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Abstract 

This thesis addresses the final portion of a complete process for human gait 

recognition.  The thesis takes as input information that has been generated from 

videotaping walking individuals and converting their gaits into numerical data that 

measures the locations of various points on the body through time.  Beginning with this 

data, this thesis uses a variety of mathematical and statistical methods to create 

identifying signatures for each individual and identify them on the basis of that signature.  

The end goal is to achieve under controlled laboratory conditions human gait recognition, 

an identification method which does not require contact or cooperation with the 

individual and which can be done unobserved from a distance.  Various mathematical 

models such as the construction of classifiers utilizing Minimum Euclidean Distance, 

Minimum Mahalanobis Distance and Quadratic Discriminant Functions are employed on 

both static and dynamic characteristics in order to fully analyze gait data for the purposes 

of identification. 

This thesis starts with previously generated numerical data from a videotaped 

sequence of images of a subject walking across a room that contains the positions through 

time of a wide variety of different markers on the individual’s body.  A MatLab program 

is initially written to convert the data into a usable format.  A variety of mathematical 

techniques are then employed to generate several classifiers of an individual from a small 

set of gaits that can be used to identify their gait in any data set.   
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STATISTICAL APPROACH TO THE CHARACTERIZATION AND 
RECOGNITION OF HUMAN GAITS  

 
 

I.  Introduction 

Background 

Human gait recognition is a promising new biometric with the potential for 

practical application in a wide variety of areas.  Biometrics refers to the automatic 

recognition of people based on their distinctive anatomical and behavioral characteristics 

(Zhang, 2007: 321).  Whereas biometrics encompasses techniques that can focus on a 

number of physical feature such as fingerprint recognition, facial recognition, palm print 

identification, speaker identification, iris recognition or signature verification to name a 

few, gait recognition merits special attention as it offers several advantages not found in 

other common identifiers.   

The principal advantages of gait recognition as opposed to other common 

biometrics are that it is relatively unobtrusive to perform and difficult to obscure (Bobick, 

2001: 301).  Measuring an individual’s palmprint generally requires the knowledge and 

often the cooperation of an individual being identified.  Iris recognition suffers from 

similar drawbacks and must usually be performed at close range.  Facial recognition 

requires close range, favorable observation conditions and can be obscured by a hood or 

various inexpensive means of disguise.  Speaker and signature verification require the 

individual to engage in very specific behaviors and are not well-adapted to quickly 

surveying large crowds. 
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An effective human gait recognition technique, by contrast, would suffer from 

none of these limitations and greatly expand the scope of current identification 

techniques.  An individual’s gait could be effectively observed and analyzed over various 

distances without loss of information.  Additionally, the subject being identified would 

require no knowledge of the process and would not have to be cooperative for the 

analysis to be effective.  As opposed to facial recognition gait recognition is difficult to 

obscure, even the addition of different garments, prosthetics or other conventional 

cosmetic changes would not necessarily alter the natural rhythm, motion, and speed of an 

individual’s habitual gait.  Gait recognition also offers the possibility of low-resolution 

and night vision capabilities (Lu, 2006:249).  These distinct advantages of human gait 

recognition offer the potential for a high degree of practical utility for the Department of 

Defense, Department of Homeland Security and the Air Force. 

Underlying the potential for human gait recognition is the notion that an 

individual’s gait is unique and that distinct gaits can be practically identified from a 

biomechanics point of view.  If human gait recognition can be developed to the point 

where a videotaped individual could have his/her identifying characteristics automatically 

read from a series of images and then reliably checked against an existing database or 

known signature of interest, the possibilities for gait recognition applications would be 

extensive and varied.  Currently, recording surveillance video, for instance, is a common 

and effective means of security in a number of public and private installations.  Human 

gait recognition algorithms could be designed into a software program that automatically 

analyzes individuals in these images for identification purposes or other information of 
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interest.  Gait recognition could be usefully employed in monitoring applications in 

security-sensitive environments such as banks, parking lots and airports (Lu, 2006:249).  

Whereas such video, which often extends over a number of days, is currently scrutinized 

by trained personnel, human observation can be severely limited by the quantity of 

information as well as practical limits on attention span and the ability to spot detail.  

Automatic human gait recognition offers the realistic possibility of using software to scan 

larger quantities of data in a wider variety of settings while yielding more valuable 

identification information than is currently possible with conventional identification 

methods. 

 

Problem Statement 

The concept that each person possess a unique gait suggests that people can be 

distinguished by their manner of walking.  The overall objective of this project is to 

develop mathematical and statistical methods to classify several individuals’ gaits as part 

of an overarching technique that will eventually allow for the identification of more 

general populations by their gait signatures. 

 

Research Objective 

 There are many different steps in the identification of an individual by their gait.  

This thesis commences at the point in the process after the initial videotaping has been 

performed and the numerical information regarding positions of limbs and joints has been 

recorded.  This initial numerical data is taken and analyzed using a variety of 
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mathematical and statistical methods to attempt to classify each individual uniquely.  

Several classifiers are built for each individual based on a small number of known gait 

samples and then it is experimentally determined whether these classifiers accurately 

identify other samples of the individual’s gait.  The three classifiers explored on this 

thesis are based on the concept of matching vectors according to Minimum Euclidean 

Distance, Minimum Mahalanobis Distance, or through use of Quadratic Discriminant 

Functions.  Additionally, the three algorithms are also used on a variety of data sets 

including ones that only contain characteristics of a gait expressible in single numbers, 

termed static characteristics, gait characteristic expressible as curves over time, termed 

dynamic characteristics, and gait characteristics consisting of both static and dynamic 

characteristics.  Utilizing the algorithms on these distinct databases yields insights into 

both the operation and effectiveness of the algorithms under a number of common 

conditions.  These methods are then compared and contrasted with each other in order to 

synthesize the best method for identification.  This thesis finally generates a best 

mathematical algorithm for identifying people on the basis of their recorded gait. 

 

Research Question 

The overall question this thesis considers is:  Assuming that the gaits of 

individuals are unique, can a person be identified solely on the basis of his/her gait? 

This thesis completes the process of answering this question.  The specific 

question addressed in the course of this thesis research is: What is the best mathematical 
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and statistical method of identifying people by gait when the available input is the 

position of body markers at successive moments in time? 

 

Thesis Organization 

Chapter II gives an overview of the extensive body of research on gait 

recognition.  The concept of human gait recognition is defined and a brief history of 

research in the field is provided.  The chapter continues to give summaries of a number of 

relevant papers regarding potential means of using mathematical and statistical models to 

analyze gait data and the various successes and failures that have been achieved in these 

endeavors. 

Chapter III details the methodology used within this thesis project.  The concepts 

of the Minimum Euclidean Distance, Minimum Mahalanobis Distance, and Quadratic 

Discriminant Function classifiers are explained and appropriate relevance to the current 

problem is shown.  The specifics of the construction of specific programs that apply each 

of the above concepts to the current problem are given.  An overview of the types of 

databases to be used in experimentation such as databases consisting of gait 

characteristics expressible as single numbers, or static characteristics, databases 

consisting of gait characteristics expressible as curves, or dynamic characteristics, and 

data bases consisting of both static and dynamic characteristics is given.  Assumptions 

are stated about the nature of the problem and expectations regarding performance are 

described.  Limitations of the research are also included. 
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Chapter IV discusses the results and analyses of the various methodologies for 

identifying individuals.  The positive and negative aspects of the test runs and algorithm 

comparisons are investigated.  The remainder of the chapter focuses on a detailed 

summary of the results of running each method of identification on a variety of sample 

problems.   

Finally, Chapter V presents the conclusions and recommendations of the thesis.  

Comparisons of the various identification methodologies are condensed into an overall 

recommendation for the optimum method or combination of methods discussed.  

Advantages and disadvantages of this approach are discussed with respect to previous 

published efforts in the field.  Possible avenues for future research are also identified.  

Figure 1 describes the general overview of all the stages of the human gait recognition 

process with the first two steps having already been performed in earlier theses.  This 

thesis completes the process of identifying individuals on the basis of their gaits once 

numerical data regarding their gaits has been generated. 
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Figure 1. Human Gait Recognition Process Outline 
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II. Literature Review 

Chapter Overview 

This chapter gives a general overview of the history and background of human 

gait recognition as well as summarizing a number of recent relevant articles published in 

the field.  In the Oxford Dictionary, gait is defined as a ‘manner of walking, bearing or 

carriage as one walks,’ and human gait recognition is an attempt to recognize or describe 

individuals on the basis of this manner of walking or carriage (Nixon, 2006:1).  A 

relatively unique advantage of using gait as a biometric, as opposed to retina, fingerprint, 

facial recognition, etc., is that it offers the ability to recognize individuals not only at a 

distance but also at low resolution and in environments where other biometrics have 

insufficient information for useful identification (Nixon, 2006: 1).  In the case of 

fingerprinting, facial recognition, or retinal scan, identification requires close proximity 

to the individual and often conscious cooperation as well (Zhang, 2007:321).  Gait 

recognition by contrast is non-contact and unobtrusive which is extremely useful when 

attempting to avoid the privacy issues involved in the other common biometrics (Zhang, 

2007: 321).  As a result of these advantages over other biometrics, human gait 

recognition is an area of significant interest for the Department of Defense, Department 

of Homeland Security, and the Air Force among other organizations.  Nevertheless, gait 

recognition is not without its own hindrances and drawbacks.  For example a variety of 

physical conditions such as injuries to joints, drunkenness, and pregnancy can 
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significantly alter the motion of an individual thereby rendering identification difficult 

under those circumstances (Hayfron-Acquah, 2002:632).   

Early Research 

 The earliest gait recognition studies came from the field of Psychology where 

Kozlowski and Cutting were able to demonstrate that people could be identified solely on 

the basis of their gait information (Bobick, 2001: 302).  This work was later extended by 

Stevenage, Nixon, and Vince who explored the degree to which the ability of people to 

identify others was affected by changes in a variety of environmental conditions (Bobick, 

2001: 302).   

Medical Interest 

There has also been medical interest in gait recognition with a number of medical 

applications being developed.  Gait recognition researchers have estimated that individual 

gait patterns mature by three years of age (Tingley, 2002:150).  In terms of medical 

applications, the primary area of interest has been in the detection and diagnosis of 

pathological abnormalities in patients on the basis of their gaits.  There have been studies 

of a child’s gait to detect birth defects or other abnormalities.  Gait studies have been 

used to classify the components of gait for the treatment of these patients (Nixon, 

2006:1). 

Relevant Research 

The two broad classes of gait recognition techniques are model-free gait 

recognition and model-based gait recognition.  Model-free approaches attempt to identify 
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individuals by only analyzing the shape or motion a subject makes as they walk; the 

features extracted from this shape and motion are the basis for the identifications 

(Bobick, 2001:302). Silhouette features, oscillations, or shape-of-motion to accumulate 

information all lend themselves to a model-free technique.     

Model-based techniques, by contrast, match a model to either the person or 

his/her walk.  A body-based model will match a body model to the individual in every 

frame of the walking sequence whereas in walking models a model of how the person 

moves in general is created and learned for every person (Bobick, 2001:302). The more 

commonly used models are volumetric and stick figure models while ribbon and blob 

models are relatively less used (Nixon, 2006:5).  In volumetric models the person is 

represented with a series of spheres, compression of the spheres into two dimensions 

yields a ribbon model and a blob model uses amorphous blobs to represent the walking 

person (Nixon, 2006: 5-6).  This thesis will utilize a stick model which merely notes the 

positions of all joints at recorded points in time and uses lines to form them into the 

figure of a walking person.   

The first automatic gait recognition algorithm to use statistical shape analysis and 

is presented by Wang, Tan, Hu and Ning.  This group extracts a silhouette of the 

individual from the background of an image sequence using a background subtraction 

procedure (Wang, 2003: 1120).  A complex vector configuration is created from the 

detection of the temporal changes of the silhouettes.  Next portrayed is a method in shape 

statistics know as Procrustes shape analysis (Wang, 2003: 1123).  Instead of analyzing 

the dynamics of the gait Procrustes shape analysis capture the characteristics of 
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individual gaits using the walking action of the individual (Wang, 2003: 1120).  These 

methods are successfully used to identify different individual gaits in the silhouettes. 

A three-dimensional human body model is challenging because of the large 

number of free parameters but is also successfully studied by Wang, Tan, Hu and Ning.  

This study reduces the number of parameters by assuming walking motion is parallel to 

the image plane (Ning, 2002: 537).  First, the posture of the human body model in the 

next frame is first predicted and then this prediction is matched to the next frame in the 

sequence.  The matched frames are then optimized to find the minimization of the match 

error (Ning, 2002: 538).  Wang, Tan, Hu, and Ning also attempted to find distinguishing 

characteristics in the individual gait posture vectors (Ning, 2002, 539). 

A new method of spatio-temporal symmetry using the Generalised Symmetry 

Operator was an approach taken by Hayfron-Acquah, Nixon and Carter. The 

psychological view that human gait is a symmetrical pattern of motion is the inspiration 

for this approach (Hayfron-Acquah, 2002: 632).  An individual is recognized by both 

body shape and motion using temporal information gained from gait recognition 

(Hayfron-Acquah, 2002: 632).  They start by performing a symmetry extraction on the 

original image.  First, the silhouette is extracted from the original image, the edges found, 

and the spatial symmetry map is detected by examining the symmetry from pairs of 

image points (Hayfron-Acquah, 2002: 633).  Second, all the symmetry maps from an 

image sequence are averaged in order to derive a gait signature for recognition (Hayfron-

Acquah, 2002: 634).  The k-nearest neighbor rule is applied to produce recognition by 

symmetry which is a reasonable classification.  A better classifier may be found in a  
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feature space classification or a more sophisticated classifier than the k-nearest neighbor 

(Hayfron-Acquah, 2002: 634).  The results from this method corroborate previous work  

which indicates that human gait has symmetrical properties and is unique for an 

individual (Hayfron-Acquah, 2002: 632).   

Another approach in gait recognition is Fourier series.  Specifically, Yu has 

analyzed the spatio-temporal characteristic of moving silhouettes.  Gait data 

dimensionality can be reduced and computational cost lessened through use of a set of 

Key Fourier descriptors (KFDs) (Yu, 2004: 282).  The KFDs are derived from the 

discrete Fourier transform and are invariant to translation, scale, and rotation (Yu, 2004: 

283).  The leave-one-out cross-validation rule and nearest neighbor classifier are used to 

classify the data (Yu, 2004: 283).  Yu discovered that a human silhouette can be 

recognized using only sixteen points (Yu, 2004: 285). 

Tingley used Fourier series in his study of gait in young children.  As opposed to 

identifying individual children, this study seeks only to classify the child’s gait cycle as 

being the bounds of normal or abnormal gait (Tingley, 2002: 151).  This group used 

eleven functions that involved hip angle, knee angle, and ankle angle to derive the 

coefficients that describe the Fourier curves (Tingley, 2002: 152).  A linear combination 

using principal component analysis (PCA) is approximated from the variation of the 

child’s gait pattern from that of normal hip angle, knee angle, and ankle angle pattern 

(Tingley, 2002: 153).  This is sufficient to classify a child’s gait pattern as either normal 

or abnormal. 
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Begg and Kamruzzaman study gait cycle changes by combining three types of 

machine learning approaches of gait measures; basic spatial/temporal, kinetic, and 

kinematic into one (Begg, 2005: 401).  The gait cycles of twelve young individuals and 

twelve elderly individuals are compared in this study.  As opposed to individual 

identification, the purpose of this study is only to classify an individual into an age group.  

This is accomplished through the use of neural networks and fuzzy clustering techniques 

(Begg, 2005: 402).  A support vector machine (SVM) is a machine classifier that assists 

in the classification and regression of the data (Begg, 2005: 402).  This study 

demonstrates that SVMs can identify the differences between the young and elderly 

walking gait cycles.  SVMs also show the underlying data structure of the models of the  

young and old (Begg, 2005: 406).  This proved sufficient to classify gait signatures into 

broad categories, though not to identify specific individuals. 

 Fujiyoshi, Lipton, and Kanade investigate the creation of image skeletonizations 

through analysis of motion of subjects in video streams.  In order to achieve real-time 

target extraction they begin by using a background subtraction technique that is more 

adaptable to environmental changes (Fujiyoshi, 2004: 114).  Slow dynamic changes in 

the environment, “once-off” independently moving false alarms, movement of 

environment clutter, and the moving target are all considered significant types of image 

motion for target detection (Fujiyoshi, 2004: 114).  After the first step only removes the 

background, the second step is to process the target removing everything in the frame that 

is not the person and producing the star skeleton formation of the image (Fujiyoshi, 2004: 



 

 14

114).  A star skeleton formation is when the extremities of an individual are joined to a 

center point or “centroid” by lines that form a star pattern. 

 Lu, Plataniotis and Venetsanopoulos pursue a different tactic with the 

development of a sophisticated layered deformable model (LDM) for human body pose 

recovery in gait analysis (Lu, 2006: 249) .  The model in this study is designed to closely 

mimic manually labeled silhouettes of figures in motion.  For a gait parallel to the 

observing camera, the LDM model defines the body part widths and lengths, the position 

and the joint angles of the human body using 22 parameters (Lu, 2006: 249).  The model 

is designed to have four layers and allow for limb deformation.  In practice, the LDM 

recovery algorithm is first developed for manual silhouettes in order to generate ground 

truth sequences (Lu: 2006: 250).  It can then be extended for automatically extracted 

silhouettes.  On a test of 10,005 frames for 285 gait sequences under a wide variety of 

environmental conditions, the LDM model was able to achieve an average error rate of 

7% for lower limb joint angles of all the frames (Lu, 2006: 250).  The LDM model of Lu, 

Plataniotis and Venetsanopoulos is consequently not only a sophisticated gait recognition 

program but also a relatively accurate one. 

