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Abstract

This thesis analyzes a multi-class M/G/1 priority queueing system in which

distinct job types require one service cycle and, with non-zero probability, require

a second service cycle. The main objective is to find a new heuristic scheduling

policy that minimizes the long-run expected holding and preemption costs. Arrival

rates, service rates, and the probability of undertaking second service are all class

specific. A mean value analysis (MVA) approach was employed to derive the long-

run mean time in queue for each job type under each policy, thereby providing

the appropriate cost equations. Numerical experiments suggest that the preemptive

resume scheduling policy yields the lowest cost most frequently.
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ANALYSIS OF SCHEDULING POLICIES FOR A M/G/1

QUEUE WITH REWORK

1. Introduction

1.1 Background

A queueing system can be described as any system in which arriving entities,

jobs, customers and so forth, place demands on a finite-capacity resource, such as a

server. Arrivals and resource demands are realistically stochastic, which may cause

a queue to form. The types of entities requiring service may be either single-class or

multi-class. A single-class queue has only one job type entering the system, whereas

a multi-class queue has more than one job type entering the system. One example

of a multi-class queue is a toll booth on a turnpike. Several types of vehicles pass

through the system; the number of axles a vehicle has could be used to determine

the class of the vehicle. Taking it one step further, different classes could take on

different priorities. In reference to the toll booth example, if two-axle vehicles are

served before five-axle vehicles, then two-axle vehicles may be said to have priority

over five-axle vehicles.

Another characteristic of a queue is the number of service cycles a particular

job requires. For instance, a job may require only one service cycle, or its completion

may require more than one service cycle. In a manufacturing setting, a part might

need to pass a particular quality test, however, if the part fails the test, the part

is sent back for rework. This is referred to as a re-entrant queue, or a queue with

rework.

Queues are also characterized by the queueing discipline they follow. Some

examples of queueing disciplines include first-come, first-served (FCFS), last-come,
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first-served (LCFS), random order, and various priority disciplines. A priority dis-

cipline is one in which the jobs are assigned priorities based on some characteristic,

such as cost or service time (or number of axles), upon entering the system and

then served according to highest priority first. The priority scheme can be non-

preemptive, wherein the higher priority job moves to the front of the line but it does

not preempt a lower priority job that is already in service. If the priority scheme

is preemptive, the higher priority job preempts a lower priority job already in ser-

vice. The lower priority job that is preempted from service can then either repeat all

necessary service time, which is referred to as preemptive repeat, or the service time

can be resumed where it left off, which is referred to as preemptive resume. In this

thesis, a preemption discipline is assumed to be preemptive resume, unless otherwise

stated.

A queueing system with a single-server, exponential interarrival times and gen-

erally distributed service times is classified as an M/G/1 queue. This work addresses

a multi-class M/G/1 queue with optional rework. More specifically, there exists a

non-zero probability that a job completing its first service needs second service. A

job cannot re-enter the queueing system more than once; only one rework is allowed.

All arrival rates, service times and probabilities of re-entry are class specific. In

addition, there are various associated costs for each job type. Specifically, there

are holding costs and preemption costs. Holding cost is incurred when an entity

waits in the queue, and the preemption cost is incurred when an entity in service is

preempted.

A real-world example of this type of system can be seen in the USAF aircraft

maintenance arena. Consider an avionics backshop, where line replaceable units

(LRUs) are sent for repair from the flightline (i.e., the “front shop”). The LRUs

are the entity types and the server is an automatic test station (ATS). The ATS is

designed to test and repair different types of LRUs from the same aircraft subsys-

tem. For example, the ATS could be designed to repair the radar system on the
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F-16 which is comprised of several different LRUs (all of which comprise the radar

subsystem). There are several ways the operator of the ATS can schedule incoming

LRUs depending on the attributes of the LRUs. For example, if the setup and run

times on the ATS are lengthy and no priority is given to different LRUs, FCFS policy

might be a reasonable choice. However, if priority is given to different LRUs, then

it would be beneficial to determine which priority scheduling policy to employ to

minimize overall costs.

The scheduling policy adopted for the queueing system determines the total

cost, or time expended for service for any particular job type or for the the facility as

a whole. Thus, the overall objective is to find the optimal scheduling policy to achieve

the minimum costs or the minimum overall time in system. This thesis considers a

new scheduling policy to minimize total costs in a multi-class M/G/1 priority queue

with optional rework. This new policy is compared against three other scheduling

policies, specifically first-come, first-served (FCFS), non-preemptive priority (NPP),

and preemptive resume (PR). First, all of the relevant performance measures are

derived using a mean value analysis (MVA) approach, and then the cost equations

are derived and a numerical experiment is performed to determine the policy that

performs the best most often. Taking an MVA approach allows the appropriate

performance measures to be derived using only the first and second moments of the

underlying service distributions. The MVA approach is simpler than seeking the

performance measures directly via a transient analysis.

1.2 Problem Definition and Methodology

Various transportation, communication and manufacturing systems have dis-

tinct jobs flowing into a mechanism where they receive some sort of service. Upon

completion of the service, with a non-zero probability the job must re-enter the sys-

tem to receive a second service. This thesis models such a system and compares

four different scheduling policies to determine the scheduling policy that minimizes
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certain costs most often. There are three different costs used in the comparison:

holding costs, preemption costs when a job is preempted during service, and pre-

emption costs when a job is preempted between first and second services. The costs

to preempt during service is assumed to be much greater than the cost of preemption

between first and second service. This principle can be seen in real-world situations

in the manufacturing setting. Due to set-up costs, it is usually more costly to inter-

rupt the service of a part than it is to wait until the part has completed first service.

Currently, it is unknown which of the four scheduling policies minimizes costs.

The objective of this thesis is to analyze a multi-class M/G/1 priority queue

in which distinct job types require one service cycle, and with non-zero probability

require a second service cycle. The results of the analysis are then used to compare

the total expected costs of the system under FCFS, NPP, PR, and a new (heuristic)

scheduling policy. Arrivals, service times, and the probability of undertaking second

service are all class specific. Only one rework is allowed. All policies are assumed to

be work conserving. 1

This research compares four scheduling policies to determine the best policy

to minimize costs and examines the impact of a few factors on the minimum cost

structure for a multi-class M/G/1 priority queue. Two types of costs are considered,

holding costs and preemption costs. The results can possibly be used in the Air Force

for scheduling different types of training, aircraft maintenance or communication

systems.

The objectives of this thesis are met by first deriving the relevant performance

measures for the three known policies, FCFS, NPP, and PR. Next, the relevant

performance measures for the new policy, to only allow for preemption between first

and second services, are derived. The cost equations for the four different policies are

1A work conserving policy is one in which the server works if there is a job in the system and
no job reneges. In other words, there is never a queue unless the server is busy and a job cannot
leave the queue, unless moving into service.
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then derived. Finally, a numerical experiment is conducted to statistically compare

the costs of the four different policies and to determine the best policy to adopt.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 gives an

overview of previous work and the relevant queueing literature. In Chapter 3, a

mathematical model is developed and performance measures of a multi-class M/G/1

queue with optional second service are derived. In Chapter 4, the numerical exper-

iment will be presented, along with some conjectures. Finally, Chapter 5 presents

conclusions of the thesis and recommendations for future research pertaining to the

scheduling of multi-class queues with re-entrant lines.
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2. Review of the Literature

This thesis addresses a multi-class M/G/1 priority queue with optional re-

work. The system has only one server, unlimited system capacity, and infinite job

population [21]. The relevant literature can be divided into two sections. The first

section covers M/G/1 queueing systems without rework; the second section covers

M/G/1 queueing systems with rework.

2.1 M/G/1 Queue Without Rework

The standard M/G/1 queue has been studied extensively [33]. Kleinrock’s [21]

text is one of several (e.g. [32],[31], [17]), that study classical queueing theory and

derive the performance measures of a M/G/1 queue.

