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Abstract
Rather than delivering conventional munitions through the airspace of uncooperative
nations, a constellation of space-stored weapons could potentially target any point on the
Earth and arrive within the time it takes to de-orbit and re-enter through the atmosphere.
The research involves applying the dynamics of atmospheric re-entry to a Common Aero
Vehicle (CAV) and defining a ‘footprint’ of attainable touchdown points. The footprint
is moved forward to create a swath representing all the possible touchdown points in a 90
minute window. A nominal constellation of CAVs is established using a ‘streets of
coverage’ technique, and both analytic studies and numeric genetic algorithm techniques
are used to modify the nominal constellation. A minimum number of CAVs is identified

which ensures payload delivery to an area of interest within 90 minutes.
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OPTIMAL CONSTELLATION DESIGN FOR ORBITAL MUNITIONS

DELIVERY SYSTEM

1. Introduction

Background

The Common Aero Vehicle (CAV) is a lifting body capable of atmospheric re-
entry (1:29). This weapon platform could be deployed on air-launched suborbital
missiles, ICBMs, or launched into low Earth orbit via conventional boosters. The CAV
is envisioned to be self-guiding toward its target, using inertial and possibly GPS
navigation in concert with aerodynamic controls. When placed in orbit around the Earth,
it could be used to deliver a munitions payload to any location within its re-entry
footprint. Furthermore, a constellation of such vehicles could give 100% delivery

coverage over any desired portion of the Earth’s surface.

Problem Statement

In response to a query by the National Security Space Architect (NSSA), we will
attempt to quantify, both analytically and numerically, the minimum number of CAVs
required to fully cover a given portion of the Earth. Terrestrial delivery is required to
occur no later than 90 minutes from the time a decision is made to strike a target.

Coverage may be any band of latitude, extending from 0° to the latitude of interest.



Research Objectives/Focus

The research involves several disciplines and will determine optimal solutions for
constellations of CAVs, dependent upon several design parameters. An exploration of
atmospheric re-entry is necessary to determine the touchdown footprint of a single CAV.
Analytic constellation design will be used extensively to define several types of baseline
constellations. Numeric genetic algorithm (GA) techniques will be used to search for
non-analytic solutions. Finally, we will compare the results of both techniques and

identify the most efficient types of constellations to use in this application.

Methodology

While some of the research involves analytical evaluation of CAV constellations,
a great deal of the work depends upon the results of numeric simulation. Footprint width,
a fundamental quantity used in the analysis, is solely determined from numeric
integration of the CAV’s equations of motion. Additionally, generation of Earth
coverage statistics as well as the entire GA routine is numeric in nature. All of these
numeric techniques are carried out using MATLABO© (10), with the GA routine using an

add-on software package from Optimal Synthesis© (11).

Assumptions/Implications

Since this work represents a first look at this combining atmospheric re-entry and
constellation design, there are several basic assumptions which were made in order to
reduce the computational complexity of the problem and obtain a first-order solution.

First, the Earth is assumed to be spherical and non-rotating. Second, the atmosphere is



assumed to be exponential. Third, gravity is assumed to be constant throughout the
CAV’s trajectory. Fourth, we assume the CAV does not have any delta-v capability other
than that required to de-orbit. Finally, the CAV is not placed under any heating, dynamic
loading, or g-force constraints. Application of these assumptions leads to a more

conservative design than might be possible using more complex techniques.

Preview

Analytic results point to a polar inclined streets of coverage (SOC) constellation
as being the most efficient way to obtain 100% coverage for high latitudes. However,
GA techniques reveal a modified, inclined SOC constellation that, when investigated
further, can be obtained analytically and provides an improvement over the polar SOC

constellation when certain coverage requirements are imposed.



II. Literature Review

Overview

There has been a great deal of research in the disciplines of constellation design,
genetic algorithm (GA) search techniques, and atmospheric re-entry. In some cases, GA
techniques have been applied to satellite constellations (2:169-77), but the two disciplines

of atmospheric re-entry and constellation design have generally been treated separately.

Relevant Research

Much of the research in constellation design has focused on minimizing the
number of communications or remote sensing satellites required to continuously cover at
least some portion of the Earth (3, 4:179-84, 5:31-64, 6, 7:1419-30). These works all
begin with the direct relationship between swath width and satellite altitude. Satellites
are assumed to have circular footprints, and analysis consists of examining the number of
orbit planes and the number of satellites per plane as variables leading to the
determination of swath width. Once swath width is obtained and the constellation is
minimized, the required altitude can be directly calculated. Conversely, constraints on
orbit altitude may dictate a swath width, which can then be used to find a minimum
number of satellites that yield the desired coverage.

Constellation design using the streets of coverage (SOC) approach has also been
investigated. In this method, the ascending nodes of orbit planes are evenly spaced
through 360° for arbitrarily inclined constellations, and through 180° for polar inclined

constellations (7:1420, 8:188-200, 9:431-33). These works arrange satellites such that



their circular footprints are aligned in such a way as to minimize the number or orbit
planes required. This is generally done by placing the ‘dip’ created by adjacent circular
footprints next to the ‘bulge’ created by a footprint in the next orbit plane. However,
because the last orbit plane is counter-rotating with respect to its next neighbor, its nodal
spacing must be smaller than the average spacing (7:1420-23). In any case, none of these
works investigates nodal spacing for values other than 180° or 360°.

Some research has also focused on determining the intersection of both co-
rotating and counter-rotating swaths in order to facilitate coverage of specific latitudes or
latitude bands (3:8, 5:62-3). An analytic method of determining the latitude of swath
crossings is developed using spherical geometry. We refer to this analysis extensively in
the analytic portion of this work.

Genetic algorithm search techniques are widely researched and documented. No
new techniques are presented here; rather, standard GA search techniques (12:211-15) are
employed with the aid of a MATLABO© (10) add-on software package from Optimal
Synthesis© (11). We refer the reader to texts by Holland (17) and Koza (18) for more
information on genetic algorithms in general.

Atmospheric re-entry is also a well-researched subject. Many theoretical and
practical studies have been conducted on hypersonic re-entry vehicle dynamics and
control. Generally, these studies have focused on recovering manned spacecraft (13:239-
68) or on ballistic re-entry of ICBM warheads (14:8-16). Of specific interest, however, is

a controllable re-entry vehicle’s footprint of possible touchdown points. This topic has



been addressed, and the footprint has been analytically determined (15:207-10). The

results of this particular work are critical to the problem addressed in this study.

Applicability of Current Research

This research was sponsored by the National Security Space Architect (NSSA) in
response to a query regarding potential offensive space architectures. The solutions
presented in this paper represent a first look at this problem from the standpoint of storing
munitions on-orbit.

This problem differs from previous research in that swath width is no longer a
function of altitude or the number of satellites per plane, but rather a fixed value
determined solely by the re-entry performance of the CAV. Furthermore, the system
does not operate instantaneously as with remote sensing or communications platforms.
CAVs cannot deliver their payloads until they have physically passed through the
atmosphere, which consumes a finite amount of time.

Therefore, there is a specific requirement on the time until delivery. This allows
us to account for both re-entry time and spacing of the CAVs within an orbit plane. In
this problem, delivery must be within 90 minutes from the time of de-orbit.

We will also investigate SOC constellations in which nodal spacing takes on some
value between 180° and 360°. This approach, combined with the non-continuous

coverage, creates a unique problem to solve.



II1. Methodology

Overview

We begin by simulating the equations of motion for the CAV during atmospheric
re-entry to obtain a maximum lateral distance and the time to attain this distance. With
this information we define the area that the munitions could impact within 90 minutes.
The remainder of the problem consists of arranging a constellation of CAVs such that
their touchdown swaths completely cover the Earth.

Much of the work was numerical in nature, and several functions were created by
the author to aid in processing data. They include a re-entry profile function, which
simulates the equations of motion and outputs latitude and longitude as a function of
time; a constellation development function, which creates a nominal constellation of
CAVs based on inputs such as swath width, inclination, and desired latitude coverage;
and an Earth grid function which is used to calculate Earth coverage statistics. The GA
portion of the analysis relied heavily on a fitness function, which incorporates the number
of CAVs in a constellation and the percentage of Earth coverage generated by the
constellation to produce a fitness value relative to all other constellations being
considered. Finally, the GA algorithm used many built-in functions included in a
MATLABO add-on package from Optimal Synthesis©. See Appendix C for the

MATLAB® code used in these functions.



Atmospheric Re-entry

We begin by defining the reference frame in which the CAV operates. Starting
from an inertial frame X-Y-Z, with its origin at Earth center, we introduce a rotating
frame x-y-z, also with its origin at Earth center. This frame is rotated through two angles:
Earth east longitude, 0, and Earth latitude, ¢. The CAV’s position vector lies along the x-
axis. A third frame a-b-c, also rotating, is centered on the CAV. The a-b plane lies in the
local vertical plane, with the b-axis directed out the front of the CAV. The c-axis is given
by c =a xb. From this frame we define the flight path angle, v, measured downward
from the local horizontal to the velocity vector; the heading angle, ¥, measured from the
local latitude to the projection of the velocity vector onto the local horizontal; and the
bank angle, 6, measured from the a-b plane to the lift vector. We also note that the lift

vector is always perpendicular to the velocity vector. Figure 1 shows these relationships.