 Chen, Chen, Chen, and Lee utilize a different technique with their development of 

a star skeleton to motivate gait recognition efforts.  Specifically, the study uses a Hidden 

Markov Model (HMM) based methodology for action recognition using a star skeleton as 

a representative descriptor of human posture (Chen, 2006: 171).  The star skeleton itself 

is created using a fast skeletonization technique that connects the centroid of target 

objects to contour extremes (Chen, 2006: 172).  In the study, the star skeleton is clearly 
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defined as a five-dimensional vector in star fashion in order to correspond to the head and 

four limbs which are usually the local extremes of a human shape (Chen, 2006: 174).  

Once the skeleton has been established, time-sequential images expressing human action 

are transformed into a feature vector sequence (Chen, 2006: 175).  The feature vector 

sequence is then transformed into a symbol sequence where HMM can model the action 

(Chen, 2006: 175).  Finally, a posture codebook that contains representative star 

skeletons of each action type is used to match feature vectors against in order to 

determine the action portrayed.  In one particular simulation the algorithm was used to 

characterize one hundred video clips each depicting a single action (Chen, 2006: 176).  

The authors were able to achieve a 98% recognition rate in this instance although 

detection rates dropped under less ideal conditions (Chen, 2006: 176). 

 In their study, Bobick and Johnson approach the same problem from a 

significantly different point of view by attempting to identify individuals through the use 

of static body parameters.  That is to say that recognition is not based on leg swing, joint 

angle or motion but rather the invariant aspects of an individual’s anatomy such as 

height, width, etc.  (Bobick, 2001: 301) .  They find that it is a generally simple task to 

discriminate between subjects from a single viewpoint but that discrimination decreases 

when data across views are considered (Bobick, 2001: 302).  Ground truth motion-

capture data of a reference subject is utilized to establish scale factors that can transform 

data from different viewpoints into a common frame of reference (Bobick, 2001: 301).  

This study by Johnson and Bobick is significant in that it demonstrates the practical 
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utility of gait recognition using static body parameters which is a relatively little used 

technique for identification. 

 Liu and Sarkar employ a different technique in order to study the intricacies of 

human gait-based recognition.  According to Liu, studies of gait are frequently 

confounded by errors in the extracted silhouettes which are used as a basis for most 

recognition algorithms (Liu, 2005: 170).  The new model based silhouette reconstruction 

strategy designed to address this issue uses a population based HMM in concert with an 

eigen-stance model that corrects common errors in silhouette detection that generally 

result from shadows or background subtraction (Liu, 2005: 172).  The combination of 

these techniques allows for the study of extracted silhouette errors across a large 

population of subjects.  As opposed to pixel-level techniques for cleaning silhouettes, this 

methods is shown to be effective at not only removing shadows but also carried items 

(Liu, 2005: 172).  However, the overall conclusion Liu draws from this research is that 

though these new techniques demonstrably improve silhouette quality they fail to 

improve gait recognition algorithm performance (Liu, 2005: 181).  This observation 

supports the hypothesis that factors other than poor silhouette quality are the primary 

contributors to poor gait recognition algorithm performance. 

 Kale focuses his research on a view-based approach to recognize humans on the 

basis of their gait.  The work examines both the width of the outer contour of the 

binarized silhouette of the walking person and the entire binary silhouette as both are 

considered to be features of interest (Kale, 2004: 1163).  The first method of obtaining 

the observation vector from the image features is to transform the high-dimensional 
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image feature into a lower dimensional space by generating a frame to examplar distance 

(Kale, 2004: 1164).  In the second method, a HMM is trained directly on the feature 

vector thereby avoiding the need to learn high-dimensional probability density functions 

(Kale, 2004: 1168).  The statistical nature of the HMM-based methodology yields 

significantly increased robustness to both representation and recognition in human gait 

recognition (Kale, 2004: 1163). 

 
Summary 

Human gait recognition holds the promise to assist in the solution of many of the 

security and identifications dilemmas that are currently receiving a great deal of attention 

in the United States and abroad.  The ability of gait recognition to meet that promise is 

largely dependent on the speed with which it can be performed and the solution quality 

that can be obtained under various time constraints, viewing angles, and environmental 

parameters.  This performance bottleneck has been approached from two different 

directions.  As computer speeds have increased and computational cost has decreased, the 

computationally complex approach of gait recognition has become more practical and 

attractive.  Additionally, a substantial amount of research has been generated over the 

past several years into the best mathematical and statistical techniques that can be applied 

to improve recognition performance.  The most noticeable distinction in these techniques 

is between model-based and model-free approaches.  Model-free approaches tend to 

focus on silhouette features, oscillations, or shape-of-motion to accumulate information 

on the gait.  Model-based approaches generally use volumetric, ribbon, blob, and stick-

figure models to study the structural shape of an individual.  The above articles 
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summarize approaches that have been taken primarily in the area of model-based gait 

recognition.  These techniques serve as an inspiration for the model-based gait 

recognition techniques developed in the remainder of the thesis.  The previous research 

also provides important benchmarks in order to judge the performance of newly 

developed techniques.  Human gait recognition is noteworthy as a biometric that can be 

used at a distance without the subject’s knowledge and that is difficult to obscure.  For 

these reasons, it remains an area of considerable interest for the Department of Defense, 

Department of Homeland Security, and the Air Force. 
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III.  Methodology 

Chapter Overview 

This chapter discusses how the research was conducted.  The overall concept of 

the project is that an individual gait can be distinguished from other gaits on the basis of 

data gathered through a video recording of the walking individual.  The methodology of 

this thesis consequently focuses on a computer program that takes data from video 

recordings of walking individuals and analyzes data gathered from those videos in order 

to identify the individuals.  This data is obtained from two sources, firstly from a sample 

of 45 gaits obtained from the University of Pennsylvania and eventually from data 

generated with AFIT’s own video recording of walking individuals once the appropriate 

algorithms have been completed.  This chapter first describes the nature of the source 

data and the means of generating individual gait statistics from it.  It then discusses the 

various stages of the analysis program, how parameters are chosen to explain the 

variation in the data and how various methods such as Minimum Euclidean Distance, 

Minimum Mahalanobis Distance and Quadratic Discriminant Functions compare in 

identifying the gaits correctly.  Finally, limitations and drawbacks of this process of gait 

recognition are discussed.   
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Data Collection 

The gait recognition program for MatLab was developed using two different sets 

of data gathered from two separate research facilities.  One of the sets of data currently 

exists from the University and Pennsylvania and is used as test data throughout this 

thesis.  The other set is to be produced at AFIT on an as-needed basis from its own 

camera/video recording/algorithmic processing human gait recognition facility.  

Currently, however, this AFIT data exists only as a set of specifications and is mentioned 

primarily in the context of the eventual utility of this thesis work.  Each set of data in its 

final form contains the same format and type of information which make possible a direct 

comparison of the performance of the gait recognition algorithm on the two problems.  

Each set of data consists primarily of a series of horizontal and vertical coordinates for 

points that locate various key body parts in three-dimensional space.  Further, each point 

is tracked through time in successive video frames.  The first line for a frame corresponds 

to the head motion sensor, the second to the ankle, etc.  This ordered point format is 

identical in both data sets and allows the program to easily construct a model of a 

walking human through a series of moments using a list of points.  While the end product 

format is the same in both cases, the laboratory circumstances and physical recording 

apparatus do differ to some degree. 

The first set of data was collected from the University of Pennsylvania gait 

recognition facility by Dr. Lief Finkel.  Five different subjects were asked to walk on a 

treadmill.  Each subject was then recorded at nine different speeds from 1 mile per hour 



 

 21

(mph) up to 5 mph in 0.5 mph increments.  Information was recorded once per frame and 

consisted of the locations of thirty body markers on critical points on the subjects’ bodies.  

These points tracked the left toe, left ankle, left knee, left heel, left index finger, left wrist 

(b), left elbow, left wrist (a), clavicle, right knee, right heel, right shoulder, right wrist (b), 

right index finger, right elbow, right wrist (a), right toe, right ankle, left shoulder, 

sternum, left back waist, right front waist, left front waist, right back waist, C7 bone, T10 

bone, right back head, left head, left back head, right head so as to be able to yield as 

much critical information regarding the individual’s gait as possible.  The result is 

consequently a list containing thirty horizontal and vertical coordinate pairs per frame 

with 1000-2000 frames per trial and with 45 trials overall. 

The second set of data is in the process of being collected at the Air Force 

Institute of Technology.  Subjects were filmed walking in from a static background 

consisting only of a background wall and level blacktop ground below the wall.  No other 

objects such as vegetation or sky were viewable by the video camera.  A tripod was used 

to minimize vibration in the video camera.  Upon assurance of confidentiality and a 

comprehensive explanation of the experiment and its purpose, volunteers were acquired 

to provide human gait subjects.  Each volunteer made three walking passes in front of the 

camera at distances of five, ten, and fifteen feet from the background building 

respectively. The order of the passes was randomized for each volunteer and the data was 

conducted on two separate days, the first with the building partially sunlit and the second 

with the building completely shaded. 
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After collecting the data, a MatLab program was used to convert the video files 

from a detailed, colored version of a person walking in front of a wall to a much 

simplified video of a white silhouette moving against a black background.  This was done 

using the change in pixel color between different frames in order to differentiate the 

moving pixels in a scene from the stationary ones and then recoloring both.  The resulting 

silhouette videos were then analyzed using another program that attempts to identify 

specific body parts, i.e. head, hands, feet, or knees through use of silhouette location, 

movement speed and other extractable parameters.  This allows the data to be converted 

into a series of horizontal and vertical coordinates representing the positions of critical 

body parts at various points in time.  In other words, this produces data in an identical 

format to that of the first data set from the University of Pennsylvania.  The two data sets 

can then be directly compared for algorithm performance in the following research 

stages. 

 

Data Preparation 

 Once the data has been collected, it is then processed from its raw form as a series 

of horizontal and vertical coordinates into a variety of statistics and measurements for 

each sample that lend themselves more easily to statistical analysis.  An algorithm 

separates the data into their respective frames and labels the appropriate lines as the 

corresponding motion sensor and frame.  Running through the frames sequentially the 

algorithm then calculates the parameters that will define the sample and facilitate 

profiling and identification.  Two varieties of parameters are generated to describe the 
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gait of an individual.  The parameters are divided into static parameters and dynamic 

parameters which are distinguished from each other in terms of how they represent gait 

information. 

 

Static Parameters 

Static parameters are parameters describing a person’s gait that can be expressed 

as a single value.  Examples of static parameters are height, leg length, maximum stride 

length, or shoulder/waist ratio.  All of these parameters can be expressed as a single 

number, often they are invariant over time and can consequently be extracted from a 

single frame of data, and all eliminate complex information regarding the changing 

aspects of a gait over time.  There are numerous advantages to examining these single 

value parameters in order to identify a gait.  The most obvious advantage is simplicity of 

understanding and calculation.  Dynamic parameters include an enormous amount of data 

in order to capture the behavior of certain gait characteristics over time.  It is often 

significantly more difficult to work with these larger data structures and far from clear 

what the data intuitively represents.  Static parameters, by contrast, can be recorded using 

far less data storage while representing a much simpler model of an individual.  They also 

offer the significant benefit that they can often be extracted from a single frame making 

identification possible in the cases where the several seconds of unobstructed view 

necessary to gait dynamic parameter information are unavailable. 
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Dynamic Parameters 

 Dynamic parameters are parameters describing a human gait that represent 

aspects of that gait as they vary over time.  Distinguishing them from static parameters is 

the fact that they are not expressed as a single value but rather as a curve expressed with 

values extending over an entire gait cycle.  Examples of changing dynamic parameters 

that could be collected over time are right knee angle, foot separation, hand separation, 

and absolute head height.  Dynamic parameters have the significant advantage over static 

parameters that they can represent much more complex and highly individual information 

regarding a subject’s gait than single value quantities can.  Dynamic parameters have the 

disadvantage they require larger quantities of data to be manipulated, require several 

seconds of footage at minimum to acquire, and often don’t lend themselves to an intuitive 

understanding of importance.   

For the purposes of algorithmic comparison, all dynamic parameters are 

standardized here to have the same size and represent the same information.  All the 

dynamic parameters here are generated by examining each frame of a gait video and 

recording the value of interest for that particular frame.  These collected values can be 

thought of as a curve extending from the first to the last frame for a video.  This curve is 

then divided into discrete identical gait cycles for purposes of comparison.  The 

individual curves, which frequently contain widely varying numbers of frames due to 

inconsistent walking speed, are then all scaled to 100 frames in length through linear 

extrapolation.  Now that all the curves represent identical gait cycles with the identical 

number of frames, they are all averaged together to produce one 100 element long vector.  



 

 25

This 100 element long vector is then referred to as a dynamic parameter representing the 

value of interest over an average gait cycle for one gait sample. 

 

Pre-Processing Methods 

 A total of fourteen static parameters and six dynamic parameters are generated for 

the purpose of testing classifier efficiency.  The algorithms are all developed to accept 

data regarding all gait samples in the form of a single matrix.  In the case of the static 

parameters, this creates a 45 by14 data matrix and in the case of the dynamic parameters 

it creates a 45 by 600 data matrix.  The algorithms working with the combined data set 

either work with the concatenated 45 by 614 matrix or convert the static parameters into 

dynamic parameters to create a total 45 by 2000 data matrix depending on the 

requirements of the application. 

 Having generated the appropriate input matrix, however, there are a number of 

methods for pre-processing the data in order to potentially improve the algorithm 

classification accuracy.  All algorithms begin by running on the unaltered or “raw” data 

matrices in order to have a basis for comparison.  There are three other techniques that 

are then applied in an attempt to improve the classification accuracy. 

 The first technique applied to the input data matrix is principal component 

analysis (PCA).  Principal component analysis is a projection method for viewing a high-

dimensional set of quantitative data in a few dimensions for the purposes of analysis.  A 

covariance matrix is first calculated using the input data matrix and then an eigenvalue 

decomposition is performed on the covariance matrix in order to produce the orthogonal 
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vectors referred to as principal components.  The data is consequently transformed to a 

new coordinate system while retaining those aspects of the data that contribute most to 

the variance.  Each successive principal component represents less of the overall 

variance, therefore sufficient variance can be accounted for by retaining as many 

principal components as necessary.  A loadings matrix is also calculated which indicates 

to what degree the original parameters are now associated with the new principal 

components.  The overall process allows a matrix of size 45x2000 to be represented by a 

transformed matrix of size 45x5 and therefore represents a significant savings in 

calculation time and data storage. 

 The next type of pre-processing method to be considered is the possibility of 

parameter elimination.  The concept is that some of the gait parameters selected for study 

might not lend themselves well to differentiation between different gaits and instead of 

being highly individual and descriptive might represent noise or misleading correlations 

between, for instance, the speed of the gait rather than the individual generating the gait.  

In order to deal with these misleading parameters two simple branch and bound methods 

are constructed.  The first branch and bound method focuses on eliminating parameters.  

The algorithm is initially performed with the complete parameter set.  The second step, is 

a process in which the algorithm is performed while eliminating a single different 

parameter during each performance.  Comparing the results of each of these trials, each 

missing exactly one parameter, the algorithm selects the parameter whose absence most 

improves the classification effectiveness of the algorithm.  The same process is then 

repeated iteratively but this time starting with new set of parameters that has had the least 
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useful one removed.  In this way, successive parameters are permanently removed from 

the complete set until doing so ceases to improve classification accuracy.  When no 

further gains can be achieve through parameter elimination, the algorithm stops and 

outputs the remaining parameter set and algorithm classification accuracy. 

 The second branch and bound algorithm functions in an almost identical manner 

with the sole difference being that it begins with no parameters, tests all the cases where 

exactly one parameter is added, and then permanently keeps the most useful parameter 

for classifications purposes.  It iteratively repeats this process by running the algorithm 

on successive data sets that all involve adding a different new parameter but only 

retaining the one that most improves classification accuracy.  This process is repeated for 

the first, second, third parameter, etc., until adding parameters no longer increases the 

classification accuracy of the algorithm.   

 

Algorithm Design 

Having successfully created the necessary data sets and chosen a pre-processing 

method, the next step in the gait recognition algorithm is to generate a profile and then 

attempt to classify gait signatures on the basis of that profile.  For the purposes of 

comparison, several different algorithms are used ranging from relatively simple 

classification schemes to more advanced forms of classification.   

 The first identification technique used is consequently the simplest.  The 

Minimum Euclidean Distance classifier takes the training data and averages all the 

parameters for each subject.  As there are five subjects each walking at nine speeds for a 
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total of 45 samples, five separate profiles are produced.  Each of the 45 samples to be 

identified is then compared with each of the five profiles.  Five Euclidean distances are 

calculated per sample where the Euclidean distance is equal to the square root of the sum 

of each of the parameters of one vector multiplied by the corresponding parameter of the 

second vector.  The following equation demonstrates how Euclidean distance is 

numerically calculated where d is equal to the distance, x represents the classifier mean, n 

is the total number of dimensions, and y represents the sample to be classified. 

2 2 2
1 1 2 2(( ) ( ) ...( ) )n nd x y x y x y= − + − + −        (1) 

This number gives an intuitive sense of the “closeness” of one vector to the other even in 

dimensions greater than the three where visualization is possible.  Consequently, the 

lowest or Minimum Euclidean Distance indicates the profile the sample matches and the 

algorithm classifies it as such.  A percent accuracy is calculated as simply the number of 

samples correctly identified divided by the total number of samples.  A confusion matrix 

is also generated in order to demonstrate any possible patterns in any errors in order to 

give insight into the algorithm’s operation.   

