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Abstract

The electromagnetic scattering from a gap in a magneto-dielectric coating on an infinite

ground plane is analyzed. In this context, the gap forms a break only in the magneto-dielectric

slab coating while the ground plane is continuous and unbroken. The volume equivalence theorem

is used to convert the gap region to one containing unknown volumetric equivalent electric and

magnetic currents. The equivalent problem then is one of equivalent currents radiating in the

presence of an unbroken grounded magneto-dielectric slab. A Green’s function for this geometry

is developed which consists of two terms: a direct coupling term and correction term to account

for the multiple reflected wave series resulting from the grounded-slab geometry. This bounce

correction term is formulated using periodic array theory and is derived using the Array Scanning

Method (ASM). A set of coupled integral equations based on these equivalent currents is then

solved via the Method of Moments (MoM) using pulse basis and delta testing functions.

The model can represent a gap that is of a general two-dimensional (2D) shape (the gap

is assumed to be infinite in it’s translational direction) and can be filled with an inhomogeneous

material possessing isotropic magnetic and dielectric constitutive properties different from those

of the slab coating. The properties of both the gap filler and the slab coating materials can be

complex in representation of lossy materials. The scattering from the gap is evaluated for plane

wave illumination that is either transverse magnetic (TM) or transverse electric (TE) with respect

to the axis of the gap.

This hybrid Green’s Function/MoM technique is validated using a general-purpose MoM

reference code and measured data obtained on a Radar Cross Section (RCS) measurement range.

The results show that the hybrid method is accurate and more time efficient than methods relying

on existing general-purpose reference codes. The result is a technique in which the 2-D RCS of a

gap, and potential gap filler treatment materials, can be analyzed in a rapid and efficient manner.
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Electromagnetic Scattering from a Gap in a Magneto-Dielectric Coating on an Infinite

Ground Plane

I. Introduction

1.1 Background and Problem Statement

Designers and manufacturers of aerospace vehicles have been concerned with the presence

and effects of gaps or breaks in the surfaces of aerodynamic vehicles for many years. More recently,

engineers designing aerospace vehicles with controlled (and perhaps reduced) radar signatures

have become concerned with the effects of gaps on the scattering of radar energy from a vehicle’s

surface. Of particular interest, is the effect on a vehicle’s radar cross section (RCS) due to a gap or

break in an electromagnetic material coating on the surface of a vehicle.

Gaps in an aircraft’s skin or in electromagnetic material coatings can be required for a num-

ber of reasons. Aerodynamic control surfaces and canopy/fuselage seams are but two examples of

situations creating a gap or break in the vehicle’s skin or in any coating on the surface of the vehicle

in the vicinity of these features. Such situations are notionally depicted in Figure 1.1. Other ex-

amples can be avionics or other equipment access panels, ordnance bay doors, landing gear cover

doors, and fuel nozzle covers. Modern aircraft, even those designed and constructed for reduced

signature levels, can possess numerous breaks and gaps in the aircraft’s skin which can greatly

complicate signature analysis and control efforts.

Improved gap analysis techniques are required for rapid numerical prototyping of potential

gap treatment techniques. Presently available general-purpose (fully three dimensional) compu-

tational electromagnetic (CEM) codes, which are capable of computing the effects of these gaps,

require large amounts of technician time for grid generation and can require significant amounts

of expensive computer time. This is especially true if the finer details of a gap or break are to be

modelled. Most general-purpose CEM codes that can accommodate large targets are designed to

compute the scattering from an entire test fixture or body, not from an isolated surface feature. In

order to study the effects of a surface feature, such as a gap in a material coated region, two runs
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Figure 1.1 Typical gaps in aircraft skin or skin coating

would be necessary with the CEM code, one with the gap present and a second without the gap.

The results from the two runs would then have to be coherently subtracted to isolate the scattering

from the gap itself. In many instances, it may not be necessary to model a gap with a general-

purpose CEM code if a suitable, accurate, and inexpensive tool is available. Thus, the objective of

this research is to develop and validate a new approach to determine the electromagnetic scattering

from gaps in a material coatings and to more efficiently evaluate potential gap treatment solutions.

1.2 Proposed Solution

A new approach of analyzing the electromagnetic scattering caused by gaps in coated ground

planes is proposed based on the concept of a hybrid Green’s function. The hybrid Green’s function

combines a ‘free space’ coupling term with a ‘bounce’ coupling correction term. The free space

component is the familiar free space Green’s function radiating in a material medium having the

same constitutive properties as those of the grounded material coating of interest. The bounce

correction term is derived from a multiple reflected wave series, similar to an example in Collin [1:

Section 2.9], and takes into account the geometry of the grounded material coating. This hybrid

Green’s function is used in an integral equation formulation which is then solved approximately by

the method of moments (MoM) in a manner similar to cases demonstrated by Newman [2, 3]. For
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the purpose of studying specifically the scattering created by the presence of a gap in a material

coated ground plane, it is anticipated that a special-purpose code based on this hybrid Green’s

function approach will provide results more rapidly than presently available CEM codes.

In order to prove this concept this project will consider the scattering from a gap in the coat-

ing of a material coated ground plane. Since the impact of this gap on the far zone scattered field

(or RCS) is the primary observable of interest, we make the initial presumption that the required

information can be obtained from the decomposition of the scattered fields into transverse electric

(TE) and transverse magnetic (TM) components. This means a full three dimensional analysis is

not required and we can take advantage of the simplifications of analyzing two-dimensional gap

geometries. Since most materials of interest are not simple dielectrics but exhibit loss and magnetic

permeability, the materials to be analyzed will be lossy magneto-dielectrics. Although anisotropic

and ferrite materials are often encountered in reduced observables applications, they are seldom, if

ever, employed in or near situations such as those suggested in Figure 1.1. Consequently, we will

examine only homogeneous, isotropic materials in which the relative magnetic permeability can be

represented as a scalar (such as in the carbonyl iron type materials, [36: Section 8.6]). Analytical

models for the TM and TE scattering cases are derived using the hybrid Green’s functions and the

material constitutive properties of interest. Based on these analytical results, computer codes are

developed for each polarization case. These codes are validated against existing two-dimensional

CEM code predictions and, where applicable, against measured reference data.

1.3 Related Work

The engineering and scientific literature contains numerous examples of attempts to model

the electromagnetic scattering from various types of surface features. Works related to the scat-

tering from gaps or cracks in surfaces are not numerous but can be classified into essentially two

categories: gaps or troughs in perfectly electric conducting (PEC) ground planes and gaps, breaks,

or discontinuities in materials grounded by PEC ground planes. The distinction between these two

categories is shown in Figure 1.2.

More frequently found in the literature are examples of electromagnetic scattering problems

analyzed using the hybrid Green’s function technique. The remainder of this section will address
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these areas, summarize the available references, and comment on their applicability to the research

problem posed here.

1.3.1 Gaps in Ground Planes. Researchers studying the electromagnetic scattering from

gaps or indentations in perfectly conducting ground planes form the bulk of the literature in this

area. In the mid-1980’s, the Wright Research and Development Center Signature Technology

Directorate commissioned a research study effort that came to be known as the “Surface Waves

and Gaps” (SWAG) study [4]. SWAG examined the scattering from two and three dimensional

surface features that included gaps, impedance discontinuities, metal-dielectric joins, and surface

discontinuities (e.g., steps). While SWAG looked at a number of interesting scenarios in the general

surface feature problem, the scattering from a gap in a material coated ground plane was not one of

them. Interestingly, SWAG also used in some analytical formulations, a hybrid Green’s function to

take into account the presence of an infinite ground plane. This Green’s function with a “reflection”

or “image” correction term is probably the simplest and most familiar case of a hybrid Green’s

function, having the form

G = Gfs + Gimage

where Gfs is the free space component and Gimage is the bounce or “image” correction term. The

presence of the infinite ground plane is represented by the “images” of the various sources existent

in the problem, and is incorporated into the analysis via the Green’s function [18: Section 12.8].

Other works published in the engineering literature include various solutions of an aperture

surface integral equation, where the fields in the gap area (or the cavity behind the gap aperture)

are modelled using either surface integral equations or finite element techniques [5, 6, 7, 8]. As

in the SWAG study, these papers also use the reflection or image Green’s function in the moment
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method or boundary element portion of the formulation to take into account the presence of the

infinite ground plane. This suggests that the term “ground plane Green’s function” is appropriate

for describing work in which such a reflection or image corrected Green’s function term is used to

incorporate the infinite ground plane geometry.

An interesting departure from the other works discussed so far is the work of Bindiganavale

and Volakis [9] where an impedance boundary condition (IBC) approximation is used to simulate

the presence of the gap and any materials filling the cavity behind the gap. They then use a ground

plane Green’s function in a surface integral equation formulation to analyze the scattering from the

gap. For narrow gaps (gaps of aperture width kow << 1, where w is the width of the gap and ko

is the free space propagation constant), the equivalent currents in the aperture are approximated to

simplify and expedite the computations. They validate their analysis with comparisons to Moore

and Ling [10] and Aberle [11] by extending the IBC approximation to the conducting ground plane

in order to simulate material coated ground planes.

1.3.2 Gaps in Material Coated Ground Planes. The works of Moore and Ling [10] and

Aberle [11] cited above represent examples in the literature of attempts to study and analyze gaps

in material coated ground planes such as in the geometry shown in Figure 2b. The work in [10] is

interesting in that a two-dimensional gap geometry similar to that proposed for study in this effort

was accomplished using a boundary integral equation (moment method) formulation with semi-

infinite (physical) and sub-domain basis functions. The semi-infinite basis functions were used to

represent the surface wave and physical optics fields along the boundary of the dielectric coatings

on each side of (but some distance away from) the gap while the sub-domain basis functions were

used to represent the fields in the vicinity of the gap. This approach could provide an analyst with

the flexibility of modelling a gap in a material coating in which the thickness of the coatings on

either side of the gap is different. This could easily occur in a number of situations for an aircraft

structure and such a tool could be very useful.

However, Moore and Ling do not pursue this aspect of the work in [10]. Instead, they intend

to devise a technique whereby they can extract a numerical diffraction coefficient for the gap. This

numerical diffraction coefficient could then be used in high frequency codes (e.g., a code based

on the Uniform Theory of Diffraction) to approximate the presence of gaps in large (but finite)
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scattering structures. Furthermore, the formulation used by Moore and Ling does not readily lend

itself to the design engineer’s task of finding a treatment solution for such a gap. The boundary

integral formulation breaks the geometry of the problem into three homogeneous regions: one in

each of the two semi-infinite dielectric regions and one in the combined gap and half space above

the coating as shown in Figure 1.3. The gap is assumed to be free space with constitutive properties
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Figure 1.3 General gap geometry of Moore and Ling, [10]

µ0, ε0 as shown in Figure 2 of [10]. Thus, the technique of [10] would not be suitable for such gap

filler treatment design or study purposes.

Moore and Ling also empirically investigated the TE-polarized scattering from a gap in a

dielectric coated conducting plate with two French researchers [12]. The goal of this work was to

investigate techniques for extracting target characteristics for target identification purposes. Con-

sequently, this paper describes only the experimental setup and the Fourier transform techniques

employed to extract scattering center information from the small target tested. Broadband measure-

ments and signal processing techniques (data windowing and wavelet transform) form the bulk of

the technical discussion content of this particular paper.

Aberle [11] uses a hybrid finite element (FE) technique to analyze a two-dimensional cavity-

backed slot configuration in which the ground plane may also have a material coating. The gap

problem becomes a special case of this geometry if the cavity is the same width as the slot. The

hybrid FE method, in which the cavity portion is represented by discretized partial differential

equations and the aperture/boundary region is represented by a boundary integral equation, is an

excellent technique to use for this problem. This approach is rapidly coming into widespread use

for large multi-region problems. The motivation for Aberle’s research is to address antenna radia-
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tion and scattering problems for complex structures containing cavity-backed slots and embedded

striplines. For very complex structures, Aberle’s approach would be the most highly recommended.

However, as Aberle notes for a homogeneously filled cavity, a moment method (all integral equa-

tion) approach could be more efficient. We believe this to be the case also, and we expect that by

using an integral equation formulation far fewer unknowns (resulting in a much smaller, though

dense, matrix) will be required to analyze the gap region and should allow for more expeditious

run times.

1.3.3 Hybrid Moment Method / Green’s Function Techniques. Numerous papers and

texts can be found that discuss at some length the technique referred to as a hybrid Green’s function

technique. Newman may actually have coined the term “hybrid MM/Green’s function technique”

and has been prolific in this area applying the technique to several problems in demonstration of

its utility [2, 3, 4]. Simply stated, the hybrid MM/Green’s function technique replaces the free

space Green’s function in a moment method application with a Green’s function developed for a

“canonical” scattering object. As stated earlier, the reflection or image Green’s function developed

for analyzing objects on or near a perfectly conducting ground plane is an example of a hybrid

Green’s function for the ground plane. This ground plane Green’s function has been used by many

workers to analyze various problems [4, 5, 6, 7, 8] as well as many others not specifically cited

here.

The hybrid MM/Green’s function technique is dependent; however, on the availability of

either a closed form or readily calculable Green’s function expression for the scattering object

in a scattering problem. Usually this is the larger or largest scattering object in the scattering

problem as demonstrated by the ground plane Green’s function examples. In [2, 13], Newman

demonstrates the technique by replacing a half plane by an appropriate Green’s function in the

moment method procedure. In this manner, the scattered fields from the cylinders are determined

“in the presence of the half plane.’́ This avoids the need to determine currents on the half plane, as

would be necessary in a standard moment method application. Obviously, for a problem geometry

that includes an infinite structure, the standard moment method procedure cannot be applied since

the resulting impedance matrix would be of doubly infinite dimension.
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In [3], Newman calculates the scattering from a curved PEC strip in the presence of a PEC

circular cylinder with a hybrid MM/Green’s function. This geometry is shown in Figure 1.4.
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Figure 1.4 Geometry of Cylinder and Strip from Newman [3]

By incorporating the exact eigenfunction cylinder Green’s function into the integral equation

for the unknown currents on the curved strip, the currents on the strip are calculated “in the pres-

ence of the circular cylinder.’́ Thus, the need to solve for the unknown currents on the cylinder

itself is avoided. As an example, in a standard moment method application using free space Green’s

functions, if there are N1 unknowns on the strip and N2 unknowns on the cylinder, the resulting

impedance matrix would be of dimension (N1 + N2) x (N1 + N2). In the hybrid MM/Green’s

function technique, the unknowns on the cylinder are accounted for by the cylinder Green’s func-

tion such that the resulting impedance matrix is of dimension N1 x N1. For a large cylinder, the

benefit of using this technique is readily apparent, especially since the matrix solve time can domi-

nate run time in a moment method computation. The penalty one pays for this advantage is that the

impedance matrix elements are now computed with the more complicated cylinder Green’s func-

tion instead of the comparatively simple free space Green’s function. One thus trades increased

matrix fill time for decreased matrix solve time. Usually this trade is advantageous to the potential

users of such a special purpose electromagnetic scattering code.

A final example of a hybrid Green’s function approach is the work of Michalski, Nevels,

and Zheng [14]. These authors analyze a two dimensional arbitrary strip in the presence of a

circular cylinder. The motivation for their work is to study the relative merits of a Lorentz gauge

versus a Coulomb gauge formulation for TE polarization. To accomplish this, they decompose the
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Green’s function into solenoidal and lamellar (non-solenoidal) components formulated under the

different gauge conditions and examine the resulting matrix elements for the types of singularities

that ensue. This paper is chiefly of interest because it demonstrates that there are numerous ways

of not only decomposing a Green’s function for a particular problem but also showing that Green’s

functions may assume different functional forms depending on the underlying assumptions and

electromagnetic formulations.

1.4 Overview of Solution Approach

To illustrate the proposed hybrid MM/Green’s function technique to be used in this disserta-

tion, consider the two-dimensional problem geometry shown in Figure 1.5. In this figure we define

our coordinate system such that the origin is located at the lower left corner of the gap region with

the x − z plane being that of the infinite PEC ground plane.
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Figure 1.5 Two-dimensional gap geometry

1.4.1 Solution Approach Summary. The mathematical method to be used in this disser-

tation is that of finding integral equations which, when solved approximately through use of the

method of moments, yield the volumetric equivalent electric and magnetic currents in the region

of the gap. With the equivalent currents found, the two dimensional radar cross section (or echo

width) can be calculated.

The development of the hybrid MM/Green’s function method to calculate the echo width of

the gap in the material coating is based upon the following physical reasoning. First, consider all

two-dimensional space to be filled with a material having the same constitutive properties as those
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of the coating material in Figure 1.5, possessing constitutive properties εr, µr. This is notionally

depicted in Figure 1.6.

PSfrag replacements

Homogeneous magneto-dielectric space, εr, µr

Figure 1.6 2-D space filled with material having ε = εr, µ = µr

The gap region is then extracted from this space using the volume equivalence principle [15:

Section 7.7] by defining equivalent volume electric and magnetic currents that occupy the space

corresponding to the gap region. These equivalent currents will have the form

J̄ = jω(εg − εr)ĒT , and M̄ = jω(µg − µr)H̄T (1.1)

where J̄ , and M̄ are the equivalent electric and magnetic volume equivalent currents and ĒT , H̄T

are the total electric and magnetic fields in the region of the gap. These volume equivalent currents

radiate fields ĒJ , H̄J due to equivalent current J̄ and ĒM , H̄M due to equivalent current M̄ .

The total fields ĒT , H̄T are composed of these fields radiated by the equivalent currents and the

incident fields Ēi, H̄ i in the presence of the coated ground plane geometry. In the gap region, we

may now have a material possessing constitutive properties εg, µg representing a gap filler material.

This situation is depicted in Figure 1.7. An empty gap (or air gap) would be represented by setting
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Figure 1.7 Equivalence extraction of gap region having ε = εg, µ = µg

the gap region’s constitutive properties to be εg = εo and µg = µo.

Using this equivalence representation, expressions for the total fields can be written as

ĒT =







Ēi + ĒJ + ĒM all space, including the gap

J̄
jω(εg−εr) in the gap

(1.2)

H̄T =







H̄ i + H̄J + H̄M all space, including the gap

M̄
jω(µg−µr) in the gap

(1.3)

These are coupled integral equations for the volume equivalent currents J̄ and M̄ since the fields

ĒJ , H̄J and ĒM , H̄M can be written as integrals over the gap region of J̄ or M̄ respectively,

weighted by the appropriate Green’s function. These expressions are derived by many authors

such as [1, 2, 16]. In dyadic notation, and for the geometry of the present problem, they become

ĒJ = −jωµr

∫∫

Vgap

Ge · J̄ dVgap (1.4)
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H̄J =

∫∫

Vgap

Gm · J̄ dVgap (1.5)

H̄M = −jωεr

∫∫

Vgap

Ge · M̄ dVgap (1.6)

ĒM = −
∫∫

Vgap

Gm · M̄ dVgap (1.7)

Here, Ge and Gm are, respectively, the electric and magnetic dyadic Green’s functions for the

coated ground plane.

The electric and magnetic dyadic Green’s functions, as defined by [1] and [16], are related

to the scalar Green’s function G by the relations

Ge =

(

I +
∇∇
k2

)

G (1.8)

Gm = I ×∇G (1.9)

where I is the idem-factor or identity dyadic and k is the propagation constant of the magneto-

dielectric coating material. The development of this scalar Green’s function G for the problem

geometry in this dissertation is the subject of the next chapter. At this point, we say only that

through the Green’s function, the problem space is altered to its final form as shown in Figure 1.5,

placing a magneto-dielectric - air interface at the top of the gap region and a perfectly conducting

ground plane at the bottom.

Once the form of this hybrid scalar Green’s function G is determined, the solution to the

problem proceeds in a straightforward manner. We will closely follow the Newman’s approach

in [2, 13]. For the TM excitation case the incident electric field is polarized in the ẑ direction

only. Thus, all J̄ equivalent currents are ẑ polarized while the M̄ equivalent currents are x̂ and

ŷ polarized. The vector equations (1.2) and (1.3) then reduce to the following coupled scalar

equations valid in the region of the gap:

H i
x = −HMx

x − H
My
x − HJz

x +
Mx

jω(µg − µr)
(1.10)

H i
y = −HMx

y − H
My
y − HJz

y +
My

jω(µg − µr)
(1.11)
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Ei
z = −EMx

z − E
My
z − EJz

z +
Jz

jω(εg − εr)
(1.12)

In equations (1.10) – (1.12), the superscripts indicate the source of the field components and the

subscripts indicate the orientation of the field component. For example, E
My
z is the ẑ oriented

electric field resulting from the ŷ oriented magnetic volume equivalent current. The left hand sides

are simply the indicated components of the incident field.

For the TE excitation case, we have the dual to that above in which the incident magnetic

field is ẑ polarized. This produces M̄ equivalent currents which are purely ẑ polarized and J̄

equivalent currents which are x̂ and ŷ polarized. For this case, the vector equations (1.2) and (1.3)

become the following coupled scalar equations valid in the region of the gap:

Ei
x = −EJx

x − E
Jy
x − EMz

x +
Jx

jω(εg − εr)
(1.13)

Ei
y = −EJx

y − E
Jy
y − EMz

y +
Jy

jω(εg − εr)
(1.14)

H i
z = −HJx

z − H
Jy
z − HMz

z +
Mz

jω(µg − µr)
(1.15)

A pulse basis and point matching moment method solution is proposed for these sets of equa-

tions for both the TM and TE polarization cases. We can solve these equations using a piecewise-

linear cellular discretization of the gap region. For proof of concept purposes we shall restrict the

gap region cross section to trapezoidal shapes such that the gap region can be gridded from within

the computer program and an external grid generation software package will not be needed. The

gap region is then segmented into the smaller trapezoidal cells as shown in Figure 1.8.

The moment method solution then proceeds by expanding the unknown volume equivalent

currents in a series of known ‘pulse’ basis functions weighted by unknown expansion coefficients.

The pulse basis in each cell is defined by the boundaries of the cell and the expansion coefficients

are defined at the centroid of the cell. We then have for these currents

J̄ = ẑJz = ẑ
N
∑

n=1

cnP J
n (1.16)
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Figure 1.8 Discretization of gap region for Moment Method solution showing domain of the
equivalent currents.

and

M̄ = x̂Mx + ŷMy = x̂
N
∑

n=1

dxnPM
n + ŷ

N
∑

n=1

dynPM
n (1.17)

where P J,M
n are the pulse basis functions and cn, d(x,y)n are the unknown coefficients for each

cell Rn. At this point, it becomes apparent that for each of the N cells comprising the gap region,

there can be N , 2N , or 3N unknowns in our moment method matrix equation, depending on the

properties of the magneto-dielectric slab coating. If we define An as the area of each gap cell Rn,

the pulse expansion functions can be defined as

P J
n =







1/An within gap cell Rn

0 otherwise
(1.18)

for the electric volume equivalent currents, and

PM
n =







1/An within gap cell Rn

0 otherwise
(1.19)

for the magnetic volume equivalent currents, where the superscript J or M designates the pulse

function as representing either the electric or magnetic equivalent current, respectively.

For the TE polarization case the resultant impedance matrix is derived from equations (1.13)

– (1.15), the development of which is dual to that for the TM polarization case. Again, for a general

magneto-dielectric slab coating material, a 3N × 3N system results from segmentation of the gap
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region into N cells. For this case, we would have the currents expanded as

M̄ = ẑMz = ẑ

N
∑

n=1

dnPM
n (1.20)

and

J̄ = x̂Jx + ŷJy = x̂
N
∑

n=1

cxnP J
n + ŷ

N
∑

n=1

cynP J
n (1.21)

The definitions of the variables in these expressions are identical to those in equations (1.16) and

(1.17). Other than this change in the polarization orientation of the unknown currents, the TE

problem is identical in procedure to the TM case. With the notable exception of the fact that we

will be retaining the PEC ground plane, instead of having a perfect magnetic conducting ground

plane for TE polarization, the TE problem is the electromagnetic dual of the TM problem, [15:

Chapter 7]. Thus, no further development of the TE case is needed at this point.

1.5 Dissertation Summary

The remaining chapters in this dissertation take the general procedure outlined above and

apply it to the problem depicted in Figure 1.5. Chapter 2 begins by deriving the form of the scalar

and dyadic Green’s functions for the grounded magneto-dielectric slab problem. Next, the chapter

formulates the complex impedance matrix for the TM and TE polarization cases. The chapter

continues with a discussion of how the excitation vector entries are computed and how the solution

vector entries are used to compute the far-field radiation pattern for the scattering from the gap.

Chapter 3 presents the numerical implementation of the theory presented in Chapter 2 beginning

with an examination of a critical aspect of the hybrid Green’s function developed for this problem.

Chapter 4 examines the validity of the approach taken in this dissertation by comparing results to

those from reference computer codes and RCS range scattering measurements. Finally, Chapter

5 summarizes the dissertation and suggests areas for further research and improvement of the

techniques developed here.
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II. Theoretical Development

2.1 Scalar Green’s Function for the Coated Conducting Plane

For a multiple-region problem such as that depicted in Figure 1.5, the Green’s function is

dependent upon the spatial location of the ‘source’ and ‘receiver’ position vectors. To determine

the unknown volume equivalent currents, a Green’s function formulated for fields radiated and

observed entirely within the material slab region (actually, both source and receiver in the ‘gap’

region) must be used. We call this an ‘internal’ Green’s function valid only in the region 0 ≤ y ≤ d.

An ‘external’ Green’s function must be used for the region y > d. The external Green’s function

is formulated for a source located inside the gap region and a receiver located in the exterior, free

space region. This Green’s function must be used to calculate the echo width of the gap, once the

equivalent currents have been determined via the internal Green’s function.

The internal Green’s function is composed of two distinct components: a ‘direct’ coupling

term and a ‘bounce’ correction term. In our case, the direct coupling term is related to the mutual

impedance between the source and receiver due to the direct path, line of sight coupling between

these elements in an infinite magneto-dielectric medium. The bounce correction term provides

an additive correction to the direct coupling term that is required by the presence of the coated

conducting plane geometry with the infinite ground plane below the magneto-dielectric medium

and material/free space (air) interface above. The bounce correction term thus provides the amount

of correction needed to properly adjust the amplitude and phase of the coupling between the source

and receiver in the presence of this slab-coated conducting ground plane geometry.

The direct coupling term for the internal Green’s function is given by the familiar two-

dimensional Green’s function term found in many sources such as [15, 17, 18]1,

Gdc = − j

4
H(2)

o (k|ρ̄ − ρ̄′|) (2.1)

where k is the complex propagation constant of the magneto-dielectric medium, ρ̄ and ρ̄′ are the

position vectors of the receiver and source locations, respectively, and H
(2)
o (·) is the zeroth order

Hankel function of the second kind. The argument of the Hankel function, k|ρ̄ − ρ̄′|, takes on

1In this dissertation we use the e
jωt time convention. The factor e

jωt is assumed and suppressed throughout.
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the value k
√

(x − x′)2 + (y − y′)2, where (x, y) and (x′, y′) are the receiver and source locations

respectively. For the TM polarization case, we can interpret this as an electric line source radiating

in the infinite magneto-dielectric medium. For the TE polarization case, it is interpreted as a

magnetic line source. We note that since the medium in which this term is defined is in general

lossy, k is in general complex and the subroutines used in the computer codes must be able to

compute the Hankel function for complex-valued arguments.

The slab-coated conducting ground plane geometry provides two reflection surfaces: the

conducting ground plane and the material/free space interface. These give rise to the multiple

reflected wave series nature of the bounce correction term as will be shown now for the internal

Green’s function Gint. Figure 2.1 depicts the four fundamental bounce path contributions to the

multiple reflected wave series. The source and receiver modes for the four cases shown are taken

1 2 3 4

PSfrag replacements

PEC ground plane

magneto-dielectric, εr , µr

free space, εo, µo

ŷ

x̂

source

receiver

slab/free space interface at
y = d

Figure 2.1 Four fundamental bounce modes within the slab

to be located within the gap region shown in Figure 1.8. The source is interpreted to be a two-

dimensional line source element radiating within the region of the gap and the receiver is a line

element located at the point within the gap region at which the field is sampled. Higher order

bounce paths are composed of sums of multiples of these four basic paths resulting in an infinite

geometric series of these four basic paths representing all possible bounce path contributions [15:

Section 5.5], [19: Section 5.6]. We will use this approach to construct a mathematical expression

for the bounce correction term of the slab-coated conducting ground plane Green’s function. More

will be said later about this geometric series representation of the multiple bounce terms.