Figure 1 CAV Coordinate Systems

We make some simplifying assumptions before proceeding. The Earth is
assumed to be spherical and non-rotating. Additionally, the atmosphere is assumed to be
exponential, and gravity is assumed constant throughout the trajectory. Based on these
assumptions and reference frames, the equations of motion for atmospheric re-entry are

as follows (16):
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We refer the reader to the section on notation for explanation of these variables.

The lift vector, as the shaping force of the re-entry trajectory, is controlled by the
bank angle, 6. This is a similar approach to that used in the Space Shuttle program (13).
Starting from a point immediately after the re-entry burn, a footprint of possible impact
points is constructed. The maximum downrange capability is obtained by maximizing
lift and holding bank angle constant at 0°. Lateral range is obtained by commanding
bank angle to some value other than 0° in order to give the lift vector a horizontal
component, which then turns the vehicle through its descent. Optimal control of bank
angle in maximizing lateral range has been investigated (15:208), but for this effort we
choose a constant bank angle to simplify the process. Vinh gives 45° as a suboptimal
constant value, but also notes that for any given lift-to-drag ratio, a value greater than 45°
will produce the greatest lateral range. This optimal value is obtained by solving the

cubic equation

10



where E = C,/C;and a = cos” o (16:353).

Once bank angle is obtained, the equations of motion are numerically integrated
in MATLABO using a variable step size 5" order Runge-Kutta algorithm. Of particular
interest in this application is the CAV’s crossrange, or lateral capability. The maximum
lateral range, Amay, 1 primarily a function of bank angle and vehicle ballistic parameters.

Although control in this simulation is open loop, we choose to employ a simple
method of control to help maximize lateral range. In this scheme the CAV maintains its
optimum bank angle (from Equation 2) until the heading angle is turned 90° away from
the initial heading, at which time the bank angle is set to 0°. This prevents the CAV’s
trajectory from becoming a spiral and allows a greater lateral range than if the bank angle
were fixed throughout the trajectory. We also obtain the time to reach 4,4, denoted as #..

eniry» and the downrange distance of A, denoted as dyc.eniry-

11
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Figure 2 Footprint Size vs. Lift-to-Drag Ratio

There are several quantities from Equation 1 which might change the outcome of
the simulation. Chief among these are the ballistic quantities associated with the CAV
itself: its mass, frontal surface area, and its coefficients of lift and drag. We assume a
fixed mass and frontal area, and focus instead on the effects of the ratio of lift to drag,
denoted as L/D. Figure 2 illustrates the effect of L/D on footprint size and displacement
from a de-orbit burn at 0° latitude and 0° longitude.

The left ends of the footprints are open due to the fact that we do not allow bank
angle to change with time (e.g. performing roll reversals). The complete footprint can be
obtained using more sophisticated methods (15:207-10), but for this application we are

only interested in the maximum width of the footprint. Table 1 lists some possible values

12



for L/D and the associated values for lateral range, Aqx, time of re-entry, t.c_ensy, and

downrange distance of Auax, dre-entry-

Table 1 L/D and Swath Dimensions

LD Amax tre-entry (SE€C) Are-entry
0.3 1.52° 1921 94.16°
0.5 3.75° 2186 103.77°
0.7 7.00° 2518 115.94°
0.9 11.25° 2907 129.91°

Analytic Constellation Design

We begin the analysis by defining the total area which can be covered by a single
CAYV within the 90 minute time constraint. Since our starting point can be anywhere in
the CAV’s orbit, we define a swath of coverage based on the current position of the CAV
within its orbit, uy; the orbital mean motion, w; and the quantities Aax, tre-entry, AN dre-cntry-

The swath length is defined as follows. The CAV can attain any point within the
footprint, but we are interested only in the points at which the swath is at its widest.
Therefore, we do not consider points before or after dye.cny. This omission gives a
conservative estimate of the ground swath (as discussed below), but greatly simplifies the
analysis. The closest point along the ground trace is given by uy + dre-eny. 1f we allow
the CAV to travel through its orbit until the last possible moment, defined by 90 — tc_cnsry,

we obtain the furthest point along the ground trace that the CAV can attain. The swath

13



consists of the area between these two endpoints. Figure 3 illustrates the relationship

between time and distance and the CAV’s swath length.

: - CAV can re-enter
. at any point in this region

t= trz-:Az-:Antry

t=90-t
d= U + dreentry reontry

d= Ug + 0)*(90 - trz-:‘z-:intry)

Re-entry
% Re-entry
+ Trajectory

swath length p t =90 min.

& d= Up + [Q] *(90 - trz-:‘z-:‘ntry) + dreentry

Nominal Orbit
Trajectory

Figure 3 CAV Swath Length

Although the CAV is capable of attaining any point in the footprint, the time it
takes to travel to that point is variable. To simplify the analysis, we choose a constant
value for tre-enn. Figure 4 illustrates the time difference between two points in an
example footprint, with L/D at 0.7. The difference between the banked trajectory, which
takes 2518 seconds, and the straight trajectory, which takes 2562 seconds, represents only
a 1.7% deviation. The time difference grows with increased L/D; the difference is
approximately 9% at an L/D of 1.2. We will always use the longer time to represent

tre-entry 1N Order to maintain a conservative design.

14
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Figure 4 Time Difference for Straight vs. Banked Trajectory

The ends of the swath are somewhat irregular in shape due to the possibility of
using varying amounts of bank angle during the descent (see Figure 2). In this

application, however, we assume that the swath is of constant width w, where w =24

max *

Additionally, we note that the length of the swath is given by

[= 0)(90 - trefentry) (3)

Although this approach does not maximize the full potential of the CAV, it allows for a

simpler analysis of constellation coverage. Figure 5 and Figure 6 illustrate this concept.
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Now, based on the length of a swath of coverage, we can directly calculate the

number of CAVs required per orbit plane by
2
s = ceiling[Tﬁj , 4)

where / is given in Equation 3 and ceiling is a function that rounds up to the nearest
integer. Since s must be an integer, there will likely be some level of overlap between the

ends of the individual swaths within the orbit plane.
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Figure 5 Actual vs. Simulated Footprint Comparison
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Streets of Coverage Constellation Design
Given that we have a continuous swath of coverage of width w for each orbit

plane, our task is to arrange the planes such that we cover the desired portion of the globe
in the most efficient fashion. To begin, we adopt a streets of coverage (SOC) approach,
in which we ensure equatorial coverage by setting adjacent orbit planes close enough so
that they leave no gaps at the equator (8:191-93, 9:431-33). SOC constellations may be
arbitrarily inclined, in which case the ascending nodes are equally spaced through 360°.
They may also be polar inclined, in which case the ascending nodes are equally spaced
through 180° (9:431). We will investigate both these options as well as a third, modified
type of SOC constellation in which the ascending nodes are equally spaced through some

value between 180° and 360°.
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For inclined SOC constellations, we are free to choose any inclination for the
orbit planes as long as the required latitudes remain covered. We also note that as the
orbit planes become more inclined, the swath will cover a larger portion of the equator,
thereby reducing the total number of planes required to cover the entire equator. Figure 7

illustrates this concept and shows the swath as it crosses the equator.

equator

Figure 7 Swath Width at Equator Crossing

Application of spherical trigonometry gives the crossing width by

sin i

c= sinl[smwj. (5)

The number of orbit planes required to produce an inclined SOC constellation is given by
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p= ceiling[z—ﬂ} ) (6)
c

Of course, p must also be an integer so we round up and accept any overlap that
occurs between adjacent planes. At this point we have defined an inclined SOC
constellation.

Since the size of the swath is directly related to the L/D of the CAV, and the
number of planes is directly related to both inclination and L/D, it follows that different
combinations of inclination and L/D will require different numbers of CAVs for inclined
SOC constellations. Generally, as L/D increases, the number of planes decreases; and as
inclination increases, the number of planes also increases. Figure 8 shows the number of
orbit planes for inclined constellations as a function of L/D and inclination. Figure 9

shows an inclined SOC constellation.
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Figure 9 Inclined SOC Constellation (i = 60°, . = 10°, p = 18)
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For polar SOC constellations, Equation 6 may be simplified. This is due to the
fact that at inclinations of 90°, the ascending and descending paths of the CAVs
completely cover the globe. Thus, spacing the orbit planes around the entire
circumference of the Earth would result in two CAVs traveling opposite directions over
the same ground trace. To eliminate this redundancy, we distribute the orbit planes

around only half the Earth. The number of orbit planes is given by
p= ceiling[z} . (7)
w

In this case we see that as L/D increases, the number of planes decreases. Figure 10
shows the number of planes for polar constellations as a function of L/D. Figure 11

shows a polar SOC constellation.
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Modified Streets of Coverage Design

In Figure 9, we note that although we do indeed have complete coverage in the
area of interest, we also have a great deal of redundant coverage. In the interest of
economy, we might consider ways to eliminate one or more orbit planes from the
inclined SOC constellation to produce a modified SOC constellation.