Kleinrock uses the method of embedded Markov chains developed by Kendall

[19] to obtain steady-state performance measures. However, there are other methods

used to derive performance measures, such as the method of supplementary variables

[7]. For the method of supplementary variables, the state of the system is described

using two variables, one that indicates how many jobs are in the system and one

that indicates the expended service time of the job currently in service. For the

embedded Markov chain technique, the goal is to be able to describe the state of

the system with a Markov chain and only use one variable. If the system is only

considered at the time of job departures, then the number of customers left behind by

the departing job forms a Markov process [21]. Kleinrock [21] presents a proof that

the stochastic process describing the number in system is, in fact, a Markov chain.

Kleinrock uses the embedded Markov chain to derive the steady-state performance

measures of the M/G/1 queue. Currently, all results for a single-class M/G/1 queue

are well known.

For a multi-class M/G/1 queue, priority disciplines are often used. A multi-

class queue contains more than one class of jobs, each with a distinct priority, where
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arrival rates and service times are class specific. Jaiswal [18] devoted an entire text

to priority queues. The results presented in his book are for a variety of multi-class,

single-server queueing systems. The queues studied by Jaiswal followed various pri-

ority disciplines, such as preemptive resume, preemptive repeat, FCFS, and several

others. The method used in his text is primarily busy period analysis. This technique

analyzes the evolution of the queue as a sequence of busy periods and idle periods

[18]. The expected remaining service time of the job currently in service is an es-

sential component in the long-run average wait time for a priority queue. Renewal

theory has contributed to this aspect of priority M/G/1 queues [14], [13]. Fakinos

[13] derived the expected remaining service time for a single-server queue using re-

newal theory. In his paper, he uses a result from Green’s article [14] on interrenewal

times to show the expected remaining service of the job currently in service when an

arbitrary job arrives to the system. Renewals occur at the time of job arrivals, and

the residual life is the remaining service time.

Networks of M/G/1 queues have received considerable attention in the priority

queue realm (e.g. [2], [12], [1]). A queueing network is a directed graph in which

each individual node is a queueing station, or center, and arcs exist between two

nodes only if jobs may proceed between such nodes. In Baskett, et al. [2] the joint

equilibrium distribution of queue sizes, or the average number in queue at each sta-

tion, is derived. The network contains N service centers and R classes of customers.

In this paper, the authors explore dynamic class assignments in a network. In the

network, different queueing disciplines such as FCFS, LCFS, no queueing, and pro-

cessor sharing are associated with the different service centers. The model this paper

considers includes one service cycle.

Bryant et al. [6] use an MVA priority approximation to estimate the steady-

state performance measures of a priority queueing network. In this method, the

exact means of the distributions are used to approximate performance measures of a

network. Eager and Lipscomb [12] later developed a more accurate and computation-
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ally efficient approximation to the priority queueing network with multiple classes.

Eager and Lipscomb [12] built upon the MVA priority approximation developed by

Bryant, et al. [6] to propose a new algorithm to obtain performance measures of a

queueing network. Instead of exact means, Eager and Lipscomb [12] used approx-

imate means to develop the approximate mean value analysis (AMVA) method to

estimate the performance measures of a priority queueing network.

Groenevelt et al. [15] give a closed-form expression for the long-run average

expected cost and the bias vector in a two-class exponential preemptive resume

priority queue with holding and switching costs. The authors demonstrate the one-

step policy iteration algorithm provides a near-optimal policy for the given system

[15].

In the recent literature, M/G/1 priority queues with vacation times have been

studied. This type of queue assumes that the server goes on vacation (or is idle)

whenever the system is in a certain state. A survey of such queueing systems can

be found in Doshi [11]. One extension of the vacation time method is the N -policy

method. N -policy methodology assumes the server is turned off when the system is

empty and turned on again when the number in system reaches N and stays on until

the system is empty. Artalejo [1] discusses the M/G/1 queue with N -policy and

develops a stochastic decomposition property for the waiting time. Artalejo’s results

hold for a single-class M/G/1 FCFS queue with N -policy. Clearly, the N -policy is

not a work conserving policy since the server only starts work when there are at least

N jobs in the queue.

2.2 M/G/1 Queues With Rework

Recently, much research has been devoted to M/G/1 queues with rework, par-

ticularly in the area of queueing networks.
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Kumar’s [23] seminal paper on queueing systems describes re-entrant lines in

a manufacturing setting. Kumar [23] defines re-entrant lines to be those in which

some of the jobs require rework. In this paper, Kumar proves the stability conditions

and the performance measures for several scheduling disciplines for networks with

re-entrant lines. There are several machines with buffers that need to be scheduled.

The objective is to minimize the mean cycle time or the variance of the mean cycle

time. He then provides bounds for the mean delay time and a schedule to reduce

mean delay time. Kumar provides results for various scheduling policies; no direct

comparisons are made, and he does not suggest an optimal policy.

Youngshin Park et al. [29] propose an approximation for estimating the perfor-

mance measures of the re-entrant queue with single-job machines and batch machines

using an MVA approach. In this paper an approximation is given for the steady-state

averages of cycle time, throughput, and queue length at each station. These results

are an extension of the ideas first proposed by Narahari and Khan [28] who used

MVA to approximate performance measures of re-entrant manufacturing systems.

Youngshin Park, et al. [30] later extend their previous research [29] to include

the case of re-entrant lines with multi-class jobs and multi-server workstations. In

this article, a queueing network with both batch machines and single-server machines

is analyzed using an MVA approach. A single-server machine only processes one job

at a time, whereas a batch machine processes several jobs at a time. The authors

propose an approximation method for estimating the performance measures of a

multi-class, re-entrant queueing network. In this paper, the scheduling policy at

each station is assumed to be FCFS.

Bard, et al. [4] address the problem semiconductor manufacturers face when

deciding how much capacity to build into their systems, while having to meet bud-

getary constraints. Four new approximation algorithms were developed that take

into account re-entrant flow in manufacturing systems. These algorithms are used

to solve a non-linear integer mathematical program and provide approximations for

2-4



the performance measures of a single-class queueing system. The algorithms have

been tested on fabrication facilities that experience long cycle times, high inventories,

and poor on-time performance. The decision of which algorithm to employ is based

on the size of the queueing network being analyzed. For smaller networks, a partic-

ular algorithm is might be appropriate, whereas for larger networks, a combination

of the four algorithms might be appropriate.

Zargar [34] studies the effect of rework strategies on cycle time. Batch manu-

facturing is considered in which, with some probability, a portion of the batch will be

reworked. Two different strategies are discussed. The first strategy is holding back

the “mother” lot to wait for the “children,” and then all units are reunited and con-

tinue flowing through the network. The second strategy is to hold the “child” back,

while the “mother” lot moves forward. In the second case, there are three options

for handling the jobs requiring rework: the reworked parts could continue through

the system alone, a reworked job could wait until some minimum order quantity of

reworked units is needed, then moves on, or the reworked units could be added to the

next lot and continue flowing through the system. Zargar [34] develops these policies

to determine the effect on the cycle time. It was found that the policy chosen affects

cycle time significantly. Moreover, it was found that adding the reworked units to

the next mother lot is the optimal policy when rework probabilities are small.

Grosfeld-Nir and Gerchak [16] consider serial manufacturing facilities with re-

peated rework at each station. The authors propose an optimal policy to minimize

the expected cost associated with each order. Costs include set-up costs and a lin-

ear variable cost. Their results show that a multistage system with only one stage

requiring rework can be reduced to a single-stage station. In addition, they also

propose the optimal way to arrange a multi-stage system, if given a choice, is to put

the rework stage first.