 The second algorithm used to classify gaits is the Minimum Mahalanobis 

Distance algorithm.  Similar in many ways to the algorithm that uses the Minimum 

Euclidean Distance of samples to a profile in order to classify gaits, the Minimum 

Mahalanobis Distance algorithm uses the Minimum Mahalanobis Distance between 

samples and a profile in order to characterize gait samples.  The primary difference 

between the two measurements is that while the Minimum Euclidean Distance measures 

the distance between the two vectors, the Minimum Mahalanobis Distance divides that 
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distance by the standard deviation of the profile.  The following equation demonstrates 

how the Minimum Mahalanobis Distance is numerically calculated where d is equal to 

the distance, x represents the classifier mean, o represents the variance of the classifier 

mean and y represents the sample to be classified. 

2 2 2
1 1 2 2(( ) ( ) ...( ) ) /n nd x y x y x y o= − + − + −        (2) 

This has the effect of making close distances weigh more heavily in the calculation if the 

profile data has less variance.  This agrees with the intuitive idea that if a profile is the 

average of a number of vectors then a sample being close to that average has more 

importance if the data used to create was more tightly clustered.   

The third technique employed for the identification of human gaits based on 

various statistical parameters of their walk is a Quadratic Discriminant Function.  To 

apply the Quadratic Discriminant Function, it is assumed that all the classes of gaits are 

Gaussian in nature.  Given this assumption, a Quadratic Discriminant Function yields n-

dimensional quadratic decision boundaries between classes.  The function does so 

through use of the following equation where d represents the discriminant score, cov is 

the covariance of the gaits composing the classifier, y is the vector to be classified and x 

is the mean of all the gaits in the classifier. 

1 1log(det((cov( )) )) / 2 ( ) / 2 (cov( ))d y x y x y x− −= − − − ∗ −   (3) 

The Quadratic Discriminant Function is an effective classifier to the extent that 

the n-dimensional decision boundaries are simple, uncomplicated boundaries easily 

delineated by the above equation.  In this case each class corresponds to the identity of 
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the person in a video sample.  Discriminant functions also share the advantage of not 

being dimensionally reducing methods.   

 Having written the three identified gait classifier algorithms, each algorithm is 

then tested with the relevant parameters.  Confusion matrices which detail the accuracy of 

each algorithm and what kind and the number of misclassifications that occur for each 

class are generated.  Subsequently, the algorithms are then run on different sets of 

parameters such as only static or dynamic parameters in order to determine how the 

system would work under a variety of conditions.  In each stage, evidence is gathered to 

determine whether any algorithm is distinctly superior to the others and what the 

limitations and possibilities of the identification system as a whole may be. 

 

Practical Implementation 

 Once an optimum algorithm/parameter type/pre-processing method is generated 

using the complete run of trials and the Lachenbruch hold-out procedure a few minor 

changes are made to the final algorithm in order to adapt it to the practical challenge of 

human gait recognition at AFIT.  The only modification necessary is that all the test trials 

make use of all forty-five gait samples to generate classifiers while the AFIT data 

collection system when finished will have only five gait samples with which to generate a 

classifier.  A final test case is consequently accomplished in order to ensure that the 

optimum algorithm/parameter type/pre-procesing method is still effective when limited to 

only five gait samples with which to form a classifier. 
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Summary 

 This chapter discusses the overall methodology by which research is performed in 

this thesis in order to solve the problem of the identification of individuals solely on the 

basis of their gaits.  This chapter examines the sample data sets to be used in the research 

including one that already exists and another that is currently in production but which is 

being created to be compatible with the algorithms that are coded in this paper.  It 

explains how the raw data is taken and analyzed in order to extract coherent and useful 

data regarding distinguishable traits of individuals relating to identifying them by their 

gaits.  This chapter also explores the various potential methods for classifying the data 

sets used in this thesis and how they run on a variety of sample sets and compare with 

each other for optimization, accuracy, and efficiency purposes.  Overall, this chapter 

details how a practical methodology for identifying people on the basis of their gaits is 

designed and tested in order to work for a specific type of data set that records the 

position of body markers through time.  This first successful laboratory trial serves as a 

crucial initial stage for developing more general and widely applicable human gait 

recognition techniques. 
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IV.  Results and Analysis 

Chapter Overview 

The purpose of this chapter is to explain and detail the results and analysis that 

were produced by the research.  The overall purpose human of gait recognition is to 

identify subjects solely on the basis of their gait.  This thesis focuses on the final portion 

of that process.  In this paper, it is assumed that the individual has already been 

videotaped and that numerical data regarding the positions of the various body parts 

through time have already been automatically extracted in some fashion.  It also assumes 

that the data has been formatted into the standard configuration of human gait recognition 

data that is used by the developed MatLab programs.  From this point in the gait 

recognition problem, the thesis focuses on the data analysis that can be performed on 

such a data set and applies these techniques to several sample data sets in order to provide 

practical examples.  This chapter discusses the various types of statistics and descriptive 

data parameters that can be derived from the original data set and the methods of creating 

them.  It also examines various methods of identifying an individual on the basis of these 

extracted data parameters and explores several different means of identification.  The 

results of these identification techniques on the sample data sets also suggest certain 

advantages and disadvantages to the differing techniques which are also discussed.  

Finally, the chapter provides resolution to the research question, a preferred algorithm for 
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extracting data parameters and identifying individuals on the basis of those parameters is 

found, and its scalability, efficiency, and possible drawbacks are discussed. 

Data Generation 

 The first step in generating results for the various algorithms was to create the 

original data set that the programs would all run on.  A MatLab program was written that 

takes the raw data generated by Dr. Leif Finkel in his gait recognition research and 

calculates various useful identifying statistics for each person’s walk.  The original data 

lists a number of horizontal and vertical coordinates corresponding to the positions of 

body sensors placed on subjects as they walk on a treadmill.  These horizontal and 

vertical coordinates are recorded for each frame with roughly 30 frames per second.  The 

MatLab program looks at each individual frame for every walk and calculates the foot 

separation distance for every frame.  Using this measure, the program determines every 

time the feet cross each other and the time corresponding to one crossing to the time 

corresponding to the second crossing from the first time constitutes one “gait cycle”.  

Having broken up any gait into a series of gait cycles the program then calculates various 

statistics such as the time for one gait cycle, speed, or maximum stride length.  All the 

statistics for every gait cycle are then averaged to create mean descriptive statistics for 

every person’s gait.  As there were forty-five tests walks, nine per person for five people, 

the database on which all subsequent algorithms ran constituted a matrix of forty-five 

vectors.  The initial fourteen static statistics calculated per gait are as follows: 

 
1.  Mean time per full gait cycle (sec) 
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2.  Mean number of frames per full gait cycle 
 
3.  Average length of a stride in the gait (mm) 
 
4.  Maximum length of a stride (mm) 
 
5.  Average height (cm) 
 
6.  Average head/waist separation (mm) 
 
7.  Average upper arm length (mm) 
 
8.  Average lower arm length (mm) 
 
9.  Average upper leg length (mm) 
 
10.  Average lower leg length (mm) 
 
11.  Average distance of the wrist from waist (mm) 
 
12.  Average angle between right leg and left leg (degrees) 
 
13.  Average knee angle (degrees) 
 
14.  Average speed (km/hr) 

 
 

Dynamic parameters, in contrast, are only expressible as a long sequence of 

values and are created by selecting a characteristic of an individual that can be assessed 

from a single frame and recording the value of that parameter for every frame within 

every gait cycle for which there is data.  Once every gait has numerical values for every 

desired dynamic parameter in every frame in each gait cycle, the gait cycles are 

separated.  Each gait cycle is then scaled to the same number of frames, and all the gait 

cycles are averaged together on a frame-by-frame basis.  Since variation of movement 

between gait cycles for an individual during a single walk tends to be very low, this 

process works quite well at generating a smooth, representative average curve for the vast 
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majority of characteristics of potential interest.  This average curve describes dynamic 

parameters and is represented by a long series of numbers as opposed to the single 

numbers that represent static parameters. 

 Having defined dynamic parameters, the next question was to determine which 

parameters would be of significance for the analysis and identification of human gaits.  

Based on the those parameters deemed of interest in previous related research endeavors 

as well as the availability of data for this particular problem instance, a set of six distinct 

dynamic parameters to be recorded and analyzed was eventually chosen.  The dynamic 

parameters used are listed below: 

 

15. Leg separation angle (degrees) 

16. Right knee angle (degrees) 

17. Separation of feet (mm) 

18. Head height (mm) 

19. Separation between wrists (mm) 

20. Foot separation divided by average wrist separation 

 

For the remainder of the chapter, gait parameters will occasionally be referred to by their 

corresponding parameter number for the purposes of brevity. 

Having successfully chosen the physical parameters to focus on and extracted 

them from the sample gait data, the next step involves attempting to identify individuals 

on the basis of those parameters.  In this thesis, three different identification algorithms 
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are tested on data sets in order to determine the efficiency, accuracy, and flexibility as 

well as other qualities of the programs.  The three functions are the Minimum Euclidean 

Distance function, the Minimum Mahalanobis Distance function and the Quadratic 

Discriminant Function.  Each of the programs was written in MatLab and reads data 

stored in a MatLab file. 

The first issue that needed to be addressed in the creation of each of the three 

algorithms was the proper use of the data set.  The algorithms all use classifiers which 

require a certain amount of the data, in this case a series of gait vectors clearly labeled 

with the individual who produced them, in order to “train” a classifier and then use 

another portion, in this case gait vectors without the identity of the individual who 

created them, as a sample to classify.  In the case of the Minimum Euclidean Distance 

classifier and the Minimum Mahalanobis Distance classifier, the MatLab programs are 

written to look at the data set, group all the gait samples for each individual together and 

then average them to produce a mean sample for that person that future samples can be 

compared to.  In the case of the Quadratic Discriminant Function, the creation of a 

classifier is more complex and involves not only finding the mean of the gait samples but 

also the covariance matrices from the gait samples for each individual.   

 

Leave-One-Out Cross-Validation Technique 

On the basis of the percentage of the number of gaits correctly associated with a 

sample subject, it is possible to demonstrate the accuracy of the algorithm on the 

associated data set.  An important concern, however, is that the classifier is not trained on 
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the entire data set because that would involve classifying samples with a function that had 

been trained on them initially.  Training on all the samples and then classifying the same 

samples is known as the Resubstitution method and generates the Apparent Error Rate.  

For relatively obvious reasons though, the Apparent Error Rate tends to yield 

approximations of accuracy that are too high as it is prone to generating classifiers that 

are trained for identifying specific examples rather than being effective on more general 

samples of data not included in the training set.  In order to deal with this problem, it was 

consequently necessary to generate the more reliable Accurate Error Rate for each of the 

algorithms. 

 The Actual Error Rate can be generated from a number of different perspectives 

so a challenge for this thesis was determining which method would be most appropriate 

for the problem of human gait recognition and the particular algorithms being used here.  

The first method of generating the Actual Error Rate considered was the Holdout 

Method.  In the Holdout Method, the total data sample is divided into two.  A classifier is 

trained using only about half of the data set.  The other half of the data is then used only 

for classification purposes.  The Holdout Method has the advantage of not classifying the 

same samples that were used to create the initial classifier.  However it was found that the 

method required large samples in order to generate accurate estimates of 

misclassification.  In this example, the sample data set of 45 gait samples was found not 

to be sufficiently large for the Holdout Method to be utilized. 

 The method used to generate the Actual Error Rate was consequently the Leave-

One-Out Cross-Validation technique.  This technique proved superior to both the 
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Resubstitutio method and the Holdout method in that it avoids classifying samples that 

were also used to train the classifier and that is effective in approximating the error rate 

even with relatively small sample sizes.  The overall concept of the Cross-Validation 

technique is to only remove one sample from the entire data set and then train the 

classifier on all the remaining samples.  Once the classifier is trained, the removed 

sample is identified using that specific classifier.  In this thesis, one of the 45 gaits would 

be identified as belonging to one of the five subjects.  Having then identified exactly one 

sample, that sample is reinserted into the original data set, a new sample is removed and a 

different classifier is then trained on the new remaining data set.  This process is repeated 

for each sample in the data set until all of the samples are classified.  The process of 

Cross-Validation consequently yields an Actual Error Rate that is less biased than the 

normal Apparent Error Rate.  This method is used with each of the algorithms in this 

section, the Minimum Euclidean Distance classifier, the Minimum Mahalanobis Distance 

classifier and the Quadratic Discriminant Function in order to gauge accuracy. 

 

Algorithm Implementation 

Having successfully extracted meaningful data parameters from the original data 

set, chosen a set of algorithms to classify the data separately, and devised a method of 

accurately measuring the error rate for each algorithm, the next step was to actually 

develop each algorithm and test it on various sets of data parameters.  The rest of this 

chapter will focus on the development of each of the algorithms as well as the results of 

their application to a variety of data parameter sets. 
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Minimum Euclidean Distance/Static Parameter 

 The first and simplest of the classification algorithms to be coded was the 

Minimum Euclidean Distance classifier.  The overall concept of this classifier is 

relatively straightforward with respect to this particular problem and the details of its 

application.  The general concept of the Minimum Euclidean Distance classifier is that 

from the training set it takes all of the parameters or vectors associated with any 

individual and averages then to form a basis for comparison against future samples.  

Once a mean has been constructed for each individual the algorithm then looks at the set 

of gaits to be classified which also consists of a series of vectors.  To classify each 

individual vector of parameters corresponding to one gait, the Euclidean distance is found 

between that vector and each of the means calculated for each of the gait subjects.  In this 

particular case, this yields five Euclidean distances corresponding to the five individuals 

who contributed gait samples.  The Euclidean distance under these circumstances gives 

an intuitive understanding of the “closeness” of the sample vector to the subject means 

despite the fact that these vectors frequently exist in many more than three-dimensional 

space.  The lowest Euclidean distance number out of the five consequently indicates to 

the algorithm that the corresponding subject is the one who originally generated that 

particular gait and the algorithm labels the sample accordingly.  This process is repeated 

for each of the samples in the data set using the Cross-Validation method and comprises 

the relatively straightforward implementation of the Minimum Euclidean Distance 

classifier. 
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 Using the Cross-Validation method of gauging accuracy, each algorithm 

including the Minimum Euclidean Distance classifier produces a contingency matrix as 

its final output.  This contingency matrix is essentially a complete tally of how accurately 

the classifier identifies each of the gaits in the sample.  A contingency matrix consists of 

a matrix that has the same number of rows and columns as the number of classes of data 

points to be identified as well as an additional row and column for holding the sums of 

the original rows and columns.  The rows, not including the sum row, correspond to the 

classes that the data points are known to belong to.  The columns correspond to the 

classes that the classifier assigns to each data point, not including the sum row.  A 

completely accurate classifier will consequently produce a contingency matrix with zeros 

everywhere except along the diagonal and in the sum column and row.  This indicates 

that all data points were classified in the class that they actually belong to.  Values off the 

main diagonal are the result of misclassifications.  A contingency matrix is consequently 

an ideal way of calculating algorithm accuracy as it is only necessary to take the number 

of data points on the main diagonal divided by the total number of points in order to get 

the Actual Error Rate.  As a result, a contingency matrix is the output for each of the 

three classification algorithms; the Minimum Euclidean Distance classifier,  Minimum 

Mahalanobis Distance classifier, and the Quadratic Discriminant classifier.   

 Once the classifier algorithm had been written and a means of determining its 

accuracy had been determined the next step was to test the algorithm on a number of 

different data sets.  The first data set to test the algorithm on was the 14 parameter set 

consisting of the raw data parameters generated at the beginning of this chapter.  Running 
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this data set through the Minimum Euclidean Distance classifier yielded the following 

contingency matrix in Figure 2. 

 

  Predicted Values      Totals 
       3     2     0     4     0     9 
Actual       0     4     0     2     3     9 
Values       0     2     3     4     0     9 
       0     2     0     6     1     9 
       0     3     0     4     2     9 
Totals       3    13     3    20     6    18 

 

Figure 2. MED/Static Parameters/Unreduced data contingency matrix 

 As previously discussed this contingency matrix reflects the Actual Error Rate 

generated by the Cross-Validation procedure.  The numbers along the diagonal except for 

the last row indicate the number of correctly identified gaits per class.  This contingency 

matrix indicates an overall error rate of 60%. 

 With a relatively high error rate the next stage in the thesis was to explore 

methods of improving the classification rate and analyze the problem in order to 

understand the underlying issues that were producing misclassifications.   

 The first technique employed to gain additional insight into the data was principal 

component analysis.  Principle component analysis is a data reduction technique that 

transforms that data into orthogonal principal components that account for successively 

smaller percentages of the variance of the original data.  A loadings matrix indicates 

which of the original data parameters corresponds to each of the principal components 
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and to what degree.  Examining the eigenvalues associated with each principal 

component indicates the percentage of the variance accounted for by each of the principal 

components.  Graphing the principal components one against another indicates 

relationships that exist between each pair and also suggests whether or not those 

components would be effective in discriminating between the gaits using the classifier.  

Specifically, if a graph of two principal components plotted against each other contains 

distinctly clustered groupings of subjects that suggests the principal components will be 

useful in distinguishing those subjects.  The absence of distinctly clustered groupings of 

subjects suggests that the principal components will be ineffective in discriminating 

between the included subjects.  In this way, principal component analysis can lend 

additional insight into a given data set and hopefully improve the error rate in 

classification. 

 Initially for the thesis, a MatLab program was written to calculate principal 

components and their associated eigenvalues.  The corresponding first six eigenvalues 

with respective variances for the static parameter data set are given in Table 1. 