2-2



Recall the line source located within the material region shown in Figure 1.5. Now, instead

of a single line source, consider an infinite periodic array of ẑ-directed line sources with inter-

element spacing Dx as shown in Figure 2.2. We use this periodic array of line source elements to

PSfrag replacements

φ1

Dx

∞∞

ŷ

x̂

d

PEC ground plane

free space, εo, µo

magneto-dielectric, εr , µr

sx1
= sin(φ1)

array normal array scan direction

center element

Figure 2.2 Infinite array of line sources within the slab

construct the bounce correction terms of the internal Green’s function through a technique called

the ‘Array Scanning Method’ (ASM) [21]. The ASM was originally developed at The Ohio State

University for treating certain classes of problems using periodic array theory. A chief advantage

of this technique is that it allows one to analyze half-space problems using a method alternative

to Sommerfeld integral techniques. The basic difference is that the plane wave expansion in the

ASM is performed in a discrete mode fashion rather than by a continuous variable approach as in

the traditional Sommerfeld formulation (see [28: Chapter 5]). The ASM results in an infinite sum

of plane wave expansion terms, each containing a definite integral over the ‘scan’ variable, rather

than a single infinite integral expression. Using the Poisson sum formula, the infinite series within

the ASM integral can be transformed into an exponentially convergent sum requiring that only a

few terms be evaluated to achieve convergence. The Poisson sum formula transformation of the

spatial domain expression into the spectral domain is summarized in Appendix A and the ASM

development of the spectral domain integrals is summarized in Appendix B.

The currents on the line source elements in the array of Figure 2.2 are identical in amplitude

but vary in phase according to a direction cosine phase steering parameter sx1 . The radiation from

an infinite array in a homogeneous magneto-dielectric medium may be expressed as the spatial
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sum

Garray, homo = − j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx − (x − x′))2 + (y − y′)2
)

ejkmDxsx1 (2.2)

Equation (2.2) represents an infinite sum of line sources, each represented by an expression

analogous to Equation (2.1), but with the additional spatial separation along the x coordinate and

the corresponding phase progression. Through the Poisson sum formula [19, 20], this spatial sum

can be converted into a spectral sum expressed as

Garray, homo = − j

2kDx

∞
∑

n=−∞

e−jk(ρ̄−ρ̄′)·r̂1±

ry1

(2.3)

where contained in the exponential term is the representation for the plane wave modes that com-

prise the spectral expansion. We discuss next the meaning of the various spectral domain variables.

Additional details of the spatial domain, Equation (2.2), to spectral domain, Equation (2.3), trans-

formation are presented in Appendix A.

Introducing variables and notation unique to Munk’s approach to periodic array theory [19,

22, 23], in expression (2.3), we have

r̂1± = x̂rx1 ± ŷry1 (2.4)

which is the spectral domain plane wave propagation-direction unit vector in media ‘1’ (the slab

coating material). The factors

rx1 =
Re(k)

k
(sx1 +

nλ1

Dx
) (2.5)

and

ry1 =
√

1 − r2
x1

(2.6)

are, respectively, the x and y components of this unit vector. In Equation (2.5), n is the spectral

domain plane wave mode number. The factor Re(k)
k in Equation (2.5) arises from the fact that

we anticipate dealing with lossy materials. Written this way, rx1 remains purely real if the media

in our problem are lossless. An alternate but equivalent form for rx1 , also applicable to the case

of lossy media, can be found in [21]. As was mentioned earlier, sx1 is a direction cosine phase
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steering parameter and is related as shown to the x̂-directed spectral domain propagation direction

term rx1 .

The ŷ-directed spectral domain propagation direction term, ry1 , is chosen to normalize the

propagation direction unit vector r̂1± , and the choice of sign for ±ŷry1 is made depending upon

which side of the array the field point is located. This choice depends solely on the relative lo-

cations of the source and field points and then only determined by the ŷ-directed spatial variables

(y, y′). When employed in the context of multiple planar arrays and dielectric layers, [19], the

±ŷry1 takes on values −ŷry1 if the field point is in the −ŷ direction relative to the source location

of interest, and +ŷry1 if the field point is in the +ŷ direction relative to the source location. In our

problem geometry, we have a PEC ground plane in the −ŷ direction for all ASM arrays that may

be generated in the slab material region. This ground plane will reflect all −ŷ-directed plane wave

modes resulting in a net +ŷ direction of propagation for the entire set of plane wave mode terms

arising from Equation (2.3). This enables us to simplify the y component of the exponential in

(2.3) by noting that ±(y− y′) ry1 = |y− y′|ry1 . This functional dependence can be likened to that

of a one-dimensional scalar Green’s function for a Helmholtz operator which satisfies radiation

conditions at ±∞ of its spatial variable [24].

Equation (2.3) is an infinite spectral sum of plane wave modes that is fully equivalent to the

spatial sum expression in Equation (2.2). As higher order modes are evaluated (as |n| increases in

Equation (2.5), ry1 is seen to become imaginary when |rx1 | > 1. When this occurs, we choose

the root of ry1 that is in keeping with the radiation condition, i.e., ry1 = −j
√

r2
x1

− 1. For cases

where k is complex, rx1 is complex for all values of n. When this occurs, ry1 is also complex for

all values of n, and we choose the roots of ry1 such that the imaginary parts are negative. In either

case, as |n| increases, the negative imaginary part of ry1 increases, resulting in exponential decay

in (2.3). With this exponential decay, only a few terms (values of n) in (2.3) need to be evaluated

beyond the central (n = 0) term before convergence of the summation is achieved.

Using methods developed by Munk [19], the radiation of an array within a stratified medium

can be written as the radiation of the array in a homogeneous region weighted by a ‘T-factor.’ It is

this T-factor that accounts for the slab coated conducting ground plane geometry by incorporating

the bounce path terms from Figure 2.1 into the infinite series expression in Equation (2.3). Thus,
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the Green’s function for the array in a homogeneous medium is expressed simply as

Garray, slab = Garray, homo · T (2.7)

For the coated conducting ground plane geometry, the T-factor for the internal Green’s function

case is

T =
Γ10e

−j2kdry1

(

ejk(y+y′)ry1 + 2Γ12 cos[k(y − y′)ry1 ]
)

+ Γ12e
−jk(y+y′)ry1

1 − Γ12Γ10e
−j2kdry1

(2.8)

where Γ10 is the Fresnel reflection coefficient at the material/free space interface for a wave in-

cident from the slab coating material side and Γ12 is the reflection coefficient at the conducting

ground plane. The T-factor is seen to contain four propagation path terms in its numerator and

the geometric series factor in its denominator. The four propagation path terms correspond to the

four fundamental bounce paths indicated in Figure 2.2 which are readily identified. Bounce mode

‘1’ corresponds to the first exponential term, the paths ‘2’ and ‘3’ are combined into the cosine

term, and path ‘4’ corresponds to the Γ12e
−jk(y+y′)ry1 . We will later modify this expression for

the T-factor since the reflection coefficients are slightly different for the TM and TE polarization

cases. Finally, we note the T-factor has a functional dependence only on the spatial variables y

and y′ and is independent of the spatial variable x. It is also dependent on the spectral plane wave

mode number n and scan angle parameter sx1 through the ry1 factor.

An overview of the ASM is given in Appendix B and the reader is referred there for details

regarding the development of the method. Using the resulting ASM integral expression developed

in Appendix B, we choose an interelement spacing for our 2-D line source array of Dx = λ1/2,

(where λ1 is the electromagnetic wavelength in the slab coating material) as this choice minimizes

the number of propagating plane wave modes2 and leads to limits of integration in the ASM integral

that correspond to “scanning the array” from −90◦ to +90◦. This choice also influences the spectral

domain propagation direction factors rx1 and ry1 since now we see that Equation (2.5) becomes

rx1 = Re(k)
k (sx1 +2n). The ASM expression for the bounce correction term of the internal Green’s

2Propagating modes beyond the central (n = 0) mode term, are referred to as grating lobes and are familiar in the
context of array antennas. They are undesirable in this application since their presence slows convergence of the plane
wave expansion summations.
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function becomes

Gbounce =
1

2

∫ 1

−1
Garray, slab dsx1 (2.9)

or, upon inserting (2.3) into (2.6), and noting that Dx = π/Re(k).

Gbounce = −jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞

e−jk(ρ̄−ρ̄′)·r̂1±

ry1

T dsx1 (2.10)

This term is then added to the direct coupling term in Equation (2.1) to become the scalar Green’s

function for the slab-coated ground plane geometry of Figure 1.5. We will refer to it as our ‘canoni-

cal’ Green’s function term since, as we shall see in the next section, it is used to generate additional

Green’s function component terms for problems involving transverse equivalent current sources.

Finally, we point out here that the integration variable in the ASM bounce correction term, sx1 ,

is purely real. That the integration of the ASM integral is forced to occur along the real axis of

the scan angle variable of integration is an important distinction between the ASM approach and

traditional methods employing a Sommerfeld integral.

2.2 Dyadic Green’s Function for the Coated Conducting Plane

We next apply Equations (1.8) and (1.9) to the sum of Equations (2.1) and (2.10) in order to

arrive at the expressions for the various Green’s function terms needed to compute the scattering

from a gap in a general magneto-dielectric coating. Repeating these equations here for conve-

nience, we have

Ge =

(

I +
∇∇
k2

)

G (2.11)

Gm = I ×∇G (2.12)

where G is our canonical Green’s function, the sum of the scalar direct coupling and bounce

correction Green’s function terms

G = − j

4
H(2)

o (k|ρ̄ − ρ̄′|) − jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞

e−jk(ρ̄−ρ̄′)·r̂1±

ry1

T dsx1 (2.13)

There are several ways one may choose to explicitly represent dyadic Green’s functions. In

this dissertation, we choose to display them as matrices for the purpose of clarity. As such, each
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block or entry of the matrix will represent the Green’s function of a particular field orientation (at

an observation or field point) resulting from a particular source orientation. In this matrix format

the Equations (2.11) and (2.12), when expanded, become

Ge =











1 + 1
k2

∂2

∂x2
1
k2

∂2

∂x∂y
1
k2

∂2

∂x∂z

1
k2

∂2

∂y∂x 1 + 1
k2

∂2

∂y2
1
k2

∂2

∂y∂z

1
k2

∂2

∂z∂x
1
k2

∂2

∂z∂y 1 + 1
k2

∂2

∂z2











G (2.14)

Gm =











0 − ∂
∂z

∂
∂y

∂
∂z 0 − ∂

∂x

− ∂
∂y

∂
∂x 0











G (2.15)

Since in this dissertation we are restricting ourselves to working in two-dimensional space (es-

sentially the x−y plane) we can simplify these dyadic expressions by noting that all geometric

structures and fields are invariant along the ẑ-direction. Thus any term containing a ∂/∂z term

is zero. The two matrix expressions can then be simplified and combined to provide the general

Green’s function matrix expression3

G =











1 + 1
k2

∂2

∂x2
1
k2

∂2

∂x∂y
∂
∂y

1
k2

∂2

∂y∂x 1 + 1
k2

∂2

∂y2 − ∂
∂x

− ∂
∂y

∂
∂x 1











G (2.16)

The differential operator matrix expression now ‘operates’ on the canonical Green’s function to

produce the terms in the impedance matrix. We represent this step by the following form of the

matrix expression.

G =











Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz











(2.17)

3We can do this here because we have restricted ourselves to the 2-D case. In the general 3-D case, or if we were
considering the 2-D oblique incidence case, we would not be able to combine the electric and magnetic dyadic Green’s
Functions matrices in this manner.
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We can now explicitly identify each term in the matrix as,

Gxx = G + 1
k2

∂2G
∂x2 Gxy = 1

k2
∂2G
∂x∂y Gxz = ∂G

∂y

Gyx = 1
k2

∂2G
∂y∂x Gyy = G + 1

k2
∂2G
∂y2 Gyz = −∂G

∂x

Gzx = −∂G
∂y Gzy = ∂G

∂x Gzz = G

At this point, we look forward a bit and note that each term in this matrix of Green’s func-

tion expressions will become, in general, a submatrix block of the overall impedance matrix. In

our development, we will have occasion to refer to specific blocks of the matrix to facilitate discus-

sions specific to each block. In keeping with conventional notation, we designate block 1 as that

corresponding to Gxx, block 2 corresponding to Gxy, block 3 corresponding to Gxz , and so forth.

As mentioned above, each block of the Green’s function matrix represents the Green’s function re-

lating a certain field orientation due to a specific source orientation. The notation used in Equation

(2.17) will become clear as we apply it in the following sections to the specific cases of TM and

TE polarization.

2.3 Expressions Applied to TM Polarization Case

2.3.1 Form of the Dyadic Green’s Function for TM Polarization. Recall from Equations

(1.4) - (1.7) that the electric and magnetic field quantities are related to the various equivalent

current sources by

ĒJ = −jωµr

∫∫

Vgap

Ge · J̄ dVgap (2.18)

H̄J =

∫∫

Vgap

Gm · J̄ dVgap (2.19)

H̄M = −jωεr

∫∫

Vgap

Ge · M̄ dVgap (2.20)

ĒM = −
∫∫

Vgap

Gm · M̄ dVgap (2.21)

If we consider now the case of TM polarization illumination of the gap structure, we apply these

expressions and cast both the resultant field quantities and equivalent current sources in a matrix
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format as follows,











Hx

Hy

Ez











=











jωεr < Gxx, Mx > jωεr < Gxy, My > − < Gxz, Jz >

jωεr < Gyx, Mx > jωεr < Gyy, My > − < Gyz, Jz >

< Gzx, Mx > < Gzy, My > jωµr < Gzz, Jz >











(2.22)

where the inner product symbology,

< f, g >=

∫∫

Vgap

f(x, y)g(x, y)dV

is used to represent the integrations shown in Equations (2.18) - (2.21). Note that these are not

the total fields required to solve our problem, rather, these are the fields arising specifically from

the equivalent current sources. Referring back to Equations (1.2) and (1.3), we need to add the

incident fields along with the fields directly proportional to the equivalent currents, which occur

only in the gap region. Following Newman’s lead [2], we define an impedance matrix of the form

V = [Z + ∆Z] · I (2.23)

and thus we see that the matrix in Equation (2.22) is the matrix product Z · I . The matrix ∆Z

arises from the equivalent source terms and modifies only those blocks of Z corresponding to like-

directed equivalent source terms. In other words, the matrix product ∆Z · I can be expressed

as

∆Z · I =











Mx

jω(µg−µr) 0 0

0
My

jω(µg−µr) 0

0 0 Jz

jω(εg−εr)











(2.24)

The vector V represents the incident field voltage values within the gap region and I repre-

sents the current vector

V =











H i
x

H i
y

Ei
z











, and I =











Mx

My

Jz











These equations hold only for values of the spatial variables (x, y) located in the gap region of our

problem geometry.
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2.3.2 The T-factor for TM Polarization. The T-factor, Equation (2.8), was given earlier

in a general form. We now take polarization into account as the T-factor expression will vary

slightly between the TM and TE polarization cases. The difference arises from the fact that the

reflection coefficient expressions embedded in the T-factor have different forms for TM and TE

polarization as is well known [15: Chapter 5]. The methods developed by Munk [19, 22, 23]

extend the traditional definitions of the Fresnel reflection and transmission coefficients to enable

one to incorporate complex evanescent modes into these coefficients at planar material interfaces.

This ability to incorporate Fresnel coefficients in a plane wave spectrum solution approach is a

distinct advantage of the spectral domain method. The definitions used by Munk result in spectral

domain reflection and transmission coefficients (for TM polarization) of the form

Γ10 =
ηory1 − η1ryo

ηory1 + η1ryo

(2.25)

and

τ10 =
2ηory1

ηory1 + η1ryo

(2.26)

where η1 is the impedance of the magneto-dielectric medium, ηo is the impedance of the air (or free

space) medium above the slab material region, and τ10 is the spectral domain Fresnel transmission

coefficient for the slab coating material/free space interface (incident from the slab material side) at

y = d in Figure 2.1. From Fresnel theory, τ10 is defined as τ10 = 1+Γ10 [15, 19]. The propagation

factor ry1 is again the ŷ-component of the propagation direction vector in the magneto-dielectric

medium. The factor ryo is the ŷ-component of the propagation direction vector in the free space

medium, y > d. It will be seen throughout this report that by using these definitions and notation,

we extend the applicability of the Fresnel reflection and transmission coefficients to accommodate

evanescent (non-propagating) plane wave modes.

The array scanning parameter sx1 , seen earlier in Equations (2.2) and (2.3), was used to set

the x-component of the spectral domain plane wave mode propagation direction vector through

rx1 = Re(k1)
k1

(sx1 + 2n). A similar quantity, rxo , is now required for the free space medium above

the slab. Recall from the development of the Fresnel reflection coefficient [15: pages 186-187]

that the enforcement of boundary conditions leads to a familiar relation known as Snell’s law of
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refraction. In our notation, we state Snell’s law of refraction as

k1rx1 = korxo (2.27)

thereby defining rxo in terms of rx1 . We note also that this expression, with the product k1rx1 ,

remains purely real even for complex k1.

We can now define ry0 in a similar fashion to that of ry1 :

ryo =







√

1 − r2
xo

, r2
xo

≤ 1

−j
√

r2
xo

− 1 , r2
xo

> 1
(2.28)

choosing the ‘−j’ root for imaginary ryo in keeping with the physical requirements of the radiation

condition. We note that given the relation in Equation (2.27), ry0 will be either purely real or purely

imaginary regardless of the properties of the slab coating material.

It is instructive to examine the functional form of the reflection coefficient using these spec-

tral domain parameters. For the internal Green’s function we are interested in the reflection of the

plane wave spectrum on the slab coating material/free space interface at y = d, with the waves

originating from the slab material side. To be representative of a case of practical interest, we

choose slab material parameters of εr = 3.25, µr = 1.0 (a pure, lossless dielectric). The resulting

spectral domain reflection coefficient is plotted in Figure 2.3. The horizontal axis is shown as sx

which, for the purpose of illustration, is a combination of the scan parameter sx1 and the ASM

mode number n, i.e., sx = sx1 + 2n. We do this because the combination of the two essentially

form a continuous variable which, in the case of a lossless medium such as in this example, is

identical to the spectral domain variable rx1 . For cases where the slab medium is lossy, this sx

parameter remains purely real, differing from rx1 by the factor Re(k)/k.

In the figure, Γ10 is symmetric about sx = 0 and, for the material property values used in this

case, decays to Γ10 = 0 beyond |sx| > 3. We see that Γ10 exhibits the critical angle phenomena

in the region −1 < sx < 1 which corresponds to the region where n = 0.4 The critical angle is

the angle at which a plane wave, traversing the interface from a denser media ‘1’ into a less dense

4We refer to this range of the variable sx as the central region.
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Figure 2.3 Spectral Domain Fresnel Reflection Coefficient Γ10 for slab coating material εr =
3.25, µr = 1.

media ‘0’ (i.e.,
√

µ1ε1 >
√

µ0ε0) experiences total internal reflection at the interface between the

two media [15: Section 5.3.4]. From traditional Fresnel theory, we expect the critical angle to

occur at sc = sx = ±Re(
√

ε0µ0/ε1µ1) ' ±0.5547, in agreement with what is seen in Figure 2.3.

We have also plotted the magnitude of the reflection coefficient and note that it takes on the value

|Γ10| = 1 in the region of total internal reflection, |sc| ≤ |sx| ≤ 1.

In this region where |Γ10| = 1, the factor ry0 has become purely imaginary (the second line

in Equation (2.28)), abruptly changing from real to imaginary precisely at the critical angle. This

implies that waves are attenuated in the ŷ direction in the free space region y > d for |sx| > |sc|.
This is the classic description of total internal reflection and for the existence of a surface wave in

the free space region, bound to the interface [15: Section 5.3.4]. The factor ry1 for these values

of sx where |Γ10| = 1 remains purely real (for lossless slab coating materials) which implies that,

inside the slab coating, we still have a propagating plane wave. It is only when we reach the value
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|sx| = 1 that ry1 also abruptly changes from a purely real value to purely imaginary, at which point

we encounter another singularity.

What happens to the spectral domain Fresnel reflection coefficient if loss is added to the

slab coating material? Such a case is plotted in Figure 2.4 where we have added a dielectric loss

component to the slab coating material. The singularities previously observed at the points |sx| = 1
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Figure 2.4 Spectral Domain Fresnel Reflection Coefficient Γ10 for slab coating material εr =
3.25 − j1, µr = 1.

have been removed from the real sx axis since, for lossy materials, the factor ry1 is complex for

all values of sx (except at sx = 0 where ry1 = 1). We also notice that the decay to Γ10 = 0

becomes slightly less rapid, also due to the fact that ry1 is not purely imaginary, retaining a small

real component. The magnitude of the reflection coefficient in this case is |Γ10| < 1 for all values

of sx.

In order to help visualize some of these changes that occur in the reflection coefficients due

to the factors ry1 and ryo as sx varies, we plot these factors in Figure 2.5 using the same lossy

material property values used for the reflection coefficient plotted in Figure 2.4. We see that ryo
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Figure 2.5 Complex behavior of the ry0 and ry1 factors for case with slab coating material prop-
erties εr = 3.25 − j1, µr = 1.

is real only in the range −sc ≤ sx ≤ sc and negative imaginary elsewhere. ry1 is complex (with

a negative imaginary part) for all sx except at sx = 0 where ry1 = 1. If the slab coating material

in this case was lossless, the factor ryo would remain unchanged. The factor ry1 , however, would

take on an appearance somewhat similar to ryo : the real part of ry1 would be nonzero only in the

central region going to zero at sx = ±1; the imaginary part of ry1 would be zero out to sx = ±1,

and for |sx| > 1, would become increasingly negative imaginary for increasing |sx|. For lossless

materials, it is these abrupt changes in ry1 and ryo that impart the singular behavior to the reflection

coefficients at the critical angles and at sx = ±1. For lossy materials, only the ryo factor produces

the singular behavior at the critical angles in the reflection coefficient.

Next we ask if instead of a lossless dielectric material, what will be the functional form of

Γ10 for a lossless magneto-dielectric slab coating material? The result is similar. As shown in

Figure 2.6, we see pronounced inward movement of the critical angle and a correspondingly larger

region where |Γ10| = 1. We also note that the reflection coefficient for this case no longer decays
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Figure 2.6 Spectral Domain Fresnel Reflection Coefficient Γ10 for slab coating material εr =
3.25, µr = 2.

to zero beyond the central region but, instead, to a value |Γ10| < 1, due solely to the presence of the

increased magnetic permeability in the slab coating material. The singularities present in the case

of the lossless dielectric material are present here also and are the result of the same processes.

Adding a magnetic loss component (as well as dielectric loss) to the slab material results

in additional smoothing of the former singularities at sx = ±1 and an appreciable imaginary

component for all higher order plane wave modes, i.e., for all |sx| > 1. This case is shown in

Figure 2.7. Interestingly, we note that this case also exhibits a region where |Γ10| > 1. The

question naturally arises as to how it is that |Γ10| can exceed unity in this (or in any) case. It must

first be remembered that Equation (2.25) is a spectral domain quantity and the fields associated

with the reflection coefficient in this region (where |Γ10| > 1) are associated with a single plane

wave mode and do not constitute the ‘total’ fields on either side of the interface. So to have |Γ10|
slightly > 1 in this small region does not necessarily imply a violation of conservation of energy.

To verify that this combination of geometry and material properties do not produce |Γ| > 1, it is a
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Figure 2.7 Spectral Domain Fresnel Reflection Coefficient Γ10 for slab coating material εr =
3.25 − j1, µr = 2 − j1.

simple matter to check the spatial domain form of the reflection coefficient, [15: Equation 5-17a].

This evaluation found that |Γ10| in fact does not exceed unity.

The essential point in this sequence is that Γ10 is a well-behaved function, with the exception

of the singular points occurring at the critical angles, |sx| = sc, and at the points |sx| = 1 for

lossless materials, for values of slab coating material constitutive properties of practical interest.

Returning now to our discussion of the T-factor, the other reflection coefficient in the T-

factor, Γ12, is the reflection coefficient of a perfectly electric conducting (PEC) ground plane and

has the value −1 for all plane wave modes. We thus see that the T-factor for the TM polarized case

takes the form

T =
Γe−j2kdry1

(

ejk(y+y′)ry1 − 2 cos[k(y − y′)ry1 ]
)

− e−jk(y+y′)ry1

1 + Γe−j2kdry1
(2.29)

where we have dropped the now-unnecessary subscripts on Γ10.
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In order for the geometric series representation of the T-factor established in Equation (2.29)

to be valid, it is required that |Γe−j2kdry1 | < 1 (strictly less than 1). However, the Fresnel reflection

coefficient and the exponential term are only guaranteed to have magnitudes ≤ 1 in cases where

the slab coating material is lossless. As we saw in the plots of the reflection coefficient, there

are values of sx for which |Γ| > 1 when the slab coating material is lossy. But it’s the product,

Γe−j2kdry1 , that is of interest regarding the validity of the geometric series form. In Figure 2.8, we

plot this product (using the same scale and material properties) for the case where we saw |Γ| > 1

in Figure 2.7. The exponential term acquires a strong damping component precisely in the region
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Figure 2.8 Product Γe−j2kdry1 for slab coating material εr = 3.25 − j1, µr = 2 − j1.

where |Γ| > 1. Furthermore, we see that the product decays to zero for higher order modes. Thus

we conclude that the geometric series form of the T-factor is a valid representation of the multiple

reflected wave series occurring within the slab coating material.

From Equation (2.16), we see that we will eventually need to use not only the T-factor in its

form (2.29), but also derivatives of the T-factor in various blocks of the Green’s function matrix.

We noted earlier that the T-factor is dependent only on the spatial variables y and y ′ so that any
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terms containing ∂T (y,y′)
∂x = 0. Straightforward differentiation of the T-factor yields,

∂T (y, y′)
∂y

= jkry1

Γe−j2kdry1

(

ejk(y+y′)ry1 − 2j sin[k(y − y′)ry1 ]
)

+ e−jk(y+y′)ry1

1 + Γe−j2kdry1
(2.30)

and

∂2T (y, y′)
∂y2

= −(kry1)
2
Γe−j2kdry1

(

ejk(y+y′)ry1 − 2 cos[k(y − y′)ry1 ]
)

− e−jk(y+y′)ry1

1 + Γe−j2kdry1
(2.31)

It is convenient to designate the right hand side of Equation (2.30) as jkry1T
∗ where

T ∗ =
Γe−j2kdry1

(

ejk(y+y′)ry1 − 2j sin[k(y − y′)ry1 ]
)

+ e−jk(y+y′)ry1

1 + Γe−j2kdry1

and (2.31) as −(kry1)
2T , where T is the original T-factor. We now introduce a new T-factor, T r,

called the ‘reduced T-factor’ which is obtained by subtracting the original T-factor from T ∗.

T r = T ∗ − T =
2e−jk(y+y′)ry1

[

1 + Γe−j2k(d−y′)ry1

]

1 + Γe−j2kdry1
(2.32)

We will use T r in the next section to determine the complete Green’s function expression for the

TM polarization case.

2.3.3 Complete Expressions for TM Polarization. We now combine the expressions that

have been developed thus far for the TM polarization case in preparation of their numerical im-

plementation in Chapter 3. In order to accomplish this we must first fully expand the expressions

in (2.16), carrying out all indicated differentiations. As noted by the form of Equation (2.13), the

canonical Green’s function for our problem is a combination of a direct term and a bounce correc-

tion term. Fortunately, we can differentiate these terms separately and display them independently.

Looking first at the direct coupling term, we merely state the results of the various differen-

tiations of Equation (2.1) as these are straightforward.

∂Gdc

∂x
=

jk

4
H

(2)
1 (kR)

(x − x′)
R

(2.33)
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∂Gdc

∂y
=

jk

4
H

(2)
1 (kR)

(y − y′)
R

(2.34)

∂2Gdc

∂x2
=

jk2

4

[

H(2)
o (kR)

(

(x − x′)2

R2

)

+
H

(2)
1 (kR)

kR

(

1 − 2
(x − x′)2

R2

)

]

(2.35)

∂2Gdc

∂y2
=

jk2

4

[

H(2)
o (kR)

(

(y − y′)2

R2

)

+
H

(2)
1 (kR)

kR

(

1 − 2
(y − y′)2

R2

)

]

(2.36)

∂2Gdc

∂x∂y
=

∂2Gdc

∂y∂x
= −jk2

4

(x − x′)
R

(y − y′)
R

(

2
H

(2)
1 (kR)

kR
− H(2)

o (kR)

)

(2.37)

where R =
√

(x − x′)2 + (y − y′)2. Thus, including block 9 of the Green’s function matrix

(which is just Gdc), there are six unique terms in the matrix. The three diagonal terms are unique

and the upper off-diagonal terms are either equivalent or the negative of their corresponding lower

off-diagonal terms.

