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Abstract 

 

The main objective of this research effort was to examine the impact that cyclic 

loading frequency has on the life of a C/SiC composite at an elevated temperature of 

550°C.  Cyclic loading of C/SiC was investigated at frequencies of 375 Hz, 10 Hz, 1 Hz, 

and 0.1 Hz.  Creep-Rupture tests and tests that were combinations of creep-rupture and 

fatigue were also accomplished.  A monotonic tensile test was performed at 550°C and 

compared to a room temperature monotonic test.   

This study showed that an elevated temperature of 550°C has very little effect on the 

Ultimate Tensile Strength (UTS) of C/SiC.  The UTS of C/SiC at 550°C was 487 MPa, 

while the room temperature UTS is 493 MPa. 

The three creep-rupture tests in this study performed at 350 MPa, 175 MPa and 105 

MPa had lives of less than 11 hours despite the fact that the UTS of C/SiC is 487 MPa at 

550°C.  The short life of the specimens is due to the oxidation of the carbon fibers within 

the C/SiC composite. 

S-N curves developed from the fatigue tests indicate that there is an increase in 

cycles to failure as the frequency is increased.  Another important discovery in this study 

was the fact that oxidation of the carbon fibers within C/SiC is reduced when frequency 

of fatigue is increased.  At high frequency fatigue (10Hz to 375 Hz), C/SiC composites 

have longer cycle lives and time lives than at low cycle fatigue.  Microscopic and SEM 

analysis verified that oxidation of carbon within C/SiC is slowed as frequency of fatigue 

is increased. 
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MONOTONIC, CREEP-RUPTURE, AND FATIGUE BEHAVIOR OF 
CARBON FIBER REINFORCED SILICON CARBIDE (C/SIC) 

AT AN ELEVATED TEMPERATURE 
 
 
 
 

I.  Introduction 
 
 
 

A composite material can be defined as a material system consisting of two or more 

phases on a macroscopic scale, whose performance and properties are designed to be 

better than the individual materials that make up the composite (1:3).  Composite 

materials have been around since ancient times.  Stories in the Bible tell us how the 

Egyptians made their Hebrew slaves make bricks with mud and straw.  Composites have 

come a long way since the early days of man.  The 20th century has seen dramatic 

increases in composite technology.  These new technologies have been responsible for 

developments such as fiberglass in the 1940’s and Metal Matrix Composites (MMCs) in 

the 1970’s.  Today, composites are found in many different areas of our lives such as 

airplanes, cars, sporting equipment, and medical equipment.  This explosion in composite 

use has been fueled largely by the aerospace industry.  For instance, the B-2 Stealth 

Bomber is made almost entirely of composite materials.  The never-ending quest to make 

lighter, faster, and stronger spacecraft and aircraft has seen NASA and the Department of 

Defense (DoD) increase their composite research efforts.  Today, much of their research 

focuses on high temperature composite materials and their applications.  Ceramics are 

one of the best material classes when it comes to high temperature capabilities.  Thus, the 
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high temperature composites that are garnering much of the attention are Ceramic Matrix 

Composites (CMCs).  Most CMCs are able to withstand extremely high temperatures.  

However, CMCs do have some limiting factors that affect their performance.  One of 

these limiting factors is the oxidation that occurs within the CMC composite at high 

temperatures.  Carbon Fiber Reinforced Silicon Carbide (C/SiC) is a CMC that succumbs 

to oxidation at high temperatures.  The oxygen in air is able to react with the carbon and 

oxidize the carbon fibers within the SiC matrix.  Despite this oxidation problem, NASA 

and the U.S. Air Force are considering C/SiC as a composite candidate for many space 

and aircraft applications such as, heat exchangers, integrally bladed disks, nozzle exit 

ramps, un-cooled nozzles, combustors, thrust chambers, turbo pump rotors, and re-entry 

heat shields.  These applications will involve cyclic loading with large cycle 

accumulation at very high temperatures.      

Several studies have been conducted that analyze the oxidation that occurs within 

C/SiC composites.  For example, Verilli et al. (2) studied the behavior of C/SiC during 

creep-rupture and low cycle fatigue loading at temperatures of 550ºC and 650ºC.  He 

concluded that oxidation was the primary damage mechanism during these tests. 

One area that has not received much attention is the effect that cyclic loading 

frequency has on the oxidation of the carbon fibers within C/SiC.  This research effort 

will analyze this effect at an elevated temperature of 550ºC, and also compare it to the 

creep-rupture data obtained in this study.  Cyclic loading of C/SiC will be investigated at 

very high frequencies as well as low frequencies.  This study will also compare 

monotonic tension tests conducted at room temperature with tests conducted at 550ºC to 

see if the increased temperature has an adverse effect on the monotonic tensile strength of 
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C/SiC.  Tests will also be performed that combine the characteristics of creep-rupture 

testing and fatigue testing in order to better understand the oxidation that occurs within 

C/SiC. 

The following chapters will describe this research effort.  The background history of 

C/SiC research will be reviewed.  Next, the experimental techniques used in this study 

will be explained.  The results obtained from the tests performed will then be discussed.  

Lastly, some conclusions and recommendations for this study will be given. 
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II.  Background 

 
 
 

This chapter begins with an introduction to Ceramic Matrix Composites (CMCs).  A 

description of the characteristics and applications of carbon fiber reinforced silicon 

carbide ceramic matrix composites (C/SiCs) are then given.  Following that is a 

discussion of the oxidation that occurs within C/SiC during its exposure to elevated 

temperature environment.  Next, the behavior of C/SiC in creep, tensile, and fatigue tests 

are explained.  Finally, some comments on experiments conducted on C/SiC in various 

environments are given, and experimental observations from various tests are briefly 

mentioned.   

 
 
2.1  Ceramic Matrix Composites 

 
 
Innovative advancements in technology and research point to a diminished role for 

the Space Shuttle in the future.   Newly developed Reusable Launch Vehicles (RLVs) 

will soon replace the expensive shuttle.  “Within the next 10 years, NASA’s goal is to 

develop a second generation RLV that will increase the safety by two orders of 

magnitude and reduce the cost of placing payloads in orbit by one order of magnitude, 

when compared to the performance of the Space Shuttle” (3:435).  The materials that will 

help NASA accomplish this goal are Ceramic Matrix Composites (CMCs).  CMCs will 

increase safety because of their higher strength to density ratio and higher temperature 

capability, when compared to the current super alloys (4:1).  Launch and operational 

costs would also be decreased due to the lower weights of the RLV components.  Another 
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great advantage of CMCs is that because of their high temperature capability, cooling 

system requirements could be reduced or even eliminated (5:453).  This, in turn, would 

decrease the weight, cost, and complexity of RLVs.  The U.S. Air Force is also interested 

in CMCs because of their high temperature capability and high strength to density ratio.  

The Air Force could use these CMC materials to enhance individual Air Force 

components, thus increasing the performance and capabilities of their future aircraft and 

spacecraft.   

 
 

2.2  Carbon Fiber Reinforced Silicon Carbide (C/SiC) 
 
 
One CMC that has garnered particular attention by NASA and the Air Force is 

carbon fiber reinforced silicon carbide ceramic matrix composite (C/SiC).  This 

composite consists of continuous carbon fibers in a silicon carbide (SiC) ceramic matrix. 

2.2.1  Carbon Fibers. 

The carbon fibers that are used quite frequently in C/SiC are T-300 carbon 

fibers.  They have excellent tensile strength at room temperature, 2,760-3,450 MPa, 

and very high stiffness, 228 GPa (1:28).  The density of T-300 carbon fibers is about 

1.76 g/cm3 (1:28).  Some of the other advantages of carbon fibers are that they are 

relatively inexpensive, easily woven into complex architectures, and they possess a 

high thermal conductivity (6:443).  The major disadvantage of T-300 carbon fibers is 

that they are prone to oxidation at elevated temperatures.  The oxidation of the 

carbon fibers in the SiC matrix will be discussed in section 2.3. 
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2.2.2  Silicon Carbide (SiC) Ceramic Matrix. 

