2-21, optical emissions, which are indicative of plume 

presence, are present during a range of times for a given distance from the target surface.  

Figure 2-22 also illustrates that at a given time optical emissions exist over a range of 

distances from the target surface.  Thus, there is not a sharply defined time at which the 

plume arrives at a given distance.  Secondly, the shock front propagates away from the 
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detonation location as a spherically-symmetric wave when a spherical charge is detonated 

at the center of the charge [8].  For non-spherical charges, the shock wave can be closely 

approximately by a spherical wave for distances that are an order of magnitude longer 

than the largest dimension of the non-spherical charge [8].  However, as shown in Figure 

2-22, the plume propagates normal to the target surface in a non-spherical wave. 

 Despite the difference between the shock front and plume propagation, the blast 

wave model is currently the best available model to describe plume dynamics for the 

range of PLD parameters explored in this chapter.  The conceptual similarities between 

the detonation of an explosive charge and laser ablation are readily apparent.  Both are 

highly energetic processes that are triggered by a relatively short explosion or ablation.  

Thus, the use of the blast wave model to describe plume dynamics is not unreasonable.  

In addition to the blast wave model, Geohegan shows the applicability of a linear model 

to describe plume dynamics for high vacuum deposition in the µTorr pressure range [7].  

For PLD environments in the mTorr pressure range, Geohegan also applies a drag model 

to the plume for distances from the target surface less than or equal to 2cm [7].  However, 

the deposition parameters explored in this chapter consist of ambient pressures in the 

mTorr range and target-to-substrate distances greater than 4.5 cm.  For these PLD 

conditions, Geohegan states that blast wave model is the best available model to describe 

plume dynamics [7].  Thus, the remainder of this chapter assumes that the blast wave 

model adequately represents the plume dynamics for the range of deposition parameters 

explored in this dissertation.  Chapter 5 shows the validity of this assumption and 

describes the other plume dynamics models in more detail. 
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 As defined previously, plume dynamics denote the change in plume velocity with 

distance from the target surface and time.  As such, Equation (4-1), which relates distance 

and time, is not the most intuitive expression and should be transformed to relate velocity 

to distance from the target surface.  Plume velocity, v, is defined as the derivative of 

distance with respect to time, as shown in Equation (4-2) [5]: 

 ( ) ( ) ( ) ( )0.2 1
0 / kndD t

v t E P n t
dt

ξ −≡ = ⋅ ⋅ ⋅ m s  (4-2)

 

Solving Equation (4-1) for time and substituting the result into Equation (4-2) produces 

velocity as a function of distance and independent of time, as shown in Equation (4-3) 

[5]: 

 ( ) ( ) ( ) ( )
1 0.2 1

0 km sn n nnv D n E P Dξ −= ⋅ ⋅ ⋅  (4-3)
 

Equation (4-3) states that for a given explosion energy and ambient pressure, the velocity 

decreases as a function of distance when the exponential constant n is less than unity.  

Previous research fit experimental data to Equation (4-3) and calculated values of 0.4 and 

0.6 for the exponent n [5; 6].  Equation (4-3) also asserts that an increase in explosion 

energy and/or a decrease in pressure will produce an initially greater velocity that decays 

at the same rate with respect to distance. 

 Given that the plume dynamics are described by Equation (4-3), the remainder of 

this chapter assumes that plume velocity at the substrate determines the film stress.  

Qualitatively, this assumption appears valid.  If the velocities of the plume constituents 

are too fast, the substrates and any previous film growth can be damaged.  For example, 

the kinetic energy of zirconia at 20 km/s is 187 eV.  Such high kinetic energy is sufficient 
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to cause substrate damage similar to sputtering the substrate.  Conversely, if the kinetic 

energy of the plume constituents is low, the deposition rate will be slow and the surface 

activation energy will not be sufficient to grow high-quality films.  Thus, the kinetic 

energy of the plume is similar to ion-assisted deposition [5].  The assumption that the 

plume velocity determines the film stress is shown in Chapter 8. 

 Using the constant velocity assumption, there is some plume velocity at the 

substrate that produces growths exhibiting no curvature.  The actual value of this constant 

velocity, defined as vflat, need not be known for further analysis.  When combined with 

Equation (4-3), this velocity, vflat, can be used to interpolate among the pressure-distance 

combinations at a given explosion energy E that produce growths exhibiting a desire 

stress, such as the stress that produces films exhibiting no curvature.  The explosion 

energy E is an unknown function of laser fluence, which is a combination of both laser 

energy and laser footprint size.  However, for a given laser energy and laser footprint 

size, the explosion energy E remains constant.  Equation (4-4) defines a new constant C 

that groups all the constant terms: explosion energy E, velocity vflat, exponential constant 

n, and scaling constant ξ0.  This simplifies Equation (4-3) to include only pressure, 

distance, n, and the new constant C, as shown in Equation (4-5): 

  ( )
( )( )

5 5
5 1-n0

5 mTorr mm
n

n

flat

n EC
v

ξ ⋅⋅ ⋅
= ⋅  (4-4)

    
  ( ) ( )5 1 mTorrnP C D ⋅ −= ⋅   (4-5)

 

where C is a constant (mTorr⋅mm5(1-n)), vflat is velocity that produces film exhibiting no 

substrate curvature (km/s), ξ0 is a scaling constant (mm⋅µs-n⋅mTorr0.2⋅J-0.2), E is 
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explosion energy (J), P is pressure (mTorr), D is target-to-substrate distance (mm), and n 

is an exponential constant. 

 Previous research has highlighted the relationship between plume dynamics and 

various film properties.  For example, the electrical properties of PLD-grown 

YBa2Cu3O7-x (YBCO) films were theorized to be proportional to the velocity of the film 

constituents in the plume [5; 6; 9; 10; 11; 12; 13].  In fact, a P-D scaling law, similar to 

that presented in Equation (4-5), was employed to determine the optimal pressure for a 

range of target-to-substrate distances [5; 6].  Other research reported on the use of plume 

constituents’ velocities as a feedback sensor to control the laser energy per pulse and 

ambient pressure [9; 10; 11; 12; 13].  In addition, previous research has related the plume 

dynamics to crystalline quality of several II-VI compound semiconductors, namely ZnS, 

ZnSe, CdS, CdSe, and CdTe [14].  However, the current literature does not contain any 

references to possible relationships between the mechanical properties of PLD-grown 

films and plume dynamics, which is the focus of this chapter.  Section 4.3 describes an 

experiment designed to correlate the mechanical properties, specifically film stress, of 

PLD-grown YSZ films with plume dynamics. 

4.3 Experiment 

 To determine the effect of the pressure and the target-to-substrate distance on film 

stress, many YSZ thin films were grown on nine-micrometer thick polymer substrates, 

specifically a colorless, low dielectric, radiation-resistant polyimide, denoted CP1, that 

was developed by NASA Langley Research Center [15; 16; 17].  Previous experience has 

shown that the film curvature was most sensitive to changes in the oxygen pressure and 

target-to-substrate distance combinations near the no curvature condition.  Thus, the no 
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curvature condition was chosen as the desired stress to be characterized.  The growths 

were performed using various oxygen pressures and target-to-substrate distances at a 

given laser fluence.  The CP1 polymer substrates were initially flat when clamped 

between the substrate holder and the substrate holder mask.  The clamping of the CP1 

polymer substrate did not alter the curvature of the CP1 polymer substrates. 

 YSZ thin films were deposited on the CP1 polymer substrates using the PLD 

system described in Chapter 3.  The LPX-305i was operated in constant energy mode at 

700 mJ at 40 Hz for 30 minutes to produce laser pulses of 220 mJ inside the chamber.  

The laser pulse footprint size was approximately 2 mm by 7 mm, which corresponded to 

a laser fluence of 1.57 J/cm2.  The oxygen pressure and target-to-substrate distance were 

varied to produce films with no curvature.  The conditions that produced YSZ films on 

CP1 polymer substrate with no curvature were fitted to Equation (4-5) to determine the 

experimental values of C and n.  The LPX-305i was then operated in constant energy 

mode at 500 mJ at 40 Hz for 30 minutes to produce laser pulses of 165 mJ inside the 

chamber, which corresponded to a laser fluence of 1.17 J/cm2.  Again, the oxygen 

pressure and target-to-substrate distance were varied to produce films with no curvature, 

and the conditions that produced films with no curvature were also fitted using Equation 

(4-5).  Additionally, YSZ thin films on CP1 polymer substrates were grown at 40 Hz for 

30 minutes at a fixed target-to-substrate distance while varying the LPX-305i laser 

energy and oxygen pressure to determine the effect of laser fluence on the explosion 

energy E from Equation (4-3). 
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4.4 Data 

 YSZ thin films grown by PLD on CP1 polymers exhibit stress from compressive 

to tensile as evident by the direction and magnitude of the substrate curvature.  The 

direction of the substrate curvature indicates either compressive or tensile stress.  The 

film stress is compressive if the substrate curls away from the YSZ film or tensile if the 

substrate curls toward the YSZ film.  The magnitude of the stress is visually quantitized 

into one of four categories: tightly curled, loosely curled, bowed, and flat.  Substrates 

exhibiting tightly curled and loosely curled stress are ignored due to the difficulty in 

describing the amount of curl.  The bowed category is defined as a substrate that is 

curved but without the ends overlapping.  A substrate with little or no curvature is 

categorized as flat.  Figure 4-1 shows an example of each stress category. 

 

    

Tightly 
Curled 

Loosely 
Curled 

Bowed Flat 

Figure 4-1.  Examples of Stress Quantitization Categories 
 

 At any given target-to-substrate distance and laser fluence, there exists some 

pressure, designated the no curvature pressure, that produces substrates exhibiting no 
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curvature.  Table 4-1 summarizes some pressure-distance combinations (no curvature PD 

combinations) for several laser fluences that produce substrates with no curvature for 

YSZ thin films on CP1 polymer substrates.  Figure 4-2 also displays these no curvature 

PD combinations. 

 

Table 4-1.  YSZ on CP1 Polymer Substrates Growth Parameters Yielding Films 
Categorized as Flat 

Fluence (J/cm2) Distance (mm) Oxygen Pressure (mTorr) 
1.57 56.7 195 
1.57 64.7 165 
1.57 71.7 145 
1.57 81.7 126 
1.57 91.7 110 
1.57 111.7 85 
1.48 56.7 190 
1.38 56.7 180 
1.29 56.7 173 
1.17 56.7 165 
1.17 111.7 73 

 

For any given target-to-substrate distance, increasing or decreasing the oxygen pressure 

from the no curvature pressure produces growths with tensile stress or compressive 

stress, respectively.  For a given target-to-substrate distance, a ±2 mTorr oxygen pressure 

variation from the no curvature pressure results in substrates that exhibited slight 

curvature, but are still categorized as flat.  A ±5 mTorr oxygen pressure variation from 

the no curvature pressure produces substrates with sufficient curvature to be quantitized 

as bowed.  Substrates that are quantitized as either tightly or loosely curled require at 

least a ±15 mTorr oxygen pressure variation from the no curvature pressure.  

 As stated in Section 4.3, the no curvature PD combinations were found by 

investigating the effect of varying the oxygen pressure at each target-to-substrate 
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distances listed in Table 4-1.  During this investigation, many YSZ on CP1 polymer 

growths produced substrates that were categorized as bowed or curled.  Table 4-2 lists the 

oxygen pressure, target-to-substrate distance, and laser fluence combinations that 

produced films categorized as bowed. 
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Figure 4-2.  Oxygen Pressure, Laser Fluence, and Target-to-Substrate Distance 

Combinations Plot of YSZ on CP1 Polymer Substrates Yielding Films Categorized as 
Flat 
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Table 4-2.  YSZ on CP1 Polymer Substrates Growth Parameters Yielding Films with 
Bowed Curvature 

Fluence 
(J/cm2) 

Distance 
(mm) 

Bowed Away from Film 
Oxygen Pressure (mTorr) 

Bowed Toward Film 
Oxygen Pressure (mTorr) 

1.57 56.7 190 NA 
1.57 71.7 135 155 
1.57 91.7 NA 120  
1.57 111.7 80 90 
1.17 56.7 160 170 
1.17 111.7 70 75 
1.48 56.7 185 NA 
1.38 56.7 175 185 
1.29 56.7 165 NA 

 

4.5 Analysis 

 Section 4.2 presents a theory stating that ambient pressure and target-to-substrate 

distance PLD parameters predominantly determine the plume velocity for a given laser 

fluence.  In addition, Section 4.2 describes the blast wave model, as shown in Equation 

(4-3), which relates the velocity to a function of distance from the target surface.  If the 

plume velocity theory and plume dynamics model are correct, then the pressure-distance 

relationship for YSZ thin films on CP1 polymer substrates with no curvature, as listed in 

Table 4-1, should fit Equation (4-5).  Equation (4-5) describes the relationship between 

pressure and target-to-substrate distance for a given laser fluence.  Table 4-3 lists the 

fitted value and the 95% confidence intervals for C and n, which were calculated using 

TableCurve 2D [18] and the 1.57 J/cm2 data listed in Table 4-1.  Figure 4-3 displays the 

computed fit as the solid line and the pressure-distance combinations that produce 

growths with no curvature as the data points.  The 1.57 J/cm2 laser fluence bowed 

curvature PD combinations, as listed in Table 4-2, are also shown in Figure 4-3.  As 

previously stated, a ±5 to 15 mTorr pressure variation from the no curvature pressure for 
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a given target-to-substrate distance results in substrates with sufficient curvature to be 

quantified as bowed.  For a given target-to-substrate distance, the no curvature pressure is 

bounded between the bowed toward the film and the bowed away from the film 

pressures.  As such, the bowed pressures estimate the worst-case no curvature 

quantitization error for each target-to-substrate distance.  As shown in Figure 4-3, the 

largest pressure variation is ±10 mTorr.  The actual no curvature quantitization error for 

each target-to-substrate distance is less than this ±10 mTorr worst case variation.  As 

stated previously, a ±2 mTorr pressure variation from the no curvature pressure produces 

substrates that start to bow, but are still quantitized as flat.  Thus, a ±2 mTorr pressure 

variation is a better estimate of the typical no curvature quantitization error than the worst 

case ±10 mTorr pressure variations derived from the bowed curvature bounding 

pressures.  In addition, a ±2 mTorr typical quantitization error agrees well with the 95% 

confidence intervals shown in Figure 4-3.  As shown in Figure 4-3 and listed in Table 4-1 

and Table 4-2, the pressures that produce growths categorized as bowed deviate less than 

8% from the no curvature pressures for any given distance.  The actual tolerance of the 

no curvature point must be less than this deviation.  Replacing the qualitative curvature 

categorization method with some quantitative stress measurement technique will reduce 

the worst case ±10 mTorr no curvature range.  However, one of the goals of this research 

is to produce growths with a given curvature.  The 8% worst case quantitization error 

range is more than sufficient to accomplish this goal. 
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Table 4-3.  Fitting Statistics for No Curvature Pressure Distance Relationship When 
Ablating with a 1.57 J/cm2 Laser Fluence 

Parameter Lower 95% 
Confidence Interval 

Fitted Value Upper 95% 
Confidence Interval 

C (mTorr⋅mm5(1-n)) 20036 25276 30516 
n (unitless) 0.74907 0.75883 0.76859 
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Figure 4-3.  YSZ on CP1 Polymer Pressure-Distance Combinations That Produce No 

Curvature, Theoretical Fit, and Bowed Curvature Pressure-Distance Combinations using 
a 1.57 J/cm2 Laser Fluence 

 

 The pressure-distance relationship described by Equation (4-5) utilizes the 

correlation between constant laser fluence and constant explosion energy.  This 

correlation allows the explosion energy to be combined into the constant C.  However, 

including the laser fluence into the model enables the PLD user more flexibility and an 

additional degree of freedom in the PLD parameter space.  Equation (4-5) does not 

describer how the explosion energy E relates to laser fluence.  Intuitively, explosion 

energy E should be proportional to laser fluence.  Five pressure and laser fluence 

combinations at a fixed substrate to target distance of 56.7 mm produced substrates 

exhibiting no curvature, as listed in Table 4-1.  Equation (4-3) shows that the explosion 
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energy E to pressure P quotient must be constant to produce the same velocity vflat at a 

fixed target-to-substrate distance D, such as 56.7 mm.  If laser fluence is linearly related 

to the explosion energy E for the range of laser fluences listed in Table 4-1, then the 

pressure which produces substrates exhibiting no curvature at a fixed target-to-substrate 

distance must be linearly related to laser fluence.  Figure 4-4 displays the pressure and 

laser fluence combinations listed in Table 4-1 at a fixed target-to-substrate distance of 

56.7 mm, as well as a linear fit to the data shown by the dashed line.  As stated 

previously, the laser fluence is a combination of the laser footprint size on the target and 

the average energy per laser pulse.  The laser fluence was varied by adjusting in the 

commanded laser energy between 500 and 700 mJ, which corresponded to an average 

energy per laser pulse of 165 and 220 mJ inside the chamber.  The laser footprint size on 

the target remained constant at 14 mm2.  Table 4-4 lists the fitting statistics for the data 

shown in Figure 4-4 and listed in Table 4-1. 
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Figure 4-4.  Pressure and Laser Fluence Combinations (Varied by Adjusting Average 
Energy per Laser Pulse at a Fixed Footprint Size of 0.14 mm2) that Produce Substrates 

Exhibiting no Curvature at a Target-to-Substrate Distance of 56.7 mm 
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Table 4-4.  Fitting Statistics for No Curvature Pressure Fluence Relationship When 
Ablating with a Target-to-Substrate Distance of 56.7 mm and a Laser Footprint Size of 

14 mm2

Parameter Lower 95% 
Confidence Interval 

Fitted Value Upper 95% 
Confidence Interval 

Slope (J/J) 66.106 77.696 89.286 
Offset (J) 57.481 73.534 89.588 

 

 Figure 4-4 shows that approximating the explosion energy E with a linear 

function of laser fluence fits the data adequately.  The scaling constant ξ0 in Equations 

(4-1) through (4-4) is still unknown since no velocities at the substrate have been 

measured.  However, the goal of this experiment is not to find the velocity vflat but to find 

a relationship among pressure, laser fluence, and target-to-substrate distance that 

produces substrates exhibiting no curvature.  Thus, the actual magnitude of the velocity 

vflat is not important, and the scaling constant ξ0 can remain arbitrary.  Equation (4-6) 

linearly relates laser fluence to explosion energy, as described previously: 

 ( )JE Fα β= ⋅ +  (4-6)
 

where E is explosion energy (J), α is slope (J/J), β is offset (J), and F is laser fluence.  

Substituting this definition of explosion energy E into Equation (4-4) produces Equation 

(4-7). 

 ( )
( ) ( )( )

5 5
5 1-n0

5 mTorr mm
n

n

flat

nC F
v

ξ α β ⋅⋅
= ⋅ + ⋅  (4-7)

 

Equation (4-7) contains the constants ξ0, α, β, and vflat that can be regrouped into new 

slope and offset coefficients.  Equations (4-8) and (4-9) define the new slope and offset 

coefficients that relate the variable C to laser fluence F: 
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(4-9)

 

where m is slope (mTorr⋅mm5⋅(1-n)⋅mJ-1) and b is offset (mTorr⋅mm5⋅(1-n)).  Substituting 

Equations (4-8) and (4-9) into Equation (4-7) reduces the variable C to a function of two 

variables, as shown in Equation (4-10). 

 ( )( )5 1-nmTorr mmC m F b ⋅= ⋅ + ⋅  (4-10)
 

Combining Equation (4-10) with Equation (4-5) produces Equation (4-11), which the 

relationship upon the relevant PLD parameters that produce substrate exhibiting no 

curvature. 

 ( ) ( ) ( )1 0.2 mTorrnP m F b D −= ⋅ + ⋅  (4-11)
 

Using TableCurve 3D [19] to fit every pressure, laser fluence, and target-to-substrate 

distance combination listed in Table 4-1; m, b, and n are computed to be 9890.9, 10196, 

and 0.75807, respectively.  Table 4-5 contains the relevant fitting statistics.  The 

exponential constant n agrees very closely, a deviation of approximately 0.1%, with the 

previously computed values from the 1.57 J/cm2.  In addition, the worst case fitting 

residual is 2 mTorr and the worst case 95% confidence intervals vary less than –3.25 and 

+2.00 mTorr from the no curvature PDF combination.  These statistics agree well with 

the quantitization error of ±2 mTorr described previously.  Figure 4-2 illustrates the 
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surface described by Equation (4-11) and the fitted parameters listed in Table 4-5.  Using 

the values for m, b, and n listed above, Equation (4-11) can be used to interpolate among 

pressure, laser fluence, and target-to-substrate distance combinations that will produce 

films exhibiting no curvature for combinations of parameters near the ranges listed in 

Table 4-1. 

Table 4-5.  Fitting Statistics for No Curvature Pressure Distance Fluence Relationship 
When Ablating with a 14 mm2 Constant Laser Footprint Size 

Parameter Lower 95% 
Confidence Interval 

Fitted Value Upper 95% 
Confidence Interval 

m (mTorr⋅mm5(1-n)⋅mJ-1) 8161.7 9890.4 11619.1 
b (mTorr⋅mm5(1-n)) 8646.2 10196.5 11746.7 

n (unitless) 0.75208 0.75807 

 

0.76406 

 

 While the “blast wave model” can be used to interpolate among the pressure, laser 

fluence, and target-to-substrate distance combinations that produce substrates exhibiting 

no curvature, the actual plume dynamics as a function of time and distance were not 

measured.  Thus Equations (4-1) through (4-3), which describe the theoretical velocity of 

the plume, have not been proven.  Further discussion of the theoretical velocity and the 

assumption that velocity determines the stress in the film will be postponed until Chapter 

5, which reports on the investigation into the plume dynamics monitored by the TOF 

emission sensor system and the fast imaging camera system. 

 As shown in Figure 2-23 and discussed in Section 2.4, there are many deposition 

parameters that can be varied in order to obtain a desire film quality.  Of the deposition 

parameters typically varied, only target-to-substrate distance, laser fluence, and ambient 

pressure have been discussed as the dominant factors that control stress in YSZ films 
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grown on CP1 polymer substrates.  Other parameters, such as repetition rate and substrate 

biasing, were investigated and determined to contribute very little to the stress in the 

deposited films. 

 The first additional PLD parameter investigated, repetition rate, has a drastic 

impact on the quality of the films if the substrates are not attached to a sufficient thermal 

heatsink.  Initial investigations of YSZ growths on six-inch diameter CP1 polymer 

substrates were performed with the CP1 polymer suspended on a mounting ring, similar 

to the head of a drum.  These growths were limited to repetition rates below 20 Hz.  At 

repetition rates greater than or equal to 20 Hz, the CP1 polymer appears “burned,” as 

apparent by a slightly brownish color and severe deformation of the normally taught 

polymer.  The assumption that the cause was thermal was verified using an optical 

pyrometer.  Although the pyrometer was not calibrated for the emissivity of the CP1 

polymer, a relative temperature threshold for the damage was found.  Initial testing on 

one-inch and two-inch diameter CP1 polymer substrates revealed no change in the 

pressure-distance combination for repetition rates between 10 and 40 Hz.  These one-inch 

and two-inch diameter substrates were grown while clamped to an aluminum substrate 

holder, which acted as a heatsink.  Similarly, final testing on six-inch diameter CP1 

polymers still mounted to a Pyrex mold, as discussed in Chapter 7, also showed no 

damage or substantial change in stress due to laser repetition rate.  Due to the limited 

temperature range of the CP1 polymer substrates and the heating of these substrates by 

the plume, all depositions were performed initially at room temperature.  The inner heater 

chamber, as described in Section 3.7, was cooled with chilled water at approximately 

12° C. 
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 In addition to any repetition rate effects, the effect of substrate biasing of film 

stress was also investigated.  A substrate bias range of 150 to 225 volts was chosen to be 

compatible with growth conditions described in the current literature.  Previous research 

found that negative substrate biasing, with a threshold of 100 to 150 volts, was necessary 

to initiate crystal growth of YSZ on randomly oriented polycrystalline substrates [2].  In 

addition, above this threshold and up to 300 volts, a slight increase in the crystalline size 

was observed with the increase in the substrate bias [2].  The substrate biasing accelerates 

the positively-charged plume constituents toward the substrate.  Substrate biasing in this 

manner is analogous to ion-beam assisted deposition [2; 20].  There was negligible 

change in the curvature of the YSZ thin films on CP1 polymer substrates for negatively 

biased substrates from 150 to 225 volts over the range of laser fluences, pressures, and 

target-to-substrate distances listed in Table 4-1. 

4.6 Conclusion 

 The combination of laser fluence, ambient pressure, and target-to-substrate 

distance can be used to control the stress in YSZ films grown on CP1 polymer substrates.  