Turning to the bounce correction term, we recall that the scalar component was expressed in

Equation (2.10) and that the explicit y, y′ dependence of the T-factor was not shown. Additionally,

the argument of the exponential can be written,

−jk(ρ̄ − ρ̄′) · r̂1,± = −jk[(x − x′)rx1 + |y − y′|ry1 ]

We utilize the chain rule to perform the differentiations on this component of the Green’s function

to get,

∂Gbounce

∂x
= −Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T

rx1

ry1

e−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.38)

∂Gbounce

∂y
=

Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T re−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.39)

∂2Gbounce

∂x2
=

jkRe(k)

4π

∫ 1

−1

∞
∑

n=−∞

Tr2
x1

ry1

e−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.40)

∂2Gbounce

∂y2
= −jkRe(k)

4π

∫ 1

−1

∞
∑

n=−∞
2ry1T

re−jk[(x−x′)rx1+|y−y′|ry1 ]dsx1 (2.41)

∂2Gbounce

∂x∂y
= −jkRe(k)

4π

∫ 1

−1

∞
∑

n=−∞
T rrx1e

−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.42)
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Now we proceed with combining the expressions given above into the complete expressions

for the Green’s function matrix entries. These become (in some cases omitting several algebraic

steps),

Gxx = G +
1

k2

∂2G

∂x2
= Gdc + Gbounce +

1

k2

∂2

∂x2
(Gdc + Gbounce)

= − j

4

[

H(2)
o (kR)

(

1 − (x − x′)2

R2

)

− H
(2)
1 (kR)

kR

(

1 − 2
(x − x′)2

R2

)

]

+
jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞
Try1e

−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.43)

Gxy =
1

k2

∂2G

∂x∂y
=

1

k2

∂2

∂x∂y
(Gdc + Gbounce)

= − j

4

(x − x′)
R

(y − y′)
R

(

2
H

(2)
1 (kR)

kR
− H(2)

o (kR)

)

−jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞
T rrx1e

−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.44)

Gxz =
∂G

∂y
=

∂

∂y
(Gdc + Gbounce)

=
jk

4
H

(2)
1 (kR)

(y − y′)
R

+
Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T re−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.45)

Gyx =
1

k2

∂2G

∂y∂x
=

1

k2

∂2

∂y∂x
(Gdc + Gbounce)

= − j

4

(x − x′)
R

(y − y′)
R

(

2
H

(2)
1 (kR)

kR
− H(2)

o (kR)

)

−jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞
T rrx1e

−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.46)
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Gyy = G +
1

k2

∂2G

∂y2
= Gdc + Gbounce +

1

k2

∂2

∂y2
(Gdc + Gbounce)

= − j

4

[

H(2)
o (kR)

(

1 − (y − y′)2

R2

)

− H
(2)
1 (kR)

kR

(

1 − 2
(y − y′)2

R2

)

]

−jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞

[

T

ry1

+ 2ry1T
r

]

e−jk[(x−x′)rx1+|y−y′|ry1 ]dsx1 (2.47)

Gyz = −∂G

∂x
= − ∂

∂x
(Gdc + Gbounce)

= −jk

4
H

(2)
1 (kR)

(x − x′)
R

+
Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T

rx1

ry1

e−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.48)

Gzx = −∂G

∂y
= − ∂

∂y
(Gdc + Gbounce)

= −jk

4
H

(2)
1 (kR)

(y − y′)
R

−Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T re−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.49)

Gzy =
∂G

∂x
=

∂

∂x
(Gdc + Gbounce)

=
jk

4
H

(2)
1 (kR)

(x − x′)
R

−Re(k)

4π

∫ 1

−1

∞
∑

n=−∞
T

rx1

ry1

e−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.50)

Gzz = G = Gdc + Gbounce

= − j

4
H(2)

o (kR) − jRe(k)

4πk

∫ 1

−1

∞
∑

n=−∞

T

ry1

e−jk[(x−x′)rx1+|y−y′|ry1 ] dsx1 (2.51)
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These equations are then used to fill the matrix blocks of Equation (2.19).

2.4 Expressions for the TE Polarization Case

2.4.1 Dyadic Green’s Function. The equations for the case of TE polarization are dual to

those for TM polarization, with the notable exception that we still have a PEC ground plane which

will require different Fresnel reflection coefficients in the T-factor. Whereas Equations (2.14) –

(2.17) are general in nature and apply to both TE and TM polarizations; the orientation of the

incident fields and, consequently, the equivalent current sources located within the gap region, will

assume different orientations for the two cases. Hence, the equations analogous to (2.18) – (2.21)

for TE polarization are











Ex

Ey

Hz











=











jωµr < Gxx, Jx > jωµr < Gxy, Jy > < Gxz, Mz >

jωµr < Gyx, Jx > jωµr < Gyy, Jy > < Gyz, Mz >

− < Gzx, Jx > − < Gzy, Jy > jωεr < Gzz, Mz >











(2.52)

The ‘impedance’ matrix for the TE polarization case will again have the form Z + ∆Z. For

this case, the ∆ZI matrix becomes

∆ZI =











Jx

jω(εg−εr) 0 0

0
Jy

jω(εg−εr) 0

0 0 Mz

jω(µg−µr)











(2.53)

The V and I vectors for this case become

V =











Ei
x

Ei
y

H i
z











, and I =











Jx

Jy

Mz











2.4.2 T-factor for TE Polarization. The T-factor expression (2.8) will now be applied

to the TE polarization case where we use the appropriate Fresnel reflection coefficients for a PEC

ground plane. For the TM polarization case, all variables and expressions were derived referring

to the electric field since the incident field was of the form Ēi = ẑEz . For the TE case, we will be
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referring all variables and expressions to the magnetic field and assuming an incident field of the

form H̄ i = ẑHz . Under these conditions, the appropriate spectral domain Fresnel reflection and

transmission coefficients at the slab material/free space interface are

Γ10 =
η1ry1 − ηoryo

η1ry1 + ηoryo

(2.54)

and

τ10 =
2η1ry1

η1ry1 + ηoryo

(2.55)

where we note that the form of each is slightly different from the forms in Equations (2.25) and

(2.26) resulting from the rearrangement of the constituent factors appropriate for TE polarization

[15: Section 5.3].

Plots of the reflection coefficients for TE polarization, using the same material properties

used for the corresponding TM reflection coefficient sequence plotted in Figures 2.3 - 2.4 and 2.6

- 2.7, are shown in Figures 2.9 - 2.12.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

s
x

un
itl

es
s 

ga
in

Complex Reflection Coefficient, TE Polarization

real
imag
Magnitude

Figure 2.9 Spectral Domain Fresnel Reflection Coefficient for slab coating material εr = 3.25,
µr = 1.
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Figure 2.10 Spectral Domain Fresnel Reflection Coefficient for slab coating material εr =
3.25 − j1, µr = 1.

As was the case for the TM reflection coefficient, the TE result is symmetric about sx = 0,

but now decays to a value Γ = −0.5 for higher order plane wave modes. Statements made earlier

about changes in the TM reflection coefficient resulting from changes in the slab coating material

properties apply also to the TE reflection coefficient. In keeping with the ‘dual’ nature of the TE

polarization case relative to TM, we see in Figure 2.10 that for some values of sx in the central

plane wave mode region that |Γ| > 1 in the case of a lossy dielectric slab coating material. We

emphasize here again that this does not imply a violation of conservation of energy, and make

the same arguments presented in discussion of Figure 2.7. For the lossy magneto-dielectric case

plotted in Figure 2.12, |Γ| < 1 for all values of sx.

Returning now to our evaluation of the T-factor for TE polarization, the reflection coefficient

at the PEC ground plane, referred to the H-field, is Γ12 = +1. Thus, the T-factor for this case takes

the form

T =
Γe−j2kdry1

(

ejk(y+y′)ry1 + 2 cos[k(y − y′)ry1 ]
)

+ e−jk(y+y′)ry1

1 − Γe−j2kdry1
(2.56)
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Figure 2.11 Spectral Domain Fresnel Reflection Coefficient for slab coating material εr = 3.25,
µr = 2.

Here, we again ask about the validity of the geometric series form of Equation (2.56 as we

did before in the TM polarization case. The same comments made earlier for the TM polarization

case apply here as well. We want to examine the case where |Γ| > 1 in Figure 2.10 when we plot

in Figure 2.13 the product Γe−j2kdry1 , using the same scale and material parameters. We see again

that the exponential term contributes a damping component precisely in the region where |Γ| > 1

such that the product Γe−j2kdry1 < 1 for all values of sx. Thus we see that the geometric series

form of the T-factor is a valid representation for the infinite multiple reflected waves that ‘rattle’

back and forth inside the slab coating between the interface and the ground plane.

We will also need a T ∗ and T r for the TE-polarization case. In this instance they have forms

similar to those of the TM polarization case, the differences arising through the different reflection

coefficients for TE polarization.

T ∗ =
Γe−j2kdry1

(

ejk(y+y′)ry1 + 2j sin[k(y − y′)ry1 ]
)

− e−jk(y+y′)ry1

1 − Γe−j2kdry1
(2.57)

2-26



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

s
x

un
itl

es
s 

ga
in

Complex Reflection Coefficient, TE Polarization

real
imag
Magnitude

Figure 2.12 Spectral Domain Fresnel Reflection Coefficient for slab coating material εr =
3.25 − j1, µr = 2 − j1.

and

T r = T ∗ − T =
−2e−jk(y+y′)ry1

[

1 + Γe−j2k(d−y′)ry1

]

1 − Γe−j2kdry1
(2.58)

2.4.3 Complete Expressions for TE Polarization. We now combine our expressions for

TE polarization as we did for TM. The direct component of the Green’s function is the same in this

case as it was for TM so Equations (2.33) – (2.37) are still applicable. The same is also true for the

bounce correction terms in the general sense that the form of Equations (2.38) – (2.42) still apply,

but we use the T-factors for TE polarization. Thus, the matrix entries, Equations (2.43) – (2.51),

apply also to the TE case as long as these modifications are taken into account.

This essentially completes the development of the internal Green’s function expressions for

our problem. We turn now to the development of the external Green’s function which will be

needed to compute the scattered fields radiated by the equivalent gap currents.
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Figure 2.13 Product Γe−j2kdry1 for slab coating material εr = 3.25 − j1, µr = 1.

2.5 The External Green’s Function

The expressions developed thus far are valid only within the region of the gap in the magneto-

dielectric slab medium. In order to evaluate fields exterior to the gap region, another (and different)

Green’s function is needed to account for the geometry of the problem as shown in Figure 1.5. This

Green’s function, called the external Green’s function, is valid for observation points external to

the gap region, in the region y > d. We will need this Green’s function in order to compute the

fields scattered by the gap (e.g., the echo width of the gap.)

To construct the external Green’s function, we will again employ the methods of Munk [19]

to arrive at an expression that couples a transmitting line source element located within the gap

region to a receiving line source element in the exterior region. Pictorially, this situation is shown

in Figure 2.14, where it is seen that there is no direct coupling path since the transmitter and

receiver elements are separated by an interface.
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Figure 2.14 Coupling paths for the external Green’s function

Seeking an expression analogous to Equation (2.10), we develop the external Green’s func-

tion starting with an expression from Munk [19: Equation (5.33)]5 for coupling in a stratified media

scenario in which the source and field points are located in different media. In the notation used in

this dissertation, and after application of the ASM, this Green’s function expression is

Gext = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞

e−jk1(ŷd−ρ̄′)·r̂1

ry1

T exte−jko(ρ̄−ŷd)·r̂odsx1 (2.59)

where [19: Equation (5.34)]

T ext = τ10

[

1 + Γ12e
−j2k1y′ry1

]

[

1 + Γ∞e−j2ko(d−y)ryo

]

1 − Γ12Γ10e
−j2k1dry1

Equation (2.59) is derived in the same manner as was the internal Green’s function for the bounce

correction component, Equation (2.10), but has a different T-factor to account for the fact that

the source, (x′, y′), and receiver, (x, y), locations are now in different regions separated by an

interface. Γ∞ is a reflection coefficient ‘on the other side’ of the receiver (from the origin). In our

two-media problem this exterior region is free space and there is no reflection from the domain

boundary at y = ∞ so Γ∞ = 0. Other variables in this equation have been defined previously.

5The equation in this citation is developed for the induced voltage on an element in a doubly-infinite array in a
general stratified medium. We can use this same model for the external Green’s function for our one-dimensional array
via suitable replacement of constants and a single summation over our 2-D plane wave mode set.
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Thus, the external T-factor becomes,

T ext = τ10

[

1 + Γ12e
−j2k1y′ry1

]

1 − Γ12Γ10e
−j2k1dry1

(2.60)

We again place the ASM array in Equation (2.59) within the magneto-dielectric slab medium

since that is where the volumetric equivalent currents exist. This will be to our advantage in this

case because it will allow us to limit the extent of our spectral scan (in sx1). With reference to

Figure 2.14, when the equivalent currents radiate from within the slab to the exterior free space

region y > d, the rays are refracting from a more dense into a less dense medium. In order to

scan in the free space region from ±90◦ we need only scan out to the critical angle inside the

slab (±sc), the critical angle being that angle at which the plane waves in the denser slab medium

become totally internally reflected). The relationship between the range of scan angles (and, in

the ASM bounce correction integral, the range of integration) in one medium to that in another is

determined by Snell’s Law, Equation (2.27). Application of this principle here enables us to avoid

having to deal with the singularities that may arise in the integrals when the factor ry1 vanishes (and

changes from being purely real to purely imaginary), which always occurs at |sx| = 1, beyond the

critical angles.

At the same time, since we are ultimately interested in the propagation of the scattered fields

into the free space region, we want to change the variable of integration from sx1 to sxo . We again

use Snell’s Law relationship to change the variable of integration and the scan angle (limits of

integration) noted above. We employ these modifications to rewrite Equation (2.59) as,

Gext = − jko

4πk1

∫ 1

−1

∞
∑

n=−∞

e−jk1[(d−y′)ry1−x′rx1 ]

ry1

T exte−jko[(y−d)ryo+xrxo ] dsxo (2.61)

where the real-valued factor ko replaces Re(k1) as a result of the application of Snell’s Law.

We now can specialize Equation (2.61) for the two polarization cases. For the TM-polarization

case, we have as before Γ12 = −1, Γ10 = Γ (Equation (2.25)) and τ 10 (= τ
TM

) is Equation (2.26).

For TE polarization, Γ12 = 1 (referred to the H-field), and Γ10, τ 10 (= τ
TE

) are Equations (2.54)

and (2.55) respectively. Making these substitutions in Equation (2.60), we have for the external
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T-factors,

T ext
TM

= τ
TM

[

1 − e−j2k1y′ry1

]

1 + Γe−j2k1dry1
(2.62)

and

T ext
TE

= τ
TE

[

1 + e−j2k1y′ry1

]

1 − Γe−j2k1dry1
(2.63)

With these T-factors substituted into Equation (2.61) for each appropriate polarization, we can then

describe the scattered fields radiated into the free space region once we know the volume equivalent

currents determined by the internal Green’s function.

In our 2-D problem geometry, we can define the scattering width (or 2-D RCS) of the gap

using the expressions [15: pg 577]

σ2−D = lim
ρ→∞

2πρ
|Ēs|2
|Ēi|2 = lim

ρ→∞
2πρ

|H̄s|2
|H̄ i|2

where Ēs, Ēi, H̄s, and H̄ i are scattered electric field, incident electric field, scattered magnetic

field, and incident magnetic field. For TM polarization, the electric field is ẑ polarized throughout

while for TE polarization, the magnetic field is. This enables us to write separately,

σTM = lim
ρ→∞

2πρ
|Es

z |2
|Ei

z|2
(2.64)

σTE = lim
ρ→∞

2πρ
|Hs

z |2
|H i

z|2
(2.65)

We note from Equations (2.64) and (2.65) that only ẑ-directed scattered fields are required

to compute the echo width of the gaps. We see by inspection of Equations (2.22) and (2.52) that

for cases where x̂ and ŷ directed equivalent currents are part of the solution, we will need external

Green’s function components Gext
zx and Gext

zy to radiate these equivalent currents into the free space

region. We then identify Equation (2.61) as our ‘canonical’ external Green’s function, Gext
zz , and

note that from Equations (2.16) and (2.17) that

Gext
zx = −∂Gext

zz

∂y′
, Gext

zy =
∂Gext

zz

∂x′
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Carrying out the indicated differentiations gives,

Gext
zx = − ko

4π

∫ 1

−1

∞
∑

n=−∞

e−jk1[(d−y′)ry1−x′rx1 ]

ry1

T ext
r e−jko[(y−d)ryo+xrxo ] dsxo (2.66)

Gext
zy =

ko

4π

∫ 1

−1

∞
∑

n=−∞

rx1

ry1

e−jk1[(d−y′)ry1−x′rx1 ] T exte−jko[(y−d)ryo+xrxo ] dsxo (2.67)

where we define

T ext
r = τ

TM

1 + e−j2k1y′ry1

1 + Γe−j2k1dry1
(2.68)

for TM polarization and

T ext
r = τ

TE

1 − e−j2k1y′ry1

1 − Γe−j2k1dry1
(2.69)

for TE polarization as the ‘reduced’ external T-factors which result from the process of differen-

tiating the integrand in Equation (2.61) with respect to y ′. The differentiation of Equation (2.61)

with respect to x′ simply produces the rx1 factor in the numerator of Equation (2.67).

2.6 Incident Fields

For the TM polarization case, the electric field is purely ẑ-directed. The field incident upon

the gap from the free space region (y > d) can be expressed as

Einc
z (x, y, φinc) = ejkox sin φinc

ejkoy cos φinc

(2.70)

To find the incident field values within the gap region (0 < y < d), we must use a more gener-

alized expression to account for the presence of the magneto-dielectric slab coated ground plane

geometry. This generalized incident field is,

Eginc
z (x, y, φinc) = ejkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 − e−j2k1y cos φ1)

1 + Γe−j2k1d cos φ1

]

(2.71)

where we have used the more familiar form of Snell’s law of refraction

k1 sin φ1 = ko sin φinc
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to obtain the refracted angle φ1 within the slab medium. We recognize that k1 can become complex

for a lossy magneto-dielectric slab medium. In this event, the angle of refraction φ1 will also

become complex in a manner such that the product k1 sin φ1 remains purely real and the equality

holds.

In Equation (2.71), τ01 is the Fresnel transmission coefficient from the free space region into

the slab medium and Γ is the reflection coefficient from the slab medium onto the slab-free space

interface. These expressions are

τ01 =
2η1 cos φinc

ηo cos φ1 + η1 cos φinc
(2.72)

and

Γ =
ηo cos φ1 − η1 cos φinc

ηo cos φ1 + η1 cos φinc
(2.73)

In working with the incident fields, there is no need to resort to the spectral domain expressions

for these parameters. This is because the incident field is a uniform plane wave and there are no

higher order plane wave expansion modes associated with it.

For the case of a general homogeneous magneto-dielectric slab medium, we will require

the magnetic fields induced within the gap region. These are obtained through straightforward

application of Faraday’s Law,

H̄ = − 1

jωµ1
∇× Ē (2.74)

which becomes for our application,

H̄ginc = − 1

jωµ1

(

x̂
∂

∂y
Eginc

z − ŷ
∂

∂x
Eginc

z

)

(2.75)

Proceeding first for the y-component as indicated, we have

Hginc
y =

1

jωµ1

∂

∂x
Eginc

z

=
ko sin φinc

ωµ1
ejkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 − e−j2k1y cos φ1)

1 + Γe−j2k1d cos φ1

]

=
ko sin φinc

ωµ1
Eginc

z
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Applying Snell’s law to the last equality and noting that k1
ωµ1

= 1
η1

allows us to write,

Hginc
y =

sin φ1

η1
Eginc

z (2.76)

For the x-component, we have

Hginc
x = − 1

jωµ1

∂

∂y
Eginc

z

= −k1 cos φ1

ωµ1
e−jkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 + e−j2k1y cos φ1)

1 + Γe−j2k1d cos φ1

]

For later convenience (since the bracketed term is now slightly different), we define a new param-

eter,

Hinc = ejkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 + e−j2k1y cos φ1)

1 + Γe−j2k1d cos φ1

]

(2.77)

so that we can write for the x-component of the magnetic field,

Hginc
x = −cos φ1

η1
Hinc (2.78)

For TE polarization we have equations dual to those for the TM case, save for the form of

the reflection and transmission coefficients. For the incident field we have,

H inc
z (x, y, φinc) = ejkox sin φinc

ejkoy cos φinc

(2.79)

and for the generalized incident field,

Hginc
z (x, y, φinc) = ejkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 + e−j2k1y cos φ1)

1 − Γe−j2k1d cos φ1

]

(2.80)

where Γ and τ01 are now the appropriate TE polarization quantities referred to the magnetic field.

For this case, these are

τ01 =
2ηo cos φinc

ηo cos φinc + η1 cos φ1
(2.81)

2-34



and

Γ =
η1 cos φ1 − ηo cos φinc

η1 cos φ1 + ηo cos φinc
(2.82)

We again require the corresponding electric field expressions to accommodate a magneto-

dielectric slab medium. These are derived from Ampere’s Law,

Ē =
1

jωε1
∇× H̄

and are dual to the expressions given above for the TM polarization case. Stating these results we

have,

Eginc
y = −η1 sin φ1H

ginc
z (2.83)

and

Eginc
x = η1 cos φ1Einc (2.84)

where we have used Snell’s law again, substituted η1 = k1/ωε1, and where Einc, analogous to

Hinc, is,

Einc = ejkox sin φinc

ejkod cos φinc

τ01

[

e−jk1(d−y) cos φ1(1 − e−j2k1y cos φ1)

1 − Γe−j2k1d cos φ1

]

(2.85)
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III. Numerical Implementation

The solution technique to be used in this dissertation was briefly outlined in Chapter 1 where the

coupled integral equations arising from the problem geometry were described. In Chapter 2, we

developed the Green’s functions for the magneto-dielectric slab coated ground plane geometry,

one for coupling between source and receiver when both are located within the gap region (the

internal Green’s function) and one for coupling between a source located within the gap region

and a receiver located in the free space region (the external Green’s function). In this chapter, we

outline the discretization of the integral equations and describe how they are solved with these

complicated Green’s functions utilizing standard numerical analysis techniques. To this end, we

begin by looking at the bounce correction terms of the various Green’s function components. As

seen in the preceding development, these integral expressions play a critical role in the solution

and the need to evaluate them will impact our choice of solution approach for the larger moment

method problem.

3.1 Bounce Correction Term Integrands

For accurate numerical implementation of the complete expressions developed for the inter-

nal Green’s functions in Section (2.3.3) (Equations (2.43) - (2.51)), it is crucial to understand the

behavior of these expressions for cases of practical interest. We are concerned at this point with the

ASM-derived bounce correction terms since the direct coupling terms are various combinations of

Hankel functions which are both well understood and easily computed using algorithms available

in the open literature. We will need, however, to look at how the ‘self’ coupling terms are com-

puted as this will involve dealing with the singularity in the Hankel functions as the arguments tend

toward zero. This will be accomplished in a later section.

The ASM-derived bounce correction terms are integrals that must be evaluated to determine

the bounce correction contribution to the Green’s function. Looking at Equations (2.43) - (2.51),

it is apparent that numerical integration is required to evaluate these terms. In this section, we will

look at representative examples of these integrand functions. Our goal is to gain an understanding

as to what type of numerical integration routines will be required and to be aware of any potential

difficulties.
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3.1.1 The Canonical ASM Integrand Function. We begin by looking at the behavior of

the integral term in Equation (2.51), the canonical Green’s function term, which, through Equa-

tions (2.11) and (2.12), produces the nine blocks of the dyadic (or matrix) Green’s function in

Equation (2.17). In particular, we are interested in looking at the ASM-derived portion of Equation

(2.51), the bounce correction term of the scalar Green’s function. Repeating for convenience this

component of Equation (2.51), we have,

Gbounce, zz = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞

T

ry1

e−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1 (3.1)

It is important that we understand the numerical complexities Equation (3.1) will add to our

efforts of constructing a Moment Method solution to our problem. The bounce correction integral

expressions must be evaluated for each Green’s function component in the impedance matrix. For

the purpose of illustration we will look at how the various integrand functions behave for both

TM and TE polarization for representative slab coating material properties for source and receiver

locations corresponding to a representative gap geometry. We make this distinction because the

integrand functions are independent of the existence of any gap. We merely choose values of

(x, y), (x′, y′) that will be consistent with the representative gap geometry shown in Figure 3.1.

PSfrag replacements

free space, εo, µo

magneto-dielectric, εr , µrmagneto-dielectric, εr , µr

gap region, εg , µg

ŷ

x̂

(100 mils)

(40 mils)

PEC ground plane

Figure 3.1 Representative Gap Geometry for examination of Green’s Function Integrands

For the examples displayed in this section, we choose a hypothetical gap of rectangular

shape, 100 mils wide, in a magneto-dielectric slab 40 mils thick with εr = 3.25 and with either

a lossless permeability of µr = 2.0 or a lossy permeability of µr = 2.0 − j1.0. For all cases

shown here we choose a frequency of 11.8 GHz which corresponds to a free space wavelength
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of 1 inch. We point out that the integrand function in Equation (3.1) will greatly vary depending

on choices of x, x′, y, y′, εr, and µr, and we select only a representative set to display here.

Additional integrand function plots are shown in Appendix C to provide additional information

and insight into the behavior of these ASM-derived integrand expressions for different choices of

source-receiver locations and/or representative material properties.

The maximum physical separation between a source and field element in the gap geometry

shown in Figure 3.1 would occur if they were located in opposite corners of the gap region, say the

source point (x′, y′) at (0, 0), and the field point (x, y) at (100, 40) (all geometric dimensions in

mils). The integrand of Equation (3.1) for this case is plotted in Figure 3.2.
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Figure 3.2 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

Taking an approach similar to that in Chapter 2 when looking at the functional form of the

reflection coefficients, we combine the scan parameter sx1 and the ASM mode parameter n into a

single variable, sx (i.e., sx = (sx1 + 2n)). This sx has the same relation as before to rx1 in that
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they are equivalent for the case of a lossless slab coating medium but differ by the factor Re(k)/k

when the slab material is lossy. We note that sx ranges in Figure 3.2 from −5 to +5. This range

is somewhat arbitrary and is chosen to demonstrate the decay of the function outside the ‘central

region’ (the region −1 ≤ sx ≤ 1) of the integrand function. This central region corresponds to the

region where the plane wave mode parameter n = 0 and the scan angle parameter sx1 = sx. The

range (or region) −3 ≤ sx ≤ −1 corresponds to n = −1 and the region 1 ≤ sx ≤ 3 corresponds

to n = +1 (sx1 in both cases varies −1 ≤ sx1 ≤ 1) and so on. In this manner, we see that sx

behaves as a continuous real variable.

It appears in Figure 3.2 that the most important features of the integrand occur in the central

region and just immediately beyond it. The integrand has singularities at the upper and lower

bounds of the central region, sx = ±1. This is caused by the factor ry1 becoming zero at precisely

these points. Also at that point, ry1 abruptly changes from a purely real-valued function to purely

imaginary. This is a feature unique to the case of lossless slab coating materials. Beyond the central

region, |sx| > 1, the function decays very rapidly and there are no singularities.

We observe symmetry in the integrand function in Figure 3.2 in that the real part of the

integrand is odd symmetric about sx = 0 outside the central region while the imaginary part

displays even symmetry. The function is not symmetric in the central region.

What happens to the integrand function when we add the loss component to the permeability

of the slab coating material? With source and field points in the same location as in Figure 3.2, the

ASM integrand for this case is shown in Figure 3.3. Figure 3.3 is plotted to the same scale used

for Figure 3.2 to highlight the effects of lossy material parameters on the integrand function.

We immediately notice that the loss component of the permeability has caused the shape of

the integrand function to be altered, removing the singularities in the function at sx = ±1.1 For

cases where the slab coating material is lossy, the factor ry1 is complex with a negative imaginary

part for all values of sx and there is no abrupt change in ry1 going from pure real to pure imaginary.

Finally, we notice the function outside the central region is not symmetric and decays at different

rates on either side of the central region for increasing |sx|.

1The singularities have moved off the real sx axis
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Figure 3.3 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2 − j1.

Looking now at the behavior of the Gzz integrand function for TE polarization, we plot the

function for the case of a lossless magneto-dielectric slab coating material having εr = 3.25 and

µr = 2. This case is plotted in Figure 3.4. The first impression is that this integrand function is

much more complicated than that seen in the lossless material case for TM polarization. Strong

singularities are present at |sx| = 1 and at the critical angles (having values sc = ±.3922 for

these material property values). The singularities at |sx| = 1 are again caused by the ry1 going to

zero at those points. The singularities at the critical angles arise from the factor ryo vanishing (and

abruptly changing from purely real to purely imaginary) at those points, in the reflection coefficient

for TE polarization in Equation (2.54).

For the lossy material case (µr = 2− j1), Figure 3.5, we again see strong singularities at the

critical angles but the singularities at |sx| = 1 are removed from the real sx axis since the factor ry1

for this case is complex. The singularities at the critical angles remain, however, because the factor
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Figure 3.4 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

ryo still vanishes and exhibits the abrupt change from real to imaginary at the critical angles. As

was seen in Figure (2.4), ryo is either pure real or pure imaginary, abruptly changing at the location

of the critical angles, and is independent of any loss components in the slab coating material. As

was discussed in Chapter 2, the reflection coefficient and T-factors for TE polarization are more

sensitive to this change in ryo .