Ceramics are a very attractive material to the aerospace industry because of 

their ability to maintain strength at high temperatures, their high melting points, and 

their chemical stability in many hostile environments (7).  Ceramics are able to 

accomplish this because of their very strong chemical bonds, which are both ionic 

and covalent.  However, these strong bonds also cause ceramics to become brittle 

when a stress is applied.  Silicon Carbide (SiC) is a hard covalently bonded ceramic 

material with a high melting point, low thermal expansion, and excellent thermal 

conductivity (8).  It also has high hardness, good corrosion resistance, and high 

stiffness.  SiC is a material that can be used in applications where high temperature, 

wear, and corrosion resistant materials are required (8).  A disadvantage of SiC is 

that like all materials, there are flaws and cracks within it.  However, when a flaw or 

crack is present in a ceramic, deformation occurs at these high local stress locations, 

which then leads to catastrophic failure (7).  In a C/SiC composite, the carbon fibers 

prevent the SiC ceramic matrix from catastrophic failure by stopping the 

continuation of the matrix cracks through crack bridging (2:257).    

2.2.3  C/SiC Characteristics. 

The carbon fibers and the SiC ceramic matrix are combined to form C/SiC, 

which is a very strong high temperature ceramic matrix composite material.  C/SiC 

also has a low density, high stiffness, and high hardness.  It can withstand high 

abrasive action, is chemical resistant, has a low coefficient of thermal expansion, and 

it has great design flexibility (9:4).  There are four techniques that have been 

developed to manufacture or process C/SiC.  These processing techniques include: 
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slurry infiltration and hot pressing, polymer conversion, silicon melt infiltration, and 

chemical vapor infiltration (CVI) (10).  The technique that was used to manufacture 

the C/SiC used in this research effort was the CVI process.  “The primary advantage 

of this method is the uniform coating of tailored compositions for multi-layer at 

relatively low temperatures (900-1100°C)” (11:2).  The disadvantages of the CVI 

process are that it is very expensive, corrosive, toxic, explosive, and it has low 

deposition rates (11:2).  The CVI process is also very time-consuming in that it takes 

approximately 300-600 hours to complete (12).  After C/SiC is manufactured, the 

SiC matrix regions contain many micro-cracks.  These cracks “form upon cooling 

down from the processing temperature due to stresses that arise from the difference 

in the coefficients of thermal expansion for the carbon fiber and the SiC matrix” 

(4:2).  During the manufacturing process, a pyrolytic carbon coating can also be 

applied to the carbon fibers.  This coating helps to promote fiber-matrix debonding 

because pyrolytic carbon is inherently anisotropic and SiC is isotropic (13).  The 

weak bond between the carbon fibers and the SiC matrix is considered beneficial 

under monotonic tensile loading conditions, but has a negative effect during cyclic 

loading (14:4-5).  The negative effect is due to the internal frictional sliding and 

heating between the fiber and the matrix.   

2.2.4  C/SiC Applications. 

C/SiC is being considered as a new material in high temperature and high 

strength applications by the government as well as many commercial agencies.  The 

different application areas include optics, space technology, automotive, power 

technology, chemical engineering, nuclear engineering, medical, and defense related 
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applications.  Some of the individual applications include mirrors, telescopes, 

lifetime brake disks, radiant heater tubes, heat exchangers, wall and blanket 

components of fusion reactors, integrally bladed disks, large nozzle ramps, nozzle 

exit ramps, un-cooled nozzles, heat-pipe-cooled leading edges, combustors, thrust 

chambers, gas generators, vanes, turbo pump rotors, housings, throats, re-entry heat 

shields, and prosthetic devices (2; 3; 5; 9; 13; 14; 15; 16; 17; 18; 19). 

 
 
2.3  Oxidation of C/SiC 
 
 

Oxidation of carbon occurs when it is exposed to oxygen in air at elevated 

temperatures.  If left alone at the elevated temperature, eventually all of the carbon will 

dissipate in the form of carbon monoxide or carbon dioxide.  In a pure oxygen 

environment, it takes approximately 70 minutes to dissipate an entire 0.4-gram T-300 

carbon fiber tow at 600°C (4).  The carbon fiber tow will be entirely diffused in 35 

minutes at 1200°C (4).  Oxidation of the carbon fibers within the SiC matrix is a major 

concern when considering the high temperature use of carbon fiber reinforced silicon 

carbide ceramic matrix composites (C/SiCs).  The factors that affect the oxidation of the 

carbon fibers within the SiC matrix include the amount of as-manufactured micro-cracks, 

crack density, crack closure, temperature, stress, environment, and oxidation inhibitors 

(20:419).  The oxidation of the carbon fibers is able to occur within C/SiC because of the 

composites porosity and because of the micro-cracks that are formed in the SiC matrix 

(2).  As stated before, these micro-cracks occur in the SiC matrix “upon cooling down 

from the processing temperature due to stresses that arise from the difference in the 
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coefficients of thermal expansion for the carbon fiber and the SiC matrix” (4:2).  The 

porosity of C/SiC and the micro-cracks that are present in the SiC matrix allow a path for 

air to seep into C/SiC.  When the composite reaches a high temperature, oxidation 

between the carbon fibers and the air/oxygen that is in contact with the carbon begins to 

occur.  The carbon fibers that are exposed to the oxygen will eventually be destroyed 

which will put a greater load on the remaining intact or non-oxidized carbon fibers.  If the 

load is great enough, failure will undoubtedly occur.  However, the micro-cracks within 

the SiC matrix begin to close at C/SiC’s processing temperature, approximately 1100°C 

(4:8).  At this processing temperature, the thermal expansion of the carbon fibers and the 

SiC matrix are matched, which in turn causes the crack edges to come together and stop 

the seeping of oxygen into the composite.  Another positive effect on C/SiC at 1100°C is 

the growth of silica scale (SiO2) as the SiC matrix oxidizes.  This silica scale helps to fill 

in matrix cracks, which seal off the fibers from the outside air (4:8).   The presence of 

oxidation within C/SiC is drastically reduced between 1000°C and 1200°C at low stresses 

(4).  At temperatures above 1200°C, both of these anti-oxidizing occurrences begin to 

diminish.  The over expansion of the SiC matrix can cause cracks to widen, and the 

formation of SiO2 begins to increase in a parabolic fashion (4:8).  Both the over 

expansion of the matrix and the increase in SiO2 do much more harm than good to the 

composite at temperatures greater than 1200°C.  Therefore, when designing a system 

with C/SiC as a main component, oxidation damage of C/SiC must be taken into account 

at low and at high temperatures, i.e. less than 1000°C or greater than 1200°C. 
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2.3.1  Oxidation Protection. 

“Oxidation protection for C/SiC composites is a key to the true viability of these 

materials for anything other than limited life applications” (21-3).  There has been 

some research into oxidation protection of C/SiC.  It was shown by Halbig et al. (4), 

that at a low creep stress (69 MPa) and a high temperature (1454°C), the use of 

boron enhancements in the SiC matrix increased the stress-rupture life of C/SiC by 

10 times.  In this study, Halbig et al. (4) also demonstrated that at a high creep stress 

(172 MPa) and a high temperature (1454°C), the use of boron enhancements in the 

SiC matrix and an external seal coating of carbon, boron, and silicon increased the 

stress-rupture life of C/SiC by 600-900 times (4:6).  However, the research 

suggested that the enhanced C/SiC would still be susceptible to oxidation at lower 

temperatures where the protective borosilicate glasses and silica scales do not form 

(4:9). 