The effects caused by varying these parameters should apply to materials other than YSZ 

and to substrates other than CP1.  The effect of substrate bias and laser repetition rate on 

the stress in the YSZ films was investigated and found not to have any significant effect.  

However, without adequate heat dissipation for the CP1 polymer substrate, repetition 

rates greater than or equal to 20 Hz were found to be destructive.  While other PLD 

parameters that were held constant may also affect the stress of the YSZ films on CP1 

polymer substrates, the combination of laser fluence, ambient pressure, and target-to-

substrate distance are sufficient to control the stress of the deposited films. 
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 The “blast wave model” proposed in [5; 6; 7] for controlling the electrical 

properties of superconducting films can be used to interpolate among the pressure, laser 

fluence, and target-to-substrate distance combinations that produce thin film growth with 

equivalent stresses.  The calculated shape variable n from Equation (4-5) is computed to 

be 0.75883.  This value is comparable to the values of 0.4 and 0.6 used in previous 

literature for uniform electrical properties of superconductors [5; 6; 7].  Furthermore, the 

shape variable n is shown to be independent of laser fluence, which allows the “blast 

wave model” to also account for any variation in the laser fluence. 

 Although the equations derived from the “blast wave model” can be used to 

interpolate among parameters necessary to produce films with equal stresses at various 

pressure, target-to-substrate distance, and laser fluence combinations, the assumptions 

that the plume distance from the target as a function of time varies as specified by the 

“blast wave model” and the assumption that plume velocity at the substrate determines 

the film stress have not been proven.  Further investigation into the plume dynamics 

using the TOF system is necessary and is presented in Chapter 5. 
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5 Optical Diagnostics of the Yttria Stabilized Zirconia (YSZ) 

Plume 

 
 
 
5.1 Overview 

 Chapter 4 showed that the YSZ film stress could be controlled using a 

combination of ambient pressure, target-to-substrate distance, and laser fluence.  In 

addition, a theory was derived that predicts the relationship among these three pulsed 

laser deposition (PLD) parameters that produces YSZ films on CP1 polymer substrates 

with no stress.  However, these deposition parameters were derived by varying only one 

deposition parameter while holding the other deposition parameters as constant as 

possible.  Thus, the plume was controlled using an open-loop control scheme. 

 This chapter presents the investigation on the applicability of plume emission 

sensors to the film stress control problem.  In addition, previously developed plume 

dynamics theories are applied to the film stress control problem.  Finally, any correlations 

between the relevant variables from these plume dynamics theories and the resulting YSZ 

film stress is investigated.  Thus, the goals of the research presented in this chapter are 1) 

to discover and characterize YSZ plume parameters that significantly affect stress and 2) 

to develop/apply a measurement method so that the relevant YSZ plume parameters can 

be used as a feedback input to close the loop between deposition parameter and YSZ 

plume behavior. 
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 The two goals of this chapter were achieved.  The time-of-flight (TOF) emission 

sensor system, as described in Section 3.8, monitored the plume velocity during both 

diagnostic depositions and during the YSZ growths discussed in Chapter 4.  Both the 

TOF emission sensor system and the fast imaging camera system monitored the 

spectrally filtered plume emissions (TOF waveforms).  Two velocity parameters were 

extracted from the TOF waveforms: the most probable velocity and the streaming 

velocity from the shifted center-of-mass Maxwell-Boltzmann (SCMMB) distribution.  

Although the most probable velocity was faster for the vacuum condition (<10-6 Torr) 

than for the typical YSZ growth pressures (50-250 mTorr), the most probable velocity did 

not vary significantly among the non-vacuum pressures.  Thus any correlations between 

the most probable velocity and film characteristics were not found.  However, the 

streaming velocity did vary significantly with two of the investigated PLD parameters, 

namely ambient pressure and target-to-substrate distance.  In addition, the diagnostic 

depositions showed that the streaming velocity was approximately 6250 m/s for the PDF 

combinations that produced YSZ films on CP1 polymer substrate that exhibited no 

curvature, as described in Chapter 4.  Finally, real-time monitoring of the streaming 

velocity was incorporated into the PLD system described in Chapter 3.  The laser 

excitation voltage was adjusted so that the streaming velocity tracked the commanded 

plume velocity.  Thus, the real-time monitoring and feedback of the streaming velocity 

was used to compensate for gradual PLD parameters variations, such as target surface 

condition. 
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5.2 Theory 

 Chapter 4 describes a theory (constant velocity blast wave theory) that relates 

ambient pressure, target-to-substrate distance, and laser fluence combinations to film 

stress.  The correlation between the PDF combinations and film stress is based upon two 

assumptions: 1) the PDF combinations produce a plume that propagates according to the 

“blast wave” model and 2) the plume velocity at the substrate determines the film stress.  

Other research also utilizes the constant velocity blast wave theory, which implicitly 

depends upon these two assumptions, to correlate PLD parameters to various film 

properties [1; 2; 3].  For example, consider YBa2Cu3O7-x (YBCO) thin films.  Previous 

research indicates that a correlation exists between the pressure and target-to-substrate 

distance combinations (PD combinations) and the electrical properties of 

superconducting YBa2Cu3O7-x (YBCO) thin films deposited using PLD [1; 2].  Also, a 

similar correlation exists between the PD combinations and the crystalline quality of 

several II-VI compound semiconductors, namely ZnS, ZnSe, CdS, CdSe, and CdTe [3].  

In addition, preliminary experimental data supports the assumption that plume velocity at 

the substrate predominately determines the stress in constant velocity blast wave theory 

by showing that the plume velocities at the substrate are the same for all PD 

combinations that produce YBCO films with the desired electrical properties.  However, 

neither the plume velocities nor the methods used to measure these velocities are reported 

[1]. 

 In other research, the plume velocity at the substrate is investigated using both 

optical time-of-flight (TOF) spectroscopy and ion TOF spectroscopy [2].  The data from 
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both types of spectroscopy is modeled by a shifted center-of-mass Maxwell-Boltzmann 

(SCMMB) distribution, as described in Equation (5-1) [2; 4; 5; 6; 7]: 

 ( ) ( ) ( )
2

3( ) exp unitless
2

m v u
f v A v

k T

⎛ ⎞⋅ −
= ⋅ ⋅ −⎜ ⎟

⎜ ⎟⋅ ⋅⎝ ⎠
 (5-1)

 

where A is scaling amplitude (s3/m3), m is atomic mass of plume constituent (kg), v is 

velocity (m/s), u is streaming velocity (m/s), k is Boltzmann’s constant (J/K), and T is 

effective plume temperature (K).  The optical TOF data (TOF waveform) is fitted to a 

SCMMB distribution, which determines the plume velocities to be approximately 8000 

m/s for the PD combinations that produced YBCO films with the desired electrical 

properties.  The corresponding ion TOF data is also fitted to a SCMMB distribution, 

which calculates the velocities to be approximately 12,000 m/s [2].  Although both 

experiments measure the plume velocities at the substrate, neither attempts to investigate 

the plume velocity as a function of pressure and distance from the target surface (plume 

dynamics) [1; 2; 3].  The plume velocity must be measured at multiple distances from the 

target surface under various ambient pressures in order to gain an understanding of the 

plume dynamics and any correlations between plume dynamics and PLD-grown film 

properties. 

 Fast photography has also been used to investigate the plume dynamics for PLD-

grown YBCO.  Geohegan initially applied fast photography to plume dynamics in 1992.  

However, Geohegan’s investigation did not spectrally filter the optical emissions, and as 

such, did not separately observe the emissions from each of the plume constituents [8].  

Each constituent of the YBCO plume has been shown to propagate at different velocities 

5-4 



 

as determined by the various deposition parameters [9; 10; 11].  In addition, Geohegan’s 

investigation only monitored emissions that were less than 3.5 cm from the target surface 

and ignored the plume dynamics beyond this distance [8].  Other studies have extended 

Geohegan’s work.  For example, Voevodin et al. recorded the time-integrated YSZ plume 

spectra in an oxygen ambient environment and attributed the spectral emissions near 470 

nm and 780 nm to zirconia and oxygen collisions, respectively [12].  Then, Voevodin et 

al. limited the optical emissions fast photography investigation to the 470 and 780 nm 

spectral regions with the use of optical bandpass filters [12].  However, even this study 

monitored only the spatial region from target surface to approximately 70 mm from the 

target surface [12].  As described in Sections 5.3 and 5.4, fast photography is not limited 

to this spatial region and can be used to investigate the plume dynamics at further 

distances from the target surface. 

 Three theories describing plume dynamics have been proposed: the constant 

velocity model [8], the “blast wave model” [1; 2; 8], and the “drag force model” [8].  The 

constant velocity model predicts that the distance of the plume from the target surface is 

linearly proportional to time.  This model applies to YBCO plumes propagating in a 

vacuum [8].  The blast wave model, also described as the “shock model,” describes a 

spherical wave that propagates symmetrically outward from the location of a detonation 

[1; 13].  Even though the plume does not propagate as a spherical wave, the blast wave 

model is used to describe the YBCO plume dynamics for low ambient pressure 

conditions using Equation (5-2) [1; 2; 8]: 

 ( ) ( )0.2
0 / mnD E P tξ= ⋅ ⋅ m  (5-2)
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where D is distance from the target surface (mm), ξ0 is a scaling constant (mm⋅µs-n⋅ 

mTorr0.2⋅J-0.2), E is explosion energy (J), P is pressure (mTorr), t is time (µs), and n is an 

exponential constant.  The blast wave model is the same model used in Chapter 4 to 

determine the PDF combinations that produce YSZ films on CP1 polymer substrates that 

do not exhibit any curvature.  The “drag force model” assumes that the plume has some 

initial velocity and experiences a retarding viscous force with a magnitude that is 

proportional to the velocity.  Thus, solving for the distance from the target surface as a 

function of time yields Equation (5-3) [8]: 

 ( )( ) ( )( ) 1 exp mmfinalD t x tβ= − − ⋅  (5-3)
 

where D is distance from the target surface (mm), t is time (µs), xfinal is final plume 

“stopping distance” from target surface (mm), and β is a viscous force time constant  

(µs-1).  Unfortunately, each of these three models describes the plume dynamics only 

under a limited set of deposition conditions.  Figure 5-1 illustrates the applicability of 

each of the three models.  As stated previously, the constant velocity model fits well for 

plumes propagating in a vacuum.  The drag model corresponds to the plume dynamics for 

a short time after ablation and under low pressures, but deviates as time increases.  Again 

under low pressures, the blast wave model (shock model) does not describe the initial 

plume dynamics, but does predict the plume dynamics after the plume has propagated a 

few centimeters. 

 In addition to fast photography, TOF emission sensor systems, like the one 

described in Section 3.8, can monitor optical emissions as a function of time at one or 

more fixed distances from the target surface.  In order to investigate the dynamics of a 
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particular constituent of the plume, spectroscopic analysis identifies the various sources 

of optical emission within the YSZ plume when ablating in an oxygen ambient 

 

 
Figure 5-1.  Results from an YBCO Plume Dynamics Investigation using Fast 

Photography [8] 
 

environment [12].  Monitoring the YSZ emissions near either 470 nm or 480 nm is 

recommended in order to exploit both the strengths of these emissions and the spectral 

separations from other emissions [12].  Figure 5-2 compares the optical transmission 

characteristics of the two optical bandpass filter to the recorded YSZ spectra (one for the 

TOF emission sensor system described in Section 3.8 and one for the fast imaging 

camera system described in Section 3.9).  Within the spectral region of 460 to 490 nm, 

only the five spectral emission peaks labeled “(A)” through “(E)” in are significant.  
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Furthermore, both optical bandpass filters limit the significant spectral emissions to peaks 

“(B)” though “(D).”  Figure 5-3 illustrates a portion of the atomic energy level diagram 

for excited zirconium (Zr*).  Transitions (B), (C), and (D) in Figure 5-3 correspond to the 

emission peaks labeled (B), (C), and (D) in Figure 5-2.  Payling and Larkins [14] list 

many other optical emissions in the 460 to 490 nm spectral region.  However, for the 465 

nm to 475 nm spectral region transmitted by the optical bandpass filters, intensity of the 

emissions corresponding to Transitions (B), (C), and (D) are at least an order of 

magnitude greater all other Zr* emissions.  The spectra emission peaks labeled “(A)” and 

“(E)” in Figure 5-2 have been attributed to excited zirconium oxide (ZrO*) transitions 
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Figure 5-2.  Percent Transmission of Optical Bandpass Filters Compared to the YSZ 

Spectra Acquired During Pulsed Laser Ablation in a 150 mTorr Oxygen Ambient 
Environment using a 1.57 J/cm2 Laser Fluence.  Spectral Emission Peaks are Labeled (A) 

through (E) for Reference 
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Figure 5-3.  Zr* 5G and 5F Atomic Energy Level Diagram [14] 

 

from the α, C3∆ to the X′3∆ atomic energy levels [12; 15].  Table 5-1 lists all relevant 

optical emissions near the 470-480 nm spectral region and the corresponding source of 

the emissions for the YSZ plume in an oxygen ambient. As shown in Figure 5-2, 

commercially available 10-nm bandpass filters, centered at either 470 nm or 480 nm, 

sufficiently isolate the respective Zr* or ZrO* optical emissions from other optical 

emissions [12] over the entire collection range of the detector; a Hamamatsu R7400U-04 

 

Table 5-1.  Spectra Content of Plume Emissions from YSZ Ablation in an Oxygen 
Ambient Near 470 nm [12; 14; 15] 

Specie Transition/Peak Reference Wavelength 
(nm) 

Experimental Wavelength 
(nm) 

ZrO* (A) 464.1 464.0 
Zr* (B) 468.8 468.9 
Zr* (C) 471.0 471.2 
Zr* (D) 473.9 474.0 

ZrO* (E) 482.8 482.8 
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photomultiplier tube (PMT) [16] as described in Section 3.8.  Figure 5-4 shows an 

example of optical emissions that are spectrally limited to 470±5 nm by a 470-nm 

centered bandpass filter and collected from a spatial cross-section of the plume through 

Slot 1, which is located 64.7 mm from the target surface.  The TOF waveform shown in 

Figure 5-4 contains a distinct emission feature, labeled “fireball”, that occurs 

approximately when the laser pulse impacts the target surface.  Very intense 

Bremsstrahlung emissions produce a sharp, almost instantaneous, response from the TOF 

emission sensor system [7].  Since the Bremsstrahlung emissions are spread in a 

continuum throughout the visible spectrum [7], it is not possible to spectrally filter out 

the fireball signal.  Fortunately, the intensities due to the fireball emissions decay quickly 

relative to the entire signal lifetime [7], and the intensities (labeled “main plume” in 

Figure 5-4) generated by optical emissions after the 2 µs time mark can be attributed 

almost exclusively to plume collisions. 
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Figure 5-4.  Slot 1 (64.7 mm From the Target Surface) Time-of-Flight 470±5 nm 

Emissions from YSZ Plume Ablated in 75 mTorr Oxygen using 1.57 J/cm2 Laser Pulses 
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 Analysis of the plume dynamics using the TOF emission sensor system requires 

extracting either the time after ablation that the plume reaches a fixed distance or the 

plume velocity in a given spatial region.  Thus, the TOF sensor system inputs the 

intensity as a function of time data (TOF waveform) to one of two algorithms to extract 

velocity estimates.  A common and simple algorithm extracts the most probable time, 

which is defined as the time of maximum intensity after the fireball [9; 10; 11; 17], as 

shown in Figure 5-4.  The most probable velocity is simply determined by dividing the 

mean distance of the slot from the target surface by the most probable time, as shown in 

Equation (5-4).  Another known algorithm fits the TOF waveform, excluding the 

intensities due to the fireball, to an SCMMB distribution [2; 4; 5; 6; 7], as described in 

Equation (5-1).  Again, defining velocity as the mean distance of the slot from the target 

surface divided by time, as shown in Equation (5-4), transforms Equation (5-1) from a 

function of velocity into a function of time as shown in Equation (5-5): 

 ( )m sidv
t

=  (5-4)

 

  ( )f t ( )

2
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exp unitless

2

i
i

dm udA t
t

k T

⎛ ⎞⎛ ⎞− ⋅ −⎜ ⎟⎛ ⎞ ⎜ ⎟= ⋅ ⋅ ⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟⋅ ⋅⎝ ⎠

 (5-5)

 

where t is time after laser pulse (s), A is scaling amplitude (s3/m3), m is atomic mass (kg), 

k is Boltzmann’s constant (J/K), T is effective plume temperature (Kelvin), di is mean 

distance from target surface to slot i (m), and u is streaming velocity (m/s).  Figure 5-5 

shows an example of the emission intensity as a function of time.  This waveform is fit to 
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Equation (5-5) using a least square error method.  The associated residuals are also 

shown in Figure 5-5. 
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Figure 5-5.  Slot 1 (64.7 mm From the Target Surface) Time-of-Flight 470±5 nm 

Emissions from an YSZ Plume Ablated in 75 mTorr Oxygen using 1.57 J/cm2 Laser 
Pulses Fitted to a Shifted Center-of-Mass Maxwell-Boltzmann Velocity Distribution 

 

 An examination of Figure 5-5 reveals three regions in which the SCMMB 

distribution deviates from the TOF data.  The first region is due to the fireball emissions, 

as described previously.  The large residuals that exist previous to the 2 µs time mark can 

be attributed to the fireball, which is present in the TOF data but is not included in the 

SCMMB model, as defined in Equation (5-5).  The fireball shape at a given slot distance 

from the target surface does not change with deposition parameters, such as laser fluence 

and ambient pressure.  As such, the fireball intensities vary only in amplitude for a given 

slot.  The second region of deviations, labeled “fast pre-emission,” spans from times 2.5 

to 4.75 µs in Figure 5-5.  The theoretical velocity distribution rises rapidly from zero 
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starting at approximately 3 µs.  However, the TOF waveform has a more gradual rise 

from a non-zero intensity.  The source of this deviation is not known, but has been 

reported in other research [18].  The fast pre-emissions cause the least square error fitting 

algorithm to skew the theoretical velocity distribution to sooner times, which results in a 

slightly faster streaming velocity.  The actual time of the fast pre-emission and the 

resulting skewing vary with the deposition parameters.  The final region of deviation is 

the long-lived “non-Maxwellian tail” that occurs after 12 µs in Figure 5-5, as evidenced 

by the non-zero residuals.  Again, the actual time of the non-Maxwellian tail varies with 

the deposition parameters.  To remove the residuals caused by the fireball, previous 

research has added the sum of two single-sided exponential distributions to the SCMMB 

distribution.  However, modeling of the fireball does not eliminate the pre-emission 

skewing or the non-Maxwellian tail [18].  Since the fireball most significantly affects the 

TOF waveform during or before the fast pre-emissions, sectioning the data to exclude 

early times, such as all times before 4.75 µs, can reduce both the effects.  This sectioning 

has little effect on the SCMMB distribution since these early times correspond to 

velocities much greater than the expected velocities of the plume.  Likewise, the non-

Maxwellian tail can be sectioned out of the fitted data as well.  Sectioning the data in this 

manner does not significantly change the fitted values of either the streaming velocity u 

or the effective temperature T.  However, the 95% confidence intervals for these fitted 

parameters are reduced, and the goodness-of-fit measures are improved. 

 Three goodness-of-fit measures are used to measure the correctness of the least 

square error fit: r2 coefficient of determination, fit standard error, and F-statistic [19].  

Equations (5-6) through (5-8) define three statistics used to calculate these goodness-of-
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fit measures: the sum of squares due to error (SSE), the sum of squares about the mean 

(SSM), and the degree of freedom (DOF) [19]: 

 
SSE 2

1

)ˆ( i

n

i
ii yyw −=∑

=

 (5-6)
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i
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=

 (5-7)

 DOF mn −=  (5-8)
 

where i denotes ith data point, w is weighting coefficient, y is data value, y  is mean data 

value,  is predicted data value, n is number of data points, and m is number of 

coefficients to fit.  All sectioned data points are equally weighted with a weighting 

coefficient of one.  The r

ŷ

2 coefficient of determination is defined as shown in Equation 

(5-9) [19]: 

 
SSM
SSEr −= 12  (5-9)

 

where SSE and SSM are as previously defined.  The r2 coefficient of determination relates 

the explained variation to the total variation.  As the fit improves, r2 approaches unity, 

while an r2 equal to zero denotes a complete lack of fit.  The second goodness-of-fit 

measure is fit standard error, as defined in Equation (5-10) [19]: 

 Fit Standard Error
DOF
SSE

=  (5-10)
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where SSE and DOF are as previously defined.  The fit standard error approaches zero as 

the fit improves.  The final goodness-of-fit measure is the F-statistic, which is defined in 

Equation (5-11) [19]: 

 

DOF
SSE
m

SSESSM

statisticF 1−
−

=−  (5-11)

 

where SSE, SSM, DOF, and m are as previously defined.  The F-statistic approaches 

infinity when the fitted data approaches the measured data.  Since neither the fireball nor 

the pre-emissions shown in Figure 5-5 are accounted for in Equation (5-4), the measured 

data contained in Figure 5-5 is sectioned to remove all data before time 4.5 µs and after 

time 12 µs.  Since the pre-emissions and non-Maxwellian tail times vary with the 

deposition parameters, the actual beginning and end times of the data sectioning vary.  

Thus, the start and stop times for the data sectioning are chosen to maintain at least the 

upper seventy percent of the main plume’s intensity.  Sectioning the data in this manner 

reduces the pre-emissions skewing of the velocity, eliminates the need to model the 

fireball, and produces fitting parameters with smaller confidence intervals.  Table 5-2 

lists some of the relevant fitting statistics for the data fit shown in Figure 5-5.  The 95% 

confidence intervals for both the streaming velocity u and the effective temperature T are 

reasonably close to the fitted value, which indicate a good fit.  As described previously 

for the desired goodness-of-fit measures, the r2 coefficient of determination is near unity, 

the fit standard error is near zero, and the F-statistic is large.  Thus, all three goodness-of-

fit measures indicate a close fit.  In addition, a graphical interpretation of Figure 5-5 

reveals a close fit in the non-sectioned range. 
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Table 5-2.  Time-of-Flight Emissions from YSZ Plume Shifted Center-of-Mass Maxwell-
Boltzmann Velocity Distribution Fitting Statistics 

Parameter Lower 95% 
Confidence Interval 

Fitted Value Upper 95% 
Confidence Interval 

Streaming Velocity (m/s) 7171 7228 7285 
Plume Temperature (K) 110900 113000 115200 

r2 Coefficient of 
Determination 

NA 0.99451 NA 

Fit Standard Error NA 8.8976x10-3 NA 
F-statistic NA 13403 NA 

 

5.3 Experiment 

 Two sets of experiments were performed to investigate the plume dynamics and 

any relationships between the observed plume dynamics and film properties.  The first set 

of experiments ablated an YSZ target using 1.57 mJ/cm2 fluence laser pulses at 40 Hz in 

an oxygen ambient environment and monitored the 465 nm to 475 nm optical emissions, 

which corresponded to collision of Zr* within the plume.  There was no substrate holder 

inserted into the chamber so that the plume would propagate unimpeded from the target 

surface to the top of the deposition chamber.  The TOF emission sensor system, as 

described in Section 3.8, monitored the optical emission at 11 discrete distance ranges 

from the target surface, as defined in Table 3-2, while the oxygen pressure was varied 

from high vacuum (less than 1 µTorr) to 200 mTorr in 25 mTorr steps.  The TOF 

waveforms were analyzed to determine if the plume dynamics behave as predicted by the 

“blast wave model” described previously in this chapter and Chapter 4.  In addition to the 

TOF emission sensor system, a fast imaging camera system, as described in Section 3.9, 

also acquired time resolved images of the 465 nm to 475 nm optical emissions of the 

plume.  Both the fast imaging camera system data and the TOF emission sensor system 

5-16 



 

acquisitions were taken simultaneously so that the both sensor systems were monitoring 

the same plume.  Data sets from the fast imaging camera system were analyzed and 

compared to the TOF waveforms from the TOF emission sensor system. 

 The controlled stress investigation described in Chapter 4 was also monitored 

using the TOF emission sensor system through the slot closest to the target (Slot 1), 

which was located 64.7 mm above the target surface.  The TOF waveforms were 

recorded at the mid-point of the YSZ depositions, except for depositions in which the 

target-to-substrate distance was less than or equal to 64.7 mm.  For the YSZ growth using 

these close target-to-substrate distances, the substrates were retracted and the substrate 

shutter was engaged after the YSZ film was deposited.  The TOF waveform was then 

recorded. Thus, the TOF waveforms were recorded immediately subsequent to the actual 

film depositions but before the substrates were removed from the chamber.  This “after 

deposition acquisition” was necessary since the substrate optically shielded the closest 

TOF sensor slot for all target-to-substrate distances less than approximately 65 mm, as 

described in Section 3.8.  For target-to-substrate distances within approximately 2 mm of 

the Slot 1 height, fluorescing of the plume near the substrate interfered with the optical 

measurements.  Finally, the TOF waveforms were analyzed to determine if any 

correlation between the plume dynamics and film stress existed. 

