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Abstract

Image compression is an active research area due to the many applications

involving electronic media. Much research has been focused on image quality ver-

sus bit rate and/or algorithm speed. Here, we seek an effective image coder with a

weighted constraint on speed. However, the compression must not taint the quality

of impulsive features in the image. Moreover, the camera is operated in a mode

that creates a dominant fixed pattern noise across the image array, degrading vi-

sual quality and disrupting compression performance. We propose a method that

efficiently compresses such an image. We begin by characterizing and removing the

fixed pattern noise from the image, thereby dramatically improving its visual qual-

ity. We follow noise removal with a histogram, or contrast, stretch. We then choose

a transform that can be implemented rapidly with basic arithmetic operations and

suggest a fast way to code the transform coefficients.

Image quality is a great concern. We are particularly interested in preserv-

ing pixel-sized impulsive features in the image. We seek a method of quantifying

image quality based not only on the high energy low-frequency objects but also on

the smaller energy, high-frequency impulsive objects. Standard image quality mea-

sures, such as mean squared error (MSE), tend to emphasize the quality of high

energy objects and give less weight to the quality of pixel-sized impulses. Therefore,

we develop a new measure that gives high-frequency impulsive features a greater

contribution than MSE to the overall quality.

x



FAST COMPRESSION OF IMAGERY WITH HIGH FREQUENCY

CONTENT

I. Introduction

1.1 Problem Statement

We have an image containing high-frequency, impulsive phenomena, taken on

an array that contains a specific noise pattern. We desire a transform image coder

that effectively and efficiently compresses the image as quickly as possible while

maintaining the quality of impulsive features in the image.

Such a coder requires several steps. In the first step, the noise pattern, which

is fixed, must be characterized and removed from the image. This step is important

for two reasons. One, the noise pattern severely degrades visual content in the

image, making it difficult to visually discriminate objects. Two, the noise pattern

degrades compression performance. It is important that we remove the pattern

before compression because lossy image compression changes the character of the

noise, degrading our ability to remove it afterwards.

In the second step, we must design an image coder with two main criteria.

First, it must be fast. This criterion drives many important decisions in the design,

such as what sort of transform we choose, how we implement the transform, how we

code the coefficient information, and how we optimize the compression performance.

Second, the image coder must not degrade the quality of impulsive objects in the

image. The compression scheme is useless for our application if impulsive features

are not preserved.

Once we finalize the coder design, we seek to measure the performance of the

coder. The three main measures that we would like to quantify are speed, bit rate
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(or final file size), and resulting image quality. Quantifying speed is not necessarily a

trivial matter because there are many factors that come into play, such as computer

clock rate, compiler performance, code optimization, and hardware configuration.

Moreover, it might not be helpful to quantify time without some sort of comparison

to a standard compression scheme with the same implementation configurations.

Measuring bit rate is more straight forward, since arriving at this measure is only a

matter of measuring the final file sizes. Quantifying image quality is, perhaps, the

most nontrivial process. Image quality is relative; what looks good to a human might

not be acceptable for an algorithm and vice versa. As we wish to build an image

coder that maintains impulsive features, it is desirable to have a measure that reflects

the quality of high-frequency phenomena. Industry standard quality measures, such

as mean square error (MSE) and peak signal to noise ratio (PSNR, which is based

on MSE) tend to emphasize the quality of low frequency phenomena. The problem

statement is, then, extended to the design of a quality measure that gives impulsive

features a greater contribution to image quality.

1.2 Thesis Organization

In chapter 2, we explain the background material on which this research is

based. Chapter 3 is devoted to the methodology and begins by explaining how we

characterize and remove the fixed pattern noise on the CCD array. We then design a

fast transform that quickly decorrelates the image data. After analyzing the statistics

of the transform coefficients for three test images, we design quantization levels for

the coefficients. We then discuss how we code the image in a timely way. Finally, we

suggest a new image quality measure that gives impulsive features more weight in

the measure than the traditional MSE and PSNR measures. Chapter 4 contains the

results of our experiments. In this chapter, we compare our image coder, designed

with our specific criteria, to the JPEG algorithm in terms of implementation time,
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bit rate, and image quality using PSNR and our new measure. Chapter 5 concludes

with a review of the thesis and recommendations for further research.
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II. Background

2.1 Introduction

There are two fundamental types of image coders for compression. The first is

a spatially-based encoder, which quantizes and encodes the pixel values. The second

type is the transform image coder. The image compression routine outlined in this

research follows the general form of a transform image coder, which has three main

parts, as shown in Figure 2.1 [9]. The first part is the transform. The transform

decomposes the image into a set of coefficient-weighted functions. The second step

is quantization. Here the coefficients from the transform are projected into a finite

set of elements, or quanta. The third step is coding.

This chapter discusses the transform image coder and the specific configura-

tions that are used for this research. It begins with a general discussion of transforms

and why they are good for image compression. We then discuss different quantiza-

tion tools and go over strategies for assigning quanta to the transform coefficients.

The discussion continues with the concept of entropy coding. Finally, we discuss

current industry-standard compression measures used to quantify compression algo-

rithm performance.

Figure 2.1. This block diagram represents the main steps of transform coding. The
transform step converts the image into a series of transform coefficients,
such as frequency or wavelet coefficients. The quantization step breaks
the coefficient dynamic range into a finite number of magnitude levels.
The coding step codes each quantization level with a unique identifier.
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2.2 Transforms

Transforms are extremely useful for image compression because they reduce

correlation, or redundancy, in an image [9]. In the spatial domain of image scenery,

there is typically a large amount of redundant information; each object in the image

is usually represented by several pixels that are similar in relative value or color. A

transform ideally removes the redundancies so that important image information is

coded only once.

Besides reduced pixel correlation, another desirable property in transforms is

energy compaction [9] [1]. A transform with good energy compaction will put most

of the energy from the image in just a fraction of the transform coefficients. In this

form, only a few dominant coefficients describe the image. The simplest example

can be described with the Fourier Transform of a flood filled image. In the spatial

domain of a flood filled image, every pixel has the same value. However, in the

frequency domain, all pixel energy is concentrated in just one data element: the

DC or zero-frequency coefficient. So the energy compaction property of the Fourier

Transform allows us to express all the energy of our simple flood filled image with

just one coefficient instead of all of the spatial domain pixels of the image.

2.2.1 The Wavelet Transform. Our image coder is based on the discrete

wavelet transform. Wavelets have been used in mathematics, and, more recently,

in signal processing, as a way to analyze data components localized in both time

(or in the case of imagery, space) and frequency [3] [1] [17]. In discrete wavelet

analysis, information is decomposed into a series of scaled high-frequency detail

coefficients and low-frequency coarse coefficients. A filter bank representation of a

simple DWT is shown in Figure 2.2. In the figure, cp(n) and dp(n) are the coarse and

detail coefficients, respectively, at the pth scale. We iterate on the coarse coefficients

creating a set of more-coarse coefficients and a set of band-limited detail coefficients

at the next frequency scale. The filters h(z) and g(z) are the wavelet filters and are
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typically low pass and high pass filters, respectively. They are not the actual scaling

and wavelet functions. However, they dictate properties that govern the validity of

the wavelet transform (see [3], [1], and [17]).

Figure 2.2. The block diagram in this figure is a general implementation of the
discrete wavelet transform. Here the scale and wavelet filters are ap-
plied before the downsampling operation to create the coarse and detail
coefficients, respectively.

2.2.2 The Lifting Implementation. In the mid 1990’s, the lifting scheme was

systematically developed to provide a simple way to calculate the discrete wavelet

transform [16] [2] [1]. The first step in lifting, as shown in Figure 2.3, is to split

the data into even and odd data elements. We use the even set to predict the odd

set using a prediction filter. The difference between the odd set and our prediction

of the odd set based on the even set makes up the detail coefficients. The coarse

coefficients are created when we update the even set of data elements with the newly

created detail coefficients using an anti-aliasing, or update, filter. The last step is

the normalization step, which may be needed to make a valid wavelet transform.

Again, we iterate on the coarse coefficients to create different scales of the lifting

transform.

This space-domain construction of the discrete wavelet transform has several

advantages [16] [1]. First, the ladder construction makes the transform fast and easy

to compute. Second, a rounding step can be added at the output of each filter in the

lift to create an integer to integer transform, which can increase calculation speed.
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Figure 2.3. This block diagram of the lifting implementation demonstrates some
of the advantages of using the lift to calculate the DWT of an image,
such as the ladder-like construction.

Third, each iteration of the lift is easily invertible. Fourth, the lift is implemented

with in-place calculations, meaning no further memory is needed to compute the

transform. Last, any wavelet transform can be implemented with a lift, although

multiple steps might be needed.

2.3 Coefficient Quantization

In the quantization step, we project the coefficients into a finite set of el-

ements, called quantization levels or quanta [9]. This projection is a non-linear

transformation, an example of which is shown in Figure 2.4. Note that the result

of the transformation Q(x) is merely a discrete representation of x. If x is already

discrete, then Q(x) is a discrete representation of x with fewer quanta. Quantizing

induces quantization error. The mean-square quantization error, which is based on

the probability density function (pdf) of x, is

εq =

∞∫
−∞

fx(x) (x−Q(x))2 dx (2.1)

where fx(x) is the pdf of x. In compression there is a tradeoff between the number

of quantization levels and εq. If we decrease the number of quantization levels,

we decrease the number of symbols needed to represent Q(x), which is good for

compression, but we increase εq, which is bad for image quality. Current industry
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practice often uses the Lloyd-Max quantization scheme to determine the quantization

values because it optimally minimizes quantization error in the mean square for a

given number of quantization levels [10] [11].