 
 
2.4  Creep or Stress-Rupture Behavior 
 
 

A creep or stress-rupture test is a procedure that is quite often used to characterize 

C/SiC.  It is accomplished in order to analyze the stressed oxidation strength of the 

composite.  Therefore, it is usually performed at temperatures greater than 400°C.  At 

temperatures greater than 400°C, oxidation of the carbon fibers is the primary damage 

mechanism in C/SiC (22).  The creep-rupture test, allows oxygen into the composite, 

which in turn begins to degrade the carbon fibers.  As a general rule, when temperature 

and stress is increased, the life of a sample is decreased (2:246). 
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2.4.1  Low temperatures (< 750°C). 

At low temperatures, oxidation of the carbon fibers within C/SiC occurs 

uniformly throughout the sample (2:246).  However, the oxidation rate increases as 

the temperature is increased.  For example, Verrilli et al. (2) showed that at a stress 

of 105 MPa the time to failure of C/SiC in air at 650°C was 3.67 hours, whereas, at 

550°C the time to failure was 18.28 hours.  More carbon fibers were oxidized at 

650°C than at 550°C. 

2.4.2  Intermediate Temperatures (750-1100°C). 

At intermediate temperatures, oxidation of the carbon fibers within C/SiC 

occurs in a non-uniform manner (2).  The oxidation location changes from the areas 

within the composite that are adjacent to the pre-existing micro-cracks to the surface 

of the sample.  These micro-cracks begin to close as the temperature of the sample 

approaches the approximate processing temperature of 1100°C (4:8).  Therefore, due 

to the closing of the micro-cracks, and the formation of a silica scale, oxidation of 

the carbon fibers is inhibited.  The creep life at 750°C is less than the creep life at 

1000°C.  For example, Halbig et al. (4) showed that at a stress of 172 MPa the time 

to failure of C/SiC in air at 750°C was 91 minutes, whereas, at 1000°C the time to 

failure was 124 minutes. 

2.4.3  High Temperatures ( > 1100°C). 

The positive effects of micro-crack closure and silica scale formation are 

diminished at higher temperatures.  Oxidation begins to reoccur at a rapid rate within 

the C/SiC sample at these extreme temperatures.  In the Halbig et al. study (4), the 
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creep-rupture life at 1250°C and 69 MPa was 142 minutes, whereas, at 1500°C the 

time to failure was 65 minutes (4:5). 

 
 
2.5  Tensile Behavior 

 
 
There is considerable variability in the tensile strength of C/SiC.  It has a tensile 

strength between 320 and 610 MPa at room temperature (2; 11; 14; 23; 24).  The 

differences in these values could be attributed to different manufacturing techniques, or 

to the large plate-to-plate variations of the manufactured C/SiC material (6-447).  Weave 

architecture of the carbon fibers within the matrix can also change the properties of C/SiC 

(25).  C/SiC maintains its tensile strength at elevated temperatures as well.  At 1200°C, 

C/SiC was shown to have a tensile strength of approximately 558 MPa (24).  The 

modulus of C/SiC increases as the sample temperature is increased.  The modulus of 

C/SiC at room temperature is about 47 GPa, however, at 650°C the modulus increases to 

100 GPa (14). 

 
 
2.6  Fatigue Behavior 

 
 
Cycling frequency plays a role in the fatigue of C/SiC at room temperature (14).  

This occurs because of the aforementioned weak bond between the carbon fibers and the 

SiC matrix.  When frequency of loading is increased, the fibers and the matrix slide 

against each other.  The internal friction causes an increase in internal heating.  If the 

internal heating gets to a high enough temperature, then oxidation could occur.  In a study 

conducted by Staehler et al. (14), it was shown that at a frequency of 375 Hz at room 
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temperature, oxidation of the carbon fibers did occur in the internal portions of C/SiC.  

This caused a reduction in cycles to failure at 375 Hz compared to 4 and 40 Hz (14). 

Cycling frequency plays a less significant role in the failure of C/SiC as temperature 

is increased.  This is due to the fact that oxidation becomes the primary damage 

mechanism to C/SiC at temperatures greater than 400°C (22).  Verrilli et al. (2) 

conducted a test at a temperature of 650°C, a load of 70 MPa, an R ratio of .05, and a 

frequency of 100 Hz.  The number of cycles to failure of this sample was about 3 million, 

and the time to failure was approximately 9 hours.  The same test conducted at a 

frequency of 0.033 Hz showed 1328 cycles and 11 hours to failure.  This data suggests 

that sample failure at high temperatures is not dependent on the number of cycles but is 

more reliant on the time that the sample is exposed to the high temperature.                       

             
 
2.7  Tests Conducted in Environments Other Than Air 

 
 
Many studies have been conducted in environments other than air.  For example, 

tests have been performed in pure oxygen, argon, steam, vacuums, and combinations of 

these environments (3; 5; 6; 15; 20).  The focus of these tests was to try to understand the 

oxidation of C/SiC.  However, these studies will not be addressed because this research 

effort will focus on tests conducted in an air environment. 

 
 

2.8  Experimental Observations 
 

There are many disagreements in previous tests conducted by different researchers.  

For example Verrilli et al. (2) found that the creep-rupture time to failure of C/SiC 
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manufactured by Allied Signal Composites at 550°C and 175 MPa was 1.53 hours.  On 

the other hand, Halbig et al. (4) found the time to failure of a creep-rupture test of C/SiC 

manufactured by Honeywell Advanced Composites conducted at 550 °C and 172 MPa to 

be 25 hours.  Both composites were manufactured via CVI and were composed of a SiC 

matrix reinforced by 2-D plain weave [0/90] preform of T-300 carbon fibers.  They were 

also seal coated with SiC after machining.  Verrilli’s (2) batch was seal coated via CVI, 

and Halbig’s (4) batch was seal coated via chemical vapor deposition (CVD).  The 

variation in the results could be attributed to the different seal coating methods, slight 

differences in manufacturing techniques, or the large plate-to-plate variations of the 

manufactured C/SiC material (6-447).  The large error could also occur because of 

mistakes or differences in experimental techniques.  Whatever the case may be, because 

C/SiC is such a new material, there needs to be more experiments conducted so that 

results can be compared, and more knowledge can be gained about the behavior of this 

new material.  When numerous experiments have been performed, and the results 

analyzed, then meaningful conclusions can be drawn regarding the properties of C/SiC at 

various temperatures and stresses. 

 



 3-1

 
III.  Material and Experiments 

 
 

This chapter begins with a description of the C/SiC composite used in this study.  

The test equipment that was used during the experiments is then mentioned.  Next, a 

discussion of the test procedures that were followed is given.  Finally, the post-failure 

analysis techniques are explained.     