In summarizing this section, it is readily apparent that numerical integration of these inte-

grand functions will be difficult. For the cases presented here, there is in general no symmetry

in the integrand functions that could be exploited to accelerate the numerical integration process.

For the lossless materials, integration along the real sx axis will require the avoidance of strong

singularities, especially in the case of TE polarization.
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Figure 3.5 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2 − j1.

3.1.2 Integrand Functions for Dyadic Green’s Function Components. So far, we have

briefly examined only integrand functions occurring in the canonical Green’s function term Gzz ,

Equation (3.1). We look now at other integrand functions arising in the matrix representation of

the dyadic Green’s function expression of Equation (2.17). The final form of the bounce correction

component expressions were identified in Equations (2.43) - (2.50) for Gxx, Gxy, Gxz , Gyy, and

Gyz .

We will use the same lossless material property values used in the previous section for the

canonical Green’s function term, noting that the lossless material property cases present the greatest

challenge for numerical integration. Also, recall that we need look at only the five additional

integrand functions specified above since Gxy = Gyx, Gzx = −Gxz , and Gzy = −Gyz , for both

polarization cases.
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Again choosing the frequency to be 11.8 GHz, plots for several examples of these component

integrand functions are shown in Figures 3.6 through 3.11. Additional integrand function plots for
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Figure 3.6 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

these Green’s function components are included in Appendix C.

In Figure 3.6, the integrand function for the Gxx bounce correction term for TM polarization

is plotted. From Equation (2.43), the expression for this term is

Gbounce, xx =
jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞
Try1e

−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1

We see in the figure that singularities occur at |sx| = 1 due to the factor ry1 vanishing at precisely

these points. As in the case of Gzz for lossless material, the real part of the integrand function

exhibits odd symmetry outside the central region while the imaginary part exhibits even symmetry,

but no symmetry is observed in the central region. Comparing Figure 3.6 to Figure 3.2, an interest-
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ing and important difference between the Gxx and Gzz integrand function behavior is the slower

rate of decay of the Gxx integrand function for increasing |sx|. Whereas integration of Gzz in the

region 5 ≤ |sx| ≤ 3 would yield a result of approximately zero, such is obviously not the case for

Gxx, and higher order plane wave modes (modes |n| > 1) make a non-trivial contribution to the

value of the integral.
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Figure 3.7 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

In Figure 3.7 is shown the bounce correction integrand function for Gxy for TE polarization.

This expression, given earlier as part of Equation (2.44), is

Gbounce, xy = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞
T rrx1e

−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1

For the TE polarization, lossless material case, we again observe strong singularities at the critical

angles. Singularities are also observed at |sx| = 1 and a slow rate of decay of the function outside
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the central region implies that additional plane wave modes will have to be included in the integral

for the most accurate results.
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Figure 3.8 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

Figure 3.8 is a plot of the integrand function for the Gxz Green’s function term. This expres-

sion, from Equation (2.45), is

Gbounce, xz =
Re(k1)

4π

∫ 1

−1

∞
∑

n=−∞
T re−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1

Again for this case, singularities at |sx| = 1 are observed. Interestingly, this plot exhibits even

symmetry for the real part of the integrand function outside the central region and odd symmetry

for the imaginary part.
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Figure 3.9 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

In Figure 3.9, the integrand function for the Gyy bounce correction term for TE polarization

is plotted. From Equation (2.47), this rather complicated expression is

Gbounce, yy = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞

[

T

ry1

+ 2ry1T
r

]

e−jk1[(x−x′)rx1+|y−y′|ry1 ]dsx1

Strong singularities are observed at the critical angles and at |sx| = 1. Even symmetry in the imag-

inary part of the function and odd symmetry in the real part is seen outside the central region, as

well as a slow decay in the function again implying that higher order plane wave modes contribute

to the integral.

The austere appearance of the Gyy integrand function for TE polarization in Figure 3.9 may

perhaps raise one’s curiosity about the nature of the Gyy integrand function for TM polarization.

How does a change in polarization affect the behavior of this integrand function when all other
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Figure 3.10 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

parameters remain the same? In Figure 3.10 is a plot (using the same scale) of the Gyy term for

TM polarization. We see the singularities at |sx| = 1 are still present but the singularities at the

critical angles are not. The symmetry characteristics and decay rates of the functions are similar.

Judging from appearances, however, numerical integration of the function for TM polarization

should be somewhat less difficult.

The final case we examine here is for the Gzy integrand function. For TE polarization, this

function is plotted in Figure 3.11. The expression was given in Equation (2.50), and is

Gbounce, zy = −Re(k1)

4π

∫ 1

−1

∞
∑

n=−∞
T

rx1

ry1

e−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1

Again, strong singularities are in evidence at the critical angles and at |sx| = 1. For this function,

the real part displays even symmetry outside the central region while the imaginary part displays
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Figure 3.11 Source point at (x′, y′) = (0, 0), field point at (x, y) = (100, 40). Slab coating
material thickness = 40, εr = 3.25, µr = 2.0.

odd symmetry. Also outside the central region, the function decays almost as rapidly as the Gzz

function as seen in Figure 3.4.

From the figures shown in this section, we see a number of similarities in the behavior of

these various Green’s function integrands compared to the canonical term. Numerical integration

of these terms must accommodate the singularities seen at the critical angles and at |sx| = 1 in

cases of lossless slab coating material. We also see that some of these integrands decay at different

rates outside the central region, sometimes much more slowly than in the case of the Gzz Green’s

function. The rate of decay of these integrand functions directly impacts the number of ASM

modes which must be included in the integration to obtain an accurate result. To be most efficient,

we wish to integrate over as few modes as necessary.
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3.1.3 Summary. In summary, the numerical integration of the ASM-derived Green’s

function bounce correction terms must be performed very carefully for lossless slab coating mate-

rial cases. For lossy material cases, the TM polarization integrand functions are not as difficult but

the TE polarization integrand functions still present singularities at the critical angles. In order to

keep the number of function evaluations to a minimum, and to efficiently handle the wide variety of

function shapes–ranging from the singular lossless material cases to the smooth, continuous lossy

material cases–the integration algorithm should be adaptive. It is also desirable that the integration

routine provide a means to evaluate the integrals to within some error tolerance value.

To this end, a recursive adaptive Simpson’s rule algorithm available in version 6 of the

Matlabr commercial software package is used to evaluate these integrand functions. This routine,

though not a true open end formula, checks for infinities located at the end points of the integration

range and adjusts the end points if an infinity is found. The integrand functions are subdivided,

with breaks occurring at sx = ±sc and sx = ±1, and fed sequentially to the integration algorithm

resulting in multiple calls to the subroutine for each integral expression evaluated. In essence, we

are employing the algorithm referred to as Method I in Section 6.2 of Isaacson and Keller, [39],

then breaking the range of integration at points where a singularity can be expected to occur, as in

Section 6.1 of [39].

3.2 Moment Method Solution

We have seen now that the ASM-derived bounce correction terms of the internal Green’s

function expressions will be difficult to numerically integrate. Since a recursive adaptive algorithm

may require several iterations to converge to a solution, it is desirable to minimize the number of

times these integrals need be evaluated. In the Method of Moments, the pulse basis expansion -

delta function testing approach, also known as point matching, will require the minimum number

of function evaluations. This statement is based on the fact that the pules basis expansion function

becomes a constant unknown coefficient in each moment method cell. And with the delta function

testing, we utilize the sifting property of the delta function to greatly simplify the evaluation of the

resulting integrals.

In Section 1.4.1 a brief overview of the solution procedure was presented culminating in

Equations (1.16) through (1.21), which expanded the unknown equivalent volume currents into
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pulse basis functions and unknown expansion coefficients. We pick up the Moment Method solu-

tion from that point, presenting the details of the solution procedure for both TM and TE polariza-

tion cases.

3.2.1 TM Polarization. Beginning with the TM polarization case, we substitute the

pulse basis equivalent currents into the coupling matrix of Equation (2.22) and the ∆Z matrix of

Equation (2.24). This produces the set of coupled equations,

H i
x = jωεr

∫∫

Vgap

Gxx

N
∑

n=1

dxnPM
n dVgap + jωεr

∫∫

Vgap

Gxy

N
∑

n=1

dynPM
n dVgap

−
∫∫

Vgap

Gxz

N
∑

n=1

cnP J
n dVgap +

∑N
n=1 dxnPM

n

jω(µg − µr)
(3.2)

H i
y = jωεr

∫∫

Vgap

Gyx

N
∑

n=1

dxnPM
n dVgap + jωεr

∫∫

Vgap

Gyy

N
∑

n=1

dynPM
n dVgap

−
∫∫

Vgap

Gyz

N
∑

n=1

cnP J
n dVgap +

∑N
n=1 dynPM

n

jω(µg − µr)
(3.3)

Ei
z =

∫∫

Vgap

Gzx

N
∑

n=1

dxnPM
n dVgap +

∫∫

Vgap

Gzy

N
∑

n=1

dynPM
n dVgap

+jωµr

∫∫

Vgap

Gzz

N
∑

n=1

cnP J
n dVgap +

∑N
n=1 cnP J

n

jω(εg − εr)
(3.4)

in which the dxn, dyn and cn are the unknown expansion coefficients to be determined.

We want to be more specific at this point in defining some of our symbols and notation.

While the Green’s function terms are each a combination of a spatial domain term (the direct, free

space Hankel function components) and the spectral domain term (the ASM-derived bounce cor-

rection components), the spatial dependence of each has always been the variables (x, y; x′, y′).

The integration variables denoted by the differential term, dVgap, are the source (primed) coordi-

nate variables, i.e., dVgap = dx′ dy′, where the range of integration is constrained to the gap region

geometry. We also recall the definition of the terms P J
n and PM

n , given in Equations (1.18) and

(1.19), as that of being the inverse of the subcell area, An, which will be a constant in each inte-

gral. We can now exchange the order of summation and integration in Equations (3.2) – (3.4) and

rewrite them in a simplified manner by extracting the various constants that have been introduced.
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Further simplification (or at least, a more compact notation) is achieved by introducing an operator

notation to represent the common integration operations. To this end, we define

Lαβ(P J,M
n ) =

1

An

∫∫

cell n
Gαβ(x, y; x′, y′) dx′ dy′ (3.5)

and now rewrite Equations (3.2) - (3.4) as

H i
x =

N
∑

n=1

[

jωεrdxnLxx(PM
n ) + jωεrdynLxy(P

M
n ) − cnLxz(P

J
n ) +

dxnPM
n

jω(µg − µr)

]

(3.6)

H i
y =

N
∑

n=1

[

jωεrdxnLyx(PM
n ) + jωεrdynLyy(P

M
n ) − cnLyz(P

J
n ) +

dynPM
n

jω(µg − µr)

]

(3.7)

Ei
z =

N
∑

n=1

[

dxnLzx(PM
n ) + dynLzy(P

M
n ) + jωµrcnLzz(P

J
n ) +

cnP J
n

jω(εg − εr)

]

(3.8)

The next step in the moment method procedure is to introduce a testing function which is

used to form an inner product with the pulse basis expansion set shown in Equations (3.6) - (3.8).

For our inner product we will use the symmetric product,

< f, g >=

∫∫

V
f · g dV

[26] where dV = dx dy. Calling our testing function θm (where m = 1, 2, 3, ... N ) we write,

< H i
x, θm > =

N
∑

n=1

[

jωεrdxn < Lxx(PM
n ), θm > +jωεrdyn < Lxy(P

M
n ), θm >

− cn < Lxz(P
J
n ), θm > +

dxn

jω(µg − µr)
< PM

n , θm >

]

(3.9)

< H i
y, θm > =

N
∑

n=1

[

jωεrdxn < Lyx(PM
n ), θm > +jωεrdyn < Lyy(P

M
n ), θm >

− cn < Lyz(P
J
n ), θm > +

dyn

jω(µg − µr)
< PM

n , θm >

]

(3.10)

< Ei
z, θm > =

N
∑

n=1

[

dxn < Lzx(PM
n ), θm > +dyn < Lzy(P

M
n ), θm >
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+ jωµrcn < Lzz(P
J
n ), θm > +

cn

jω(εg − εr)
< P J

n , θm >

]

(3.11)

For our problem we will choose the testing functions to be delta functions located at the

center of each volumetric subcell of the discretized gap region (recall Figure 1.8). With this testing

function, defined as θm = δ(x − xm)δ(y − ym) and where (xm, ym) are the locations of the

centers of the volumetric subcells, we can employ the sifting property of the delta function to

greatly simplify our set of equations. On the left hand side, where each incident field component

carries an implicit (x, y) functional dependence, each term is now evaluated at each of the N

centers comprising the gap region, e.g., < E i
z, θm >= Ei

z(xm, ym). On the right hand side, the

operator terms become

< Lαβ(P J,M
n ), θm >=

1

An

∫∫

cell n
Gαβ(xm, ym; x′, y′) dx′ dy′ (3.12)

where, in this instance, (x′, y′) are the coordinates associated with volumetric source cell n. We

will discuss later how this equation is solved for various cases depending on how close the field

(x, y) and source (x′, y′) points are to one another. Finally, the ∆Z matrix terms, after substituting,

for example, P J
n = 1/An become,

cn < 1, θm >

jωAn(εg − εr)
=

cnδmn

jωAn(εg − εr)

where δmn is the Kronecker delta,

δmn =







1, m = n

0, m 6= n

This implies that the ∆Z matrix terms only occur on the diagonal of the ∆Z matrix and therefore,

only modify the self impedance terms of the Gxx, Gyy, and Gzz blocks of the full impedance

matrix.
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3.2.2 TE Polarization. This is the dual of the TM Polarization case. We can write

equations analogous to Equations (3.2) - (3.4),

Ei
x = jωµr

∫∫

Vgap

Gxx

N
∑

n=1

dxnP J
n dVgap + jωµr

∫∫

Vgap

Gxy

N
∑

n=1

dynP J
n dVgap

+

∫∫

Vgap

Gxz

N
∑

n=1

cnPM
n dVgap +

∑N
n=1 dxnP J

n

jω(εg − εr)
(3.13)

Ei
y = jωµr

∫∫

Vgap

Gyx

N
∑

n=1

dxnP J
n dVgap + jωµr

∫∫

Vgap

Gyy

N
∑

n=1

dynP J
n dVgap

+

∫∫

Vgap

Gyz

N
∑

n=1

cnPM
n dVgap +

∑N
n=1 dynP J

n

jω(εg − εr)
(3.14)

H i
z = −

∫∫

Vgap

Gzx

N
∑

n=1

dxnP J
n dVgap −

∫∫

Vgap

Gzy

N
∑

n=1

dynP J
n dVgap

+jωεr

∫∫

Vgap

Gzz

N
∑

n=1

cnPM
n dVgap +

∑N
n=1 cnPM

n

jω(µg − µr)
(3.15)

and use the definition in Equation (3.5) to write

Ei
x =

N
∑

n=1

[

jωµrdxnLxx(P J
n ) + jωµrdynLxy(P

J
n ) + cnLxz(P

M
n ) +

dxnP J
n

jω(εg − εr)

]

(3.16)

Ei
y =

N
∑

n=1

[

jωµrdxnLyx(P J
n ) + jωµrdynLyy(P

J
n ) + cnLyz(P

M
n ) +

dynP J
n

jω(εg − εr)

]

(3.17)

H i
z =

N
∑

n=1

[

−dxnLzx(P J
n ) − dynLzy(P

J
n ) + jωεrcnLzz(P

M
n ) +

cnPM
n

jω(µg − µr)

]

(3.18)

analogous to Equations (3.6) - (3.8). Using the same inner product and testing function definitions

used for TM polarization, applying the moment method procedure we can write

< Ei
x, θm > =

N
∑

n=1

[

jωµrdxn < Lxx(P J
n ), θm > +jωµrdyn < Lxy(P

J
n ), θm >

+ cn < Lxz(P
M
n ), θm > +

dxnδmn

jωAn(εg − εr)

]

(3.19)

< Ei
y, θm > =

N
∑

n=1

[

jωµrdxn < Lyx(P J
n ), θm > +jωµrdyn < Lyy(P

J
n ), θm >
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+ cn < Lyz(P
M
n ), θm > +

dynδmn

jωAn(εg − εr)

]

(3.20)

< H i
z, θm > =

N
∑

n=1

[

− dxn < Lzx(P J
n ), θm > −dyn < Lzy(P

J
n ), θm >

+ jωεrcn < Lzz(P
M
n ), θm > +

cnδmn

jωAn(µg − µr)

]

(3.21)

analogous to Equations (3.9) - (3.11).

3.3 Evaluation of Moment Method Expressions

Successful computation with the expressions developed in the previous section for either po-

larization is dependent on accurate evaluation of the various operator terms represented by Equa-

tion (3.12). As is typical in most moment method implementations, we will perform this evaluation

somewhat differently depending on the relative location of the source and receiver cells. We will

look at three categories: distant terms, where the receiver is separated from the source cell by more

than one cell width; adjacent terms where the receiver is located in a cell adjoining the source cell;

and self terms, where the source and receiver are collocated inside a cell. Of the three categories,

the most crucial to achieving highest computational accuracy is the self term. It is also the most

difficult to evaluate due to singularities that arise in the direct coupling terms as spatial distances

between source and receiver locations vanish. While we saw previously in this chapter that sin-

gularities occur in the ASM-derived bounce correction terms, these singularities were associated

with spectral domain factors. While these spectral domain singularities were most pronounced for

self term cases, no singularities occur in the bounce correction terms as a result of collocation of

source and receiver in a self term.

3.3.1 Evaluation of Self Terms. The self terms of each of the operator expressions given

earlier are integrals over the subcell area of the hybrid Green’s function expressions developed

in Chapter 2. These hybrid Green’s functions are composed of the direct coupling component

terms and bounce correction term derived from the ASM technique. We note from the bounce

correction term expressions given in Chapter 2, and from the various plots of the ASM integrand

functions presented earlier in this chapter, that the bounce correction terms do not suffer from any
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singularities as a result of the coalescing of the source and receiver locations. These expressions

remain finite even when the source and receiver points are collocated. The singularities observed

in these integrand functions were the result of the spectral domain nature of these expressions.

What remains now is to look at the direct coupling components in which we expect to encounter

singularities as a result of the coalescence of source and receiver locations as these components

were all seen to be various combinations of Hankel functions.

As was mentioned before, there exist open source literature routines for computing these

Hankel functions, even with complex argument. We are speaking of the well known Amos sub-

routines, developed at the Sandia National Laboratory a number of years ago [25]. This Bessel

function computation package has been incorporated into Matlabr version 6. Thus, we need ex-

pend no effort in developing a routine of our own for computing the needed Hankel functions for

this application. However, we will need to look at what is required to evaluate the self terms for

the various Hankel functions contained in the Green’s function expression components.

We will employ the circle extraction technique [30] to evaluate the self terms of the direct

coupling expressions. The basic concept of the approach is depicted in Figure 3.12. To begin, we

Cell n

Centroid Circle of equivalent area of cell n

PSfrag replacements

center

cell n

circle of equivalent area of cell n

x̂

ŷ

a

Figure 3.12 Circle Extraction Technique Computes the Self Term by Replacing the Moment
Method Cell with a Circle of the Same Area

recast the direct coupling terms in Equations (2.43) - (2.51) into a cylindrical coordinate system

with origin at the center of an arbitrary moment method cell such that ρ′ = 0 (there is no loss in

generality in doing this),

Gxx, dc =
1

4j

[

H(2)
o (kρ) sin2(φ) − H

(2)
1 (kρ)

kρ
cos(2φ)

]

(3.22)
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Gxy, dc =
1

4j
cos(φ) sin(φ)

(

2
H

(2)
1 (kρ)

kρ
− H(2)

o (kρ)

)

(3.23)

Gxz, dc = − k

4j
H

(2)
1 (kρ) sin(φ) (3.24)

Gyx, dc =
1

4j
cos(φ) sin(φ)

(

2
H

(2)
1 (kρ)

kρ
− H(2)

o (kρ)

)

(3.25)

Gyy, dc =
1

4j

[

H(2)
o (kρ) cos2(φ) − H

(2)
1 (kρ)

kρ
cos(2φ)

]

(3.26)

Gyz, dc =
k

4j
H

(2)
1 (kρ) cos(φ) (3.27)

Gzx, dc =
k

4j
H

(2)
1 (kρ) sin(φ) (3.28)

Gzy, dc = − k

4j
H

(2)
1 (kρ) cos(φ) (3.29)

Gzz, dc =
1

4j
H(2)

o (kρ) (3.30)

and apply the circle extraction technique to each. Starting with the simplest, Gzz , we have that

1

4j

∫ 2π

0

∫ a

0
H(2)

o (kρ) ρ dρ dφ =
aπ

2jk
H

(2)
1 (ka) − 1

k2

where a is the effective radius of our moment method cells obtained from a =
√

An/π, and An is

the area of moment method cell n.

Looking next at the similar terms for Gyz , Gzy, Gzx and Gxz , we have

± 1

4j

∫ 2π

0

∫ a

0
kρ







cos(φ)

sin(φ)







H
(2)
1 (kρ) dρ dφ = ± 1

4j

∫ a

0
kρH

(2)
1 (kρ)







sin(φ)

− cos(φ)







∣

∣

∣

∣

∣

∣

2π

0

dρ = 0

and find that the self terms for Gyz , Gzy, Gzx and Gxz are zero.

Next, employing the identity 2 cos(φ) sin(φ) = sin(2φ), we have for Gxy and Gyx,

1

8j

∫ 2π

0

∫ a

0
sin(2φ)

[

2
H

(2)
1 (kρ)

k
− ρH(2)

o (kρ)

]

dρ dφ =

1

8j

∫ a

0

[

2
H

(2)
1 (kρ)

k
− ρH(2)

o (kρ)

]

[

−1

2
cos(2φ)

]∣

∣

∣

∣

2π

0

dρ = 0
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and see that these two self terms also vanish.

Finally, for Gxx and Gyy we have

1

4j

∫ 2π

0

∫ a

0

[

H(2)
o (kρ) cos2(φ) − H

(2)
1 (kρ)

kρ
cos(2φ)

]

ρ dρ dφ =

1

4j

∫ a

0

[

πH(2)
o (kρ) − H

(2)
1 (kρ)

kρ

[

1

2
sin(2φ)

]
∣

∣

∣

∣

2π

0

]

ρ dρ

We recognize that the second term in the integrand on the right hand side vanishes. That which

remains is
π

4j

∫ a

0
ρH(2)

o (kρ) dρ =
π2a

2jk
H

(2)
1 (ka) − π

k2

and thus we see that the only non-zero direct coupling self terms are those obtained from Gxx, Gyy

and Gzz .

In Figure 3.12, the circle extraction technique is depicted as it might be applied to a cell of

irregular shape. A cell shaped like this could arise from a gap region that is non-rectangular in

shape. Since the circle extraction technique is an approximation employed to represent the value

of the integral of the Hankel function expressions over a square cell, it is natural to ask how the

approximation degrades as the shape of the cell departs from a square. To address this issue, an

algorithm was devised that compares the physical region of a rectangular cell to the region of it’s

equivalent circle, and computes the 2D integral of the Hankel function expression in the areas

remaining after subtracting the circle region from the rectangular cell region. This algorithm was

applied to a series of rectangular cells of aspect ratios2 ranging from 1 (a square) to 2 and the result

is plotted in Figure 3.13 for two different slab coating materials each at a different frequency. For

a square cell, the circle approximation should be fairly good, and the value of the integral over the

circular cell is used as the ‘truth’ value in calculating these percentage differences. While neither

line increases monotonically, the trend is both obvious and consistent for the two slab materials

modelled. The plot suggests that it is desirable to keep our moment method cells as nearly square as

possible. For gaps that are non-rectangular in shape, the gap region gridding algorithm will produce

2where the aspect ratio is defined as the width of the cell (x dimension) divided by it’s height (y dimension)
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Figure 3.13 Slab coating material properties are εr = 3.25, µr = 1.0 at 8 GHz,; and εr = 10.6,
µr = 1.3 − j1.3 at 12 GHz. Both curves for TM polarization.

cells that are non-rectangular, and we expect that as the aspect ratio of these non-rectangular cells

increases, a similar degradation in the approximation as that shown in Figure 3.13 will occur.

3.3.2 Adjacent Terms. In this implementation, we define adjacent terms as those which

occur between moment method cells that share a common cell side. If we approximate our moment

method cells as square, we can apply from Section 25.4.62 of [31] a formula for two dimensional

numerical integration. Desiring to evaluate Equation (3.22) at as few points as possible within each

adjacent cell, we choose the formula for four points per cell. Each evaluation then has a weight of

1
4 and the inner product expressions (3.9) - (3.11) are evaluated, using our notation, at field points

(x, y) = ±1
2

√

1
3 (∆x, ∆y), measured from the center of the cell, where (∆x, ∆y) are the average

width and height of each moment method cell, and (x′, y′) the center of the source cell. This is

seen to be very nearly a simple averaging of the inner product expressions evaluated at nearly the

centers of the four quadrants of the cell. For this Gauss-Legendre two dimensional integration
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formula, the integral evaluation points occur at ∼ ±0.29(∆x, ∆y). The remainder associated with

this integration formula is given [31] for a square cell to be on the order of A2
n

16 .

Alternative approaches that could be used to evaluate the adjacent terms are two dimensional

Trapezoidal or Simpson rules. In either case, these alternative approaches would likely result in an

increased number of function evaluations.

3.3.3 Distant terms. Distant terms are applicable to moment method cells that are more

than one cell width apart (that is to say, the centers of these cells are more than a cell width

apart). For these cases, the inner product expressions are approximated as if the Green’s function

is constant over the field cell [15: pg 689]. Equation (3.12) for this case is then simply evaluated

as,

< Lαβ(P J,M
n ), θm >= Gαβ(xm, ym; xn, yn) (3.31)

where (xm, ym) is the center of the field cell m, and (xn, yn) is the center of the source cell n. This

amounts to a function evaluation, part of that function being the ASM-derived bounce correction

term.

The definition of an adjacent cell can be easily expanded to include cells that share a common

vertex (or corner). This suggests a simple numerical experiment that can give us an indication of

the error induced by using the simple distant term approximation in Equation (3.31). When the

definition of adjacent cells is expanded, the coupling between cells that share a common vertex is

computed using the four point integration algorithm described in the previous section instead of

the simpler approximation given here.

When this numerical experiment was carried out, a slight increase in coupling between these

newly defined adjacent cells was observed (in the experiment we assumed a slab coating material

having properties εr = 10.6, µr = 1.3 − j1.3, at a frequency of 12 GHz, with square cells 10

mils per side). The increase in coupling magnitude was observed to be about 1.5%. However,

when the matrix was solved and the scattering from the gap computed, no difference was observed

and the comparative data were graphically equivalent. What was discernable, however, was that

the calculations were slowed by 20% using the expanded definition of adjacent cells. Thus we

conclude that there is no need to define adjacent cells as those sharing common vertices in the gap
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region discretization, and the definition of distant cells given in Equation (3.31) yields sufficient

accuracy.

3.3.4 Summary. In summarizing this section, we see that the quadrature techniques

employed call for the gap region to be discretized into square cells. For cases where this is not

possible, the gap region should be discretized so that the cells are as close to square as possible.

Alternative evaluation techniques are available that may produce more accurate representations

for a wider variety of cell shapes. However, these alternative techniques are likely to require

many additional function evaluations. In an effort to keep the number of function evaluations to a

minimum, we employ the approximations described here with the knowledge that more accurate

techniques are available, and could be implemented, but at the cost of lengthier computation time.

Since our primary purpose here is to verify the theory developed in Chapter 2, we employ the

approximations described above.

3.4 Evaluation of Incident Fields

From Equations (3.9) - (3.11) for TM polarization and Equations (3.18) - (3.20) for TE po-

larization, we can readily evaluate the incident field expressions obtained in Section 2.6. Recalling

the definition of our symmetric product, we express the left side of Equation (3.9) as

< H i
x(x, y), θm >=

∫∫

Vgap

H i
x(x′, y′) δ(x′ − xm)δ(y′ − ym) dx′ dy′ = H i

x(xm, ym) (3.32)

which is the incident field evaluated at the center of moment method cell m. Similar results hold

for H i
y, and Ei

z for the TM polarization case and Ei
x, Ei

y, and H i
z in the TE polarization case.