5.4 Data and Analysis 

 The first set of experiments investigated the optical TOF emissions in terms of 

distance from the target surface and oxygen pressure, for a fixed laser fluence of 1.57 

J/cm2.  The most probable time increases as the target-surface-to-monitored-slot distance 

is increased, as expected.  Thus, for a constant pressure and laser fluence, the acquired 
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waveforms shift to the right with an increase in monitored distance from the target 

surface, as shown in Figure 5-6.  Since the actual magnitude of the TOF waveform is 

irrelevant to either the most probable velocity or the SCMMB velocity extract algorithms, 

the TOF waveforms shown in Figure 5-6 have been normalized to emphasize the shape of 

the waveforms and to allow for easier visual comparison between waveforms.  In 

addition to shifting to longer times with an increase in distance from the target surface, 

the TOF waveforms’ full-width-at-half-maximum values also increase as the distance is 

increased, as expected.  The pre-emission regions appear to be increasing with distance 

the target surface, while the fireball emissions do not.  As such, the apparent amplitude 

increase in the pre-emission region is caused by the normalization, not by a change in the 

shape of the waveform. 
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Figure 5-6.  Example Normalized TOF Waveforms of YSZ Emissions near 470 nm When 

Ablating using 1.57 J/cm2 Laser Pulses in a 75 mTorr Oxygen Ambient Environment 
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 Although the TOF waveforms exemplified in Figure 5-6 behave as expected, the 

TOF waveforms deviate from the theoretical SCMMB plus fireball distribution model as 

the distance from the target surface and/or oxygen pressure increase.  The deviations are 

most apparent at Slot 11, which is located at the maximum distance from the target 

surface (monitoring further distances would require extensive modifications to the 

deposition chamber).  When ablating YSZ with an oxygen pressure of 75 mTorr or less, 

the TOF emissions at Slot 11 produce the expected waveform.  However, another peak 

appears at approximately 3 µs between the main plume and the fireball when the pressure 

is increased above 75 mTorr, as shown by the peak labeled “secondary peak” in Figure 

5-7. 
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Figure 5-7.  Slot 11 (98.2 mm From the Target Surface) 470±5 nm Time-of-Flight 

Emissions from YSZ Plume Ablated in Oxygen using 1.57 J/cm2 Laser Pulses 
 

 Since the bimodal velocity distribution shown in Figure 5-7 does not match the 

expected velocity distribution and since the TOF emission sensor system is a custom-
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manufactured apparatus, another sensor system is needed to verify the integrity of the 

TOF emission sensor system.  YSZ films are grown at room temperature on the CP1 

polymer substrates.  Therefore, the inner chamber’s heater shield is not necessary and is 

removed to allow the fast imaging camera system to monitor the optical emissions 

through a viewport on the front of the chamber, as described in Section 3.9.  Figure 5-8 

shows several “snapshots” of an YSZ plume as it propagates from the target to the 

substrate.  The opening in the heater chamber limits these images to a region 47.8 mm 

(bottom of image) to 123.5 mm (top of image) from the target surface.  A square two-

inch optical bandpass filter limits the optical emissions to 470±5 nm, as shown in Figure 

5-2.  Each image depicted in Figure 5-8 is normalized to emphasize the contrast between 

the optical emissions from the plume and the background.  To minimize the motion 

distortion caused by the moving plume, the fast imaging camera system captures the 

image with a gating time of 100 ns.  The starting time of each frame is varied from 200 ns 

to 20 µs in 200 ns increments, which results in 100 frames.  Each frame captures the 

ICCD-integrated intensities of 20 plumes.  The multiple-plume integration is required to 

compensate for the low signal to noise ratio, which is a result of both the weak optical 

emission and the short gating time. 

 As the plume propagates toward the substrate, the plume shifts horizontally from 

the right side of the image, as shown at time 5 µs, to the middle of the image, as shown at 

time 20 µs.  This shift is not caused by a misalignment of the camera relative to the target 

surface.  The Y-axis of each image is normal to the target surface.  Thus, the plume does 

not propagate normal to the target, but inclines back toward the path of the laser pulse 

(left side of each image).  This effect, denoted as “plume tilt,” has been observed in other 
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Figure 5-8.  Time-Resolved Normalized Images of YSZ Plume in 75 mTorr Oxygen 
Ablated Using 1.57 J/cm2 and a 470±5 nm Optical Bandpass Filter 
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research [7; 20; 21; 22; 23].  The magnitude of the plume tilt is slight and, as such, the 

distance above the target surface approximates the distance that the plume travels. 

 In order to use the fast imaging camera system to verify the TOF emission sensor 

system, the fast imaging camera system data must be processed to produce an output that 

resembles the TOF waveform.  The TOF emission sensor system integrates the 

spectrally-filtered optical emissions within a spatial cross-sectional area parallel to the 

target surface.  As shown in Figure 5-4 through Figure 5-6, the TOF waveforms report 

optical intensity as a function of time for a slot at a given distance from the target surface.  

Thus, each frame of the fast imaging camera system data is sectioned by row to limit the 

image to a spatial region corresponding to a given TOF slot.  The data within this 

sectioned spatial range is then summed in both the X and the Y direction to produce a 

scalar value that represents the total intensity within the given spatial range at the frame 

time.  Plotting the integrated scalar values against the corresponding frame times 

produces an extracted waveform comparable to the output of the TOF emission sensor 

system.  Figure 5-9 compares the waveform from the TOF emission sensor system to the 
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extracted TOF waveform from the fast imaging camera system.  The two waveforms are 

nearly identical, except for the fireball region that is recorded by the TOF emission 

sensor system but is excluded from the fast imaging camera system data.  The fast 

imaging camera system records the spectrally-filtered plume intensities starting at 200 ns 

after the laser pulse.  Before recording, the fast imaging camera system is effectively 

shuttered (ICCD gain set to zero) so that the Bremsstrahlung emissions are not recorded.  

However, the TOF emission sensor system monitors the plume emissions at all times.  

Thus, the Bremsstrahlung emissions saturate the TOF emission sensor system’s detector 

(PMT), which is described in Section 3.8.  The PMT output decays quickly with time, as 

discussed previously.  For non-bimodal waveforms, the PMT output has decayed 

sufficiently so that the output due to the Bremsstrahlung emissions is negligible 
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Figure 5-9.  Comparison of Time-of-Flight 470±10 nm Emissions from YSZ Plume 

Ablated in 100 mTorr Oxygen using 1.57 J/cm2 Laser Pulse at Slot 1 (64.7 mm From the 
Target Surface) as Monitored Using the TOF Emission Sensor System and as Extracted 

from the Fast Imaging Camera System Data 
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compared to the output corresponding to the main plume, as shown in Figure 5-4 though 

Figure 5-6 and Figure 5-9.  However, for the bimodal waveforms, the PMT output due to 

the Bremsstrahlung emissions has not had sufficient time to decay before the emissions 

caused by the secondary peak are detected, as shown in Figure 5-7.  Figure 5-10 shows a 

TOF waveform extracted from the fast imaging camera system that corresponds to Slot 

11 and the waveform from the TOF emission sensor system at Slot 11.  The TOF 

waveform extracted from the fast imaging camera system and the TOF waveform 

recorded by the TOF emission sensor system are both bimodal with modes centered at 

approximately 3 and 9 µs.  However, the main plume maximum intensity is 

approximately three times greater than the secondary peak maximum intensity for the fast 

imaging camera system extracted waveform, while the corresponding peak intensities are  
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Figure 5-10.  Comparison of Time-of-Flight 470±10 nm Emissions from YSZ Plume 

Ablated in 200 mTorr Oxygen using 1.57 J/cm2 Laser Pulse at Slot 11 (98.2 mm From 
the Target Surface) as Monitored Using the TOF Emission Sensor System and as 

Extracted from the Fast Imaging Camera System Data 
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approximately equal for the TOF emission sensor system waveform.  The inclusion of the 

fireball in the TOF emission sensor system waveform accounts for the majority of the 

relative intensity deviations between the two waveforms shown in Figure 5-10.  Despite 

the differences in the relative intensities between the two waveforms, the fast imaging 

system sensor extracted TOF waveform agrees well with the TOF emission sensor system 

waveform.  This correlation validates that the bimodal emission distribution is real and 

not a product of the TOF emission sensor system.  In addition, similar bimodal 

distributions are reported in other research [7; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33].  The 

cause of the bimodal distribution is not currently known.  Further recommended 

investigations into the cause of the bimodal emission distributions are discussed in 

Chapter 8. 

 Besides validating the TOF emission sensor system, the fast imaging camera 

system readily allows the spectrally-filter emission intensities versus distance-from-the-

target-surface relationship to be analyzed.  This is similar to the analysis performed by 

Geohegan, as shown in Figure 5-1.  The geometry of the inner heater chamber limits the 

fast imaging camera systems data to a spatial region between 47.8 to 123.5 mm from the 

target surface.  Thus, the maximum intensity occurs at the minimum observable distance 

of 47.8 mm for all times up to approximately 5 µs, since the maximum emission 

intensities occur below the minimum observable distance.  After approximately 5 µs the 

maximum plume emission intensities are within the viewable spatial region, as shown in 

Figure 5-11.  The linear fit shown in Figure 5-11 is not applicable since the y-intercept of 

the line is 41 mm, which implies that the plume exists at 41 mm immediately after the 

laser pulse arrives at the target.  The shock model and the drag model fit the data equally 
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well.  Most of the information capable of distinguishing between the shock model and the 

drag model is contained within the data corresponding to the first 40 mm from the target 

surface, which is not visible to the fast imaging camera system, as revealed by the drastic 

waveform shape difference between the shock model and the drag model during the 

initial 5 µs of Figure 5-11.  Therefore, the analysis does not conclusively differentiate 

between the applicability of shock model and the drag model. Additionally, the drag 

model implies that the plume emissions never travel beyond a fixed “stopping” distance, 

denoted “xfinal” in Equation (5-3).  The drag model fit shown in Figure 5-11 has a 

stopping distance equal to 89.7 mm.  Initially, this stopping distance limitation appears to 

invalidate the model since the plume must travel beyond the fitted stopping distance to 

reach the substrate.  However, the spectrally-filtered plume emission intensity 

dramatically decreases as the distance from the target surface increases.  Thus, the drag 

model is applicable to the problem since the spectrally-filtered plume emissions are 

nearly extinguished at the stopping distance and beyond.  The shock model also fits the 

data and has no stopping distance limitation.  Therefore, all subsequent analysis will 

utilize the shock model, which is in agreement with the results reported by Geohegan [8]. 

 Although the fast imaging camera system validates the TOF emission sensor  

system, the additional processing required to extract either the most probable time or the 

streaming velocity limits the use of the fast imaging camera system for “real-time” 

control processing.  Since the fast imaging camera system is analogous to multiple 

(approximately 100) TOF emission sensor systems that simultaneously monitor the 

plume emissions, the fast imaging camera system requires approximately 18 megabytes 

of storage per capture, as compared to approximately 20 kilobytes for a single waveform 
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Figure 5-11.  Distance from the Target Surface Corresponding to Maximum Emission 

Intensity as Recorded by the Fast Imaging Camera System Through a 470±10 nm Optical 
Bandpass Filter When Ablating an YSZ Target in 200 mTorr Oxygen using 1.57 J/cm2 

Laser Pulse 
 

acquired using the TOF emission sensor system.  More importantly, the signal to noise 

ratio (SNR) of the fast imaging camera system, as currently configured, is much less than 

that of the TOF emission sensor system.  The fast imaging camera system’s SNR can be 

improved by increasing the frame integration times (currently 100 ns) and/or integrating 

more plumes per frame (currently 20).  However, the fast imaging camera system’s added 

costs of increased file size, additional post-processing requirements, and decreased SNR 

outweigh the increased spatial resolution benefit, as compared to the TOF emission 

sensors system.  Therefore, the fast imaging camera system is precluded from further use 

in this investigation. 

 Even though the TOF waveforms are bimodal, further investigation of the plume 

dynamics as reported by the TOF emission sensor system is possible over a large subset 

of the initial range of distances from the target surface and oxygen pressures since the 
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bimodal distributions are apparent only at relatively large distances from the target 

surface and under relatively high pressures.  For example, at the slot closest to the target 

surface (Slot 1 at 64.7 mm from the target surface) the secondary peak is not visible in 

any of the TOF waveforms for oxygen pressures up to 250 mTorr.  In addition, the most 

probable velocity extract algorithm is relatively insensitive to the secondary peak for 

most PD combinations.  Thus for PD combinations that produce bimodal TOF emission 

distributions, the secondary peak is ignored when extracting the most probable 

times/velocities.  Figure 5-12 reports the most probable time for several PD 

combinations.  The most probable time appears to be a linear function of distance for all 

pressures.  Also, the most probable time is less for the vacuum condition than all other 

pressures, as expected.  However for each slot, the most probable times for all non-

vacuum pressures are approximately the same, which is contrary to the expected result. 

The most probable times were expected to increase significantly with pressure for each 

slot.  Linear fits for both the vacuum and non-vacuum most probable times are also 

shown in Figure 5-12. 

 If the most probable time is linear with distance, then the velocity must be 

constant.  In addition, if the velocity is constant, then the magnitude of the velocity is the 

slope of the linear fit of distance to the most probable time, as shown in Figure 5-12.  The 

two linear fits corresponding to the vacuum and non-vacuum condition have a time 

intercept of zero, which signifies that at time zero the plume is at the target.  The most 

probable velocity is calculated as the distance from the target surface divided by the most 

probable time, as described by Equation (5-4).  Figure 5-13 shows that the most probable 

velocity for each pressure is approximately constant for all distances.  In addition, the 
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Figure 5-12.  Most Probable Time as Monitored via the 470±5 nm Time-of-Flight 
Emissions from the YSZ Plume Ablated in Oxygen using 1.57 J/cm2 Laser Pulses 

 

most probable velocity in a vacuum, approximately 15.25 km/s, is greater than the 

velocity for all other pressures, as expected.  However, the non-vacuum most probable 

velocities appear to be approximately constant for all distance and pressures, at 10.75 

km/s.  The most probable velocities for the non-vacuum pressure were expected to 

decrease with distance and to decrease more rapidly with an increase in oxygen pressure.  

This result, as shown in Figure 5-13, is other than as expected. 

 Although the investigation of the plume dynamics as reported by the TOF 

emission sensor system using the most probable velocities produces unexpected results, 

the investigation was repeated, and the TOF waveforms were fitted to the sum of a 

SCMMB distribution and a fireball model.  The sum of two single-sided exponential 

distributions was used to model the fireball [18].  The most probable velocity extraction 

method described previously ignores the secondary peak, when present.  However, when 

the secondary peak is significant as compared to the main plume, the least squares fitting 
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Figure 5-13.  Most Probable Velocity as Monitored via the 470±5 nm Time-of-Flight 

Emissions from the YSZ Plume Ablated in Oxygen using 1.57 J/cm2 Laser Pulses 
 

algorithm shifts the fitted parameters to faster streaming velocities and higher effective 

temperatures if the secondary peak is not modeled.  In addition, the 95% confidence 

intervals for both the streaming velocity and the effective temperature significantly 

broaden, and the goodness-of-fit measures become worse when the secondary peak is 

ignored.  Thus, for TOF waveforms exhibiting a significant secondary peak, a second 

SCMMB distribution is included in the data fitting.  When the second SCMMB 

distribution is included, the goodness-of-fit measures improve, but the 95% confidence 

intervals for both SCMMB distributions indicate a relatively large range for each fitting 

parameter.  For example, the streaming velocity u for the SCMMB distribution that 

models the secondary peak is approximately zero with a 95% confidence interval from –

7000 m/s to 7000 m/s, which implies almost no integrity in the fitted value.  The 95% 

confidence interval for the streaming velocity u of the SCMMB distribution that models 

the main plume is not as broad, but still too broad to be of use.  In addition, although the 
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peaks from both the main plume and the secondary peak are far enough apart in time to 

distinguish visually, the peaks are not always separable enough to allow the fit to 

converge.  When the secondary peak is significant but of lower amplitude than the main 

plume, the fitting software [19] most often cannot find a solution.  Thus, the TOF 

waveforms that exhibit a significant secondary peak are excluded from the SCMMB 

fitting investigation.  Further investigation is needed to characterize the plume dynamics, 

especially those exhibiting bimodal optical emissions, and is discussed in Chapter 8.  

Figure 5-14 presents the streaming velocity u contour plot, which interpolates between 

data points to estimate the path of equivalent streaming velocities.  The actual data points 

are marked as “x” for reference.  In addition, PD combinations that produce YSZ films 

on CP1 polymer substrates that exhibit no curvature, as reported in Chapter 4, are marked 

as “▼.”At 50 mTorr and below the streaming velocity u does not significantly vary with 

distance from the target surface and can be approximated as constant.  Above 50 mTorr, 

the streaming velocity u decreases with distance and/or oxygen pressure.  The shapes of 

the equal-velocity contour lines resemble the velocity predicted by the blast wave model.  

In addition, the PD combinations for YSZ films on CP1 polymer substrates that exhibit 

no curvature lie along a constant velocity of approximately 6250 m/s.  Thus, for the PD 

combinations that produce films exhibiting no curvature and that are within the target-

surface-to-slot distances that can be monitored, the streaming velocity at the substrate is 

indicative of the film stress.  Further investigation is needed to expand the ranges of 

distances and pressures for which the velocity at the substrate-stress correlation is valid 

and is discussed in Chapter 8.  Figure 5-15 displays the effective temperature T in terms 

of distance from the target surface and oxygen pressure.  Again, the measured points are 
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Figure 5-14.  Streaming Velocity as Monitored via the 470±10 nm Time-of-Flight 
Emissions from YSZ Plume Ablated in Oxygen using 1.57 J/cm2 Laser Pulses 

 

marked as “x” and the PD combinations that produce YSZ films on CP1 polymer 

substrates that exhibit no curvature are marked as “▼.”  For each non-vacuum pressure 

that is monitored, the effective temperature T increases with distance from the target 

surface.  For each distance from the target surface that is monitored, the effective 

temperature T initially decreases with an increase in pressure until a local minimum is 

reached at pressures between 75 and 100 mTorr.  At 100 mTorr and above, the effective 

temperature T continually increases with an increase in pressure for each distance 

monitored.  The local minimum is evident when examining Figure 5-15 for each distance 

and along the Y-axis direction.  Although the streaming velocity u does correspond well 

with the constant-velocities theory predicted by the blast wave model, the blast wave 
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model does not make any predictions about the effective temperature T.  In addition, 

there does not appear to be a direct correlation between effective temperature and the no 

curvature PD combinations. 
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Figure 5-15.  Effective Temperature as Monitored via the 470±5 nm Time-of-Flight 
Emissions from YSZ Plume Ablated in Oxygen using 1.57 J/cm2 Laser Pulses 

 

 The second set of experiments monitored the streaming velocity and the effective 

temperature at a fixed target-surface-to-monitored-slot distance.  The deposition 

conditions are set to produce YSZ films on CP1 polymer substrates with no curvature.  In 

addition, the plume parameters are monitored during or immediately after the actual 

depositions that produces the YSZ films described in Chapter 4.  Figure 5-16 plots the 

streaming velocity u and effective temperature T versus oxygen pressure.  The streaming 
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velocity decreases as the oxygen pressure increases, as expected.  In addition, the 

effective temperatures increase with increased oxygen pressure, as expected. The Zr* 

constituents within the plume (as defined by the spectrally-filtered emissions) do not all 

travel at the same velocity.  This range of velocities is exemplified by the corresponding 

range of times during which the plume produces emissions, as shown in Figure 5-5.  For 

the TOF waveform displayed in Figure 5-5, the plume emits significantly during the 3 to 

15 µs time range, which corresponds a 4.3 to 21.5 km/s plume velocity range.  The 

streaming velocity expresses an aggregate plume velocity, similar to the mean or median 

statistics for a distribution.  Likewise, the effective temperature describes the velocity 

range’s “spread,” similar to a full-width-at-half-maximum (FWHM) value or standard 

deviation statistic for a distribution.  Thus, the decrease in streaming velocity with an  
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Figure 5-16.  Streaming Velocity u and Effective Temperature T Monitored Through Slot 
1 (64.7 mm From the Target Surface) as a Function of Oxygen Pressure 
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increase in oxygen pressure implies that the Zr* constituents within the plume (as defined 

by the spectrally-filtered emissions) are subjected to more collisions at the increased 

oxygen pressures.  Therefore, the Zr* plume constituents at the monitored slot are 

traveling at a reduced velocity due to the additional loss of kinetic energy from the 

increased number of collisions.  The effective temperature increase with oxygen pressure 

reveals that the additional collisions broaden the range of plume velocities.  Visual 

comparison of the normalized TOF waveforms shown in Figure 5-17 shows very little 

change in the time corresponding to the peak emission intensity, previously defined as the 

most probable time.  This result is in good agreement with the results from the first set of 

experiments that found that the most probable time and most probable velocity did not 

vary with oxygen pressure.  However, the FWHM value increases with oxygen pressure, 

as described by the increase in effective temperature with oxygen pressure.  Neither the  
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Figure 5-17.  Normalized TOF Waveforms of YSZ Emissions near 470 nm When 

Ablating using 1.57 J/cm2 Laser Pulses and No Curvature Pressure/Target-to-substrate 
Distance Combinations 
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most probable time nor the most probable velocity describes the spread of velocities.  

Therefore, the streaming velocity and effective temperature combination provide more 

information about the plume velocity than the most probable velocity parameter.  Thus, 

the streaming velocity and effective temperature combination greatly enhance the ability 

to reproduce the plume, either to minimize run-to-run variations or to compare plumes 

among different PLD systems. 

 For a constant distance and explosion energy (laser fluence), the velocity 

decreases with an increase in pressure, as predicted by the blast wave model.  In addition, 

the blast wave model describes the relationship between pressure and plume velocity, as 

shown in Equations (4-3) and (5-12): 

 ( ) ( ) ( ) ( )
1 0.2 1

0, , km sn n nnv E P D n E P Dξ −= ⋅ ⋅ ⋅  (5-12)
 

where D is distance (mm), ξ0 is a scaling constant (mm⋅µs-n⋅mTorr0.2⋅ J-0.2), E is 

explosion energy (J), P is pressure (mTorr), and n is an exponential constant.  For a given 

laser fluence (which corresponds to a fixed explosion energy E) and fixed distance from  

 

the target surface, the variables E, D, ξ0, and n can be combined into a constant C′, as 

shown in Equation (5-13).  Substituting Equation (5-13) into Equation (5-12) reduces the 

plume velocity to a function of pressure only, as shown in Equation (5-14). 

  C′ ( ) ( ) ( )1 0.2 1 -0.2 n
0 km s mTorrn n nn n E Dξ −= ⋅ ⋅ ⋅ ⋅   (5-13)

    
  v ( ) ( )0.2 km snC P −′= ⋅   (5-14)
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According to Equation (5-14), the velocity should decrease as the pressure increases.  

Figure 5-16 shows that the velocity does decrease as the pressure increases.  However, 

Equation (5-14) states that the shape of the pressure/velocity curve should be concave up 

and to the right, while the pressure/velocity curve shown in Figure 5-16 is almost flat and 

curves concave down and to the left.  Thus, the blast wave model is too simplistic to 

describe the relationship between the plume velocity and ambient pressure for the range 

of pressures investigated.  Although the relationship predicted by the blast wave model 

may hold true for pressure on a much larger scale, no conclusions can be drawn from 

pressure range investigated. 