We first consider removing half the orbit planes, as shown in Figure 12. That is,
the ascending nodes are distributed around 180°, just as in the polar SOC constellation.
There are now large areas of non-coverage; in fact, the only latitude fully covered is the
equator. This is obviously not an effective solution, so we next consider removing a
smaller number of orbit planes. In Figure 13, only three orbit planes have been removed.
Coverage is only slightly reduced and full coverage still exists nearly to the inclination of
the constellation. This result is promising, and we now consider how altering the
inclination of the modified constellation affects the minimum number of orbit planes

required for full coverage below a specified latitude.
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We first investigate how far apart two planes can be while still covering a given

latitude. To determine this value, we must understand how the spacing between orbit

planes relates to the intersection of their swaths (5:62-3). Figure 14 illustrates the

geometry involved.

latitude
to cover

‘- equator

r % 1
Side View

Figure 14 Swath Intersection Geometry

Several formulas from spherical trigonometry may be applied:
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We also know that

(d+x)=¢ ©)

req

where ¢, 1s the latitude of required coverage. These relationships can be combined to

eliminate o and x and produce an expression for n:

= — (10)
COS S

req

. (n) sing,, cosi—sinAd
sin

The complete derivation of this formula is given in Appendix B.

For this application, we define ¢,., and then find a value for inclination such that
the number of orbit planes is minimized. An inclined SOC constellation in which
inclination is equal to the latitude of interest serves as a baseline from which we hope to
improve. We will show that it is more efficient to use orbit inclinations that are
somewhat higher than ¢,,.

To create modified SOC constellations, we must find the smallest value of n such
that Equation 9 is satisfied. Stated another way, we are seeking a nodal spacing such that
the intersection of the upper boundaries of two swaths occurs at ¢,.,, as shown by Point O
in Figure 14. We choose a value for i and find » using Equation 10. The range over
which the ascending nodes are distributed must be at least equal to « but less than 2,

meaning the additional range n must be between 0 and n. This value # is then inserted
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into Equation 6 to determine the number of planes required for full coverage at the

desired latitude and inclination:

p=ceiling[ﬁ+n} (11)

C

The numerator in Equation 11 reflects a nodal coverage of w + n radians rather than 2n
radians. This process is repeated for all values of i between ¢,., and 90° to produce a
solution curve unique to this particular value of ;..

The results of this process, compared to inclined SOC and polar SOC
constellations, are shown in Figure 15 and Figure 16 for two different swath widths. In
these examples, the curve on the far left represents the number of orbit planes required to
create inclined SOC constellations over the full range of possible latitudes. Each marker
along this curve indicates the number of planes required at a specific ¢..,. The curves to
the right show the number of planes and inclinations required for a modified SOC
constellation covering that latitude. Each of these is marked with the corresponding
symbol for its particular ¢,.,. The horizontal line represents the number of orbit planes

required to create a polar SOC constellation.
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Numeric Constellation Design
We now employ Genetic Algorithm (GA) techniques in an attempt to further

optimize the constellation. Briefly, GA allows for an examination of a large search space
using techniques borrowed from the biological processes of evolution (12:207-10).
Individual variables are designated as genes, and the genes are arranged into
chromosomes. Each chromosome represents one particular arrangement of the problem
variables (in this case representing a constellation of CAVs) which may then be

manipulated by genetic operations such as mutation, crossover, and inversion. These
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processes are pseudo-random and given enough time and appropriate rules for
determining the fitness of each chromosome, will converge to some optimal solution (or

one of a set of pareto-optimal solutions) (2:2).

Defining the Problem

The quantity to be minimized is the total number of CAVs required for 100%
coverage of the latitudes of interest. A constellation is described by both the number of
CAVs it contains and the coverage it provides. These two parameters are combined
within a fitness function which defines the total effectiveness of the constellation.

In all GA applications the problem must be represented as a chromosome with
distinct parts that can be manipulated by the GA processes. Here, we choose to encode
the constellation as a fixed-length binary string. Before we can take this step, several

intermediate encoding steps are necessary to ensure proper operation of the GA.

Encoding and Decoding the Chromosome

Each CAV in the constellation is fully described by its orbital elements: semi-
major axis, inclination, eccentricity, right ascension of ascending node, argument of
perigee, and mean anomaly. In this application, semi-major axis is fixed. Additionally,
all orbits are assumed circular which means argument of perigee and mean anomaly
become undefined; in this case we represent the CAV’s position within the orbit using
argument of latitude (9:28-31). Therefore, each CAV can be fully described using only
inclination, right ascension, and argument of latitude, and any constellation of CAVs may

be defined by an (N x 3) table of these values.
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One approach to building a chromosome from this table is to simply arrange the
rows one after the other into a single vector of length 3N. However, there are several
shortfalls with this method. First, when performing a crossover operation, two
chromosomes must be cut at some point along their length. The chromosomes then
exchange all information contained after the cut with each other. To retain all the
information for each CAV, the cut must occur along the length of the chromosome in
some multiple of three. Currently, the software used for the GA process is unable to
enforce this condition, and as a result any offspring from the crossover operation are
likely to be missing some information. Rather than attempt to work around these issues,
we adopt a table lookup approach.

We create a table which holds all possible combinations of inclination, right
ascension, and argument of latitude within certain fidelity. Each row of this table
represents one possible set of values describing a single CAV. Individual genes are now
reduced to a single integer representing the appropriate row in the lookup table. Figure

17 illustrates the difference between the two approaches.
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Genetic Structure #1 (Real Number Values)

Each gene represents
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to an orbital element of a CAV.
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Genetic Structure #2 (Binary Lookup Values)
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Figure 17 GA Encoding Scheme Comparison

We construct the lookup table by allowing the variables of interest to increment in
steps of .05 radians; inclination varies through a range of « radians while right ascension
and argument of latitude vary through 2x radians. This allows for a thorough search of
possible configurations while avoiding the computational overhead of an extremely large

matrix. The size of this table is given by

size =| 2| 2% ij =992,200. (12)
05 .05 \ .05

To accommodate this many values, a 20-digit binary string, which may take on

any value between 0 and 1,048,576 is ideal. Analytic results show that we can expect to
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never have more than 100 total CAVs (using current L/D values), so we select a fixed-
length chromosome of 20 x 100 = 2000 bits. This binary approach allows easy
manipulation of the information in the chromosome by the genetic processes.

This method also allows the algorithm to easily remove CAVs from a
constellation. There are 56,376 unused rows in the lookup table, and their contents are
assigned to the null set. When the algorithm references one of these ‘empty’ rows during
chromosome manipulation, the interpretation is that the CAV does not exist. Likewise,
removing a CAV is as simple as setting its gene to a value that references an ‘empty’ row
in the lookup table. Since the goal is to minimize the number of CAVs, having many
copies of the null CAV was thought to be desirable in increasing the likelihood of
removing additional CAVs during crossover operations.

Encoding the chromosome now consists of replacing each row in the constellation
matrix with its corresponding integer row number from the large lookup matrix, then
converting each integer into its 20-bit binary equivalent. The final step is to rearrange the
now (100 % 20) matrix into a (1 x 2000) row vector for processing by the GA code. To

decode processed chromosomes, we simply reverse the steps.

Genetic Processes
Once the encoded chromosomes are created, they are processed to generate
variability in the design. There are three processes which occur within each generation:
selection, modification, and decimation. Selection is performed by choosing one or two
chromosomes, either at random or in proportion to their fitness. Modification consists of
either mutation, where each bit is subject to inversion (1 — 0 or 0 — 1) based on a set
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probability; or crossover, where two chromosomes exchange a randomly determined
amount of genetic material. In both cases, chromosome length is fixed. Decimation
occurs at the end of each generation and is used to eliminate the least fit members from

the population, and to keep the population size at a manageable level.

Coverage Evaluation
A straightforward method to evaluate constellation coverage is to distribute
evenly spaced points around the equator and around each line of latitude, then check if
each point is covered at any point in the simulation. However, if the same number of
points are distributed along the higher latitudes as along the equator, there will be many
more points in the polar regions. This will tend to skew any figures of merit toward polar
coverage, which may not be desirable. We eliminate this problem by reducing the

number of points along any line of latitude by

pOintslatt’tude = (pOintSequator XCOS ¢) (13)

We also include a random starting point on each line of latitude to prevent
artificial weighting of the prime meridian. As the number of grid points increases, so
does the time required to compute coverage. Tests were performed with grid spacing as
low as 1° and did not show any appreciable increase in accuracy over larger values when
determining coverage. A grid spacing of 5° was chosen as a good balance between grid

fidelity (1656 grid points) and computational efficiency.
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Fitness Evaluation
To evaluate the fitness of a constellation, each CAV in the constellation is
propagated through its swath. Since the swath is defined only by 4., grid coverage at
each time step can be checked with a simple dot product calculation (see Figure 6). Ifa
grid point is covered it is flagged, and after all CAVs are propagated the total coverage is

calculated. The constellation’s fitness is given by

_ number of CAVs

(14)
coverage !

where g represents a variable exponent designed to penalize incomplete constellations.