Table 1.  Eigenvalues and Percent Variance of Principal Components 

  PC1  PC2  PC3  PC4  PC5  PC6 
Eigenvalue 6.02 3.70 1.65 1.02 0.66 0.45
Variance % 44.62 27.42 12.21 7.54 4.89 3.32

 

One method of determining the number of principal components in the analysis is to sum 

up the amount of variance accounted for by the principal components until the 

cumulative amount reached exceeds a certain limit, often 95%.  From that criterion, it 
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follows that, in this case, five of the principal components should be retained.  The next 

step involved examining the loadings matrix in order to determine which data parameters 

were associated with which principal component and how.  Each row of a loadings 

matrix represents the degree to which one parameter is associated with each of the 

principal components.  Frequently, almost all of the variance of a parameter will be 

captured by a single principal component.  In order to visually indicate these 

relationships, the largest absolute value in each row of a loadings matrix is bolded in 

Table 2.  This allows a rapid, intuitive grasp of which parameters each principal 

component generally represents. 

Table 2.  Loadings Matrix for Static Parameter Data 

  PC1  PC2  PC3  PC4  PC5  PC6 
1  ‐0.9371 ‐0.1533 0.0107 0.1002 ‐0.1559 ‐0.1359 
2  ‐0.906  ‐0.2262 ‐0.2398 ‐0.0536 0.0386 0.0077 
3  0.9052  ‐0.3093 ‐0.2116 0.1157 ‐0.0969 ‐0.0245 
4  0.9268  ‐0.2681 ‐0.1851 0.0899 ‐0.0857 ‐0.0505 
5  ‐0.4047 ‐0.8344 ‐0.3099 0.0817 0.143  0.0848 
6  ‐0.0513 ‐0.9269 ‐0.0224 0.0513 0.2953 0.1504 
7  0.0183  ‐0.7794 ‐0.0376 0.499  ‐0.3215 ‐0.0691 
8  ‐0.0903  0.1406 ‐0.9182 ‐0.1296 0.1495 0.2575 
9  ‐0.0887  0.4579 ‐0.7777 ‐0.0086 ‐0.2262 ‐0.3124 
10  ‐0.0449 ‐0.7696 ‐0.0275 ‐0.3478 0.1955 ‐0.4584 
11  ‐0.3069  0.3851 ‐0.0782 0.7868 0.2847 ‐0.0888 
12  0.9591  ‐0.2364 ‐0.0317 0.0499 ‐0.0784 ‐0.0003 
13  0.6983  0.3907 ‐0.0047 0.0782 0.4538 ‐0.2194 
14  0.9676  ‐0.1036 ‐0.1174 ‐0.0054 ‐0.0179 0.0962 

 

Based on which parameters are associated with each principal component, it can be 

inferred as to what each principal component represents.  The first principal component is 
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associated with all the statistics that measure aspects of the gait such as number of 

frames, time, average length and maximum length of strides.  The first principal 

component also includes parameters relating to the angle between the two legs as well as 

gait speed.  From these observations, it is clear that the first principal component focuses 

on those measurements relating to the relationship between the two legs. 

The second principal component has a different five measurements associated 

with it.  The second principal component appears to contain almost all the remaining 

parameters dealing with the height of the individual as well as the length of the limbs.  

Interestingly, only two limb length parameters are not included in the second principal 

component and these are the lower arm length and upper leg length.  These two lengths, 

however, are the only measurements associated with the third principal component.  It is 

not immediately obvious what would cause these two lengths to be separated into a third 

principal component.  The fourth principal component, by contrast, is only associated 

with the average separation from the waist of the wrist during the gait.  As this 

measurement is concerns a factor qualitatively different from all the other measurements, 

it makes a great deal of sense for it to be associated with its own distinct principal 

component. 

The loadings matrix overall indicates that the vast majority of the data parameters 

are associated primarily with the first two principal components, only one with the fourth 

and none primarily with the fifth principal component.  Graphing the first three principal 

components against each other as they account for the majority of the parameters yields  
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The relationships between the three principal components are graphed in Figures 3, 4, 

and 5. 
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Figure 3. Principal Component 1 vs. Principal Component 2 
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Figure 4.  Principal Component 2 vs. Principal Component 3 
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Figure 5.  Principal Component 1 vs. Principal Component 3 
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From these graphs of the components against each other it is relatively clear that 

there is some distinct grouping between the first and second principal component with 

less distinct grouping involving the third component.  This agrees with the correlations 

indicated by the loadings matrix.  With this data it then became possible to run the 

Minimum Euclidean Distance classifier on the first five principal components of the data 

set.  This resulted in the following contingency matrix in Figure 6. 

  Predicted Values       Totals
       7     1     0     1     0     9 
Actual       0     4     0     1     4     9 
Values       0     1     4     4     0     9 
       0     1     0     6     2     9 
       0     3     0     4     2     9 
Totals       7    10     4    16     8    23 

Figure 6. MED/Static Parameters/Principal component contingency matrix 

 
This has an error rate of 48.9%.  It represents an improvement over looking at the raw 

original data but still appears to be improvable.  The next phase in the thesis consequently 

focused on techniques for further improving the recognition rate of the classifier. 

 The fact that eliminating some of the extraneous data improved the classification 

rate using principal components suggested a relatively common phenomenon in the data 

wherein poorly chosen data parameters were adding “noise” to the classifier and hurting 

the ability of more accurately descriptive parameters to distinguish the different subjects.  

Ideally, the solution to this sort of problem would be to run the classifier with all possible 

combinations of parameters and simply choose the combination that most accurately 

identifies the gaits.  However, finding all possible combinations of parameters one 
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through fourteen and then running the classifier for each would be prohibitively time-

consuming and the problem would be significantly magnified were this approach to be 

applied to larger data sets.  The eventual solution was to develop two programs to 

identify the most valuable data parameters.  The first program starts with all fourteen 

parameters, determines the accuracy of the classifier and then eliminates one parameter at 

a time until it finds a new combination that produces a higher accuracy.  The second 

program starts with no parameters and adds one at time until doings so stop improving 

the accuracy.  Eliminating parameters yields the contingency matrix graphed in Figure 6. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

Figure 6.  MED/Static Parameters/Eliminating parameters contingency matrix 

This method produces a 100% classification rate and includes only parameters 3, 4, and 

11.  Adding parameters yields the contingency matrix displayed in Figure 7. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

 

Figure 7.  MED/Static Parameters/Adding parameters contingency matrix 
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This program also finds a 100% classification solution by retaining only parameters 6, 7, 

and 8. 

 Consequently, of the three methods of training on all the original parameters, 

utilizing the principal components on all parameters, or looking at only a subset of the 

original parameters, the method of looking at a subset of the original parameters 

produced significantly greater improvements in classification.  The fact that this was 

accomplished using only three parameters suggests that many of the parameters 

contributed only noise or little additional information to the gait signature.  Further, with 

an effective reduction of parameters the Minimum Euclidean Distance classifier operates 

with 100% accuracy on this data set. 

 

Minimum Mahalanobis Distance/Static Parameters 

 The Minimum Mahalanobis Distance classifier was the second method used to 

classify the forty-five gait signatures used in this research.  The coding of the Minimum 

Mahalanobis Distance algorithm was quite similar to that of Minimum Euclidean 

Distance classifier.  Both algorithms rely on the calculation of a type of distance between 

the mean of the data parameters for all gaits from one subject and each sample gait to be 

identified.  While the Miniumum Euclidean Distance is calculated by taking the 

difference between two vectors, squaring the terms, summing the terms and then taking 

the square root of the result (see eq.1), the Minimum Mahalanobis Distance only differs 

because it also divides the terms by the variance of the data set before squaring, 

summing, and then taking the square root of the terms (see eq. 2).  The Minimum 
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Mahalanobis Distance algorithm was also coded to employ the Cross-Validation 

technique in order to avoid identifying a gait using a classifier trained on that gait. 

 Using the Minimum Mahalanobis Distance classifier with the original data set 

produced the following contingency matrix in Figure 7. 

 

  Predicted Values      Totals 
       7     0     0     1     1     9 
Actual       1     7     0     1     0     9 
Values       0     0     8     0     1     9 
       0     0     6     3     0     9 
       5     0     1     1     2     9 
Totals      13     7    15     6     4    27 

 

Figure 7.  Mahalanobis/Static Parameters/Unreduced data contingency matrix 

This contingency matrix indicates an error rate of 40% which is somewhat better than the 

error rate for the Minimum Euclidean Distance classifier.  The improved classification 

makes sense, however, as the Minimum Mahalanobis Classifier takes additional 

information regarding variance into account in making its assignments. 

 The next testing phase involves using the Minimum Mahalanobis Distance 

classifier on the five principal components of the data set instead of the entire original 

data set.  This new problem produces the following contingency matrix in Figure 8. 
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  Predicted Values      Totals 
       2     1     3     3     0     9 
Actual       0     8     0     0     1     9 
Values       3     0     6     0     0     9 
       6     0     1     2     0     9 
       4     2     0     0     3     9 
Totals      15    11    10     5     4    21 

Figure 8.  Mahalanobis/Static Parameters/Principal components contingency matrix 

This contingency matrix also has a 53.3% error rate which is again slightly better than the 

performance of the Minimum Euclidean Distance classifier on the same data set.  The 

higher error rate in comparison to the unreduced data example is presumably the result of 

loss of data from application of the principal components technique. 

 Subsequently, the Minimum Mahalanobis Distance classifier was tested using the 

two programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix in Figure 9. 

  Predicted Values      Totals 
       6     0     2     0     1     9 
Actual       0     8     0     1     0     9 
Values       0     0     9     0     0     9 
       1     0     6     2     0     9 
       0     0     1     2     6     9 
Totals       7     8    18     5     7    31 

 

Figure 9.  Mahalanobis/Static Parameters/Eliminating parameters contingency 

matrix 
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This contingency matrix is produced by eliminating only parameter 11 and 

keeping all the remaining parameters thereby generating an error rate of 31.11%.  This 

error rate is significantly worse than the results for the Minimum Euclidean Distance 

classifier which had an error rate of 0.0%. 

Adding parameters yields the contingency matrix in Figure 10. 

 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     8     0     0     1     9 
Values       0     0     9     0     0     9 
       0     0     0     8     1     9 
       0     1     0     0     8     9 
Totals       9     9     9     8    10    42 

 

Figure 10.  Mahalanobis/Static Parameters/Adding parameters data contingency  

 
This contingency matrix is produced using only parameters 6 and has an error rate of 

6.7% which is still worse than the Minimum Euclidean Distance classifier of 0.0%.  This 

indicates that parameters 6 is unusually effective at discriminating between the five 

people in this trial. 

 Overall, the Minimum Mahalanobis Distance function appears to have performed 

less well on the PCA data and limited parameter cases than the Minimum Euclidean 

Distance function.  This is likely due to the fact the Minimum Mahalanobis Distance 

attempts to take the variance of the data into consideration when labeling gait vectors.  In 



 

 53

these cases, the variance apparently provided little information of value and may have 

acted as noise that obscured more accurately distinguishing aspects of the gaits. 

 

Quadratic Discriminant Function/Static Parameters  

The Quadratic Discriminant classifier utilizes a different method of parsing the 

gait samples according to the individual who produced them.  Whereas the Minimum 

Euclidean Distance classifier and the Minimum Mahalanobis Distance classifier both 

look at the average of all a subject’s gait parameters in the training set and then find some 

type of distance between that average and the gait to be identified, the Quadratic 

Discriminant classifier uses a much more complex algorithm to gauge similarity.  The 

Quadratic Discriminant classifier calculates not only the mean of all the gait vectors for 

every training subject but also the covariance for every subject.  This produces a measure 

of the closeness of each gait to be identified to the original training gaits for each subject.  

As in the previous two classifiers, the Cross-Validation technique is employed to make 

sure that a gait is never identified by a classifier that was also trained on that same gait. 

 Using the Quadratic Discriminant classifier with the original data set produced the 

following contingency matrix in Figure 11. 
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  Predicted Values      Totals 
       0     7     2     0     0     9 
Actual       0     1     0     0     8     9 
Values       0     0     0     0     9     9 
       2     1     6     0     0     9 
       0     0     9     0     0     9 
Totals       2     9    17     0    17     1 

 

Figure 11.  QDF/Static Parameters/Unreduced data contingency matrix 

This contingency matrix indicates an error rate of 97.78% which is significantly worse 

than the error rate of the other two classifiers.  The incorrect classification, however, is 

probably the result of attempting to match a quadratic function to too much data. 

 The next testing phase involves using the Quadratic Discriminant classifier on the 

five principal components of the data set instead of the entire original data set.  This new 

problem produces the following contingency matrix in Figure 12. 

  Predicted Values      Totals 
       7     0     0     2     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       1     0     0     8     0     9 
       2     0     0     0     7     9 
Totals      10     9     9    10     7    40 

 

Figure 12.  QDF/Static Parameters/Principal components contingency matrix 

This contingency matrix an 11.11 % error rate which is significantly better than the 

performance of the other two classifiers on the same data set. 
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 Subsequently, the Quadratic Discriminant classifier was tested using the two 

programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix in Figure 13. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

 

Figure 13.  QDF/Static Parameters/ Eliminating parameters contingency matrix 

This contingency matrix is produced by eliminating all parameters except 2, 6, 7, 

and 8 and produces an error rate of 0.0%.  This error rate is the same result as for the 

Minimum Euclidean Distance classifier which had an error rate of 0.0%. 

Adding parameters produced the contingency matrix in Figure 14. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

 

Figure 14.  QDF/Static Parameters/Adding parameters contingency matrix 
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This contingency matrix is produced using only parameters 6, 1, and 2  and has an error 

rate of 0.0% which is equal to the error rate of the Minimum Euclidean Distance 

classifier. 

 

Minimum Euclidean Distance/Dynamic parameters 

 Having designed each of the three functions - the Minimum Euclidean Distance 

classifier, the Minimum Mahalanobis Distance classifier, and the Quadratic Discriminant 

classifier and tested each of them on static parameters, the next step is to modify the 

algorithms slightly and use them on dynamic parameters that distinguish each of the 

subject gaits in the sample.  Static parameters refer to those parameters describing a gait 

that can be described using a single number.  Examples of a static parameter involve the 

average height of a subject, the average stride length, or maximum stride length of a 

subject.  Dynamic parameters refers to those distinguishing characteristics of a subject’s 

gait that can only be expressed as a series of numbers.  In the context of the current 

human gait recognition problem and this specific sample set, dynamic parameters will 

most frequently refer to series of data values representing curves describing the behavior 

of some parameter of interest as it varies through time over an entire average gait cycle.   

Having identified and collected information on the characteristics, the next step 

was to run the new data through the already constructed classifier functions, the 

Minimum Euclidean Distance classifier, the Minimum Mahalanobis Distance classifier 

and the Quadratic Discriminant Function classifier.  The purpose of this next stage in 
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testing was to determine whether collecting dynamic data would improve the 

classification rates of the existing classifiers. 

 Exchanging static characteristics for dynamic characteristics with the Minimum 

Euclidean Distance algorithm requires no significant changes to the algorithm which 

works in an almost identical fashion.  The overall concept of this classifier remains quite 

straightforward.  The general concept of the Minimum Euclidean Distance classifier is 

that all of the parameters or vectors associated with any individual are taken from the 

training set and averaged to form a basis for comparison against future samples.  The size 

of the data matrix when using static parameters and having fourteen parameters yielded 

an average vector that was fourteen elements in length.  Replacing those parameters with 

100 element long parameters for dynamic parameters creates a much longer vector.  Once 

a mean vector has been constructed for each individual the algorithm then examines the 

set of gaits to be classified which also consists of a series of vectors, in this case the 600 

element long average dynamic parameter vector.   

To classify each individual vector of parameters corresponding to one gait, the 

Euclidean distance is found between that vector and each of the mean vectors calculated 

for each of the gait subjects.  In this particular case, this yields five Euclidean distances 

corresponding to the five individuals who contributed gait samples.  The Euclidean 

distance under these circumstances gives an intuitive understanding of the “closeness” of 

the sample vector to the subject means despite the fact that these vectors frequently exist 

in many more than three-dimensional space.  The lowest Euclidean distance of the five 

consequently indicates that the corresponding subject is the one who originally generated 
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that particular gait and the algorithm labels the sample accordingly.  This is repeated for 

each of the samples in the data set using the Cross-Validation method and comprises the 

relatively straightforward concept of the Minimum Euclidean Distance classifier.  The 

method and operation of the algorithm remain essentially unchanged from the static 

parameter case and as before produce a contingency matrix indicating the classification 

accuracy as an output. 

After making minor modifications to the Minimum Euclidean Distance algorithm 

in order to allow it to handle the dynamic vectors, the next step was to test the algorithm 

on a variety of data sets.  The algorithm was first tested with all six raw dynamic 

parameters discussed at the beginning of this section.  Running this data set through the 

Minimum Euclidean Distance classifier yielded the following results in Figure 15. 

 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     6     0     3     0     9 
Values       0     0     8     0     1     9 
       0     2     0     7     0     9 
       0     0     4     2     3     9 
Totals       9     8    12   12     4    33 

 

Figure 15.  MED/Dynamic Parameters/Unreduced data contingency matrix 

 Again, this contingency matrix reflects the Actual Error Rate generated by the 

Cross-Validation procedure.  The numbers along the diagonal except for the last row 

indicate the number of correctly identified gaits per class.  This contingency matrix 

indicates an overall error rate of 26.67%. 
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 The next technique employed to gain additional insight into the data was principal 

component analysis.  The corresponding first six eigenvalues for the initial dynamic 

parameter data set are displayed along with the percentage of variance accounted for by 

each principal component in Table 3. 