3.5 Far Zone Scattering and 2-D Echo Width

As we stated earlier, we use the external Green’s function to determine the fields in the free

space region resulting from the currents within the gap region. To determine the 2-D echo width

of the scattering from the gap, we will need to evaluate Equation (2.61) an infinite distance away

from the gap region.
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From Equations (2.22) and (2.52), we see that the ẑ-directed fields are given by the third row

of each matrix. The scattered fields needed to compute the echo width of the gap will then be, for

TM polarization,

Es
z = −

(

< Gext
zx , Mx > + < Gext

zy , My > +jωµr < Gext
zz , Jz >

)

(3.33)

and for TE polarization,

Hs
z =< Gext

zx , Jx > + < Gext
zy , Jy > −jωεr < Gext

zz , Mz > (3.34)

where the Js and Ms are the volumetric equivalent unknown currents computed via the moment

method of Section 3.2, and Gext
zx , Gext

zy and Gext
zz are the external Green’s functions necessary to

radiate the fields of these currents into the medium outside the slab. These expressions are given

by Equations (2.66), (2.67) and (2.61) respectively.

With the array spacing chosen to be Dx = λ1/2, we are assured that only the n = 0

plane wave mode will survive into the far field as all evanescent plane wave modes will decay

exponentially with distance away from the interface. This enables us to simplify Equations (2.61),

(2.66) and (2.67) to give

Gext
zx = − ko

4π

∫ 1

−1
e−jk1[(d−y′)ry1−x′rx1 ] T ext

r e−jko[(y−d)ryo+xrxo ] dsxo (3.35)

Gext
zy =

ko

4π

∫ 1

−1

rx1

ry1

e−jk1[(d−y′)ry1−x′rx1 ] T exte−jko[(y−d)ryo+xrxo ] dsxo (3.36)

Gext
zz = − jko

4πk1

∫ 1

−1

e−jk1[(d−y′)ry1−x′rx1 ]

ry1

T exte−jko[(y−d)ryo+xrxo ] dsxo (3.37)

as our external Green’s function expressions, where in each rx1 , ry1 , rxo , and ryo , n = 0. We also

recall that T ext and T ext
r have slightly different forms for TM and TE polarization cases.

With these expressions now available to us, we can compute the far zone scattered fields

from the gap. It is interesting to observe the behavior of the integrand of the canonical external

Green’s function as the field (receiver) location moves increasingly away from the source location.

In Figure 3.13, we examine the behavior of this integrand function for the three receiver locations

shown. We note that as the receiver location recedes away from the source location (in the gap re-
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gion), the integrands become increasingly oscillatory as demonstrated by the progression shown in

Figures 3.15 through 3.17. The shape of the integrands in Figures 3.15 - 3.17 become increasingly

reminiscent of the classical examples leading to the development of the stationary phase method.

In order to apply stationary phase to the integrals in Equations (3.35) - (3.37), we recall (re-

ferring to Figure 2.2) that the parameter sx1 = sin φ1 where φ1 is the scan angle of the hypothetical

ASM array inside the slab coating material. The factor rx1 , for the central plane wave mode term

n = 0, is equivalent to sx1 (apart from the complex constant Re(k)
k ). Then, since ry1 =

√

1 − r2
x1

,

ry1 can be likened to the cosine of the array scan angle and we substitute ry1 = cos φ1. Travers-

ing the interface from the slab coating material to free space, the factors rxo and ryo give the

corresponding array scan angle direction in the free space exterior region. Thus we can write

rxo = sin φo and ryo = cos φo, where φo is the ‘refracted’ array scan angle exterior to the slab.

Making these substitutions in Equations (3.35) - (3.37), valid only for the plane wave mode term

n = 0, and with d sin φo = cosφo dφo, we have

Gext
zx = − ko

4π

∫ π/2

−π/2
cos φo e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext

r e−jko[(y−d) cos φo+x sin φo] dφo

Gext
zy =

ko

4π

∫ π/2

−π/2

sin φ1 cos φo

cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T exte−jko[(y−d) cos φo+x sin φo] dφo
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Figure 3.15 External Green’s function integrand for field point in free space 5 inches directly
above source point in slab. Slab coating material εr = 3.25, µr = 1.0. TM polar-
ization, f = 8 GHz

Gext
zz = − jko

4πk1

∫ π/2

−π/2

cos φo

cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T exte−jko[(y−d) cos φo+x sin φo] dφo

To apply the stationary phase method to these integral expressions we look at the common

exponential term e−jko[(y−d) cos φo+x sin φo] and rewrite it as e−jkoρ cos(φo−φb) after converting to a

cylindrical coordinate system where

ρ =
√

(y − d)2 + x2

and

φb = tan−1

(

x

y − d

)

The geometry and various substitutions made in converting the integrals to a form appropriate for

applying the stationary phase procedure are depicted in Figure 3.18. Proceeding, we rewrite the
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Figure 3.16 Field point in free space 10 inches directly above source point in slab. Slab coating
material εr = 3.25, µr = 1.0. TM polarization, f = 8 GHz

Green’s function expressions as

Gext
zx =

∫ π/2

−π/2
Fzx(φo)e

−jkoρ cos(φo−φb)dφo

Gext
zy =

∫ π/2

−π/2
Fzy(φo)e

−jkoρ cos(φo−φb)dφo

Gext
zz =

∫ π/2

−π/2
Fzz(φo)e

−jkoρ cos(φo−φb)dφo

where

Fzx(φo) = − ko

4π
cos φo e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext

r

Fzy(φo) =
ko

4π

sin φ1 cos φo

cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext

and

Fzz(φo) = − jko

4πk1

cos φo

cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext
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Figure 3.17 Field point in free space 20 inches directly above source point in slab. Slab coating
material εr = 3.25, µr = 1.0. TM polarization, f = 8 GHz

With ρ → ∞, we identify the large parameter in each integrand as koρ.

Applying the stationary phase procedure [28: Section 4.2c], we identify the stationary phase

point as that which satisfies the condition

∂

∂φo
cos(φo − φb) = 0

This occurs at φo = φb and we approximate the far zone integral expressions as

Gext
zx ≈ −ko cos φb

4π
e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext

r (φb)

√

2π

koρ
e−j(koρ−π

4 ) (3.38)

Gext
zy ≈ ko sin φ1 cos φb

4π cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext(φb)

√

2π

koρ
e−j(koρ−π

4 ) (3.39)

Gext
zz ≈ −jko cos φb

4πk1 cos φ1
e−jk1[(d−y′) cos φ1−x′ sin φ1] T ext(φb)

√

2π

koρ
e−j(koρ−π

4 ) (3.40)
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where the functional dependence on φb is not explicitly indicated on every component. Media ‘1’

factors in these expressions (e.g., x′ sin φ1) are found using Snell’s Law relationship k1 sin φ1 =

ko sin φb.

Referring back to Equations (3.33) and (3.34), we note that we now have in hand all that we

need to compute the scattered fields. Looking at the term in Equation (3.33), which is the far zone

ẑ-directed electric field resulting from the x̂-directed magnetic equivalent current, we expand the

inner product notation and write

− < Gext
zx , Mx >= −

∫∫

Vgap

Gext
zx (x′, y′)Mx dx′ dy′

With the expansion of Mx given in Equations (1.17) through (1.19), and inserting this expansion

into the above gives,

− < Gext
zx , Mx > = −

∫∫

Vgap

Gext
zx (x′, y′)

N
∑

n=1

dxn

An
dx′ dy′

= −
N
∑

n=1

dxn

An

∫∫

Vgap

Gext
zx (x′, y′) dx′ dy′

For the far zone field, we approximate the integrand by it’s value at the center of the respective

moment method cell n for each dxn of the summation. This allows us to write as our final form

− < Gext
zx , Mx >= −

N
∑

n=1

dxnGext
zx (xn, yn) (3.41)
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where we see that the integral for each n in the summation has evaluated to just the area of the cell,

An.

We can repeat this process for each of the other five components comprising the far zone

electric and magnetic field for each polarization. Along with Equation (3.41), we have for the far

zone electric field in TM polarization:

− < Gext
zy , My >= −

N
∑

n=1

dynGext
zy (xn, yn) (3.42)

−jωµr < Gext
zz , Jz >= −jωµr

N
∑

n=1

cnGext
zz (xn, yn) (3.43)

For TE polarization, we have by dual analogy the expressions for the far zone ẑ-direct mag-

netic field, Equation (3.34):

< Gext
zx , Jx >=

N
∑

n=1

dxnGext
zx (xn, yn) (3.44)

< Gext
zy , Jy >=

N
∑

n=1

dynGext
zy (xn, yn) (3.45)

−jωεr < Gext
zz , Mz >= −jωεr

N
∑

n=1

cnGext
zz (xn, yn) (3.46)

This completes our numerical implementation of the theory developed in Chapter 2. We next

look at the results of this implementation and compare these results to other computer codes and

measurements obtained using actual absorber and gap filler materials.
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IV. Results

The quantity we use to measure the scattering due to the gap is the radar cross section (RCS),

and we could discuss the RCS of the gap and the contribution it makes to the total RCS of, say, a

larger body upon or within which the gap exists (see Figure 1.1). In this work we have restricted

ourselves to the two dimensional case in which the metallic surface is represented by an infinite,

PEC ground plane. The two dimensional version of the RCS is known as the echo width and

our results will be presented in terms of this quantity. The idealization of a 2D structure is not

uncommon in observables work and valuable insight into more complex 3D scattering phenomena

and potential treatment solutions can be gained in this manner [32].

We begin the discussion by recalling the gap geometry shown in Figure 3.1. The computer

model developed in this work allows the slab coating material to possess both dielectric and mag-

netic properties, i.e., within the slab coating, we allow for both εr 6= 1 and µr 6= 1. Thus the term

‘magneto-dielectric’ implies that the coating material is of this more general nature rather than, say,

a pure dielectric material. We have also restricted the slab coating material to be homogeneous,

isotropic, and linear.

The gap region may be filled with either air or perhaps another magneto-dielectric material

different from that of the slab coating material. At this time, the computer code developed in this

dissertation is restricted to dealing with gap filler materials that are homogeneous, isotropic, and

linear. These restrictions could be removed by directly assigning, via table lookup or some other

method, inhomogeneous and/or anisotropic properties to individual moment method cells in the

gap region. The filler material must also be of the same thickness as the slab coating. To overcome

this restriction would require development of a T-factor appropriate for that geometry.

We are also limited to cases where the slab coating material is the same height and has the

same material properties on both sides of the gap. This is an example of a restriction that could not

be removed through use of a different T-factor, but rather where an altogether different procedure

would be required. Finally, while the gap shown in Figure 3.1 is representative in terms of it’s

shape and dimensions, wider or narrower, and non-rectangular gaps are possible, as well as are

gaps in thicker coatings.
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In this chapter, we will compare the results and output of the computer code developed

in this dissertation to several different reference methods. These reference methods consist of two

computer codes and data from RCS range measurements. The measurements were performed at the

Air Force Research Laboratory (AFRL) Multi-Spectral Measurement Facility (MMF) at Wright-

Patterson AFB. The measurement procedures and how the measurement data was processed is

described in Appendix D.

The first computer code, another hybrid Green’s function / Moment Method computer code,

was developed by former AFIT faculty member, Dr. J. Paul Skinner. The development of this

code, which is described in further detail in Appendix F, is essentially the starting point for the

work in this dissertation. The operation of Skinner’s code is basically the same as the hybrid code

developed in this dissertation, but is implemented in FORTRAN and runs on a 450 MHz UltraSparc

II workstation. The second computer code is the industry standard Ram2d code developed by the

Northrop-Grumman Corporation. This FORTRAN code has been under development for many

years and is well optimized for operation on workstation-class computers. For the comparisons

presented in this chapter, Ram2d is run on the same 450 MHz UltraSparc II workstation as is the

Skinner code. Before proceeding, we describe how Ram2d was used as a reference comparison.

4.1 The Ram2d Numerical Test Body

In nearly every result to be presented in this Chapter, the hybrid code developed in this

work will be compared to the Ram2d code. This code, as described in [33], is a 2D surface integral

equation (SIE) Moment Method code that also uses pulse basis functions with delta function testing

(point matching). While Ram2d is designed to compute the scattering from bodies infinite along

an axis of translation (hence the 2D designation), the transverse dimensions of the body must

be finite. The Green’s function employed in the Ram2d SIE formulation is the 2D free space

Green’s function Equation (2.1) but in which the value of the propagation constant k is that of

free space as opposed to that of the slab coating material. Since scattering objects in Ram2d

are modelled as bodies with finite transverse dimensions, the infinite slab-coated ground plane

geometry cannot be modelled with Ram2d.1 So, in order to compare the echo width results from

1Ram2d has an infinite ground plane option but the Green’s function for that case cannot account for an infinite slab
coating on the ground plane.
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Ram2d to that generated by the hybrid code, it is necessary to employ a numerical test body. The

Ram2d numerical test body constructed for generation of this comparison data is depicted in Figure

4.1.

PSfrag replacements
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w

Figure 4.1 Ram2d numerical test body of width w. Lossy material tips have properties similar
to slab coating but with added magnetic loss. Drawing not to scale.

With this test body, two separate runs of Ram2d are necessary to determine the scattering

due to the presence of the gap: one with the gap present in the numerical test body and one

without the gap (this we refer to as a ‘background’ run). The results of these separate runs are

then coherently subtracted with the resulting difference being the scattered signal response due to

the gap. The coherent subtraction process used to produce the Ram2d results is quite similar to the

coherent subtraction process used in the compact range to measure the scattering from the gaps.

This procedure is described further in Appendix D.

The gap region in the test body is given the dimensions of the gap being modelled. For the

background run of Ram2d, the gap is given the same properties as the slab coating material. For the

second run, the gap region properties are changed to correspond to the properties of the gap filler

material, which can be air or some other magneto-dielectric material. The thickness of the gap

region and the slab coating material are set to represent the geometry modelled by the hybrid code.

The width of the test body, w, can be varied but, as discussed below, must be set wide enough so

that surface waves supported by the slab coating material do not dominate the scattering response

due to the gap.

A thin finite-width body such as this will support surface wave modes inside the slab coat-

ing material, which are altered by the presence of the gap to such an extent that they may not
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completely cancel in the coherent subtraction. This is the case for both TM and TE polarization.

Lossy material tips are therefore added to each end of the numerical test body to minimize these

surface wave contributions. The amount of loss incorporated into these tips is small, usually set to

ε′′r , µ
′′
r = 1 or 1.5, depending on the properties of the slab material (for denser coatings the higher

values are used). If the values of the lossy tips are too drastically different from the slab coating

material, additional scattering contributions may arise.

As is evident in the Ram2d results shown in this Chapter, the lossy tips are effective for

TM polarization although some residual may persist. The lossy tips are not as effective for TE

polarization and significant travelling wave residual is seen in many cases. It was found that the

best way to mitigate the effects of residual travelling waves in the Ram2d calculations was to make

w as long as possible although this increases the size of the resulting impedance matrix that must

be inverted by Ram2d. Failure to add these lossy tips to the numerical test body leads to poor

results for Ram2d TE polarization calculations. Bodies for which w is too narrow leads to poor

results in both polarizations. Values of w used to generate the results presented in this chapter were

10 or 11 inches, the shorter for cases where sufficient loss was present in the slab coating material.

4.2 Gap in Pure Dielectric Slab Coating, TM Polarization

The first results we present are for the monostatic echo width of a gap in slab coatings that

are pure, lossless dielectrics (µr = 1) illuminated by a TM polarized wave (the electric field is

purely ẑ-directed, parallel to the axis of the gap). To compute results for a pure dielectric slab

material the only Green’s function component needed is the Gzz , or canonical, Green’s function

term of Equation (2.51). We compare the results of our hybrid code (indicated as ‘Simpson’ in the

following plots) to results obtained with the Skinner code (‘Skinner’), and to Ram2d (‘Ram2d’).

Comparisons using Skinner’s code are presented in echo width in decibels relative to the wave-

length, denoted as dB/λ.

In our first comparison, plotted in Figure 4.2, we have the results for the echo width of a 100

mil (0.1 inch) wide air gap, 40 mils thick, at 8 GHz for a slab coating with εr = 3.25. We see the

‘Simpson’ and ‘Skinner’ codes produce graphically equivalent results and are both in very good

agreement with the Ram2d result.
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Gap Scatter Comparison for 100 mil air filled gap, TM polarization, 8 GHz
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Figure 4.2 Comparison for rectangular air gap 100 mils wide. Slab coating material thickness =
40 mils, εr = 3.25, µr = 1.0, frequency = 8.0 GHz.

The gap region was gridded into five volumetric moment method cells across the width of

the gap by two along the depth (or height) of the gap for the Simpson and Skinner codes (hereafter

referred to using the shorthand ‘5 x 2’). For this gap geometry this produces moment method cells

20 mils square (square cells are desirable to minimize error in the various quadrature approxima-

tions described in Chapter 3). For the dielectric constant of 3.25 at 8 GHz, the wavelength in the

slab coating material is approximately 0.82 inches. 20 mil square cells are just under λ/40 (λ the

wavelength in the slab coating material) per side. For Ram2d, which is a ‘surface’ integral equa-

tion code, five line segment elements across the width of the gap (top and bottom) and two along

the walls of the gap (left and right sides) were used (we will again call this ‘5 x 2’ even though

it actually represents 14 individual line segment elements). This produces as closely as possible a

similar grid representation of the gap region in each of the computer codes. But, since for the hy-

brid codes the number of unknowns come only from the gap region, each had only to fill and solve

a 10 x 10 matrix, a process that takes less than thirty seconds for the ‘Simpson’ code implemented

in Matlabr, and even less for the ‘Skinner’ code running in FORTRAN.
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In the Ram2d result, some residual travelling wave effect is still evident, especially for the

low grazing angles from zero to about 20◦. To reduce this effect, the numerical test body width was

set to w = 11 inches. With the gap region gridding as stated above, this produced a total of 1177

unknowns (1177 x 1177 matrix) for the entire test body, with Ram2d automatically generating the

remainder of the test body discretization using the default setting of 20 segments per wavelength.

Ram2d solved this system in just over two minutes CPU time per run. Setting the test body width

to a value greater than 11 inches would reduce the surface wave effects but at the cost of having to

invert a larger impedance matrix and consequently longer run times.

The vast majority of the Ram2d run time is spent solving (inverting) the matrix. Very little

time is expended in actually filling the matrix, in this first example, only about 4 seconds were

needed. In contrast to this, the hybrid codes spend the majority of their time filling their matrices,

and the matrix solve time for both the Simpson and Skinner codes is almost insignificant compared

to the fill time.
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Gap Scatter Comparison for 100 mil air filled gap, TM polarization, 12 GHz
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Figure 4.3 Comparison for rectangular air gap 100 mils wide. Slab coating material thickness =
40 mils, εr = 3.25, µr = 1.0, frequency = 12.0 GHz.
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Next, in Figure 4.3, we show results for the same geometry and material parameters, but at a

frequency of 12 GHz. Again, the agreement is very good with the ‘Simpson’ and ‘Skinner’ codes

overlaying. In this case, the gridding of the gap region again was 5 x 2. This corresponds to square

cells less than λ/25 on a side. The hybrid codes took less than 30 seconds to compute this result.

The Ram2d test body was again set to 11 inches to minimize the effect of travelling waves

on the result. This resulted in 1735 unknowns in Ram2d and the code took over 18 minutes to

complete it’s solution. Generation of the coherently subtracted result through the post processing

procedure described earlier is quite fast and does not impact the stated Ram2d run times.
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Gap Scatter Comparison for 100 mil air filled gap, TM polarization, 12 GHz
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Figure 4.4 Comparison for rectangular air gap 100 mils wide. Slab coating material thickness =
40 mils, εr = 10.6, µr = 1.0, frequency = 12.0 GHz.

In Figure 4.4, we increase the dielectric constant of the slab coating to εr = 10.6 while main-

taining the frequency at 12 GHz. As one would expect, we observe an increase in the scattering

level. All three codes are in good agreement that the increase is about 16 dB. Again the ‘Simpson’

and ‘Skinner’ codes virtually overlay.
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The gridding used for this case is 10 x 4, which corresponds to square cells less than λ/30

per side. The 40 x 40 matrix was filled and solved in the hybrid codes in less than three minutes.

The Ram2d test body was again set to w = 11 inches which produced 1758 unknowns.

This 1758 x 1758 matrix for each run was solved in just under 20 minutes. In cases like this, the

hybrid approach compares quite favorably, as obtaining a result in less than three minutes is clearly

superior to obtaining the same result in 40 minutes.
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Gap Scatter Comparison for 1000 mil wide air filled gap, TM polarization

Simpson
Skinner
Ram2d

Figure 4.5 Comparison for rectangular air gap 1000 mils wide. Slab coating material thickness
= 40 mils, εr = 3.25, µr = 1.0, frequency = 12.0 GHz.

In Figure 4.5, we return the dielectric constant of the slab material to εr = 3.25 but extended

the rectangular gap to a width of 1 inch, which is slightly greater than the free space wavelength

at 12 GHz. This produces more structure in the echo width pattern. The agreement between the

hybrid codes and Ram2d is again seen to be quite good both in terms of the levels and the location

of the null.

The gridding used for the case plotted in the Figure 4.5 is 50 x 2. This is the same cell size as

was used in producing the results presented in Figure 4.3. The ‘Simpson’ code, running in Matlabr

4-8



on a 450 MHz Pentium II PC, took over 12 minutes to compute this result. The ‘Skinner’ code,

running in FORTRAN on a 450 MHz UltraSparc II workstation, required just over 90 seconds.

The Ram2d test body was set to 11 inches with the gap region occupying the one inch in the

center. This produced 1816 unknowns. The matrix inversions and coherent subtraction required

40 minutes.
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Figure 4.6 Comparison for rectangular air gap 100 mils wide. Slab coating material thickness =
40 mils, εr = 10.6 − j1.5, µr = 1.0, frequency = 12.0 GHz.

Next we look at results for cases where the slab coating has a loss component. Figure 4.6

shows the results for a case where the slab coating has a permittivity εr = 10.6 − j1.5. A 10 x 4

grid was used. In this case, the two codes agree fairly well out to a little less that 10◦ from grazing,

at which point the residual travelling wave effects cause the Ram2d echo width pattern to diverge.

So, even with the loss in the slab coating material, an 11 inch Ram2d test body was used to try

to minimize the surface wave effect. This produced 1758 unknowns in the Ram2d computation

which required nearly 42 minutes to obtain the coherently subtracted results shown here. The

hybrid code required approximately 90 seconds to compute it’s result, the increased speed due
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to the lossy material properties enabling more rapid convergence in the bounce correction term

integrations during the matrix fill operation.

For this case we cannot compare to the Skinner code because that code does not allow for

complex (lossy) dielectric permittivities. We also plot the results in this figure and those to follow

on the scale of decibels relative to a meter, dB/m.
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Figure 4.7 Comparison for treated rectangular gap 100 mils wide. Slab coating material thick-
ness = 40 mils, εr = 10.6−j1.5, µr = 1.0, filler material εg = 12.5−j1.8, µg = 1.0,
frequency = 12.0 GHz.

Next in Figure 4.7, we show results for a case where the gap is filled with a lossy dielectric

filler material having permittivity εg = 12.5 − j1.8. The slab coating material retains the same

dielectric properties as the case shown in Figure 4.6. With the lower contrast between the gap filler

and slab coating materials, we could readily anticipate the lower level of scattering indicated in the

figure.

Gridding of the gap region is again set to 10 x 4 here to produce square moment method

cells. However, we notice the agreement between the hybrid code and Ram2d is not quite as good
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in this case as it was in the previous case, the only difference between them being that the gap filler

is no longer air but rather a dielectric with the properties given above.

It was shown in Section 3.2.1, in our volumetric basis - point matching solution, that the

constitutive properties of the gap filler material enter into the matrix only through the diagonal

elements (the ‘self’ entries) of the matrix. Therefore a change in contrast between the slab coating

and gap filler materials is manifested only in entries on the diagonal of the matrix. Off diagonal

matrix entries make the same contribution to the matrix solution as in the previous (air-filled gap)

case. With Ram2d, on the other hand, where there are 1758 diagonal entries in it’s impedance

matrix for this case, we see that only 28 are altered by the change in gap filler materials. So in the

hybrid code, all of the matrix diagonal elements are altered by the change in gap filler materials, but

in Ram2d, fewer than 1.6% of the diagonal elements change. One might well suspect that Ram2d

produces a result closer to the true solution. Moment method techniques more sophisticated than

point matching are available but have not been implemented in this dissertation. More is said

about this in Chapter 5 where we summarize the dissertation and discuss recommendations for

future work.

In Figure 4.8, we present results for scattering from a non-rectangular gap. This gap is of

trapezoidal shape, 140 mils wide at the top of the gap and 100 mils wide at the bottom as shown in

Figure 4.9. The gap is air filled so we can compare and contrast the results of this result to those

seen in Figure 4.6. The discretization of the gap region is 12 x 4 but with the trapezoidal shape of

the gap region, the resultant cells are not square and, from the discussion in Chapter 3 regarding

errors associated with cells of higher aspect ratio, we can expect some increase in error for this

computation. With the 12 x 4 gridding, the cells do not exceed an aspect ratio greater than 1.2:1

and it is evident that the results between the two codes are still in rather good agreement, both in

terms of pattern shape and scattering level, out to a monostatic angle less than 10◦ from grazing

where we again see residual travelling wave effects in the Ram2d echo width pattern.

Upon close examination of Figure 4.8 and comparing it to the result in Figure 4.6, we notice

a slight increase in the level of scattering produced by this trapezoidal gap as compared to the

rectangular gap. Both codes are in agreement as to the amount of increase in the level of scattering

of approximately 2 dB.
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Figure 4.8 Comparison for air filled non-rectangular gap. Slab coating material thickness = 40
mils, εr = 10.6 − j1.5, µr = 1.0, frequency = 12.0 GHz.
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Figure 4.9 Gap Geometry for Results Plotted in Figure 4.8. (Drawing not to scale.)

In Figure 4.10 we present results for another non-rectangular gap, this time in a slab coating

material with d = 200 mils and in which the gap is thin and canted as shown in Figure 4.11. For this

computation the width of the gap is set to t = 50 mils. For a gap canted to one side like this, one

would expect an asymmetric scattering pattern. But the asymmetry in the scattering levels as the

monostatic incidence angle scans from one side to the other is subtle for these material properties,
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= 200 mils, εr = 3.25− j1, µr = 1.0. Dielectric filler εg = 15.5. Frequency = 12.0
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Figure 4.11 Gap Geometry for Results Plotted in Figure 4.10. (Drawing not to scale.)

and in order to achieve a noticeable effect, the gap is filled with a lossless dielectric having εr =

15.5, and the thickness of the slab increased to 200 mils. No Ram2d result is displayed here

because, even with the lossy slab coating material, residual surface wave effects were significant.

The result plotted in Figure 4.10 is folded back onto itself to emphasize the asymmetry in the

resultant scattering pattern.
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A gap region gridding of 5 x 20 was used for this case and the resultant gap region cells were

parallelograms, 10 mils in width and 10 mils in height (the canted sides having length ∼ 10.3 mils).

The increased error we can expect for this cell geometry should be less than that incurred by a cell

having aspect ratio 1.25:1 (the x distance between the acute angle vertices of these parallelogram

cells is 12.5 mils). According to the algorithm used in Chapter 3 to estimate the error for increased

aspect ratio cells, the error in the direct self terms is less than 1% for this case.

Summarizing the results presented in this section, the hybrid code is seen to agree quite well

with the Ram2d code, which is based on an entirely different analytical formulation. The hybrid

code, not surprisingly, produces results graphically equivalent to those produced by the Skinner

code (in the cases for which the Skinner code is applicable). For gaps in a pure dielectric slab

coating material, these results provide some validation of both the theory developed in Chapter 2

and the numerical implementation of that theory described in Chapter 3.

4.3 Gap in Magneto-dielectric Material and Comparison to Measurements, TM Polarization

In this section we move on to present results comparing the output of the hybrid Green’s

function/moment method computer code developed in this work (indicated by ‘Simpson’ in the

plots to follow) to output of Ram2d (‘Ram2d’) and to measurements obtained in the AFRL Mul-

tispectral Measurement Facility (MMF) compact radar cross section measurement range (‘Mea-

sured’). Descriptions of the MMF compact range, the test fixture employed in the gap scattering

measurements, and the procedures used to acquire and process the measured data are contained in

Appendix D.

The range measurement results are included to provide a sort of ‘reality check’ for the com-

puted results for both the hybrid and Ram2d codes. We cannot expect these simulated2 2D mea-

sured results to match well the predicted results because of the nature of the physical test body and

the somewhat non-standard procedures required to obtain the RCS of the gaps alone (see Appendix

D). Nevertheless, the measured results agree remarkably well with the predictions from both codes.

In the results to be presented in this section, both the shapes and levels of the measured echo width

patterns are in fair agreement with those obtained from the codes.

2‘simulated’ in that the results are a 2D conversion approximation of measurement data obtained from a 3D test
fixture
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In generating comparative measurement data for this dissertation, it was decided to limit the

measurement frequencies to the range 8 to 12 GHz, so as not to unduly impact the schedule of

the MMF compact range. Beginning at the low end of this range, we show in Figure 4.12 the TM

polarization result for the echo width of a 100 mil wide, rectangular air-filled gap at 8 GHz. In
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Figure 4.12 Comparison for 100 mil wide, air filled rectangular gap. At 8 GHz, the slab coating
material εr = 10.6, µr = 1.7 − j1.3. Slab thickness is 40 mils.