This fitness value is passed back to the GA code, which then ranks the constellation, and

either retains the constellation for future generations or discards it through the decimation

process.

In Equation 14, the integer ¢ in the denominator controls the rate at which the GA
algorithm converges on possible solutions. Constellations with less than 100% coverage
are always penalized according to the amount of coverage they have. Early in the search,
we keep the penalty low, and therefore ¢ is small. This allows a larger variety of genetic
material to remain in the population. However, as the search proceeds, we must begin
eliminating those constellations with less than 100% coverage. Thus, we increase the
coverage penalty, and so ¢ increases throughout the life of the GA process.

Experimentation with the algorithm leads us to set ¢ = 3 at the beginning of the process
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and allow it to increase along a parabolic curve until the end of the process, at which time

q = 20. The exponent is computed by

1= U 3 (current generation — 1)2 +3 (15)
(total generations — 1)

where the value of total generations is input by the user.
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IV. Analysis and Results

Chapter Overview
This chapter details the results of both analytic and numeric analysis of the Earth
coverage problem. Minimal constellations are discussed and verified in both methods,

and general design conclusions are made.

Analysis

To assist in evaluating the performance of the analytic versus the numeric
methods, we choose the following CAV properties: L/D = 0.7; mass = 1000 kg; frontal
surface area = 10 m>. All CAV orbits are circular with a semi-major axis of 500 km.
Bank angle was calculated at 40.1° using Equation 2. The following values were
generated by the simulation: de-eniry = 115.94°; tre-eny = 2562 sec.; Amax = 7°. We choose

a latitude coverage band of + 65° for the first simulation, and +25° for the second.

Analytic Results

We now develop a nominal constellation of CAVs based on these values. Swath
length equals 182.77°, calculated using Equation 3. Swath width is given by
W = 2(Amax) = 14°. The number of CAVs per plane, s = 2, is found from Equation 4.
Number of orbit planes and constellation inclination varies widely with constellation
type.

For the polar constellation, p = 14 from Equation 7, and i > 83°.
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For the inclined SOC constellation, p = 12 and i = 25° for the + 25° case; and
p =25 and i = 65° for the £65° case. The number of planes was determined from
Equation 6, and the inclination was set equal to @,.,.

For the modified SOC constellation, p = 8 and i = 19.5° for the + 25° case; and
p =14 and i = 82.5° for the £65° case. The number of planes was determined using
Equation 11, and the inclination was determined from Equation 10.

We see from Figure 15 and Figure 16 that as inclination increases, more orbit
planes are required to fully cover the latitude band of interest when using an inclined
SOC constellation. This is because the width of the swath as it crosses the equator
decreases as inclination increases. However, for the modified SOC constellations, a more
complicated curve results, and this trend is actually reversed for mid to high values of
@req- Although the swath width at the equator is decreasing, the number of orbit planes
we can remove increases, driving the total number of orbit planes down. We also note
the impact of ¢,., on the length and slope of each curve. As expected, high latitudes can
only be serviced by high inclination orbits, and the effect of increasing inclination is
more pronounced.

Obviously, removing orbit planes from an inclined SOC constellation improves
the efficiency of the constellation. For lower-latitude coverage, these modified SOC
constellations are the most efficient way to cover the area of interest. As latitude
increases past a certain value, however, polar SOC constellations become more efficient.
The exact latitude where this transition occurs is a function of swath width and

inclination and is not analytically tractable. With sub-polar latitude coverage
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requirements, polar SOC constellations generate unneeded coverage in the polar regions,
but the fact that they require only half the orbit planes as inclined full SOC constellations
make up for this relative inefficiency. Therefore, a polar SOC constellation is the
generally the best method for providing mid- to high-latitude coverage.

If, for some reason, polar orbits are not achievable, the modified SOC
constellation still provides a significant advantage over its inclined SOC counterpart. As
shown in Figure 15 and Figure 16, constellation efficiency goes down as inclination
decreases, but still remains better than the full inclined SOC baseline.

An illustrative example is to consider, from Figure 15, the curve representing a
@req value of 35°. In this case, the full SOC solution requires approximately 29 orbit
planes, while the modified SOC solution requires approximately 25 orbit planes, at an
inclination of approximately 34°. The polar SOC solution in this case requires

approximately 26 orbit planes.

Numeric Results

The GA process was implemented with an initial population containing several
inclined SOC constellations for inclinations at and above the latitude being studied. In
order to provide the algorithm enough information to begin a valid search of the solution
space, approximately 100 randomly generated constellations were also included in the
population. Additionally, an ‘all zeros’ chromosome was added. This chromosome
represents an empty constellation (by referencing the null rows of the lookup table), and
allows the algorithm to remove CAVs from a constellation via the crossover operation.
The algorithm was run multiple times using a variety of values for total generations.
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Tests were performed using up to 10,000 generations with no improvement over lower
values. A value of 1500 generations was chosen to give a good balance between
computing time and depth of search.

In each GA run, the two best constellations and the two worst constellations were
plotted for analysis. As expected, the worst constellations were random assortments of
CAVs, with coverage often dropping below 50%. These were included in the output to
verify the algorithm was keeping a large variety of possible solutions in the population.
The best constellations were similar to the analytic solutions.

The GA algorithm produced interesting results. Numerically, the best
constellations found were similar to the ones obtained analytically. Figure 18 shows a
solution at ¢, = 25°, while Figure 19 shows a solution at ¢,., = 65°. The ¢,.,= 25° case
was identical to the analytic solution, but in the ¢,., = 65° case, the GA algorithm
eliminated one additional orbit plane from the analytical solution, which lowered
coverage values to > 97%. This was typical of the GA results in general; in most cases,

the best constellations had coverage slightly less than 100%.
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Analytic vs. Numeric Comparison

At this point we wish to summarize the results of both analyses. Although the
numeric analysis shows that further reductions from the analytic results are possible, it
does not represent a significant savings. The general result is that polar SOC
constellations are the most efficient way to cover mid to high latitudes, while modified
SOC constellations become optimal at lower latitudes. The exact latitude at which this
occurs is mainly a function of swath width and inclination and is not analytically

tractable. Table 2 and Table 3 compare the results of the analytic and numeric analysis.

Table 2 Constellation Summary for Latitude Requirement of 25°

Constellation Latitude Inclination | Number Number | Coverage

Type Coverage of Planes | of CAVs | (%)
Req’t

Polar SOC 25° > 83° 14 28 100

Full SOC 25° 25° 12 24 100

Modified SOC | 25° 19.5° 8 16 100

GA Low 25° 19.5° 8 16 100

Table 3 Constellation Summary for Latitude Requirement of 65°

Constellation Latitude Inclination | Number Number | Coverage

Type Coverage of Planes | of CAVs | (%)
Req’t

Polar SOC 65° > 83° 14 28 100

Full SOC 65° 65° 25 50 100

Modified SOC | 65° 82.5° 14 28 100

GA High 65° 83.1° 13 26 97.1

At this point we must acknowledge that the numeric results are somewhat

disappointing. This may be due to the lack of any truly new or interesting solutions or it
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may be due to shortcomings in the GA routine itself; without further investigation we
cannot confirm either suspicion. However, the results can be partially explained by
addressing some concerns regarding the operation of the GA routine. There were several
roadblocks to overcome in this formulation, not all of which were satisfactorily resolved.

First, the fidelity of the lookup table was of some concern. Although each orbital
element was incremented in steps of .05 radians (equivalent to 2.86°), a finer table might
lead to more robust results. The possibility exists that an optimal solution was missed
due to the proper value not existing in the lookup table. However, the excessive
computation time associated with a larger table prohibited its use in this study.

Second, calculation of the constellation’s fitness value was of some concern. The
problem of properly weighting Earth coverage was addressed early in the research by
allowing the exponent ¢ in Equation 14 to vary throughout the simulation. However, the
evolution of the population is very sensitive to the value of ¢ and the rate at which g is
allowed to grow during the simulation. Without further experimentation we cannot
definitively state that the fitness function ideally calculates the true fitness of the
constellation.