 Finally, the results from both sets of experiments are compared to determine how 

blocking the plume propagation with a substrate hold affects the streaming velocity and 

the effective temperature, as compared to allowing the plume to propagate unimpeded up 

to the top of the chamber.  Figure 5-14 and Figure 5-15 relate the fitting parameters 

without the substrate holder present to oxygen pressure and distance from the target 

surface, which includes the Slot 1 (64.7 mm from the target surface) data.  Figure 5-16 

relates the streaming velocity and effective temperature with the substrate holder inserted 

to oxygen pressure for the no curvature PD combinations.  Although the streaming 

velocity slows approximately 18% when the substrate holder is present, the shapes of the 

pressure/streaming velocity curves are nearly identical, as shown in Figure 5-18.  The 

effective temperature also agrees well between the “with” and “without” substrate holder 

conditions, as shown in Figure 5-19.  The first set of experiments, in which the substrate 

holder was not present, concludes that the streaming velocity at the no curvature PD 

combinations was constant at approximately 6250 m/s.  This conclusion can now be  
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Figure 5-18.  Comparison between the Streaming Velocities at Slot 1 (64.7 mm From the 
Target Surface) Measured During Diagnostic Depositions and During the Growth of YSZ 

of CP1 Polymer Substrates that Exhibit no Curvature using 1.57 J/cm2 Laser Pulses 
 

80 100 120 140 160 180 200
100

110

120

130

140

150

160

170

180

190

200

Pressure (mTorr)

E
ff

ec
ti

ve
 T

em
pe

ra
tu

re
   

T
  (

K
×1

00
0)

Substrate Holder Present
No Substrate Holder

 
Figure 5-19.  Comparison between the Effective Temperature at Slot 1 (64.7 mm From 
the Target Surface) Measured During Diagnostic Depositions and During the Growth of 
YSZ of CP1 Polymer Substrates that Exhibit no Curvature using 1.57 J/cm2 Laser Pulses 
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extended to include conditions in which the substrate holder is present.  However, the 

streaming velocity of 6250 m/s at the substrate should be approximately 18% less (~5300 

m/s). 

 The purpose of the experiments presented in this chapter is to determine if the 

streaming velocity and/or effective temperature at a given distance from the target surface 

are indicative of film stress.  As shown in Figure 5-16, both the streaming velocity and 

the effective temperature at Slot 1 vary with oxygen pressure. A LabVIEW® [34] 

software routine combined with MatLAB® [35] least square error fitting algorithms 

provides “real-time” streaming velocities and effective temperatures by fitting the TOF 

data to Equation (5-5).  These fitted parameters are used for closed-loop control of the 

excitation voltage to produce a constant streaming velocity at Slot 1, which greatly 

improves the run-to-run repeatability as measured by the substrate curvature.  

Furthermore, the target topology changes with ablation, which affects the film stress.  For 

the depositions reported here and in Chapter 4, sanding of the target surface between 

depositions is required to ensure an equivalent laser fluence between runs.  Using the 

streaming velocity to control the excitation voltage of the laser compensates for the 

changing target topology and greatly increases the interval between sanding, while 

maintaining the same run-to-run repeatability. 

5.5 Conclusion 

 The optical emissions monitored by the TOF emission sensor system provide 

insight into the plume dynamics by extracting plume stream velocity and plume effective 

temperature for the TOF waveform.  In addition, the shifted center-of-mass Maxwell-

Boltzmann velocity distribution adequately models the TOF signal under most deposition 
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conditions.  However, as the target to substrate distance and oxygen pressure are 

increased, the TOF signal becomes bimodal, which invalidates the SCMMB 

distribution’s applicability.  The cause of the bimodal distribution is still not known.  For 

the TOF signals where the SCMMB distribution applies, the streaming velocity agrees 

well with the velocity predicted by the blast wave model described previously.  The data 

supports the blast wave model under most conditions and validates the blast wave model 

for the range of pressures and distances measured.  However, further investigations into 

the plume dynamics are needed for a complete understanding of any correlation between 

plume dynamics and film properties.  These further investigations should not be based 

upon optical emission, but rather other techniques, such as absorption and ion TOF 

spectroscopy.  Again, the source of the bimodal distribution is not known and should be 

investigated further, as described in Chapter 8. 

 In addition to modeling the TOF waveforms using an SCCMB distribution, the 

most probable velocity was extracted from the TOF waveforms.  Unfortunately, the most 

probable velocity did not significantly vary with oxygen pressure and distance from the 

target surface.  Thus, the most probable velocity was not used as a control input for the 

PLD system. 

 Although the most probable velocity does not significantly vary with pressure or 

distance, the streaming velocity does vary with distance and pressure.  The current 

version of the PLD software now includes a “real-time” streaming velocity and effective 

temperature extraction capability.  The streaming velocity is very sensitive to pressure 

and distance from the target surface.  As such, the streaming velocity can be used to 
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control laser excitation voltage to compensate for changing target topology.  In addition, 

such control is extremely useful for comparison among dissimilar deposition systems. 
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6 Large Area Pulsed Laser Deposition of Yttria Stabilized 

Zirconia 

 
 
 
6.1 Overview 

 Chapters 4 and 5 describe the ability to control yttria stabilized zirconia (YSZ) 

film stress using pulsed laser deposition (PLD) and to control the plume streaming 

velocity using the TOF emission sensor system.  These efforts were conducted using 

small area substrates (two inches in diameter or less).  While these efforts are necessary 

for large-area controlled-stress depositions, the large-area aspect was ignored, until now.  

Thus, a method to grow uniform-thickness films on large-area substrates (greater than 

four inches in diameter) remains to be developed.  However, the relevant deposition 

parameters that control stress (laser fluence, target-to-substrate distance, and ambient 

pressure) should be considered constant.  Therefore, the goal of the research presented in 

this chapter is to develop a method for depositing uniform-thickness YSZ films on six-

inch diameter silicon substrates without damage to the CP1 polymer and without varying 

the deposition parameters that significantly affect the film stress. 

6.2 Theory 

 The plume generated during the PLD process deposits material on the substrate 

with some spatial distribution of film thickness.  The angular distribution of the plume 

(ADP), which determines the spatial distribution of film thickness, is a topic currently 

undergoing extensive research.  Many models that attempt to describe the film thickness 
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as a function of the ADP have been proposed.  Two methods are commonly used to 

measure the ADP.  The first and most common method, referred to as the “film-based” 

method, uses a substrate as a flux detector.  The film thickness is measured, generally ex-

situ, to determine the spatial distribution of film thickness, which is proportional the flux 

distribution under most conditions.  The second method, referred to as the “probe-based” 

method, uses one or more movable probes to resolve the flux at some location and angle 

from the plume [1]. 

 Many factors, such as plume orientation, target topography, target-to-substrate 

distance, laser footprint size, laser pulse parameters, and ambient gas effects, can 

influence the ADP, which determines the spatial distribution of the film thickness 

(SDFT) [1].  The plume orientation is always normal to the target when the laser pulse is 

at normal incidence [1; 2; 3; and 4].  Even if the laser pulse is incident at a non-normal 

angle to the target, the plume is usually oriented normal to the target [1; 5; 6; 7; 8].  

However in some deposition systems, an effect in which the plume is angled back toward 

the direction of the laser pulse, denoted “plume tilting,” has been observed [1; 2; 9; 10; 

11].  Plume tilting can affect both the location and the shape of the SDFT.  Another factor 

that can affect the ADP is target topography.  Since the plume is generally oriented 

normal to the target, any target surface topography, such as target craters created by 

previous laser ablation, can alter the plume’s orientation [1:207-208, 3].  In addition, the 

target-to-substrate distance may affect the ADP.  Previous research has reported changes 

in the ADP as a function of target-to-substrate distance when measured using a film-

based method [1:208-209; 12; 13].  Also, the laser footprint size can affect the ADP 

independent of the laser fluence.  For example, increasing the laser footprint size and the 

6-2 



 

laser pulse energy, so that the laser fluence remains constant, has been reported to 

decrease the broadness of the angular distribution.  This effect has been attributed to 

intraplume collisions.  Thus, the SDFT resulting from a deposition using a single large 

laser footprint is not equivalent to the SDFT resulting from scanning multiple smaller 

laser footprints over an equivalent area on the target [1; 6].  In addition to the size of the 

laser footprint, the characteristics of the laser pulse itself, such as laser fluence, 

wavelength, and pulse length, affect the ADP [1; 5].  Finally, an increase in ambient 

pressure due to the inclusion of an ambient gas will broaden the ADP, as compared to 

depositions in a vacuum [1; 6]. 

 Three methods for producing uniform thickness depositions are commonly used 

to compensate for the SDFT produced by the ADP.  The first method, denoted as the 

“off-axis” method, utilizes a static laser footprint on a rotating target.  The center of the 

target is located at some fixed offset distance “d” from the center of the rotating substrate, 

as shown in Figure 6-1.  The target-to-substrate distance and the plume’s angular 

distribution determine the fixed offset distance “d”.  The second common method, 

labeled “rotational/translational” method, combines the “off axis” method with a variable 

offset distance “d” to scan the plume across the rotating substrate, as shown in Figure 6-1 

[1]. 

 The PLD system described in Chapter 3 exemplifies the third common large area 

PLD method, referred to as the “raster” method.  The raster method scans the laser 

footprint across a rotating target so that the plume is rastered across a rotating substrate 

[1].  The position of the laser footprint on the target is controlled by a radius and angle 

scanning scheme.  The target is rotated at a constant commanded rotation rate so that the 
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Figure 6-1.  “Off-Axis” and “Rotational/Translational” Large Area PLD Method 

Configuration [1] 
 

angle is a uniform function of time.  The laser footprint radial location on the target is 

varied with time.  Thus, the laser footprint location spirals in from the edge to the center 

of the target, in a manner similar to the tracks on a vinyl record, and then back to the edge 

of the target.  The spacing between these laser footprint location “tracks” is determined 

by the rotation rate of the target and the rate of change in the radial position. 

 As described in Chapter 3, the substrate is located coaxially with the target at a 

variable distance above the target.  The substrate is also rotated at a constant commanded 

rate.  Thus, the location of the plume on the substrate is determined in a polar coordinate 

scheme, similar to the location of the laser footprint on the target.  However, the radial 

position of the laser footprint on the target (RPLFT) may or may not produce a film with 
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maximum thickness at the same radial position on the substrate.  A mapping from the  

RPLFT to the radial position of maximum film thickness (RPMFT) on the substrate 

needs to be constructed.  An experiment designed to determine this mapping is described 

in Section 6.3.  In addition, numerical simulations of thin film thickness require either 

knowledge of the average SDFT per pulse or information about the SDFT when 

depositing while rotating both the substrate and target with the laser footprint at a given 

fixed RPLFT.  Section 6.3 describes experiments designed to evaluate these spatial film 

thickness distributions.  Given these spatial distributions, numerical simulations should 

predict the theoretical radial position as a function of time (radial profile) that will 

produce growths with a desired SDFT, such as uniform film thickness.  Actual growths 

will be conducted to verify that the theoretical radial profile is valid.  Section 6.3 details 

such an experiment. 

6.3 Experiment 

 Initially, uniform coatings of YSZ on six-inch silicon wafers were grown by 

iteratively correcting deviations in film thickness.  The corrections were generated 

assuming that a given RPLFT would produce a SDFT, such that the RPMFT should equal 

the given RPLFT.  These corrections, defined as the “equal radial assumption”, provided 

a linear mapping from the RPLFT to the RPMFT.  Thus, the equal radial assumption 

provided the necessary corrections to the radial profile to account for variations in film 

thickness.  The first step in the iterative process was to mask areas of the substrate before 

PLD growth.  After PLD growth, the mask and film growth on top of the mask were 

removed in a “lift-off” process, which exposed an uncoated area of the substrate.  Then, a 

Tencor P-10 Surface Profilometer was used to measure the step-height between the 
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exposed substrate and the surface of the YSZ film at a given substrate radial location.  

The step height measurement was used to estimate the film thickness at the 

corresponding substrate radial position.  Figure 6-2 displays an example of the step-

height measurement. 
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Figure 6-2.  Tencor P-10 Surface Profilometer Step Height Measurement 

 

 The step-height data was used to estimate the film thickness for a single substrate 

radial position.  A manual selection of the substrate and thin film regions in terms of 

relative distance was required to extract the film thickness from the step-height data.  

Step-height measurements were made at multiple substrate radial positions to determine 

the variation in thin film thickness as a function of substrate radial position.  Given these 

estimates of film thickness, corrections to the radial profile were generated.  For film 

thickness estimates below the average film thickness, the equal radial assumption 

indicated that the amount of time the laser footprint dwelled near the corresponding target 

radial position needed to be increased.  Therefore, the amount of time spent at a given 
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target radial position was proportional to the film thickness at a corresponding substrate 

radial position.  Using the corrections generated from the step-height measurements, the 

iterative cycle was repeated.  As with any iterative process, the correctness of the initial 

guess for the first iteration determines if the iterative process will converge and, if so, 

how many iterations are required for convergence.  The radial profile that produced 

uniform target wear was chosen as the initial guess.  All the iterative growths were 

performed under the deposition conditions listed in Table 6-1. 

 

Table 6-1.  Deposition Conditions for Uniform Film Thickness on Large Area Substrates 
Testing 

Deposition Parameter Value 
Laser Fluence 1.38 J/cm2

Laser Repetition Rate 40 Hz 
Ambient Gas oxygen 

Ambient Pressure 125 mTorr 
Ambient Flow 7.0 sccm 

Target-to-substrate Distance 86.7 mm 
Substrate Bias -225 V 

Target Rotation Rate 15 rpm 
Substrate Temperature ~23° C 

 

 In addition to the iterative method, a numerical simulation-based method was 

employed.  Due to the required user interaction and the actual thickness measuring 

process, the Tencor P-10 was slow and tedious to use for extracting the film thickness as 

a function of substrate radius.  Also, the masking process produced slight variations near 

the exposed substrate-YSZ film transition area, which limited the accuracy of film 

thickness measurements made near the center of the substrate.  A Filmetrics F50 

Thickness Mapping System was purchased to replace the Tencor P-10.  The Filmetrics 

F50 was capable of scanning semi-transparent thin films from 300 Å to 50 µm with ± 10 
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Å accuracy on substrates up to eight inches in diameter with greater than 250 µm 

positional accuracy [14].  The Filmetrics F50 analyzed the optical reflectance from the 

substrate and thin film over a range of visible wavelengths to determine the film 

thickness at a given position on the substrate [14].  In addition, unlike the Tencor P-10 

surface profilometer, the Filmetrics F50 did not require masking of the substrate and, as 

such, was nondestructive.  Also, the Filmetrics F50 was designed to do mapping of an 

entire surface without user intervention rather than requiring user interaction to scan 

along a single given path, like the Tencor P-10. 

 Given the increased capability of the Filmetrics F50 over the Tencor P-10, 

approximately 1000 equally spaced measurements were made from the center of the 

substrate to the outer edge (radial scan), as opposed to approximately 15 equally spaced 

measurements.  In addition to radial scans, the Filmetrics F50 mapped up to 4000 points 

to determine the film thickness variation over the entire surface of the substrate.  This 

increased ability to map many points across a surface, rather than along a masked line, 

provided a mechanism to investigate the SDFT on the substrates with a much greater 

spatial resolution than the Tencor P-10. 

 The first spatial thickness distribution investigation was performed without the 

substrate rotating, with the target rotating, and with no radial scanning of the laser 

footprint on the target.  Using the deposition system in this manner, referred to as the 

“static plume configuration,” the plume did not move relative to the substrate, which 

allowed measurement of the average SDFT per pulse to be performed.  Using the 

deposition parameters listed in Table 6-1, four different target radial positions were 

investigated to determine the effects of RPLFT on the SDFT. 

6-8 



 

 The second investigation was performed with both the target and substrate 

rotating, but without any radial scanning of the target.  Using this mode of operation, 

referred to as the “rotating plume configuration,” the plume was scanned across the 

substrate along a circular path at a constant radius.  The rotating plume configuration 

produced film thickness distributions in terms of substrate radial location rather than 

Cartesian coordinates, which were used in the static plume configuration.  Growths at 

eight different target radial positions were performed using the rotating plume 

configuration and the deposition parameters listed in Table 6-1. 

 Finally, numerical simulations using data acquired from the static plume 

configuration were conducted and compared to the data taken using the rotating plume 

configuration.  Another numerical simulation was performed to calculate the theoretical 

radial profile required to produce uniform large area thin films using the data from the 

rotating plume configuration.  YSZ film was deposited on a six-inch diameter silicon 

substrate using the deposition parameters listed in Table 6-1 to validate the theoretical 

radial profiles.  The results of these simulations are presented in Section 6.4.  All YSZ 

films in this chapter were grown on silicon substrates rather than on the CP1 polymer 

substrates described in Chapter 4 due primarily to the low cost and availability of the 

silicon substrates compared to that of the CP1 polymers.  Also, the Filmetrics 50 

thickness mapping system and the Tencor P-10 surface profilometer required the 

substrate to be nearly flat [14; 15].  For best thickness measurement accuracy, the 

Filmetrics F-50 required the substrate to be reflective [14].  Thus, the possible curvature 

and visible transparency of the large area CP1 polymer substrates prohibit their use as 

substrates for the film thickness diagnostic depositions described in this chapter. 
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6.4 Data and Analysis 

 The iterative method, described in Section 6.3, was implemented to produce 

uniform thickness YSZ thin films on six-inch silicon substrates.  The results are shown in 

Figure 6-3 and described in Table 6-2. 
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Figure 6-3.  Contour Mapping and Radial Cross-Section of YSZ Film on Six-Inch 
Diameter Silicon Substrate Grown Using the Iteratively Derived Radial Profile that 

Produced the Most Uniform Thickness to Date 
 

Table 6-2.  Uniform Thickness Statistics of YSZ Film on Six-Inch Diameter Silicon 
Substrate Grown Using the Iteratively Derived Radial Profile that Produced the Most 

Uniform Thickness to Date 
Maximum Thickness 186.1 nm 
Minimum Thickness 169.5 nm 

Mean Thickness 178.2 nm 
Standard Deviation of Thickness 5.27 nm  

3.0 % of mean thickness 
Absolute Variation of Thickness +7.9 nm, -8.7 nm 

+4.4%, -4.9% of mean thickness 
 

 The initial radial profile was designed to produce uniform wear of the target when 

depositing with a constant laser repetition rate and constant angular target rotation rate.  

Under these conditions, the amount of time spent at any given target radius is 
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proportional to the circumference at the given target radial position.  Both the initial 

profile, which is inversely proportional to the target radial position, and the final iterative 

profile can be equivalently expressed in terms of velocity as a function of radial location 

or in terms of radius location as a function of time, as shown in Figure 6-4. 
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Figure 6-4.  Initial Radial Profile and Final Radial Profile for YSZ Film on Six-Inch 
Diameter Silicon Substrate Grown Using the Iteratively Derived Radial Profile that 

Produced the Most Uniform Thickness to Date 
 

 The iterative corrections were generated using the equal radius assumption.  If 

this assumption is valid, then the initial radial profile and the final iterative radial profile 

should be very similar.  However the iterative profile deviated significantly from the 

initial profile derived for uniform wear of the target, as evident in Figure 6-4.  In 

addition, further iterative corrections from the iterative profile shown in Figure 6-4 

produced films with greater variations in film thickness.  This deviation between the 

initial and iterative radial profiles, combined with the inability to continue the iterative 

correction procedure beyond the iterative radial profile shown in Figure 6-4, indicated 
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that the equal radial assumption is invalid.  Therefore, a new mapping of target radial 

location to the radial location of peak film thickness on the substrate was required. 

 In order to determine the relationship between the target radial location and the 

radial location of peak film thickness on the substrate, and to investigate the ability to 

perform numerical simulations of film thickness in terms of radial profiles, four YSZ 

films on six-inch silicon substrate were grown using four different target radial positions.  

Each growth was performed using the static plume configuration and measured with a 

Filmetrics F50.  The Filmetrics F50 acquired measurements along a user-specified grid 

over the entire six-inch diameter substrate.  A 3860-point equally spaced square grid 

produces measurements with a spatial resolution of 2.14 mm, which was chosen to 

remain within the 4000-point software limitation of the Filmetrics F50.  Figure 6-5 shows 

the film thickness measurements for each growth performed using the static plume 

configuration at the four different target radial positions. 

 A visual inspection of the four contour mappings shown in Figure 6-5 reveals an 

offset between the target radial position and the substrate location of peak film thickness.  

In addition, there exist slight variations in the amplitude and shape of the SPDT among 

the four different contour maps. The laser pulse was incident on the target from the 3 

o’clock position on the contour maps shown in Figure 6-5.  Thus, the RPMFT is back 

toward the laser pulse, as evident by the position offset.  A visual inspection of the 

plume, as viewed through the observation port at the front of the chamber, and images 

taken using the fast imaging camera system, described in 3.9, verified that slight “plume 

tilting,” as described in Section 6.2, occurred.  “Peak static substrate radial location” 

defines the substrate radial location of maximum film thickness for YSZ films grown  
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Figure 6-5.  Contour Mapping of Film Thickness of YSZ Film on Six-Inch Diameter 
Silicon Substrates Grown Using the Static Plume Configuration at Four Different Target 

Radial Positions 
 

using the static plume configuration.  A linear mapping approximates the relationship 

between target radial position and the peak static substrate radial location, as shown by 

the data points and linear fit in Figure 6-6. 

 Most of the slight variation in the peak film thickness can be attributed to the 

variable distance between the focal lens and the target caused by scanning the laser 

footprint radially across the target.  The focal lens is positioned to focus the laser pulse  
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Figure 6-6.  Relationship Between Laser Footprint Target Radial Position and Radial 

Location of Peak Film Thickness on the Substrate 
 

near the center radial location of the target, approximately 35 mm.  As the laser footprint 

is scanned toward the edge or the center of the target away from the 35 mm target radial 

location, the footprint is slightly defocused.  The total change in pathlength from the focal 

position is less than ±34 mm or less than 3% of the effective focal length of the focusing 

lens, which produces an almost negligible change in laser fluence.  However using the 

static plume configuration and an equal number of laser pulses, YSZ films grown with 

target radial positions near the 35 mm target radial location measured slightly thicker 

than the films grown with the target radial positions near either the target edge or the 

target center.  In addition, other factors, such as target wear, may also contribute to 

variations in film thickness.  Table 6-3 lists the peak film thickness, which varies less 

than 4.5%, for each of the four growths. 
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Table 6-3.  Peak Film Thickness of YSZ on Six-Inch Diameter Silicon Substrates Grown 
Using the Static Plume Configuration 

Target Radial Position (mm) 0 9.4 18.8 46.9 
Peak Film Thickness (nm) 195 210 200 193 

 

Although there is very little change in the amplitude of the four YSZ films grown using 

the static plume configuration, the spatial distribution of film thickness, or shape, does 

vary with the target radial position, most noticeably along the X direction at Y=0, as 

shown in cross-sectional comparison of Figure 6-7. 
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Figure 6-7.  Cross-Sectional Comparison of YSZ on Six-Inch Silicon Substrates Grown 
Using the Static Plume Configuration at Four Target Radial Positions 

 

 A common distribution used to model the spatial distribution of film thickness is 

the cosine N distribution, as shown in Equation (6-1): 

 ( )cos percentnThickness θ=  (6-1)
 

where thickness is the percentage of the maximum film thickness (percent), n is a power 

constant (unitless), and θ  is the angle between the laser footprint location and the 
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measurement location on the target (radians).  Figure 6-7 displays the normalized film 

thickness cross-sections along the X and Y axes, which is fitted to Equation (6-1) using 

TableCurve 2D [16].  Table 6-4 lists statistics from the cosine N fittings.  Typical values 

of n cover a broad range from 1.5 to 70 [1].  Therefore the n value range of 6 to 15.5 

listed in Table 6-4 is consistent with values reported in the current literature.  The fitted n 

values along both the X and Y axes decrease as the laser footprint radial position 

increases.  The increase in the n value indicates a more narrowly distributed film 

thickness.  These results are visually apparent in Figure 6-7, predominantly along the X 

axis.  The results of the graphical and fitted cross-sectional film thickness comparisons 

indicate that the film thickness spatial distribution changes with laser footprint target 

radial positions.  Therefore, any simulations that require these diagnostics deposition 

results cannot be based upon a single diagnostic deposition as initially intended. 

 

Table 6-4.  Statistics for the Normalized Cross-Sectional Film Thickness Along the X and 
Y Axis When Fitted to a Cosine N Distribution 

Target Radial Position  0 mm 9.4 mm 18.8 mm 64.9 mm 
Lower 95% Confidence Interval 14.81 13.66 10.73 9.56 
Fitted Value 15.36 14.15 11.02 9.89 Along 

X Axis Lower 95% Confidence Interval 15.92 14.65 11.31 10.22 
Lower 95% Confidence Interval 7.13 6.64 6.52 6.12 
Fitted Value 7.22 6.85 6.62 6.34 Along 

Y Axis Lower 95% Confidence Interval 7.30 7.07 6.74 6.57 
 

 A numerical simulation, denoted “static numerical simulation,” was performed 

using the film thickness distribution from the YSZ films shown in Figure 6-5, which were 

grown using the static plume configuration.  The static numerical simulation begins by 

rotating copies of the four film thickness distributions about the center of the substrate by 
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multiples of 2.25 degrees between 0 and 360 degrees.  The 2.25-degree angular spacing 

corresponds to the angular displacement of the substrate per pulse when using a 40 Hz 

laser repetition rate and 15-rpm substrate rotation rate.  The rotated copies of the film 

distribution were then summed to simulate the film thickness distribution of a rotating 

target (ablated at a constant RPLFT) and rotating substrate.  Accordingly, the static 

numerical simulation should approximate the thickness distribution of the films grown 

using the rotating plume configuration.  This comparison is discussed later in this section.  