Lin, et al. [25] explore the random inspection rate for a flexible assembly system

(FAS). The authors analytically model a FAS to determine how to maximize profits
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and decide when to perform in-process random inspections. Their model includes a

single-class network with feedback and rework at every stage. The scheduling policy

adopted for their model is not discussed.

Another current trend in queueing theory is to model heavy traffic systems as

fluid queues. A queueing system in heavy traffic implies that the traffic intensity

is approaching unity. Dai [8] was one of the first to model a queueing system as

a fluid model and used the stability condition of queues as the deterministic fluid

limit. The fluid model approach was also applied by Ball, et al. [3] in their paper

on robust feedback for a single-server with no re-entry. Day, et al. [9] extended the

fluid model Ball, et al. [3] used to include re-entry. Diaz-Rivera, et al. [10] also

consider a re-entrant manufacturing system modelled as a fluid network and prove

that the long-run dynamics are periodic orbits and non-chaotic. The authors develop

a method to calculate the period of the orbits, thus proving the non-chaotic behavior

of a fluid network.

Most relevant to this thesis is the paper by Madan [27] who addresses a single-

class M/G/1 queue with rework. Madan [27] derives the long-run expected wait time

in queue for a single-class M/G/1 queue where each job has a given probability of

rework. First, Madan [27] states the differential-difference equations for the system,

then derives the time-dependent probability generating function of the queue length

via Laplace transforms. Madan [27] then derives the steady-state results explicitly

from the time-dependent probability generating functions. He validates his results

by comparing them with known results for specific queueing systems. However, the

results apply to only a single-class queue with some restrictions on the service time

distributions.

The scheduling policy adopted for a particular priority queueing system can be

significant when determining the total cost of service for any particular job type or

for the the facility as a whole. Thus, the overall objective is to find the best possible

scheduling policy to achieve the minimum expected costs in the long-run. This thesis
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considers a new scheduling policy that has not been addressed in the literature that

attempts to minimize the expected total costs in a multi-class M/G/1 priority queue

with optional rework. This new policy is compared against three other scheduling

policies, specifically first-come, first-served (FCFS), non-preemptive priority (NPP),

and preemptive resume (PR). The scheduling disciplines FCFS, NPP, and PR have

been studied in the literature for multi-class M/G/1 priority queues without rework.

The performance measures derived in this thesis incorporate the possibility that an

entity may require a second service cycle.

It has been shown in this brief review that the multi-class M/G/1 queue with-

out rework has been studied extensively. Additionally, networks of M/G/1 queues

have been studied with and without rework. However, very little research has been

performed to address the multi-class M/G/1 queue with optional second service. Al-

though, Madan [27] addressed this type of system in his paper, the author assumes

the second service is always exponential. No such assumption has been made in

this work. Also, he assumes all jobs are of a single class, so there are no preemp-

tions, and the scheduling policy is FCFS. This thesis extends the results of Madan

[27] to include two classes of jobs, the second service is generally distributed, and

various scheduling policies are examined. Many manufacturing, communication and

transportation systems can be modelled as multi-class M/G/1 priority queues with

optional second service; thus the results of this thesis can be highly applicable in a

variety of settings.

In Chapter 3, the formal mathematical model is presented and performance

measures derived for a multi-class M/G/1 queue with optional second service. First,

the overall long run expected service times are developed for the four scheduling poli-

cies, then the performance measures and cost equations are derived for the purpose

of comparing the four policies.
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3. Formal Mathematical Model

The process of scheduling within a single-station queueing system involves

several potential queueing disciplines such as first-come, first-served (FCFS), last-

come, first-served (LCFS), random-order, batch service, non-preemptive priority

(NPP), and preemptive resume priority (PR). This thesis compares the total overall

expected costs of FCFS, NPP, and PR disciplines to the overall expected costs of a

new scheduling policy. The new scheduling policy only allows preemption between

first and second service cycles, and is developed herein. The performance measures

for FCFS, non-preemptive priority and preemptive resume, along with the new pol-

icy, are derived herein. For a more in-depth discussion of the FCFS, NPP, and PR

policies, the reader is referred to Gross and Harris [17], Kleinrock [22] or Jaiswal

[18].

The purpose of this thesis is to compare the total long-run expected costs for

the FCFS, NPP, PR and the new policy, which is then used to heuristically determine

the policy that yields the minimum cost most often. FCFS is discussed first, then

non-preemptive priority, next preemptive resume, and finally, a new policy is derived.

Only the two class case is considered here. Throughout this thesis, a job of type i is

assumed to be a higher priority than a job of type j if i < j.

3.1 Results for a Standard M/G/1 Queue

The following nomenclature applies to a single-station, multi-class M/G/1

queueing system. Arrivals are according to a Poisson process and the service time

distribution is general. Define,

k = Number of classes; k = 1, 2...K

E[Si] = 1/µi = mean service time for a job of type i; i = 1, 2..., k

E[S2
i ] = Second moment for a job of type i; i = 1, 2..., k
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Bi(·) = CDF of service time for a job of type i; i = 1, 2..., k

Si = Service time for a job of type i; i = 1, 2..., k

S = Service time of an arbitrary customer arriving to the system

λi = Arrival rate for a job of type i; i = 1, 2..., k

λ =
∑

i λi

ρi = λi/µi

ρ =
∑

i ρi

Λ = Class type of random customer

P{Λ = j} = λj/λ

WA
i = Long run average time in system for a job of type i, i = 1, 2..., k under policy

A

WA
iq = Long-run average time in queue for a job of type i, i = 1, 2..., k under policy

A

L = Long-run average number in system

Lq = Long-run average number in queue.

The Pollaczec-Khintchine (P-K) formula for average long-run number in system is

[17]

L = ρ +
λ2(σ2 + 1

µ2 )

2(1− ρ)
. (3.1)

For the case k = 2, Wq, W1, W2 are sought. First, L is derived, and then Little’s

Law is applied [26]. However, to apply Little’s Law, E[S] and E[S2] must be known.

3-2



First, E[S] is derived by using a simple conditional expectation argument.

E[S] =
∑

i

E[S|Λ = j]P{Λ = j}

=
∑ E[S|Λ = j]λj

λ

=
1

λ

∑
E[Sj]λj (3.2)

where E[Sj] = µ−1
j . For the case k = 2

E[S] =
λ1E[S1] + λ2E[S2]

λ
. (3.3)

In a similar manner, it is seen that

E[S2] =
∑

i

E[S2|Λ = j]P{Λ = j}

=
∑ E[S2|Λ = j]λj

λ

=
1

λ

∑
E[S2

j ]λj. (3.4)

Again, for the case k = 2

E[S2] =
λ1E[S2

1 ] + λ2E[S2
2 ]

λ
. (3.5)

The results for E[S] and E[S2] hold for all work-conserving policies [21]. A policy is

considered work-conserving if the server works as long as a job is in the system and

no job reneges and leaves the system without first receiving service.
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3.1.1 First Come First Served (FCFS)

The first policy (scheduling discipline) considered is first-come, first-served

(FCFS). In this case, L is found using the Pollaczec-Khintchine formula, and then

Wq, W1, and W2 can be determined.