Figure 2.4. In the quantization process, the coefficients are projected into a finite
set of elements, called quantization levels. These levels are discrete
representations of the original coefficients. A simple example of a
quantizer is shown in this graph. Here, the output of the quantizer
is Q(x).

2.3.1 Thresholding. Thresholding is a form of quantization. However, the

goals of thresholding are somewhat different than that of quantization. In threshold-

ing transform coefficients, we discard coefficients that we deem insignificant. Because

most of the energy in the image is contained in only a fraction of the transform coeffi-

cients due to the energy compaction property, many of the “insignificant” coefficients

can be discarded with minimal effect on overall image quality.

There are two main types of thresholds: hard-thresholds and soft-thresholds.

In a hard-threshold, the values below the threshold are simply set to zero. In a
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soft-threshold, the values below the threshold are set to zero and all other values are

shifted toward zero by the threshold value. A soft-threshold transformation is shown

in Figure 2.5.

Figure 2.5. This graph represents a soft threshold. The values within the range of
the threshold are set to zero and the other values are shifted towards
zero by the threshold amount.

2.3.1.1 Denoising. It should be noted that thresholding wavelet

detail coefficients provides excellent denoising properties [4]. As explained in Section

2.2, the wavelet transform decorrelates image pixels and puts a majority of the image

information in just a few of the coefficients. However, noise, if white, is uncorrelated,

so the decorrelating properties of the transform have no effect. Therefore, in the

transform domain, the important image information, which is parsimoniously stored

in a just a few of the wavelet coefficients, is much stronger than and usually separable

from the noise information. A hard-threshold of the weaker wavelet coefficients will

affect the noise much more than the image information, resulting in a reconstructed

image with drastically reduced noise.
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2.4 Entropy Coding

Entropy, in information theory, is the theoretical minimum amount of infor-

mation needed to represent a series of realizations of a discrete random variable. In

our case, the term “amount of information” takes the form of average number of

bits. Once we estimate the probability mass function of our quantized levels, we can

design Huffman codes that code the information nearly to entropy [6].

2.5 Image Compression Measures

In image compression, the main trade off for bit rate is image quality. For this

reason, compression performance is quantified by a plot of image quality versus bit

rate. Bit rate is usually measured in bits per pixel (bpp). It is not uncommon, and

is usually more meaningful, to refer to compression ratio instead. Compression ratio

is the ratio of the uncompressed file size to compressed file size.

What quantifies the quality of an image is somewhat more relative than the

simple matter of measuring file sizes. Image quality depends on the application;

different applications may consider certain features more important than others.

For example, in our application, we consider single pixel phenomena to be extremely

important. In many other applications, the quality of a single pixel is negligible

compared to the rest of the image.

One of the most popular metrics used to measure the visual quality of an

image is the peak signal to noise ratio (PSNR) [12]. PSNR measures the average

pixel fidelity between the original and compressed image and is

PSNR(Ic, Io) = 10 log10

(
max(Io)

2

MSE(Ic, Io)

)
(2.2)

where Ic is the compressed image, Io is the original image, and max(Io) is the max-

imum possible value of Io, which, for 8-bit data, is 255. MSE(Ic, Io) is the mean

squared error between the original and compressed image and is
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MSE(Ic, Io) =
1

N ·M
N∑

i=1

M∑
j=1

(Io(i, j)− Ic(i, j))
2. (2.3)

With PSNR, a higher measure means higher image quality. With MSE, a lower

measure means higher image quality.

2.6 Conclusion

In this chapter, we began by discussing the elements of the transform image

coder. There are three main steps in such a coder: the transform, the quantization,

and the codeword assignments. The transform is a process that converts spatial

image information to a form that is usually very different than its original state.

With a transform, we seek to reduce redundancies in the image so that important

image information is coded only once. Transforms also provide energy compaction,

meaning that most of the energy in the image is stored in only a fraction of the

transform coefficients, allowing us to discern which coefficients are insignificant. Af-

ter briefly discussing the generic elements of the transform image coder, we discussed

the discrete wavelet transform and the lifting implementation of the transform. We

continued with the idea of quantization and referenced the Lloyd-Max scheme of

calculating the quantization levels that optimally minimize the quantization error in

the mean square. Our discussion then turned to codeword assignments. If we know

the probability mass function of the quantization levels, we can produce a set of

Huffman codes that code the data nearly to entropy. We concluded with a brief dis-

cussion of industry-standard image-compression measures that are commonly used

to describe the performance of an image coder.
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III. Methodology

3.1 Introduction

In this chapter, we discuss the method for achieving our research goals. To

review, the goals of this research are to design a scheme that effectively compresses

an image with weighted constraints on algorithm speed and the preservation of high

frequency detail in the image. The chapter begins with an analysis of the image.

Due to application constraints, the camera must be run in a mode that creates

a dominant noise pattern across the image array. This noise pattern is fixed and

repeatable on the array and, if characterizable, should be removed because it clearly

degrades the viewable information in the image. It is also important to remove the

pattern before compression because lossy compression will change the character of

the noise and degrade our ability to remove it afterwards. Once we remove this

fixed pattern noise from the image, we show the necessity of stretching the image

histogram to maximize compression performance. This histogram stretch does not

cost us anything in terms of processing speed because it can be implemented at the

same time as the fixed pattern noise correction.

Next we discuss the lifting implementation of the wavelet transform as it applies

to our routine. During this discussion we choose a transform based on speed and

simplicity. We also remove the normalization factor from the lifting implementation

for the sake of computational simplicity. Although this step invalidates the process

as a wavelet transform, we still preserve many of the desirable wavelet properties.

The discussion then turns to a statistical analysis of the transform coefficients. The

detail coefficients of the transform are used to determine proper quanta that minimize

quantization error in the mean square using the Lloyd-Max quantization scheme. A

brief discussion follows describing how a soft-threshold on the detail coefficients has

minimal impact on the optimality of the Lloyd-Max quantization values, due mainly
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to the fact that the detail coefficients of the transform tend to follow a Laplacian

distribution.

Once the transform coefficients are properly quantized, the simple matter of

how to store the coefficients remains. Both the values of the quantized coefficients

and their locations are stored. Due to thresholding, many of the coefficients are

determined to be insignificant and are designated as zero. In order to gain compres-

sion, we choose a run-length coding scheme to store significant coefficient locations

by simply counting the number of zeros between each one. The number of consec-

utive zeros between each significant coefficient is decomposed into a combination of

numbers that are assigned codewords.

Finally, we introduce a new measure of image quality that is specifically de-

signed to measure the fidelity of pixel sized objects in our compressed image. It is

shown that current image quality measures, like PSNR or MSE, tend to emphasize

fidelity to low frequency content in an image. To measure the performance of our

image compression routine, we choose to consider every frequency component of the

image as equally important. This choice makes sense considering that the type of

objects that we want to maintain in our compressed image, single impulsive objects,

have infinite frequency content.

Before we begin, we introduce three test images that we use for the research.

These images, shown in Figures 3.1-3.3, clearly show the dominant fixed pattern

noise. These images were chosen because they are representative of the type of

imagery that we wish to compress. Test image 1, in Figure 3.1, was chosen because

it was sunny when we took the image and there are single-pixel sized impulsive

features in the scene. Test image 2, Figure 3.2, is a typical scene on a darker-

overcast day. Test image 3, Figure 3.3, is a typical scene on a lighter-overcast day.

This image also contains larger impulsive features.
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Figure 3.1. Test Image 1, which is the first test image used for the research. This
image was chosen for two main reasons: The scene was taken on a
sunny day and there are single-pixel sized impulsive features in the
scene.
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Figure 3.2. Test Image 2. This test image is typical for imagery taken on a dark-
overcast day.

3-4



Figure 3.3. Test Image 3. This test image is typical for imagery taken on a lighter-
overcast day. There are also large impulsive objects in the scene.
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3.2 Characterizing the Fixed Pattern Noise on the CCD

The CCD camera produces images that contain a very strong fixed pattern

noise (FPN) across the whole array. This fixed pattern noise is caused by synchronous

timing generation effects from fast data rates [5] and from on-board DSP anomalies.

There is a setting on the camera that attempts to mitigate the effect of this noise

pattern by slightly blurring the image. However, our application requires that we

maintain fidelity to single pixel sized objects in the image, so slightly blurring the

image to reduce the fixed pattern noise is not an option. Instead, we choose to

characterize the FPN and remove it from the image.

The FPN likely takes the form of a different bias and responsivity factor for each

pixel. We begin our experiment by assuming that each pixel of the fixed noise pattern

can be normalized to the CCD array mean by a first order polynomial transformation.

The responsivity portion of this model represents the multiplicative portion of the

characterization. The DC bias represents the additive portion of the characterization.

If we were to plot out each pixel-element value from the noise pattern against the

intensity of the incoming light using this model, we would expect to see a slightly

different straight line for every pixel. However, our initial assumptions in this matter

are not correct; the characterization curve is nonlinear and can not be represented

by only one polynomial.

3.2.1 Setting up the Measurements. The characterization measurement is

set up by placing the camera with the focusing lens removed so that it is staring

directly into the exit port of an optical integration sphere, as shown in Figure 3.4.

A tungsten lamp is placed to illuminate the entrance port of the integration sphere,

and an iris controls the throughput of light into the sphere from the entrance port.

The result is an image where every CCD pixel is exposed to the same amount of

light. This type of image is called a flood fill image. Throughout the experiment,

the luminescence of the tungsten lamp was kept constant with the aid of a direct-
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feedback light detector. The light intensity exposed to the CCD is controlled by the

opening and closing of the iris.