 

3.1  Material Description 
 
 

The material investigated in this research was a woven carbon fiber-reinforced 

silicon carbide (C/SiC) ceramic matrix composite manufactured by Honeywell Advanced 

Composites Inc. (now part of General Electric), Newark, DE.  The C/SiC composite was 

manufactured using the chemical vapor infiltration (CVI) method.  Reinforcement of the 

SiC matrix was accomplished from 26 plies of plain-weave cloth in a [0/90] lay-up.  The 

cloth was woven from 1k tows of T-300 carbon fibers.  The fiber pre-form was given a 

pyrolytic carbon coating in order to promote toughness through fiber-matrix debonding 

(13).  Final fiber volume fraction was approximately 45%.  The composite bulk density 

was reported to be 2.0 g/cm3.  Figure 3-1 gives an enhanced look at the as-manufactured 

C/SiC composite.  The many micro-cracks within the matrix rich regions of the 

composite can be seen in Figure 3-1.  These micro-cracks in the SiC matrix are due to the 

differences in thermal expansion coefficients between the carbon fibers and the SiC 

matrix (4:2). 
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Figure 3-1.  Cross-Section Showing Micro-Cracks of C/SiC Composite 

 

 

 

 

Micro-cracks 

0.05 mm



 3-3

Test specimens were cut from the same 216 mm x 216 mm x 3 mm manufactured 

nominal plate.  The specimens were then machined into a dog-bone configuration.  The 

total length of the specimens was 78 mm.  Gage section dimensions were 8 mm wide by 

12 mm long, while the tab section dimensions were 10 mm wide by 30 mm long.  After 

the machining and cutting of the specimens, they were then seal coated with SiC via 

chemical vapor deposition (CVD) process.  The final thickness of the specimens was 

approximately 3.4 mm.  The as-manufactured test specimen can be seen in Figure 3-2. 

 
 

 

Figure 3-2.  Manufactured Test Specimen (scale is in inches) 
 
 
 
3.2  Test Equipment 
 
 

There were five main pieces of equipment used during the testing of the C/SiC 

composite.  They were the servo hydraulic machine, the furnace, the chilled water 

system, the extensometer, and the computer software.   
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The servo hydraulic machine used for all of the tests was a Material Test Systems 

(MTS) Corporation axial test system with a 25 kN (5500 lb) capacity.  This horizontally 

configured machine is shown in Figure 3-3. 

 

 

Figure 3-3.  Servo Hydraulic Machine Used in Experiments 

 

The grip pressure used on the specimen when placed in this machine was 6.89 MPa 

(1000 psi).  This selected grip pressure was chosen so that it was high enough to prevent 

the specimen from slipping during loading.  The grip pressure was also low enough so 

that the specimen was not crushed when being gripped.  A load cell measured the load 
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that was placed on the specimen by the servo hydraulic machine.  This load cell was an 

MTS 661.20E-01 load cell with a 25 kN capacity.              

The furnace used during the testing of C/SiC was a single zone Amteco Hot-Rail 

Furnace System with heating elements in the top and bottom portions of the furnace 

chamber.  The C/SiC specimen was held between these two heating elements which 

heated the specimen on both sides.  The furnace chamber was very small and compact 

with dimensions of 15 mm wide, 50 mm long, and 64 mm deep.  A separate MTS 409.83 

Temperature Controller unit controlled the temperature inside the furnace chamber.  The 

single zone furnace had a thermocouple placed in the upper portion of the chamber.  This 

thermocouple sent the signal to the Temperature Controller, which then supplied the 

power to the upper and lower heating elements.  Figure 3-4 shows a picture of the bottom 

portion of the furnace. 

The chilled water system was a NESLAB model HX-75.  The function of the chiller 

was to keep the specimen grips and the load cell cool, while the furnace and the 

surrounding area was very hot.  The NESLAB did this by pumping 7°C distilled water 

through hoses connected to the grips and the load cell isolation block. 

Specimen extension was measured with an MTS extensometer model number 

632.53E-14.  The extensometer consisted of two alumina rods placed 12.7 mm (½ inch) 

apart.  It was held against the specimen with spring pressure.  A heat shield was also part 

of the extensometer setup.  Cooling was accomplished by room temperature air being 

forced through the diffuser on an air-cooling attachment.  An MTS calibrator model 

650.03 was used to periodically calibrate the extensometer.    
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The computer software used to control the servo hydraulic machine and the furnace 

was MTS TestStar IV software.  The Multi Purpose Testware (MPT) feature of the 

software was used to program the various tests and to acquire data throughout the 

duration of the test.  Data acquisition was accomplished in logarithmic intervals (cycles 

1,2,3,4,5,6,7,8,9,10,20,30, etc.) and in various timed intervals.  Figure 3-5 shows an 

example of the MTS software program used in the specimen tests. 

 

 

Figure 3-4.  Amteco Furnace Used in Experiments 
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Figure 3-5.  MTS TestStar IV Software (MPT Portion) 

 

3.3  Test Procedures 
 
 

3.3.1  Specimen and Equipment Preparation. 

The samples were measured and wrapped with steel mesh before testing started.  

The height and width of the gage section were measured using a Fowler Precision 

Dial Caliper.  This cross sectional area was used to calculate the stress on the 

specimen by taking the measured load during the test and dividing it by the cross 

sectional area.  After the measurements of the specimens were recorded, steel mesh 

was then wrapped around the tab portions of the C/SiC composite.  This was done to 

aid in the prevention of slipping and crushing when the specimens were being 

gripped and loaded. 
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The target specimen temperature for all of the tests was 550°C.  Therefore, the 

furnace chamber temperature had to be calibrated to the actual temperature of the 

sample.  To accomplish this, a thermocouple was glued on the top middle portion of 

a dummy specimen.  This thermocouple was located 39 mm from each end of the 

sample.  Two thermocouples were also glued on the bottom right and bottom left of 

the same dummy specimen.  These thermocouples were located 34 mm from each 

end of the specimen.  The glue used to attach the thermocouples to the specimen was 

Omega CC High Temperature Cement.  The furnace was then heated until the 

middle thermocouple was stable at 550°C.  The temperature of the furnace at this 

point was 554°C.  Figure 3-6 shows the results from this calibration process. 
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Figure 3-6.  Oven Set at 554°C - Middle Thermocouple on Top of Sample 
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The dummy specimen was then flipped over so that the middle thermocouple 

was located at the bottom of the sample.  When the bottom middle thermocouple 

was stable at 550°C, the temperature of the furnace was 565°C.  Figure 3-7 shows 

this process. 
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Figure 3-7.  Oven Set at 565°C - Middle Thermocouple on Bottom of Sample 

 

In order to get the entire middle portion of the specimen’s temperature closest to 

550°C, a furnace temperature of 559°C was chosen.  The furnace temperature of 

559°C was then tested with both the middle thermocouple on the top and bottom.  At 

a furnace temperature of 559°C, the approximate temperatures of the top middle, top 

left, and top right after 30 minutes of heating were 559°C, 506°C, and 538°C 
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respectively.  The temperatures of the bottom middle, bottom left, and bottom right 

after 30 minutes of heating were 542°C, 537°C, and 512 °C respectively.  The 

furnace was then set at 559°C throughout the experiment.  Graphs of the top and 

bottom specimen temperatures at a furnace temperature of 559°C can be seen in 

Figures 3-8, 3-9, and 3-10. 
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Figure 3-8.  Oven Set at 559°C – Middle Thermocouple on Top 
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Figure 3-9.  Oven Set at 559°C – Middle Thermocouple on Bottom 
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Figure 3-10.  Oven Set at 559°C – Combination Graph Showing Middle Thermocouple 
Temperatures at Top and Bottom of Sample 

 
 

 
3.3.2  Testing. 

All of the tests were conducted at approximately 550°C in air under standard 

laboratory conditions.  Before a test was started, the C/SiC specimen was mounted in 

the servo hydraulic machine.  One end of the specimen was mounted in stroke 

control, while the other end was mounted in load control.  This assured that the 

specimen was at zero load during the heating process.  The specimen was then 

heated to 550°C (furnace was at 559°C).  This heating process took approximately 7 

minutes.  The specimen’s temperature was then allowed to stabilize for another 23 

minutes, which brought the total initial heating time to 30 minutes.  After the 30 
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minutes, the longitudinal thermal expansion (α) was calculated from the following 

equation: 

T
T

∆
=
ε

α  (1) 

where εT is the thermal strain and ∆T is the change from room temperature to 550°C.  