Figures 4.13 and 4.14, we show echo width results for the same gap geometry at 10 and 12 GHz.

Each of these results are plotted on 60 dB scales ranging from −80 dB/m to −20 dB/m so that

changes in scattering level for various cases are more apparent.

Note that the magnetic permeability of the slab coating material exhibits a frequency depen-

dence. The properties of the slab coating materials were determined in the Materials Measurements

Laboratory (MML), another laboratory within the MMF. Measurement of the material properties

are described in Appendix E. Input data to both the Simpson and Ram2d codes reflects this fre-

quency dependence in the permeability of the slab coating material.
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Figure 4.13 Comparison for 100 mil wide, air filled rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3. Slab thickness is 40 mils.

For Figures 4.12 through 4.14, the discretization of the gap region was kept to 10 x 4 so

as to obtain square moment method cells. Since the slab coating material now has a magnetic

permeability in addition to a dielectric permittivity, the full dyadic Green’s function matrix is

needed to compute the coupling in the gap region. From the theoretical development presented in

Chapter 2, we know that with these material properties, each pulse basis cell results in 3 unknown

volume equivalent currents. Thus the 10 x 4 grid of the gap region now results in a 120 x 120

matrix. The hybrid code running in Matlabr required between 10 and 15 minutes to produce the

results shown in these figures. The unknown count in Ram2d ranged from 1088 at 8 GHz to 1608

at 12 GHz (using a 10 inch test body for each). At 8 GHz, this required 20 minutes to produce the

displayed coherent subtraction results, increasing to just under one hour for the results at 12 GHz.

Comparing Figures 4.12, 4.13, and 4.14, we observe that agreement varies between the

Simpson and Ram2d codes even though the gap region gridding remains constant (the results are

converged as discussed in Section 4.5). According to Wang [26] and Peterson [34], the volumet-
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Figure 4.14 Comparison for 100 mil wide, air filled rectangular gap. At 12 GHz, the slab coating
material εr = 10.6, µr = 1.3 − j1.3. Slab thickness is 40 mils.

ric moment method approach suffers greater numerical instabilities when the operator involves

derivatives of the Green’s function, which are now needed in these cases to compute the magnetic

equivalent currents. Ram2d, which is a surface integral equation code (where surfaces are mod-

elled as 2D line segments), does not suffer as strongly from these effects. While the agreement

seems to worsen as the contrast increases between the slab coating and gap filler materials’ mag-

netic properties, the figures indicate that the techniques are still in rough agreement (certainly there

is no change in the trends indicated in plots). In fact, as noted by Harrington [38], usable results

can still be obtained with point matching even if the pulse basis functions, strictly speaking, are not

in the domain of the operator. However, as discussed in [26] and [34], basis and testing functions

smoother than pulse basis and delta testing functions may help reduce this disagreement.

For a filled or ‘treated’ gap, we show in Figures 4.15 through 4.17 the results at frequencies

8, 10, and 12 GHz respectively. The agreement between the Simpson and Ram2d code is good.

The better agreement in these cases is likely the result of the reduced contrast in the permeability
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Figure 4.15 Comparison for 100 mil wide, treated rectangular gap. At 8 GHz, the slab coating
material εr = 10.6, µr = 1.7 − j1.3 and the gap filler material εg = 15.5, µg =
1.95 − j2.0. The slab thickness is 40 mils.

between the gap filler and slab coating materials, this time lessening the impact of the pulse basis

functions on the operators which produce the magnetic equivalent currents. Discretization of the

gap region is 10 x 4 in Figures 4.15 and 4.16 (leading to 120 x 120 matrices), and 12 x 5 in Figure

4.17 (resulting in a 180 x 180 matrix). The unknown count for Ram2d again ranged from 1088 at

8 GHz to 1608 at 12 GHz (1338 at 10 GHz) and the results displayed in Figure 4.17 required just

over one hour of computation time.

Finally, in Figures 4.18 and 4.19, we show results for a 60 mil wide gap, air-filled and

treated respectively, at a frequency of 10 GHz. The better agreement for the treated gap is likely

due to the decreased contrast between the slab coating and gap filler materials as mentioned above.

Discretization of the gap region is 6 x 4 both in figures, requiring just over 10 minutes for the

hybrid code to compute it’s result in each case. Ram2d, with a 10 inch test body, produced 1326

unknowns and required nearly an hour of computation time to produce the results plotted in both

Figures 4.18 and 4.19.
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Figure 4.16 Comparison for 100 mil wide, treated rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3 and the gap filler material εg = 15.5,
µg = 1.7 − j1.9. The slab thickness is 40 mils.

To summarize the results presented in this section, we see that the hybrid code agrees well

with the results obtained with Ram2d but that the results can be obtained much more rapidly with

the hybrid code. In the present implementation of the hybrid code, numerical errors in the moment

method solution, due to the choice of the point matching method approach, are seen to arise for

these cases where magnetic equivalent currents must be incorporated into the solution. However,

for gaps in lossy magneto-dielectric slab coating materials, these results would still tend to validate

the theory developed in Chapter 2. The problems indicated in these results simply tell us that the

point matching moment method solution approach is not as robust for these cases.

4.4 Gap in Magneto-dielectric Material and Comparison to Measurements, TE Polarization

We now look at results obtained for the case of TE polarization. Due to the stronger singu-

larities present in the ASM Green’s function integrands for TE polarization, the TE polarization

hybrid code is even less robust than the hybrid code for TM polarization. In order to insure conver-
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Figure 4.17 Comparison for 100 mil wide, treated rectangular gap. At 12 GHz, the slab coating
material εr = 10.6, µr = 1.3 − j1.3 and the gap filler material εg = 15.5, µg =
1.5 − j1.9. The slab thickness is 40 mils.

gence of the numerical integration routine used in the hybrid code, some amount of loss is required

in the magneto-dielectric slab coating. Fortunately, all practical magneto-dielectric materials ex-

hibit loss, so the utility of the technique is still valid. For the TE polarization case, the quadrature

methods for the Green’s function bounce correction terms do not converge for lossless slab coating

materials.

We will again include comparisons to simulated 2D measurements obtained at the MMF

compact range. For TE polarization, we notice the measured results suffer a from a problem

similar to the residual travelling wave seen in most of our Ram2d results. For the test fixture shape,

the TE polarized field orientation induces stronger finite body effects such that they do not subtract

as well, resulting in an echo width pattern of slightly different shape. Nevertheless, we see that the

scattering levels are generally in agreement.

The first case presented for TE polarization in Figure 4.20 is for a gap in a low density

magneto-dielectric slab coating. The material has εr = 3.25− j1.0, µr = 2.0, and is 40 mils thick.
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Gap Scatter Comparison for 60 mil air gap, TM polarization, 10 GHz
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Figure 4.18 Comparison for 60 mil wide, air filled rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3. The slab thickness is 40 mils.

Comparisons can be obtained with the Ram2d code but, as mentioned earlier, not the ‘Skinner’

code since that code does not address the TE polarization case. Discretization of the gap region for

Figure 4.20 is 7 x 3, producing a 63 x 63 matrix in the hybrid code. Due to slower convergence

of the numerical integrations of the bounce correction terms in the various Green’s function com-

ponents for TE polarization, the hybrid code required in excess of 8 minutes to produce the result

shown here.

Significant residual surface wave effects are evident for the Ram2d result. With a like degree

of discretization in the gap region, Ram2d produced 1585 unknowns with a 10 inch test body

(requiring just over 13 minutes) and 1745 unknowns with an 11 inch test body (requiring over 25

minutes). Lengthening the test body did not significantly reduce the surface wave residual.

We next present results of the hybrid code and compare them to results from both the Ram2d

code and to measurements obtained in the AFRL compact RCS range. These results correspond to

the results for TM polarization presented in the previous section. We see in Figures 4.21 through
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Figure 4.19 Comparison for 60 mil treated gap. Slab coating material εr = 10.6, µr = 1.45 −
j1.3 and the gap filler material εg = 15.5, µg = 1.7 − j1.9. Slab thickness is 40
mils.

4.23 that the hybrid code achieves very good agreement with Ram2d for cases with untreated 100

mil wide gaps. The discretization of the gap region for the TE polarization cases is the same as

was used for TM polarization and we have used Ram2d test bodies of the same length. Significant

travelling wave residual is evident in all of the Ram2d results but the basic pattern shape and level

is in fair agreement with that obtained with the hybrid code. One interesting observation is that

for the result in Figure 4.21, the Ram2d result was obtained more quickly than the hybrid code

result. This again is due to the fact that the TE code runs more slowly than for a comparable

TM case because of the slower convergence of the bounce correction terms in the Green’s function

components. A gap region gridding of 10 x 4 (120 x 120 matrices) was used for all three figures and

the Ram2d unknown count was 1088, 1338, and 1608 respectively. The hybrid code then required

16 minutes on average to compute the results plotted in these three figures. Ram2d required just

over 10 minutes for the result plotted in Figure 4.21, over 20 minutes for Figure 4.22, and 34

minutes for Figure 4.23.
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Figure 4.20 100 mil wide, air filled rectangular gap at 12 GHz. Slab coating material εr =
3.25 − j1.0, µr = 2.0. Slab thickness is 40 mils.

We present in Figures 4.24 through 4.26, monostatic echo width results for treated gaps for

the TE polarization case. Results are plotted for the 100 mil wide treated gap at 8, 10, and 12 GHz

respectively. Agreement between the Simpson and Ram2d codes is within a couple dB at 12 GHz

but is seen to worsen for the lower frequency cases. In fact, the agreement for the case at 8 GHz

is no better than 5 dB. In all three cases the contrast between the permittivities of the slab coating

material and the gap filler materials is the same. As we go lower in frequency, there is a slight

increase in the contrast of the permeabilities of the two materials, and we observe that it has the

dual effect to that which was observed for the TM polarization case. Gap region gridding is the

same in these cases as it was in Figures 4.15 through 4.17 for the corresponding TM polarization

cases; 10 x 4 for Figures 4.24 and 4.25, and 12 x 5 for Figure 4.26. Run times were similar to

those achieved in the air-filled TE polarization gap cases except for the 12 GHz result (a 180 x

180 matrix) which required nearly 30 minutes to complete compared to nearly 45 minutes for the

Ram2d result.
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Figure 4.21 Comparison for 100 mil wide, air filled rectangular gap. At 8 GHz, the slab coating
material εr = 10.6, µr = 1.7 − j1.3. The slab thickness is 40 mils.

Finally in Figures 4.27 and 4.28, we present results for the 60 mil gap for TE polarization,

analogous to the TM polarization cases shown in Figures 4.18 and 4.19. In Figure 4.27 is shown

the TE polarization echo width of the 60 mil wide air gap at 10 GHz. The agreement here is very

good between the hybrid and Ram2d codes. For the case of the treated 60 mil gap plotted in Figure

4.28, the agreement is less impressive due to the same effect that was observed for the wider gap

results. Again, the difference arises due to the change in contrast between the slab coating and gap

filler materials.

In summary of this section, we see that the hybrid code struggles more to compute results

in agreement with Ram2d. Nevertheless, the results are supportive of the notion that the theory

developed in Chapter 2 holds and that the differences between the hybrid and Ram2d code results

are not due to any problems with the theory but rather with the particular numerical implementation

methods. In the next section, we address the issue of convergence of the hybrid code and show that
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Figure 4.22 Comparison for 100 mil wide, air filled rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3. The slab thickness is 40 mils.

the results presented here are at least numerically converged, which tends to confirm the suspicion

that modelling errors are responsible for the differences between the hybrid code and Ram2d.

4.5 Convergence of the Hybrid Code

In any computational modelling effort one must be concerned with convergence of the nu-

merical approximations employed. Here we look at two cases presented earlier and repeat them,

varying the degree of discretization to observe the effect on the end results. The degree of dis-

cretization of the gap region is dictated by the properties of either the slab coating material or the

gap filler material, with preference given to whichever is greater (denser, in an electromagnetic

sense). The ratio of the real part of the propagation constant in the media (whichever is greater,

slab or gap filler) to the propagation constant in free space is multiplied by a ‘discretization param-

eter’ to establish the ‘number of cells per wavelength’ into which the gap region is divided. We
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Figure 4.23 Comparison for 100 mil wide, air filled rectangular gap. At 12 GHz, the slab coating
material εr = 10.6, µr = 1.3 − j1.3. The slab thickness is 40 mils.

express this numerically as

discretization ≈ dp · Re(
√

εrµr)

where εr, µr are the relative constitutive properties in the slab coating material and ‘dp’ is the

discretization parameter, an integer normally set to a value dp = 20, and where we have assumed

that the slab coating material properties are greater than those of the gap region (i.e., εrµr > εgµg).

It is the integer dp that is altered to increase or decrease the degree of discretization of the gap

region in the hybrid code.

For our convergence study, the cases we choose to examine are those in which the agreement

between the hybrid code and Ram2d was poorest. We make this choice intentionally because we

are interested in seeing if a convergence issue might help explain the poor agreement. For TM

polarization we look at the results obtained at 8 GHz. For the case plotted originally in Figure

4.12, the value of dp was set to produce a gap region discretization of 10 x 4, which produced

the desirable square moment method cells. Varying the value of dp in the hybrid code from a
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Figure 4.24 Comparison for 100 mil wide, treated rectangular gap. At 8 GHz, the slab coating
material εr = 10.6, µr = 1.7 − j1.3 and the gap filler material εg = 15.5, µg =
1.95 − j2.0. The slab thickness is 40 mils.

low of 8 to a high of 30 results in discretizations ranging from 3 x 1 to the 10 x 4 used. These

results are plotted in Figure 4.29 in the normal scale used earlier and in Figure 4.30 in an expanded

scale to more clearly show the progression towards convergence. With the exception of the 3 x

1 discretization, which we would say is not converged, we see that the rest produce results that,

essentially, are graphically equivalent on the scale of the original plot. The figure displays a clear

progression to convergence and we see that even at a value of dp = 20 (resulting in a discretization

of 7 x 3) the result is converged (the 7 x 3 curve and the 10 x 4 curve overlay in Figure 4.30).

The next case presented in Figure 4.31 is the treated gap configuration for TE polarization

at 8 GHz, plotted originally in Figure 4.24. In this case, the degree of discretization is dictated

by the gap filler material since it has higher relative permeability and permittivity compared to the

slab coating material. Here, dp is varied from a low of 5 to a high of 25 resulting in gap region

discretizations ranging from 3 x 1 to 11 x 5. Again, except for the 3 x 1 case, which could not be
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Figure 4.25 Comparison for 100 mil wide, treated rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3 and the gap filler material εg = 15.5,
µg = 1.7 − j1.9. The slab thickness is 40 mils.

considered converged, all others produce graphical equivalence on the original scale. Figure 4.32

then shows an expanded scale to more clearly display the convergence progress.

The Ram2d users manual [33] recommends a minimum discretization level for obtaining

accurate results with Ram2d. This value, which is set as a default discretization value, was used

in the Ram2d data presented in this Chapter for areas of the test body away from the gap region.

Near the gap region, the discretization level can be increased above the default value. As has

been mentioned earlier, in the gap region itself, Ram2d is manually set to produce a like degree of

discretization as that used for the hybrid code. Ram2d was run for various cases with both finer

and coarser discretizations of the numerical test body. Through this process, it was determined

that the Ram2d results are converged and that the default setting for discretization of the entire test

body is sufficient. The gap region itself, however, is always gridded to the same level as used by

the hybrid code for each case.
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Figure 4.26 Comparison for 100 mil wide, treated rectangular gap. At 12 GHz, the slab coating
material εr = 10.6, µr = 1.3 − j1.3 and the gap filler material εg = 15.5, µg =
1.5 − j1.9. The slab thickness is 40 mils.

The results in this section clearly imply that the hybrid code was at least approaching numer-

ical convergence in the results displayed in Sections 4.3 and 4.4. Thus, the differences in agreement

between the hybrid code and Ram2d are the result of other numerical factors, the most significant

of which have already been mentioned.

4.6 Summary of Results

The hybrid and Ram2d codes are seen to be in good general agreement for both TM and TE

polarization. Problems are evident in the hybrid code for the case of a lossy magneto-dielectric slab

coating and gap filler materials in that contrast between the gap filler and the slab produces an error

effect that is dual for the two polarizations: lower magnetic permeability contrast improves the TM

polarization result but worsens the TE polarization result. However, it has already been noted

that this effect is due to the chosen numerical implementation methods of the theory developed in

Chapter 2 as opposed to a weakness in the theory itself.
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For a given gap geometry at a particular frequency, the hybrid code solves a much smaller

matrix than Ram2d. Because of this, the hybrid codes implemented in Matlabr (which has not

been optimized in any fashion) compute the scattering result much more rapidly than Ram2d for

nearly every case examined. This is really not surprising however, as Ram2d is a general purpose

code and is capable of computing the scattering from a much wider variety of structures than the

special purpose hybrid code.
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Figure 4.27 Comparison for 60 mil wide, air filled rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.45 − j1.3. The slab thickness is 40 mils.
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Figure 4.28 Comparison for 60 mil wide, treated rectangular gap. At 10 GHz, the slab coating
material εr = 10.6, µr = 1.7 − j1.3 and the gap filler material εg = 15.5, µg =
1.7 − j1.9 . The slab thickness is 40 mils.
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Figure 4.29 Slab coating material εr = 10.6, µr = 1.7 − j1.3. Slab thickness is 40 mils.
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Figure 4.30 Expanded y-axis scale detailing progression toward convergence.
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Figure 4.31 Slab coating material εr = 10.6, µr = 1.7 − j1.3; gap filler material εg = 15.5,
µg = 1.95 − j2.0. Slab thickness is 40 mils.
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Figure 4.32 Expanded y-axis scale detailing convergence progress.
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V. Summary

5.1 Conclusion

In this dissertation, the hybrid Green’s function / Method of Moments (MoM) technique has

been demonstrated for the problem of electromagnetic scattering from a gap in a magneto-dielectric

coating on an infinite PEC ground plane. A 2D version of this hybrid technique implemented in

Matlabr was compared to an industry-standard 2D FORTRAN MoM code (Ram2d), to measure-

ments obtained in the AFRL Multispectral Measurement Facility’s compact radar cross section

range, and, for some cases, to a ‘proof of concept’ code developed by former AFIT faculty mem-

ber Major J.P. Skinner (described in Appendix F). From the results presented in Chapter 4, the

technique is seen to work well for the case of TM polarization. The technique also works for the

TE polarization case but is less robust compared to the TM polarization case due to the more severe

singularities encountered in the Green’s functions and T-factors for TE polarization.

Compared to ‘standard’ MoM computer codes the hybrid Green’s function / MoM technique

trades off impedance matrix solve time for matrix fill time. Additionally, it also trades off two runs

of the standard MoM code (since runs with and without the gap present in the numerical test body

are required) to determine the scattering due specifically to the presence of the gap to a single run

of the hybrid code. While the Ram2d code is a well-optimized FORTRAN code compiled and run

on a single UltraSPARC-II processor workstation running at 450 MHz, for many cases the hybrid

code, written and run in the Matlabr programming environment, is much faster on a 450 MHz

Pentium II PC running multiple applications. However, for some cases the TE polarization code

can be very slow since the numerical integration routines in Matlabr take longer to converge in the

TE case. In fact, for a lossless slab coating, Matlabr numerical integration routines in the current

implementation of the TE polarization code do not converge.

Thus, we conclude this dissertation by stating that the hybrid technique is a qualified success.

More work is needed, however, to bring it to the point where it could be employed in an actual

engineering environment, and many questions remain concerning the scope of applicability of

the hybrid code. For instance, for slab coating materials with higher constitutive property values

(higher index of refraction), the singularities (in the bounce correction integrands) occurring at the
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critical angles will move closer together. At some point, the currently implemented integration

routine will require modification to be able to adequately address that case.

In the following section, we recommend and discuss several additional areas of improvement

in both the theory and the computer codes developed in this dissertation.

5.2 Recommendations for Further Development

One of the original premises of this work was that by developing the bounce correction term

of the Green’s function through use of the Array Scanning Method we could avoid the requirement

to evaluate Sommerfeld integrals. We show in Appendix B that the two approaches are in fact

very closely related, the major difference being the evaluation of the ASM integrals based on the

concept of a spectrum of distinct plane wave modes. The ASM is formulated so that the integration

of the bounce correction term is performed along the real axis of the scan angle parameter variable

of integration. In our numerical implementation, this integration is performed allowing for finite

jumps at the location of potential singularities. This is seen to work well enough for the case

of TM polarization. However, the stronger singularities encountered in the TE polarization case

argue that a more sophisticated singularity extraction procedure is needed, and this is the first

recommendation. Successful application of an improved singularity extraction algorithm (e.g.,

Methods II or III of Section 6.2 of [39]) would undoubtedly broaden the applicability of the TE

polarization code.

Another original premise of this work was that the pulse basis / delta function testing procedure–

also known as point matching–would be adequate in the MoM solution. This produced disagree-

ment in the results of the codes compared for cases where, say, in the TM polarization case, the

slab coating possessed |µr| > 1 because that solution requires the presence of magnetic volume

equivalent currents. For the TM polarization case, magnetic volume equivalent currents introduce

derivatives of the scalar (or canonical) Green’s function term into the solution vector, and with

the pulse basis set approximation, produces numerical artifacts that do not approximate well the

equivalent currents in the gap region. To avoid this difficulty, it is recommended that smoother

basis and testing functions be employed in the MoM procedure. This recommendation is also

made by Peterson [34] and the interested reader is directed there for more details. The price one

pays, however, in using smoother basis and testing functions in the hybrid formulation is that more
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function evaluations of the ASM-derived bounce correction integrals are required, which will add

to the overall amount of computation time.

Some improvements can also be implemented in terms of the shape of the gaps analyzed by

the code. Currently, the code is restricted to analyzing gaps that are trapezoidal in shape. This

limitation could be overcome by using a different algorithm for gridding the gap region. Nothing

in the theory developed in Chapter 2 restricts application to a gap, say, of triangular shape, where

the sides of the gap come to a vertex at the bottom of the gap. Only the gridding algorithm used

in the current implementation prevents us from analyzing that case. Another limitation of the

current code (but, again, not in the theory) is that the gap region must be of the same depth as

the slab coating material. To remove this restriction would require that a T-factor for such a case

be developed. Also, the current gap region gridding algorithm restricts the gap to be filled with

a homogeneous material. As material property inputs to the code are currently structured, gap

filler material properties are assigned equally to all cells within the gap region. This could easily

be altered to assign properties to either specific cells or specific rows of cells, thus allowing for

inhomogeneous gap fillers, with no changes to the theoretical formulation presented in Chapter 2.

The final recommendation is for the obvious extensions of the theory and codes to the 2D

oblique incidence case and, eventually, to the full 3D case. While analysis of 2D gaps provides

insight into the scattering levels resulting from a gap, the ultimate question would be of their

contribution to the RCS of some platform of interest. 3D gaps will be much more complicated

in their geometry so much of the effort here would be in techniques for gridding of the 3D gaps.

The spectral domain Green’s functions and T-factors for the 3D case are readily available in the

literature [19].
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Appendix A. Spatial Domain to Spectral Domain Transformation via the Poisson Sum

Formula

Consider the Green’s function of a single radiating 2-D wire element in a magneto-dielectric

medium as in Equation (2.1). The Green’s function for such an element is known to be [15, 17, 18]

Gwire(ρ̄, ρ̄′) = − j

4
H(2)

o (k | ρ̄ − ρ̄′ |) (A.1)

where again, k is the propagation constant in the magneto-dielectric medium and is in general a

complex number, k = k′ − jk′′.

Now imagine creating an infinite array of wires around this wire, parallel to the x-axis,

with inner-element spacing Dx as was done in Section 2.1 (see Figure (2.2)). Each element has a

current of like amplitude but is shifted in phase by an amount proportional to the spacing between

the elements in accordance with the Floquet Theorem [1, 26]. The Green’s function for this array

will then be

Garray, spatial(ρ̄, ρ̄′) = − j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx − (x − x′))2 + (y − y′)2
)

ejk′sxmDx (A.2)

which is identical to Equation (2.2). Note that the phase progression on each of the array elements

is dictated by k′, the real part of k, as the loss component of the propagation constant plays no role

in the phase progression between the elements.

In Section 2.1, we stated that the Poisson Sum formula was used to convert this spatial

domain sum into a spectral domain sum which was likely to converge much more quickly than the

original spatial domain sum. In this appendix, we briefly outline the procedure used to arrive at

Equation (2.3).

The Poisson Sum formula is stated as [19, 21]

∞
∑

m=−∞
F(mωo)e

jmωot = T
∞
∑

n=−∞
f(t + nT ) (A.3)

A-1



in which F(ω) and f(t) represent a Fourier transform pair defined as

∫ ∞

−∞
f(t)e−jωtdt = F(ω) ↔ f(t) =

1

2π

∫ ∞

−∞
F(ω)ejωtdω

To convert the sum of Hankel functions into it’s spectral domain equivalent, we utilize trans-

form pair 917 from [29]. In our notation, and employing the equality Ko(jz) = π
2j H

(2)
o (z) [15:

Appendix IV], this transform pair can be expressed as

H(2)
o

(

k
√

ω2 + y2
)

↔ e−jy
√

k2−t2

π
√

k2 − t2
(A.4)

To proceed with the Poisson Sum formula, we identify F(mωo) = H
(2)
o (·) and make the

following variable associations: mωo = mDx, t = k′sx, T = 2π
ωo

= 2π
Dx

, t + nT = k′sx + 2πn
Dx

.

We now insert these variables into their respective places to arrive at the following spatial domain

- spectral domain identity,

−j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx)2 + y2
)

ejk′mDxsx =
−j

4

2π

Dx

∞
∑

n=−∞

e
−jy

√

k2−(k′sx+ 2πn
Dx

)2

π
√

k2 − (k′sx + 2πn
Dx

)2

Next, through the Fourier Transform shifting property, we shift the spatial side by x, observe the

consequent spectral shift, and make some obvious simplifications to arrive at

−j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx − x)2 + y2
)

ejk′mDxsx =
−j

2Dx

∞
∑

n=−∞
e−jx(k′sx+ 2πn

Dx
) e

−jy
√

k2−(k′sx+ 2πn
Dx

)2

√

k2 − (k′sx + 2πn
Dx

)2

As a final step, we shift the field point (x, y) away from the source point (x′, y′) to give us the

slightly more general result

Garray(ρ̄, ρ̄′) =
−j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx − (x − x′))2 + (y − y′)2
)

ejk′mDxsx

=
−j

2Dx

∞
∑

n=−∞
e−j(x−x′)(k′sx+ 2πn

Dx
) e

−j(y−y′)
√

k2−(k′sx+ 2πn
Dx

)2

√

k2 − (k′sx + 2πn
Dx

)2
(A.5)
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At this point, application of the Poisson Sum formula is complete and Equation (A.5) dis-

plays the spatial domain - spectral domain equivalent representations of the Green’s function of

the 2-D infinite array of wire element radiators. We can now set the array spacing parameter Dx

to give us our final result. For this, we choose to set Dx = λ
2 where λ is the wavelength in the

medium in which the array resides. In the geometry of this dissertation, that will be the wavelength

within the magneto-dielectric slab medium. With Dx set to λ
2 , we note that 2πn

Dx
= 4πn

λ = 2k′n.

Placing this into (A.5), we now have our final form for the spectral domain Green’s function.

Garray, spectral(ρ̄, ρ̄′) =
−j

2kDx

∞
∑

n=−∞
e−jk(x−x′) k′

k
(sx+2n) e

−jk(y−y′)
√

1−( k′

k
(sx+2n))2

√

1 − (k′

k (sx + 2n))2
(A.6)

The factor Dx in the denominator is left unchanged at his time because it will be utilized later as

will be seen in Appendix B on the application of the array scanning method to this Green’s function

expression.

We see that factors introduced in Chapter 2 can now be readily identified from this spectral

domain expression. We have rx = k′

k (sx + 2n) = Re(k)
k (sx + 2n) and ry =

√

1 − r2
x. How these

factors are employed is explained in greater detail in Chapter 2, especially those factors entering

into the choice of the root of ry. By using these definitions, we can further compact the spectral

domain expression into the form given in Equation (2.3), repeated here for convenience.

Garray = − j

2kDx

∞
∑

n=−∞

e−jk(ρ̄−ρ̄′)·r̂1±

ry1

(A.7)
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Appendix B. The Array Scanning Method

We saw in Appendix A how the Poisson Sum formula is used to derive our spectral domain Green’s

function formula, Equation (2.3). If we look again at the spatial domain expression, Equation (2.2),

Garray(ρ̄, ρ̄′) = − j

4

∞
∑

m=−∞
H(2)

o

(

k
√

(mDx − (x − x′))2 + (y − y′)2
)

ejk′sxmDx

=
∞
∑

m=−∞
Gmejk′sxmDx (B.1)

we see that Equation (B.1) is a Fourier series and note that the zeroth order (m = 0) coefficient of

the series, Go = Gwire(ρ̄, ρ̄′), Equation (A.1).