Figure 3.4. This picture demonstrates the position of the camera with respect to
the exit port of the integration sphere during the fixed pattern noise
characterization measurements. Note that during the actual measure-
ments, the camera aperture is inserted directly into the exit port. A
tungsten lamp illuminates the interior of the sphere from the entrance
port and an iris is used to control the light intensity.

3.2.2 Taking the Measurements. We chose to collect imagery with seven

different light intensity levels for the characterization measurements. For each inten-

sity setting, we collect forty images and average them to reduce the effect of thermal

noise on the measurements. The lowest light intensity measured was with the lamp

turned off for an average pixel value of zero. The highest light intensity created an

average pixel value of about 200.

Based on these seven measurements, we discovered two distinct characteriza-

tion regions for each pixel. The discontinuity is clearly seen from the overlay of the

response of 10 different pixels in the plot in the Figure 3.5. In the first region, where

the average pixel intensity is below 100, the characterization seems to contain very

small bias components. Above the average intensity value of 100, the bias component

becomes the dominant feature in the characterization.
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The difference between the two regions are also clearly seen in Figure 3.6, which

shows a plot of the seven intensity values for several adjacent pixels in an image line.

Note that above a certain intensity threshold (about 100), an additive noise pattern

seems to take affect that is not present for lower intensity levels. The fact that there

are some data points in the fourth brightest intensity measurement that are lower in

value than those same elements in the third brightest measurement supports the idea

of having two characterization regimes. Although it is common in CCD cameras to

contain a fixed pattern noise, having two distinct patterns as a function of intensity

is not common. The reason that our camera has these two distinct characterization

regions is, according to the camera vendor, an unexplainable on-board DSP anomaly.

Figure 3.5. This graph shows the fixed pattern noise effects. It shows the inten-
sity of 10 pixels versus the average pixel intensity on the array. The
discontinuity of the characterization is very clear.

3.2.3 Applying the Characterization to Remove the Pattern Noise. The

fact that there are two distinct characterization regions gives rise to the question of

3-8

Overlay of the Characterization Curves of 10 Pixels 

200 

£150 

100 

50 

1  z 

/M 
Ww 

j^B^yy' 

^^^ 1 
/ 

i                                           1 

50 100 
Average Intensity 

150 



Figure 3.6. This plot shows the values of several adjacent pixels for seven different
light intensities.

which region to apply to which pixels. It is not valid to simply test to see if each

pixel is below some threshold in order to determine which region to apply because,

as demonstrated in Section 3.2.2, some of the pixels can have values that could map

to both regions. It is possible to base the decision of which characterization region to

apply on a local average, but that would add complexity and implementation time

to the algorithm. As we will discuss in Section 3.3, the information of interest in this

imagery is consistently contained within a section of dynamic range entirely within

the more light-intense region. Therefore, we apply the second correction region to

all pixels.

Our goal is to normalize each pixel separately to the average pixel value on

the array. Based on the data we collected, it seems reasonable to consider that each

pixel has a slightly different multiplicative response to light and a slightly different

additive bias. Assuming this model, we can induce a fixed pattern noise on a flood

fill image by simply multiplying each pixel’s responsivity factor by some constant
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that represents the mean pixel value in the array and then adding the bias at each

pixel. Mathematically, this is

IMFNP (i, j) = Cavg ×mFPN(i, j) + bFPN(i, j) (3.1)

where IMFPN(i, j) is the flood fill image, Cavg is the average pixel value of the flood

filled image, mFPN(i, j) is the responsivity (multiplicative) portion, and bFPN(i, j)

is the additive bias. Using the method of least squares, we employ the collected

flood-fill imagery to find the values of mFPN and bFPN for each pixel that minimize

the mean square error. By rewriting Equation 3.1, the transform that removes the

FPN becomes

Cavg =
IMFPN(i, j)− bFPN(i, j)

mFPN(i, j)
. (3.2)

If IMFPN is a regular image containing the FPN, then this simple first order transfor-

mation removes the component of the pattern based on the least square calculation

of mFPN(i, j) and bFPN(i, j). Since multiplication is computationally easier to cal-

culate than division, Equation 3.2 is easily put into the form:

IMFPNC(i, j) = IMFPN(i, j)× m̂FPN(i, j) + b̂FPN(i, j), (3.3)

where IMFPNC(i, j) is the FPN-corrected image.

As shown in Figure 3.7, the process of characterizing the noise pattern and

applying the FPN correction transformation effectively removes most of the fixed

pattern noise from our test image. From the figure, note that the transformation

actually induced a noise pattern in the unimportant, lower intensity pixels because

they are in the lower characterization region.
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Figure 3.7. Test Image 1 corrected for the fixed pattern noise. After successful
noise characterization, we are able to remove most of the fixed pattern
noise from test image 1. Note that the transformation actually induces
a noise pattern in the lower intensity, unimportant pixels because they
are in the lower characterization region.

3-11



3.3 Histogram Stretching

Figure 3.7 shows that the fixed pattern noise can be successfully removed from

our image. However, the useful information in the image seems to still be compressed

within a small section of the grayscale dynamic range. From a compression and a

visual standpoint, it would be better to make darker the darker parts in the middle

circular region, or the region that contains nearly all of the visual information, and

to make lighter the lighter pixels. This process is known as histogram modifica-

tion [9]. The visual benefits of histogram modification are obvious: more contrast in

the middle part of the region makes it easier for us to visually discriminate objects

in the image. From a compression standpoint, it is important to make the histogram

modification for much the same reason. Without some sort of histogram transfor-

mation, we must invest a lot of our compression energy (in the form of quantization

levels) into a region relatively shallow in dynamic range so we can discriminate ob-

jects from the compressed image. This investment leaves us limited compression

energy to represent the rest of the dynamic range. What suffers is either bit rate

or overall image quality. It turns out that we are able to incorporate an acceptable

histogram modification into the FPN-correction process in order to implement both

simultaneously. Before we discuss how, we first describe the histogram modification

process.

In histogram modification, we apply a fixed or an adaptive transformation to

the grayscale levels to either compress or stretch certain portions of the dynamic

range. Consider the histograms of the three FPN-corrected test images in Figure

3.8. Note that the histograms are most dense between the values of 100 and 200. It

is in this region, which contains nearly all of the useful visual information, that we

would like to allocate more dynamic range.

There are different ways to modify the histogram to address our needs. We

could choose a nonlinear transformation of the grayscale values so that values 0-100

from the histogram would be compressed to values from 0 to 10, values 100 to 200
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Figure 3.8. After the fixed pattern noise correction, our test images exhibit the his-
tograms shown here. (a) Test Image 1 after FPN correction. (b) Test
Image 2 after FPN Correction. (c) Test Image 3 after FPN correction.
Note that in each image a significant portion of the histogram mass in
each image is located between 100 and 200. This mass corresponds to
the useful information in the image. Ideally, we want just this section
of the histogram to cover the entire grayscale dynamic range.
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would be stretched to values from 10 to 245, and values greater than 200 in the

histogram would be compressed into the remaining dynamic range. This approach

assures us that we will not lose any information; simply remapping certain grayscales

to a different value, even if the transformation makes the grayscale less significant,

is better than just discarding the value. The disadvantage of this method is that the

entire grayscale transformation must be done in three discontinuous parts.

Another form of histogram modification is called histogram equalization [9].

This method is a more automated process and seeks to evenly distribute the dynamic

range to every unit of histogram mass. Such distribution means that the sections with

twice as much mass have twice as much dynamic range after histogram equalization.

This adaptive method is effective but calculation-intensive and takes too long for

our needs. It would also place some emphasis on the very dark regions of the image

which contain little visual information.

An acceptable tradeoff for speed is to discard portions of the dynamic range

that we confidently believe contain negligible amounts of useable visual information.

We propose to linearly stretch all of the dynamic range so that the grayscale values

from 100 to 200 are remapped to the range from 0 to 255, and then clip the remaining

information outside of those bounds. Figure 3.9 is a graphical representation of this

transformation. Although this is not the optimal histogram modification for every

image based on the histograms in Figure 3.8, this transformation will not cut out

important information in the imagery and we avoid the burden of using a time-

consuming adaptive histogram stretch. Another benefit for implementing this simple

transformation is that it can be incorporated directly into the process that corrects

the test image for the fixed pattern noise.

The implementation begins by subtracting 100 from all values and then mul-

tiplying the result by 2.55, or

̂IMFPNC(i, j) = 2.55× (IMFPNC(i, j)− 100), (3.4)
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Figure 3.9. This transformation significantly improves the viewability and com-
pressibility of our test image. It can be implemented with a single
linear transformation and a clipping operation above and below the
8-bit dynamic range bounds.
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where ̂IMFPNC(i, j) is the histogram-stretched version of IMFPNC(i, j). When

Equation 3.4 is combined with Equation 3.3, we develop a new transformation that

accomplishes both the fixed pattern noise correction and the histogram stretching.

The new transformation takes the form

̂IMFPNC(i, j) = IMFPN(i, j)× m̃FPN(i, j) + b̃FPN(i, j), (3.5)

where m̃FPN(i, j) = 2.55× m̂FPN(i, j) and b̃FPN(i, j) = 2.55× b̂FPN(i, j)− 255.

After this simple transformation, we perform the following clipping operation:

̂IMFPNC(i, j) =




0 ̂IMFPNC(i, j) < 0

̂IMFPNC(i, j) 0 ≤ ̂IMFPNC(i, j) ≤ 255

255 ̂IMFPNC(i, j) > 255

(3.6)

The histogram-stretched test imagery is found in Figures 3.10 - 3.12.