The average longitudinal thermal expansion for C/SiC was found to be 2.47x10-6/°C.  

The strain was then reset to zero, and the various tests were started.  Tests performed 

in this research included monotonic tension tests, creep-rupture, fatigue, and 

combinations of creep-rupture and fatigue.  Data acquisition was recorded at various 

time intervals for the monotonic tension and creep-rupture tests, and it was recorded 

in logarithmic intervals for the fatigue and combination (creep-rupture and fatigue) 

tests.  Furnace temperature, displacement, voltage (converted to strain), and load 

were the data that was recorded by the computer software.  

3.3.2.1  Monotonic Tension Tests. 

There was one monotonic tension test performed on C/SiC during this 

research effort.  This test was performed in stroke control with a displacement 

rate of .05 mm/sec. 

3.3.2.2  Creep-Rupture Tests. 

There were 3 creep-rupture tests performed on C/SiC.  They were 

performed in load control at stresses of 105 MPa, 175 MPa, and 350 MPa.  The 

creep load was reached by a ramping rate of 10 MPa/s. 
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3.3.2.3  Fatigue Tests. 

There were 9 fatigue tests performed on C/SiC during the study.  They 

were performed at 0.1 Hz, 1 Hz, and 10 Hz.  In addition, 8 fatigue tests at 375 

Hz were performed at the Air Force Research Lab Materials Directorate at 

Wright-Patterson AFB and are included in this study.  The fatigue tests were 

conducted in load control with an R-ratio (minimum load/maximum load) of 

0.05 and a triangular waveform.  The maximum load during the fatigue tests 

varied from 105 MPa to 500 MPa.   

3.3.2.4  Combination (Creep-Rupture and Fatigue) or Creep-Fatigue Tests. 

There were 3 combination tests performed on the C/SiC composite.  These 

tests were fatigue tests with a specified hold time at the maximum stress.  The 

hold time was 5 seconds for the 1 Hz test at 175 MPa.  For the two 0.1 Hz tests 

conducted at 175 MPa and 105 MPa the hold time was 50 seconds.  These 

combination tests were also conducted in load control with an R-ratio 

(minimum load/maximum load) of 0.05 and a triangular waveform.  Figure 3-11 

shows example segments of the waveform from these 3 tests. 

 

 

Figure 3-11.  Example Waveform for Combination (Creep-Fatigue) Tests 
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3.3.3  Test Matrix. 

Table 1 is a summary of the tests performed on the C/SiC composite in this 

study. 

 

Table 3-1.  Test Matrix 

Specimen Test Type of Maximum R
Number Temperature (°C) Loading Stress (MPa) Ratio
02-317 550 Monotonic 487 N/A
02-314 550 Creep 105 N/A
02-303 550 Creep 175 N/A
02-326 550 Creep 350 N/A
02-315 550 0.1 Hz 105 0.05
02-312 550 0.1 Hz 175 0.05
02-318 550 0.1 Hz 275 0.05
02-325 550 0.1 Hz 350 0.05
02-310 550 1 Hz 175 0.05
02-320 550 10 Hz 105 0.05
02-327 550 10 Hz 175 0.05
02-319 550 10 Hz 275 0.05
02-321 550 10 Hz 350 0.05
02-316 550 0.1 Hz - hold 50s 105 0.05
02-313 550 0.1 Hz - hold 50s 175 0.05
02-311 550 1 Hz - hold 5s 175 0.05
02-302 550 Invalid Invalid N/A
*02-304 550 375 Hz 175 0.05
*02-307 550 375 Hz 275 0.05
*02-269 550 375 Hz 325 0.05
*02-272 550 375 Hz 375 0.05
*02-272 550 375 Hz 400 0.05
*02-271 550 375 Hz 425 0.05
*02-305 550 375 Hz 500 0.05
*02-306 550 375 Hz 500 0.05

* Test Performed at AF Research Lab Materials Directorate, WPAFB  
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3.4  Post-Failure Analysis 
 
 

The post failure analysis consisted of cutting the specimens, mounting them, 

polishing, and finally analyzing them under an optical microscope and a Scanning 

Electron Microscope (SEM). 

3.4.1  Cutting. 

The specimens were cut so that the cross sectional area of the fracture surface 

could be analyzed.  Careful attention was used so that the longitudinal fibers were 

perpendicular to the cutting blade.  Cutting was accomplished with a Buehler 

ISOMET 1000 cutting machine and a Buehler Series 15LC diamond wafering blade.  

The speed of the saw was set at 350 rpm.  Figure 3-12 shows where the cuts were 

made on the specimens. 

 
 
 

 
Figure 3-12.  Specimen Cuts Made Before Mounting 

 

3.4.2  Mounting. 

After the specimens were cut, the face sample (Figure 3-12) of each specimen 

was mounted in a 3.175 cm (1.25 inch) diameter Simplimet 2000 mounting press.  

Cut 1 Cut 2 
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The mounting compound was a phenolic powder called Buehler Kunductomet II.  

The mounting process consisted of a pressure of 29 MPa (4200 psi) and a 

temperature of 150°C.  The total heating time was 6 minutes and the cool-down time 

was 3 minutes.  Mounted specimens were then infiltrated with a Caldofix Epoxy. 

3.4.3  Polishing. 

All of the specimens were polished on a Phoenix 4000 at 150 rpm.  The first 

step in polishing the mounted specimens was to rough polish them.  This was done 

with 600 grit SiC sand paper and a force of 7 lbs for 6 minutes.  Specimens were 

then polished for 18 minutes using Buehler Texmet 2000 pad, 6 µm diamond 

suspension, and a force of 0.5 lbs.  The next step consisted of a Buehler Texmet 

1000 pad, 1 µm diamond suspension, and a force of 0.3 lbs.  The specimen was 

polished for 42 minutes in this segment.  Lastly, the final polishing step was 

conducted for 10 minutes and consisted of a Buehler Microcloth pad, Mastermet 

suspension, and a force of 0.2 lbs.  The times of the polishing steps are approximate 

because each specimen was a little different.  Table 3-2 shows the polishing 

procedure steps. 

 

Table 3-2.  Polishing Procedure 

Surface Abrasive Time Force
Type/Size (min) (lbs)

Carbimet SiC 600 grit 6 7
Texmet 2000 6 µm diamond 18 0.5
Texmet 1000 1 µm diamond 42 0.3

Microcloth Mastermet 10 0.2  
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3.4.4  Microscopic Analysis. 

Upon completion of polishing, the specimens were analyzed with 2 different 

optical microscopes.  They were the Zeiss Stemi SV 11 and the Nikon EPIHOT.  

Pictures were taken of the specimens at different magnification levels. These 

micrographs can be seen in Section 4.6 of this report. 

The fracture surfaces seen in Figure 3-12 were also analyzed using a Scanning 

Electron Microscope (SEM).  The SEM was a Quanta 200 HV.  These micrographs 

can be seen in Section 4.7 of this report. 
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IV.  Results and Discussion 

 
 

This chapter begins by discussing the monotonic tension test that was accomplished.  

It then follows with a discussion of the creep-rupture tests.  Next, the fatigue test data is 

explained.  The combination (creep-rupture and fatigue) tests are then compared to the 

actual creep-rupture and fatigue data.  After this, combined results of all the tests are 

briefly mentioned.  Lastly, the microscopic analysis of the C/SiC samples is discussed. 

 

4.1  Monotonic Tension Test 
 
 

The Ultimate Tensile Strength (UTS) at 550°C measured from the monotonic 

tension test was observed to be 487 MPa.  This value is comparable to the room 

temperature UTSs observed in other studies.  For example, Staehler et al. (14) observed 

the UTS at room temperature to be 493 MPa, while Shuler et al. (26) and Effinger et al. 