Table 3.  Eigenvalues and Percent Variance for Dynamic Parameter Data 

  PC1  PC2  PC3  PC4  PC5  PC6 
Eigenvalue 185.54 124.50 102.50 43.14 34.47 24.37 
Variance % 36.06  24.20  19.92  8.38  6.70  4.74 

 

One method of determining the number of principal components in the analysis is 

to sum the amount of variance accounted for by the principal components until a certain 

limit is reached, often 95%.  Following that criterion, it follows that five of the principal 

components should be retained.  The next step involved looking at the loadings matrix in 

order to determine which data parameters were associated with which principal 

component and the degree of the association.  However, in this particular instance the fact 

that the original data matrix was 600 by 45 means that that the loadings matrix is 600 by 

6 in length.  This large matrix does indicate which gait vector is associated with each 

principal component, but no simple relationships are evidenced as the sheer number of 

data points means that each dynamic parameter will be associated with several if not all 

principal components.  However, as the eigenvalues of the principal components 

demonstrate the vast majority of the variance is accounted for by the first three principal 

components. 
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 The graphs of the comparison of the first three principal components against each 

are displayed in Figures 16, 17, and 18. 
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Figure 16.  Principal Component 1 vs. Principal Component 2 
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Figure 17.  Principal Component 1 vs. Principal Component 3 
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Figure 18.  Principal Component 2 vs. Principal Component 3 

 Examining the distribution of the various subject data points in the above 

component graphs yielded a relatively accurate impression of how well the classifiers 
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would function on the principal components of the original data.  The component graphs 

demonstrate distinct separation between most groups with only a small amount of overlap 

remaining.  This indicates that the classifiers would probably be able to classify most of 

the subjects correctly using the above components though perhaps not perfectly. 

 The next step after the principal component analysis was to run the Minimum 

Euclidean Distance classifier on the first five principal components.  The desired output 

was the below contingency matrix in Figure 19. 

  Predicted Values       Totals
       9     0     0     0     0     9 
Actual       0     6     0     3     0     9 
Values       0     0     8     0     1     9 
       0     1     0     8     0     9 
       0     0     4     3     2     9 
Totals       9     7    12   14     3    33 

 

Figure 19.  MED/Dynamic Parameters/Principal components contingency matrix 

This contingency matrix is almost identical to that generated by classifying the unreduced 

data matrix.  The error rate is the same at 26.67%.  This agrees with the intuitive notion 

that if no information is lost during the data dimension reduction that the classification 

accuracy should not decrease significantly or at all.   

 Having used the Minimum Euclidean Distance classifier on both the unreduced 

original data matrix and the principal component matrix the next step was to examine 

whether eliminating any parameters entirely improved the performance of the algorithm.  

If removing a parameter led to an improvement in classification accuracy, it would 

indicate that the parameter itself was too noisy, insignificant, redundant or in some other 
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way undesirable to include in the final human gait recognition algorithm.  To achieve this 

goal, two algorithms were constructed that behaved in a very similar fashion to reduce 

the number of parameters while measuring the effect of the reduction on the algorithm’s 

efficiency.  The first program begins with all possible parameters included and removes 

one at a time to see if this improves the classification accuracy.  The parameter that leads 

to the greatest improvement in recognition when removed is removed permanently and 

the process is repeated until removing parameters no longer leads to performance 

improvements. 

 The second algorithm begins with no parameters and looks at classification using 

each of the possible parameters alone.  The parameter that does the best job is kept 

permanently and the process is repeated, adding parameters iteratively until doing so no 

longer leads to improvements in classification.  Eliminating parameters produced the 

contingency matrix displayed in Figure 20. 

 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     6     0     3     0     9 
Values       0     0     8     0     1     9 
       0     1     0     8     0     9 
       0     0     4     2     3     9 
Totals       9     7    12   13     4    34 

 

Figure 20.  MED/Dynamic Parameters/Eliminating parameters contingency matrix 

The parameter removal program determines that all parameters 15-20 should be 

retained except for parameter 17 and has an overall error rate of 24.44%.  This is a slight 
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improvement over retaining all parameters.  Adding parameters produced the 

contingency matrix in Figure 21. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     7     0     2     0     9 
Values       0     0     8     0     1     9 
       0     2     0     7     0     9 
       0     1     4     1     3     9 
Totals       9    10   12   10     4    34 

 

Figure 21.  MED/Dynamic Parameters/Adding parameters contingency matrix 

 The parameter addition programs determines that only parameters 16 and 18 are 

useful yet produces exactly the same overall error rate at 24.44%.  This is identical to the 

solution found by eliminating parameters. 

 

Minimum Mahalanobis Distance/Dynamic parameters 

The Minimum Mahalanobis Distance classifier was the second method used to 

classify the forty-five gait signatures according to the individual who had produced them.  

The difference in this instance was that the Minimum Mahalanobis Distance classifier 

was operating on the dynamic parameters as opposed to the static ones.  When dealing 

with dynamic parameters, this means that the Euclidean distance is divided by the 

variance of all the concatenated dynamic parameter vectors, or the variance in this case of 

a 45 by 600 matrix.   

 Using the Minimum Mahalanobis Distance classifier with the original data set 

produced the following contingency matrix in Figure 22. 
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  Predicted Values      Totals 
       0     1     3     1     4     9 
Actual       1     4     2     1     1     9 
Values       0     3     2     1     3     9 
       1     2     5     1     0     9 
       1     1     3     0     4     9 
Totals       3    11    15     4    12    11 

 

Figure 22.  Mahalanobis/Dynamic Parameters/Unreduced data contingency matrix 

This contingency matrix indicates an error rate of 75.56% suggesting that including the 

variance in the gait recognition algorithm for this data set yields more noise than useful 

identifying data. 

 The next testing phase involves using the Minimum Mahalanobis Distance 

classifier on the five principal components of the data set instead of the entire original 

data set.  This new problem produces the following contingency matrix in Figure 23. 

  Predicted Values      Totals 
       2     0     0     4     3     9 
Actual       0     0     0     2     7     9 
Values       0     3     1     0     5     9 
       0     0     0     4     5     9 
       0     0     1     4     4     9 
Totals       2     3     2    14    24    11 

 

Figure 23.  Mahalanobis/Dynamic Parameters/Principal component contingency 

This contingency matrix also has a 75.56% error rate which is significantly worse than 

the performance of the Minimum Euclidean Distance classifier on the same data set 
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suggesting that the addition of variance to the gait recognition algorithm is confounding 

the identification attempts rather than yielding useful distinguishing information. 

 Subsequently, the Minimum Mahalanobis Distance classifier was tested using the 

two programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix displayed in Figure 24. 

  Predicted Values      Totals 
       1     1     4     0     3     9 
Actual       0     6     3     0     0     9 
Values       0     2     3     1     3     9 
       1     1     6     1     0     9 
       0     1     5     0     3     9 
Totals       2    11    21     2     9    14 

 

Figure 24.  Mahalanobis/Dynamic Parameters/Eliminating parameters contingency 

This contingency matrix is produced by eliminating parameter 18 and produces an error 

rate of 68.89%.  This error rate is significantly worse than the results for the Minimum 

Euclidean Distance classifier which had an error rate of 24.44%. 

Adding parameters produced the contingency matrix in Figure 25. 
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  Predicted Values      Totals 
       5     0     0     0     4     9 
Actual       0     6     0     0     3     9 
Values       0     0     1     0     8     9 
       0     1     0     2     6     9 
       0     0     2     1     6     9 
Totals       5     7     3     3    27    20 

 

Figure 25.  Mahalanobis/Dynamic Parameters/Adding parameters contingency 

matrix 

This contingency matrix is produced using only parameters 17 and 18  and has an error 

rate of 55.56% which is still worse than the Minimum Euclidean Distance classifier of 

24.44%. 

 

Quadratic Discriminant Function/Dynamic parameters 

The Quadratic Discriminant Classifier utilizes a different method of parsing the 

gait samples according to the individual who produced them.  It assumes that the 

distribution of the gait parameter data is Gaussian in nature and attempts to sketch 

quadratic boundaries between the groups through higher dimensional space.  The 

Quadratic Discriminant classifier calculates not only the mean of all the gait vectors for 

every training subject but also the covariance for every subject in order to create these 

quadratic curves.  As in the previous two classifiers, the Cross-Validation technique is 

employed to make sure that a gait is never identified by a classifier that was also trained 

on that same gait. 
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 Using the Quadratic Discriminant classifier with the original data set produced the 

following contingency matrix in Figure 26. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       9     0     0     0     0     9 
Values       9     0     0     0     0     9 
       9     0     0     0     0     9 
       9     0     0     0     0     9 
Totals      45     0     0     0     0     9 

 

Figure 26.  QDF/Dynamic Parameters/Unreduced data contingency matrix 

    This contingency matrix indicates an error rate of 80.00% which is exactly the 

amount of error predicted if the classifier is no better than random chance.  The incorrect 

classification is presumably the result of attempting to match a quadratic function to such 

a large quantity of frequently non-quadratic data. 

 The next testing phase involves using the Quadratic Discriminant classifier on the 

five principal components of the data set instead of the entire original data set.  This new 

problem produces the following contingency matrix in Figure 27. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     7     0     2     0     9 
Values       1     0     6     0     2     9 
       0     1     0     6     2     9 
       0     0     1     2     6     9 
Totals      10     8    7    10    10    34 

 

Figure 27.  QDF/Dynamic Parameters/Principal components contingency matrix 
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This contingency matrix has a 24.44 % error rate which is significantly better than the 

performance of the other two classifiers on the same data set. 

 Subsequently, the Quadratic Discriminant classifier was tested using the two 

programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix in Figure 28. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       9     0     0     0     0     9 
Values       9     0     0     0     0     9 
       9     0     0     0     0     9 
       9     0     0     0     0     9 
Totals      45     0     0     0     0     9 

Figure 28.  QDF/Dynamic Parameters/Eliminating parameters contingency matrix 

This contingency matrix eliminates no parameters for an error rate of 80.00%.  

This error rate is worse than the Minimum Euclidean Distance classifier which had an 

error rate of 24.44%.  Adding parameters produced the contingency matrix in Figure 29. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       9     0     0     0     0     9 
Values       9     0     0     0     0     9 
       9     0     0     0     0     9 
       9     0     0     0     0     9 
Totals      45     0     0     0     0     9 

 

Figure 29.  QDF/Dynamic Parameters/Adding parameters contingency matrix 
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This contingency matrix is produced using only parameters 15 and parameter 19 and has 

an error rate of 80.00% which is significantly worse than the error rate of the Minimum 

Euclidean Distance classifier which was 24.44%. 

 The overall inability of the Quadratic Discriminant Function to classify correctly 

the dynamic parameter data suggests that one or more of the underlying assumptions for 

its use are being violated here.  To operate correctly, the Quadratic Discriminant Function 

assumes that the data is Gaussian in nature and can be divided using relatively simple 

curves in higher-dimensional space.  However, the QDF is often implied in cases where it 

is only assumed that these assumptions hold to a reasonable degree.  In thise case, that 

assumption appears to be invalid and indicates that one or both of the underlying 

requirements do not hold for this case. 

 

Minimum Euclidean Distance/Static and Dynamic parameters 

 Having designed each of the three functions; the Minimum Euclidean Distance 

classifier, the Minimum Mahalanobis Distance classifier, and the Quadratic Discriminate 

classifier, and tested each, the next step is to modify the algorithms slightly and use them 

with both static and dynamic parameters for each of the subject gaits in the sample.  The 

parameters used will be the same as the parameters previously defined in the chapter 

except all 20 parameters will be utilized simultaneously. 

After making minor modifications to the Minimum Euclidean Distance algorithm 

in order to allow it to handle both the static and dynamic vectors, the next step was to test 

the algorithm on a variety of data sets.  The first data set to test the algorithm on was the 
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20 parameter set consisting of the unreduced raw static and dynamic parameters 

generated at the beginning of this section.  Running this data set through the Minimum 

Euclidean Distance classifier yielded the following results in Figure 30. 

  Predicted Values      Totals 
       3     1     0     4     1     9 
Actual       0     4     0     2     3     9 
Values       0     1     4     4     0     9 
       0     1     0     6     2     9 
       0     3     0     4     2     9 
Totals       3    10     4    20     8    19 

 

Figure 30.  MED/Static and Dynamic/Unreduced data contingency matrix 

 As previously discussed this contingency matrix reflects the Actual Error Rate 

generated by the Cross-Validation procedure.  The numbers along the diagonal except for 

the last row indicate the number of correctly identified gaits per class.  This contingency 

matrix indicates an overall error rate of 57.78%. 

 The next technique employed to gain additional insight into the data was Principal 

Component Analysis.  The corresponding first six eigenvalues for the initial static and 

dynamic parameter data set are displayed in Table 4. 

 

Table 4.  Eigenvalues and Percent Variance for Combined Parameter Data 

  PC1  PC2  PC3  PC4  PC5  PC6 
Eigenvalue  772.77 429.48 224.56 147.35 111.65 74.84
Variance %  43.89 24.39 12.75 8.37 6.34 4.25
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One method of determining the number of principal components in the analysis is 

to sum the amount of variance accounted for by the principal components until the 

proportion of variance exceeds a certain limit, often 95%.  Following that criterion, it 

follows that five of the principal components should be retained.  The next step involved 

looking at the loadings matrix in order to determine which data parameters were 

associated with which principal component and how.  However, in this particular instance 

the fact that the original data matrix was 600 by 45 means that the loadings matrix is 600 

by 6 in size which is too large to usefully graph, visualize or provide intuitive insight into 

parameter allocation. 

 When the first three principal components are graphed against each other the 

relationship between the principal components is clearly displayed in Figures 31, 32, and 

33.   
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Figure 31.  Principal Component 1 vs. Principal Component 2 
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Figure 32.  Principal Component 1 vs. Principal Component 3 
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Figure 33.  Principal Component 2 vs. Principal Component 3 
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 Examining the distribution of the various subject data points in the above 

principal component graphs yielded a relatively accurate impression of how well the 

classifiers would function on the principal components of the original data.  The 

component graphs demonstrate distinct separation between most groups with only a small 

amount of overlap remaining.  This indicates that the classifiers would probably be able 

to classify most of the subjects correctly using the above components though perhaps not 

perfectly. 

 The next step after the principal component analysis was to run the Minimum 

Euclidean Distance classifier on the first five principal components.  The desired output 

was the contingency matrix in Figure 34. 

  Predicted Values       Totals
        9     0     0     0     0     9 
Actual       0     6     0     3     0     9 
Values       1     0     8     0     0     9 
       0     1     0     7     1     9 
       0     1     0     3     5     9 
Totals      10     8     8    13     6    35 

 

Figure 34.  MED/Static and Dynamic/Principal components contingency matrix 

This contingency matrix is significantly better than that generated by classifying the 

unreduced data matrix.  The error rate is much lower at 22.22%.  This agrees with the 

intuitive notion that if no information is lost during the data dimension reduction that the 

classification accuracy should not decrease significantly or at all. 

 Having used the Minimum Euclidean Distance classifier on both the unreduced 

original data matrix and the principal component matrix the next phase of the thesis was 



 

 75

to examine whether eliminating any parameters entirely improved the performance of the 

algorithm. Running the two previously discussed parameter reduction programs yielded 

the following two contingency matrices and classification accuracies.  Eliminating 

parameters produced the contingency matrix in Figure 35. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     8     0     0     1     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     8     9     9    10    44 

 

Figure 35.  MED/Static and Dynamic/Eliminating parameters contingency matrix 

The parameter removal program determines that parameters 2 through 4 and 17 through 

19 should be eliminated while retaining the rest and has an overall error rate of 2.22%.  

This is a slight improvement over retaining all parameters.  Adding parameters yielded 

the contingency matrix in Figure 36. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

 

Figure 36.  MED/Static and Dynamic/Adding parameters contingency matrix 
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 The parameter addition programs determines that only parameters 2, 6 and 7 are 

useful yet produces a much better overall error rate of 0.00%.  This is an improvement 

over the solution found by eliminating parameters. 

 

Minimum Mahalanobis Distance/Static and Dynamic parameters 

The Minimum Mahalanobis Distance classifier was the second method used to 

classify the forty-five gait signatures according to the individual who had produced them.  

The difference in this instance was that the Minimum Mahalanobis Distance classifier 

was operating on both static and dynamic parameters.  Using the Minimum Mahalanobis 

Distance classifier with the original data set produced the following contingency matrix 

in Figure 37. 

  Predicted Values      Totals 
       1     0     0     1     7     9 
Actual       1     8     0     0     0     9 
Values       0     0     3     6     0     9 
       1     0     3     5     0     9 
       2     1     0     2     4     9 
Totals       5     9     6    14    11    21 

 

Figure 37.  Mahalanobis/Static and Dynamic/Unreduced data contingency matrix 

    This contingency matrix indicates an error rate of 53.33% which is significantly better 

than the error rate for random chance.   

 The next testing phase involves using the Minimum Mahalanobis Distance 

classifier on the five principal components of the data set instead of the entire original 

data set.  This new problem produces the following contingency matrix in Figure 38. 
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  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     8     0     1     0     9 
Values       1     0     7     0     1     9 
       0     4     0     5     0     9 
       0     1     3     2     3     9 
Totals      10    13   10   8     4    32 

 

Figure 38.  Mahalanobis/Static and Dynamic/Principal components  

This contingency matrix  has a  28.89% error rate which is significantly worse than the 

performance of the Minimum Euclidean Distance classifier on the same data set. 

 Subsequently, the Minimum Mahalanobis Distance classifier was tested using the 

two programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix in Figure 39. 