3.4 The Multi-scale Transform

After the image enhancements described in Sections 3.3 and 3.2, we design the

compression process. The first step is to transform the image. We choose a wavelet-

based transform so that we can take advantage of its space-localization properties

for image compression. One of our goals is to create a compression algorithm that is

computationally fast. The 3,1 wavelets from the Cohen-Daubechies-Feauveau (CDF)

family of biorthogonal wavelets are known to be very fast because there are few filter

taps and, as will be shown, the un-normalized filter taps have values of 2−n and can

be implemented with binary bit shifts [3] [1] [17].

As stated previously, any wavelet transform can be implemented with a lift [16] [1].

A lift is desirable for many reasons, some of which are described in Section 2.2.2.

The main reason we desire the lift implementation is that it is very fast to execute.

When we compute the filters needed to carry out a lift using a 1-point prediction and
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Figure 3.10. This is test image 1 after the combined grayscale transformation of
FPN removal and histogram stretch.
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Figure 3.11. This is test image 2 after the combined grayscale transformation of
FPN removal and histogram stretch.
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Figure 3.12. This is test image 3 after the combined grayscale transformation of
FPN removal and histogram stretch.
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a 3-point update, as described in [2], we find that the prediction filter is P (z) = 1,

and the update filter is U(z) = 1
16
z+ 1

2
− 1

16
z−1. These filters can be used to directly

represent the unnormalized analysis and synthesis filters of the 3,1 wavelet trans-

form. The analysis and synthesis filters, once normalized, can then be used with the

wavelet recursion equations to find the actual scaling and wavelet functions on the

analysis and synthesis side of the transform [3] [1] [17]. Figures 3.13 (a) and 3.13

(b) show the scaling and wavelet functions on the analysis side of the DWT, while

Figures 3.13 (c) and 3.13 (d) show the scaling and wavelet functions on the synthesis

side.
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Figure 3.13. These are the scaling and wavelet functions of the 3,1 CDF wavelet.
(a) scaling function on the analysis side. (b) wavelet function on the
analysis side. (c) scaling function on the synthesis side (d) wavelet
function on the synthesis side.
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The analysis side of the transform is the side that decomposes the image in-

formation into the wavelet domain. The synthesis side of the transform brings the

information from the wavelet domain back into the spatial domain. It is usually

advantageous in applications such as image compression to make the synthesis func-

tions as smooth as possible so that the reconstructed image is smooth. As for the

functions currently selected, the synthesis functions are not smooth and will produce

blocking artifacts in the reconstructed image. However, the analysis functions are

much more smooth. Therefore, we wish to swap the functions that we use for the

analysis and synthesis portions of the transform. We do this by reversing the order

of the prediction and update steps of the lift [2]. In reversing the order we must

recalculate the filters in the reverse lift mode. First, let us discuss the normalization

process in the lift.

As stated previously, there are filter properties that govern the validity of the

discrete wavelet transform. Some of the properties deal with magnitude; for example,

all of the filter taps in H(z) must sum to
√
2. There are also power constraints on

both H(z) and G(z). To make sure that these equivalent filters (whose polyphase

components can be represented with the prediction and update filters) follow these

properties, we must add a normalization step to the lift. Without this step the

transform is not valid because the recursion equations are no longer valid.

Thus far, we have specified the wavelet transform implemented in a lift as

shown in Figure 3.14. Note the reverse implementation of the lift. The corresponding

wavelet filters in this implementation are H(z) = 1+ z−1 and G(z) = − 1
16
z2 − 1

16
z+

1
2
− 1

2
z−1 + 1

16
z−2 + 1

16
z−3.

Taking one iteration of the DWT on an image requires that we perform the lift

on each row of the image followed by the same operation on each column. The result

is a data element of the same size with the four distinct quadrants of a 2-dimensional

DWT. It is easy to see that when the normalization process on the coarse coefficients

is 1√
2
, as it is for a valid wavelet transform, then the coarse coefficients in the LL

3-21



Figure 3.14. This block diagram shows the implementation of the 3,1 DWT imple-
mented with a reverse lift. Note that the filters can be applied with
bit shift operations.

quadrant increase by a factor of 2 for each iteration. In our application we desire

that the coefficients for every iteration have the same relative scale so that we can

apply the same quantization criteria for each scale of detail coefficients. In essence,

we would like the average value of the coarse coefficients at one scale to be the same

as that of the coarse coefficients at the next scale. This desire is accomplished by

applying a factor of 1
2
to the even image data and modifying the update filter by the

same factor. The prediction filter must then be multiplied by 2 in order to obtain the

same detail coefficients. The normalization step is then dropped, thereby invalidating

the wavelet transform. However, many desirable properties of the wavelet transform

(decorrelation, energy compaction, etc.) are maintained. Figure 3.15 shows these

modifications in the lift. This is the implementation that we use for our research.

Note that the key elements of this lift are that it is the 3,1 DWT in the reverse

lift mode, the normalization process is dropped from the end of the operation, and

a factor of 1
2
is added to the even data elements and carried through the filters.

Since we are quantizing the result of this transform, we could, with minimal effect,

round each rung on this ladder so that we implement only integer additions. Such

a modification makes the transform non-linear but still easily invertible with perfect

reconstruction [13].
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Figure 3.15. Block diagram of the multiscale transform used for this research.
Each scale of coefficients use the same relative dynamic range, the
operation is done in the reverse lift mode, and the entire operation
can be done with binary bit shifts and additions. Each rung on the
ladder could be modified so that only integer additions are required.

3.5 Analyzing the Transform Statistics

Assuming that a data set consists of independent realizations of some random

variable, its histogram is a direct representation of the probability density function

(pdf) of the random variable. The histogram shows how many times a value occurs

in the data set. Thus, we can use the histogram to make assumptions about the

theoretical pdf, which is used to create the Lloyd-Max quantization levels. Since we

designed the transform to yield detail coefficients with the same relative dynamic

range for each scale, we can combine the scales and analyze only one histogram. In

Figure 3.16, the histogram of all detail coefficients for test image 1 show that the

detail coefficients strongly follow a Laplacian pdf, which is

fx(x) =
α

2
e−α|x|, (3.7)

where E[x] = 0, V AR[x] = 2
α2 [8], and the standard deviation of x is the square root

of its variance.

Although this histogram shows a strong resemblance to a Laplacian pdf, the

histogram also shows that there is more probability density on the skirts of the

normal Laplacian that would be better described by a Gaussian distribution. Figure

3.17 shows this effect in more detail using a logarithmic plot of the normalized
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Figure 3.16. This is the histogram for all non-zero detail coefficients of test image
1. Note the strong resemblance of this histogram to a Laplacian pdf.
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histogram of the combined detail coefficients for all three images with an overlaid

Laplacian curve. In this plot the Laplacian parameter α was empirically determined

to be 0.4.
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Figure 3.17. This logarithmic plot shows the normalized histogram of the com-
bined detail coefficients for all scales and test images in line-form
along with the normalized Laplacian-only representation. As seen
from this plot, the Laplacian curve fits the histogram in the middle of
the plot fairly well, but does not adequately represent the histogram
mass on the outskirts of the Laplacian. In this plot, the Laplacian
parameter α was empirically determined to be 0.4.

Since there is more mass on the skirts of the histogram than can adequately

be described by a Laplacian curve alone, we choose to model the histogram using a

hybrid pdf made up of a Laplacian/Gaussian mixture. This new pdf has the form

fx(x) = A
α

2
e−α|x| +

B√
2πσ2

gaus

e
−1

(2σ2
gaus)

x2

, (3.8)
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where σ2
gaus is the variance of the Gaussian pdf. For this new function to be a valid

pdf,

A+B = 1, (3.9)

where 0 ≤ A,B ≤ 1.

Our empirical determination of A and B begins by counting the number of

detail coefficients whose absolute value is greater than twice the standard deviation

of the Laplacian curve. This number divided by the total number of detail coefficients

is the empirically derived probability that the absolute value of the coefficient is

greater than twice the Laplacian standard deviation. We call this empirically derived

probability C and describe it by the integral:

1−




2
√

2
α∫

−2
√

2
α

(
A
α

2
e−α|x| +

B√
2πσgaus

e
−1

σ2
gaus

x2

)
dx


 = C. (3.10)

Our choice of σ2
gaus is not a closed-form finding; we graphically determined it

to be 900. Empirically , this variance may seem high when viewing the graph in

Figure 3.17, but we choose to err in this direction because we want to place as much

density in the outskirts of the Laplacian as reasonably possible when we calculate

the quanta. These higher-valued detail coefficients carry the most impact on overall

image quality, and it makes sense to give them as many quanta that can be justified

by the statistics. Solving the system of equations, Equations 3.9 and 3.10, for all

detail coefficients yields A = 0.9678 and B = 0.0322.

Combining the results from this section, we are able to assume that the Lapla-

cian/Gaussian mixture pdf for the detail coefficients of the test image is

fx(x) = 0.19356e−0.4|x| + 0.0004282e
−x2

1800 . (3.11)
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Figure 3.18 shows the normalized histogram of the combined detail coefficients for

all scales and images plotted with a normalized version of this pdf.
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Figure 3.18. This logarithmic plot shows the normalized histogram of the de-
tail coefficients in line-form along with the normalized joint Lapla-
cian/Gaussian representation. As seen from this plot, the joint pdf
better represents the histogram mass on the outskirts of the Laplacian
portion.