The motivation for our use of the Array Scanning Method is to obtain a spectral domain

Green’s function expression for a single wire element radiator analogous to Equation (A.1). To do

this, we step back and consider the Fourier series of a periodic function. From [20], we designate

f(t) an arbitrary but periodic function with period T such that f(t + T ) = f(t). The usual

relationships associated with a Fourier series can be written for this function, such as expressing it

as a sum of exponentials,

f(t) =
∞
∑

n=−∞
cnejnωot , ωo =

2π

T

where

cn =
1

T

∫ T/2

−T/2
f(t)e−jnωotdt

We can also form the function

fo(t) =







f(t) | t |< T
2

0 | t |> T
2

and express f(t) as the sum

f(t) =
∞
∑

n=−∞
fo(t + nT )
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We next define the transform of fo(t)

Fo(ω) =

∫ ∞

−∞
fo(t)e

−jωtdt =

∫ T/2

−T/2
f(t)e−jωtdt (B.2)

and, by implication, the additional relationship

cn =
1

T

∫ T/2

−T/2
f(t)e−jnωotdt =

Fo(nωo)

T
(B.3)

equating the coefficients cn of the Fourier series of f(t) to the Fourier transform Fo(ω) of the

function fo(t).

From Appendix A, we write the shifted Poisson Sum formula

∞
∑

m=−∞
F(mωo + W )ejmωt = T

∞
∑

n=−∞
e−jW (t+nT )f(t + nT )

and apply Equations (B.2) and (B.3), with m = 0, to get

Fo(W ) =

∫ T/2

−T/2

∞
∑

n=−∞
e−jW (t+nT )f(t + nT )dt = Tco

or

co =
1

T

∫ T/2

−T/2

∞
∑

n=−∞
e−jW (t+nT )f(t + nT )dt (B.4)

If we relate this result back to our discussion of the spatial and spectral domain forms of the Green’s

function for the single wire element radiator, and the comments immediately following Equation

(B.1), we see we have arrived at an equivalence of Go, the spatial domain Green’s function for the

single wire element radiator (Equation (A.1)), to the spectral domain expression on the right hand

side.

Recognizing the form of the right hand side of Equation (B.4), we insert Equation (A.6) and

utilize the same variable substitutions and simplifications defined for application of the Poisson

Sum formula in Appendix A. This results in the relation

− j

4
H(2)

o (k | ρ̄ − ρ̄′ |) =
−j

4πk

∫ k′

−k′

∞
∑

n=−∞
e−jk(x−x′) k′

k
(sx+2n) e

−jk(y−y′)
√

1−( k′

k
(sx+2n))2

√

1 − (k′

k (sx + 2n))2
d(k′sx)
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As a last step, we relocate the constant k′ and simplify the corresponding limits of integration to

arrive at our final form

Gwire(ρ̄, ρ̄′) =
−jk′

4πk

∫ 1

−1

∞
∑

n=−∞
e−jk(x−x′) k′

k
(sx+2n) e

−jk(y−y′)
√

1−( k′

k
(sx+2n))2

√

1 − (k′

k (sx + 2n))2
dsx (B.5)

which relates the integrated sum of plane waves emanating from the artificial array of wire element

radiators to the Green’s function for the single wire element radiator. The spectral domain integral

has the physical interpretation of scanning the artificial array phasing through an angle range re-

stricted to real space, −1 ≤ sx ≤ 1, thereby summing the contribution from each real plane wave

mode. And so, as alluded to a number of times before, the technique is referred to as the ‘Array

Scanning Method’ (ASM).

It is fair to ask what has been gained through this sequence of manipulations. As stated in

several sources [27, 28], the spatial domain Green’s functions do not lend themselves to problems

containing stratified-layer geometries.1 The need to incorporate Fresnel reflection and transmis-

sion coefficients dictates that a spectral domain expression be used since the integrand of our ASM

integral is an expansion in which each ‘mode’ is a plane wave term. The Fresnel reflection and

transmission coefficients then modify each plane wave term accordingly. It remains only to in-

troduce the T-factor concept [19, 21] to incorporate a stratified layer geometry (in our case, a

magneto-dielectric slab) into the problem. The T-factor will not alter the phase relationship be-

tween the array elements and therefore, does not alter the scan integration. Thus, one is left with

an expression for the field from a single wire in terms of the field from an infinite array of wires.

Another way to arrive at the same formal expression as the ASM integral result is by com-

parison to the perhaps more familiar Sommerfeld integral expressions found in the literature. From

[28: (33), pg 487], for instance, the spectral domain free space Green’s function is given as (in our

coordinate geometry),

Ḡf (ρ̂, ρ̂′) =
−j

4π

∫ ∞

−∞

exp
[

−jη(x − x′) − j
√

k2 − η2|y − y′|
]

√

k2 − η2
dη (B.6)

1these comments are equally valid for the three-dimensional case
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We make the variable substitution η = krx → dη = kdrx and pull the factor k out of the square

root terms. This results in the expression

Ḡf (ρ̂, ρ̂′) =
−j

4π

∫ ∞

−∞

exp
[

−jk(x − x′)rx − jk
√

1 − r2
x|y − y′|

]

√

1 − r2
x

drx

and we see that we can again make the assignment ry =
√

1 − r2
x. Inserting this into the expression

above and collecting like terms enables us to write,

Ḡf (ρ̂, ρ̂′) =
−j

4π

∫ ∞

−∞

e−jk[(x−x′)rx+|y−y′|ry ]

ry
drx (B.7)

In our ASM integral, the variable rx was split into two parts, a continuous variable part sx

plus an additive discrete variable part 2n. Taken together, these two components of rx, weighted

by the complex constant Re(k)
k , constituted a continuous variable over an infinite range. We see

that is exactly what we’ve obtained starting from the Sommerfeld integral expression. To complete

the comparison, we introduce modifications to Equation (B.7) that will put it in precisely the same

form as Equation (B.5), most of these arguments being based on physical reasoning.

First, we introduce a notation to emphasize the functional dependence of rx on both sx and

n. We do this by setting rx → C(sx, n), where C is the complex constant Re(k)
k . Next, we break

up the infinite integration range and create an infinite series of finite integrals over sx. We write

this as

Ḡf (ρ̂, ρ̂′) = · · · − j

4π

∫ `

−`

e−jk[(x−x′)C(sx,n)+|y−y′|ry ]

ry
d(C(sx, n))

∣

∣

∣

∣

∣

n−1

− j

4π

∫ `

−`

e−jk[(x−x′)C(sx,n)+|y−y′|ry ]

ry
d(C(sx, n))

∣

∣

∣

∣

∣

n0

− j

4π

∫ `

−`

e−jk[(x−x′)C(sx,n)+|y−y′|ry ]

ry
d(C(sx, n))

∣

∣

∣

∣

∣

n1

· · · (B.8)

where l is some finite range of integration on the variable sx and we have not yet specified the

functional form for n. We have, however, implicitly specified our desire that n be such that the

integration is symmetric over sx, i.e., that the range of integration be symmetric from −l to +l. We
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also admit that we will force n into the role of a discrete variable such that drx = Cdsx in each

integral in the series.

At this point, we desire to maintain the physical interpretation of scanning the phase of the

artificial array and that sx be interpreted as a scan angle parameter (direction cosine). Looking

normally into the array, we equate sx to the sine of the angle from normal and scan from −90◦ to

+90◦. This will enable us to set l = 1. With this range established, it is then a simple argument

that the functional form for n be simply +2n in order to maintain the continuity of the original

integration variable. Thus we establish (sx, n) = (sx + 2n) and the infinite sum of integrals is

expressed as

Ḡf (ρ̂, ρ̂′) =
−j Re(k)

4πk

∞
∑

n=−∞

∫ 1

−1

e
−jk

[

(x−x′)
Re(k)

k
(sx+2n)+|y−y′|ry

]

ry
dsx (B.9)

where C has been replaced by the value Re(k)
k and the functional form of rx is implicit in each oc-

currence of the variable ry. Arguments regarding the order of integration and summation are given

elsewhere in this dissertation and it should suffice to say that convergence of the integrals demon-

strated in Chapters 2 and 3 (including those containing the T-factors) validate the interchange of

the operations. This expression is therefore identical to Equation (B.4) and is our desired result.

This completes our look at the Array Scanning Method and demonstrates that it is both

completely rigorous and is a special case of the Sommerfeld integral representation seen frequently

in the literature.
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Appendix C. Additional Plots of the ASM Integrand

In Section 3.1, a number of plots of various ASM-derived Green’s function bounce correction term

integrands were presented to provide insight into the challenges faced by the numerical integration

routine needed to evaluate these terms. In this appendix, a number of additional cases are pre-

sented in an effort to complete the discussion. We present these additional cases in this appendix

to minimize disruption of flow of the text in Chapter 3. We reiterate, however, that we intentionally

present only a small set of plots as it would be impossible to present plots representative of every

conceivable case. Our goal in this appendix is to present cases that collectively exhibit all the fea-

tures of these integrand functions that directly impact the numerical integration process. Integrand

function behavior for cases of different slab coating material properties is similar to the behavior

exhibited in the plots displayed here and in Section 3.1. We also refer the reader to Figure 3.1 for

we will again assume this geometry of the gap region for the figures presented in this appendix.

C.1 Additional Integrand Functions for Dyadic Green’s Function Components

In Section 3.1.2, plots of various components of the dyadic Green’s function matrix were

presented for a case where the slab coating material had the lossless constitutive properties εr =

3.25, µr = 2, for both TM and TE polarization. We also noted that the TE polarization case

produces more strongly singular integrand function behavior. Simply stated, the TE polarization

case is the more difficult to handle from the point of view of a numerical integration routine and

most of the plots presented in this appendix will be for that polarization.

In this section, we present additional plots of these matrix Green’s function components but

for the case where the slab coating material has the lossy constitutive properties εr = 3.25, µr =

2− j1 to complement the plots presented in Section 3.1.2 for lossless material properties. We will

restrict the plots presented to the case of TE polarization since adding the loss component renders

the TM polarization integrand functions comparatively easy to integrate (though still requiring

numerical integration). The frequency will again be set to 11.8 GHz, the slab coating material

thickness is taken to be 40 mils, and the source point (x′, y′) and field point (x, y) are placed at

(0, 0), (100, 40) respectively, as was done for all the cases plotted in Chapter 3.
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Figure C.1 Source point at (x′, y′)=(0, 0), field point at (x, y)=(100, 40). Slab coating material
εr = 3.25, µr = 2.0 − j1.

In Figure C.1, we display the Gxx integrand function for the case where the slab coating

material has the indicated lossy constitutive properties. For convenience, we display the equation

here again,

Gbounce, xx =
jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞
Try1e

−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1 (C.1)

and note that T is the T-factor for TE polarization given in Equation (2.56). We see the function

exhibits singular behavior at the critical angles (which occur, for this choice of slab coating material

properties, at |sx| ' 0.3811) but not at sx = ±1. The function decays to zero fairly rapidly beyond

|sx| > 1 and there is no evidence of symmetry in the function.
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Figure C.2 Source point at (x′, y′)=(0, 0), field point at (x, y)=(100, 40). Slab coating material
εr = 3.25, µr = 2 − j1.

Figure C.2 shows the Gxy component integrand function. The equation for this component

of the Green’s function is

Gbounce, xy = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞
T rrx1e

−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1 (C.2)

where T r is the reduced T-factor for TE polarization given by Equation (2.58). As we saw in

Figure C.1, this function also exhibits the singularity at the critical angles but not at sx = ±1. And

while again there is no evidence of symmetry, this function decays to zero more slowly than did

the Gxx component.
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Figure C.3 Source point at (x′, y′)=(0, 0), field point at (x, y)=(100, 40). Slab coating material
εr = 3.25, µr = 2 − j1.

The Gxz component is plotted in Figure C.3. The equation for this function is given by

Gbounce, xz =
Re(k1)

4π

∫ 1

−1

∞
∑

n=−∞
T re−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1 (C.3)

Again, we see the singularities at only the critical angles. We truncate the plot to |sx| = 3 as the

function has nearly decayed to zero at this point. No symmetry is evident in this function.
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Figure C.4 Source point at (x′, y′)=(0, 0), field point at (x, y)=(100, 40). Slab coating material
εr = 3.25, µr = 2 − j1.

As we have seen before, the Gyy component is arguably the most complicated integrand

function as supported by the plot in Figure C.4. The equation is given by

Gbounce, yy = −jRe(k1)

4πk1

∫ 1

−1

∞
∑

n=−∞

[

T

ry1

+ 2ry1T
r

]

e−jk1[(x−x′)rx1+|y−y′|ry1 ]dsx1 (C.4)

and while there are no singularities at sx = ±1, there are traces of complicated behavior. Again

we see no evidence of symmetry and the function decays to zero more slowly than in some of the

others cases presented.
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Figure C.5 Source point at (x′, y′)=(0, 0), field point at (x, y)=(100, 40). Slab coating material
εr = 3.25, µr = 2.0.

The Gzy component integrand function is displayed in Figure C.5. This function is given by

the equation

Gbounce, zy = −Re(k1)

4π

∫ 1

−1

∞
∑

n=−∞
T

rx1

ry1

e−jk1[(x−x′)rx1+|y−y′|ry1 ] dsx1 (C.5)

and is similar to the previous four figures in that singular behavior is observed only at the critical

angle locations. No symmetry is evident for this case and the function decays to zero beyond

|sx| > 3, so the plot is truncated at that point to emphasize the behavior of the function in the

central region.

The integrand functions plotted in Figures C.1 through C.5 are similar in that all exhibit

singularities at the critical angle points, are non-symmetric, and have decayed to zero for |sx| > 5.
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The quadrature routine must necessarily avoid the singular points and range over plane wave mode

terms from n = −2 to n = 2, which corresponds to sx ranging from −5 to 5.

C.2 Integrand Functions for the Case of Self Coupling

At this point, we move the locations of the source and field elements such that they are col-

located in the center of the gap region. The resulting integrand functions will need to be integrated

to determine the self-coupling contribution of each Green’s function term. We look at several cases

to see what might change in the behavior of these integrands.
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Figure C.6 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
εr = 3.25, µr = 2.0.

We look first again at the Gxx component, given by Equation (C.1), and see that fairly strong

singularities occur at the critical angle locations (TE polarization) and that singularities occur at

sx = ±1 for this case with a lossless slab coating material. The function is even-symmetric about

sx = 0, even in the central region, so folding the range of integration about sx = 0 is possible.
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Even though the source and field points are collocated (y = y ′), the function decays to zero beyond

|sx| > 3.
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Figure C.7 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
εr = 3.25, µr = 2.0.

Figure C.7 displays the integrand function of Equation (C.2) for the Gxy component for TM

polarization. Even with the singularities at the critical angles and |sx| = 1, the most striking feature

of this plot is the odd-symmetry about sx = 0. Evidently this function will integrate to zero, which

is good given the slow rate of decay of the function seen at |sx| ≥ 5. Recalling from the theoretical

development in Chapter 2 that Gxy = Gyx, so Green’s function components Gyx will also display

the odd symmetry and consequently integrate to zero.
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Figure C.8 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
εr = 3.25, µr = 2 − j1.

For the Gxz component, again for TM polarization, we use lossy slab coating material prop-

erties and see that the singularities at |sx| = 1 are no longer present. And while the function decays

to zero fairly slowly it is even-symmetric about sx = 0 allowing for the range of integration to be

folded.

C-9



−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

s
x

un
itl

es
s 

ga
in

Complex ASM integrand for G
yy

 (internal) component, TE polarization

real
imaginary

Figure C.9 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
εr = 3.25, µr = 2 − j1.

For the Gyy component integrand function, Equation (C.4), plotted in Figure C.9 for TE

polarization, we have again used lossy properties for the slab coating material with full expectation

that lossless material properties would result in a much more complicated function plot. For this

‘self’ term, we see a slowly decaying, even-symmetric plot with singularities at the critical angle

locations.
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Figure C.10 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
thickness = 40 mils, εr = 3.25, µr = 2.

In Figure C.10 we show the integrand function plot for the Gzy component of Equation

(C.5) for a lossless slab coating material. The expected singularities are present but the interesting

feature of this plot is the odd-symmetric behavior of the function, implying that it will integrate

to zero. This additionally implies that the corresponding Gyz term would also evaluate to zero for

this case since Gyz = −Gzy.
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Figure C.11 Source point at (x′, y′)=(50, 20), field point at (x, y)=(50, 20). Slab coating material
εr = 3.25, µr = 2.0.

We return now to the Gzz component term, the canonical Green’s function expression, plot-

ted for the self term case for TM polarization. We see the symmetric behavior typical for the self

term cases for all the Green’s function components but also, singular behavior at |sx| = 1 and at

the critical angle locations. This last example of singular behavior (at the critical angles for Gzz)

was not observed in the canonical Green’s function terms shown in Chapter 3 for TM polarization.

The self term integrand function behavior plotted in Figures C.6 through C.11 indicate that

some computational efficiency may be gained by folding the range of integration around sx = 0.

Additionally, for two of the Green’s function components (Gxy and Gzy), no integration of the self

term is needed since these functions are odd-symmetric about sx = 0. The integration algorithm

must still avoid singularities at the critical angle points and, for lossless material cases, singularities

at sx = ±1.
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C.3 Green’s Function Integrands for Cases With Vertical Separation of Source and Receiver

In each example presented for the self coupling case the integrand functions displayed some

type of symmetry. For cases where the gap region is rectangular, there will occur cases where

the source and receiver are vertically separated (y 6= y ′) but will retain the same x location value

(x = x′). We will look next at three examples for such a case.
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Figure C.12 Source point at (x′, y′)=(80, 0), field point at (x, y)=(80, 40). Slab coating material
εr = 3.25, µr = 2 − j1.

In Figure C.12 is plotted the integrand function for the Gxx term for a lossy slab coating

material for TE polarization. The function is even-symmetric with singularities at the critical angle

points. The vertical separation of the source and receiver locations produces a rapid decay of the

function for higher order plane wave modes, i.e., where |sx| > 1.
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Figure C.13 Source point at (x′, y′)=(80, 0), field point at (x, y)=(80, 40). Slab coating material
εr = 3.25, µr = 2 − j1.

The Gxy component is plotted in Figure C.13, again for a case where the slab coating mate-

rial is lossy. Once again, we see this component is odd-symmetric and will integrate to zero. This

also implies that the Gyx component will vanish for this case. Evidently, whenever x = x′ for

these components, the bounce correction term will vanish.
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Figure C.14 Source point at (x′, y′)=(80, 0), field point at (x, y)=(80, 40). Slab coating material
εr = 3.25, µr = 2.

In Figure C.14 we have plotted the Gxz component for a lossless slab coating material. We

see the strong singularities at the critical angles and even symmetry about sx = 0. This integrand

function can thus be folded to help expedite the numerical integration process.

Figures C.12 through C.14, in combination with the previous section, tell us that for any case

where the source and field point have the same x coordinate value, the integrand functions possess

symmetry that can be utilized to speed the numerical integration process. This can be realized,

for some cases, by folding the range of integration (and avoiding the singularities at the critical

angle points and |sx| = 1 for lossless materials), or skipping the integration altogether for those

components which produce an odd-symmetric integrand function.
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C.4 Green’s Function Integrands for Cases With Horizontal Separation of Source and Receiver

It has become evident that for any case where the source and receiver x-coordinate locations

are equivalent (i.e., x = x′), the resulting integrand functions will display either even or odd

symmetry. The vertical separation between the source and receiver works to our advantage, forcing

a more rapid decay of the functions to zero for higher order plane wave modes. We look next at

what happens for the case when the source and receiver locations have the same y-coordinate value

but are horizontally separated, i.e., y = y′, x 6= x′.
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Figure C.15 Source point at (x′, y′)=(0, 20), field point at (x, y)=(100, 20). Slab coating material
εr = 3.25, µr = 2.0.

The Gyy Green’s function component integrand function for this case is plotted in Figure

C.15. Clearly the function decays very slowly to zero and a number of higher order plane wave

mode terms will contribute to the integral. The symmetry of this function also dictates that no

folding of the integration range is possible. The singularities at the critical angles and at |sx| = 1

are consistent with what has been observed earlier for this Green’s function component.
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Figure C.16 Source point at (x′, y′)=(0, 20), field point at (x, y)=(100, 20). Slab coating material
εr = 3.25, µr = 2 − j1.

Plotted in Figure C.16 is the Gzy component for a lossy slab coating material case. As in the

previous case, there is no evidence of symmetry and the function decays to zero slowly for higher

order plane wave modes.
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Figure C.17 Source point at (x′, y′)=(0, 20), field point at (x, y)=(100, 20). Slab coating material
εr = 3.25, µr = 2.

Finally, we present the Gzz component in Figure C.17 for a lossless slab coating material.

We see, in contrast to the previous two figures, this function still decays to zero quite rapidly for

|sx| > 1 implying that only a few plane wave mode terms need to be included in the integration.

Figures C.15 through C.17 convey the bad news that for cases with only horizontal coupling

between the source and field points, the range of integration must be extended to incorporate a

larger number of plane wave mode terms than is needed for cases with vertical separation. This

is due to the fact that the integrand functions do not exponentially decay for cases where y = y ′.

This situation will occur quite frequently in our gap regions as they conform to the horizontally

parallel boundaries of the ground plane and the slab material - free space interface. This will more

seriously impact gap regions that might be considered ‘wide.’ ‘Narrower’ gaps will be affected to

a lesser extent.
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C.5 Appendix C Summary

To summarize what has been observed both in this appendix and in the integrand function

plots displayed in Section 3.1, we see that, in general, the numerical integration routine will have

to integrate over several plane wave mode terms beyond the central (n = 0) region. Some cases,

such as whenever x = x′ (source and receiver locations vertically aligned), will allow either a

folding of the range of integration or an outright avoidance of the need to evaluate the integral due

to odd-symmetry in the integrand function. In general, the quadrature routine will need to avoid the

singularities that occur at the critical angle points. In order to be able to handle lossless materials,

the quadrature routine must also avoid the singularities at |sx| = 1.

The integrand function plots demonstrate that the integration routine must be both adaptive

and recursive due to the wide variety of function shapes and variations in smoothness within each

particular ‘range’ of the sx variable (e.g., the range sc ≤ sx ≤ 1). The integration routine used

in evaluating the bounce correction term integrals is described in more detail at the end of Section

3.1.
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Appendix D. Echo Width Measurements and the AFRL Compact Range

We presented data in Chapter 4 that was obtained using the advanced compact Radar Cross Section

(RCS) measurement range located within the AFRL Multispectral Measurement Facility. A cross

section drawing of the compact range is shown in Figure D.1. As shown in the drawing, the

compact range illuminates the target with a plane wave produced by the optical configuration of

the range. Because the transmitter and receiver utilize the same feed antenna, the range measures

only a monostatic signal from the target. The optical configuration of the compact range, an offset-

fed Gregorian geometry, is optimized to produce a minimum amount of cross polarization energy

contamination in the measurements and a ‘quiet zone’ nearly the size of a full scale fighter aircraft.

This quiet zone is the volume surrounding the target location in which a very close approximation

to an ideal plane wave (uniform amplitude with no phase variation) exists.
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Figure D.1 A side-view drawing of the AFRL compact range. The optical configuration of the
range creates a plane wave illumination of the target fixture.

The test fixture used in acquiring the data is referred to as the ‘boat’ fixture and is typically

used to measure the performance of antennas or other devices or features that may need to be

recessed into a shallow cavity. The fixture is shown in the drawings in Figures D.2 and D.3 and

in the series of photos shown in Figures D.4 through D.6. The boat, as a low-RCS test fixture,

is principally designed to enable measurement of these antennas or features when the boat fixture

is illuminated near nose-on and for a limited range of incidence angles from nose-on up towards

the normal to the fixture (coming up out of the plane of the paper in Figure D.2). The boat is not

designed as a fixture for illumination near broadside, as broadside illumination results in a strong
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Figure D.2 Top-down view of the ‘boat’ test fixture. The fixture is 8 feet long, 4 feet wide, and
8 inches thick. ‘CR’ is center of rotation.

reflected signal from the large planar area of the fixture seen in Figure D.2, which would overwhelm

the scattered signal from any object under test, including small 18” gaps cut into absorber panels

located near the nose of the fixture. This is why the measurement data plots presented in Chapter

4 are all terminated at 85◦ from the nose of the fixture (5◦ from broadside). Additionally, with the

extra target handling required to fill the gaps with the RAM ‘butter’ gap filler material, plus the time

required to allow the gap filler material to cure, sufficient phase error crept into the measurement

to produce the noisy signals for the treated gap measurement results.

When illuminated along the sharp tip (nose) of the fixture, the monostatic scattered signal is

very low. With the boat considered part of the range background in the measurements, phase error

becomes highly sensitive to any perturbations in the range such as fixture positioning changes or

drift in the electronic equipment. For the lowest signal levels measured on the boat test fixture,

significant variation in the results are seen below about 15◦ in the data plots in Chapter 4. With

the extra time and physical handling needed to acquire the treated gap data, this noise is seen to

worsen, sometimes over the entire range of sweep angles.

As seen in the photos in Figures D.4 through D.6, commercially available sheet MagRAM

was placed on the top of the fixture from the tip extending back 48” on the fixture. With the base

of MagRAM applied to the boat fixture, an initial set of RCS measurements was taken forming the
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Figure D.3 A view of the ‘boat’ test fixture looking down the tip (nose) of the fixture from below
waterline to show how the sharp tip is flared on the bottom side of the fixture.

baseline or ‘background’ for the measurements to follow. Afterwards, at a point 22” back from the

tip, 18” long gaps were cut into the MagRAM to produce the ‘2D gaps’ (two different gap widths

were cut, 100 mils wide and 60 mils wide, each requiring a new base absorber layer to be affixed

to the boat fixture). After the empty (or air) gaps were measured, the gaps were filled (or treated)

with the butter material. After a curing period, the fixture containing the treated gaps was then

remeasured. Once these data sets were obtained, the background was coherently subtracted from

the ‘gap’ measurements to obtain the scattering due to the gaps alone.

The data acquired from the compact range is calibrated three dimensional RCS data. For the

comparison data shown in Chapter 4, this data is converted to 2-D using the approximation [15]

σ2−D ' σ3−D
λ

2l2

where l is the length of the gap and λ is the illumination wavelength. As is evident from some of

the plots included in Chapter 4, no smoothing of the raw RCS data was performed.

The typical procedure used in the compact range to produce calibrated RCS data is referred

to as a coherent or ‘vector’ subtraction process. A measurement is made first of the ‘empty’ range

with only the pylon, floors, and walls contributing to the empty range signal. This is known as

D-3



Center of

  rotation

RAM panel

    with gap

Boat test

  fixture

Figure D.4 A view of the ‘boat’ test fixture showing the relative locations of the center of rota-
tion, the base absorber panel, and the gap.

the range background response signal. This background signal is carefully stored in the form of

amplitude and phase. The target is then carefully placed atop the pylon and measured, the target

scatter signal also being stored in the form of amplitude and phase data. Finally, a calibration target

of known RCS level is measured and the calibration signal stored as amplitude and phase data. The

RCS of the target is finally determined through the expression

σtarget,calibrated =
σtarget − σbackground

σcalibration − σbackground

where the subtractions take into account the complex vector nature of each of the stored signals.

When carefully performed by experienced range technicians, this vector subtraction process is

quite sensitive and highly accurate.

For this dissertation project, the process of gathering data using the boat fixture employed

the atypical procedure of leaving the boat fixture affixed to the top of the pylon during acquisition

of the background measurement. By doing this, the boat fixture is essentially considered as part

of the range. For the purpose of measuring the scattering due solely to the presence of the gap in

the base absorber material, this approach is required. This calls for extreme care on the part of the
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Figure D.5 The gap is located 22 inches back from the tip and 34 inches from the center of
rotation of the boat fixture.

range technicians since movement of the boat fixture between various measurements must to be

kept to an absolute minimum. Any movement of the fixture between target data and background

measurements would create an error source in the final data that could not be removed through any

data post-processing technique.

The photos in Figure D.4 through D.6 show several views of part of the boat fixture, the

base absorber layer (or the ‘slab coating material’), and the 18 inch gap cut into the base absorber

material made during the course of taking the measurements. Unfortunately, no presentable photos

of the gap with the gap filler material applied were obtained. It is evident that some experimentation

took place during the course of the measurements regarding how far back onto the fixture the

absorber panel was extended. Although the gaps were cut with the use of a metal template, they

were cut by hand by the range technicians. Thus the actual length, width, squareness of the gap

over it’s length, and other error factors could contribute to ambiguities in the measured data shown

in Chapter 4.