Figure 6-8 displays the results of the static numerical simulation. 

 The two contour mappings shown in the top row of Figure 6-8 reveal that the 

target radial position of 0.0 and 9.4 mm produced simulation results with a maximum 

film thickness at the center of the substrate.  The simulation using the 18.8 mm target 

radial position data produced a similar result, but the maximum was at a substrate radius 

of 6 mm with a slight dip in the center.  Exploiting the rotational symmetry about the 

center of the substrate, Figure 6-9 presents a more enlightening cross-sectional view of 

the static numerical simulation results. 

 The static numerical simulation is repeated using simulated target radial positions 

between 0 and 65 mm by interpolating among the four YSZ growths shown in Figure 6-5.  

The interpolation translates the maximum film thickness location on the substrate to a 

new substrate location.  The new substrate location corresponded to the desired target 

radial location as specified by the linear fit shown in Figure 6-6.  The interpolated film 

thickness distribution was then rotated and summed as previously described.  Figure 6-10 

displays the simulated mapping of the target radial location to the radial location of peak 

simulated film thickness on the substrate, with the solid line and “+” markers.  The linear 
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Figure 6-8.  Results of Static Numerical Simulations Using the Static Plume 
Configuration for YSZ on Six-Inch Silicon Substrates 

 

approximation of peak static substrate radial location to target radial location as shown in 

Figure 6-6 is included in Figure 6-10 as the dashed line. 

 The results of the simulated mapping predicted that ablating at any target radial 

location less than 27 mm results in a maximum simulated film thickness at the center of 

the substrate.  The RPLFT was varied exclusively from the center to the edge across a 

rotating substrate and did not cross the center of the target.  However, the width of the 
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Figure 6-9.  Cross-sectional View of Static Numerical Simulation Results 
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Figure 6-10.  Mapping of Target Radial Location to Radial Location of Peak Simulated 

Film Thickness on Substrate 
 

SDFT produced contributions to the film thickness on both sides of the substrate center 

when the RPLFT was less than 27 mm.  Thus, the simulated RPMFT was found at the 

center of the substrate.  In addition, ablating at any PRLFT greater than 60 mm produced 

a simulated RPMFT at the edge of the substrate.  The actual RPMFT continued to 
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increase as the target radial location increased.  However, the simulation truncated the 

film thickness calculations at the maximum radius of the substrate.  If a larger simulated 

substrate were used, the substrate radial location of peak simulated film thickness would 

continue to asymptotically approach the peak static substrate location, up to the 

maximum radius of the larger simulated substrate. 

 The static numerical simulation results needed to be verified by actual growths 

using the rotation plume configuration, as described in Section 6.3.  YSZ films were 

grown on six-inch silicon substrates at eight uniformly spaced RPLFT between the center 

of the target and a location near the edge of the target using the deposition parameters 

listed in Table 6-1 with the substrate rotating at 15 rpm.  Figure 6-11 presents the film 

thickness distribution for the four depositions at different RPLFTs, which were grown 

using the rotating plume configuration.  Again taking advantage of the rotational 

symmetry about the center of the substrate, Figure 6-12 displays the cross-section of each 

of the YSZ films grown using the “rotating plume configuration” at eight different target 

radial locations. 

 The amplitude and shape of the cross-sectional data appears to be similar to the 

predictions from the static numerical simulation.  However upon more detailed analysis, 

the actual shape does vary significantly from the static numerical simulation predictions.  

For RPLFTs near the center and the edge of the target, the static numerical simulation 

predictions approximate the cross-sectional data.  However, for RPLFTs not near the 

center or the edge of the target, the results deviate in both amplitude and shape.  These 

deviations are most likely caused by the inability of the Filmetrics F50 to measure film 

thickness less than 30 nm.  The errors in the film thickness measurements below 30 nm  
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Figure 6-11.  Contour Mapping of Film Thickness of YSZ Film on Six-Inch Diameter 
Silicon Substrates Grown Using the Rotation Plume Configuration 

 

are amplified 160 times due to the summing of the static simulation.  However, the 

minimum thickness for each of the YSZ films grown using the rotating plume 

configuration is greater than 30 nm.  Figure 6-13 shows the comparisons between the 

measured film thickness and the static numerical simulation results. 
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Figure 6-12.  Cross-section of Film Thickness of YSZ Film on Six-Inch Diameter Silicon 

Substrates Grown Using the Rotation Plume Configuration 
 

 The term “static mapping” defines the relationship between the RPLFT and the 

RPMFT produced from the static numerical simulation results.  Similarly, “rotated 

mapping” denotes the mapping of the RPLFT to RPMFT measured from growths using 

the rotating plume configuration.  As evident from the variations in shape and amplitude 

of the film thickness shown in Figure 6-13, the static mapping and the rotating mapping 

were not equivalent.  Figure 6-14 displays the static mapping and the rotated mapping, as 

well as the linear approximation of the peak static substrate radial location to the target 

radial location, as shown in Figure 6-6. 

 The maximum substrate size for the rotated mapping growths was reduced to 

approximately 73 mm due to slight misalignments between the geographic center of the 

substrate and the center of rotation of the substrate.  The center of rotation of the 

substrate was found using the rotational symmetry of the radial cross-section of film 

thickness.  The RPMFT will continue to asymptotically approach the peak static substrate 
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Figure 6-13.  Comparison of the Static Numerical Simulation Results and Actual 
Growths Using the Rotation Plume Configuration for YSZ on Six-Inch Silicon Substrates 
 

location, as described previously for the static mapping in this section.  As evident in 

Figure 6-14, the static mapping is equivalent to the rotating mapping for RPLFTs that are 

not in the 10 mm to 26 mm range.  Given this range of RPLFTs for the static numerical 

simulation, the RPMFT occurs at or near the center of the substrate.  The actual RPMFTs 

that correspond to RPLFTs between 10 mm and 26 mm are very sensitive to errors in 

6-23 



 

0 10 20 30 40 50 60 70
0

20

40

60

80

Target Radial Location (mm)

Su
bs

tr
at

e 
R

ad
ia

l L
oc

at
io

n 
(m

m
)

Rotating Plume Configuration
Simulated Rotating Plume Configuration
Peak Static Substrate Location

 
Figure 6-14.  Mapping of Target Radial Location to Radial Location of the Peak Film 

Thickness on Substrate 
 

thickness.  This sensitivity, combined with the errors produced by the minimum film 

thickness measuring capability of the Filmetrics F50, produced the contradictions in the 

static and rotating mappings for target radial locations between 10 mm and 26 mm shown 

in Figure 6-14. 

 The cross-sections from the YSZ films grown using the rotating plume 

configuration, as shown in Figure 6-12, represent the contributions to the total film 

thickness made by ablating each distinct RPLFT using the deposition parameters listed in 

Table 6-1 (with a 15 rpm substrate rotation rate and approximately 72,000 laser pulses).  

Allowing each cross-section of film thickness to be used as a pseudo-basis function, there 

exists some linear combination of these pseudo-basis functions that produce a uniform 

film thickness.  By definition, a basis function must have an additive inverse.  In the 

physical sense (relative to this research), an additive inverse means ablating at the 

corresponding RPLFT for a negative number of pulses so the film thickness is decreased.  
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This is not possible for a deposition system, so the term pseudo-basis is applied.  Given 

that the cross-sectional data are pseudo-basis functions, linear algebra cannot be applied 

to determine the coefficients of the linear combination of pseudo-basis functions.  

Another limitation is that the RPLFT scanning has a maximum velocity, which translates 

into a minimum amount of time to traverse between adjacent pseudo-basis functions.  

Therefore the coefficients of the linear combination must have a minimum.  Given these 

constraints, a least squares error algorithm was applied to determine the coefficients that 

would result in a uniform film thickness.  These coefficients determine the relative 

amount of time the radial profile will dwell about the corresponding target radial position.  

This calculated radial profile produces YSZ film on a six-inch diameter substrate with the 

film thickness distribution and cross-section as shown in Figure 6-15 and described in 

Table 6-5. 

 As listed in Table 6-5, the YSZ film thickness varies by 9.9 percent of the mean 

film thickness.  This variation approximately equals the iteratively corrected film 

thickness variations listed in Table 6-2, which varies by 9.3 percent of the mean film 
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Figure 6-15.  Contour Mapping and Cross-Section of YSZ Film on Six-Inch Diameter 
Silicon Substrate Grown Using the Calculated Theoretical Profile Method 
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Table 6-5.  Uniform Thickness Statistics of YSZ Film on Six-Inch Diameter Silicon 
Substrate Grown Using the Calculated Radial Profile 

Maximum Thickness 80.3 nanometer 
Minimum Thickness 72.6 nanometer 

Mean Thickness 77.81 nanometer 
Standard Deviation of Thickness 2.38 nanometer  

3.1 % of mean thickness 
Absolute Variation of Thickness +2.48 nanometer, -5.19 nanometer 

+3.2%, -6.7% of mean thickness 
 

thickness.  Likewise, the standard deviation expressed as a percentage of the mean is 

approximately equal between YSZ films grown using the iterative correction method and 

the numerical simulation method.  These similarities are expected as both methods are 

designed to produce uniform thickness films.  Although the radial profile appears 

radically different when inspected using radial velocity as a function of the target radial 

position, the calculated radial position as a function of time agrees closely with the 

calculated radial position as a function of time.  The comparison of the equivalent 

expressions of radial profiles for both the iterative correction method and the numerical 

simulation method are shown in Figure 6-16. 

 

0 15 30 45 60
0

2

4

6

8

Radius (mm)

V
el

oc
it

y 
(m

/s
)

Iterative Profile
Calculated Profile

 

0 15 30 45 60
0

10

20

30

40

50

60

Time (s)

R
ad

iu
s 

(m
m

)

Iterative Profile
Calculated Profile

 
Figure 6-16.  Comparison of the Calculated Radial Profile Designed to Produce Uniform 

Thickness Films and the Iterative Radial Profile 
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6.5 Conclusion 

 Radial profiles derived from both an iterative correction method and a numerical 

simulation method produced YSZ films on six-inch diameter silicon substrates with less 

than ten percent total variation in thickness over the entire six-inch diameter area.  

However, the iterative correction method requires a mapping between the target radial 

location and radial location on the substrate of maximum film thickness in order to 

generate corrections.  The initial assumption that the target radial location equaled the 

radial location on the substrate of maximum film thickness was not correct.  Given a 

correct mapping, the iterative correction method becomes a powerful technique capable 

of producing uniform thickness films on silicon substrates with less than ten percent total 

variation in thickness over the entire six-inch diameter area.  In addition, the numerical 

simulation method generates this mapping and provides a theoretical radial profile that 

should produce films that are more uniform in thickness.  Since the numerical simulation 

is necessary to produce the mapping between the target radial position and the substrate 

radial position of peak thickness required by the iterative correction method, both 

methods should be combined by applying the theoretical radial profile as the initial guess 

for the iterative correction method.  Combining both techniques yields an efficient 

mechanism for generating uniform thickness films by greatly reducing the number of 

PLD growths required when using the iterative method alone. 

 The static numerical simulation manipulated the average film thickness 

distribution per pulse to produce the pseudo-basis functions necessary to generate the 

theoretical radial profile.  However, the average film thickness distribution varied as a 

function of the target radial location.  One of the primary advantages for using the 
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average film thickness distribution to calculate the theoretical radial profile is to limit the 

number of diagnostic growths necessary to produce both the pseudo-basis functions and 

the mapping between the target radial position and the substrate radial position of peak 

thickness.  If the average film thickness distribution can be accurately measured and does 

not vary with target radial position, then only a single diagnostic growth is required to 

generate the theoretical radial profile.  However, the average film thickness distribution 

varies slightly with target radial position.  Most of this variation may be removed if the 

focal lens is moved continuously during a deposition so that the laser footprint remains 

tightly focused for all target radial positions.  This focal length compensation is not 

necessary for the six-inch diameter substrates used in this research, but will become 

necessary as the substrate diameters are increased.  In addition to the variation in the 

average film thickness distribution with respect to the target radial position, the minimum 

thickness measurement errors must be reduced.  Either a more compatible measurement 

system should be utilized or the number of pulses per diagnostic deposition must be 

increased so that the minimum film thickness is greater than the minimum thickness 

measurable by the Filmetrics F50. 

 In addition, since the average film thickness distribution did vary with the target 

radial position, multiple diagnostic depositions are required to fully characterize the 

pseudo-basis functions.  Therefore, given the need for multiple diagnostic depositions, it 

is not advantageous to use the average film thickness distribution.  Rather, if depositions 

are performed under normal deposition conditions, except using a fixed laser footprint at 

one of several target radial locations, the pseudo-basis function can be extracted from the 

film thickness radial cross-section.  A least square error algorithm can then produce the 
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necessary coefficients for a linear combination of the pseudo-basis functions.  These 

coefficients represent the relative time that the laser footprint must dwell at the 

corresponding target radial position. 

 The methods used to produce radial profiles capable of yielding uniform film 

thickness, as described previously, can be applied directly to the deposition of materials 

other than YSZ.  In addition, these methods are directly applicable to PLD depositions on 

substrates other than silicon, as discussed in Chapter 8.  Also, the desired film thickness 

need not be a uniform thickness.  Any desired film thickness distribution that is 

rotationally symmetric about the center of the substrate can be produced.  Finally, these 

methods are not limited to six-inch diameter substrates and can be scaled to larger 

substrate diameters.  The only limiting factor for scalability is the capacity of a PLD 

system. 
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7 Yttria Stabilized Zirconia Coatings for Stress-Shaped 

Polymer Mirrors 

 
 
 
7.1 Overview 

 Chapters 4 through 6 developed the necessary research areas to deposit uniform-

thickness controlled-stress large-area yttria stabilized zirconia (YSZ) films using pulsed 

laser deposition (PLD).  However, these research areas need to be combined to 

demonstrate the ability to desirably modify the shape of large area (six-inch diameter) 

CP1 polymer mirrors using a stressed YSZ coating grown by pulsed laser deposition 

(PLD), which is the initial step toward a 25-meter diameter mirror for the space-based 

telescope described in Chapter 1.  Hence, the goal of this chapter is to produce YSZ films 

on undamaged CP1 polymers that desirably affect the shape of the CP1 polymers. 

 The goal of this chapter was met.  Compressively-stressed YSZ coatings were 

grown on initially-flat six-inch diameter suspended CP1 polymer substrates without 

damage to the substrate using a range of oxygen pressures from 50 to 100 mTorr.  The 

curvature of the resulting CP1 polymer substrates was measured using a Zygo 

interferometer and was found to increase with a decrease in oxygen pressure and/or YSZ 

deposition duration (film thickness).  However the maximum laser repetition rate was 

found to be 10 Hz.  Laser repetition rates at frequencies greater than 10 Hz damaged the 

CP1 polymer substrates.  The 10 Hz maximum laser repetition rate severely restricted the 

YSZ growth rate.  YSZ films were deposited on six-inch diameter CP1 polymer 
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substrates that were still mounted to the casting mold at laser repetition rate of 40 Hz 

(maximum rate that the laser can produce at the desired output energy) without damage to 

the substrate.  However, substrate release and mounting issues currently limit the 

substantial benefits of this technique. 

7.2 Experiment 

 Two sets of experiments were performed to demonstrate the ability to produce 

stress-shaped YSZ coatings on CP1 polymer substrates.  The first set of experiments 

deposited YSZ coatings on approximately nine-micrometer thick CP1 polymer substrates 

that were suspended on an aluminum ring in a manner similar to the head on a drum.  The 

substrates were six inches in diameter and were initially flat.  The curvatures of the 

aluminum-ring mounted CP1 polymer substrates were measured using a ZYGO 

interferometer and determined to be approximately flat with less than one 632.8 nm 

wavelength of curvature [1; 2].  Figure 7-1 shows a suspended CP1 polymer substrate 

mounted to an aluminum ring. 

 

 

Aluminum
Ring

Suspended 
CP1 
Polymer 
Substrate 

Defect
Glue

 
Figure 7-1.  Initially Flat CP1 Polymer Substrate Suspended on an Aluminum Mounting 

Ring [2] 
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 The aluminum ring was fabricated with four threaded holes to facilitate mounting 

the ring to an aluminum backing plate.  The aluminum backing plate allowed the CP1 

polymer substrates to be held and rotated inside the PLD chamber in a manner similar to 

the Hastelloy substrate holder described in Section 3.5.  YSZ coatings were then 

deposited on the CP1 polymer substrates.  Multiple depositions using a range of 

deposition parameters were used to grow YSZ coatings on the CP1 polymer substrates.  

Table 7-1 lists the deposition parameters that produced undamaged YSZ coatings. 

 

Table 7-1.  Deposition Parameters for Initially Flat CP1 Polymer Substrate Suspended on 
an Aluminum Mounting Ring 

Parameter Value 
Laser Fluence 1.38 J/cm2

Laser Repetition Rate 10 Hz 
Ambient Gas oxygen 

Ambient Pressure 50-100 mTorr 
Ambient Flow 2.5-3 sccm 

Target-to-substrate Distance 76.2 mm 
Substrate Bias -225 V 

Target Rotation Rate 15 rpm 
Substrate Rotation Rate 15 rpm 

Initial Substrate Temperature ~23° C 
 

 In addition to depositing YSZ on suspended CP1 polymer substrates, YSZ 

coatings were deposited by PLD on CP1 polymer substrates that were still attached to the 

casting mold.  The CP1 polymer substrates were cast in a concave Pyrex mold coated 

with an aluminum silicon dioxide coating, which improved the CP1 casting and eased the 

release from the mold.  The mold was six inches in diameter and parabolic in shape with 

a six-inch focal length [3].  Figure 7-2 shows the Pyrex mold with a cast CP1 polymer 

substrate before coating and subsequent mirror release. 
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Figure 7-2.  Concave Up Pyrex Mirror Mold with Cast CP1 Polymer Substrate [3] 

 

The Pyrex mold was glued to the same aluminum backing plate used to mount the 

suspended CP1 polymer substrate using Cole-Parmer Extra Fast Setting Epoxy.  YSZ 

coatings were then deposited on the CP1 polymer substrate.  Table 7-2 lists the 

deposition parameters used in a successful YSZ film growth. 

 

Table 7-2.  Growth Parameters for Cast CP1 Polymer Substrate Cast in a Concave Pyrex 
Mirror Mold 

Parameter Value 
Laser Fluence 1.38 J/cm2

Laser Repetition Rate 10 Hz 
Ambient Gas oxygen 

Ambient Pressure 150 mTorr 
Ambient Flow 7.5 sccm 

Target-to-substrate Distance 80.5 mm 
Substrate Bias -225 V 

Target Rotation Rate 15 rpm 
Substrate Rotation Rate 15 rpm 

Initial Substrate Temperature ~23° C 
Deposition Length 120 minutes/72000 pulses 
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 After the YSZ coating was deposited, the CP1 polymer substrate was glued to an 

aluminum mounting ring, as shown in Figure 7-3.  After mounting the CP1 polymer 

substrate was released from the mold. 
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Figure 7-3.  YSZ-Coated CP1 Polymer Substrate Still Mounted to a Concave Pyrex 

Mirror Mold and Aluminum Ring [3] 
 

7.3 Data and Analysis 

 Coating the suspended CP1 polymer substrate with YSZ using the deposition 

parameters listed in Table 7-1 did not damage or weaken the CP1 polymer [2].  Other 

growths of YSZ on suspended CP1 polymer substrates at repetition rates greater than 10 

Hz damaged the CP1 polymer substrates, as discussed in Section 4.5.  Both a severe 

deformation in shape and a brownish color of the CP1 polymer substrates indicated the 

damage.  On the undamaged suspended CP1 polymer substrate, a visual inspection of the 

YSZ coating revealed a taut semi-transparent surface with a yellow tint.  The thickness of 

the YSZ coating grown on the suspended CP1 polymer substrate was thicker at the center 
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and decreased as the radius increased, as was evident by the variation in color of the YSZ 

coating.  This thickness profile was not intentional but was the result of using the best 

available iteratively-derived radial profile available at the time, as described in Chapter 6.  

As described in Chapter 6, no measurement techniques were available to non-

destructively measure the thickness of the YSZ coatings on the CP1 polymer substrates.  

However, diagnostic depositions of YSZ on silicon substrates showed that film thickness 

was uniform within 16.5% of the maximum film thickness, as shown in Figure 7-4.  The 

radial profile used during this diagnostic deposition and for the suspended CP1 

investigation is also shown in Figure 7-4.  The magnitudes of the film thickness between 

the YSZ film on CP1 polymer substrate and the diagnostic depositions may vary due to 

differences in the substrates.  However, the relative film thicknesses should remain 

constant.  Thus, the thickness of the YSZ films deposited on the suspended CP1 polymer 

substrates vary less than 20% of the maximum film thickness. 
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Figure 7-4.  YSZ Film Thickness on a 6-inch Diameter Silicon Substrate a) Grown using 

the Radial Profile b) and the Deposition Conditions Listed in Table 7-1 
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 Despite the variations in thickness, the desired result of a residual stress-shaped 

surface was present, predominantly in the more thickly coated area near the center.  Due 

to the compressive stress in the YSZ coating, the substrate bows upward so that the 

resulting shape is convex away from the mounting ring, which was the desired result.  

Some shape errors caused by the boundary conditions from the mounting ring existed.  

However, these errors only affected a region within approximately one half inch from the 

edge of the mirror [2].  Figure 7-5 shows ZYGO interferometer measurements of both the 

entire mirror and the central 1.3 inch-diameter portion.  The curvature apparent in the 

central area shown in Figure 7-5b) was measured using a ZYGO interferometer and is 

shown in Figure 7-6. 

 

  
a) Entire Mirror b) Central 1.3-Inch Diameter Area 

Figure 7-5.  ZYGO Interferometer Images of Initially Flat CP1 Polymer Substrate 
Suspended on an Aluminum Mounting Ring [2] 

 

 Zernike polynomials are commonly used to characterize lens and mirrors [4].  The 

ZYGO interferometer was able to characterize the curvature of the center portion of the  
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Figure 7-6.  Central 1.3-Inch Diameter Optical Path Difference Plot of the Initially Flat 
CP1 Polymer Substrate Suspended on an Aluminum Mounting Ring Displaying 2.51 

Wavelengths (1594.2 nm) Peak-to-Valley Deviation and 0.52 Wavelengths (329.5 nm) 
Root Mean Square Deviation [2] 

 

mirror in terms of Zernike polynomials coefficients.  The most significant coefficient was 

the focus term, which corresponded to a focal length of 61.3 meters [2].  Although such a 

long focal length is impractical for use in the intended application, it is sufficient to 

demonstrate that applying a stressed YSZ coating to an initially flat CP1 polymer 

substrate produces mirrors with parabolic curvature, as required for the space telescope 

application described in Chapter 1. 
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 Other growths were performed under conditions similar to those listed in Table 

7-1, except for greater oxygen pressure and more laser pulses.  As shown in Chapters 4 

and 0, decreases in oxygen pressure produces YSZ films on CP1 polymer substrate with 

more compressive or less tensile stresses.  All of the growths performed on suspended 

CP1 polymer substrates were designed to possess compressive stress.  The ability to 

control the curvature of the CP1 polymer substrate was investigated in parallel with the 

large area uniformity effort.  As such, the YSZ coatings on the suspended CP1 polymer 

mirrors were non-uniform in thickness.  However, for the YSZ coatings described in this 

chapter, all coatings were within 20% thickness uniformity with the increased thickness 

near the center of the mirror, as described previously and shown in Figure 7-4.  Although 

the YSZ coatings were not uniform in thickness, the focus term of the Zernike 

polynomial increased with a decrease in oxygen pressure [1].  The increase in the focus 

term of the Zernike polynomial corresponds to more curvature in the mirror [4], which 

results in a mirror with a shorter focal length.  In addition to decreasing the oxygen 

pressure, increasing the YSZ coating thickness increased the Zernike polynomial focal 

term, which indicated a decrease in the focal length of the mirror [1]. 

 Finally, besides depositing YSZ coatings on suspended CP1 polymer substrates, 

depositing YSZ coatings using the deposition parameters listed in Table 7-2 did not 

damage the CP1 polymer substrates that were still attached to the mold.  After the CP1 

polymer substrate was glued to a mounting ring and removed from the mold, a visual 

inspection revealed a semi-transparent substrate with obvious curvature [3].  Figure 7-7 

displays the YSZ-coated CP1 polymer substrate mounted to an aluminum mounting ring.  

The CP1 polymer substrate surface shown is the surface that was in contact with the 
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mirror mold and therefore is convex up in shape.  There is a mounting error apparent near 

the 8 o’clock position.  The glue used to mount the CP1 polymer substrate to the 

aluminum ring “ran” and caused the distortion shown [3]. 