3.5.1 The Lloyd-Max Quanta. As described in Section 2.3, the Lloyd-

Max quantization scheme finds the optimal quantization values that minimize mean-

square error based on the pdf of the data [10] [11]. The implementation of this scheme

with the pdf described in Equation 3.11 yields quantization values found in Table 3.1.

A more complete list of Lloyd-Max quanta is found in Appendix A. The transition

levels between adjacent quanta is defined as the average of the two adjacent quanta

[10] [11].

3-27



Number of Levels Positive Quantization Values
2 3.17
4 2.6, 36.49
6 1.67, 7.86, 40.02
8 1.49, 6.51, 23.89, 50.04
10 1.14, 4.42, 10.33, 28.75, 53.12
12 1, 3.72, 8.01, 17.85, 34.88, 56.99
14 0.85, 3.04, 6.15, 11.45, 23.83, 39.45, 59.84
16 0.75, 2.62, 5.11, 8.82, 15.86, 28.23, 42.8, 61.89
18 0.67, 2.3, 4.39, 7.27, 11.88, 20.91, 32.51, 46.09, 63.86
20 0.6, 2.04, 3.82, 6.14, 9.48, 15.17, 24.66, 35.61, 48.46, 65.26

Table 3.1. This is a list of positive quantization levels that were calculated using
the Lloyd-Max method.

3.6 Performing the Thresholding Operation

For our algorithm, we code the image using a threshold to determine insignif-

icant coefficients. For quantization purposes we use a soft-threshold. In order to

not significantly change the quality of the image, the quantized values are adjusted

during image reconstruction to their hard-threshold state. With a soft-threshold,

we set all coefficients with an absolute value less than the threshold value γ to zero,

subtract γ from all positive values, and add it to the negative values. This type of

transformation was shown in Figure 2.5. On the histogram, this transformation is

represented by setting all the histogram density that is within +/- γ on the x-axis

to zero and by shifting the two remaining sides together. This section discusses how

we implement the threshold operation and what the implications of thresholding are

on the histogram. Since we have optimized our quantization levels according to the

histograms of the detail coefficients, we need reassurance that a soft-threshold will

not ruin these efforts.

Because we have removed the normalization step on the transform, we must

threshold each scale of detail coefficients differently. If this were a valid wavelet

transform (if we had kept the normalization step), then we would threshold each

scale with the same value. However, by removing the normalization, the coefficients
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are given a weight of one half (relative to the coefficients in a valid DWT), which is

compounded with each scale. We therefore threshold the values at each scale with a

threshold that is one half the value of the threshold used at the previous scale.

3.6.1 The Effect of a Soft-Threshold on the Optimality of our Quantization

Levels. In Section 3.5, we assumed a certain pdf for the detail coefficients of our

transform. Since the optimal quantization levels are determined based on this pdf,

we recognize that it is not advisable to blindly change the histogram of the detail

coefficients via a soft-threshold without understanding the impact. In this section,

we show that the actual pdf is not significantly changed by a soft-threshold.

We begin our justification by noting that in our application of lossy image

compression, detail coefficients with a value of zero are ignored. Therefore, all co-

efficients that are set to zero are removed from the resulting histogram. Also, note

that the pdf is almost entirely Laplacian. If we, for the moment, assume that the

pdf is entirely Laplacian, then a hard threshold on the pdf yields

tx(x) =




α
2
e−αx x > γ

α
2
eαx x ≤ −γ

0 −γ < x ≤ γ

(3.12)

To make a soft threshold, we want to create a transformation that shifts all

the values towards zero by the value of γ. Specifically, let us set

y = x− γ for x > 0

y = x+ γ for x < 0
(3.13)

After ignoring all zero-coefficients, we combine Equations 3.12 and 3.13 to obtain

fy(y) =
α

2
e−αγe−α|y|. (3.14)

3-29



Normalizing fy(y) to make a valid pdf reveals the original Laplacian pdf. Hence,

if the pdf is entirely Laplacian, the mean-square quantization error is not changed

by a soft-threshold; regardless of the threshold, the resulting pdf of the non-zero

coefficients is the same.

Of course, the pdf that describes the detail coefficients in the test image is not

entirely Laplacian; it contains a very minor Gaussian component as well. Therefore,

additional analysis is needed.

The standard deviation of the Laplacian portion of the pdf in Equation 3.11

is
√

2
α

≈ 3.53, while the standard deviation of the Gaussian portion is 30. If we

assume a threshold value that does not completely annihilate the Laplacian portion

of the pdf, then, since the spread of the Gaussian is so much larger, the result of the

threshold on the Gaussian is approximately the same Gaussian. The resulting pdf

after thresholding resembles a Laplacian/Gaussian mixture pdf, where the Gaussian

portion is more pronounced than before thresholding. Since the Gaussian portion of

the pdf changes minimally and since the Laplacian contribution to the pdf is nearly

zero on the skirts, the Lloyd-Max quanta do not change significantly over the pri-

marily Gaussian portion. In short, the values of the quanta from the un-thresholded

coefficients are a good approximation to the optimal quanta after thresholding.

3.7 Coding the Image

So far we have discussed our image enhancement techniques (FPN correction

and histogram stretching), we have chosen the transform to be used, we have ana-

lyzed the statistics of the transform coefficients to determine the optimal Lloyd-Max

quantization, and we have explained how we threshold each scale of detail coeffi-

cients. This section describes how we code the image to achieve compression. We

initiate the discussion by describing the order in which we threshold and quantize the

detail coefficients. We then discuss our method of run-length coding, which is where

most of our compression benefits are realized. Once we write to disk the values and
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locations of the significant detail coefficients (via run-length coding), we finish by

quantizing and writing to disk the coarse image coefficients from the fifth and final

iteration of the transform.

3.7.1 Organizing the Detail Coefficients. As stated previously, the four

quadrants created by one iteration of the multiscale transform are similar in func-

tion to those from one iteration of the 2-dimensional DWT. The upper-left quad-

rant, called the LL quadrant, contains the lower resolution image. The upper-right

quadrant, HL, contains low frequency information in the vertical direction and high

frequency information in the horizontal direction. As a result, the information tends

to be grouped together vertically. The lower-left quadrant, LH, contains high fre-

quency information in the vertical direction and low frequency information in the

horizontal direction and tends to have information grouped horizontally. The lower-

right quadrant is the HH quadrant and contains high frequency information in both

directions, so information is grouped together diagonally. This type of information

is useful for justifying the order with which we choose to threshold and quantize the

detail coefficients for each scale.

For each iteration of the transform, we threshold and quantize each detail

coefficient separately. If the detail coefficient has a magnitude less than the threshold

value, we count it as insignificant. We are interested in storing only the quantized

significant coefficients to disk, so we choose to use a run-length coding scheme to

store their locations. In essence, we store to disk the quantized value of the significant

coefficients as well as the number of insignificant coefficients between them. We keep

track of the number of insignificant coefficients using a consecutive zero counter.

The order in which we quantize the coefficients is shown in Figure 3.19. We

start at the upper left data element in the HL quadrant and read downward, since

the data in this quadrant is grouped vertically. At the end of the first column in

HL, we start at the top of the second column. Once all of the coefficients in HL are
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quantized, we proceed to the upper left data element in LH without resetting our

consecutive zero counter. We then read the coefficients to the right since the data is

grouped horizontally in this quadrant. As we read along each row, we do not stop

at the end of the row in LH; we continue reading along the row of HH. We read

the HH quadrant horizontally instead of diagonally because it is time-consuming

to organize the coefficients diagonally. At the end of the HH row, we refocus on

the first element of the next row and repeat. Once all of the detail coefficients are

quantized and coded at this scale, we iterate the transform on the LL quadrant, or

the coarse coefficients, and continue the process on the detail coefficients at the next

scale without resetting the consecutive zero counter.

Figure 3.19. This diagram shows how we read the coefficients. We start at the
upper left element of the HL quadrant and read down the columns.
We then move to the LH quadrant and read across the rows.

3.7.2 Implementing the Run-Length Code: Counting the Consecutive Zeros.

In run-length coding, we count the number of zeros between two significant coef-

ficients in order to keep track of their locations. Since the quantized values of the
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significant coefficients are designated by unique entropy codewords, we must find a

way to write the number of consecutive zeros to disk that will not interfere with

the Huffman codes. In order to accomplish this task, we propose to represent the

number of consecutive zeros with a combination of elements that also have entropy

codewords. To this end, we create a finite number of quantization levels called zero-

count levels. We define the values of these levels so that any positive integer can be

represented by some potentially repeated combination.

3.7.2.1 Designing the Zero-Count Levels. The goal is to designate a

finite number of levels that each represent a different number so that any positive

integer can be represented by a combination of these different zero-count levels. An

obvious solution is to have each zero-count level represent an increasing power of

two. For example, let us use only eight zero-count levels for this kind of integer

representation. These levels are described in Table 3.2

Zero Count Level Number of Zeros Integer Number of Zeros
1 20 1
2 21 2
3 22 4
4 23 8
5 24 16
6 25 32
7 26 64
8 27 128

Table 3.2. The all zero-count levels used in our algorithm. Any positive integer
can be represented by a combination of these levels. Some of the levels
can be repeated.

As stated previously, any positive integer can be represented by a combination

of these levels. For example, four levels are used to describe the number 23:

23 = 20 + 21 + 22 + 24

23 = 1 + 2 + 4 + 16
(3.15)
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The number 196 is represented by three levels:

196 = 22 + 26 + 27

196 = 4 + 64 + 128
(3.16)

3.7.2.2 Implementing the Integer Decomposition into a Combination of

Zero-Count Levels. There are several ways to discover which combination of

levels is needed to represent a given integer. One easy way is to work with the

binary equivalent of the integer.