  Predicted Values      Totals 
       7     0     0     2     0     9 
Actual       0     7     0     2     0     9 
Values       0     0     6     2     1     9 
       5     0     2     2     0     9 
       0     2     1     1     5     9 
Totals      12     9     9     9     6    27 

 

Figure 39.  Mahalanobis/Static and Dynamic/Eliminating parameters 
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This contingency matrix is produced by eliminating parameter 8 and 13 and produces an 

error rate of 40.00%.  This error rate is significantly worse than the results for the 

Minimum Euclidean Distance classifier which had an error rate of 2.22%. 

Adding parameters produced the contingency matrix in Figure 40. 

  Predicted Values      Totals 
       8     0     0     1     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     2     7     9 
Totals       8     9     9    12     7    42 

 

Figure 40.  Mahalanobis/Static and Dynamic/Adding parameters contingency 

matrix 

    This contingency matrix is produced using only parameters 2, 6 and 18 and has an 

error rate of 6.67% which is still worse than the Minimum Euclidean Distance classifier 

of 0.00%. 

 

Quadratic Discriminant Function/Static and Dynamic parameters 

The Quadratic Discriminant classifier was next applied to the problem of looking 

at both the static and dynamic parameters combined.  For the unreduced data, the 

fourteen static variables were reduced to one column each and then concatenated with the 

six 100 element long dynamic parameters to produce a 45 by 614 data matrix.  This 

technique was used as opposed to the 45 by 2000 data matrix used for the MED and 

Minimum Mahalanobis Distance algorithm because it was found that MatLab had 
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difficultly taking the covariance of matrices that were 2000 elements in length.  Using the 

Quadratic Discriminant classifier with this original data set produced the following 

contingency matrix in Figure 41. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       9     0     0     0     0     9 
Values       9     0     0     0     0     9 
       9     0     0     0     0     9 
       9     0     0     0     0     9 
Totals      45     0     0     0     0     9 

Figure 41.  QDF/Static and Dynamic/Unreduced data contingency matrix 

    This contingency matrix indicates an error rate of 80.00% which is exactly the amount 

of error predicted if the classifier is no better than random chance.  The incorrect 

classification, however, is probably the result of attempting to match a quadratic function 

to too much data. 

 The next testing phase involves using the Quadratic Discriminant classifier on the 

five principal components of the data set instead of the entire original data set.  This new 

problem produced the following contingency matrix in Figure 42. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     8     0     0     1     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     1     8     9 
Totals       9     8     9    10     9    43 

 

Figure 42.  QDF/Static and Dynamic/Principal components contingency matrix 
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This contingency matrix has a 4.44 % error rate which is significantly better than the 

performance of the other two classifiers on the same data set. 

 Subsequently, the Quadratic Discriminant classifier was tested using the two 

programs that respectively start with all parameters and then successively eliminate 

parameters in order to achieve the optimum accuracy and also start with no parameters 

and iteratively add parameters in order to achieve optimum accuracy.  Eliminating 

parameters produced the contingency matrix in Figure 43. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

Figure 43.  QDF/Static and Dynamic/Eliminating parameters contingency matrix 

This eliminates all parameters except 2, 6, 7, and 8 for an error rate of 0.00%.  This error 

rate is slightly better than the Minimum Euclidean Distance classifier which had an error 

rate of 2.22%.  Adding parameters produced the contingency matrix in Figure 44. 

  Predicted Values      Totals 
       9     0     0     0     0     9 
Actual       0     9     0     0     0     9 
Values       0     0     9     0     0     9 
       0     0     0     9     0     9 
       0     0     0     0     9     9 
Totals       9     9     9     9     9    45 

 

Figure 44.  QDF/Static and Dynamic/Eliminating parameters contingency matrix 
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This contingency matrix is produced using only parameters 1, 2 and 6  and has an 

error rate of 0.0% which is equal to the error rate of the Minimum Euclidean Distance 

classifier which was 0.00%. 

 

Analysis of Run Results 

Having successfully run all combinations of algorithms (Minimum Euclidean 

Distance, Minimum Mahalanobis Distance, and Quadratic Discriminant Function) with 

all combinations of parameters (static, dynamic, and combined) and all methods of data 

pre-processing (unreduced data, principle components, adding parameters, eliminating 

parameters) it is now possible to graph all the results in a single chart which will then be 

divided into subsections for further analysis.  The overall results summary is displayed 

graphically in Figure 45 and numerically in Table 5. 
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Figure 45.  Classification Accuracies for All Combinations 

Table 5.  All Algorithm/Parameter Combinations 

  UnreducedPCA  B&B 1 B&B 2 
MED‐Static  0.40 0.51 1.00 1.00
Mahalanobis‐Static  0.60 0.47 0.69 0.93
QDF‐static  0.02 0.89 1.00 1.00
MED‐Dynamic  0.73 0.73 0.76 0.76
Mahalanobis‐Dynamic  0.24 0.24 0.31 0.44
QDF‐Dynamic  0.20 0.76 0.20 0.20
MED‐Combined  0.42 0.78 0.98 1.00
Mahalanobis‐Combined 0.47 0.71 0.60 0.93
QDF‐Combined  0.20 0.96 1.00 1.00
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From the collective graph of run results, it is already possible to make several 

immediate observations regarding algorithm accuracy.  It is clear that numerous 

algorithm/parameter/pre-processing combinations produce completely accurate 

identification.  For this data set then other factors such as algorithm run-time, robustness, 

and scalability will be considered in order to determine a best algorithm as numerous 

combinations otherwise satisfy the criteria of completely accurate identification.  Further 

testing on other data sets would also yield additional insight into the performance of the 

algorithm/parameter/pre-processing combinations that could lead to a best combination.  

For the purpose of this thesis, alternate factors will be used to make the discrimination. 

Another interesting observation is the existence of clear trends in the performance 

of the various algorithms.  In all but two cases the Minimum Euclidean Distance 

classifier substantially outperformed the Minimum Mahalanobis Distance classifier.  In 

the other two cases the Minimum Mahalanobis Distance classifier outperformed the 

Minimum Euclidean Distance classifier only marginally.  This suggests that the 

Minimum Euclidean Distance classifier is generally “dominant” over the Minimum 

Mahalanobis Distance classifier which is to say that it is almost always more accurate or 

roughly equivalent for this test problem.   

In terms of which data parameters, static or dynamic, to consider, the dynamic 

parameter data set appears to fare poorly overall.  From the results graph is clear that 

there are a few results which are significantly worse than the other combinations and the 

two most obvious of these are derived from dynamic parameter data sets.   
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There are several possible reasons for the poor performance of the Minimum 

Mahalanobis Distance classifier and dynamic parameter data sets which will be explored 

further.  Implications of the run results can be garnered by examining each of the types of 

parameter data set individually.  The results for all algorithms run on static parameter 

data are listed in Figure 46. 
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Figure 46.  Classification Accuracies with Static Parameters 

 From the static parameter graph it can be inferred that pre-processing Quadratic 

Discriminant Function data makes a great difference.  When the data is reduced to five 

columns using principal component analysis the classification accuracy increases 

dramatically.  Otherwise, it can be seen that MED classifiers and QDF classifiers offer 

the possibility of completely accurate classification when only the most useful parameters 

are retained.  The results for all algorithms run on dynamic parameters are listed in Figure 

47. 
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Figure 47.  Classification Accuracies with Dynamic Parameters 

It is readily obvious in the dynamic parameter data set that none of the algorithms 

comes close to complete identification accuracy.  A possible reason for this is that the 

types of parameters that represent data than can only be expressed in curves are 

significantly more complex than static parameters which poses a challenge for the 

classification programs while also allowing for the possibility of significantly more 

“noise” in the data.  It is again clear that the MED classifier is one of the better 

algorithms and that the QDF classifier is much more accurate when working with the data 

reduced by principal components analysis, but while using only dynamic parameters the 

MED algorithm remains the most accurate while the QDF drops off sharply in accuracy.  

The Minimum Mahalanobis Distance algorithm is even more ineffective under these 
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circumstances.  The results of all algorithms run on combined parameters are listed in 

Figure 48. 

 

Figure 48.  Classification Accuracies with Static and Dynamic Parameters 

Finally, looking at both the static and dynamic parameters combined there can be 

seen patterns almost exactly similar to the case where only static parameters were 

considered.  This is significant in that dynamic parameters add substantially more data 

than the static parameters but appear to have a generally negative effect on classification 

accuracy as the algorithms perform worse when considering both static and dynamic 

parameters than when working with solely static parameters.  Given that the addition of 

dynamic parameters can easily increase the size of a data matrix by a factor of one 

hundred, the lack of increased effectiveness clearly implies that working solely with 

static parameters is more efficient.   
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While further testing in a wider variety of scenarios with a greater number of data 

sets would be highly useful, the current range of tests on the limited combinations of 

algorithms, types of parameters, and types of data pre-processing are nonetheless 

instructive in terms of general algorithm behavior and crucial observations.  The above 

observations all support the idea that the best means of human gait recognition 

considered by this thesis is to consider only static parameters, use the Minimum 

Euclidean Distance function to classify gaits, and use the simplified branch and bound 

method in order to add or eliminate only the most useful parameters.  Supporting these 

contentions is a wide variety of very clear trends in the data.   

First the Minimum Mahalanobis Distance classifier almost invariably 

underperforms the Minimum Euclidean Distance classifier.  This strongly argues against 

its general usage.   

Next, the Quadratic Discriminant Function has a great deal of difficulty dealing 

with the larger data matrices created by the dynamic parameters and static/dynamic 

parameters since it must calculate covariances of matrices which are over 360,000 

numbers large.  Combined with the fact that the Quadratic Discriminant Function 

performs roughly equally to and sometimes much worse than the Minimum Euclidean 

Distance argues against the general usage of the Quadratic Discriminant Function.                                   

Addition of the dynamic parameters causes recognition rates to decrease sharply 

and this is even more pronounced when the static parameters are removed as well, 

strongly implying that the static parameters are the more valuable indicators of gait 

identity.   
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Lastly, adding or eliminating parameters based on whether or not they improve 

identification accuracy can by definition only improve the method and should always be 

performed.  Performing these branch and bound algorithms always either improved 

classification accuracies or left them unaffected. 

The overall trends in the data of the myriad algorithm/data parameter type/pre-

processing methods strongly suggest that a method that looks at static parameters, adds 

only those parameters that are most useful and then uses the Minimum Euclidean 

Distance to classify those gaits is the most efficient and effective method of classifying 

gaits of all of the combinations studied. 

 

Practical Implementation 

 Having identified a best algorithm, parameter type, and pre-processing method 

combination through the large number of trials composing the main body of the thesis, 

the final step in the process is to implement that best process in a more realistic human 

gait recognition scenario.  All the gait recognition problems to this point, regardless of 

the particular algorithm, have used all of the forty-five sample gaits per data set in order 

to build a classifier and then employed the Lachenbruch hold-out procedure in order to 

classify all of the same forty-five gaits and generate an Actual Error Rate (AER) for the 

algorithm.  This is a highly useful process for testing algorithm efficiency in that it 

employs all the available very limited data in order to both build classifiers and to find 

gaits to classify.  Since it is constructed from a very general point of view, the concept is 

that it will give a better impression of the effectiveness of an algorithm over a wide 
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variety of gait problems than it might if it were tailored to a more specific and highly 

individual gait recognition problem for a specific situation.  The notable drawback of this 

method is that frequently forty-five gaits are not available to build the classifier in order 

to identify a gait sample when it is found.  For the specific gait recognition setup at AFIT 

that this algorithm is being designed for, it is expected that only five gaits will be 

available with which to build a classifier.  The final portion of the process of designing an 

optimum algorithm for gait recognition at AFIT is then to verify that the optimum 

algorithm/parameter type/pre-processing method established during the large number of 

general trials remains effective when performed on the specific, practical example of 

interest to this thesis. 

 The Limited Minimum Euclidean Distance function (LMED) is consequently an 

algorithm almost identical to the Minimum Euclidean Distance algorithm except that 

instead of employing the Lachenbruch hold-out procedure it simply builds classifier 

using one medium speed gait from each of the five subjects and classifies the remaining 

forty gaits on the basis of those five gaits.  As the intention is only to establish that the 

classification method continues to work on the specific example, the only test case 

examined is the one determined to be optimum in the previous trials. 

 Running the Limited Minimum Euclidean Distance function on the unreduced 

static parameter data produced the contingency matrix depicted in Figure 49. 
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  Predicted Values 
     
Totals 

       8     0     0     0     0     8 
Actual       0     8     0     0     0     8 
Values       0     0     8     0     0     8 
       1     0     0     7     0     8 
       0     0     0     0     8     8 
Totals       9     8     8     7     8    39 

 

Figure 49. LMED/Static/Adding parameter data contingency matrix 

As expected, running this algorithm/parameter/pre-processing technique on the more 

limited, practical test case where only five gaits are available to generate a classifier also 

produces an Actual Error Rate of only 2.5% using parameters 2, 5, 6, and 7.   

 

Research Questions Answered 

From Chapter I, the overall research question for this study is:  If the human gait 

is unique to every individual, can a person be identified by their gait?  This thesis 

considered the research question: 

What is the best mathematical and statistical method of identifying people 

by gait when the available input is the position of body markers at 

successive points in time? 

This question was answered in the process of the research in this thesis.  The 

optimum combination of algorithms, types of parameters, and data pre-processing 

methods was determined to be the Minimum Euclidean Distance method working with 

static parameters and using a simplified branch and bound method to only include the 
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most helpful parameters in the analysis.  This was demonstrated by examining the clear 

data trends from a wide variety of test situations and combinations of methodologies 

employed throughout this chapter. 

 

Summary 

 This chapter explores the results and analysis of the thesis research into the 

possibility of human gait recognition in a controlled environment.  The thesis begins at 

the point in the process after body marker location data has already been collected and 

proceeds to extract salient identifying characteristics from each sample gait of each 

individual.  Having successfully generated a wide variety of descriptive parameters for 

each gait, the thesis then proceeds to generate and test three different algorithms that 

attempt to classify the same gaits using three distinctive methods.  In order to further 

explore the issue of optimization of human gait recognition under controlled conditions, a 

number of other options are examined for each algorithm including the type of 

parameters to be examined (static or dynamic) as well as a variety of methods of pre-

processing the data before it is input into the classification algorithms.  After all possible 

combinations of algorithms/parameter types/pre-processing types are run and the results 

tabulated with descriptive contingency matrices, the overall results are used to create a 

series of graphs regarding classification accuracy under a variety of conditions.  The 

graphs are then analyzed in order to generate a number of general trends and interesting 

observations that are used to understand the behavior of the underlying algorithms.  

Having successfully developed a number of general propositions regarding the strengths 
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and weaknesses of the various algorithms, it is then possible to derive an overall best 

algorithm/parameter type/pre-processing method combination based on the tests run in 

the course of this thesis research.  The chapter ends with the answer to the research 

question posed: a best mathematical and statistical method of identifying people by gait 

when the available input is the position of body markers at successive points in time has 

been selected from all the possible options considered during this thesis. 
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter explores the conclusions and recommendations reached through this 

thesis research.  This thesis completes the overall goal of identifying individuals on the 

basis of their gaits beginning at the point where accurate body marker location data over 

time has already been generated.  Detailed in this chapter are both the conclusions 

derived from this research as well as the significance of the research.  The chapter ends 

with a number of suggested recommendations for future research. 

Conclusions of Research 

The thesis has the overall goal of achieving accurate and efficient identification of 

humans based on their gait under controlled laboratory conditions.  The thesis begins 

with a series of recorded points through time from several individuals who have walked 

on treadmills while having the positions of markers on their bodies recorded over time.  

Given this initial raw data, the thesis begins with the development of a MatLab program 

that reads the raw data files into a usable format of data matrix.  It then takes these 

matrices and calculates a number of statistics from them.  These statistics are broken into 

the categories of static and dynamic.  Static statistics refer to gait properties expressible 

as a single value such as average height while dynamic statistics refer to gait properties 

that are only expressible as a curve, or a series of values over time, such as average knee 

angle over one gait cycle.   
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The next step in the thesis is to create a number of classification algorithms that 

each employ a different classification principle in order to identify the sample gaits now 

described by statistics.  Once these algorithms have been coded, they are tested on a 

variety of data sets including data sets consisting solely of static parameters, sets 

consisting solely of dynamic parameters, and sets consisting of both.  In order to add an 

additional element of complexity and possibility for discovery to the setup, four different 

methods of pre-processing the data are considered including leaving the data untouched, 

calculating principal components, as well as adding or eliminating parameters in order to 

only retain the most useful for classification.   

Running each of the scenario configurations and analyzing the results yields 

numerous identification methods where 100% identification accuracy is achieved.  This 

conclusively answers the overall research question as to whether human gait recognition 

is possible given the type of data and conditions of the experimentation.  The thesis is 

further able to discriminate between the various methods based on their overall 

performance throughout all of the tests and thereby generate a number of general 

conclusions and observations regarding algorithm performance as well as an overall 

optimum classification algorithm.  This answers the second research question in that it 

identifies a best algorithm/parameter-type/pre-processing method for the human gait 

recognition problem out of all the considered methods. 

Significance of Research 

This thesis marks a crucial step in that it conclusively establishes a completely 

automated system for achieving effective human gait recognition with the specific type of 
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data format available.  This is a non-trivial goal in that there is no definitive or preferred 

method of achieving human gait recognition in the current scientific community.  As 

such, the number of mathematical models, the aspects of gait and environmental 

conditions they concentrate on, and their resulting success rates are many and varied.  