 

 

Mounting 
Defect

 
Figure 7-7.  Image of Coated and Released CP1 Polymer Substrate Grown in Pyrex Mold 

and Mounted to an Aluminum Ring with Concave Surface Down [3] 
 

 Although the initial visual inspection revealed a substantial curvature, the mirror 

“pulled flat” within one day.  The edges of the mirror were soaked in deionized water to 

aid in the release from the mold.  Analysis has shown that the loss of curvature resulted 

from changes in humidity during the release/mounting process [3].  Although most of the 

curvature was lost, Zygo interferometric images were acquired to illustrate the remaining 

curvature after the mirror was pulled flat, as shown in Figure 7-8. 

 Five other YSZ films were grown on the CP1 polymer substrates still attached to 

the mold.  These YSZ films were deposited using the default deposition parameters listed 

in Table 7-2.  Two YSZ films exhibited high surface roughness when the laser fluence 
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was greater than 1.38 J/cm2.  Due to the high surface roughness, these mirrors were not 

processed further.  Another mirror was grown using the identical deposition parameters 

as those used to grow the mirror shown in Figure 7-8.  However, this mirror was 

destroyed in transit.  Another mirror was grown using the deposition parameters listed in 

Table 7-3.  These parameters are identical to those listed in Table 7-2, except for the 

oxygen pressure, oxygen flow rate, laser repetition rate, and deposition duration.  A 

visual inspection of this mirror revealed similar results to those of the mirror shown in 

Figure 7-8.  The surface roughness was sufficiently smooth, as evidenced by a lack of 

“haziness” on the YSZ film surface.  Also, the CP1 polymer membrane appeared to be 

undamaged and still adhered to the mold.  However, the mirror failed to release from the 

mold.  The cause of the lack of release has been attributed to mounting errors near the 

edge of the mirror. 

 

 
Figure 7-8.  Zygo Interferometer Image of an YSZ-Coated and Released CP1 Polymer 

Substrate Grown in Pyrex Mold and Mounted to an Aluminum Ring [3] 

7-11 



 

 

Table 7-3.  Growth Parameters for Cast CP1 Polymer Substrate Cast in a Concave Pyrex 
Mirror Mold 

Parameter Value 
Laser Fluence 1.38 J/cm2

Laser Repetition Rate 40 Hz 
Ambient Gas Oxygen 

Ambient Pressure 75 mTorr 
Ambient Flow 4.0 sccm 

Target-to-substrate Distance 80.5 mm 
Substrate Bias -225 V 

Target Rotation Rate 15 rpm 
Substrate Rotation Rate 15 rpm 

Initial Substrate Temperature ~23° C 
Deposition Length 240 minutes/576000 pulses 

 

7.4 Conclusion 

 As described in this chapter, YSZ films were deposited on six-inch diameter CP1 

polymer substrates without damage to the substrate.  In addition, the stress in the YSZ 

films was controllable by adjusting the oxygen pressure in relation to the YSZ film 

thickness.  A decrease in oxygen pressure produced more compressively stressed YSZ 

films, which resulted in more substrate curvature.  The YSZ films were deposited on CP1 

polymer substrates that were suspended on an aluminum ring, as well as CP1 polymer 

substrates that were still attached to the casting mold. 

 The YSZ films that were deposited on the suspended CP1 polymer mirrors 

produced curvatures that corresponded to focal lengths as low as 61.3 meters.  CP1 

polymer mirrors with focal lengths less than 61.3 meters can be grown using the YSZ 

films that are thicker and/or more compressively stressed.  The non-uniform thickness of 

the YSZ layer limited the area of the mirrors that exhibited curvature to the central 1.5-
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inch diameter region.  Further investigation should be performed by repeating the 

experiment with the suspended CP1 polymer substrates using the current state-of-the-art 

uniform thickness techniques, as described in Chapter 6.  These further investigations are 

described in Chapter 8.  The principal drawback to depositing YSZ films on the 

suspended CP1 polymer mirrors is the lack of heat dissipation that limits the maximum 

laser repetition rate to 10 Hz.  The low laser repetition rate requires longer deposition 

time to grow the thick YSZ films necessary to sufficiently deform the mirrors.  Further 

investigation into methods to overcome this heat dissipation problem is needed and is 

described in more detail in Chapter 8. 

 To overcome the heat dissipation problem, depositing YSZ films on CP1 polymer 

mirrors that are still attached to the casting mold was investigated.  The laser repetition 

rate was increased to 40 Hz without any damage to the substrate.  However, mounting 

problems currently limit the effectiveness of this solution.  Several YSZ films were 

grown on CP1 polymer mirrors that were still attached to the casting mold.  Two attempts 

were made to mount these YSZ-coated CP1 polymer mirrors.  The first attempt suffered 

from both mounting defects and mounting-induced stress, which limited the effectiveness 

of the YSZ coating to shape the mirror.  During the second attempt, the mirror did not 

release from the mold.  Again, mounting error was cited as the problem.  The mounting 

issues limit the potential of this deposition technique and are being addressed by SRS 

Technologies in an ongoing research effort. 

 As stated in Section 7.1, the goal of the research presented in this chapter was to 

desirably affect the shape of the CP1 polymer substrates using PLD-grown YSZ films.  

This goal was achieved.  However, the modeling and further research necessary to apply 
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this shape-modifying technique to a final product that meets the specifications of the 

intended application was not part of this goal and is outside the scope of this research.  

Currently, SRS Technologies is pursuing finite-element modeling of the film stress and 

substrate curvature relationship, as well as investigating improvements in their mounting 

and release technology.  Both the modeling and mounting improvement efforts are 

crucial to the maturation of the stress-shaped polymer mirror concept, as described in 

Chapter 8. 
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8 Conclusion, Contributions, and Recommendations 

 
 
 
8.1 Introduction 

 As stated in Chapter 1, the goals of this research were to produce controlled-

stress, large-area, pulsed-laser-deposited yttria stabilized zirconia (YSZ) thin films on 

CP1 polymer substrates and to investigate relevant sensors for control of the PLD process 

with respect to thin film stress.  This chapter describes the successful completion of these 

goals, as well as the associated accomplishments and contributions.  In addition, areas 

that deserve further investigation are described in Section 8.3. 

8.2 Conclusion and Contributions 

 The stress of yttria stabilized zirconia (YSZ) deposited by pulsed laser deposition 

(PLD) can be controllably varied between compressive and tensile stress.  The 

combination of deposition parameters, namely target-to-substrate distance, ambient 

pressure, and laser fluence, determine the magnitude and direction of the film stress.  

Open-loop control is achieved by holding these relevant deposition parameters constant.  

The ability to control stress enables a multitude of unique devices to be fabricated.  For 

example, the residual stress in the structural thin film layers for microelectromechanical 

systems (MEMS) devices were either tolerated or attempts were made to remove the 

stress through various techniques, such as post-deposition annealing.  However, the 

research presented in this dissertation shows that the net YSZ thin film stress can be 

controlled.  Therefore, the YSZ film stress is capable of becoming a desirable design 
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parameter.  For example, the application described in Chapter 1 requires a uniform 

predetermined film stress over the substrate.  Also, many MEMS devices can benefit 

from the use of controlled stress films for device operation and self-assembly.  In 

addition, the stress control scheme and relevant deposition parameters are not specific to 

the PLD growth of YSZ.  Thus, the controlled-stress deposition technique described in 

this dissertation can be extended to other materials. 

 In addition to the ability to deposit controlled stress YSZ films, an applicable 

theory has been developed to characterize the relationship among the relevant deposition 

parameters and their effect on the YSZ film stress.  This theory provides the PLD 

researcher with a mechanism to optimize other design constraints while still maintaining 

the desired film stress.  Since the relationship among the relevant deposition parameters 

has two degrees of freedom, deposition parameters can be adjusted to compensate for 

variations among the variety of PLD systems.  Previous to this research, deposition 

conditions were reported as optimal for a given PLD system without any means to 

transition these parameters to other PLD systems.  The physics-based theory described in 

Chapter 4 allows for researchers to characterize the film stress dependence of their 

unique PLD system and possibly different thin film material systems with a minimum of 

three well-chosen deposition parameter combinations. 

 A shifted center-of-mass Maxwell-Boltzmann (SCMMB) distribution adequately 

models the plume time-of-flight, as observed by optical emission sensors.  The streaming 

velocity parameter from the SCMMB distribution predicts the stress in the YSZ film.  In 

addition, real-time fitting software was developed to enable closed-loop control of the 

plume by varying the laser excitation energy.  Previous to this research, most PLD 
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process control focused on the most probable velocity, which is the velocity associated 

with the maximum emission signal intensity.  However, this research has shown that the 

most probable velocity is not well suited to PLD process control for YSZ film stress.  

Real-time fitting of a SCMMB distribution produces streaming velocities that are at least 

one order of magnitude more sensitive to YSZ film stress.  With the exception of sensors 

that monitor the deposited film during growth, the plume is the final measurable PLD 

parameter.  As such, closed-loop control using a plume diagnostic sensor provides much 

greater run-to-run stability than depositions performed while holding deposition 

parameters constant.  The second overarching goal of this research was to investigate 

applicable sensors for the control of film stress.  The optical emission time-of-flight 

sensor system sufficiently satisfies this goal. 

 The optical emission time-of-flight closed-loop control of the YSZ plume 

dramatically enhances the current state of PLD process control.  The maturity of PLD as 

a common deposition technique requires such sensor systems that can be used to translate 

results among dissimilar PLD systems.  Currently, most PLD systems rely on open-loop 

deposition parameter control, such as ambient pressure, laser fluence, etc.  Application-

independent process-monitoring sensor systems are required to translate the system-

specific deposition parameters into process parameters, such as plume’s streaming 

velocity and effective temperature.  The streaming velocity represents a statistic average 

velocity, while the effective temperature indicates the spread of the velocities.  As such, 

both the streaming velocity and the effective temperature provide a process control metric 

that can be used to reproduce the results from one PLD system to another.  Without this 

ability to reproduce results among dissimilar PLD system, the “optimal” results quote in 
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the current literature cannot be universally applied to all PLD systems.  If these “optimal” 

results were presented in terms of process parameters rather than deposition parameters, 

PLD would be a much more mature deposition technique.  Thus, correlation between 

streaming velocity from the optical emission sensor system and the YSZ film stress has a 

much greater impact since these results can be easily reproduced on another PLD system 

equipped with a similar optical emission sensor system. 

 In addition to the controlled-stress deposition of YSZ, large-area depositions were 

performed, which yielded YSZ films on six-inch diameter substrates with total thickness 

variations of less than ten percent and a standard deviation of less than three percent of 

the total film thickness.  Previous to this research, most large-area PLD plume rastering 

techniques used ad hoc methods to grow uniform thickness films.  Chapter 6 presents 

both an empirical and analytical approach to large-area depositions by PLD.  The radial 

location of the laser foot on the target as a function of time (radial profile) corresponding 

to the best effort from the empirical approach was shown to be equivalent to the radial 

profile derived from the analytical approach.  The iterative correction method used in the 

empirical approach assumed that ablating the target at a given target radial location 

would produce a film thickness distribution centered about a substrate radial location 

equal to the given target radial location (equal radius assumption).  Thus, the radial 

profile was modified so that the dwell time about a given target radial position was 

increased.  This radial profile modification was assumed to increase the relative film 

thickness about the equivalent substrate radial location.  This iterative correction method 

generated radial profiles that continued to improve the YSZ film thickness uniformity up 

to the “best effort” growth described in Chapter 6.  Further iterative corrections beyond 

8-4 



 

this “best effort” growth produced films with more variation in the film thickness. Thus, 

the iterative method did not converge, which indicated that the equal radius assumption 

was invalid.  Although the iterative corrections failed to converge, the best effort radial 

profile produced an YSZ film that varied less than ± 5% of the mean film thickness 

(172.8 nm), which was sufficient to satisfy the needs for the application described in 

Chapter 1.  Also, the analytical approach highlighted the invalid assumption and provided 

a more accurate algorithm for generating the iterative corrections.  The rastering 

methodology used in the deposition of large-area YSZ films on silicon can be directly 

applied to other materials.  Furthermore, the rastering methodology has no limits as to the 

scale of the substrate.  The only limiting factor for substrate diameter scalability is the 

physical constraints of the deposition system.  The rastering methodology is also not 

limited to uniform thickness deposition.  Almost any thickness profile that possesses 

radial symmetry can be grown using the rastering methodology described in this research.  

Part of the goal of this research was to control the shape of the large-area CP1 polymer 

mirrors.  These uniform thickness depositions satisfy the large-area aspect of this goal. 

 Controlled-stress YSZ films can be deposited on CP1 polymer substrates without 

damage to the CP1 polymer.  YSZ films were successfully deposited on both the released 

and unreleased CP1 polymer substrates.  In addition, the controlled-stress YSZ films 

deposited on the released CP1 polymer substrates were shown to modify the shape of the 

initially flat substrates.  The shaped changed from an optically flat surface to a parabolic 

shape over the center section of the CP1 polymer substrate.  One of the two overarching 

goals of this research was to produce parabolic membrane mirrors using stress-shaped 
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film depositions.  The ability to desirably modify the shape of the CP1 polymers satisfies 

this goal. 

8.3 Future Research Recommendations 

 Although all of the goals of this research effort were accomplished, several areas 

of research that warrant further investigation were uncovered.  These areas are listed 

below in chapter order. 

 The theory described in Chapter 4 correlates the affect of deposition parameters to 

YSZ film stress.  This correlation should not be limited to the specific PLD system used 

in this research nor YSZ.  Therefore, the research should be re repeated using other 

materials and other PLD systems. 

 Chapter 5 shows that the streaming velocity predicts film stress over a limited 

range of target-to-substrate distances and oxygen pressures.  Only target-to-substrate 

distances between 55 and 120 could be investigated without extensive modifications to 

the current PLD system.  The existing PLD system should be modified to include other 

target-to-substrate distance ranges, particularly the 0 to 55 mm range.  Alternately, the 

investigations presented in Chapters 4 and 5 could be repeated using a PLD system that 

allows a larger target-to-substrate distance range to be investigated.  For films that exhibit 

no curvature, the oxygen pressure is highly correlated with the target-to-substrate 

distance.  Therefore, an increased target-to-substrate distance range investigation will 

include an increased oxygen pressure range. 

 The optical time-of-flight sensor system described in Chapters 3 and 4 measures 

the optical emissions of particles passing through a spatial region located at a fixed 

distance from the target.  However, only a fraction of the particles that pass through the 
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monitored spatial region emit.  Thus, the optical emissions are indicative of particles 

passing through some spatial region, but the lack of emissions does not imply a lack of 

particles, only a lack of emitting particles.  In addition, not all deposition conditions are 

conducive to particle emissions.  Therefore, further investigation should be conducted 

using a sensor that monitors all particles passing through some spatial region. 

 The bimodal plume emissions distributions were observed at various distances 

from the target surface and under several oxygen pressures, as described in Chapter 5.  

Such bimodal plume emission distributions have been reported in the current literature.  

However, the source of the bimodal plume emission distributions has not been 

sufficiently explained and warrants further investigation. 

 The rastering method derived in Chapter 6 should directly apply to other materials 

and substrates larger than six inches in diameter.  Therefore, the experiments presented in 

Chapter 6 should be repeated with larger substrates and other target materials.  Also, the 

empirical approach to plume rastering should be performed again using the valid 

mapping function, as described in Chapter 6.  Applying the valid mapping function to the 

iterative correction process can reduce the film thickness variations reported previously. 

 For suspended CP1 polymer substrates, the dominant problem is currently heat 

dissipation, as described in Chapter 7.  The intrinsic heat from the plume can damage the 

CP1 polymer substrates when the laser repetition rate is greater than 10 Hz.  Although 

depositions are feasible at laser repetition rates less than or equal to 10 Hz, increases in 

the substrate diameter will require substantial increases in the deposition time.  Thus, 

higher laser repetition rates are extremely desirable.  More research into an appropriate 

heatsink for the released CP1 polymer substrates is needed. 
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 For the unreleased CP1 polymer substrates described in Chapter 7, the limiting 

factor is the ability to mount the YSZ-coated substrate to a mounting ring without 

inducing damage and/or defects.  Further polymer mounting and release research is 

needed. 

 Modeling and further growths of YSZ on CP1 polymer substrates are required to 

refine the shape of the stress-shaped CP1 polymer mirrors.  YSZ films grown on initially 

flat suspended CP1 polymer substrates produced polymers mirrors with a 61.3-meter 

focal length.  The compressive stress in the YSZ coating should be increased in order to 

decrease the focal length.  Thus, more compressively-stressed YSZ thin films should be 

grown on suspended CP1 polymer substrates.  In addition, other coating materials should 

be investigated. 
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Appendix A In-situ Raman Spectroscopy During the Pulsed 

Laser Deposition of Silicon Carbide 

 
 
 
A.1 Overview 

 Chapters 4 through 7 focused on developing and producing stress-controlled yttria 

stabilized zirconia (YSZ) films deposited by pulsed laser deposition (PLD) on both 

silicon and CP1 polymer substrates.  Initially, the stress in the films was controlled via 

maintaining constant pre-determined deposition parameters.  The next step included YSZ 

plume monitoring to compensate for slight variations in deposition conditions.  However, 

the closed-loop control was limited to the YSZ plume.  Measurements of plume 

parameters were shown to be correlated with thin film parameters, such as stress.  

However, the thin film parameters were not directly measured until after the PLD growth 

was complete (ex-situ).  Directly measuring the thin film parameters of interest as the thin 

film is deposited will provide better control over the deposition process.  Thus, the 

closed-loop process control should incorporate non-intrusive thin film stress 

measurements during the PLD growth process.  Materials that emit Raman scattered light 

are defined as Raman-active materials.  Raman spectroscopy provides the ability to non-

destructively measure the stress in Raman-active thin film materials, such as silicon 

carbide and YSZ.  In addition, Raman spectroscopy offers the possibility to perform this 

stress measurement in-situ.  Therefore, the goal of the research presented in this appendix 

is to investigate the applicability, benefits, and limitation of in-situ Raman spectroscopy 
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for stress measurement with respect to closed-loop feedback for controlled-stress film 

depositions. 

 All goals of this appendix were met.  SiC was chosen as the thin film material to 

be grow using PLD and investigated using Raman spectroscopy.  The ability to grown 

SiC thin films with controlled stress would enhance current SiC microelectromechanical 

systems (MEMS) projects within Air Force Research Laboratory Materials and 

Manufacturing Directorate (AFRL/ML) [1].  The acquisition of SiC Raman spectra was 

demonstrated under typical SiC PLD growth conditions using an approximately 500-µm 

thick SiC sample.  In addition, the ability to acquire Raman spectra during the PLD 

growth process was demonstrated with the growth of silicon carbide (SiC) on silicon 

substrates.  However, only the silicon substrate’s Raman spectra were acquired using 

both in-situ and ex-situ Raman spectroscopy.  The SiC thin films did not absorb the 532-

nm Raman excitation laser sufficiently to produce significant Raman scattering.  

However, for the SiC thin films grown up to 3-µm thick by PLD on silicon substrates, the 

silicon Raman spectra was observable throughout the deposition process.  The silicon 

Raman spectra acquired during the growth of SiC showed that the Raman mean 

wavenumber corresponding to silicon (nominally 520 cm-1) shifted with temperature and 

also with the growth of the SiC thin film on the silicon substrate.  However, the shift in 

the silicon Raman mean wavenumber due to stress could not be computed without an 

accurate silicon temperature measurement, which was not available.  The experiments 

were repeated with yttria stabilized zirconia (YSZ).  As with SiC, the YSZ Raman spectra 

were not acquired with either in-situ or ex-situ Raman investigations. 
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 In order to get an accurate temperature measurement, an analysis of the Stokes to 

anti-Stokes intensity ratio for the silicon Raman spectra was performed.  This analysis 

showed that the intensity ratio could be used to calculate the silicon temperature.  These 

calculations were verified against a thermocouple-based temperature measurement 

system.  Again, silicon Raman spectra were recorded during the PLD growth of a SiC 

thin film on a silicon substrate.  Post-deposition analysis of the Stokes to anti-Stokes 

intensity ratio calculated showed that the calculated silicon temperature was 30-35% 

lower than the heater chamber temperature.  Since SiC is an excellent thermal conductor, 

these results were not expected.  Thus, no acceptable silicon temperature measurement 

was available.  As stated previously, the portion of the Raman mean wavenumber shift 

due to stress cannot be calculated without an accurate silicon temperature measurement.  

 Modifications to the in-situ Raman spectroscopy system to change the Raman 

excitation wavelength from 532 nm to a ultra-violet (UV) excitation source should allow 

the acquisition of SiC Raman spectra from the thin film.  Given this change to the in-situ 

Raman spectroscopy system and the associated Raman spectra from the SiC thin film, a 

SiC film stress estimate can be calculated.  The research presented in this appendix 

details the capabilities and limitation of the visible in-situ Raman spectroscopy system, as 

it applies to SiC and YSZ.  In addition, the methods, experiments, and equipment apply 

directly to future in-situ UV Raman spectroscopy research. 

A.2 Theory 

 Although a rigorous theoretical background of Raman spectroscopy is not 

necessary to understand and apply Raman spectroscopy techniques to pulsed laser 

deposition (PLD) experiments, a general overview of the Raman effect and its origin is 

A-3 



 

beneficial.  The remainder of this section presents an overview of Raman spectroscopy, 

as well as typical Raman spectroscopy system components, benefits of Raman 

spectroscopy, Raman spectra for silicon and silicon carbide materials, material stress 

calculation from Raman spectroscopy measurements, and material temperature 

calculations from Raman spectroscopy measurements. 

A.2.1 Raman Effect Phenomenon 

 When monochromatic light is incident upon a material, some of the light is 

absorbed, some is reflected, some is transmitted, and some is scattered [2; 3].  Reflection, 

absorption, and transmission are dependent on the angle of incidence and as such are 

specified by the rules of classic optical theory [4].  However as the term “scattered” 

implies, the scattered light is not directionally limited and is the result of the interaction 

between the sample molecules and the incident light.  As a result of this interaction, the 

sample molecules may absorb energy from the incident light as vibrational, rotational, or 

electronic energy [5].  Raman spectroscopy measures the vibrational energy absorption or 

emission through changes in the spectra of the scattered optical emissions.  Figure A-1 

illustrates the interaction between the light and the molecular system that are relevant to 

Raman spectroscopy.  Monochromatic excitation light is incident upon a sample material, 

and the sample material both reflects and scatters the incident light.  Some of the 

absorbed incident light results in vibrational energy changes in the sample material, as 

shown in Figure A-1 [2; 3]. 
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Figure A-1.  Schematic Representation of Molecular Motion and Raman Scattering 

 

 The scattered portion of light can be divided into two types: Rayleigh and Raman.   

Rayleigh scattering denotes the condition in which both the incident and scattered light 

occur at the same frequency.  Raman scattering refers to the condition in which the 

scattered light occurs at a different frequency than the incident light.  Scattering occurs 

when a photon collides, either elastically or inelastically, with a sample molecule [2; 5].  

The molecule has some initial energy Ei before the collision and some final energy Ef 

after the collision.  Through the photon absorption, the molecule gains energy Eabsorbed = 

h·ν0 where h is Planck’s constant and ν0 is absorbed photon frequency.  After the 

collision, the molecule may transition to a lower energy level by emitting a photon with 

energy Eemitted = h·ν where ν is emitted photon frequency.  Figure A-2 illustrates the 

process of photon absorption and emission by a molecule. 