To determine L, the famous Pollaczec-Khintchine formula is applied,

L = ρ +
λ2E[S2]

2(1− ρ)
. (3.6)

Dividing by λ yields

W FCFS = E[S] +
λE[S2]

2(1− ρ)
, (3.7)

which in turn yields the average waiting time in queue for an arbitrary job,

W FCFS
q =

λE[S2]

2(1− ρ)
. (3.8)

Because the queue discipline is FCFS, the wait in queue is the same for jobs of class

1 and 2 and the total time in system for jobs of class 1 and 2 are, respectively,

W FCFS
1 = E[S1] + Wq (3.9)

and

W FCFS
2 = E[S2] + Wq. (3.10)

To be complete, the average number of jobs for both classes in the queue is

Lq =
λ2E[S2]

2(1− ρ)
. (3.11)

3.1.2 Non-Preemptive Priority (NPP)

Relevant performance measures for the non-preemptive priority (NPP) disci-

pline are reviewed. For this service discipline, whenever a higher-priority job enters
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the system it is moved to the front of the queue, regardless of other jobs that arrived

first. However, if a lower-priority job is in service, the higher priority job does not

preempt. For example, if a job of type 2 is in service when a job of type 1 enters the

system, the job of type 2 completes service and then the type 1 job receives service

[18]. To derive the queueing performance measures, define the following

Wq
i = random waiting time in queue for class i

U = remaining service time for current job in service

ψj = random time to serve all jobs of type j

Tj = random time to serve all jobs in time interval [0,Wq
i ].

Assume the system is in steady-state. The time in queue for an arbitrary job

is the remaining service time for the current job in service, plus the time to serve

all higher-priority jobs that are in the system upon arrival, plus the time to serve

all higher-priority jobs that arrive in the system while job i waits to be served.

Mathematically, the time in queue is a random variable expressed as

Wq
i = U +

i∑
j=1

ψj +
i−1∑
j=1

Tj (3.12)

for i = 1, 2...k. Using a mean-value analysis approach,

E[Wq
i ] = E[U ] +

i∑
j=1

E[ψj] +
i−1∑
j=1

E [Tj] (3.13)

It is known that [17]

E[U ] =
λE[S2]

2
(3.14)

E[ψj] = λjE[Wq
j ]E[Sj]

= ρjE[Wq
j ] (3.15)
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E[Tj] = λjE [Sj] E [Wq
i ]

= ρjE [Wq
i ] (3.16)

Substituting (3.14),(3.15), and (3.16), gives

E[Wq
i ] =

λE[S2]

2
+

i∑
j=1

ρjE[Wq
j ] +

i−1∑
j=1

ρjE[Wq
i ]. (3.17)

After simplifying and solving for E[Wq
i ], the expected waiting time in queue for a

job of type i is obtained as

E[Wq
i ] =

[
1−

i−1∑
j=1

ρj

]−1 [
λE[S2]

2
+

i∑
j=1

ρjE[Wq
j ]

]
. (3.18)

Suppose there are only two job types (k = 2). For case 1, i = 1

WNPP
1q =

λE[S2]

2(1− ρ1)
. (3.19)

Notice, this equation takes into account the random service time of a job already in

service as well as the effect of the priority of the arriving job. For case 2, i = 2 and

WNPP
2q =

λE[S2] + 2(ρ1E[WNPP
1q ] + ρ2E[WNPP

2q ])

2(1− ρ1)
. (3.20)

After simplification, and applying the work-conserving principle,

WNPP
2q =

λE[S2]

2(1− ρ)(1− ρ1)
. (3.21)

Once again, the equation takes into account the random service time of a job already

in service, in addition to the effect of higher priority jobs arriving to the system.

Observe, in the 2-class case, the highest priority job sees a FCFS queue, while the

lower priority job’s time in queue depends on both classes.
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3.1.3 Preemptive Resume (PR)

For the preemptive resume discipline, if j < i, then class j preempts class i and

completes service. Class i jobs then resume service where they left off. For example,

if a class 2 job is in service when a class 1 job arrives, the class 1 job seizes the server

immediately. Upon re-entering service, the class 2 job resumes service where it left

off, and no service time is lost. Since preemptive resume is a work conserving policy,

Little’s Law [26] still holds. To derive the performance measures, define:

Li = Average long run number in system for class i

Wi = Average long run time in system for class i

W PR
iq = Average long run time in queue for class i under preemptive resume policy

LPR
iq = Average long run queue length for class i under preemptive resume policy

Wi(t) = Total work content in system of type i at time t.

Define the following:

λ(i) =
i∑

j=1

λj, 1 ≤ i ≤ k (3.22)

E[S(i)] =
i∑

j=1

λjE[S2
j ]

λ(i)
=

1

µ(i)
, (3.23)

ρ(i) =
λ(i)

µ(i)
, (3.24)

and

ρ =
k∑

i=1

ρ(i). (3.25)
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For the first i classes the total work content at time t is

Yi(t) =
i∑

j=1

Wj(t) 1 ≤ i ≤ k. (3.26)

Assume Yi(t) → Yi in distribution as t → ∞, then using mean-value analysis

(MVA), the following result is obtained

E[Yi] = W FCFS
q

=
λiE[S2]

2(1− ρ(i))
. (3.27)

Recall the work conserving principle

i∑
j=1

ρjW
PR
jq = ρW FCFS

q

= ρ(i)
λ(i)E[S2(i)]

2(1− ρ(i))
. (3.28)

Use (3.28) to find W1q

ρ1W
PR
1q = ρ(1)

λ(1)E[S2(1)]

2(1− ρ(1))

=
ρ1λ1E[S2

1 ]

2(1− ρ1)
. (3.29)

and solve for W PR
1q

W PR
1q =

λ1E[S2
1 ]

2(1− ρ1)
. (3.30)

3-8



Again, (3.28) is used to obtain W PR
2q :

ρ1W
PR
1q + ρ2W

PR
2q =

ρ(2)λ(2)E[S2(2)]

2(1− ρ(2))

=
λ(2)(λ1E[S2

1 ] + λ2E[S2
2 ])

2(µ(2)− λ(2))

=
(λ1E[S2

1 ] + λ2E[S2
2 ])(λ1E[S1] + λ2E[S2])

2[1− (λ1E[S1] + λ2E[S2])]
. (3.31)

Solving for W PR
2q ,

W PR
2q =

1

ρ2

{[
(λ1 + λ2)

2E[S]E[S2]

2(1− ρ)

]
−

[
λ2

1E[S1]E[S2
1 ]

2(1− ρ1)

]}
. (3.32)

3.2 Results for M/G/1 Queue with Possible Rework

The following nomenclature applies to a multi-class M/G/1 priority queueing

system with optional rework. In particular, arrivals are according to a Poisson

process, and service times are general. After receiving a mandatory first service, a

job of type i, i = 1, 2, . . . , k, receives an optional second service with some non-zero

probability, νi ∈ (0, 1].

Si = random time to serve a job of type i; i = 1, 2, ..., k

Ti = random first service time for job of type i; i = 1, 2, ..., k

Gi(·) = cdf of first service time for job of type i; i = 1, 2, ..., k

Qi = random second service time for job of type i; i = 1, 2, ..., k

Hi(·) = cdf of second service time for job of type i; i = 1, 2, ..., k

νi = probability job type i needs second service; i = 1, 2, ..., k.
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Using a standard conditional expectation argument, the first and second mo-

ments of the service time for job type i are obtained in the following manner:

Si = Ti + Qi

E[Si] = E[Ti + Qi|Qi > 0]P{Qi > 0}+ E[Ti + Qi|Qi = 0]P{Qi = 0}
= E[Ti + Qi|Qi > 0]νi + E[Ti + Qi|Qi = 0](1− νi)

= {E[Ti] + E[Qi]}νi + E[Ti](1− νi)

= E[Ti] + νiE[Qi] (3.33)

S2
i = (Ti + Qi)

2

E[S2
i ] = E[(Ti + Qi)

2|Qi > 0]P{Qi > 0}+ E[(Ti + Qi)
2|Qi = 0]P{Qi = 0}

= E[(Ti + Qi)
2|Qi > 0]νi + E[(Ti + Qi)

2|Qi = 0](1− νi)

= E[T 2
i + 2TiQi + Q2

i |Qi > 0]νi + [T 2
i + 2TiQi + Q2

i |Qi = 0](1− νi)

= {E[T 2
i ] + 2E[Ti]E[Qi] + E[Q2

i ]}νi + E[T 2
i ](1− νi)

= E[T 2
i ] + νi{2E[Ti]E[Qi] + E[Q2

i ]}. (3.34)

For the aggregate measures, E[S] and E[S2], equations (3.2) and (3.4) hold replacing

the E[Si] and E[S2
i ] with equations (3.33) and (3.34), respectively.