Success in the endeavor under the controlled conditions available at AFIT and with 

known accurate body marker position data is a crucial first step intended to serve as a 

platform for future advances in which human gait recognition will be attempted in 

increasingly general and robust environments.  The knowledge regarding successes and 

failures, effective and ineffective methods, as well as the practical familiarity with human 

gait and the previous research into its characterization is intended to be highly 

transferrable to more complicated and difficult human gait recognition problems.  

Compared with the numerous approaches to human gait recognition, this thesis 

establishes a reliable, practical, and effective solution under the conditions of the 

provided data which can serve as a useful platform for increasingly complex 

identification methods. 

Human gait recognition itself is a topic that is receiving increasing attention both 

at home and abroad.  A biometric identification technique that can be performed at a 

distance without the knowledge of the subject and that is difficult to obstruct is of 

significant interest to the Department of Defense, Department of Homeland Security, and 

the United States Air Force because of its many applications to the increasingly 

unpredictable nature of modern conflict.  This thesis increases the number and variety of 
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identification methods available and is therefore significant in increasing U. S. 

capabilities in this arena. 

Recommendations for Future Research 

Though this research does produce several methods for completely accurate 

human gait recognition it does so only under certain relatively ideal circumstances.  

Future research would be useful in removing many of the simplifying conditions of the 

laboratory environment of this thesis. 

It would be highly useful to test the algorithm on more varied and larger 

databases.  It is reasonable to assume that larger databases containing more varied gaits 

would prove proportionately more difficult to classify.  Additionally, data is currently 

collected under relatively ideal conditions using a single person walking completely 

parallel to a stationary camera against a stationary background.  Relaxing any of those 

idealizing constraints would make the person substantially harder to identify and would 

constitute a rich area for further inquiry.  Were both of these limitations solved, a next 

practical step would be to deploy the cameras to public areas such as banks and malls 

where theoretically without the constraints of database size and ideal camera angle, a 

practical amount of automatic human gait identification capability could be realized.  The 

ability to track a single individual from camera to camera solely on the basis of his/her 

gait would be a highly useful tool in the surveillance of a bank, city or other public area.  

Any or all of these ideas for moving the concept of human gait recognition out of the 

laboratory and into practical everyday use would be very fruitful avenues for future 

research. 
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Summary 

This chapter provides summaries of conclusions and recommendations for this 

thesis.  The overarching goal is to achieve practical human gait recognition.  This thesis 

successfully devises a method of solving this problem while comparing and contrasting it 

to other similar methods.  The research demonstrates that the recognition of humans 

solely on the basis of their gaits is possible within a laboratory environment.  Given any 

database of the gaits of individuals, the algorithm designed here can be used to 

distinguish the individuals to some reasonable degree.  This methodology should serve as 

a platform for human gait recognition using larger and more diverse databases, in 

different contexts and environments, and using more diverse individuals.  The method 

provides an important benchmark for a practical level of classification accuracy against 

which increasingly complex methodologies can be compared.  There is a significant 

amount of research remaining in the field of human gait recognition in order to make the 

techniques more robust and practical.  This chapter also summarizes recommendations 

for avenues that research might usefully take.
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Appendix 

MATLAB Routines 
 
Input Read- The UPenn data initially existed in a set of uniquely 
formatted 45 text files.  The combination of the inputread3, worktext15 
and loadtext 5 files is specifically tailored to turn these 45 files 
into usable MatLab data.Use of this human gait recognition algorithm on 
a different data set willnecessarily involve altering one or all three 
of these files.  The outputvariable created contains the static data, 
graphoutput contains the dynamic data. 
 
 
 
function [output,graphoutput]=inputread3 
%Derrick Chelliah 28 Feb 2008 
  
output=[] 
  
x=zeros(50,100,7) 
  
[output(1,:) x(1,:,:)]=worktext15(1,'SandyWalk1_0.emf') 
  
[output(2,:) x(2,:,:)]=worktext15(1,'SandyWalk1_5.emf') 
  
[output(3,:) x(3,:,:)]=worktext15(1,'SandyWalk2_0.emf') 
  
[output(4,:) x(4,:,:)]=worktext15(1,'SandyWalk2_5.emf') 
  
[output(5,:) x(5,:,:)]=worktext15(1,'SandyWalk3_0.emf') 
  
[output(6,:) x(6,:,:)]=worktext15(1,'SandyWalk3_5.emf') 
  
[output(7,:) x(7,:,:)]=worktext15(1,'SandyWalk4_0.emf') 
  
[output(8,:) x(8,:,:)]=worktext15(1,'SandyWalk4_5.emf') 
  
[output(9,:) x(9,:,:)]=worktext15(1,'SandyWalk5_0.emf') 
  
[output(11,:) x(11,:,:)]=worktext15(2,'JesseWalk1_0.emf') 
  
[output(12,:) x(12,:,:)]=worktext15(2,'JesseWalk1_5.emf') 
  
[output(13,:) x(13,:,:)]=worktext15(2,'JesseWalk2_0.emf') 
  
[output(14,:) x(14,:,:)]=worktext15(2,'JesseWalk2_5.emf') 
  
[output(15,:) x(15,:,:)]=worktext15(2,'JesseWalk3_0.emf') 
  
[output(16,:) x(16,:,:)]=worktext15(2,'JesseWalk3_5.emf') 
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[output(17,:) x(17,:,:)]=worktext15(2,'JesseWalk4_0.emf') 
  
[output(18,:) x(18,:,:)]=worktext15(2,'JesseWalk4_5.emf') 
  
[output(19,:) x(19,:,:)]=worktext15(2,'JesseWalk5_0.emf') 
  
[output(21,:) x(21,:,:)]=worktext15(3,'MaciejWalk1_0.emf') 
  
[output(22,:) x(22,:,:)]=worktext15(3,'MaciejWalk1_5.emf') 
  
[output(23,:) x(23,:,:)]=worktext15(3,'MaciejWalk2_0.emf') 
  
[output(24,:) x(24,:,:)]=worktext15(3,'MaciejWalk2_5.emf') 
  
[output(25,:) x(25,:,:)]=worktext15(3,'MaciejWalk3_0.emf') 
  
[output(26,:) x(26,:,:)]=worktext15(3,'MaciejWalk3_5.emf') 
  
[output(27,:) x(27,:,:)]=worktext15(3,'MaciejWalk4_0.emf') 
  
[output(28,:) x(28,:,:)]=worktext15(3,'MaciejWalk4_5.emf') 
  
[output(29,:) x(29,:,:)]=worktext15(3,'MaciejWalk5_0.emf') 
  
[output(31,:) x(31,:,:)]=worktext15(4,'RobertWalk1_0.emf') 
  
[output(32,:) x(32,:,:)]=worktext15(4,'RobertWalk1_5.emf') 
  
[output(33,:) x(33,:,:)]=worktext15(4,'RobertWalk2_0.emf') 
  
[output(34,:) x(34,:,:)]=worktext15(4,'RobertWalk2_5.emf') 
  
[output(35,:) x(35,:,:)]=worktext15(4,'RobertWalk3_0.emf') 
  
[output(36,:) x(36,:,:)]=worktext15(4,'RobertWalk3_5.emf') 
  
[output(37,:) x(37,:,:)]=worktext15(4,'RobertWalk4_0.emf') 
  
[output(38,:) x(38,:,:)]=worktext15(4,'RobertWalk4_5.emf') 
  
[output(39,:) x(39,:,:)]=worktext15(4,'RobertWalk5_0.emf') 
  
[output(41,:) x(41,:,:)]=worktext15(5,'SusanaWalk1_0.emf') 
  
[output(42,:) x(42,:,:)]=worktext15(5,'SusanaWalk1_5.emf') 
  
[output(43,:) x(43,:,:)]=worktext15(5,'SusanaWalk2_0.emf') 
  
[output(44,:) x(44,:,:)]=worktext15(5,'SusanaWalk2_5.emf') 
  
[output(45,:) x(45,:,:)]=worktext15(5,'SusanaWalk3_0.emf') 
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[output(46,:) x(46,:,:)]=worktext15(5,'SusanaWalk3_5.emf') 
  
[output(47,:) x(47,:,:)]=worktext15(5,'SusanaWalk4_0.emf') 
  
[output(48,:) x(48,:,:)]=worktext15(5,'SusanaWalk4_5.emf') 
  
[output(49,:) x(49,:,:)]=worktext15(5,'SusanaWalk5_0.emf') 
  
graphoutput=x; 
  
  
end 
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Workable Text-Loads data from a single person at a single speed as a 
matrix.  Runs through the matrix one frame at a time while recording 
static and dynamic statistics and marking the discrete gait cycles. 
 
 
function [output,x]=worktext15(ident, string) 
%Derrick Chelliah 28 Feb 2008 
%Command Line: [output,x]=worktext15(1,'SandyWalk3_0.emf') 
  
[matrix,d]=loadtext5(string); 
  
  
output=[]; 
currentmatrix=[]; 
newmatrix=[]; 
stats=[]; 
pairedstats=[]; 
height=[]; 
times=[]; 
pairedtimes=[]; 
stridelengths=[]; 
headwaist=[]; 
leftrightfoot=[]; 
leftrightwaist=[]; 
leftrightshoulder=[]; 
  
k=1; 
p=2; 
stridelength=0; 
framecount=1; 
u=[0 0]; 
  
gaitframe=zeros(1,100); 
legframe=zeros(100,100); 
kneeframe=zeros(100,100); 
footsep=zeros(100,100); 
headbounce=zeros(100,100); 
wristsep=zeros(100,100); 
  
%Builds initial matrix of gait data from first frame 
  
currentmatrix=[matrix(1,:);matrix(2,:);matrix(3,:);matrix(4,:);matrix(5
,:);... 
matrix(6,:);matrix(7,:);matrix(8,:);matrix(9,:);matrix(10,:);... 
matrix(11,:);matrix(12,:);matrix(13,:);matrix(14,:);matrix(15,:);... 
matrix(16,:);matrix(17,:);matrix(18,:);matrix(19,:);matrix(20,:);... 
matrix(21,:);matrix(22,:);matrix(23,:);matrix(24,:);matrix(25,:);... 
matrix(26,:);matrix(27,:);matrix(28,:);matrix(29,:);matrix(30,:)]; 
  
%Calculates distance between feet 
length=matrix(2,4)-matrix(18,4); 
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for j=1:(d-1) 
%Builds subsequent gait data matrices from subsequent frames 
  
newmatrix=[matrix(1+30*j,:);matrix(2+30*j,:);matrix(3+30*j,:);matrix(4+
30*j,:);matrix(5+30*j,:);... 
matrix(6+30*j,:);matrix(7+30*j,:);matrix(8+30*j,:);matrix(9+30*j,:);mat
rix(10+30*j,:);... 
matrix(11+30*j,:);matrix(12+30*j,:);matrix(13+30*j,:);matrix(14+30*j,:)
;matrix(15+30*j,:);... 
matrix(16+30*j,:);matrix(17+30*j,:);matrix(18+30*j,:);matrix(19+30*j,:)
;matrix(20+30*j,:);... 
matrix(21+30*j,:);matrix(22+30*j,:);matrix(23+30*j,:);matrix(24+30*j,:)
;matrix(25+30*j,:);... 
matrix(26+30*j,:);matrix(27+30*j,:);matrix(28+30*j,:);matrix(29+30*j,:)
;matrix(30+30*j,:)]; 
  
  
 if (abs(length)>stridelength) 
     stridelength=abs(length); 
 end 
  
%Calculates salient statistics per frame 
height(j)=(newmatrix(30,5)-newmatrix(11,5)); 
  
newlength=newmatrix(4,4)-newmatrix(11,4); 
  
waist=[newmatrix(22,4) newmatrix(22,5)]; 
  
leftleg=[newmatrix(2,4)-waist(1) newmatrix(2,5)-waist(2)]; 
rightleg=[newmatrix(11,4)-waist(1) newmatrix(11,5)-waist(2)]; 
  
ll=dist(u,leftleg'); 
ul=dist(u,rightleg'); 
  
legangle(j)=(acos((leftleg*rightleg')/(ll*ul)))*180/pi; 
  
%Records data in legframe matrix 
legframe(framecount,k)=legframe(framecount,k)+legangle(j); 
  
upperleg=[newmatrix(22,4)-newmatrix(10,4) newmatrix(22,5)-
newmatrix(10,5)]; 
lowerleg=[newmatrix(11,4)-newmatrix(10,4) newmatrix(11,5)-
newmatrix(10,5)]; 
  
uleg=dist(u, upperleg'); 
lleg=dist(u, lowerleg'); 
  
kneeangle(j)=180-(acos((upperleg*lowerleg')/(uleg*lleg)))*180/pi; 
  
kneeframe(framecount,k)=kneeframe(framecount,k)+kneeangle(j); 
  
footsep(framecount,k)=footsep(framecount,k)+abs(newlength); 
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headbounce(framecount,k)=headbounce(framecount,k)+newmatrix(28,4); 
  
wristsep(framecount,k)=wristsep(framecount,k)+abs(newmatrix(8,4)-
newmatrix(16,4)); 
  
gaitframe(k)=gaitframe(k)+1; 
  
framecount=framecount+1; 
  
%prod(j) determines if feet have passed each other, if they have then 
one 
%value will be positive the other negative and prod(j) will be negative 
  
prod(j)=length*newlength; 
  
  
if (prod(j)<0) 
    %When prod(j) is negative feet have passed each other, every second 
    %time this happens, a gait cycle has been completed 
    if p==2 
        framecount=1; 
        k=k+1; 
        p=0; 
    end 
     
    p=p+1; 
     
    %Gait cycle parameters being recorded 
    stats(k)=newmatrix(1,1); 
    times(k)=newmatrix(1,2); 
     
    headwaist(k)=newmatrix(30,5)-newmatrix(22,5); 
         
    rightshoulder=[newmatrix(12,4) newmatrix(12,5)]; 
    rightelbow=[newmatrix(15,4) newmatrix(15,5)]; 
    rightwrista=[newmatrix(16,4) newmatrix(16,5)]; 
    rightfrontwaist=[newmatrix(22,4) newmatrix(22,5)]; 
    rightknee=[newmatrix(10,4) newmatrix(10,5)]; 
    rightheel=[newmatrix(11,4) newmatrix(11,5)]; 
     
    rupperarm(k)=dist(rightshoulder, rightelbow'); 
    rlowerarm(k)=dist(rightwrista, rightelbow'); 
    rupperleg(k)=dist(rightfrontwaist, rightknee'); 
    rlowerleg(k)=dist(rightknee, rightheel'); 
     
    rightswing=dist(rightwrista, rightfrontwaist'); 
     
     
    stridelengths(k)=stridelength; 
    stridelength=0; 
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end 
  
length=newlength; 
  
end 
  
  
f=floor(size(stats)/2); 
  
  
%Stats are paired to account for two foot crossings being equal to one 
%cycle 
for s=1:f(2) 
    pairedstats(s)=stats(2*s-1); 
    pairedtimes(s)=times(2*s-1); 
end 
  
cycleframes=diff(pairedstats); 
cycletimes=diff(pairedtimes); 
  
  
%avframes converts matrix of gait cycles into one average vector for 
the 
%parameter 
avlegframe=avframes(legframe,gaitframe,k); 
avkneeframe=avframes(kneeframe,gaitframe,k); 
avfootsep=avframes(footsep,gaitframe,k); 
avheadbounce=avframes(headbounce,gaitframe,k); 
avwristsep=avframes(wristsep,gaitframe,k); 
  
  
disp('The identification # of the subject is:') 
disp(ident) 
output(1)=ident; 
variance(1)=ident; 
  
disp('The mean time per full cycles:') 
disp(mean(cycletimes)) 
output(2)=mean(cycletimes); 
variance(2)=var(cycletimes); 
  
disp('The mean # of frames per full cycles:') 
disp(mean(cycleframes)) 
output(3)=mean(cycleframes); 
variance(3)=var(cycleframes); 
  
disp('The average stridelength:') 
disp(mean(stridelengths)) 
output(4)=mean(stridelengths); 
variance(4)=var(stridelengths); 
  
disp('The maximum stridelength:') 
disp(max(stridelengths)) 
output(5)=max(stridelengths); 
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disp('The average height in cm:') 
disp(mean(height)/10) 
output(6)=(mean(height))/10; 
variance(6)=var(height) 
  
disp('The average head/waist distance:') 
disp(mean(headwaist)) 
output(7)=mean(headwaist); 
variance(7)=var(headwaist); 
  
disp('The average upper arm length:') 
disp(mean(rupperarm)) 
output(11)=mean(rupperarm); 
variance(11)=var(rupperarm); 
  
disp('The average lower arm length:') 
disp(mean(rlowerarm)) 
output(12)=mean(rlowerarm); 
variance(12)=var(rlowerarm); 
  
disp('The average upper leg length:') 
disp(mean(rupperleg)) 
output(13)=mean(rupperleg); 
variance(13)=var(rupperleg); 
  
disp('The average lower leg length:') 
disp(mean(rlowerleg)) 
output(14)=mean(rlowerleg); 
variance(14)=var(rlowerleg); 
  
disp('The average distance of wrist from waist:') 
disp(mean(rightswing)) 
output(15)=mean(rightswing); 
variance(15)=var(rightswing); 
  
disp('The average angle between right leg and left leg:') 
disp(mean(legangle)) 
output(16)=mean(legangle); 
variance(16)=var(legangle); 
  
disp('The average knee angle:') 
disp(mean(kneeangle)) 
output(17)=mean(kneeangle); 
variance(17)=var(kneeangle) 
  
disp('The average speed (km/hr):') 
disp(((sum(stridelengths)/1000000)/(max(times)/7200))) 
output(18)=(sum(stridelengths)/1000000)/(max(times)/7200); 
  