(23) reported 420 MPa and 530 MPa respectively.  As a result, an elevated temperature of 

550°C has very little effect on the UTS of a C/SiC composite.  At 550°C the monotonic 

strain at failure in this study was observed to be 0.92%.  Staehler et al. (14) reported a 

strain at failure for a monotonic tension test at room temperature to be 1.2% to 1.3%. 

The stress-strain curve from the monotonic tension test conducted in this study is 

shown in Figure 4-1.  This figure shows that there is neither a linear elastic region nor a 

distinct knee in the stress-strain curve for the 550°C monotonic tension data.  The 550ºC 

curve is also consistent with the room temperature stress-strain curve in Figure 4-1. 
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Figure 4-1.  Stress-Strain Curve for Monotonic Tension Test at 550°C 

 

When a straight line is fit to the 550°C stress-strain curve from point (a) to (b) and then 

from point (b) to (c), the Modulus of Elasticity is found to be 96.6 GPa and 46.0 GPa 

respectively.  Staehler’s (14) modulus of elasticity at room temperature from point (a) to 

(d) and from (d) to (e) is 61.4 GPa and 41.3 GPa respectively.  The high initial modulus 

value for the 550°C data is due to the steep slope at the beginning of the stress-strain 

curve.  This steep slope could be caused by the expansion of the composite during the 

initial heating time.  This would then cause the composite not to expand or stretch as 

much during initial monotonic tension loading.  However, the stress-strain curves are 

very similar and almost parallel each other after the initial loading period. 

550ºC RT
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There is similarity in the UTS, the strain at failure, and the modulus of elasticity of a 

550°C and a room temperature monotonic tensile test.  The values at 550°C are very 

close to those of room temperature.  Therefore, an elevated temperature of 550°C has 

very little or no effect on the UTS, the strain at failure, and the modulus of elasticity 

when monotonic tension loading is applied at a displacement rate of 0.05 mm/second.  

However, if the displacement rate were lowered significantly then oxidation of the carbon 

fibers within the C/SiC composite might have an effect on the results.  The oxygen in the 

air would have more time to creep into the matrix cracks and oxidize with the carbon 

fibers.  Oxidation would then cause the UTS and the strain at failure to lower. 

 

4.2  Creep-Rupture Tests 
 
 

The three creep-rupture tests in this study were accomplished at 105 MPa, 175 MPa, 

and 350 MPa.  Table 4-1, Figure 4-2, and Figure 4-3 summarize the creep-rupture tests 

performed and also some creep-rupture tests performed by Verilli et al. (2). 

 

Table 4-1.  Creep-Rupture Results 

Specimen Stress Type of Temperature Time to Strain at Modulus during
Number (MPa) Loading (°C) Failure (hours) Failure (%) Loading (GPa)
02-314 105 Creep 550 10.59 0.20 96.1
02-303 175 Creep 550 1.68 0.51 66.4
02-326 350 Creep 550 0.43 1.02 57.3
Verrilli 70 Creep 550 24.23 N/A N/A
Verrilli 105 Creep 550 18.28 N/A N/A
Verrilli 175 Creep 550 1.53 N/A N/A  
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Figure 4-2.  Maximum Stress vs. Time to Failure of Creep-Rupture Tests 
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Figure 4-3.  Maximum Stress vs. Time to Failure of Creep-Rupture Tests (log scale) 
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As can be seen from Table 4-2, creep-rupture lives of the specimens in this research 

effort were less than 11 hours at 105 MPa despite the fact that the UTS of C/SiC is 

around 500 MPa.  The short life of the specimens is due to the oxidation of the carbon 

fibers within the C/SiC composite.  This carbon fiber oxidation effect will be discussed in 

sections 4.6 and 4.7.  In Figure 4-2 and Figure 4-3 there is practically no difference in the 

data of this study and Verilli’s (2), rather the data from both studies fall within a 

reasonable scatter band.  The slight variation in the results could be attributed to different 

seal coating methods, slight differences in manufacturing techniques, or the large plate-

to-plate variations of the manufactured C/SiC material (6-447).  The variation could also 

occur because of differences in experimental techniques.  However, it appears as though 

the results of the 3 creep-rupture tests performed in this study and the 3 performed in 

Verilli’s (2) study are statistically similar enough to add the same trend lines to the data 

in Figure 4-2 and Figure 4-3. 

Figure 4-4 shows the strain as a function of time for the 3 creep-rupture tests. 

It is interesting to note that as the creep-rupture stress is decreased, the strain at failure 

also decreases.  The higher stress tests are able to elongate more than the lower stress 

tests.  Once again, this is caused by oxidation of the carbon fibers.  The longer the 

specimen is stressed, the more time oxygen has to react with the carbon fibers within the 

composite.  Thus we see the 105 MPa creep-rupture test lasting 10.59 hours and only 

elongating 0.20%, while the 350 MPa creep test lasts only 0.43 hours and elongates 

1.02%.  Oxidation of the carbon fibers is also evident when comparing the strain the 

C/SiC underwent after reaching the creep-rupture stress.  The 105 MPa sample only 
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elongated 0.09% after reaching 105 MPa, while the 175 MPa and 350 MPa samples 

elongated 0.25% and 0.41% respectively after reaching 175 MPa and 350 MPa. 
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Figure 4-4.  Strain vs. Time for the Three Creep-Rupture Tests 

 

A rough estimate of the modulus of elasticity can also be determined during the 

initial loading to the creep stress.  This rough estimate is simply the secant modulus of 

the data in Figure 4-5.  Figure 4-5 displays the stress-strain curve during the 10 

MPa/second loading period for the creep-rupture stresses of 350 MPa, 175 MPa, and 105 

MPa. 
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Figure 4-5.  Stress vs. Strain - During Initial Ramp Period for Three Creep-Rupture Tests 

 

The secant modulus values estimated from the initial loading to creep stress were 

57.3 GPa, 66.4 GPa, and 96.1 GPa for the creep loads of 350 MPa, 175 MPa, and 105 

MPa respectively.  These values are consistent with the monotonic test shown in Figure 

4-1.  They fall between the two modulus values of 96.6 GPa and 46.0 GPa representing 

the modulus values from point (a) to point (b) and from (b) to (c) in Figure 4-1.  They are 

also similar to the secant modulus values of the monotonic test at various loads.  The 

secant modulus values obtained from the monotonic test in Figure 4-1 at loads of 350 

MPa, 175 MPa, and 105 MPa were 61.8 GPa, 81.2 GPa, and 97.0 GPa respectively.  The 

stress-strain curves of the creep-rupture tests and the monotonic test begin similarly, but 

they do not reach the part where the monotonic tension stress-strain curve begins to 
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flatten out.  The 175 MPa and 105 MPa creep tests have higher modulus values than the 

350 MPa creep test because they don’t go to a high enough stress.  The 175 MPa and the 

105 MPa stress-strain curves stop at the steeper portion of the stress-strain curve for 

C/SiC shown in Figure 4-1.  

 

4.3  Fatigue Tests 
 
 

The seventeen fatigue tests conducted in this study were accomplished at 0.1 Hz, 1 

Hz, 10 Hz, and 375 Hz.  Strain could not be measured during the 10 Hz and 375 Hz tests.  

Table 4-2 summarizes the fatigue test results as well as three low cycle fatigue tests 

accomplished by Verilli et al. (2) at 0.033 Hz. 