Finally, the issue of population diversity and its effect on convergence of the
algorithm must be addressed. Originally, the initial population was seeded with a single
inclined SOC solution, an ‘all zeros’ chromosome, and approximately 100 randomly
generated chromosomes. This setup produced constellations remarkably similar to the
modified SOC constellations discussed above. It was reasoned that the presence of the

‘zero chromosome’ allowed the algorithm to remove individual CAVs in the inclined
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SOC constellation. However, when a different mix of initial chromosomes was used, the
routine converged to a constellation containing only one CAV. This dependence on a
suitable initial population is a documented shortfall of GA searches in general (12:107).
The current assortment of constellations in the initial population was generated through
extensive experimentation; there may be a better mix of constellations that would yield

better results.
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V. Conclusions and Recommendations

Conclusions of Research

For mid to high latitude coverage requirements, polar SOC constellations are the
most efficient method of providing full coverage within 90 minutes of a decision to de-
orbit the CAV. For low latitude coverage requirements, or in circumstances where polar
orbits are not achievable, modified SOC constellations are the most efficient method.
The exact latitude at which this transition takes place cannot be obtained analytically, but
is mainly a function of swath width and inclination. Furthermore, in cases where less
than 100% coverage is acceptable, additional orbit planes can be removed from the
modified SOC constellation. The latitude at which these modified SOC constellations
become more advantageous than a polar SOC constellation varies with the swath width of

the CAVs in the constellation.

Significance of Research

The elimination of one or more orbit planes from inclined SOC constellations
results in launch cost savings (fewer launches required) as well as overall system cost
savings (fewer total CAVs required). The design paradigm addressed here is valid for
constellations which do not require continuous coverage, although the method could be
extended to more standard applications. Ifa ring of satellites in a single orbit plane can
produce a continuous swath of coverage on the ground, the method presented here may

be applied to design of the constellation.
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Also worth noting is the realization that reducing coverage requirements can
eliminate additional orbit planes in cases where the cost per orbit plane far exceeds the
value of complete coverage. A trade study using this paradigm could be conducted in the

design phase of almost any constellation of this type.

Recommendations for Future Research

In the future, a more robust study of CAV re-entry should be conducted to more
accurately and completely define the footprint and swath size of the vehicle.
Optimization of the re-entry trajectory could yield greater swath size and a subsequent
reduction in constellation size. Creating an algorithm to model the irregular shape of the
footprint, and thus the entire swath, would further maximize the potential of a single
CAYV and lead to additional reductions in constellation size.

Adding a delta-v capability while on orbit would also change the CAV’s footprint
and swath size, with a reduction in the number of CAVs required being a likely outcome.
The simplified analysis presented here is not sufficient to model the ability of the CAV to
change its orbit plane before re-entry. Significant further study is necessary to include
this capability.

The fidelity of the study would be improved by adding Earth rotation, J2, and
other perturbations into the model. These effects will not change the overall shape of the
constellations, but will provide further validation of the concept as well as a logical link
to the next part of the study.

Follow-on research should attempt to model a complete system of CAVs along
with their timing and target opportunities. Some specifics would entail creating an
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algorithm to define which CAV to select for deployment against a specific target, given
the current time and time-on-target information. The study would need to include a
robust model for orbital motion, a complete description of re-entry times to every part of
the footprint, and a method for choosing the CAV most likely to arrive at the target
within the 90 minute time constraint.

Finally, a more robust and reliable GA routine should be implemented. Many of
the shortfalls of the GA routine were addressed in the analysis section of this paper and
will need to be addressed before the GA search can be considered complete. Although
further reductions in constellation size may not be realistic, this endeavor should be

undertaken to eliminate any doubt on the matter.

47



Appendix A

Notation

EOM VARIABLES

h = altitude

6 = Earth longitude

¢ = Earth latitude

v = Earth — relative velocity

y = flight path angle, measured downward from local horizontal
Y = heading angle,measured from local latitude to the projection of v

onto the local horizontal

o = bank angle,measured fromlocal vertical to the lift vector

D_po
m 208m
)
L_pe T (g
m 2Bm cg
m
P = cqS

RE = Earth radius
H =scale height
P = atmospheric density at sealevel

S = surface area of reentry vehicle normal to velocity vector

OTHER VARIABLES

a = semi — major axis
o = orbital mean motion

i =inclination
Q =right ascension of ascending node

u = argument of latitude

Amax = maximum crossrange capability

w=swath width

[ =swath length

¢ =swath width at equator crossing for given inclination
s =number of satellites per orbit plane

p =number of orbit planes

d = latitude of ground trace crossing

x = latitude of upper swath boundaries crossing

n = ascending node spacing between orbit plane at Q=180° and last orbit plane used
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Appendix B

Nodal Spacing Derivation

We are seeking an analytic expression for the value » in Equation 10 and
Equation 11 which is used to determine the range of nodal crossings in a modified SOC
constellation. This derivation is based on the work of Rider (5:62). In Rider’s work, 7 is
known and A is the quantity being sought. Our approach differs from the reference that A

is known and #» is unknown; and that # is defined differently.

latitude
to cover

T, latitude
“to cover

i~ equator

Side View

Ascending nodes equally
spaced through this area

We reproduce Figure 14 here and begin with the following relations from

spherical trigonometry:
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2 tani
) COSi
sina =
cosd
) sin A
Sin x = —
sin

We also make use of the trigonometric identity

sin(a +b)=sin a cosh—cos asinb

and note from Equation 9 that

x:¢}’6q _d

Substitution of Equation AS into Equation A3 yields

sin A

sinlg,,, —d)=

sin &

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

Inserting Equation A2 and applying the identity in Equation A4, we obtain

sin A cosd
CcoSi

req
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This expression can be rearranged to produce

sin A
tand =tang,, — W (A8)

req

Substituting Equation A8 back into Equation Al and rearranging terms gives

sin cosi—sin A
sin[ﬁj _ S0 g , (A9)
2 cos@., sini

req

This relationship gives n entirely in terms of the known values ¢,.,4, A, and i.
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Appendix C

MATLAB®O Code

Re-entry Simulation

%%0%0%0%6%6%%%%6%%%%6%%0%0%0%6%6%%%%6%:%0%%% %6 %% %%%%%% %% %%
% REENTRY SIMULATION. CALLS EOMS FILE FOR INTEGRATION
%%0%0%0%6%6%%%%6%%6%0%6%%0%0%0%6%6%%%%6%:%0%%%0%0%6%6%%%%%% %% %%
function [lambda,maxtheta,maxtimel] = simple reentry reference(LDVALUE,altitude);
global cdO cl beta betam sigma lambda maxtimel

global target

global h0 theta0 phi0 vO gamO psi0 maxtheta maxphi

global GO SCALE RHOO MASS FR_AREA RE

% Times
tstep = 1; %sec
tfinal = 4000; %sec

% Earth and atmospheric parameters
RE = 6378000; GO = 9.8;
RHOO0 = 1.752; SCALE = 6700;

% Vehicle parameters

cd0 =1; cl=LDVALUE;

beta = (MASS*G0)/(cd0O*FR_AREA); betam = beta/G0;
sigma = sigmaopt(cl,cd0);

% Initial Conditions
h0 = altitude*1000; thetaO = 0; phi0 = 0;
v0 = sqrt(RE*GO0) - 130; gam0 = 0; psi0 = 0;

% Generate reference trajectory with sigma optimal

sigma = sigmaopt(cl,cd0);

y0 = [hO theta0 phi0 vO gamO psiO];

options = odeset('RelTol',1e-08,'AbsTol',1e-10*ones(1,6));

[t,y] = ODE45('simple reentry eoms',0:tstep:tfinal,y0,options);

for 1= 1:tfinal;

if y(i,1) >0
p(L,1) =y(L,1);
p(i,2) = y(1,2);
p(L,3) = y(1,3);
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p(i,4) = y(i,4);
p(L,5) = y(1,5);
p(,6) = y(1,6);
else break
end
end

[maxphi,maxtimel] = max(p(:,3));
lambda = maxphi;

maxphi = maxphi*(180/pi);
maxtheta = p(maxtimel,2)*(180/pi);
target = maxtheta + maxphi;
missvalue = target - maxtheta;

% Now try to achieve theta = target by using differing sigma values and
% roll reversals. Ifthe SMV is short, decrease sigma; if long, increase
% sigma.
sigma = sigmaopt(cl,cd0);
q="p;
while missvalue > .1;
clear q;
y0 = [hO theta0 phi0 vO gamO psiO];
options = odeset('RelTol',1e-08,'AbsTol',1e-10*ones(1,6));
[t,y] = ODE45('reentry2eoms_nolift',0:tstep:tfinal,y0,options);
for 1= 1:tfinal;
if y(i,1) > 0
q(,1) =y(,1);
q(1,2) = y(1,2);
q(1,3) = y(1,3);
q(1,4) = y(1,4);
q(1,5) = y(1,5);
q(1,6) = y(1,6);
else break
end
end
[maxtheta2,maxtime2] = max(q(:,2));
maxtheta2 = maxtheta2*(180/pi);
missvalue = target - maxtheta2;
sigmacorr = missvalue;
sigma = sigma - sigmacorr*(pi/180);
end
maxtimel
maxtime2
timediff = abs(maxtimel - maxtime?2)
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% Pass maximum time back to main program for use in coverage statistics
if maxtimel > maxtime2;
downrange time = (maxtheta*(pi/180))/m_motion;
else
downrange time = maxtime?2;
end