3.2.1 First-Come, First-Served Policy with Rework

For a single-station, multi-class M/G/1 priority queue with rework that follows

a FCFS scheduling discipline, Wq, W1, W2, and L are found via the P-K formula

L = ρ +
λ2E[S2]

2(1− ρ)
. (3.35)

Dividing by λ yields

W FCFS = E[S] +
λE[S2]

2(1− ρ)
, (3.36)
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which in turn yields the average waiting time in queue for an arbitrary job,

W FCFS
q =

λE[S2]

2(1− ρ)
(3.37)

where E[S2] is as defined in equation (3.34). Since the queue discipline is FCFS, the

expected wait in queue is the same for jobs of class 1 and 2 and the total time in

system for jobs 1 and 2 are, respectively,

W FCFS
1 = E[S1] + W FCFS

q (3.38)

and

W FCFS
2 = E[S2] + W FCFS

q . (3.39)

For completeness, the average number of jobs in the queue is

Lq =
λ2E[S2]

2(1− ρ)
. (3.40)

3.2.2 Non-Preemptive Priority Policy with Rework

The average waiting time in queue for a job of type i under the non-preemptive

priority (NPP) policy is found using the same argument as in Section 3.1.2. Then,

applying equation (3.18), it is seen that for a job of type 1, Wq is

E[WNPP
1q ] =

λE[S2]

2(1− ρ1)
. (3.41)

For i = 2,

WNPP
2q =

λE[S2] + 2(ρ1W
NPP
1q + ρ2E[WNPP

2q ])

2(1− ρ1)

=
λE[S2]

2(1− ρ)(1− ρ1)
. (3.42)
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To obtain L1q and L2q, Little’s Law would be applied giving

L1q = λ1W
NPP
1q (3.43)

and

L2q = λ2W
NPP
2q . (3.44)

3.2.3 Preemptive Resume Policy with Rework

Finally, the average waiting time in queue for a job of type 1 under the preemp-

tive resume policy is found using the same argument as in Section 3.1.3. Since PR

with rework is also work conserving, equations (3.30) and (3.32) can be used to find

W1q and W2q. It follows that under PR policy with rework the following equations

hold:

W PR
1q =

λ1E[S2
1 ]

2(1− ρ1)
(3.45)

and

W PR
2q =

1

ρ2

{[
(λ1 + λ2)

2E[S]E[S2]

2(1− ρ)

]
−

[
λ2

1E[S1]E[S2
1 ]

2(1− ρ1)

]}
. (3.46)

Again, to obtain Lq1, and Lq2, Little’s Law would be applied yielding

L1q = λ1W
PR
1q (3.47)

and

L2q = λ2W
PR
2q . (3.48)

3.3 New Policy: Preemption Between First and Second Service Only

A new policy is proposed that allows preemptions to occur only between the

mandatory first service and the optional second service. In other words, the queue

is still ordered highest priority first, but the only time a type 1 job preempts a type
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2 job is in between first and second service. It is hypothesized this policy costs less

than the other three policies. This is a logical conjecture, since the set-up cost will

be less than the PR policy, and the expected wait time, which contributes directly

to the cost equations, for the higher class job type is less than the expected wait

time for the FCFS and NPP policies. First, the average time in queue for a job of

type 1 is derived, and then the average time in queue for a job of type 2 is derived.

3.3.1 Performance Measures for New Policy

The long run average time in queue for a job of type 1 is the average remaining

service time of an arbitrary job plus the long run average time to serve all jobs of

type 1 that are currently in the queue. To derive this mathematically, define:

Ui = Random remaining service time of current job in service when a job of type i

arrives, i = 1, 2

Z = A random variable denoting type of job in service upon arrival.

Z =





1 if type 1 is in service

2 if type 2 is in service

N = The service cycle in which the current job is undergoing.

N =





1 if currently undergoing first service

2 if currently undergoing second service

X = Random number of jobs in system upon arrival in the long run.

The average wait in queue for a job of type 1 is

WNew
1q = E[U1] + ρ1W1q =

E[U1]

(1− ρ1)
. (3.49)
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Using equation (3.28), the average wait in queue for a job of type 2 is

WNew
2q =

1

ρ2

[
λ2E[S]E[S2]

2(1− ρ)
− ρ1E[U1]

(1− ρ1)

]
. (3.50)

The expected remaining service time, E[U1] is found by conditioning on X:

E[U1] = E[U1|X > 0]P (X > 0) + E[U1|X = 0]P (X = 0). (3.51)

It is clear that E[U1|X = 0] = 0, since there can be no remaining service time in

an empty server. Now, E[U1|X > 0]P (X > 0) has to be derived. Again, this is

accomplished through a conditional argument.

E[U1|X > 0] = E[U1|X > 0, Z = 1]P (Z = 1|X > 0) +

E[U1|X > 0, Z = 2]P (Z = 2|X > 0). (3.52)

However, from Fakinos’ [13] results of the remaining service time for the more general

case of a GI/G/1 queue, the following equation holds for E[U1|X > 0, Z = 1].

E[U1|X > 0, Z = 1] =
E[S2

1 ]

2E[S1]
. (3.53)

To obtain E[U1|X > 0, Z = 2], another conditional expectation argument is

applied. The remaining service of the current job in service depends on the job type

currently being served and the service cycle the current job is undergoing. When

a job of type 1 enters the system and sees a type 2 job in service, the type 2 job

could be in first or second service. If the job of type 2 is in the first service, then

the remaining service time of a job of type 2 when a job of type 1 arrives is the

remaining service time of the first service of the job of type 2 currently in service.

This is true since the job of type 1 preempts the job of type 2 before the job of type

2 enters second service. However, if an arriving type 1 job sees a type 2 job in second
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service, then the remaining service time is the expected remaining service time of

the second service of a job of type 2. Also, the probability of a type 2 job being

in first or second service is the proportion of time spent in first or second service,

respectively, compared to the total amount of time a job of type 2 is either in service

or waiting for the jobs of type 1 to be served that arrived during the first service of

the type 2 job. The time also accounts for the time to serve all jobs of type 1 that

arrive during the expected service time of the type 1 job that preempted the type 2

job.

The details needed to compute equation (3.52) are presented; again, a condi-

tional expectation argument is applied.

E[U1|X > 0, Z = 2] = E[U1|X > 0, Z = 2, N = 1]P (N = 1|X > 0, Z = 2) +

E[U1|X > 0, Z = 2, N = 2]P (N = 2|X > 0, Z = 2)

=

(
E[T 2

2 ]

2E[T2]

)(
E[T2]

E[S2] + (λ1E[S1])2E[T2]

)
+

(
E[Q2

2]

2E[Q2]

) (
ν2E[Q2]

E[S2] + (λ1E[S1])2E[T2]

)

=
E[T 2

2 ] + ν2E[Q2
2]

2(E[S2] + ρ2
1E[T2])

(3.54)

Substituting equations (3.53) and (3.54) into equation (3.52), E[U1|X > 0] can be

found:

E[U1|X > 0] =
E[S2

1 ]

2E[S1]

ρ1

ρ
+

[
E[T 2

2 ] + ν2E[Q2
2]

2(E[S2] + ρ2
1E[T2])

]
ρ2

ρ

=
λ1E[S2

1 ]

2ρ
+

λ2E[S2](E[T 2
2 ] + ν2E[Q2

2])

2ρ(E[S2] + ρ2
1E[T2])

. (3.55)

Finally, E[U1] is obtained by unconditioning on X. Using equation (3.55) and

the fact that E[U1|X = 0] = 0, the following result is obtained:
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E[U1] =
λ1E[S2