Maximum stress versus cycles to failure (S-N) curves were developed from the data 

of the fatigue results performed in this experiment and Verrilli’s (2) low cycle fatigue 

tests.  The S-N curves shown in Figure 4-6(a) and Figure 4-6(b) are expressed as the 

applied maximum stress versus cycles to failure for the five different frequencies.  Figure 

4-6(a) displays the data conducted in this research effort, and Figure 4-6(b) adds Verilli’s 

(2) data.  The S-N curves of the data in this study are very consistent.  Verilli’s 0.033 Hz 

curve in Figure 4-6(b) is either inconsistent with the other S-N curves or there is a 

limiting effect of frequency on fatigue behavior.  Further, the variation in the results from 

the present study and Verilli’s (2) study could be attributed to different seal coating 

methods, slight differences in manufacturing techniques, or the large plate-to-plate 

variations of the manufactured C/SiC material (6-447).    
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Table 4-2.  Fatigue Test Results 

Specimen Max Stress Frequency Temperature Time to Cycles to Strain at
Number (Mpa) (Hz) (°C) Failure (hrs) Failure Failure (%)
02-315 105 0.1 550 13.09 4,701 0.43%
02-312 175 0.1 550 3.77 1,353 0.55%
02-318 275 0.1 550 1.45 522 0.66%
02-325 350 0.1 550 0.59 212 0.82%
02-310 175 1 550 3.13 10,977 0.52%
02-320 105 10 550 19.84 575,607 N/A
02-327 175 10 550 4.62 136,163 N/A
02-319 275 10 550 0.87 24,873 N/A
02-321 350 10 550 0.22 6,376 N/A
*02-304 175 375 550 55.75 75,265,164 N/A
*02-307 275 375 550 11.57 15,624,760 N/A
*02-269 325 375 550 1.07 1,450,276 N/A
*02-272 375 375 550 0.14 188,132 N/A
*02-272 400 375 550 0.24 318,880 N/A
*02-271 425 375 550 0.23 313,976 N/A
*02-305 500 375 550 0.13 179,448 N/A
*02-306 500 375 550 0.005 11,152 N/A
Verilli 70 0.033 550 32.33 3,924 N/A
Verilli 105 0.033 550 34.03 4,015 N/A
Verilli 175 0.033 550 16.83 1,980 N/A

* Test Performed at AF Research Lab Materials Directorate, WPAFB  
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Figure 4-6(a).  S-N Curve for Fatigue Tests at 550°C 
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Figure 4-6(b).  S-N Curve for Fatigue Tests at 550ºC – Verilli’s(2) data added 
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The S-N curves in Figure 4-6(a) and Figure 4-6(b) indicate that there is an increase 

in cycles to failure as the frequency is increased at 550°C.  For instance, at a maximum 

applied stress of 175 MPa, the cycles to failure of 0.1 Hz and 375 Hz are 1353 and 

75,265,164 cycles respectively.  This is the opposite of the room temperature results 

reported by Staehler et al.(14).  In their research, they found that there was a reduction in 

cycles to failure as frequency is increased at room temperature.  The difference in results 

is due to the oxidation of the carbon fibers in the C/SiC composite at 550°C.  At lower 

frequencies, air is allowed to penetrate the matrix cracks and react with the carbon fibers.     

According to Verilli et al. (2), life of the C/SiC composite is more dependent on time 

at the elevated temperature rather than number of cycles at elevated temperature because 

of oxidation.  Thus a plot of maximum applied stress versus time to failure is given in 

Figure 4-7 and Figure 4-8 for the given frequencies. 

In Figure 4-7 and Figure 4-8 we see that at the higher applied stresses greater than 

350 MPa, frequency of fatigue does not play a role in composite life.  The data converges 

at high fatigue stresses.  However, at fatigue stresses lower than 350 MPa, the slopes of 

the frequency data (0.1 Hz, 10 Hz, and 375 Hz) in Figure 4-8 are decreasing as the 

frequency increases and the higher the frequency data have greater values than the lower 

frequency data.  In short, at 175 MPa, the 375 Hz sample has a longer time life than the 

10 Hz sample, and the 10 Hz sample has a longer time life than the 0.1 Hz sample.  This 

is very interesting because it means that oxidation of the carbon fibers within the 

composite is reduced when frequency of fatigue is increased.  At high frequencies,  

C/SiC composites have longer fatigue lives and time lives than at low frequencies.  This 

phenomenon is hard to explain and could occur because of a number of different reasons.   
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Figure 4-7.  Maximum Stress vs. Time to Failure for Fatigue Tests 
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Figure 4-8.  Maximum Stress vs. Time to Failure for Fatigue Tests – Log Scale 
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One possible explanation is that because of the high frequency, there is a lot of internal 

friction between the fibers and the matrix.  This internal friction causes an increase in 

surface temperature and the internal temperature of the composite (14:10).  It is possible 

that the internal temperature could increase enough that oxidation would be inhibited.  

The micro-cracks within the matrix begin to close as the temperature of the sample 

approaches the approximate processing temperature of 1100°C (4:8).  At this processing 

temperature, the thermal expansion of the carbon fibers and the SiC matrix are matched, 

which in turn causes the crack edges to come together and stop the seeping of oxygen 

into the composite.  Another explanation is the possible formation of a silica scale (SiO2) 

within the C/SiC composite.  This growth of silica scale occurs as the SiC matrix 

oxidizes.  The silica scale helps to fill in matrix cracks, which seal off the fibers from the 

outside air (4:8).   The presence of oxidation within C/SiC is drastically reduced when 

this formation occurs. 

Stress-strain loops were recorded for the 0.1 Hz and 1 Hz tests.  Examples of the 

stress-strain loops are given for 0.1 Hz (105 MPa), 1 Hz (175 MPa), and 0.1 Hz (350 

MPa) in Figures 4-9, 4-10, and 4-11 respectively.  Hysteresis can be seen in all of the 

stress-strain loops.  According to Staehler et al. (14), this hysteresis during a fatigue test 

is caused by friction between the fibers and the matrix along a debonded surface.  The 

weak bond between the carbon fibers and the SiC matrix is considered beneficial under 

monotonic tensile loading conditions, but has a negative effect during cyclic loading 

(14:4-5).  The negative effect is due to the internal frictional sliding and heating between 

the fiber and the matrix.  Figures 4-9, 4-10, and 4-11 also show that the most dramatic 

changes in the stress-strain loops occur during the first few cycles and the last few cycles 
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of the fatigue loading.  Dramatic changes in the first few cycles occur because the C/SiC 

composite begins to experience fiber debonding and an increase in matrix cracks.  The 

changes in the stress-strain loops during the last few cycles occur because the composite 

is beginning to show signs of failure. 

 

Stress vs. Strain Loops
Sample 02-315, 105 Mpa, R=.05, 0.1 Hz 
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Figure 4-9.  Stress-Strain Loop (0.1 Hz, 105 MPa) 
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Stress vs. Strain Loops
Sample 02-310, 175 Mpa, R=.05, 1 Hz 
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Figure 4-10.  Stress-Strain Loop (1 Hz, 175 MPa) 

Stress vs. Strain Loops
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Figure 4-11.  Stress-Strain Loop (0.1 Hz, 350 MPa) 
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The stress-strain loops can also be used to determine the maximum strain during 

each cycle.  This data is plotted so that damage progression can be observed throughout 

the life of the C/SiC composite.  Figure 4-12 and Figure 4-13 show this damage 

progression by plotting the maximum cycle strain versus cycles and time. 

   

Maximum Cycle Strain vs. Cycles
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Figure 4-12.  Maximum Cycle Strain vs. Cycles at 550°C 
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Maximum Cycle Strain vs. Time 
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Figure 4-13.  Maximum Cycle Strain vs. Time at 550°C 

 

Figure 4-12 and 4-13 demonstrate that the strain of the C/SiC composites appears to 

be independent of frequency.  The sample tested at 1 Hz data and 175 MPa lasted 3.13 

hours and had a strain at failure of 0.52%.  The sample tested at 0.1 Hz and 175 MPa 

lasted 3.77 hours and had a strain at failure of 0.55%.  These values are very comparable.  