%%0%%0%6%6%%%%%%%%6%%0%0%0%6%6%%%%6%:%:%6%% %0 %% %%%%%% %%
% REENTRY EQUATIONS OF MOTION
%%0%0%0%6%6%6%%%%%%:%6%:%0%0%0%6%6%%%%6%:%0%%%0%0%0%%%%%%% %%
function [ydot] = simple reentry eoms(t,y)

global cdO cl betam sigma
global RE GO SCALE RHOO0
global hO theta0 phi0 vO gamO psi0O turn0

if y(6,1) >= psi0 + turn0;
sigma = 0;
end

%dh/dt
ydot(1,1) = -y(4)*sin(y(5));

%dtheta/dt
ydot(2,1) = (y(4)*cos(y(5))*cos(y(6)))/(cos(y(3))*(RE + y(1)));

%dphi/dt
ydot(3,1) = (y(4)*cos(y(5))*sin(y(6)))/(RE + y(1));

Y%dv/dt
ydot(4,1) = -(RHOO*exp(-y(1)/SCALE)/(2*betam))*y(4)"2 + GO*sin(y(5));

%dgamma/dt
ydot(5,1) = -(1/y(4))*((y(4)"2/(RE + y(1)))*cos(y(5)) + (RHOO*
exp(-y(1)/SCALE)/(2*betam))*y(4)"2*(cl/cd0))*cos(sigma) - GO*cos(y(5)));

%dpsi/dt

ydot(6,1) = (1/(y(4)*cos(y(5))))*((y(4)"2/(RE + y(1)))*(cos(y(5))"2) *sin(y(6)) *tan(y(3))
+ ((RHOO*exp(-y(1)/SCALE)/(2*betam))*y(4)"2*(cl/cd0))*sin(sigma));
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Earth Grid

%%0%%%%%%%%%0%0%0%%%% %% % %% %0%:%0%0%%%% %% %% %%6%0%%%% %%
% THIS PROGRAM CREATES A GRID OF POINTS SPACED EQUALLY AROUND
% THE EARTH. IT ACCOUNTS FOR BUNCHING AT THE POLES AS WELL AS

% RANDOMIZING THE START POSITION OF THE FIRST POINT ALONG EACH
% LINE OF LATITUDE.
%%0%%%%%%%0%%0%0%0%%%%%%% %% %0%0%0%0%%%% %% %% %%6%0%%%%%%

global tol num lat long earth grid grid tolerance grid points
global x1 y1 z1 max_lat

% User sets the spacing between grid points, entered in degrees.

tol = grid _tolerance*(pi/180);

% Initialize to zero degrees in both lat and long.

% Also introduce randomness into longitude start so prime meridian doesn't
% get too much weight.

lat = 0;

long = 0 + rand*tol;
num = 0;

a=1;

% Outer loop increments latitude and keeps longitude starting point random.
while lat <= max_lat;
% Inner loop increments longitude
while long <= 2*pi;
earth grid(a,1) = lat*(180/pi);
earth grid(a,2) = long*(180/pi);
earth grid(a,3) = 0;
% This block takes care of Southern Hemisphere by mirroring points
% when latitude is not zero.
iflat >0
a=atl;
earth grid(a,1) = -1at*(180/p1i);
earth grid(a,2) = long*(180/pi);
earth grid(a,3) = 0;
end
num = (2*pi/tol)*cos(lat);
long = long + (2*pi/num);
if long <= 2*pi
a=atl;
end
end
long = 0 + rand*tol;
lat = lat + tol;
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a=atl1;
end
[grid points,r] = size(earth grid);

grid indx = [1:grid_points];

current_lat = pi/2 - (earth_grid(grid_indx,1).*(p1/180));
current_long = earth grid(grid indx,2).*(pi/180);

x1 = cos(current_long).*sin(current_lat);

yl = sin(current long).*sin(current_lat);

z1 = cos(current_lat);

Constellation Function

%%%%%%%%%%6%%6%%%%%6%%0%%0%6%%6%6%%%%6%%6%%:%6% %% % %% %% %
% CREATES A NOMINAL CONSTELLATION BASED ON INPUTS FROM THE
% REENTRY SIMULATION.
%%%%%%%%%%6%%6%%%%%6%%0%%0%6%%6%%%%%6%%6%%%6% %% %6 %% %% %
function [constellation,num_planes,num_sats] =

constellation func2(lambda,maxtimel,inc,m motion,n)

global constellation earth _coverage TTT w

% Determine number of SMVs for this value of lambda
smv_per plane = ceil(2*pi/mod(m_motion*(TTT - maxtimel),2*pi));
if inc + lambda >= pi/2;
num_planes = ceil(pi/w);
else
num_planes = ceil((pi + n)/w);
end
num_sats = num_planes*smv_per plane;
raan_init = 0;
arg lat = 0;
count = 1;
u_incr = 2*pi/smv_per plane;
raan_incr = w;
constellation = zeros(num_sats,3);
while count < num_sats;
for count2 = count:count + smv_per_plane - 1;
constellation(count2,1) = inc;
constellation(count2,2) = raan_init;
constellation(count2,3) = arg_lat;
arg_lat = mod(arg_lat + u_incr,2*pi);
end
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count = count2 + 1;
raan_init = raan_init + raan_incr;
arg lat =0;

end

Genetic Algorithm

%%0%0%%6%6%6%%%6%%%0%0%0%6%6%%%6%%%%6%0%%%0%6%6%6%%%%%%:%%:% % %%
% THIS IS THE MAIN PROGRAM IN THE GENETIC SEARCH. IT HAS FOUR

% PARTS:

% 1) OBTAIN NOMINAL REENTRY PARAMETERS BASED ON SMV INPUTS

% 2) BUILD AN INITIAL POPULATION OF CONSTELLATIONS

% 3) GA SEARCH TO FIND OPTIMAL CONSTELLATION

% 4) DISPLAY RESULTS OF TWO BEST AND TWO WORST CONSTELLATIONS
% GRAPHICALLY
%%0%%0%6%6%6%%%%6%%0%0%0%6%6%%6%%%%%6%0%0%%0%6%6%6%%%%%%6%%:% % %%
clear all; pack;

global MASS LDVALUE FR_AREA altitude earth grid lambda TTT big_array bigrows
global grid tolerance sma ecc inc m_motion MU num_sats fitness A fitfun h k

global h0 theta0 phi0 vO gamO psi0 RE GO RHOO SCALE max_lat maxgen slope yint
global planes_ mod w

% Inputs for the SMV and the orbit, as well as the tolerances for the Earth
% grid and latitude limits

MASS = 1000; % kg
LDVALUE = .7; % lift/drag
FR_AREA =10; % m"2
deltav = 0; % m/s
altitude = 500; % km
max_lat = 65*(pi/180); % deg
grid_tolerance = 5; % deg
MU = 3.986¢5; % constant
TTT = 5400; % sec

% Nominal orbital elements

sma = 6378 + altitude; % km

ecc=0;

% Calculate orbital period

% no units

m_motion = sqrt(MU/sma”3); % rad/s

period = 2*pi/m_motion;

% sec

% Get displacement distance from reference reentry profile
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[lambda,maxtheta,maxtimel] = simple reentry reference(LDV ALUE,altitude);

% Set up and calculate Earth grid
earthgridpoints

% Generate the full constellation array for all possible SMVs
binsize = 20;

big array = zeros(2"binsize,4);

inc_int = .05;

raan_int = .05;

arglat_int = .05;

values = const_perms(inc_int,raan_int,arglat int);
values(:,4) = 1;

[valrows,valcols] = size(values);

big array(1:valrows,1:4) = values;
[bigrows,bigcols] = size(big_array);

% Setup max generations and fitness function exponent

maxgen = 5000;

maxexp = 20;

h=1;k=3;

fitfun = 3;

% Linear

if fitfun == 1;
slope = (maxexp - k)/(maxgen - h);
yint = 1 - slope;

end
% Right parabola
if fitfun == 2;
A = (maxgen - h)/((maxexp - k)"2);
end
% Up parabola
if fitfun == 3;
A = (maxexp - k)/((maxgen - h)"2);
end

% Initialize Genetic Search

seed = 601387;
gs_init(seed);

rand('state’, 91403)
%%0%%%%%%%%%%6%0%6%%%%6%6% %% %6%:%0%6%6%%%%6%6 %% %%6%0%%%%%%
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% DEFINE THE INITIAL POPULATION BASED ON MAX_LAT. INCLUDE
% HIGHER% INCLINATIONS EVENLY SPACED FROM MAX_LAT TO 90DEG.
Yo% Y6 %% Y6 %% Y6 %% Yo %% Yo %% Yo %% Yo %% % %% Y6 Y6 % %6 %6 %% %% % %% % %% %