For example, suppose we want to decompose the number 302 into a series of

these levels. Consider first the binary equivalent of the integer

302 = 100101110. (3.17)

Split the binary number into two sections: the seven least significant bits, and the

remaining bits. The seven least significant bits, 0101110, are used to determine

which of the first seven zero-count levels are used to describe the integer. In this

case, the 21, 22, 23, and 25 levels are used. Next, the bits that are more significant

than the least six are isolated to describe how many times the last zero-count level

is used to describe the integer. In this case, the decimal-equivalent of the bits 10 is

2. The 27 zero-count level is used two times. The decomposition of the integer 302

is

302 = 21 + 22 + 23 + 25 + 27 + 27

302 = 2 + 4 + 8 + 32 + 128 + 128
(3.18)

3.7.3 Choosing an Entropy Code Design. As stated in Section 2.4, the Huff-

man code creates an entropy code scheme for the data set based on the probability

mass function (pmf) of the quantized transform coefficients. So far in this chapter,

we analyzed the transform statistics of our test image once it is FPN-corrected and

3-34



histogram-stretched to determine the pdf of the detail coefficients. We discussed

how we implement the soft-threshold without specifically quantifying a threshold

value. Then we described how to represent the number of consecutive zeros between

significant coefficients as a combination of zero-count levels. Our determination of

a Huffman code is based on how many quanta we choose to use for our Lloyd-Max

quantizer, how many zero-count levels we choose to use, and what value we choose

for the soft-threshold. It is important to realize that although the threshold value

does not significantly change the pdf of the detail coefficients (as described in Section

3.6.1), the threshold value will significantly affect the distribution of the zero-count

levels, thereby affecting the outcome of the entropy coding.

Our goal is to calculate a single Huffman code that can be used for all our

images. However, implementing a Huffman code requires prior knowledge of the

probability mass function (pmf) of the quantized data. In Section 3.5, we assume

a single pdf to represent the un-quantized detail coefficients at every scale for every

image. Hence, we also assume that the resulting pmf of the quantized coefficients

is the same. As stated in the last paragraph, the factor that would make the pmf’s

different, assuming the same number of quanta and zero-count levels, is the threshold

value. Increasing the threshold value creates more insignificant coefficients, thereby

increasing the probability of the zero-count levels. Therefore, to increase compression

performance, a Huffman code must be calculated for every threshold value. If the

threshold value is unknown to the decoder, then it must be included in the overhead

of the coded image file. Once the decoder knows the threshold value used during

the coding process, then it can determine which Huffman code was used. For our

specific application, we will choose a configuration for the image coder that includes

the number of quanta, the number of zero-count levels, and the threshold value, so

that the same Huffman codes are used at all times. We choose to do this in the

interest of processing speed. Our decision is based on the performance charts in

Appendix B. These charts were made using eight zero-count levels.
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We assumed a single Huffman Code appropriate for all our images. We now

verify this assumption. We do this by simply applying the Huffman code calculated

for one image to another image and comparing the difference in bits per level (bpl)

from that of its own Huffman code. We expect the bpl value to not change signifi-

cantly. For this test, we apply the Huffman codes calculated for test image 1 using

40 quanta, 8 zero-count levels, and a threshold value of 20. We then apply this code

to test image 2 and 3 and see how much the bpl values change from the application

of their own Huffman codes. Table 3.3 shows the results of this test. Note that

the change in bpl is minimal, meaning that the entropy code for one image closely

approximates the entropy code of another.

Test Image bpl From Own Code bpl From Image 1 Code Percent Change
2 4.64 4.67 0.65%
3 4.45 4.49 0.90%

Table 3.3. Huffman Code Performance Comparison Between Images. This table
shows the performance of the Huffman code calculated for test image 1
as it is applied to test image 2. Note that the change in bits per level
(bpl) is minimal, meaning that the entropy code for one image closely
approximates the entropy code of another.

3.7.4 Coding the Final Iteration Coarse Coefficients. After the run-length

coding operation on all five iterations of detail coefficients, we round the coarse

coefficients to the nearest integer and write them to disk by columns starting at the

upper left data element. We designed the transform so that the range of data in the

coarse image is consistent across all scales, so each element in the coarse image is

rounded to the nearest 8 bit integer. Since after five iterations the coarse image size

is only 15x20, the use of a prediction encoder is not worth the compression benefits

of its implementation; the coarse image requires only 300 bytes of disk space.
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3.8 A New Image Quality Measure

Current industry standard image quality metrics tend to emphasize the quality

of lower frequency objects in an image, but we consider impulsive information very

important. Thus, we require in our application a measure that considers the quality

of high frequency objects as well as the quality of larger low frequency objects. In

this section we introduce a new measure that gives equal contribution to the high

frequency, impulsive objects and the lower frequency objects. We begin by analyzing

the standard measure, Mean Square Error (MSE), on which PSNR is based. We then

recognize why this measure is not optimal for evaluating impulse quality. Next, we

suggest a new measure that better reflects the type of quality we are interested in

maintaining in our image.

3.8.1 Parseval’s Identity applied to MSE. As stated previously, the MSE

measurement of an image tends to emphasize the lower frequency details. Our jus-

tification begins by defining the error:

ε(i, j) = Io(i, j)− Ic(i, j). (3.19)

Equation 2.3 can be rewritten

MSE(Ic, Io) =
1

N ·M
N∑

i=1

M∑
j=1

|ε(i, j)|2. (3.20)

We use Parseval’s relation to write

N∑
i=1

M∑
j=1

|ε(i, j)|2 = 1

N ·M
N∑

k=1

M∑
l=1

|ε(k, l)|2, (3.21)

where ε(k, l) is the discrete Fourier transform of ε(i, j) [9]. Since the Fourier trans-

form is a linear operation, Equations 3.19 and 3.21 can be combined with 3.20 in the

following way:
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MSE(Ic, Io) =

(
1

N ·M
)2 N∑

k=1

M∑
l=1

|Fo(k, l)− Fc(k, l)|2, (3.22)

where Fo and Fc are the discrete Fourier transforms of Io and Ic, respectively.

If an image tends to have more low frequency content than high frequency con-

tent, which is typical due to the energy compaction property of the Fourier transform,

then one easily sees that relative changes in the low frequency content will influence

the result in Equation 3.22 more than the same relative changes in the high frequency

content. In other words, if the DC or zero-frequency component of an image receives

a 50% change, the MSE measure would be strongly affected, but a 50% change in the

highest frequency component would hardly be noticed. Thus, MSE has more fidelity

to the lower frequency components than to the higher frequency components.

3.8.2 A New Frequency-Based Mean Squared Error Measure. We are in-

terested in preserving the quality of impulse-like objects as well as low-frequency

objects. Since an impulse contains infinite frequency, we suggest a measure where

each frequency component in Equation 3.22 is given a more equal contribution to the

overall measurement. We call this modified MSE measure the Weighted Frequency

Mean Square Error (WFMSE). It takes the form

WFMSE(Ic, Io) =

(
1

N ·M
)2 N∑

k=1

M∑
l=1

W (k, l) · |Fo(k, l)− Fc(k, l)|2. (3.23)

The question is how to design W (k, l). Let us make the heuristic observation that

a frequency component in the original image that changes due to compression by a

factor of β is the same error in either direction. In other words, we would like to

say that whether the frequency component changes by β or 1
β
, we treat the error the

same. Therefore, we define
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W (k, l) =
R

max
(|Fo(k, l)|2 , |Fc(k, l)|2

) , (3.24)

where R is a normalization constant. This weight assures bounds on the resulting

ratio, specifically

0 ≤ |Fo(k, l)− Fc(k, l)|
max (|Fo(k, l)| , |Fc(k, l)|) ≤ 2. (3.25)

Two is the maximum value because it is possible for Fo(k, l) to be equal and opposite

in magnitude (or 180◦ out of phase) with Fc(k, l).

It is easily seen that if there is no error (Fo(k, l) = Fc(k, l)), thenWFMSE(Ic, Io) =

0. It would be desirable if, in the extreme case that Fc(k, l) = 0, we will obtain the

same result as we would with MSE. If we assume that Fc(k, l) = 0 for all k and l,

then Equation 3.22 can be reduced to

MSE(0, Io) =
1

N ·M · |Fo|2, (3.26)

where |Fo|2 is the mean square value of Fo. The same reduction of Equation 3.23

yields

WFMSE(0, Io) =
1

N ·M ·R. (3.27)

Forcing Equations 3.26 and 3.27 to be equal suggests that R = |Fo|2. This conclusion
is apparently not very reassuring considering that the maximum of every frequency

component in this case came from Fo(k, l). But since we choose to make a factor

change in either direction the same, the choice of normalization factor is of a relative

matter. Our wish is to normalize the measure to the average square frequency

component in Fo(k, l) at all times, regardless of which image has the maximum
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frequency-component-values. Therefore, we set R = |Fo|2 and make the following

observation using Parseval’s relation

R =
1

N ·M
N∑

k=1

M∑
l=1

|Fo(k, l)|2 =
N∑

i=1

M∑
j=1

|Io(i, j)|2. (3.28)

The complete form of WFMSE is created by combining Equations 3.23, 3.24,

and 3.28. At this point we make some observations about this new measure. Obvi-

ously, if Fo(k, l) = Fc(k, l), our new measure reflects zero error, which is consistent

with the traditional MSE measure. Also, if Fc(k, l) = 0, then the MSE (Equation

3.26) is the same as the WFMSE. Further analysis of Equation 3.26 using Parse-

val’s relation reveals the mean squared value (MSV) of the original image. Finally,

if Fo(k, l) = −Fc(k, l), then the two images are equal and opposite in magnitude.