In the opening paragraphs of Section 4.3 it was stated that we could not expect the simulated

2D measurements to match well with the predicted results from the computer codes due to the

nature of the test body and the non-standard procedures used to acquire the data. As a way of sum-
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Figure D.6 A view of the 60 mil wide gap cut into the absorber panel.

marizing this appendix, we would now like to complete this thought although we do not provide a

complete analysis of the scattering from the boat test fixture as that would take us too far afield.

Like the Ram2d numerical test body described in Chapter 4, the boat test fixture is a finite

body but, unlike the Ram2d test body, is not infinite in any of it’s dimensions. While difficult to see

in Figures D.2 and D.3, the boat is terminated in a sharp tip at it’s nose and has sharp edges along

the top of the fixture leading away from the nose. These features could be expected to produce

surface waves inside the absorber panels into which the gaps were cut. As with the Ram2d test

body, these surface waves would be more pronounced for the polarization corresponding to TE

polarization with respect to the gap (this would be horizontal polarization in the range). Addition-

ally, with the geometry of the boat test fixture evident in the drawings, the scattering characteristics

(RCS patterns) of the fixture for the two polarizations are very different. The combined effect is

that various residuals (the combined interaction of these other scattering sources with the gaps) are

evident in some of the plots presented in Chapter 4, primarily for the TE polarization case in which

the shape of the echo width pattern is slightly different. Suffice it to say that these residuals result

from the much more complicated 3D features of the boat test fixture as compared to the Ram2d

numerical test body.
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As seen in the photo in Figure D.4, the gaps are offset nearly three feet from the center of

rotation of the boat test fixture. This gap offset was done intentionally to separate the scatter signal

of the gap from that of the pylon. This is necessary since the anticipated scattering from these

sources was expected to be near the same level. With this offset, the locus of the gap transcribes an

arc in the range as the test fixture is rotated. For the frequencies at which the gaps are measured,

one might well expect changes in amplitude and phase that could lead to erroneous results. In

fact, from the data shown in Chapter 4, some variation in amplitude may be evident. However,

the characteristics of the data plotted in Chapter 4 suggest that only random noise artifacts and,

perhaps, drift due to material cure time and target handling, contributed to the data presented.

As a whole, the conditions under which the measurement of the scattering from the gaps

was obtained were notably different from the assumptions used in the predictions. That the results

between the measurements and the computer codes agreed as well as they did is quite remarkable.

Overall, this is a testament to the quality of the compact range and the skill of the personnel who

accomplished these measurements.
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Appendix E. Measurement of Material Properties

In Chapter 4, numerous data plots are shown in exhibiting the performance of the hybrid Green’s

function MoM code developed in this dissertation. Some of the more interesting plots compare the

performance of the hybrid code to an industry-standard (well documented, validated, and widely

used) 2-D RCS computer code, Ram2d, and to actual measurement data taken in the AFRL Multi-

spectral Measurement Facility (MMF) advanced compact range facility as described in Appendix

D. In this Appendix, we more thoroughly describe the materials used in these measurements, the

slab coating and gap filler materials, and discuss how their properties were determined.

Another of the laboratories located within the AFRL Multispectral Measurement Facility

(MMF) is the Materials Measurements Laboratory (MML). The purpose of this laboratory is to

measure the electromagnetic properties of materials, which include a materials’ electric permittiv-

ity and magnetic permeability. The MML provided electromagnetic property values for the slab

coating and gap filler materials used in the measurements for this dissertation.

Material electromagnetic property measurements in the MML are obtained using a number

of different test fixtures. The slab coating and gap filler materials properties used in this dissertation

were measured with an apparatus known as the focused arch. This device is shown in the photo

in Figure E.1 and in the cross section drawing in Figure E.2. The focused arch was developed by

Figure E.1 Photo of the GTRI Focused Arch Apparatus
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researchers at the Georgia Tech Research Institute and uses dielectric lenses to focus microwave

energy onto a ‘spot’ on the sample. This spot exhibits a Gaussian roll-off amplitude profile and,

in the central portion of the beam, a minimal phase taper. This simulates, in a fairly compact

arrangement, a plane wave illumination of the sample under test.

 

Figure E.2 Cross Section Drawing of the GTRI Focused Arch System

The focused arch measurement system is driven by a Hewlett-Packard 8510C vector network

analyzer. Since the constitutive properties, ε and µ, of the material samples cannot be measured

directly, inversion algorithms are used to extract the complex permittivity and permeability of

a material sample (from measurement of the material’s reflection (S11) and transmission (S21)

coefficients). Several inversion algorithms are available and the two used in the MML are based

on the Nicolson-Ross-Weir (NRW) [40] [41] inversion algorithm and the Baker-Jarvis iterative

method [42].

Errors occurring in the process of converting focused arch Gaussian beam measurements

to plane wave quantities (reflection and transmission coefficients) is addressed in a recent article

by Petersson and Smith [35]. These conversion factors and errors associated with them, known

network analyzer error sources, material sample thickness and material sample placement uncer-

tainties (distance from the horn or lens to the sample) are all factored into the inversion algorithms

and are used to produce measurement error estimates in conjunction with extraction of the sam-

ple’s constitutive property values. Although written for measurements performed in waveguides,

many of these potential error sources have been analyzed and published by the researchers at the

National Institute of Standards and Technology [43], and have been incorporated into the inversion

algorithms used in the MML.
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The materials used in the compact range measurements were commercial, off the shelf prod-

ucts commonly employed in the antenna and electromagnetic scattering communities. The mate-

rial used as the slab coating material was manufactured by R & F Products, RFSW-N-.038-GP,

part number 2026. Measurement results on this sample produced the permittivity and permeability

data shown in Figures E.3 and E.4.

Figure E.3 Slab coating material permittivity.

Examining the measured permittivity data from the slab coating material, we notice that the

curve for ε′′ appears to dip slightly below zero at the upper end of the frequency range. This is

a mathematical artifact of the inversion algorithm used to compute the errors associated with the

permittivity from the measured S11, S21 data. The algorithm computes (and plots) the permittivity

value based on the error statistics analysis described above. For low loss material samples, com-

putation of the error bars can easily result in negative ε′′ values, to the extent that the algorithm

computes a negative error-averaged value. This is seen even in data published in the original paper

of Nicolson and Ross [40] (the sample holder pictured in Figure 7 of [40] is still in use today in

the MML, but was not used to obtain the data shown in this appendix). This is a fairly common

occurrence in material measurements and the usual (and correct) action is to disregard the small

negative ε′′ values and substitute ε′′ = 0. This is not to say that a negative value of ε′′ cannot
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exist. A negative value for ε′′ can occur if the material exhibits a dielectric resonance of some type.

However, since no such resonance behavior is observed (or expected) for the materials used in the

measurements, the negative error bar values are mathematical artifacts, and we can safely presume

that the lower extremes of the error bars for ε′′ are actually zero.

Figure E.4 Slab coating material permeability

The material used as the gap filler was a curable RAM butter, C-RAM KRS-124, batch

B982474, manufactured by the Cuming Microwave Corporation. Several samples were cast, in-

cluding both X-band waveguide and focused arch samples. These samples were not degassed so

they contained a number of small air bubbles, which contribute to the ambiguities in determination

of the gap filler constitutive properties. The X-band waveguide results were inconsistent, exhibited

large error bars, and were not reported by the MML. The focused arch sample was cast as a ∼ 1.2

mm thick sheet ∼ 15 cm by 15 cm. Measurement results on this cured sample produced the per-

mittivity and permeability data shown in Figures E.5 and E.6. The RAM butter gap filler material

has a limited shelf life and was discarded upon completion of the testing.

As is seen in the materials properties data plots, a significant amount of uncertainty exists

in the determination of both sets of material constitutive properties. It is reasonable to ask what

effect these uncertainties might have on the determination of echo width of the gaps studied in this
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Figure E.5 Gap filler material permittivity

Figure E.6 Gap filler material permeability

dissertation. To address this issue, several runs were made using material property values indicated

by the extremes of the error bars in Figures E.3 - E.6. These results are plotted in Figures E.7 and

E.8 for an untreated and treated (filled) rectangular gap 100 mils wide. These results are computed

at 8 GHz, which upon examination of data presented thus far, are certainly representative of a ‘best
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case’ since, as we go higher in frequency, scattering levels (echo widths) due to the gap become

higher and the error bars on our materials property measurements increase with frequency.
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Gap Scatter Dependence on Material Properties, TM Polarization, 8 GHz
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Figure E.7 Comparison for 100 mil wide, air filled rectangular gap with material property values
taken from the extremes of the error bars shown in Figures E.3 and E.4. The slab
thickness is 40 mils.

The material properties used in producing Figures E.7 and E.8, taken from Figures E.3

through E.6, are shown in the following table, where ‘LOW’ refers to the lower extremes of the

error bars and ‘HIGH’ refers to the upper extremes of the error bars, in Figures E.3 through E.6 at

8 GHz.

LOW HIGH

slab εr = 9.6 µr = 1.5 − j1.0 εr = 11.2 − j0.4 µr = 1.9 − j1.6

filler εg = 14.8 µg = 1.8 − j1.8 εg = 16.6 − j0.6 µg = 2.1 − j2.3

One may note from Figures E.3 and E.5 that the values used in the computations for εr and εg in

the ‘LOW’ cases do not include the negative imaginary values for the permittivities as shown in

the figures. As discussed above, the value of ε′′ used in both cases was ε′′ = 0.
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Figure E.8 Comparison for 100 mil wide, treated rectangular gap with material property values
taken from the extremes of the error bars shown in Figures E.3 through E.6.

For the data shown in Figure E.7, the gridding of the gap region for the ‘LOW’ case was 6x3

elements while that for the ‘HIGH’ case was 7x3. For Figure E.8, the gridding was 8x4 for the

‘LOW’ case and 9x4 for ‘HIGH.’

An interesting effect is observed in comparing the data presented in these two figures. In

Figure E.7, the echo width of the gap for the ‘HIGH’ material property values is −34.8dB/m

compared to −38.1dB/m for the ‘LOW’ material property values. This difference of more than

3dB is significant and is indicative of the importance of obtaining accurate materials property

measurements in low observables work. For the treated gap in Figure E.8, we see the difference

is less drastic, but, interestingly, it is also inverted from the previous figure: the normal incidence

echo width is −41.7dB/m for the ‘HIGH’ material property values compared to −40.3dB/m for

the ‘LOW’ material property values, a difference of less than 1.5dB. If we contrast the respective

material property values for each case (subtract the slab coating material property values from

those of the gap filler) we see the contrast is less for the case of the ‘HIGH’ values. Comparing
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the results of Figure E.7 to Figure E.8, we see greater echo width reduction for the ‘HIGH’ values

case, ∼ 6.9dB compared to ∼ 2.2dB for the ‘LOW’ case. This is exactly what is expected from

a gap filler material: closely match the properties of the base coating to reduce the RCS impact of

the gap.
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Appendix F. A Synopsis of the Skinner Theory and Code

In 1995, then AFIT/ENG faculty member Dr. J. Paul Skinner authored a paper entitled “TM Scat-

tering from a Gap in a Dielectric Coating on an Infinite Ground Plane” which became the starting

point for the work presented in this dissertation. Since this paper was never published in the lit-

erature it is synopsized in this Appendix.1 What follows is a synopsis of the theory of the hybrid

Moment Method / Green’s function technique as developed by Dr. Skinner. We make no attempt

to replicate any of the comparative data included in Skinner’s paper as the computer code written

by Skinner is well validated against Ram2d in the first several data plots in Chapter 4. So, while

the theoretical development here is almost verbatim, this appendix is not a complete replication of

his original paper. The synopsis will conclude with a comparison of what Skinner’s original work

was intended to accomplish and how his work was extended and expanded in this dissertation.

F.1 Introduction

This paper examines the problem of scattering by a rectangular gap in a dielectric coated

ground plane, as shown in Figure F.1. A plane wave illuminates the gap (with infinite length in

PSfrag replacements

φinc

w

εo

ŷ

x̂

ε1ε1

Perfect Electric Conductor

φscat

d

Figure F.1 Rectangular Gap in a Dielectric Coated Ground Plane

z) from the angle φinc off normal. We wish to examine the far zone scattering in the direction

φscat. This angle takes on a positive value for the backscatter quadrant and a negative value for

the forward scattering quadrant in the expressions to come (assuming φinc > 0). The dielectric

1With permission of Lt. Col. J. Paul Skinner
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constant of each semi-infinite slab is ε1 = εrεo. The permeability of the slab material is the same

as that of free space. The thickness of the slab is d and the gap width is w. In this paper, the TMz

polarization is considered, such that the electric field is ẑ directed.

The technique used in this paper to analyze the gap scattering is the hybrid moment method/Green’s

function method [3]. The article [3] gives references to dozens of previous journal articles docu-

menting the use of the hybrid moment method/Green’s function technique for a variety of scattering

problems.

The expression of the Green’s function for a dielectric coated ground plane is traditionally

put in the form of a Sommerfeld integral. In this paper, however, several techniques are used to

separate the Green’s function into terms which can be handled efficiently. The remainder of the

paper is broken into sections describing the integral equation formulation and moment method

solution, the Green’s function, and the computation of far zone scattered fields.

F.2 Integral Equation and Moment Method Solution

Again, consider the geometry depicted in Figure F.1. Let us begin by defining the nominal

permittivity function, as if the gap were not present, i.e.,

εnom(x, y) =







ε1, 0 < y < d

εo, d < y
(F.1)

We will also refer to ε(x, y) as the true dielectric function of position with the gap present, which

differs from εnom only within the gap region. In the spirit of the volume equivalence principle

[15], one may define equivalent scattering currents caused by the dielectric change when the gap

is created. This current is

Jeq = jω(εo − ε1)E (F.2)

throughout the gap region, and zero elsewhere. With this current and using the ejωt time conven-

tion, we may express Ampere’s Law as

∇× H = jωεnomE + Jeq (F.3)
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and with the substitution of Faraday’s Law, form the vector wave equation

∇×∇× E − β2
nomE = −jωµoJeq (F.4)

where βnom is the wavenumber associated with the nominal permittivity (i.e., βnom = ω
√

µoε1 for

0 < y < d, and βnom = ω
√

µoεo for d < y). From Equation (F.4), we can think of J eq as a source

of scattered fields in the presence of the nominal (no gap) geometry, such that

E = E
ginc

+ E
scat

(F.5)

We refer to the “generalized” incident fields, E
ginc

, as those existing due to an incident plane wave

onto the nominal (no gap) geometry.

In the TM case, the electric field is purely ẑ directed and the vector wave equation reduces

to the simpler scalar equation,

(∇2
t + β2

nom)Ez = jωµoJeqz (F.6)

where ∇2
t = ∇2 − ∂2/∂z2. We use the forcing function on the right hand side of F.6 to gener-

ate the scattered fields, leaving the generalized incident fields as a solution to the corresponding

homogeneous equation. With a free space based incident field of

Einc
z (x, y, φinc) = ejβod cos φinc

e−jβox sin φinc

τ0,1

[

e−jβ1(d−y) cos φ1(1 − e−j2β1y cos φ1)

1 + Γe−j2β1d cos φ1

]

(F.7)

In Equation (F.7), we make use of the refracted angle φ1 within the slab, which is found by Snell’s

Law,

β1 sin φ1 = βo sin φinc (F.8)

The symbols τ0,1 and Γ represent Fresnel transmission (from free space into the dielectric) and

reflection (inside dielectric onto dielectric-free space interface) coefficients. They are

τ0,1 =
2η1 cos φinc

η1 cos φinc + η0 cos φ1
(F.9)
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and

Γ =
η1 cos φinc − η0 cos φ1

η1 cos φinc + η0 cos φ1
(F.10)

where η refers to the intrinsic impedance of the appropriate medium.

Consider a Green’s function which obeys

(∇2
t + β2

nom)G(ρ, ρ′) = −δ(ρ − ρ′) (F.11)

with the spatially dependent βnom, along with the Sommerfeld radiation condition and the PEC

boundary condition,

G(x, 0; x′, y′) = 0 (F.12)

This Green’s function will take on the forms of an “internal” Green’s function (Gint) for 0 < y < d,

and an “external” Green’s function (Gext) for d < y. In either case, the source will always be

within the “former” gap region (0 < x′ < w,0 < y′ < d) for the applications to follow.

Once the Green’s function is determined, the scattered fields are found as

Escat
z (ρ) = −jωµo

∫ ∫

Gap
Jeqz(ρ

′)G(ρ, ρ′)dρ′ (F.13)

The equivalent scattering current are found by solving the volumetric EFIE which arises from

Equation (F.5), i.e.,

Escat
z (ρ) =

Jeqz(ρ)

jω(εo − ε1)
+ jωµo

∫ ∫

Gap
Jeqz(ρ

′)G(ρ, ρ′)dρ′ (F.14)

This equation can be solved in an approximate sense by a moment method procedure with rectan-

gular volume pulse basis functions (Pn = 1 within the nth cell, and zero elsewhere) with point

matching in the centers of the rectangular cells (designated by locations ρm, where m runs from

1 to N ). Assuming discretization into N uniformly generated rectangular cells with the gap, the

matrix equation follows:

[V ] = [Z + ∆Z] [I] (F.15)
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where

Vm = Eginc
z (ρm) (F.16)

Zmn = jωµo

∫ ∫

nthcell
Gint(ρm, ρ′)dρ′ (F.17)

∆Zmn =
δmn

jω(ε0 − ε1)
(F.18)

The next section discusses methods to handle the internal Green’s function in the evaluation of

Zmn.

F.3 Internal Green’s Function

The Green’s function for radiation of a filament of current within a grounded dielectric slab

to points also within the slab is split into a free space type Green’s function and an additional term

which accounts for the bounces that waves take along the planar boundaries. That is, we choose to

express the internal Green’s function as

Gint(ρ, ρ′) = − j

4
H2

o (β1|ρ − ρ′|) + Gbounces(ρ, ρ′) (F.19)

In forming this split, we recognize only the free space Green’s function term to possess a singularity

associated with co-location of a source and observation point. For the integrations to be performed,

the free space singularity can be handled with a circle extraction method, as is often used when

performing 2-D moment method solutions for volume equivalent currents [30].

The bounce term in the internal Green’s function may be formulated by using the Array

Scanning Method (ASM), in an application similar to that found in [37]. This approach avoids

the formation of a Sommerfeld integral, and retains a fair amount of computational efficiency. To

form the ASM derived solution, we envision not just one radiating filament of current, but an entire

infinite array of periodic filaments within the dielectric slab, as depicted in Figure F.2. The currents

on the filaments are identical in amplitude, but vary in phase with a linear phase progression to

steer the radiation in some direction. Using a directional cosine phase steering parameter sx1 , the
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Figure F.2 Infinite Array of Radiating Current Filaments for use in the Integrand in the Array
Scanning Method

radiation from the entire array in a homogeneous space may be formed in the spatial sum,

Garray, homo = − j

4

∞
∑

m=−∞
H(2)

o

(

β1

√

(x − mDx)2 + y2
)

ejβ1mDxsx1 (F.20)

By using Poisson’s sum formula [20], one can transform this into a spectral sum of plane waves,

Garray, homo = − j

2β1Dx

∞
∑

n=−∞

e−jβ1(R−R
′
)·r̂1

ry1

(F.21)

where r̂1 = x̂rx1 + ŷry1 ,

rx1 = sx1 +
nλ1

Dx
(F.22)

and

ry1 =
√

1 − r2
x1

(F.23)

The positive root is chosen for the finite number of propagating plane waves, and the “-j” root is

chosen for the evanescent plane waves, to maintain the radiation condition.

Using the methods of Munk [23], the radiation of an array within a stratified media can be

written from the radiation in free space with an additional factor dubbed the T-factor. This T-factor

accounts for the infinite geometric series of bounces each plane wave (propagating or evanescent)

takes along the planar boundaries. Mathematically, we have

Garray, slab = Garray, homo · T (F.24)
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For the present application, the T-factor is

T =
Γe−j2β1dry1

(

ejβ1(y+y′)ry1 − 2 cos[β1(y − y′)ry1 ]
)

− e−jβ1(y+y′)ry1

1 + Γe−j2β1dry1
(F.25)

where

Γ =
ηory1 − η1ryo

ηory1 + η1ryo

(F.26)

and

ryo =
√

1 − r2
xo

(F.27)

with

rxo =
β1

βo
rx1 (F.28)

Note that r̂0 = x̂rxo + ŷryo is the propagation unit vector for the plane wave in free space (beyond

the slab). Also note that the above T-factor does not include a direct plane wave propagation (only

bounce terms), since we chose to separate this out into the single Hankel function in Equation

(F.19).

Using the Array Scanning Method (ASM) with an inter-element spacing of Dx = λ1/2, the

“bounced” radiation from a single filament at (x′, y′) is

Gbounces =
1

2

∫ 1

−1
Garray,slabdsx1 (F.29)

= − j

4β1Dx

∫ 1

−1

∞
∑

n=−∞

e−jβ1(R−R
′
)·r̂1

ry1

· Tdsx1 (F.30)

where T is defined in Equation (F.25). This may appear to be an intimidating expression since

an infinite sum of plane waves with complicated T-factors is embedded in the integrand, but from

our choice of Dx, we force only the n = 0 plane wave to be propagating, and the evanescent

plane waves decay extremely fast with the bounce paths. In practice, only the n = 0 and ±1 terms

need to be included for sufficient numerical convergence in most situations. The ASM does require

numerical integration, however, though the domain is bounded. The integrand will become singular

for the n = 0 term due to the denominator of the T-factor going to zero at the resonant excitation

of surface waves. These surface wave poles are guaranteed to occur only if |sx1 | >
√

εo/ε1, i.e.,
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beyond the critical angle. Their location may be found with a Newton-Raphson search, and their

contribution to the integral may be extracted in closed form, as described in [37]. If one doesn’t

wish to locate and extract the surface wave contributions in closed form, a practical solution is to

add a little loss to β1, for use in the denominator of the T-factor. This keeps the integrand bounded

with little distortion in the resulting integral evaluation.

F.4 Far Zone Scattered Fields

The calculation of external scattered fields uses Equation (F.13) with the external Green’s

function. To form Gext, we may again make use of the Array Scanning Method, with the concept

of extracting the radiation of a single filament of current from an infinite array of filaments. The

approach is similar to that presented in the previous section, except a different T-factor is now nec-

essary to give the net transmission from the slab into free space. The result of the ASM procedure

is

Gext = − j

4π

∫ 1

−1

∞
∑

n=−∞

e−jβ1(R−R
′
)·r̂1

ry1

T extdsx1 (F.31)

where

T ext = τe−jβo(y−d)ryo e−jβ1(d−y′)ry1
1 − e−j2β1y′ry1

1 + Γe−j2β1dry1
(F.32)

and

τ =
2ηory1

ηory1 + η1ryo

(F.33)

The Γ in Equation (F.32) is defined in Equation (F.26).

For far zone scattering, the evanescent plane waves in Equation (F.31) may be dropped,

leaving only the n = 0 term. The limits of the ASM integral may also be truncated to where sx1

corresponds to a critical angle (thus, the T-factor will never be singular). The integrand is highly

oscillatory, with increasing frequency of oscillations as the field observation radius ρ increases.

Thus, numerical evaluation of Equation (F.31) is difficult, but as noted for a similar far zone ASM

application in [37], the integral may be evaluated in closed form by the stationary phase method.

Performing this evaluation and making use of the algebraic expression in Equation (F.7), the far
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zone external Green’s function is

Gext
fz = − j

4

√

2

πβoρ
ejπ/4e−jβoρEginc

z (x′, y′, φscat) (F.34)

This result can also be derived by use of reciprocity.

With this far zone external Green’s function, the far zone scattered field is

Escat
fz,z(φ

scat) = −ωµo

4

√

2

πβoρ
ejπ/4e−jβoρ

N
∑

n=1

In

·
∫ ∫

nthcell
Eginc

z (x′, y′, φscat)dx′dy′ (F.35)

At this point in his original paper, Dr. Skinner continued with an effort to validate the

theory just presented. We will not reproduce this portion of his paper but go on to provide a short

description of his resulting computer code.

F.5 Skinner’s gaptm Computer Code

Based on the theory developed in the preceding sections, a FORTRAN computer code was

developed by Skinner to generate comparative data for validation purposes. It is this computer

code, called gaptm, that was used in this dissertation to generate the ‘Skinner’ data plotted in

Figures 4.2 through 4.5. In this section, we briefly summarize the gaptm code and compare and

contrast it to the code developed as part of this dissertation research.

The gaptm code is highly streamlined and requests user keyboard inputs of the variables

for the width of the gap, dielectric slab thickness, slab dielectric constant (real), the illumination

frequency, and finally a discretization parameter that is used to determine the gridding of the rect-

angular gap. Upon completion of these inputs, gaptm then computes the location of the centers of

the gap region cells and indexes them.

In contrast to the procedure used in gaptm, the codes developed in this dissertation read

complex material property data (for both the slab coating and gap filler materials), frequency,

and gap vertices (capable of producing non-rectangular gap geometries) from input files. The
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discretization parameter is hard wired into the code but could easily be read in as part of the input

file.

The impedance matrix generated by the gaptm code is the same as that generated by the

TM polarization code developed in this dissertation for a pure dielectric case, where the Green’s

function is the canonical Gzz term, Equation (2.51). The primary difference lies in the manner in

which the bounce correction terms are integrated. In gaptm, Skinner used two fixed Simpson’s rule

quadrature routines, one for the propagating plane wave mode term (the central region) and one

for a single evanescent plane wave mode term (n = 1). In these routines, the integrand function is

folded, assuming symmetry about sx = 0. While seemingly crude, the results presented in Chapter

4 indicate that the assumption works well for lossless slab coating materials.

To compute his direct coupling term, Skinner used a routine he had written to compute the

Hankel function with a real-valued argument. To invert his impedance matrix Skinner used a rou-

tine based on the Crout reduction procedure (see Section 2.2 of [39]). By contrast, the ‘Simpson’

code uses the ‘Amos’ routines implemented in Matlabr version 6 to compute the direct terms be-

cause they allow for complex-valued arguments, and the Matlabr built-in function ‘INV’ to invert

the resulting impedance matrix. As was mentioned earlier, the matrix inversion process in these

hybrid codes is very rapid compared to matrix fill time.

With these differences the two hybrid codes produce results that are almost graphically

equivalent in the figures shown in Chapter 4. Added flexibility was needed in the codes devel-

oped in this dissertation to be able to handle lossy materials, gaps filled with material other than

air, non-rectangular gap geometries, and TE polarization.

F.6 Comparison of Skinner Theory to Dissertation

Some of the limitations in the theory as developed by Dr. Skinner2 are immediately obvious.

The most obvious one is that he limited his development to the TM polarization case using an Elec-

tric Field Integral Equation (EFIE). Secondly, he restricted his development to lossless dielectric

2We point out that Skinner’s purpose was to initiate a research topic suitable for a Ph.D. student - namely, the author
of this dissertation. This dissertation is a direct result of Skinner’s motivating work.

F-10



slab coating materials as well as gaps that were filled only with air. He then also limited his gap

geometries to being rectangular in shape.

Expansion of the theory to the TE polarization case required either development of a dyadic

Green’s function version of the scalar Green’s function developed by Skinner (as was done in

this dissertation) or use of a Magnetic Field Integral Equation (MFIE) formulation. Expansion of

the theory to account for magnetic materials also would require development of either a dyadic

Green’s function approach or an MFIE-form for TM polarization to handle the volume magnetic

equivalent currents. Taking the dyadic Green’s function and coupled integral equations approach

in this dissertation simultaneously took care of both of these expansions in the theory.

The expansion of the theory to handle lossy materials required subtle extensions to many of

the equations and constants presented by Skinner, but can be traced to the expression for rx1 and the

propagation constant of the medium. In this dissertation, in Equation (2.5), rx1 = Re(k)
k (sx1+

nλ1
Dx

).

One immediately recognizes that for the lossless material case, this is equivalent to the form used

by Skinner in Equation (F.22). It may be argued that a more straightforward extension of the

propagation constant in this dissertation may have been to use the definition γ = α + jβ where

α is the attenuation constant. Had this approach been adopted here, the factor Re(k)/k would be

replaced by γ/jβ, but the end results would not be affected by this change.

Finally, we point out that a more robust gap region gridding scheme was adopted in this

dissertation to be able to handle non-rectangular gap geometries. Since most of the slab coating

materials are fairly thin, and the gaps fairly narrow, this extension my be of minimal impact as the

non-rectangular gaps perturb the echo width patterns only slightly. However, these differences can

be detected, so this extension is a valid one.

In summary, the theory as developed by Skinner and presented in this appendix, combined

with the results from his computer code shown in Chapter 4, show that his initial work is a special

case of the theory and computer code capability developed in this dissertation. For lossless slab

coating material, air-filled gaps, and TM polarization, both codes can be used and should produce

the same result. The results presented in Chapter 4 indicate that this is so.
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