% Define the range of inclinations the constellation function will consider
mem_count = 1;
% Define the baseline SOC constellation
count2 = 1;
for inc = [lambda:.002:p1/2 - lambda];
w = 2*asin(sin(lambda)/sin(inc));
for n =[0:.002:pi];
d = atan(sin(n/2)*tan(inc));
x = asin((sin(lambda)*cos(d))/cos(inc));
ifd + x >= max_lat;
nplanes = (pi + n)/w;
if nplanes >= 1;
planes3(count2) = (pi + n)/w;
13(count2) = inc;
n3(count?) = n;
count2 = count2 + 1;
end
break
end
end
end
[planes mod,p indx] = min(planes3);
m_inc = i3(p_indx);
m_n=n3(p_indx);
[full 1,mod 1,full sats,mod sats] =
constellation func_mod(lambda,maxtimel,m_inc,m motion,m n);

% Assign index numbers from big_array to each CAV in each constellation
% and pad the remainder of the chromosome with zeros
base vect = zeros(1,100);
[full lrows,full lcols] = size(full 1);
for aa = 1:full lrows;
aarow = find(big_array(:,1) <= full 1(aa,l) + inc_int/2 & big_array(:,1) >=
full 1(aa,1)-inc_int/2 & big array(:,2) <= full 1(aa,2) +raan_int/2 &
big array(:,2) >= full 1(aa,2) - raan_int/2 & big_array(:,3) <= full 1(aa,3) +
arglat_int/2 & big_array(:,3) >= full 1(aa,3) - arglat_int/2);
base vect(aa) = aarow;
end
full Ichrom = gs blank(reshape(dec2bin(base vect,binsize)',1,100*binsize));
mem_id = ['mem_id' num2str(mem_count)];
mem_id = gs new('Pop1',full 1chrom)
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mem_count = mem_count + 1;

base vect = zeros(1,100);
[mod lrows,mod lcols] = size(mod 1);
for aa = 1:mod_lrows;
aarow = find(big_array(:,1) <= mod_I(aa,l) + inc_int/2 & big_array(:,1) >=
mod_1(aa,l) - inc_int/2 & big_array(:,2) <= mod 1(aa,2) +raan_int/2 &
big array(:,2) >=mod 1(aa,2) - raan_int/2 & big_array(:,3) <= mod_1(aa,3) +
arglat_int/2 & big_array(:,3) >=mod_1(aa,3) - arglat_int/2);
base vect(aa) = aarow;
end
mod_1chrom = gs_blank(reshape(dec2bin(base vect,binsize)',1,100*binsize));
mem_id = ['mem_id' num2str(mem_count)];
mem_id = gs new('Popl';mod Ichrom)
mem_count = mem_count + 1;

% Now add constellations from a range of inclinations
inc_fidelity = (i3(end) - 13(1))/length(i3);
inc_increment = 20;
inc_spacing = (pi/2 - min(i3))/inc_increment;
inc_counter = 0;
next_indx = [];
while inc_counter < inc_increment;
while isempty(next_indx) == 1;
next_indx = find(i3(1,:) <= (i3(1) + inc_spacing*inc_counter) + inc_fidelity &...
13(1,:) >= (i3(1) + inc_spacing*inc_counter) - inc_fidelity);
inc_fidelity = inc_fidelity + .001;
end
next_inc = i3(next_indx(1));
planes_mod = planes3(next_indx(1));
next n = n3(next_indx(1));
[full 1,mod 1,full sats,mod sats] =
constellation func_mod(lambda,maxtimel,next_inc,m motion,next n);

% Assign index numbers from big_array to each CAV in each constellation
% and pad the remainder of the chromosome with zeros
base vect = zeros(1,100);
[full 1rows,full 1cols] = size(full 1);
for aa = 1:full lrows;
aarow = find(big_array(:,1) <= full 1(aa,l) + inc_int/2 & big_array(:,1) >=
full 1(aa,1) - inc_int/2 & big array(:,2) <= full 1(aa,2) +raan_int/2 &
big array(:,2) >= full 1(aa,2) - raan_int/2 & big_array(:,3) <= full 1(aa,3) +
arglat_int/2 & big_array(:,3) >= full 1(aa,3) - arglat_int/2);
base vect(aa) = aarow;
end
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full Ichrom = gs_blank(reshape(dec2bin(base vect,binsize)',1,100*binsize));
mem_id = ['mem_id' num2str(mem_count)];

mem_id = gs new('Popl',full 1chrom)

mem_count = mem_count + 1;

base vect = zeros(1,100);
[mod 1rows,mod 1cols] = size(mod 1);
for aa = 1:mod_Irows;
aarow = find(big_array(:,1) <=mod_1(aa,l) + inc_int/2 & big_array(:,1) >=
mod_1(aa,l) - inc_int/2 & big array(:,2) <= mod_1(aa,2) + raan_int/2 &
big array(:,2) >=mod 1(aa,2) - raan_int/2 & big_array(:,3) <= mod _1(aa,3) +
arglat_int/2 & big_array(:,3) >=mod_1(aa,3) - arglat_int/2);
base vect(aa) = aarow;
end
mod_1chrom = gs_blank(reshape(dec2bin(base vect,binsize)',1,100*binsize));
mem_id = ['mem_id' num2str(mem_count)];
mem_id = gs new('Popl';mod_Ichrom)
mem_count = mem_count + 1;

% Increment latitude loop and return to top of section
inc_counter = inc_counter + 1;

inc_fidelity = (i3(end) - i3(1))/length(i3);

next_indx = [];

end

%%0%%%%%%%%%0%6%0%0%%%%%% %% %0%:%0%0%%%% %% %% %0 %6%0%%%%%%
% CREATE RANDOM MEMBERS FROM BIG _ARRAY
%%0%%%%%%%%0%0%6%0%%%%%%%0 %% %0%:%0%0%%%% %% %% % %0%0%%%%%%

seed_array = randperm(bigrows);
linecount = 1;

for jj = mem count + 1:mem_count + 101;

randlength = floor(rand*100);

next _chrom = zeros(1,100);

next chrom(1,1:1 + randlength) = seed array(1,linecount:linecount + randlength);
next_chrom = gs blank(reshape(dec2bin(next chrom,binsize)',1,100*binsize));
linecount = linecount + randlength;

IDstr = ['mem_id' num2str(jj)];

IDstr = gs_new('Popl',next_chrom);

end

% Throw in some "all zeros" chromosomes for variety...

zero_chrom = gs_blank(num2str(zeros(1,2000)));
for kk = 1:100;

IDstr = ['mem_id' num2str(jj + kk)];
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IDstr = gs_new('Popl',zero_chrom);
end

% Add some "all ones" chromosomes for even more variety...
ones chrom = gs_blank(num2str(ones(1,2000)));
for 11=1:100;
IDstr = ['mem_id' num2str(jj + kk + 1)];
IDstr = gs_new('Popl',ones_chrom);
end

%%0%%%%%%%%%%6%0%6%%%%%% %% %6%:%0%6%6%%%:%6%6 %% %%6%6%%%%%%
% MAIN GENETIC MANIPULATION LOOP
%%0%%%%%%%%%%6%0%6%%%%6%6% %% %6%:%0%6%6%%%%%6 %% %%6%0%%%%%%
% Launch interrupt buttons
gs_open_cbox;
% Evaluate initial population
mem_count = gs_popsize('Popl’);
for id = 1:mem_count

chrl = gs get('Popl’, id);

fitness = main_fitness func_bin(chrl,3)

mem _id = gs set_fit('Pop1’, id, fitness);

% Check for suspend and break signals

gs break;
gs_suspend;

end

% Find best member in the initial population
disp('The best member in the initial population is');
mem _ids = gs_sel lofit('Popl");

chrl = gs get('Popl', mem ids(1))

disp('Its fitness is')

fitness = gs_get fit('Popl', mem ids(1))

best fit start = fitness;

%Save the best initial constellation for comparison later...
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[ee] = gs_sel lofit('Popl’);

[fitness,earth _coverage] = main_fitness func bin(gs_get('Popl',ee(1)),maxgen)
aa = bin2dec(reshape(gs_unblank(gs get('"Popl',ee(2))),20,100)")';

aa=aa';

lopop_initial = big_array(aa(find(aa),:),:);

display initial = lopop_initial(:,1:3)*(180/p1)

pause;

% Check for break signal

gs break;
% Genetic Search Loop

for gen = 1:maxgen
gen

% Trim population if over 500 members

mem_count = gs_popsize('Popl");

if mem_count > 500
mem _ids = gs_selr_hifit("Popl");
gs_del('Popl',;mem ids(1));
if mem_count-1 > 500

gs_del('Popl',;mem ids(2));

end

end

% Select genetic operation
op_name = gs_sel op({'mutbin’, 'xovr2'}, [0.200000, 0.8000001]);
% Select members for genetic operation
switch char(op_name)
case 'mutbin’
mem _ids = gs_selr_lofit("Popl");
case 'xovr2'
mem_ids = gs_selr("Pop1");
end

% Implement genetic operation

off ids = gs op('Popl', op_name, mem ids(1), mem_ids(2), 0.200000);
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end

% Evaluate the fitness of the offspring
for off = 1:length(off ids)

chrl = gs get('Popl',off ids(off));

fitness = main_fitness_func_bin(chr1,gen)

mem _id = gs set_fit('Popl’, off ids(off), fitness);
end

% Check for suspend and break signals

gs break;
gs_suspend;

% Find the best individual

disp('The member with the best fitness is')
mem _ids = gs_sel lofit('Popl");

chrl = gs get('Popl', mem ids(1))
disp('Its fitness is');

fitness = gs_get fit('Popl', mem ids(1))
best fit end = fitness;

% Close interrupt buttons

gs close cbox

% Show how much GA was able to improve over the intial population

improvement = best_fit start - best fit end

Yo% Y6 %% Y6 %% Y6 %% Yo %% Yo %% Yo %% Yo %% % Yo% Y6 %6 % %6 %6 %% %% % %% % %6 % %
% THIS SECTION PRINTS A SINGLE CONSTELLATION ALONG WITH THE

% ORBITAL ELEMENTS OF THE CAVS WITHIN IT.