1 ]

2
+

ρ2(E[T 2
2 ] + ν2E[Q2

2])

2(E[S2] + ρ2
1E[T2])

. (3.56)

Substituting equation (3.56) into equations (3.49) and (3.50) the final analytical

results for the expected time in queue for a type 1 job and a type 2 job are obtained:

WNew
1q =

1

2(1− ρ1)

[
λ1E[S2

1 ] +
ρ2(E[T 2

2 ] + ν2E[Q2
2])

(E[S2] + ρ2
1E[T2])

]
, (3.57)

WNew
2q =

1

2ρ2

{
λρE[S2]

(1− ρ)
−

[
ρ1λ1E[S2

1 ] + 2ρ1ρ2(E[T 2
2 ] + ν2E[Q2

2])

(1− ρ1)

]}
. (3.58)

3.4 Long-Run Expected Cost Equations

To compare the various policies, the total long-run expected cost of each

scheduling policy is used. The total cost consists of the holding cost for each job type

plus the preemption costs. Clearly, there will only be preemption costs for policies

that allow preemption. This section provides the appropriate cost equations for each

of the four policies.

To derive the cost equations, define the following:

γi = Holding costs for job type i

φ = Preemption cost during service

θ = Preemption cost between first and second service, where θ ¿ φ

π = Random variable denoting total number of preemptions per unit time

D = Indicator variable indicating if the job currently in service requires second ser-

vice. D = 0 if the job does not require second service and D = 1 if the job

does require second service.

Ci = Number of type i jobs processed per unit time

3-16



Ai(t) = Total number of type i arrivals during [0, t]

B = Random variable denoting the total number of times a job of type 2 is pre-

empted between first and second service

TCFCFS = Long-run average total cost equation for FCFS discipline

TCNPP = Long-run average total cost equation for NPP discipline

TCPR = Long-run average total cost equation for PR discipline

TCNew = Long-run average total cost equation for the new discipline

Any fixed costs for servicing a job are excluded since such costs will not alter the

optimal solution.

3.4.1 Cost Equations for Existing Policies

The cost equation for FCFS includes only the holding cost, therefore, it is

easily seen that, for the case k = 2,

TCFCFS = γ1W
FCFS
1q + γ2W

FCFS
2q . (3.59)

Similarly, the cost equation for the non-preemptive priority (NPP) discipline

is straight-forward and only includes holding costs; therefore, for the k = 2 case

TCNPP = γ1W
NPP
1q + γ2W

NPP
2q . (3.60)

For the preemptive resume (PR) priority discipline, the cost equation includes

the holding cost as well as the cost of preemption during service. The total cost

equation is

TCPR = γ1W
PR
1q + γ2W

PR
2q + φE[π], (3.61)

where E[π] = λ1E[S2], which is the expected number of type 1 arrivals during one

service cycle of a type 2 job.
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3.4.2 Preemption Between First and Second Service

The total cost equation for the new policy also consists of both the holding

cost and preemption cost. Again, the holding cost is straight-forward, however, the

preemption cost needs to be derived. The expected preemption cost is the cost of

preemption times the number of expected preemptions in the long-run multiplied by

the number of type 2 jobs processed per unit time. Since θ, the cost for preemption,

is known, E[π], the expected preemption cost, is all that is needed. However, it is

known that

E[π] = E[B]E[C2], (3.62)

where E[B] is the long-run expected number of times a job of type 2 is preempted

between first and second service and is derived by a simple conditional argument:

E[B] = E[E[B|D]]

= E[E[B|D = 1]P (D = 1) + E[B|D = 0]P (D = 0). (3.63)

It is known that E[B|D = 0] = 0, since there can be no preemptions if there is no

second service. In addition, it is known that E[B|D = 1] is the same as the expected

number of type 1 arrivals during a type 2 job’s first service cycle, given such a job

requires second service. To obtain the expected number of type 1 arrivals during a

type 2’s first service cycle, A1(t), the total number of type 1 arrivals during (0, t),

is found by conditioning on T , where T is the first service time of job 2. Since only

one job of type 1 needs to arrive, the complementary probability of A1(t) will be

applied. The distribution of A1(t) is known to be Poisson:

P (A1(t) = 0) =

∫ ∞

0

P (A1(t) = 0|T = t)dG2(t)

=

∫ ∞

0

e−λ1tdG2(t) (3.64)

3-18



and the complementary probability is

P (A1(t) > 0) = 1−
∫ ∞

0

e−λ1tdG2(t)

= 1− G̃2(λ1) (3.65)

where G̃2(λ1) is the Laplace-Stieltjes transform (LST) of G2(·) evaluated at λ1.

Equation (3.65) can always be computed, as long as the LST is known. Now, E[B]

can be found:

E[B] = ν2(1− G̃2(λ1)). (3.66)

To find the preemptions per unit time, E[C2] is still needed. The expected type 2

jobs processed per unit time is equivalent to the expected arrivals of type 2 jobs per

unit time, which is λ2:

E[C2] = λ2. (3.67)

Equation (3.62) can now be written, yielding the total cost equation for the new

scheduling policy

TCNew = γ1W
New
1q + γ2W

New
2q + θλ2ν2(1− G̃2(λ1)). (3.68)

A cursory observation of the four cost equations, (3.59), (3.60), (3.61), and

(3.68), reveals the variable components are the policy-dependent mean queueing

times and the fixed preemption costs. In the Chapter 4, numerical experiments are

conducted to investigate which policy performs best over a wide range of problem

parameters.
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4. Numerical Results

For the four scheduling policies presented in Chapter 3, the analytical cost

equations are compared across the policies, and the steady-state expected times in

queue are compared to an ARENA simulation.

4.1 Benchmark Analytical Results

Before considering explicit comparisons of the four scheduling policies, an

ARENA simulation was used to benchmark the analytical results. Ten scenarios

were constructed varying the problem parameters.

The values of the varying parameters were chosen at random. In all cases the

stability condition is satisfied and every entity has a non-zero probability of rework.

The first and second service times were drawn from the exponential distribution.

Thus, if an entity needed rework, the total service time was the sum of two expo-

nential random variables. The parameter variations for the ten test scenarios are

summarized in Table 4.1. These parameters were used in simulation experiments

of all four policies. The warm-up period was 2,000 minutes, the replication length

was 100,000 minutes, and 25 replications were performed. The warm-up period was

estimated using ARENA’s output analyzer graphics tool. In order to estimate when

the system stabilized, the work in process (WIP) of both types of jobs was plotted

over time. The run length was chosen to reduce the half-width within a replication

for the long-run expected time in queue, and the number of replications was chosen

to reduce the half-width across replications.
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Table 4.1 Summary of problem parameters for 10 scenarios.
Case λ1 λ2 E[T1] E[T2] E[Q1] E[Q2] ν1 ν2

1 1.0001 1.1111 0.1000 0.1500 0.6428 0.3000 0.7000 0.4000
2 1.2000 0.7000 0.3500 0.3000 0.4000 0.2000 0.6000 0.3000
3 0.4000 0.8500 0.1500 0.1000 1.5833 0.2157 0.3500 0.7000
4 0.2000 0.5850 0.2000 0.5000 0.7000 0.5650 0.5000 0.6500
5 0.6000 0.2000 0.9650 0.2000 0.5000 0.7750 0.7318 0.1615
6 0.3000 0.6000 0.7000 0.9000 0.7350 0.4750 0.2500 0.3000
7 0.5440 0.7000 0.3500 0.3000 0.4000 0.2000 0.6000 0.3000
8 0.1670 0.2000 1.2000 2.0000 0.8000 0.7000 0.6500 0.4500
9 0.2337 0.3371 0.3000 0.4750 1.0599 0.3937 0.5500 0.3209
10 0.7148 1.7162 0.1500 0.1000 0.4000 0.3580 0.6000 0.4000

The mean waiting time in queue for each job type was computed and compared

to the analytical mean waiting times in queue for each job type. Tables 4.2 through

4.5 provide a summary of the results.