We note that both WFMSE and MSE result in a value of 4 times the MSV of the

original image.

3.8.3 A Frequency Based Peak Signal to Noise Ratio Measure. We now

create a measure similar to PSNR that is based on our new measure, WFMSE.

The numerator of the logarithm in Equation 2.2 is assumed to be the MSV of an

image where every element is at its maximum possible value. In 8-bit imagery, the

maximum possible value of each pixel element is 255. As discussed in the previous

section, the mean square value of an image is the same as the mean square error of

that image with an image of zeros. Thus, Equation 2.2 can be rewritten as

PSNR(Ic, Io) = 10 log10

(
MSE(0, 255)

MSE(Ic, Io)

)
. (3.29)

We propose to create a measure similar to PSNR that is based on our new

metric, WFMSE. This measure is created by merely replacing the MSE operator

in Equation 3.29 with the WFMSE operator. This new measure, called weighted

frequency peak signal to noise ratio (WFPSNR) is
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WFPSNR(Ic, Io) = 10 log10

(
WMSFE(0, 255)

WMSFE(Ic, Io)

)
, (3.30)

where, naturally, WMSFE(0, 255) = 2552.

3.9 Conclusion

In this chapter, we presented the methodology of our research. The goals are to

compress an image with fixed pattern noise as quickly as possible while maintaining

impulsive features in the image. The chapter begins with an analysis of the image.

Due to application constraints, the camera must be run in a mode that creates a

dominant noise pattern across the image array. We observed that this noise pattern

is fixed and repeatable on the array and characterizable. Therefore, we must remove

this pattern from the image because it clearly degrades the viewable information

in the image. We must also remove the pattern before compression because lossy

compression will change the character of the noise, disrupting our ability to remove

the noise pattern after compression. After the removal of the noise pattern, we

stretched and clipped the histogram to maximize compression performance. This

histogram stretch does not cost anything in terms of processing speed because it can

be implemented at the same time the fixed pattern noise correction is implemented.

Next we presented the lifting implementation of the wavelet transform as it ap-

plies to our routine. During this discussion, we chose the Cohen-Daubucies-Feauveau

3,1 biorthogonal wavelet transform based on computational speed. We also justified

the removal of the normalization factor from the lift for the sake of computational

simplicity. This removal invalidates the transform as a wavelet transform, but many

of the desirable properties of the wavelet transform are still preserved.

We then analyzed the statistics of the transform detail coefficients in order to

determine the Lloyd-Max quanta, which minimize quantization error in the mean

square. A brief discussion followed that described how a soft-threshold on the detail
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coefficients minimally impacts the optimality of the Lloyd-Max quantization values

due to the fact that the detail coefficients of the transform tend to follow a Lapla-

cian/Gaussian mixture distribution.

Next we discussed specifics of how we code the image. Because of threshold-

ing, many of the coefficients were determined to be insignificant and were designated

zero. In order to gain compression, we use a run-length coding scheme to store

significant coefficient locations. The number of consecutive zeros between each sig-

nificant coefficient is decomposed into a combination of numbers that are assigned

codewords.

Finally, we introduced new measures of image quality specifically designed

to evaluate the quality of impulsive features in the image. We showed that current

image quality measures, like PSNR or MSE, tend to emphasize the quality of the low

frequency content in an image. Since impulsive features contain infinite frequency,

it makes more sense to use a measure that attempts to give equal contribution to

all frequency components. Our new measures, weighted-frequency mean squared

error (WFMSE) and weighted-frequency peak signal to noise ratio (WFPSNR) were

created with this need in mind.
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IV. Results

4.1 Introduction

In this chapter, we report the performance of the image coder outlined in

Chapter 3. We begin by showing that the compression routine produces a compressed

image in which objects are visually discernable, which we demonstrate using three

different compression levels. Next, we compare the JPEG standard to our image

coder when it is configured for 40 quantization levels and 8 zero count levels. This

configuration of our image coder is called Q40. Our comparison is accomplished by

plotting the PSNR and WFPSNR performance for both coders versus compression

ratio (CR) for test image 1. We also compare the images associated with these plots,

showing that the quality of the impulses suffer with JPEG but not with Q40. Next,

we show the JPEG images at the compression ratio where impulse quality begins to

become unacceptable versus that for the Q40 images. Finally, we discuss algorithm

speed, comparing the speed of JPEG compression versus the compression of our Q40

image coder.

4.2 Experimental Results

In this section we demonstrate that the images produced by our 40-quanta,

8-zero-count image coder, Q40, is of good visual quality. Our first demonstration is

shown in Figure 4.1. In this figure, Test Image 1 is compressed by a ratio of 10. Note

that all objects in the scene are easily discernable and that there are no degrading

artifacts overwhelming the image. The same can be shown for Test Image 2, which

is compressed by a ratio of 20, as shown in Figure 4.2. In Figure 4.3, we show that

Q40 compresses Test Image 3 by a ratio of 40 with no overwhelming compression

artifacts.
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Figure 4.1. Test Image 1: Compression Ratio = 10. Here, test image 1 was com-
pressed using our 40-quanta image coder by a ratio of 10.
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Figure 4.2. Test Image 2: Compression Ratio = 20. Here, test image 2 was com-
pressed using our 40-quanta image coder by a ratio of 20.
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Figure 4.3. Test Image 3: Compression Ratio = 40. Here, test image 3 was com-
pressed using our 40-quanta image coder by a ratio of 40.
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4.3 Compression Performance of Q40 Against JPEG

The plots in Figure 4.4 show the performance curves for test image 1 of our

Q40 image coder against the performance curves for JPEG in terms of PSNR versus

compression ratio in (a) and WFPSNR versus compression ratio in (b). Note that

Q40 barely outperforms JPEG in PSNR for lower compression ratios, but clearly

outperforms JPEG in WFPSNR. A clip of test Image 1 at the operational points

designated by gray circles in Figure 4.4 (b) is shown in Figure 4.5. These images

clearly show that our Q40 image dominates JPEG in preserving the quality of the

impulsive features. In (a) JPEG is seen to have obliterated the impulses entirely,

while they remain completely intact in (b).

4.3.1 Preserving Impulses in Compression. The image examples in Figure

4.5 show that JPEG eliminates the impulses when compressing Test Image 1 to

a CR of 40, while Q40 preserves them. In this section, we show the limitations

of these two compression routines based entirely on their ability to preserve these

impulses. Figure 4.6 shows Test Image 1 with a JPEG compression ratio of 15.

With just a compression ratio of 15, it is easy to visually discriminate objects in

the image. However, we see compression artifacts that change the physical shape

of the pulses through induced ringing. The ringing, which is shown in the image

strip (b), suggests a bound on the JPEG compression ratio due to impulse quality.

The Q40 image coder can achieve much higher levels of compression before the

quality of the impulses begins to suffer, as shown in Figure 4.7. In this image, we

increased the threshold value to the point where the threshold begins to negatively

affect the quality of the impulses. From the image clip in Figure 4.7 (b), we see

that one of the pulses is entirely obliterated from the threshold operation (marked

by the white circle). The other pulses, however, are still unaffected. While this

image is unacceptable in terms of visual quality, it shows that we constrain our Q40

compression on bounds dictated solely by our ability to visually discriminate objects
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(a)

(b)

Figure 4.4. These plots show the compression performance in terms of (a) PSNR
and (b) WFPSNR of our 40-quanta image coder (Q40) and JPEG.
Note that in (a), Q40 code barely outperforms JPEG in PSNR, but in
(b), the Q40 coder clearly outperforms JPEG in WFPSNR. The gray
circles in (b) show the operational points on the curve for which we
compare the images in Figure 4.5.
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(a) (b)

Figure 4.5. Test Image 1: JPEG Versus Q40 at a Compression Ratio of 40. (a)
Test Image 1 is compressed using JPEG to a compression ratio of 40
and a WFPSNR of 6.99 dB. (b) Test Image 1 is compressed using
Q40 to a compression ratio of 40 and a WFPSNR of 7.6 dB. Note that
JPEG clearly eliminates the impulsive features in the image while Q40
clearly preserves them.

in the image. Conversely, we constrain the JPEG compression on bounds dictated

solely by the quality of impulses in the image.

4.4 Q40 Implementation Time versus JPEG Implementation Time

In this section we compare the implementation time of the Q40 image coder

to that of JPEG. We implement the Q40 coder in C++ using custom functions.

The JPEG coder is implemented in C++ using special JPEG libraries found on the

Internet [7]. Table 4.1 shows the average time it takes to implement the different

compression components of Test Image 1 using our C++ implementation of the Q40

image coder. Table 4.2 shows the implementation time of the JPEG compression on

the same image using the same computer at the maximum acceptable compression

ratio of 15. Although the Q40 coder is slightly slower than JPEG, our C++ code
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(a)

(b)

Figure 4.6. Test Image 1: JPEG compression by a ratio of 15. These images sug-
gest a bound on JPEG compression ratio for test image 1. While the
objects in this image are visually discernable (a), the quality of the im-
pulses begins to suffer (b). Note that the ringing around each impulse
in (b) produces ambiguity in actual impulse location and shape.
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(a)

(b)

Figure 4.7. Test Image 1: Q40 compression by a ratio of 190. These images suggest
a bound on Q40 compression ratio for test image 1. Object discrimi-
nation in the image (a) is nearly ruined. Impulse discrimination (b),
however, remains nearly in tact. As shown by the white circle, one of
the impulses is eliminated due to the high compression.
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for the Q40 image coder is not fully optimized for speed. Further optimization may

make the code run as fast or faster than JPEG.