%Uses fillincurve to extend the length of all average parameter vectors 
to 
%a length of 100 elements then records dynamic data in x matrix 
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avlegframe=fillincurve(avlegframe,105); 
x=zeros(1,100,3) 
x(1,:,1)=avlegframe; 
  
avkneeframe=fillincurve(avkneeframe,105); 
x(1,:,2)=avkneeframe; 
  
avfootsep=fillincurve(avfootsep,105); 
x(1,:,3)=avfootsep; 
  
avheadbounce=fillincurve(avheadbounce,105); 
x(1,:,4)=avheadbounce; 
  
avwristsep=fillincurve(avwristsep,105); 
x(1,:,5)=avwristsep; 
  
  
x(1,:,6)=x(1,:,3)./x(1,:,5); 
end 
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Loading Text- Loads a text file of data for a single person at a single 
speed.  Outputs data in a matrix with d equal to number of frames. 
 
 
function[matrix,d]=loadtext5(string) 
%Derrick Chelliah 
%Command Line:  x=loadtext5('SandyWalk1_0.emf') 
  
matrix=[]; 
  
fid = fopen(string, 'r');  %Opens file to be read 
  
for i=1:3 
    tline=fgetl(fid);   %Skips three lines description 
end 
  
q=fscanf(fid, '%c %c %c %c %c %c %c %c', [8 1]); %Skips 8 characters 
d= fscanf(fid, '%g', [1 1])  % Reads number of frames 
  
for i=1:16 
    tline=fgetl(fid);       %Skips 16 lines 
end 
  
  
for i=1:d 
  
z= fscanf(fid, '%s', [1 1]);    %Skips one string 
r= fscanf(fid, '%g %g', [2 1]);  %Reads frame # and time in seconds 
  
a = fscanf(fid, '%g %g %g %g', [4 30]); %Reads 4x30 matrix of 
coordinates 
a = a'; 
  
column=ones(30,1); 
  
matrix=[matrix;r(1)*column r(2)*column a];  %Appends 6x30 matrix 
  
end 
  
fclose(fid);    %Closes file 
  
end 
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Average Frames-Avframes takes as the first value a matrix that consists 
of some number of gait measurements with each row representing a 
different gait cycle.  gaitframe is a vector that lists the number of 
frames in each gait. k refers to the number of gaits. avframes takes 
several gait cycles, extends them to the same number of frames and then 
averages them to create one average gait cycle 
 
 
function [avframe]=avframes(matrix,gaitframe,k) 
% Derrick Chelliah 28 Feb 2008 
 
maxframe=max(gaitframe); %Finds maximum number of frames of all gaits 
newframes=[]; 
newlabel=[]; 
  
for c=1:(k-1)     %This creates matrix newframes where all gaits have 
the same number of frames 
    for t=1:gaitframe(c) 
        newlabel(t)=round(t*maxframe/gaitframe(c)); 
        newframes(newlabel(t),c)=matrix(t,c); 
    end 
end 
  
rowsum=0; 
rowcount=0; 
  
for t=1:maxframe   %Averages all gaits together 
    rowsum=sum(newframes(t,:)); 
     
    for c=1:(k-1)  
        if newframes(t,c)>0 
            rowcount=rowcount+1; 
        end 
    end 
  
    %Divides by number of rows summed to create an average 
    avframe(t)=rowsum/rowcount; 
     
    rowcount=0; 
end 
end 
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Linear Interpolation-This function takes a vector, removes all the 
zeros and then stretches that vector to 100 elements in length through 
linear interpolation.  It is necessary because the avframes function 
creates average vectors for various gait statistics that all have 
different lengths.  The fillincurve function standardizes all the 
lengths to "maxframe" 
 
 
function [curve]=fillincurve(vector,maxframe) 
%[curve]=fillincurve([0 0 0 0 0 0 0 0 1 20 4]) 
%Derrick Chelliah 28 Feb 2008 
 
  
newlabel=[]; 
newvector=[]; 
  
framenum=length(vector); 
  
  
%Initially removes all zeros from vector 
for t=1:framenum 
    if vector(framenum+1-t)==0 
        vector(framenum+1-t)=[]; 
    end 
end 
  
framenum=length(vector); 
  
%Creates longer vector with original values equally spaced 
for t=1:framenum 
        newlabel(t)=round(t*maxframe/framenum); 
        newvector(newlabel(t))=vector(t); 
end 
  
k=length(newlabel); 
  
  
%Fills in all zeros by interpolating between every two consecutive 
points 
for j=1:(k-1) 
  
firstframe=newlabel(j); 
nextframe=newlabel(j+1); 
interveningframe=newlabel(j+1)-newlabel(j)-1; 
slope=(newvector(newlabel(j+1))-newvector(newlabel(j)))/(newlabel(j+1)-
newlabel(j)); 
  
for i=1:interveningframe 
    newvector(newlabel(j)+i)=newvector(newlabel(j))+i*slope; 
end 
  
end 
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%Removes first five elements which often remain zero 
  
newvector(1)=[]; 
newvector(1)=[]; 
newvector(1)=[]; 
newvector(1)=[]; 
newvector(1)=[]; 
  
curve=newvector; 
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Overarching Calling Function-This function merely sets up and calls one 
of the four human gait recognition functions, either MED, Mahalanobis, 
Quadratic Discriminant or LMED by altering line 23.  The file 
dynamicvar.mat contains the variable outputcombined which contains 
statistics generate by the inputread3 file 
 
 
function [accuracy]=callingfunction(values) 
%Derrick Chelliah 28 Feb 08 
 
load('dynamicvar.mat'); 
  
[n,m]=size(values); 
  
newoutput=[]; 
  
  
for i=1:m 
  
    newoutput=[newoutput outputcombined(:,:,values(i))]; 
  
end 
  
label=[1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2  3 3 3 3 3 3 3 3 3  4 4 4 4 
4 ... 
    4 4 4 4  5 5 5 5 5 5 5 5 5]'; 
  
[accuracy]=LMED(newoutput,label,5,newoutput) 
  
end 
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Minimum Euclidean Distance-Function takes as input a matrix of 
parameters and uses the Lachenbruch hold-out procedure to find the 
Minimum Euclidean Distance between each gait and the average of the 
gaits in each test class in order to assign an identity to each gait 
 
function [totalaccuracy]=med(x,label,classnum,y) 
%Derrick Chelliah 28 Feb 2008 
 
  
[nc,n]=size(x); 
  
meddis=zeros(nc,1);     %Assigns initial MED distance for all lines as 
1000 
%assign=1000*ones(nc,1); 
for k=1:nc 
    assign(k,1)=10000000; 
    assign(k,2)=k; 
end 
  
original=x; 
labeloriginal=label; 
  
for z=1:nc 
  
x(z,:)=0; 
label(z)=0; 
  
means=zeros(classnum,n); 
length=zeros(classnum,1); 
  
for i=1:classnum    %Calculates means for each class as well as # per 
class  
for k=1:nc 
    if label(k)==i 
        means(i,:)=means(i,:)+x(k,:); 
        length(i)=length(i)+1; 
    end 
end 
end 
  
  
  
for i=1:classnum 
    means(i,:)=means(i,:)./length(i); 
end 
  
  
  
  
%for i=1:nc      %Calculates med distance between each line and class 
mean and assigns lowest med and associated class for each line 
    for j=1:classnum 
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        meddis(z)=sqrt(sum((y(z,:)-means(j,:)).^2)); 
        if meddis(z)<assign(z,1) 
            assign(z,1)=meddis(z); 
            assign(z,3)=j; 
        end 
    end 
  
  
x=original; 
label=labeloriginal; 
end 
  
  
accuracy=zeros(classnum,1);     %Calculates # of lines appropriately 
labelled 
  
for i=1:nc 
    if assign(i,3)==label(i) 
        accuracy(label(i))=accuracy(label(i))+1; 
    end 
end 
  
  
for i=1:classnum        %Calculates percent accuracy per class 
    accuracy(i)=accuracy(i)/9; 
end 
  
totalaccuracy=1-sum(accuracy)/classnum; 
  
conting=zeros(6,6); 
  
for i=1:nc 
        conting(label(i),assign(i,3))=conting(label(i),assign(i,3))+1; 
end 
  
for i=1:5 
    conting(i,6)=sum(conting(i,:)); 
    conting(6,i)=sum(conting(:,i)); 
end 
  
conting(6,6)=sum(diag(conting)); 
  
conting 
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Minimum Mahalanobis Distance-%Function takes as input a matrix of 
parameters and uses the Lachenbruch hold-out procedure to find the 
Mahalnobis distance between each gait and the average of the gaits in 
each test class in order to assign an identity to each gait 
 
function [totalaccuracy]=Mahalanobis(x,label,classnum,y) 
%Derrick Chelliah 28 Feb 2008 
  
[nc,n]=size(x); 
  
meddis=zeros(nc,1);     %Assigns initial med distance for all lines as 
1000 
  
for k=1:nc 
    assign(k,1)=10000000; 
    assign(k,2)=k; 
    assign(k,3)=0; 
end 
  
original=x; 
labeloriginal=label; 
  
for z=1:nc 
  
x(z,:)=0; 
label(z)=0; 
  
%Calculates means and variance for each class 
for i=1:classnum 
    indx=find(label==i); 
    means(i,:)=mean(x(indx,:)); 
    varmean(i,:)=var(x(indx,:),0,1); 
    [a,b]=size(x(indx,:)); 
    length(i)=a; 
end 
  
%Calculates Mahalanobis distance 
   for j=1:classnum 
        meddis(z)=sqrt(sum((y(z,:)-means(j,:))./varmean(j,:))^2); 
        if meddis(z)<assign(z,1) 
            assign(z,1)=meddis(z); 
            assign(z,3)=j; 
        end 
    end 
  
x=original; 
label=labeloriginal; 
end 
  
accuracy=zeros(classnum,1);     %Calculates # of lines appropriately 
labelled 
  
for i=1:nc 
    if assign(i,3)==label(i) 
        accuracy(label(i))=accuracy(label(i))+1; 
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    end 
end 
  
  
for i=1:classnum        %Calculates percent accuracy per class 
    accuracy(i)=accuracy(i)/9; 
end 
  
totalaccuracy=1-sum(accuracy)/classnum; 
  
conting=zeros(6,6); 
  
for i=1:nc 
        conting(label(i),assign(i,3))=conting(label(i),assign(i,3))+1; 
end 
  
for i=1:5 
    conting(i,6)=sum(conting(i,:)); 
    conting(6,i)=sum(conting(:,i)); 
end 
  
conting(6,6)=sum(diag(conting)); 
  
conting 
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Quadratic Discriminant Function-Function takes as input a matrix of 
parameters and uses the Lachenbruch hold-out procedure to find the 
Quadratic Discriminant Function distance between each gait and the 
average of the gaits in each test class in order to assign an identity 
to each gait 
 
function [accur]=quadtest(output,label,classnum,sample) 
%Derrick Chelliah 28 Feb 2008 
 
  
[n,m]=size(output); 
q=0; 
  
%Converts static parameters to one column if converted to 100 columns 
  
if (output(:,1)==output(:,m)) 
    output(:,1)' 
    output(:,m)'     
    output=output(:,1); 
    q=5; 
end 
  
x=output; 
  
[nc,n]=size(x); 
  
origx=x; 
origsample=sample; 
origlabel=label; 
assign=ones(nc,1)*-10^1000000; 
  
for i=1:nc 
  
x=origx; 
label=origlabel; 
x(i,:)=0; 
label(i)=0; 
   
%Calculates means for classes 
for z=1:5 
    indx=find(label==z); 
    x_mean(z,:)=mean(x(indx,:)); 
     [a,b]=size(x(indx,:)); 
    length(z)=a; 
end 
  
%Calculates covariances for each class 
indx=find(label==1); 
 covariance(:,:,1)=cov(x(indx,:)); 
  
 indx=find(label==2); 
 covariance(:,:,2)=cov(x(indx,:)); 
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 indx=find(label==3); 
 covariance(:,:,3)=cov(x(indx,:)); 
  
 indx=find(label==4); 
 covariance(:,:,4)=cov(x(indx,:)); 
  
 indx=find(label==5); 
 covariance(:,:,5)=cov(x(indx,:)); 
  
 %Calculates discriminant function scores for each gait  
 for j=1:5 
        p(i,j)=0.5*log(det(inv(covariance(:,:,j))))-0.5*(sample(i,:)... 
            -x_mean(j,:))*inv(covariance(:,:,j))*(sample(i,:)-
x_mean(j,:))'; 
  
        %Assigns label based on lowest discriminant score 
        if p(i,j)>assign(i,1) 
            assign(i,1)=p(i,j); 
            assign(i,2)=j; 
        end 
    end 
end 
  
label=origlabel; 
  
conting=zeros(6,6); 
  
%Calculates contingency matrix on the basis  
for i=1:nc 
        conting(label(i),assign(i,2))=conting(label(i),assign(i,2))+1; 
end 
  
for i=1:5 
    conting(i,6)=sum(conting(i,:)); 
    conting(6,i)=sum(conting(:,i)); 
end 
  
conting(6,6)=sum(diag(conting)); 
  
x_mean; 
  
conting 
  
accur=1-(conting(6,6)/45) 
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Brand and Bound 1 algorithm-This function starts with parameter 
listed in initialvalues and runs them algorithm referred to by calling 
function using them.  It then attempts to remove parameters one at a 
time to see if this improves classification accuracy.  This process is 
repeated until elimination of parameters no longer improves 
classification accuracy. 
 
 
function [newaccuracy, initialvalues]=variablefunctionmed 
%Derrick Chelliah 28 Feb 2008 
 
initialvalues=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]; 
  
newaccuracy=callingfunction(initialvalues); 
initialaccuracy=1; 
  
  
while newaccuracy<initialaccuracy 
    initialaccuracy=newaccuracy; 
    for i=1:length(initialvalues) 
        values=initialvalues; 
        values(i)=[]; 
        accuracy(i)=callingfunction(values); 
    end 
     
    [newaccuracy variable]=min(accuracy); 
     
    if newaccuracy<initialaccuracy 
    initialvalues(variable)=[]; 
    end 
end 
  
  
end 
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Branch and Bound 2 algorithm-This function starts with parameters 1 through 
m and incrementally tests them individually with the algorithm 
currently referred to by callingfunction.  The most effective 
classifying parameter is kept and then the process is repeated to 
choose the second parameter.  This continues until addition of more 
parameters does not improve classification accuracy 
 
function [curraccur, values]=variablefunctionmed2 
%Derrick Chelliah 28 Feb 2008 
  
accurval=[]; 
  
m=14 
  
for i=1:m 
    values=i; 
    accurval(i)=callingfunction(values); 
end 
  
  
   [c,k]=min(accurval); 
   
  
values=k; 
curraccur=c; 
  
  
improvement=1; 
  
while improvement>0 
  
    improvement=0; 
     
    for j=1:m 
    tempvalues=[values j]; 
    tempval(j)=callingfunction(tempvalues); 
    if tempval(j)<curraccur; 
        values=tempvalues; 
        improvement=curraccur-tempval(j); 
        curraccur=tempval(j); 
         
    end 
    end 
end 
end 
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Principal Component Correlation-Calculates principal components for whatever 
data matrix is entered into line 16.  Also plots first three components 
against each other 
  
 
 
function [y,z,loadings]=princompcorrel 
%Derrick Chelliah 28 Feb 2008 
 
load('dynamicvar.mat'); 
  
graphoutput(46,:)=0; 
graphoutput(46,:)=[]; 
  
  
outputcombined(46,:)=0; 
outputcombined(46,:)=[]; 
  
x=outputcombined 
  
origx=x; 
  
meanx=mean(x); 
  
[n,m]=size(x); 
  
meanx=ones(n,1)*meanx; 
  
x=x-meanx; 
  
correl=corrcoef(x); 
  
display('PCA output:') 
[v,d]=eigs(correl); 
  
  
display('Loadings matrix calculated:') 
  
D=-(correl-triu(correl)-tril(correl)); 
  
loadings=(D^-0.5)*v*(d^0.5) 
  
z=diag(d)' 
z=z./sum(z) 
  
  
display('Component scores calculated:') 
  
y=x*v; 
  
component1=y(:,1); 
component2=y(:,2); 
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component3=y(:,3); 
component4=y(:,4); 
  
  
figure 
  
scatter(component1(1:9),component2(1:9),'b+') 
hold 
scatter(component1(10:18),component2(10:18),'kd') 
scatter(component1(19:27),component2(19:27),'m>') 
scatter(component1(28:36),component2(28:36),'gp') 
scatter(component1(37:45),component2(37:45),'cs') 
legend('Subject 1','Subject 2','Subject 3','Subject 4','Subject 5'); 
xlabel('Component 1') 
ylabel('Component 2') 
  
figure 
  
scatter(component1(1:9),component3(1:9),'b+') 
hold 
scatter(component1(10:18),component3(10:18),'kd') 
scatter(component1(19:27),component3(19:27),'m>') 
scatter(component1(28:36),component3(28:36),'gp') 
scatter(component1(37:45),component3(37:45),'cs') 
legend('Subject 1','Subject 2','Subject 3','Subject 4','Subject 5'); 
xlabel('Component 1') 
ylabel('Component 3') 
  
  
figure 
  
scatter(component2(1:9),component3(1:9),'b+') 
hold 
scatter(component2(10:18),component3(10:18),'kd') 
scatter(component2(19:27),component3(19:27),'m>') 
scatter(component2(28:36),component3(28:36),'gp') 
scatter(component2(37:45),component3(37:45),'cs') 
legend('Subject 1','Subject 2','Subject 3','Subject 4','Subject 5'); 
xlabel('Component 2') 
ylabel('Component 3') 
  
end 
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