Table 4.2 Analytical versus simulated results for FCFS policy.

W1q W2q

Case Analytical Simulated Half-Width Analytical Simulated Half-Width
1 2.8616 2.8600 0.0342 2.8616 2.8615 0.0344
2 11.1750 11.1847 0.4502 11.1750 11.1742 0.4113
3 0.8757 0.8760 0.0084 0.8757 0.8760 0.0092
4 1.1657 1.1651 0.0138 1.1657 1.1664 0.0128
5 6.6904 6.7320 0.1249 6.6904 6.7360 0.1232
6 7.5855 7.5706 0.2339 7.5855 7.5711 0.2344
7 0.5821 0.5830 0.0055 0.5821 0.5838 0.0047
8 5.5424 5.5725 0.1066 5.5424 5.5748 0.1173
9 0.5404 0.5428 0.0062 0.5404 0.5437 0.0054
10 0.7904 0.7937 0.0065 0.7904 0.7935 0.0061

As can be seen in Table 4.2, the simulated mean time in queue for the FCFS

policy is within 0.62 percent of the true long-run mean time in queue.

As can be seen in Table 4.3 the analytical long-run expected time in queue

for jobs of type 1 and type 2 are within the half-widths of the simulated long-run

expected times in queue, with the maximum error being 1.45 percent.

4-2



Table 4.3 Analytical versus simulated results for NPP policy.

W1q W2q

Case Analytical Simulated Half-Width Analytical Simulated Half-Width
1 0.9539 0.9560 0.0063 6.3592 6.4645 0.1053
2 1.5308 1.5335 0.0127 38.2705 38.8350 1.9220
3 0.6156 0.6205 0.0076 1.2191 1.2227 0.0169
4 0.5012 0.5003 0.0030 1.3097 1.3109 0.0149
5 4.5306 4.5422 0.0631 33.2088 33.5580 1.1360
6 1.1290 1.1286 0.0083 10.3222 10.3069 0.3472
7 0.3660 0.3657 0.0025 0.8572 0.8594 0.0079
8 1.9421 1.9453 0.0158 7.7759 7.7952 0.1524
9 0.4024 0.4036 0.0040 0.6809 0.6838 0.0074
10 0.3330 0.3330 0.0016 1.0959 1.0964 0.0072

Table 4.4 displays the simulation results and the analytical results for steady-

state expected time in queue for jobs of type 1 and type 2 under the PR policy. In the

PR policy simulation, the maximum relative error is 2.13 percent. Table 4.5 displays

the simulated and analytical expected times in queue for the new policy. The relative

error for this simulation was 5.05 percent. The difference in the expected times in

queue can be attributed to the randomness of the simulation. The half-widths in

Tables 4.2 through 4.5 are for a 95 percent confidence interval.

4.2 Determining the “Best” Policy

A numerical experiment was performed to determine which policy yields the

lowest cost most often. To accomplish this, the long-run total expected cost was

calculated and compared for 288 different scenarios. The comparison of the “best”

policy was based on frequency of “wins” since this measure captures the number of

times a particular policy yielded the lowest cost over a variety of situations. The

following parameters were varied: ρ1, ρ2, γ1, γ2, φ, θ, ν1, and ν2. MATLABr

was used to compute the total long-run expected cost for the 288 scenarios and
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Table 4.4 Analytical versus simulated results for PR policy.

W1q W2q

Case Analytical Simulated Half-Width Analytical Simulated Half-Width
1 0.7650 0.7674 0.0057 6.7055 6.7951 0.1066
2 1.2432 1.2469 0.0121 39.0788 39.7107 1.9270
3 0.5474 0.5518 0.0075 1.3092 1.3217 0.0175
4 0.0798 0.0792 0.0012 1.4011 1.4179 0.0152
5 4.3697 4.3836 0.0614 35.1841 34.8366 1.1460
6 0.3077 0.3073 0.0043 10.6703 10.6827 0.3487
7 0.2423 0.2424 0.0021 1.0147 1.0297 0.0085
8 0.5811 0.5795 0.0089 8.6203 8.7268 0.1555
9 0.2599 0.2624 0.0035 0.8259 0.8394 0.0083
10 0.1531 0.1532 0.0011 1.2160 1.1906 0.0074

to calculate which policy resulted in the lowest cost most often. Equations (3.59),

(3.60), (3.61), and (3.68) of Chapter 3 were used for this purpose.

The expected first service times and the arrival rates for each job type were

kept constant throughout the 288 scenarios. The expected second service times were

calculated using the fixed first service times, ρi and νi, respectively. The following

formula was used to compute the mean second service time,

E[Qi] =
ρi − λiE[Ti]

λiνi

, i = 1, 2. (4.1)

where E[T1] =0.1, E[T2] =0.15, λ1 =0.5, and E[T1] =0.65. The different values for

the varying parameters were chosen to cover a wide range of situations. In all cases,

the cost to preempt during service (θ) is greater than the cost to preempt between

services (φ), since it is assumed to be cheaper to preempt between services than it

is to preempt during service. Also, the holding cost for jobs of type 1 (γ1) is greater

than the holding cost for jobs of type 2 (γ2), since a higher priority job is assumed

to have a more expensive holding cost. Realistically, this makes sense because a

higher priority is often given to the job with the higher holding cost. Three sets of
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Table 4.5 Analytical versus simulated results for the new policy.

W1q W2q

Case Analytical Simulated Half-Width Analytical Simulated Half-Width
1 0.8887 0.9120 0.0062 6.4788 6.5374 0.1056
2 1.4156 1.4909 0.0126 38.5942 39.0520 1.9230
3 0.5962 0.6024 0.0076 1.2447 1.2505 0.0171
4 0.3784 0.3799 0.0023 1.3364 1.3509 0.0150
5 4.4674 4.5181 0.0626 33.9844 33.6840 1.1390
6 0.9833 1.0234 0.0075 10.3840 10.4044 0.3478
7 0.3392 0.3472 0.0024 0.8914 0.9021 0.0082
8 1.6865 1.7689 0.0155 7.9345 8.1563 0.1536
9 0.3731 0.3781 0.0038 0.7107 0.7226 0.0076
10 0.2944 0.2989 0.0015 1.1217 1.1120 0.0072

parameters were varied for the experiment: the utilization factors, the probability

of rework, and the costs.

The values chosen for the parameters were such that a variety of traffic in-

tensities, probabilities of rework, and costs were examined. For the overall traffic

intensity, a high, medium and low value was chosen. The traffic intensity was then

separated between the class types to observe the system with balanced and unbal-

anced traffic intensities across classes. The probabilities of rework were also chosen

to observe values that were high, medium, and low. Finally, the costs were chosen

to observe the systems with high and low holding costs, as well as high and low

preemption costs. Tables 4.6 through 4.8 display the parameter set variations. A

numerical experiment was chosen over a full-factorial designed experiment because

a full-factorial designed experiment is used to predict a response variable and ob-

serve which parameters impact the response variable. However, this thesis compares

expected total cost across four scheduling policies, therefore, the parameters that

impact the expected total cost are the parameters that comprise the long-run ex-

pected times in queue. For this reason, a numerical experiment is best suited to

accomplish the goals of this thesis. Table 4.6 displays the various parameters used

for the class and overall traffic intensities. As discussed previously, there is a low,
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Table 4.6 Class and overall traffic intensities.
ρ1 ρ2 ρ