 Thus, the molecule possesses some final energy Ef =Ei+Eabsorbed-Eemitted.  If Ei 

equals Ef the collision is said to be elastic, and Eabsorbed must equal Eemitted.  In an elastic 

collision, the emitted photon has the same frequency as the absorbed photon, which is 

defined as Rayleigh scattering. 
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Figure A-2.  Interaction Between a Molecule and a Photon Diagram 

 

 However, when Ef is not equal to than Ei, the collision is said to be inelastic, and 

the photon is emitted at a different frequency than the incident photon.  Inelastic 

collisions produce Raman scattering.  Raman scattering can be subdivided into two types: 

Stokes and anti-Stokes Raman scattering.  If Ef is greater than Ei, then the emitted 

photon’s frequency is shorter than the absorbed photon’s frequency, and the scattering 

process is defined as Stokes Raman scattering.  If Ef is less than Ei, then the emitted 

photon’s frequency is longer than the absorbed photon’s frequency, and the scattering 

process is defined as anti-Stokes Raman scattering.  Figure A-3 illustrates the energy 

band diagram and relevant energy transitions for light scattering.  E0 and E1 are electronic 

states, while v and v´ are vibrational states.  In addition, the abbreviations IR, R, S, and A 

denote infrared absorption, Rayleigh scattering, Stokes Raman scattering, and anti-Stokes 

Raman scattering, respectively.  The dotted lines depict “virtual energy levels.”  Virtual 

energy level refer to energy level are not “real” and therefore cannot be populated.  Since 

the virtual energy levels are not allowed, a photon must be quickly re-emitted. 
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Figure A-3.  Energy Levels for Normal Raman, Resonance Raman, and Fluorescence 

Spectra 
 

 The Stokes and anti-Stokes Raman frequency shifts are independent of the 

incident light frequency.  As shown in Figure A-3, the difference between the excitation 

frequency and the Stokes/anti-Stokes scattering frequencies equals the vibrational 

frequency νm, as shown in Equation (A-1) [2; 3; 5]: 

 0 0m s aν ν ν ν ν= − = −  (A-1)
 

where νs is Stokes Raman frequency and νa is anti-Stokes Raman frequency. Both the 

Stokes and anti-Stokes Raman frequency shifts provide the same information about the 

vibrational frequency νm.  Under normal atmospheric conditions and temperatures, Stokes 

Raman scattering signals are stronger than anti-Stokes scattering signals [2; 3].  As such, 

Raman frequencies in current literature are often specified in terms of relative frequency, 

which implies the absolute value of the shift in frequency from the incident light 

frequency to Stokes Raman scattered frequency [3]. 
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 A special case of Raman scattering, denoted “Resonance Raman” scattering, is 

also illustrated in Figure A-3.  Resonance Raman scattering differs from normal Raman 

scattering in that the virtual energy level coincides with the electronic energy level.  

Conditions corresponding to Resonance Raman enhance the Raman effect by a factor of 

103 to 105, as compared to normal Raman scattering [2]. 

 In addition to resonant Raman scattering, Figure A-3 illustrates two other effects: 

infrared absorption and fluorescence.  The vibrational frequency νm can also be measured 

using infrared spectroscopy, which measures the absorption of light as a function of 

frequency.  Infrared spectroscopy typically reports the percentage transmission in terms 

of incident light frequency.  Incident light frequencies corresponding to the vibrational 

frequency νm are more strongly absorbed and appear as sharply defined attenuations in 

the percentage transmission [2].  Fluorescence describes the transition of an excited state 

molecule to the lowest excited vibrational state via thermal decay, followed by a photon 

emission during the transition to one of the ground vibrational states.  The molecule is 

typically placed in the excited state by the absorption of an excitation photon.  

Fluorescence appears as an increase in the background spectra, which can significantly 

decrease the signal to noise ratio (SNR) of the Raman spectral acquisition [2; 3]. 

A.2.2 Raman Spectroscopy Instrumentation 

 Typical Raman spectroscopy instrumentation consists of five basic elements: 

excitation source, illumination and collection optics, sample holder, monochromator or 

spectrometer, and detection system [2].  The remainder of this section describes some of 

A-8 



 

these elements in more detail.  The specific instrumentation used in this research is 

described in Section 3.10. 

A.2.2.1 Excitation Source 

 The most common excitation source in use at this time is the laser.  Several 

characteristics of current laser technology enhance the benefits of Raman spectroscopy.  

These beneficial characteristics include: high power, highly monochromatic beams, small 

beam diameters, linear polarization, and a wide range of available wavelengths.  Many 

continuous wave (CW) lasers are available with output power ranging from tens of 

milliWatts up to several Watts.  In addition, pulsed lasers, which are used for time-

resolved and UV resonance Raman spectroscopy, are currently capable of producing 10-

100 megaWatts [2].  Since the Raman phenomenon is a relatively weak effect, a high-

power incident light source, such as a laser, greatly enhances the acquired Raman 

spectra’s SNR.  The second advantage of using a laser as the excitation source is the 

highly monochromatic beam.  For example, an argon-ion laser produces beams with an 

approximately 0.1 cm-1 bandwidth.  Also, most extraneous laser lines are much weaker 

than the primary beam, which enables most unwanted lines to be removed using optical 

filters or premonochromators.  Next, the small spot size of the laser beam enables small 

samples to be studies.  Utilizing Raman microscopy, samples as small as two 

micrometers in diameter can be studied.  Lasers are almost completely linearly polarized, 

which is the fourth desirable characteristic.  Linear polarization enables the symmetry 

properties of Raman-active vibrations, which are required for band assignment 

information, to be investigated using Raman spectroscopy.  Lastly, lasers are available in 
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a wide range of wavelengths from UV to IR.  IR Carbon dioxide lasers, near–IR Nd:YAG 

lasers, HeNe red lasers, argon-ion green lasers, and UV excimer lasers exemplify a small 

subset of the available wavelengths [2]. 

A.2.2.2 Illumination and Collection Optics 

 The Raman effect is a relatively weak phenomenon.  Approximately one out of 

every 106 photons that are incident on the sample will produce Raman scattering.  Thus, 

the laser beam should be focused onto the sample.  In addition, the resulting Raman 

scattering must be efficiently collected, typically using both a collection lens and a 

focusing lens.  The light gathering power of the collection lens, expressed in terms of F 

number, is of particular importance to the efficiency of the optical system.  The F number 

is described by Equation (A-2) [2]: 

 ( )mm
mm

fF
D

=  (A-2)

 

where F is the F number (mm/mm), f is the focal length of the lens (mm), and D is the 

lens diameter (mm).  Lower F numbers correspond to a greater light-gathering power of 

the lens [2]. 

 In addition to a collection lens and a focusing lens, many optical systems include 

optical filters to attenuate unwanted light frequencies.  Holographic notch filters are 

capable of blocking the Rayleigh scattered light and reflected light by attenuating a 

contiguous range of frequencies near the excitation frequency.  Holographic notch filters 

can reduce the unwanted frequencies by up to six orders of magnitude, as compared to 

the frequencies that the filter passes [3]. 

A-10 



 

A.2.2.3 Monochromator or Spectrometer 

 Monochromators limit the spectral components of the scattered light to be 

analyzed, typically by diffraction.  Diffractive elements, usually gratings, angularly 

disperse the collected light according to frequency.  However, undiffracted light scattered 

from the face of the grating inside the monochromator reduces the signal to noise ratio 

(SNR) of the Raman signal.  Arranging two or more monochromators in tandem, so that 

the output of a preceding monochromator is coupled to the input of a subsequent 

monochromator, can reduce this undiffracted light.  Thus, the monochromator is typically 

defined in terms of the number of gratings, such as a single, double, or triple 

monochromator.  Figure A-4 shows the schematic of a double monochromator.  The 

mirrors M1 through M5 image the entrance slit onto a focal plate near the exit slit.  The 

exit slit limits the optical output of the monochromator to a narrow spectral window.  

This narrow spectral window is swept across the spectrum by varying the angular 

orientation of the gratings [2; 5]. 

 The gratings are typically moved using either a gearbox driven by a motor or 

directly with a stepper motor and electronic angular decoder.  The direct-drive stepper 

motor and electronic angular decoder system eliminates gear backlash and provides more 

accurate angular positioning of the gratings.  Thus, the monochromator acquires the 

spectra sequentially, rather than simultaneously, by recording the optical intensities at the 

exit slit in terms of angular orientations of the gratings.  A spectrometer is a special type 

of monochromator that replaces the exit slit with a multichannel detector to acquire a 

block of the spectrum simultaneously.  The multichannel detector behaves like an array 
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of exit slits and multiple single channel detectors [2; 5].  Single channel and multichannel 

detectors are described further in Section A.2.2.4. 
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Figure A-4.  Double Monochromator Schematic [2] 

 

A.2.2.4 Detection 

 A photomultiplier tube (PMT) typically performs the function of single channel 

detector that monitors the output at the exit slit of the monochromator, as described in 

Section A.2.2.3.  The PMT’s electrical output is processed to produce either photon 

counts per second or amplified and averaged over time to produce DC current 

measurements.  The photon count method provides maximum sensitivity from the PMT, 

by more than a factor of ten over the DC current detection method.  The photon counting 

method has a disadvantage in that the maximum photon arrival rate is limited.  However, 

this limitation is generally not applicable to the relatively weak Raman signals [2]. 
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 Early spectroscopy employed photographic plates as multichannel detectors.  

Photographic plates were placed at the output of the spectrometer and recorded the 

photon intensity over long integration periods.  The time to develop and analyze the 

photographic plates limited the applicability of Raman spectroscopy as a diagnostic 

technique [2]. 

 Currently, most multichannel detectors are charge-coupled devices (CCDs).  

CCDs have many advantages over the detection systems described previously, which 

include the following [2]: 

• CCDs are available with a large number of pixels, typically numbering into the 

millions of pixels per device. 

• CCD arrays are tightly spaced with pixel sizes on the order of 6 to 30 

micrometers. 

• CCDs have relatively low readout noise compared to most other multichannel 

detectors 

• CCDs have high quantum efficiencies. 

• CCDs detect over wide wavelength detection ranges. 

A.2.3 Benefits of Raman Spectroscopy 

 Molecules vibrate only along the chemical bond connecting the nuclei.  The 

vibrational frequency measured using Raman spectroscopy depends upon the strength of 

these bonds and the mass of the nuclei.  As such, Raman spectroscopy can be used to 

identify the composition of a sample as well as other information, such as stress (see 

Section A.2.4 and A.2.5) and material polytype (see Section A.2.5).  In addition, Raman 
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spectroscopy has several benefits over other analytical techniques, which include the 

following: 

• Raman spectroscopy is non-destructive and does not require any special sample 

preparation, such as thinning or patterning [3]. 

• Only small quantities of a sample are required for analysis [2]. 

• Raman spectroscopy may be compatible with in-situ stress monitoring [3]. 

• The technique is fast and relatively simple [3]. 

A.2.4 Silicon Raman Spectroscopy and Stress 

 As stated previously, the Raman spectrum is unique to each sample material.  In 

addition, samples containing more than one constituent produce Raman spectra 

containing a number of peaks. Thus, Raman-active materials may be identified and/or 

characterized by their associated Raman spectra.  For example, Raman spectroscopy has 

been successfully applied to the effective measurement of mechanical stress in silicon [3; 

6; 7; 8].  The technique depends on the type of stress, such as uniaxial or biaxial, and the 

direction in which the Raman spectra is acquired relative to the sample surface, such as 

normal or parallel to the sample surface [3].  The calculation for stress involves a 

comparison between the Raman frequency shift of unstressed silicon and the Raman 

frequency shift from the sample being measured.  The Raman spectrum of silicon has one 

peak located 520 cm-1 from the excitation frequency.  Figure A-5 shows a typical Raman 

spectrum for bulk silicon acquired using a Renishaw model 2000 Raman spectrometer 

equipped with a Leica microscope and a 514.5 nm argon-ion laser. 
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Figure A-5.  Typical Raman Spectrum for Bulk Crystalline Silicon Using a 514.5 nm 
Argon-Ion Laser Excitation Source 

 

A.2.5 Silicon Carbide Raman Spectroscopy and Stress 

 In addition to silicon, silicon carbide has been well characterized by Raman 

spectroscopy.  An understanding of the crystalline nature of silicon carbide is necessary 

in order to discuss its material properties. Unlike silicon, crystalline silicon carbide 

exhibits a one-dimensional polymorphism called polytypism. All the polytypes of silicon 

carbide can be described using a hexagonal coordinate system, where the a and b axis are 

separated by 120 degrees and the c axis is normal to both the a and b axis. Although all 
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silicon carbide has the same atomic composition of silicon and carbon, the stacking order 

in the c-axis is used to specify the polytype, as shown in Figure A-6 [9; 10; 11; 12]. 

 

 
Figure A-6.  Stacking Order of 3C and 6H Silicon Carbide [11] 

 

 Disorder in simple stacking sequences creates unique polytypes.  Over 250 

polytypes have been identified.  However, only a few polytypes are common and can be 

described as cubic, hexagonal, or rhombohedral.  Some common polytypes of silicon 

carbide and the associated stacking order are listed in Table A-1 and illustrated in Figure 

A-7 [9; 10; 11; 12]. 

 

Table A-1.  Stacking Order of Common Silicon Carbide Polytypes 
Nomenclature Stacking Order Description 

3C ABC Cubic or zinc blende 
2H AB Hexagonal or wurtzite 
6H ABCACB Hexagonal or wurtzite 
15R ABCACBCABACABCB Rhombohedral 
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A B C A B C A B C A B C
15R3C

A B C A B C A B C A B C A B C A B C A B C A B C
2H

A B C A B C A B C A B C
6H

A B C A B C A B C A B C
15R3C

A B C A B C A B C A B C A B C A B C A B C A B C
2H

A B C A B C A B C A B C
6H  

Figure A-7.  Stacking Order of Common Silicon Carbide Polytypes. 
 

 Like silicon, silicon carbide exists in three degrees of crystallinity: amorphous, 

polycrystalline, and monocrystalline.  Amorphous silicon carbide is randomly oriented 

silicon and carbon, which has no polytype.  Material that is a single crystal composed 

entirely of one polytype is defined as monocrystalline.  Material that has many local areas 

of single crystal material is defined as polycrystalline.  The average size of the local area 

is defined as the grain size.  Polycrystalline silicon carbide may be composed of more 

than one polytype.  Silicon carbide has been well characterized by Raman spectroscopy 

in a number of sources.  The predominant polytype of silicon carbide determines the 

number of peaks and the location of these peaks in the Raman spectra, as shown for some 

common polytypes in Figure A-8.  Table A-2 summarizes the dominant peak locations.  

The Raman spectrum of a sample, in conjunction with the appropriate database, provides 

easy identification of a target as silicon carbide, as well as a means of determining the 

specific polytype.  One or more vibrational modes may result in Raman scattering.  Each 

vibrational mode may produce a separate Raman signal peak or be degenerate, having the 

same Raman signal peak.  Some of the more common of these vibrational modes are 

transverse optical (TO), longitudinal optical (LO), transverse acoustic (TA), and 
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longitudinal acoustic (LA).  [13; 14; 15].  Nakashima and Harima discuss each of the 

vibrational mode in more detail [15].  The vibrational modes are commonly used to 

denote one or more Raman signal peaks, as shown in Figure A-8. 
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Figure A-8.  Raman Spectra of Several Silicon Carbide Polytypes [15] 
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Table A-2.  Raman Spectral Peaks for Common Polytypes of Silicon Carbide [15; 16] 
Frequency (cm-1)  

TA TO LA LO 
3C (β) - 796 - 972 

2H 264 799 
764 

- 968 

4H 204 796 
776 

610 964 
 

6H 145 
 

797 
767 

504 
514 

965 

15R 167 
173 

797 
785 
769 

569 
577 

965 

 

 As described in Section A.2.1, Raman scattering can occur after a sample material 

absorbs the excitation light.  Figure A-9 shows the absorption coefficient of two common 

polytypes of SiC as a function of wavelength.  The excitation source is a 532-nm 

Nd:YAG laser.  The corresponding absorption coefficients are approximately 48 cm-1 and 

2.6 cm-1 for 3C and 6H SiC, respectively [17].  Thus, the penetration depth for 3C and 6H 

SiC thin film at 532 nm is approximately 208.3 µm and 3.85 mm, respectively.  The 

absorption coefficient for silicon near 532 nm is 14,400 cm-1 , which corresponds to an 

optical penetration depth of 680 nm [14].  Thus, for the SiC thin films grown for this 

research, the silicon substrate should always be visible.  In addition, the silicon Raman 

spectra is scattered from the silicon at a depth of less than 1 µm from the silicon-SiC 

interface.  Thus, even if the SiC Raman spectra is not apparent, the silicon Raman spectra 

should be present.  Since the silicon Raman spectra corresponds to a shallow depth from 

the SiC-silicon interface, a stressed SiC layer on top of the silicon substrate should 

produce a shift in the silicon Raman spectra’s mean wavenumber.  Finally, Figure A-9 

shows that the absorption coefficient increases with a decrease in wavenumber, which 
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shows that using a UV Raman excitation source will increase the SiC thin film optical 

absorption and increase the Raman spectra intensities. 
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Figure A-9.  Absorption Coefficients as a Function of Wavelength for Bulk 3C and 6H 

Silicon Carbide [17] 
 

 Mechanical strain in the sample shifts the peak frequency locations of the silicon 

carbide Raman spectrum.  Thin films deposited on a substrate are usually under biaxial 

stress [18].  The source of this stress may be lattice mismatch, thermal expansion 

coefficient mismatch, or intrinsic stress caused by the deposition process. The TO and 

LO frequency peaks of a cubic material under two-dimensional stress (biaxial) are given 

by Equations (A-3) through (A-8) [19; 20; 21]:  

 ( ) ( )-11
0 32 cTO TO TO TO

H sη η Xν ν− = − − ⋅ m  (A-3)
  
 ( ) ( )-12

0 32 cLO LO LO LO
H sη η Xν ν− = − + ⋅ m  (A-4)

  

 
( )( )

( ) ( )
, ,

11 12, -
,

0

2 2
cm Pa

6

TO LO TO LO
TO LO
H TO LO

p q S S
η

ν

+ +
= − ⋅

⋅
1 -1  (A-5)

  

A-20 



 

 
( )( )

( ) ( )
, ,

11 12, -
,

0

cm Pa
2

TO LO TO LO
TO LO
S TO LO

p q S S
η

ν

− −
= − ⋅

⋅
1 -1  (A-6)

  
 ( ) ( )11 12 unitlessll xx yyε ε ε S S X= = = +  (A-7)
  
 ( )122 unitlesszzε ε S X⊥ = =  (A-8)

 
where  is stress-free TO frequency (cmTO

0ν
-1),  is stress-free LO frequency (cmLO

0ν
-1), 

 is measured TO frequency (cmTOν -1), is measured LO frequency (cmLOν -1), X is strain 

of the material (Pa), pTO,LO and qTO,LO are phonon deformation potentials for the TO or 

LO frequencies (cm-2), S11 and S12 are elastic compliance constants (Pa-1), ε is strain in 

the subscript axis (unitless), and ηH and ηS are stress coefficients (cm-1Pa-1). 

 Substituting Equations (A-5) and (A-6) into Equations (A-3) and (A-4) results in 

two values for the strain X.  The in-plane stress and the normal to the plane stress are 

calculated by averaging the two X values and substituting this averaged value into 

Equations (A-7) and (A-8) [19; 20; 21].  Although Equations (A-3) through (A-8) were 

derived for cubic SiC, the methods and equations apply equally well to other polytypes 

[19]. 

A.2.6 Vibrational Temperature from Raman Spectra 

 The temperature of the sample volume being measured using Raman spectroscopy 

may be of interest in many experiments.  The vibrational temperature of the sample can 

be calculated using Raman spectroscopy if more than one Raman scattered frequency can 

be acquired.  An example of multiple Raman scattered frequencies is illustrated in the 

Raman spectra of silicon carbide, as shown in Figure A-8.  In addition, the Stokes and 
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anti-Stokes Raman scattered signal can be used to calculate vibrational temperature.  The 

Stokes to anti-Stokes Raman scattered intensity ratio is sensitive to temperature, as 

illustrated in Equation (A-9) [22]: 

 ( ) ( ) ( )
( ) ( )

( )
4

4exp unitlessa

s

I
hc kT

I
µ ν µ ν

ν
µ ν µ ν

+ +
− =

− −
 (A-9)

 

where h is Planck’s constant (J·s), c is speed of light (cm/s), k is Boltzmann’s constant 

(J/K), T is vibrational temperature (K), µ is wavenumber of the excitation source (cm-1), 

ν is Raman shift (cm-1), and Is(µ-ν) and Ia(µ+ν) are the Stokes and anti-Stokes Raman 

intensities (counts) respectively, at the Raman peak wavenumbers. 

 Equation (A-9) references the Stokes and anti-Stokes Raman scattered intensities, 

Is(µ-ν) and Ia(µ+ν).  These intensities are not available for the calculation of the 

vibrational temperature.  However, the acquired Raman spectra are related to these 

Raman scattered intensities through an instrument spectral response function, as shown in 

Equation (A-10) [22]: 

 ( ) ( ) ( )( ) countsI S Nν ν ν⋅ =  (A-10)
 

where S(ν) is the instrument spectral response function (unitless) at the Raman 

wavenumber ν and N(ν) is the acquired Raman signal intensity (counts).  A Raman 

spectral acquisition system must be calibrated to determine its instrument spectral 

response function S(ν).  Applying the instrument spectral response function S(ν) and the 

acquired Raman signal intensity N(ν) to Equation (A-9) produces Equation (A-11) [22]: 

A-22 



 

 ( ) ( ) ( )
( ) ( )

( )
4

4
( )exp unitless
( )

a

s

N Shc kT
SN

µ ν µ ν µ νν
µ νµ ν µ ν

+ ⋅ − +
− = ⋅

−− ⋅ +
 (A-11)

 

 Spectral lamps provide one method of spectral calibration.  The light intensity 

output of the lamps is calculated as a function of the lamp color temperature.  The color 

temperatures of the lamps are determined by the ohmic power loss across the filament of 

the lamp.  However, previous research shows that the light output of the lamps decreases 

with lamp usage, even though the ohmic power loss remains constant.  Also, the 

geometry of the lamp-spectrometer test setup greatly influenced the calibration results 

[22]. 

 Due to the problems associated with the calibration lamps, previous research has 

shown that the relative instrument spectral response can be calculated directly from the 

acquired Raman spectra, if the temperature of a reference sample is known.  This method 

is initiated by computing a raw temperature function from the acquired Raman spectra, as 

shown in Equation (A-12) [22]: 

 ( ) ( ) ( )
( ) ( )

( )
4

4exp , unitlessa
r

s

N
hc kT

N
µ ν µ ν

ν µ ν
µ ν µ ν

+ +
− =⎡ ⎤⎣ ⎦ − −

 (A-12)

 

where Tr(µ,ν) is raw temperature function (K), and Na(ν) and Ns(ν) are Stokes and anti-

Stokes Raman photon count measurements (s-1) at the Raman wavenumbers µ±ν.  

Dividing Equation (A-12) by Equation (A-9) produces the relative instrument response 

function for two wavenumbers symmetrically located about the excitation source, as 

shown in Equation (A-13) [22]: 
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 Thus, the absolute instrument response function is not necessary to calibrate the 

Raman acquisition system for temperature measurements.  However, Equation requires 

an accurate temperature measurement from a reference sample.  Given this sample 

temperature measurement, a correction to the raw temperature function, as shown in 

Equation (A-14) can be computed [22]: 

 ( ) ( ) ( )-11 1 , K
,rT T

ξ µ ν
µ ν

= +  (A-14)

 

where ξ(µ,ν) is temperature response function (K-1) at the Raman wavenumber ν.  Thus, a 

simple additive correction to the raw temperature determined ex-situ can be use to 

calculate the temperature in-situ.  However, the temperature response function is only 

valid for Raman measurements at the wavenumbers µ±ν.  Other research has assumed 

that the ratio involving the peak Stokes and anti-Stokes Raman signal intensities is 

linearly related to the inverse of temperature, as shown in Equation (A-15) [23; 24]: 

 
( )
( ) ( )1ln unitlessS

A

N
A B

N T
µ ν
µ ν

⎛ ⎞−
= ⋅ +⎜ ⎟⎜ ⎟+⎝ ⎠

 (A-15)

 

where A and B are linear fit constants.  However, Equation (A-15) implicitly assumes 

that the symmetric instrument spectral response function ratio S(µ+ν)/S(µ-ν) is 

sufficiently flat over the wavenumber range of µ-ν to µ+ν.  In addition, both the Stokes 

and the anti-Stokes wavenumber vary with temperature.  Figure A-10 shows an example 
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of the slight shift in wavenumber with temperature for GaSb (100) substrates [23]. 

Although the symmetric instrument spectral response function ratio may vary, Figure 

A-11 shows that any such variation is not significant to the results for this specific 

instrument, sample material, and temperature range.  However, this assumption should be 

verified for each new experiment. 
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A.3 Experiment 

 Three sets of experiments were performed: simulated in-situ Raman spectral 

acquisition of existing silicon carbide, in-situ Raman spectral acquisition of silicon 

carbide during deposition, and in-situ temperature extract from Raman spectral 

acquisition during deposition.  The remainder of this section describes the Raman 

spectroscopy system calibration procedures and the experimental procedures for each of 

the experiments listed above.  The results from these three sets of experiments are 

presented in Section A.4. 

A.3.1 Raman Spectroscopy System Spectral Calibration 

 The Raman spectroscopy system, described in Section 3.10, required spectral 

calibration.  This spectral calibration mapped pixels of the Andor CCD to wavenumbers.  