Process Time (ms)
FPN Correction 60.7

Transform 37.7
Quantization, Coding, and Writing 17.7

Total 116.1

Table 4.1. The average time required to implement the different compression com-
ponents of Test Image 1 using the Q40 image coder. Compared to
JPEG, this implementation is slower, but the C++ code may be fur-
ther optimized.

Process Time (ms)
FPN Correction 60.7

JPEG Compression and Writing 30.2
Total 90.9

Table 4.2. The average time required to implement the different compression com-
ponents of Test Image 1 using JPEG. Compared to the unoptimized
implementation of Q40, JPEG is faster.
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V. Discussion and Future Work

5.1 Contributions of this Thesis

In this thesis, we designed a transform image coder that is very fast and faith-

ful to the visual and impulse quality of the image. We began by characterizing and

removing a dominant fixed pattern noise from the image. Next we used a histogram-

stretch to improve the visual quality of the image, thus making compression more ef-

fective. We then used an image transform based on the Cohen-Daubechies-Feauveau

3,1 biorthogonal wavelet transform implemented with a reverse lift. We adjusted the

normalization step so that each scale of the transform occupied the same relative

dynamic range. The result was a transform that is very fast and computationally

simple. Our discussion then turned to an analysis of the transform statistics for

three test images, on which we based the design of the Lloyd-Max quanta. We then

showed how we coded the image very quickly using a run-length method.

After designing the image coder, we looked for ways to accurately quantify its

performance. The three main measures of interest included implementation speed,

bit rate, and image quality. Quantifying image quality is relative. Standard quality

measures like MSE and PSNR seem to be good measures for visual quality com-

parisons, but they tend to emphasize low frequency objects in the image. In our

application, impulsive features are very important, so we designed a measure that

gives more weight to impulse quality than MSE and PSNR.

Finally we compared our new image coder with JPEG based on the measures

discussed above. We demonstrated that our image coder outperforms JPEG in image

quality versus bit rate. We also demonstrated that our image coder is very fast at

forward image compression and rivals JPEG in compression speed.
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5.2 Recommendations for Future Work

5.2.1 Optimization of the image coder. The image coder described above

performs well with regard to bit rate and compression ratio. The speed comparison,

however, is based entirely on the optimization of the image coder. We may be able

to further optimize the code to increase algorithm speed.

5.2.2 Post Compression FPN correction. Currently, we remove the fixed

pattern noise before we compress the image because the lossy compression changes

the character of the fixed pattern noise, degrading our ability to remove it based

on its pre-compression characterization. The removal of this pattern, while effective

in improving visual quality, takes considerable time to implement. It is not evident

that the compression will change the characterization of the noise in an unpredictable

way. Therefore, it might be worthwhile to characterize the fixed pattern noise after

image compression in an attempt to remove the pattern after decompression, when

there is no time constraint. This sort of study would involve a different threshold

method, redesigned quanta, and a quantization error analysis.

5.2.3 Comparison to Other Techniques. In this thesis, we compared one

configuration of our image coder to JPEG. It would be desirable to compare our

image coder to other wavelet-based image coders, such as the Shapiro embedded

zero tree algorithm [15] or Said and Pearlman’s set partitioning method [14]. These

algorithms would have to be redesigned for our images and optimized for speed.
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Appendix A. Table of Lloyd-Max Quanta

Tables A.1 and A.2 in this appendix contain the Lloyd-Max quanta calculated for

the probability density function in Equation 3.11. The transition levels between

adjacent quanta is defined by Lloyd as the average of the two adjacent quanta.

2 4 6 8 10 12 14 16 18 20

3.17 2.60 1.67 1.49 1.14 1.00 0.85 0.75 0.67 0.60
X 36.49 7.86 6.51 4.42 3.72 3.04 2.62 2.30 2.04
X X 40.02 23.89 10.33 8.01 6.15 5.11 4.39 3.82
X X X 50.04 28.75 17.85 11.45 8.82 7.27 6.14
X X X X 53.12 34.88 23.83 15.86 11.88 9.48
X X X X X 56.99 39.45 28.23 20.91 15.17
X X X X X X 59.84 42.80 32.51 24.66
X X X X X X X 61.89 46.09 35.61
X X X X X X X X 63.86 48.46
X X X X X X X X X 65.26

Table A.1. This table lists the Lloyd-Max quanta calculated from the pdf in Equa-
tion 3.11. The row across the top of the table is the number of quanti-
zation values. The quanta listed are positive values only; since the pdf
is symmetric about zero, there are also corresponding negative values.
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22 24 26 28 30 32 34 36 38 40

0.55 0.51 0.47 0.43 0.41 0.38 0.36 0.34 0.32 0.31
1.84 1.67 1.54 1.42 1.32 1.23 1.16 1.09 1.03 0.98
3.40 3.06 2.78 2.55 2.36 2.19 2.05 1.92 1.81 1.71
5.37 4.75 4.28 3.88 3.56 3.29 3.06 2.85 2.68 2.52
8.02 6.93 6.13 5.49 4.99 4.57 4.22 3.91 3.65 3.43
12.04 9.96 8.58 7.54 6.75 6.11 5.59 5.15 4.78 4.46
19.02 14.76 12.13 10.31 9.03 8.03 7.26 6.62 6.09 5.65
28.23 22.32 17.79 14.45 12.20 10.58 9.38 8.44 7.68 7.06
38.57 31.12 25.36 20.66 16.97 14.22 12.26 10.79 9.67 8.78
50.73 40.97 33.75 28.00 23.33 19.45 16.37 14.04 12.30 10.97
66.56 52.56 43.15 36.04 30.39 25.72 21.82 18.54 15.92 13.90
X 67.60 54.22 45.04 38.10 32.52 27.91 23.98 20.64 17.85
X X 68.51 55.66 46.76 39.94 34.47 29.88 25.99 22.63
X X X 69.30 56.95 48.29 41.63 36.22 31.70 27.83
X X X X 69.99 58.10 49.69 43.15 37.84 33.37
X X X X X 70.59 59.15 50.95 44.55 39.32
X X X X X X 71.13 60.09 52.11 45.84
X X X X X X X 71.61 60.96 53.17
X X X X X X X X 72.05 61.75
X X X X X X X X X 72.44

Table A.2. This table lists the Lloyd-Max quanta calculated from the pdf in Equa-
tion 3.11. The row across the top of the table is the number of quanti-
zation values. The quanta listed are positive values only; since the pdf
is symmetric about zero, there are also corresponding negative values.
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Appendix B. Operational Performance Contour Plots

In this appendix, we report how the operational performance of the image coder

changes as a function of number of quanta and threshold value for each test image.

These plots are helpful in determining where we should operate for our application.

In these plots we use 8 zero-count levels
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Figure B.1. Test Image 1: Operational Contour Plot of Compression Ratio. This
contour plot shows the lines of constant compression ratio as the num-
ber of quanta and the threshold value vary. Note that at low threshold
levels, compression ratio changes significantly as the number of quanta
increases. The same is not as true at higher threshold values.
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Figure B.2. Test Image 1: Operational Contour Plot of PSNR. This contour plot
shows the lines of constant PSNR as the number of quanta and the
threshold value vary. Note that at low threshold levels, PSNR changes
significantly as the number of quanta increases. The same is not as
true at higher threshold values.

B-3



Figure B.3. Test Image 1: Operational Contour Plot of WFPSNR. This contour
plot shows the lines of constant WFPSNR as the number of quanta and
the threshold value vary. Note that at low threshold levels, WFPSNR
changes significantly as the number of quanta increases. The same is
not as true at higher threshold values.
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Figure B.4. Test Image 2: Operational Contour Plot of Compression Ratio. This
contour plot shows the lines of constant compression ratio as the num-
ber of quanta and the threshold value vary. Note that at low threshold
levels, compression ratio changes significantly as the number of quanta
increases. The same is not as true at higher threshold values.
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Figure B.5. Test Image 2: Operational Contour Plot of PSNR. This contour plot
shows the lines of constant PSNR as the number of quanta and the
threshold value vary. Note that at low threshold levels, PSNR changes
significantly as the number of quanta increases. The same is not as
true at higher threshold values.
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Figure B.6. Test Image 2: Operational Contour Plot of WFPSNR. This contour
plot shows the lines of constant WFPSNR as the number of quanta and
the threshold value vary. Note that at low threshold levels, WFPSNR
changes significantly as the number of quanta increases. The same is
not as true at higher threshold values.
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Figure B.7. Test Image 3: Operational Contour Plot of Compression Ratio. This
contour plot shows the lines of constant compression ratio as the num-
ber of quanta and the threshold value vary. Note that at low threshold
levels, compression ratio changes significantly as the number of quanta
increases. The same is not as true at higher threshold values.
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Figure B.8. Test Image 3: Operational Contour Plot of PSNR. This contour plot
shows the lines of constant PSNR as the number of quanta and the
threshold value vary. Note that at low threshold levels, PSNR changes
significantly as the number of quanta increases. The same is not as
true at higher threshold values.
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Figure B.9. Test Image 3: Operational Contour Plot of WFPSNR. This contour
plot shows the lines of constant WFPSNR as the number of quanta and
the threshold value vary. Note that at low threshold levels, WFPSNR
changes significantly as the number of quanta increases. The same is
not as true at higher threshold values.
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