0.250 0.250 0.500
0.400 0.100 0.500
0.100 0.400 0.500
0.375 0.375 0.750
0.600 0.150 0.750
0.150 0.600 0.750
0.475 0.475 0.950
0.700 0.250 0.950
0.250 0.700 0.950

medium, and high value for the overall traffic intensity. The rework probabilities are

Table 4.7 Class-specific probability of rework.
ν1 ν2

0.9 0.9
0.9 0.3
0.3 0.9
0.2 0.2

displayed in Table 4.7 and were chosen at levels considered high rework probabilities,

low rework probabilities, and imbalanced rework probabilities. The cost parameters

Table 4.8 Summary of cost parameters.
γ1 γ2 φ θ
50 5 10 1
50 5 10 5
50 25 10 1
50 25 10 5
10 1 50 5
10 5 50 5
10 1 50 25
10 5 50 25

are displayed in Table 4.8. The holding cost for a job of type 1 is varied over high

and low, while the holding cost for a job of type 2 was varied over high, medium and

low. The preemption cost during service was also varied over high and low, while

the preemption cost between service was varied over high, medium and low.
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After values were chosen for the three parameter sets, all combinations of

the parameter sets were used as inputs to a MATLABr computer program. The

MATLABr program computed the long-run average waiting time in queue and the

total long-run average cost for each case, then compared the costs across the four

scheduling policies. Each time a particular policy had the lowest cost, it was declared

the “winner”. The results of the numerical experiment are summarized in Table 4.9.

Table 4.9 Results of the policy comparison experiment.
Scheduling Policy Number of times won
First-come, first-served (FCFS) 48
Non-preemptive priority (NPP) 43
Preemptive resume (PR) 116
New policy (New) 81

As seen in Table 4.9, the PR policy yields the lowest cost most often, while

the NPP policy yields the lowest cost least often. After reviewing the results, some

conjectures were made. The first conjecture is that the FCFS policy always won

when the holding cost of a type 1 job (γ1) was twice the holding cost of a type

2 job (γ2) and the traffic intensity for a type 1 job was strictly greater than the

traffic intensity for a type 2 job. This indicates that when the server is more busy

with type 1 jobs than type 2 jobs, and it is at least twice as expensive to hold a

type 1 job than a type 2 job, then FCFS is the scheduling policy with the lowest

expected cost. It was also found that, in general, when the holding cost for type

1 is low, and the cost to preempt during service is high, the new policy prevailed.

This conjecture makes sense in the real-world since there is a trade-off between a

high holding cost for jobs of type 1 and high costs due to preemption. Conversely,

if the cost to preempt during service is low, or the probability of rework is low, then

the PR policy yielded the lowest cost. Another conjecture is that when the overall

traffic intensity is high, either the PR policy or the new policy yields the lowest

cost most often. This conjecture suggests that the new policy or the PR policy is
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worthwhile to investigate when the system traffic intensity is high. Additionally, it

appears there is interaction between several factors that impact the mean waiting

times. For example, when the traffic intensity is equal for the two classes, no policy

dominates the others.

4.3 Summary of Numerical Experiments

A numerical experiment was performed to determine the scheduling policy that

yields the lowest cost most often. There were 288 test cases with varying parameters.

The parameters covered a variety of scenarios, however in all cases it was assumed

that it is less expensive to preempt between services than to preempt during service,

and the holding cost for jobs of type 1 was always greater than the holding cost for

jobs of type 2. After the costs were compared over all four scheduling policies, it

was found that the preemptive resume (PR) policy resulted in the lowest cost most

often. However, the new policy resulted in the second lowest cost most often.

The results of this experiment indicate that the PR policy minimizes cost for

a two-class M/G/1 priority queue with optional rework more often than the other

three scheduling policies. However, the new policy produces the lowest cost almost

as often as the PR policy. The results of this experiment suggest that, relative to the

FCFS and NPP policies, the PR and the new policy perform better. To minimize

long-run expected total costs, it is worthwhile to assign priorities and employ a

preemption scheme when scheduling multi-class M/G/1 queues. In reference to the

avionics backshop described in Chapter 1, knowing the best policy to employ in

scheduling line replaceable units (LRUs), could potentially save the USAF significant

dollar amounts. The chosen parameter values directly impact which policy yields

the lowest cost. Some conjectures were made concerning the impact of the different

factors. These could be further investigated through a sensitivity analysis. The next

chapter provides conclusions of this thesis and some suggestions for future work in

this area.
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5. Conclusions and Future Research

The objective of this thesis was to derive performance measures for a two-

class M/G/1 priority queue with optional rework and to use these results to compare

the performance of four scheduling policies. This analysis provides insight into many

real-world systems in manufacturing, telecommunications, and transportation. Since

the cost equations depend explicitly on the time spent in queue, the long-run ex-

pected time in queue was derived for all policies. Specifically, the total long-run

expected cost for first come, first served (FCFS), non-preemptive priority (NPP),

preemptive resume (PR) and a new policy that only allows preemptions between

first and second service were compared. All of the relevant performance measures

were found using a mean value analysis (MVA) approach, the cost equations were

derived, and a numerical experiment was performed to heuristically determine the

policy that most often yields the lowest cost. The analytical results were initially val-

idated via Monte-Carlo simulation. This chapter summarizes what has been learned

in this thesis and makes recommendations for future work in this area.

The results presented in Chapter 3 provide the mean waiting time in queue

for the four different scheduling policies. An MVA approach was taken to derive the

first and second moments of the service time distribution of an arbitrary arrival of a

particular class, and for an arbitrary arrival of an arbitrary class. After the overall

steady-state expected service times were derived, the long-run expected queueing

time for an arbitrary customer was developed for each of the four scheduling policies,

FCFS, NPP, PR and a new policy that only allows preemption between the first and

second service cycles. The new policy allowed preemption strictly between first

and second service. For the new policy, as well as the previous three policies, the

long-run expected costs were also computed. Holding costs and (where appropriate)

preemption costs were considered for each policy.

5-1



Chapter 4 provided numerical results for the cost comparisons. Several param-

eters were varied over a range of values to test the different policies. Specifically,

three sets of parameters were varied: the utilization factors, the probabilities of

rework, and the holding and preemption costs. In 288 test cases, the PR policy

performed the best most often. The new policy performed almost as well, while the

NPP policy performed the worst. Some conjectures were made concerning these re-

sults. It was found that, when the holding cost for a type 1 job was at least twice the

holding cost of type 2 job and the traffic intensity of type 1 jobs was strictly greater

than the traffic intensity of type 2 jobs, FCFS had the lowest cost. For the PR and

the new policy cases, no definitive conjectures could be made, although some were

hypothesized. These conjectures included the new policy generally winning when

the holding cost for type 1 was low, and the cost to preempt during service was

high. It was also found that, in general, when overall traffic intensity was high, the

new policy or the PR policy prevailed. It was also hypothesized that when the cost

to preempt during service was low, or the probabilities of rework were low, the PR

policy yielded the lowest cost. These findings suggests that to minimize cost, it is

beneficial to use a preemptive policy when scheduling multi-class M/G/1 priority

queueing systems. Another conjecture was that there exists an interaction between

the factors involved in the mean queueing times.

The contributions of this thesis are useful in a variety of settings, including

transportation, communications, or manufacturing systems. The research could also

apply to personnel deployment lines or a maintenance schedule, as discussed in Chap-

ter 1. The multi-class M/G/1 queue with optional second service can be studied

further. For example, sensitivity analysis can be performed on each of the parame-

ters. The values and ranges different parameters may assume without changing the

outcome for the lowest cost policy could be explored to evaluate the sensitivity of

the cost equations. For example, if the PR policy prevails over the new policy in

a particular case, the question of how much the costs can vary without changing
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the outcome could be explored. Additionally, finding the optimal first or second

mean service rates would also be advantageous. If optimal rates were known, design

engineers could plan real-world systems with this knowledge, thereby minimizing

long-run costs.
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