The EIC Laboratories VIS500 Echelle spectrometer segmented the spectra into thirteen 

horizontal tracks that are spread vertically across the CCD array.  Since proprietary 

software mapped horizontal pixel location to wavenumber using a binomial expression, 

each track required four spectral lines for calibration.  Three spectral lines were sufficient 

to calculate the three coefficients for each binomial mapping.  However, the fourth 

spectral line over-specified the equation and provided a goodness-of-fit measure.  The 

spectral calibration was performed using spectral lines from argon, krypton, mercury, and 

xenon lamps.  These lamps emitted light at multiple known wavelengths.  The spectra 

from each lamp were acquired in terms of photon counts per pixel horizontal position.  A 

least square error fitting algorithm is used to generate the binomial coefficients to map 

the horizontal pixel locations to the correct wavenumbers.  Since the Echelle 
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spectrometer contained no moving parts, except the shutter at the entrance slit, 

verification of the acquired spectra against the spectral lamps was performed on a semi-

annual basis.  During the more than two-year time span of this research, the Echelle 

spectrometer required recalibration only once.  This calibration was due to a change in 

the setup of the Echelle spectrometer to capture a different spectral region of interest. 

A.3.2 Raman Probe Focusing 

 As described in Section 3.10, the Raman spectroscopy system acquired the 

spectra through a retractable probe that placed the focusing lens near the substrate.  The 

entire probe assembly was inserted by a positioning stage external to the deposition 

chamber.  The positioning stage was commanded to move the probe toward the substrate 

at the maximum rate until an optical position sensor indicated that the positioning stage 

had reached the “home” position.  The positioning stage was then slowed to a halt at a 

location past the home position and subsequently repositioned back to the home position.  

Thus, the stage assembly was inserted to a known position relative to the deposition 

chamber.  However, the stainless steel tubing that comprised the business end of the 

Raman probe expanded when heated.  The stainless steel substrate rotation shaft 

described in Section 3.5 also expanded when heated.  The expansion of both the Raman 

probe and the substrate rotation shaft complicated the focusing of the Raman probe.  If 

there were no expansion, the Raman probe would have been inserted up to a 

predetermined position that focused the excitation source onto the substrate.  However, as 

the distance from the focusing lens to the substrate surface varied with temperature, the 

Raman probe was positioned such that the acquired Raman signal amplitude was 
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maximized.  This position of maximum acquired Raman signal amplitude was assumed 

to place the focusing lens at the proper focal distance away from the substrate surface.  

The Raman spectra were acquired at multiple Raman probe positions.  Since the acquired 

Raman signal background was non-zero and non-linear, the Raman spectra were fitted to 

a Gaussian equation with a quadratic baseline in order to extract the Raman signal 

amplitude.  The Raman probe was then repositioned to the location that corresponded to 

the maximum Raman signal amplitude.  Since this focusing process was tedious and time 

consuming, the process was automated using LabVIEW® from National Instruments [25].  

For (100) silicon substrates, the Raman signal amplitude was approximately zero unless 

the Raman probe was within 10,000 motor steps (~2.5 mm) from the position of 

maximum Raman signal amplitude.  The Raman signal amplitude was relatively 

insensitive to the Raman probe position when the Raman probe was position within 1500 

motor steps (~0.38 mm) from the position of maximum Raman signal amplitude.  In 

order to minimize the time required to focus the Raman probe, the stage positioning was 

performed in a two-step iterative process.  The rough positioning procedure located the 

Raman probe near the maximum Raman signal focal distance by stepping through a set of 

fifteen locations uniformly spaced 7,500 motor steps (~1.91 mm) apart.  The Raman 

spectra was acquired and fitted, as previously described, at each of the fifteen locations.  

A new set of fifteen locations uniformly spaced 1,500 motor steps (~0.38 mm) apart, and 

centered about the positioning stage location that corresponded to maximum Raman 

signal, were created.  The fine positioning procedure located the final Raman probe 

position by sequencing through the new set of stage locations.  Again, the Raman spectra 

was acquired and fitted, as described previously.  The Raman probe was repositioned to 
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the stage location that corresponded to maximum Raman signal amplitude.  The 

acquisition time varied between 5 seconds to 60 seconds per Raman spectra capture.  As 

the temperature was increased, the Raman spectra SNR decreased.  Longer acquisition 

times were required to compensate for this SNR decrease.  These Raman probe 

positioning procedures were repeated for each temperature change and/or Raman probe 

insertion. 

A.3.3 Simulated In-situ Raman Spectral Acquisition for Silicon 

Carbide 

 The first experiment simulated an in-situ Raman spectral acquisition by recording 

the Raman spectra of a silicon carbide sample.  A sample labeled “SiC,” which is the 

compound symbol for silicon carbide, was found in a sample storage rack at the Air 

Force Research Laboratory Materials Directorate (AFRL/ML), Wright-Patterson Air 

Force Base Building 651 Room 193.  The sample was approximately 500 micrometers 

thick, as measured with a dial caliper.  The sample was semi-transparent and greenish-

gray in color.  No other information about the sample was known before acquiring a 

Raman spectrum.  The sample was analyzed ex-situ using Raman spectroscopy.  The 

Raman spectrum verified that the sample was silicon carbide and that the polytype was 

6H.  The silicon carbide sample was mounted on the substrate holder and placed in the 

PLD chamber.  Raman spectra of the silicon carbide sample were recorded at room 

temperature under normal atmosphere and under vacuum, as well as at elevated 

temperatures under a vacuum of less than 50 µTorr.  The temperature was varied from 

room temperature up to 900ºC.  The purpose of this test was to determine if silicon 
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carbide could be measured using Raman spectroscopy under in-situ-like conditions.  The 

results of this experiment are presented in Section A.4.1. 

A.3.4 In-situ Raman Spectral Acquisition for Silicon Carbide 

 The second experiment utilized Raman spectroscopy to monitor the deposition of 

silicon carbide on a (100) silicon substrate by PLD.  The goal of the experiment was to 

extract as much information as possible about the formation of the silicon carbide thin 

film.  An approximately 2 cm by 2 cm square piece of (100) silicon was mounted to the 

substrate holder using a substrate mask.  The substrate mask exposed an approximately 1 

cm by 1cm square area of the silicon substrate.  Raman spectra were taken at room 

temperature under normal atmospheric pressure.  Under a vacuum of less than 25 µTorr, 

the temperature was ramped from room temperature to 800ºC.  Raman spectra were 

acquired at every 100ºC increment.  A silicon carbide thin film was deposited by PLD on 

the silicon substrate.  Table A-3 lists the parameters used during this deposition.  The 

deposition was interrupted every 15 minutes to acquire Raman spectra.  After deposition, 

 

Table A-3.  Growth Parameters for Silicon Carbide Thin Films on (100) Silicon 
Substrates 

Parameter Value 
Laser Fluence 2.25 J/cm2

Laser Repetition Rate 10 Hz 
Ambient Pressure < 25 µTorr 

Target-to-substrate Distance 65.0 mm 
Substrate Bias -250 V 

Target Rotation Rate 15 rpm 
Substrate Rotation Rate 15 rpm 

Deposition Length 120 minutes/72000 pulses 
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the sample was cooled to room temperature from 800ºC.  Raman spectra were acquired at 

every 100ºC increment.  The results of this experiment are presented in Section A.4.2. 

A.3.5 In-situ Raman Spectra Vibrational Temperature Extraction for 

Silicon Carbide 

 The third experiment investigated the ability to extract the temperature of the 

sample.  The purpose of this experiment was to determine if in-situ Raman spectroscopy 

could be used to calculate the local temperature of the sample.  An Omega® model 

OS48H4K optical pyrometer was installed onto the bottom of the deposition chamber.  

The output of the optical pyrometer was monitored using an Omega® model CN8500 

Temperature and Process Controller.  The pyrometer viewed a limited area of the 

substrate through a zinc selenide window.  Since the Omega® optical pyrometer was a 

single color pyrometer, both the emissivity setting of the optical pyrometer and the linear 

coefficients of the Omega® model CN8500 were calibrated.  As described in Sections 3.5 

and 3.7, the substrate temperature was typically monitored by a thermocouple located 

inside the inner heater chamber.  However due to the rotation of the substrate, the 

thermocouple did not contact the substrate.  To calibrate the optical pyrometer and 

associated temperature controller, a Chromel-Alumel K-type thermocouple was mounting 

onto a (100) silicon substrate.  The thermocouple was then connected to the input of the 

Eurotherm temperature controller, which controlled the lamp power.  Thus, the power of 

the heating lamps was adjusted to ensure the surface temperature of the silicon was equal 

to the commanded temperature.  An emissivity dial on the back of the pyrometer (which 

was graduated based upon the assumption that the sample would fill the entire viewing 
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area of the pyrometer without any optical absorption between the pyrometer and the 

sample) was adjusted.  Unfortunately, the inclusion of the zinc selenide window and the 

apertured viewing area visible to the optical pyrometer prevented setting the emissivity as 

marked on the dial to published emissivity references.  In addition, the linearity 

coefficients of the Omega® temperature controller were adjusted.  These adjustments 

were iteratively made by varying the surface temperature of the silicon substrate between 

room temperature (~25ºC) and 900ºC.  After final adjustment, the optical pyrometer 

agreed with the output of the thermocouple within ±2ºC.  After calibration of the optical 

pyrometer system was completed, the second experiment, described in Section A.3.4, was 

repeated. 

A.4 Data and Analysis 

 This section presents the results of the experiments described in Section A.3.  All 

Raman spectra presented in this section represent the difference between the Stokes 

Raman signal wavenumber and the excitation wavenumber. 

A.4.1 Simulated In-situ Raman Spectral Acquisition for Silicon 

Carbide 

 As stated in Section A.3.3, the purpose of this experiment was to determine if 

silicon carbide could be measured using Raman spectroscopy under in-situ conditions.  

Figure A-12 shows the raw Raman spectrum for the 6H silicon carbide sample, as well as 

fitted data.  The data was fit to the sum of three Gaussian-Lorentzian Sum distributions 

and a linear background using a software analysis package called TableCurve 2D [26].  

The peaks of the three distributions agree well with the 6H silicon carbide Raman spectra 
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displayed in Figure A-8 and listed in Table A-2.  The data displayed in Figure A-12 has a 

data resolution of approximately 4 cm-1.  This data resolution is not sufficient to 

determine the stress in the material.  In addition, the fitting becomes increasing erroneous 

as the width of the Raman signals decrease relative to the data resolution.  The Raman 

peak centered at 791 cm-1 is approximately 6 cm-1 less than the expected value of 797 

cm-1.  Much of this error arises from the fitting of the sparsely spaced data. 
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Figure A-12.  Typical 6H Silicon Carbide Raman Spectra and Fitted Parameters 

 

 Figure A-13 displays the temperature and pressure dependence of the Raman 

spectra for the same 6H silicon carbide sample presented in Figure A-12.  The center 

wavenumber for all three Raman signal peaks shift to a lower wavenumber, broaden in 
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width, and decrease in amplitude with an increase in temperature, as expected.  Also, all 

three Raman signals are visible for all temperatures and pressures. 
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Figure A-13.  Silicon Carbide Raman Spectra from Room Temperature to 800°C 

 

A.4.2  In-situ Raman Spectral Acquisition for Silicon Carbide 

 The purpose of this experiment was to derive as much information as possible 

about the formation of the silicon carbide layer using Raman spectroscopy, as described 

in Section A.3.4.  Unfortunately, a Raman spectrum corresponding to the silicon carbide 

thin film was never observed.  However, the Raman spectrum from the silicon substrate 

was visible throughout the experiment.  Twenty-five Raman spectra were acquired during 

the heating up to deposition temperature phase, the pulse laser ablation deposition phase, 
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and cooling down to room temperature phase.  The Raman spectra were fitted in real time 

to a Gaussian distribution with a linear baseline.  In addition, the Raman spectra were 

fitted offline to a variety of distributions and baselines, typically a Gaussian-Lorentzian 

sum with quadratic baseline.  Both the raw spectra and the relevant fitted parameters 

were recorded.  Figure A-14 shows the downward shift in the mean wavenumber during 

the pre-deposition phase (labeled as “Scan Number 1” through “Scan Number 9”) when 

the temperature increased from room temperature to 800°C, a downward shift in mean 

wavenumber with laser ablation growth time (i.e. an increase in silicon carbide film 

thickness during the PLD growth process labeled “Scan Number 10” through “Scan 

Number 17”), and a upward shift in mean wavenumber as the temperature was decreased 

down to room temperature (labeled “Scan Number 18” through “Scan Number 25”). 
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Figure A-14.  Chronological In-Situ Silicon Raman Peak Wavenumber during Silicon 

Carbide Deposition During the PLD Growth of Silicon Carbide 
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Figure A-15 presents the same data; however, the x-axis is represented in terms of 

temperature rather than scan number.  Using temperature as the x-axis directly compares 

the below SiC growth Raman mean wavenumber to the after SiC growth Raman mean 

wavenumber.  This type of comparison is important since the stress is calculated by 

subtracting the shifted Raman mean wavenumber (after SiC growth) from the reference 

Raman mean wavenumber (before growth). 
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Figure A-15.  In-Situ Silicon Raman Peak Wavenumber as a Function of Thermocouple 

Output Temperature During the PLD Growth of Silicon Carbide 
 

It should be noted that the temperatures referenced in Figure A-15 are thermocouple 

readout temperatures.  As described in Sections 3.5 and 3.7, the thermocouple that 

controls the temperature of the inner heater chamber is not in contact with the substrate.  

Therefore, the temperature of the inner chamber may not equal the substrate surface 

temperature.  This possible discrepancy is discussed in Section A.4.3.  Research has 

shown that the localized mechanical stress of silicon and polysilicon devices can be 
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calculated based on the relative shift in the Stokes Raman mean wavenumber.  The 

measured Stokes Raman mean wavenumber is subtracted from the Stokes Raman mean 

wavenumber measured from bulk/unstressed material.  For a given material, the Stokes 

Raman mean wavenumber varies only due to stress and temperature [3].  Figure 

A-16shows the Stokes Raman mean wavenumber shift due to stress at each temperature, 

assuming that the silicon substrate surface temperatures before, during, and after the laser 

ablation deposition are equal for equivalent thermocouple output reading.  As stated 

previously, the possible discrepancy between silicon substrate surface temperature and 

thermocouple output temperature is discussed in Section A.4.3. 
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Figure A-16.  In-Situ Silicon Raman Peak Wavenumber Shift as a Function of 

Thermocouple Output Temperature 
 

 In silicon the relationship between material stress and the difference in the Stokes 

Raman mean wavenumbers is linear with a 1.88±0.05 rcm-1/GPa slope, where rcm-1 

denotes relative cm-1 [3].  Thus, the maximum stress shown in Figure A-16 is 
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approximately 7 GPa of tensile strain [3], a much higher than expected value.  However, 

without validation of the equivalence between the silicon substrate surface temperature 

and the thermocouple output temperature, no conclusions can be inferred. 

A.4.3 In-situ Raman Spectra Vibrational Temperature Extraction for 

Silicon Carbide 

 The purpose of this experiment was to determine if the temperature of the sample 

could be calculated using Raman spectroscopy.  Although the deposition chamber was 

equipped with an optical pyrometer, the emissivity of the sample being viewed by the 

pyrometer changed during the deposition.  Initially, the pyrometer measured the surface 

temperature of the silicon sample.  However, as the silicon carbide thin film was grown 

on the silicon substrate, the emissivity varied between the emissivity of silicon and the 

emissivity of silicon carbide.  Given a sufficiently long deposition (i.e. a sufficiently thick 

silicon carbide layer), the pyrometer would measure only the temperature based on the 

emissivity of silicon carbide.  However, the deposition durations necessary to grow such 

a sufficiently thick silicon carbide layer (on the order of many centimeters thick) are not 

feasible for PLD, or any other thin film deposition technique.  Thus, the temperature 

measurements output by the optical pyrometer were not valid once the laser ablation 

deposition started.  In addition, the thermocouples that were used to measure the 

temperature of the chamber were not in contact with the silicon substrate.  Due to the 

rotating nature of the substrate during the deposition, a thermocouple could not be made 

to remain in contact with the silicon substrate.  Therefore, an emissivity-independent 

optical temperature measurement technique was needed. 
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 Section A.2.6 described a method to calculate the sample temperature using 

Raman spectroscopy.  In fact, the temperature calculated is a localized aggregate 

temperature of the sample volume that is being illuminated by the excitation source.  This 

is the same volume that produces Raman scattered light.  Section A.3.5 details an optical 

pyrometer system calibration procedure, which was performed.  Following the 

calibration, a silicon substrate was mounted in the PLD chamber.  The temperature was 

ramped from room temperature up to 900°C in approximately 10°C increments.  The 

temperature was controlled using the Eurotherm temperature controller, which measured 

the temperature using a thermocouple that was not in contact with the substrate holder.  

However, the temperature was recorded from the Omega® temperature controller and 

optical pyrometer.  Once each target temperature was reach, no deposition parameter 

changes were made during a five-minute temperature stabilization period.  The Raman 

probe was refocused after every 30°C to 40°C change.  The Raman spectra were recorded 

for every 10°C temperature change.  Section A.2.6 theorized that the symmetric relative 

instrument response function ratio could be used to calculate a temperature response 

function.  It has already been shown with silicon and silicon carbide that the Stokes 

Raman mean wavenumbers down shift to lower wavenumbers with an increase in 

temperature.  If the symmetric relative instrument response function ratio was sufficiently 

constant over the range of wavenumber shifts, then the temperature extraction problem 

would reduce to a simple linear fit, as predicted in Equation (A-15).  If the fit to Equation 

(A-15) showed significant variations, then the symmetric relative instrument response 

function ratio would have to be calculated for each Raman mean wavenumber in the 

range.  Figure A-17 shows the Stokes Raman mean wavenumber shift with temperature, 
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which is linear as expected.  The slope of –0.024 cm-1/°C is useful for estimating the 

uncertainty in both the Stokes and anti-Stokes mean wavenumber.  Thus, the total 

uncertainty in the mean wavenumbers results from both data fitting variance estimates 

and temperature uncertainty estimates.  Figure A-17 displays a linear fit, as described in 

Equation (A-15).  The fit is adequate enough to eliminate the symmetric relative 

instrument response function ratio computation at each temperature. 
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Figure A-17.  Stokes Raman Mean Wavenumber Dependence on Temperature 

 

 The pyrometer system calibration procedure described in Section A.3.5 calibrated 

the pyrometer to with ±2/°C difference from a thermocouple mounted adjacent to the area 

being measured by the pyrometer.  This ±2/°C is comparable to the measurement error of 

the thermocouple measurement system.  Figure A-19 presents a comparison between the 

thermocouple that controls the temperature of the inner heater chamber and the 

pyrometer.  Again the results are within the measurement error of the thermocouple 
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Figure A-18.  Silicon Vibrational Temperature as a Function of Optical Pyrometer Output 

Temperature 
 

measurement systems.  Thus, the non-contact thermocouple measurement method used to 

control the temperature of the silicon substrate by controlling the temperature at a 

predetermined location inside the inner heater chamber is accurate to within ±2ºC. 
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Figure A-19.  Difference between Optical Pyrometer Temperature and Thermocouple 

Temperature. 
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 However, no conclusion about the assumption that the non-contact thermocouple 

adequately estimates the substrate surface temperature can be made during the deposition 

process or after a thin film has been deposited on the surface of the substrate.  During the 

deposition process, the laser plume can and typically does increase the surface 

temperature.  Yet, the non-contact thermocouple is shielded from the laser plume by the 

substrate and may not indicate that a surface temperature increase has occurred.  In 

addition, the substrate is optically heated from both top and bottom.  Therefore, any 

changes in reflectivity caused by growing a thin film on the substrate surface can change 

the substrate surface temperature. 

 Since this section shows that Raman spectroscopy can provide an emissivity-

independent temperature measurement, the technique was applied to the growth of silicon 

carbide on silicon substrates.  The experiment described in Section A.3.4 was repeated.  

However, no Raman spectra were acquired during the laser ablation deposition process.  

Thus, the deposition was not interrupted during the 120 minute laser ablation time.  The 

Raman spectroscopy data mirrored that presented in Figure A-14, Figure A-15, and 

Figure A-16.  However, when the Raman spectra were examined offline and the 

temperatures were calculated, the calculated temperatures were 30-35% lower than the 

thermocouple output temperature.  Since SiC is an excellent thermal conductor, this 

lower calculated silicon temperature was unexpected, which suggested some error in the 

Raman intensity measurements.  Since both the Stokes and anti-Stokes Raman signal 

from the silicon were transmitted through the SiC thin film, it is possible that the SiC thin 

film attenuated the Stokes and anti-Stokes wavelengths differently, which would 

invalidate the intensity ratio-based temperature calculation.  Also, any Fabry-Perot 
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interference modulation of the Stokes and anti-Stokes intensities could invalid the ratio 

measurements.  However, no conclusion about the validity of the temperature 

calculations or the possible sources of error can be made with a means to verify the 

temperature of the silicon under the SiC thin film layer. 

A.4.4 Other Data and Results 

 Several other experiments were conducted other than those described previously.  

The in-situ Raman spectroscopy monitoring of silicon carbide on silicon was conducted 

numerous times and under various deposition conditions.  EDS, XPS, AES, and XRD 

analysis verified that the thin films were polycrystalline silicon carbide.  Section 2.5 lists 

the capabilities and limitations of each of these thin film analysis techniques.  In addition, 

the thickness of the silicon carbide films was varied between 500 nanometers and 3 

micrometers.  No silicon Raman spectra were acquired for SiC thin films with thickness 

greater than 3 µm.  These samples were also measured ex-situ using a Renishaw model 

2000 Raman spectrometer equipped with a Leica microscope and a 514.5 nanometer 

argon ion laser.  The results from the ex-situ Raman spectrometer agree with the in-situ 

Raman spectrometer: no silicon carbide Raman spectra could be acquired. 

 In addition to silicon carbide, yttria stabilized zirconia (YSZ) on both CP1 

polymer substrates and silicon substrates were measured in-situ and ex-situ using Raman 

spectroscopy.  The CP1 polymer substrate fluoresced intolerably.  No Raman signal 

could be acquired.  YSZ thin films between 250 nanometers and 5 micrometers were 

grown on silicon substrates.  The Raman spectra from the silicon substrates were evident 

for all samples within this YSZ film thickness range.  Yet, no Raman spectra 
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corresponding to YSZ was present.  The YSZ on silicon samples were verified using 

XRD analysis to be polycrystalline YSZ. 

A.5 Conclusion 

 Raman spectroscopy has the potential to be employed in-situ to measure the stress 

in the growth of silicon carbide thin films.  However, the silicon carbide thin film is not 

visible when using a green 514.5 or 532 nanometer excitation source.  Thus, the Raman 

spectra from the silicon substrate is acquired and used for analysis.  The silicon Raman 

spectra can be recorded throughout the PLD process.  The silicon Raman mean 

wavenumber shifts with temperature and stress.  However, the difficulty arises when 

attempting to separate the portion of the Raman wavenumber shift due to stress from the 

portion due to temperature change.  Without an accurate estimate of temperature, no 

estimate of the stress in the silicon carbide thin film can be made in-situ.  Yet, given an 

accurate temperature estimate, Raman spectroscopy can be used as an in-situ diagnostic 

sensor for thin film stress.  Raman spectra acquisition times are on the order of a few 

minutes, compared to deposition times on the order of a few hundred minutes.  Thus, 

multiple acquisitions could be made discretely during the PLD growth process and the 

deposition parameters varied to achieve the desired stress at the conclusion of the 

deposition process. 

 In addition to applicability as a stress monitor (if given an accurate temperature 

measurement), Raman spectroscopy can provide an emissivity-independent temperature 

measurement for the top layer of a sample.  Thermocouple-based temperature sensors are 

limited in that contact with the sample is necessary.  Optical pyrometers are limited in 

that the emissivity of the sample must be known.  With spectral intensity calibration 

A-44 



 

(either the full instrument spectral response function ratio or the symmetric instrument 

spectral response function ratio), Raman spectroscopy can provide the temperature using 

simple calculation.  However, the technique is limited to the top layer of material, which 

is not visible for either YSZ or silicon carbide. 

 The dominant hurdle preventing Raman spectroscopy from being fully utilized as 

a stress and temperature sensor for PLD is the inability to “see” the thin films using 

visible Raman spectroscopy with a green excitation source.  Further investigations are 

ongoing to modify the PLD chamber and associated Raman spectroscopy system used in 

this research to change the excitation wavelength from green to ultra violet (UV).  In 

addition to changing the excitation source, the holographic notch filter, spectrometer, and 

CCD must be replaced with components that are compatible with the UV excitation 

source.  Personnel at the Air Force Research Laboratory, Materials and Manufacturing 

Directorate are currently active pursuing these proposed modifications and the associated 

extension of this research to UV Raman spectroscopy for in-situ PLD diagnostic sensors. 
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