%%0%%%%%%6%%%0%6%0%%%%%%% %% %0%%0%0%%%% %% %% %0%6%0%%%% %%

[ee] = gs_sel lofit("Popl");

[fitness,earth _coverage] = main_fitness func bin(gs_get('Popl',ee(1)),maxgen)

aa = bin2dec(reshape(gs_unblank(gs get('"Pop1',ee(1))),20,100)")';
aa=aa';

lopop = big_array(aa(find(aa),:),:);
[losats,nothing] = size(lopop);
const_elements_final = lopop(:,1:3).*(180/pi)
for cur_sat = 1:losats;
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% Get orbital elements for next SMV
inc_now = lopop(cur_sat,1);
raan_now = lopop(cur_sat,2);
arglat now = lopop(cur_sat,3);
% Calculate values outside loop to improve speed
cos_inc = cos(inc_now);
sin_inc = sin(inc_now);
count = 1;
% Increment footprint until 90 minute limit
for tt = arglat now + maxtheta*(pi/180):.05:arglat now + m_motion*(TTT -
maxtimel )+ maxtheta*(pi/180);
% Update the SSP for this time step based on SMV's orbital elements
SSP_lat = asin(sin_inc*sin(tt));
SSP_long = mod(atan(cos_inc*tan(tt)) + raan_now,2*pi);
if mod(tt,2*pi) > pi/2 && mod(tt,2*pi) < 3*pi/2;
SSP_long = mod(SSP_long - pi,2*pi);
end
SSP(count,1) = SSP_long*(180/pi);
SSP(count,2) = SSP_lat*(180/pi);
count = count + 1;
end
hold on;
figure(1); plot(SSP(:,1),SSP(:,2),'k.")
strl = ['SMVs="num2str(losats) ', Coverage = ' num2str(earth _coverage) ...
', L/D="num2str(LDVALUE) ', \phi= ' num2str(max_lat*180/pi) ...
', inc="num2str(inc_now*(180/pi)) "\circ'];
axis([0 360 -90 90]); grid off; box on;
xlabel('Longitude'); ylabel('Latitude');
text(180,-85,str1,'Horizontal Alignment','center’,'BackgroundColor','w','EdgeColor’,'’k");
end

Yo% Y6 %% Y6 %% Y6 %% Yo %% Yo %% Yo %% Yo %% % Yo% Y6 Y6 % %6 %6 %% %% % %% % %6 % %
% THIS SECTION PRINTS THE BEST INITIAL CONSTELLATION ALONG WITH
% THE ORBITAL ELEMENTS OF THE CAVS WITHIN IT.

Yo% Y6 %% Y6 %% Y6 %% Yo %% Yo %% Yo %% Ve %% % Yo% Y6 Y6 % %6 %% % %% % %% % %% %

[losats,nothing] = size(lopop _initial);
const_elements_initial = lopop _initial(:,1:3).*(180/p1)
for cur_sat = 1:losats;

% Get orbital elements for next SMV

inc_now = lopop_initial(cur_sat,1);

raan_now = lopop_initial(cur_sat,2);

arglat now = lopop_initial(cur sat,3);

% Calculate values outside loop to improve speed

cos_inc = cos(inc_now);
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sin_inc = sin(inc_now);
count = 1;
% Increment footprint until 90 minute limit
for tt = arglat now + maxtheta*(pi/180):.05:arglat now + m_motion*(TTT -
maxtimel )+ maxtheta*(pi/180);
% Update the SSP for this time step based on SMV's orbital elements
SSP_lat = asin(sin_inc*sin(tt));
SSP_long = mod(atan(cos_inc*tan(tt)) + raan_now,2*pi);
if mod(tt,2*pi) > pi/2 && mod(tt,2*pi) < 3*pi/2;
SSP_long = mod(SSP_long - pi,2*pi);
end
SSP(count,1) = SSP_long*(180/pi);
SSP(count,2) = SSP_lat*(180/pi);
count = count + 1;
end
hold on;
figure(2); plot(SSP(:,1),SSP(:,2),'k.")
str2 = ['SMVs="num2str(losats) ', Coverage = ' num2str(earth _coverage) ...
', L/D="num2str(LDVALUE) ', \phi= ' num2str(max_lat*180/pi) ...
', inc="num2str(inc_now*(180/pi)) "\circ'];
axis([0 360 -90 90]); grid off; box on;
xlabel('Longitude'); ylabel('Latitude'); text(180,-
85,str2,'Horizontal Alignment','center’,'BackgroundColor','w','EdgeColor’,'k");
end

Constellation Fitness Function

%%0%0%%6%6%6%%%%6%%0%0%0%6%6%%6%6%%%%6% %% %0%6%6%6%%%%%%:%6%:% % %%
% THIS FUNCTION DETERMINES THE FITNESS OF A CONSTELLATION BY

% COMBINING THE NUMBER OF CAVS WITH EARTH COVERAGE.
%%0%0%0%6%6%%%%%%%0%0%0%6%6%%6%6%%%%6%0%0%%0%6%6%6%%%%%%6%%:% % %%
function [fitness,earth coverage] = main_fitness func bin(constellation,gen)

global earth grid lambda grid points A fitfun

global m_motion TTT big_array slope yint h k

global maxtheta maxtimel x1 yl z1 maxgen bigrows

% Apply appropriate model for exponent

% Linear
if fitfun == 1;
n = slope*gen + yint;
end
% Right parabola
if fitfun == 2;
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n = sqrt((gen - h)/A) + k;
end
% Up parabola
if fitfun == 3;

n= A*(gen-h)"2 +k;
end

% Reshape the chromosome string into a matrix representing the
% constellation to be evaluated
vect]l = bin2dec(reshape(gs unblank(constellation),20,100)")';

if sum(vect1,2) == 0;
num_sats = 1;
earth coverage = 0.1;
fitness = num_sats/(earth _coverage”n);
return
end

vect] = vectl’;
chrl_const = big_array(vectl(find(vectl),:),:);
[num_sats,nothing] = size(chrl const);
earth grid(:,3) = 0;
for chrom count = 1:num_sats;
if chrl_const(chrom count,4) ==1;
% Get orbital elements for next SMV
inc_now = chrl_const(chrom count,1);
raan_now = chrl_const(chrom count,2);
arglat now = chrl_const(chrom count,3);
% Calculate values outside loop to improve speed
cos_inc = cos(inc_now);
sin_inc = sin(inc_now);
swath test = cos(lambda);
% Set stepsize for propagation loop
tt_incr = lambda;
% Increment footprint until 90 minute limit
for tt = arglat now + maxtheta*(pi/180):tt_incr:arglat now + m_motion*(TTT -
maxtimel )+ maxtheta*(pi/180);
% Update the SSP for this time step based on SMV's orbital elements
SSP_lat = pi/2 - asin(sin_inc*sin(tt));
SSP_long = mod(atan(cos_inc*tan(tt)) + raan_now,2*pi);
if mod(tt,2*pi) > pi/2 && mod(tt,2*pi) < 3*pi/2;
SSP_long = mod(SSP_long - pi,2*pi);
end
x2 = cos(SSP_long)*sin(SSP_lat);
y2 = sin(SSP_long)*sin(SSP_lat);
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z2 = cos(SSP_lat);
% Perform angular distance check of grid point and update grid coverage
test] = (x1*x2 + yl*y2 + z1*22);
indx1 = find(test] >= swath_test);
earth grid(indx1,3) = earth grid(indx1,3) + 1;
end
end
end
% Calculate Earth coverage
coverage counter = 0;
xtra_cov = 0;
for cc = 1:grid_points;
if earth grid(cc,3) >=1;
coverage counter = coverage counter + 1;
end
xtra_cov = xtra_cov + earth_grid(cc,3);
end
earth _coverage = coverage counter/grid points;
extra_coverage = xtra_cov/grid_points;

% Return fitness for this constellation
if earth_coverage >=.5;
fitness = num_sats/(earth_coverage”n);
else
fitness = num_sats/(.1"n);
end
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