The data of the 1 Hz and 0.1 Hz samples displayed in Figure 4-13 also shows that curves 

of these two samples are very similar.  However, when looking at the cycles to failure, 

there is great disparity.  The 1 Hz sample failed at 10,977 cycles, whereas, the 0.1 Hz 

sample failed at 1353 cycles.  This disparity is shown in Figure 4-12.  Therefore, the 

maximum cycle strain is not dependent on cycles, but more dependent on the time the 

sample is exposed to the temperature of 550°C. 
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The difference in maximum cycle strain from the first cycle to the last cycle can also 

be calculated from Figure 4-12.  For the 0.1 Hz tests conducted at 350 MPa, 275 MPa, 

175 MPa, and 105 MPa the differences were 0.19%, 0.27%, 0.32% and 0.31% 

respectively.  This upward trend is due to C/SiC becoming less stiff as the carbon fibers 

are oxidized.  This stiffness can be determined from the secant modulus data described 

next.      

Modulus of Elasticity values can be estimated from the stress-strain loops by 

computing the secant modulus.  This provides information about the degradation of 

C/SiC during cycling.  The secant modulus data can then be plotted as a function of 

cycles, time, and life fraction.  These graphs are shown in Figures 4-14, 4-15, and 4-16.  

The three secant modulus graphs (Figure 4-14, Figure 4-15, and Figure 4-16) definitely 

show that there is a degradation in modulus values as the composite undergoes fatigue 

loading.  Rapid degradation occurs after 100 cycles for the 0.1 Hz samples and after 1000 

cycles for the 1 Hz sample as seen in Figure 4-14.  As expected, secant modulus values of 

the low stress fatigue samples (105 MPa and 175 MPa) have higher modulus values than 

the high stress fatigue samples (275 MPa and 350 MPa) during the beginning of fatigue 

loading.  However, at the end of their fatigue lives, the low stress fatigue samples have 

lower modulus values than the high stress fatigue samples.  For example, during sample 

life secant modulus is reduced from 96.6 GPa to 24.6 GPa for the 0.1 Hz (105 MPa) 

sample and from only 96.6 GPa to 42.7 GPa for the 0.1 Hz (350 MPa) sample.  This can 

be seen in Figure 4-14, 4-15, and 4-16.  It occurs because at low stress fatigue (105 MPa 

and 175 MPa), the samples are equally stiff at the beginning of loading.  As time goes on, 

oxidation occurs which makes the composite less stiff.  Thus the modulus of elasticity 
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begins to drop rapidly.  The high stressed fatigue samples (275 MPa and 350 MPa) 

maintain their original stiffness because oxidation does not occur to a great extent within 

these samples.  Thus, modulus degradation is less in the high stressed fatigue samples and 

more in the low stressed fatigue samples. 
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Figure 4-14.  Secant Modulus vs. Cycles at 550°C 
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Secant Modulus vs. Time 
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Figure 4-15.  Secant Modulus vs. Time at 550°C 
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Figure 4-16.  Secant Modulus vs. Life Fraction at 550°C       
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4.4  Combination (Creep-Rupture and Fatigue) Tests 
 
 

The three combination tests were performed to compare the differences between 

creep-rupture tests and fatigue tests.  Recall from chapter 3 that these combination tests 

were fatigue tests with a specified hold time at the maximum stress.  The hold time was 5 

seconds for the 1 Hz test at 175 MPa.  For the two 0.1 Hz tests conducted at 175 MPa and 

105 MPa the hold time was 50 seconds.  Three similar fatigue tests and two creep-rupture 

tests were compared to the three combination tests.  Table 4-3 displays the results of the 

combination tests, the creep-rupture, and the fatigue tests that were compared. 

 

Table 4-3.  Combination (Creep-Rupture and Fatigue) Test Results 

Specimen Max Stress Type of Frequency Hold Time to Cycles to Strain at
Number (Mpa) Loading (Hz) Time (sec) Failure (hrs) Failure Failure (%)
02-316 105 Combo 0.1 50 8.68 521 0.54%
02-313 175 Combo 0.1 50 2.31 139 0.49%
02-311 175 Combo 1 5 2.01 1203 0.70%
02-315 105 Fatigue 0.1 0 13.09 4701 0.43%
02-312 175 Fatigue 0.1 0 3.77 1,353 0.55%
02-310 175 Fatigue 1 0 3.13 10,977 0.52%
02-314 105 Creep N/A until failure 10.59 1 0.20%
02-303 175 Creep N/A until failure 1.68 1 0.51%  

 

A straightforward way to compare the combination, creep-rupture, and fatigue data 

in Table 4-3 is to display a plot of maximum stress versus time to failure.  The plot of 

this data is given in Figure 4-17(a) for the given tests.  A bar graph also displays the 

same data in Figure 4-17(b). 
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Maximum Stress vs. Time to Failure

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (hours)

St
re

ss
 (M

Pa
)

0.1 Hz
0.1 Hz, 50 s hold
1 Hz
1 Hz, 5 s hold
Creep-Rupture

 
Figure 4-17(a).  Maximum Stress vs. Time to Failure of the Tests in Table 4.3 
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Figure 4-17(b).  Bar Graph Displaying Time to Failure of the Tests in Table 4.3 
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The creep-rupture data in Figure 4-17(a) and Figure 4-17(b) is very interesting.  At 

175 MPa, the creep-rupture test is the first to fail at 1.68 hours.  However, at 105 MPa the 

creep-rupture life of 10.59 hours falls in between the 0.1 Hz life and the 0.1 Hz (50 

second hold) life.  It was expected that the creep-rupture sample would be the first to fail 

at 105 MPa.  This data could be explained by experimental variation or it could 

demonstrate that at low stresses oxidation is not the sole damage mechanism of C/SiC.  

Fatigue cycle damage does play a role in the overall failure of the composite.  If more 

combination, creep-rupture, and fatigue tests were accomplished at even lower stresses, 

the primary damage mechanism might become fatigue cycle damage.  It is possible that 

at lower stresses (less than 100 MPa) the creep-rupture tests don’t open the matrix cracks 

enough to allow air to seep into the composite and damage the internal carbon fibers.  

Oxidation would only occur on the surface if the matrix cracks weren’t opened.  This 

would then leave fatigue cycle damage as the primary damage mechanism at low stresses. 

An S-N curve was made from the data of the combination tests and the comparative 

fatigue tests performed in this experiment.  The S-N curve shown in Figure 4-18 is 

expressed as the applied maximum stress versus cycles to failure.  Figure 4-18 

demonstrates that the primary damage mechanism of the combination tests was indeed 

oxidation.  This is true because the S-N curve of the combination tests for the 0.1 Hz data 

falls to the left of the S-N fatigue curve.  The one data point of the 1 Hz (5 second hold) 

at 175 MPa also falls to the left of the 1 Hz (175 MPa) data point.  This means that when 

the sample is held for the 5 seconds (1 Hz) or 50 seconds (0.1 Hz) there is more oxidation 

of the carbon fibers than when undergoing regular fatigue.  This occurs because the 

matrix cracks are held open longer during the combination tests, which allows more 
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oxygen to enter the C/SiC composite.  However, as stated earlier, oxidation is not the sole 

damage mechanism of C/SiC.  There is some fatigue cycle damage that also plays a role 

in the overall failure of the composite. 
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Figure 4-18.  S-N Curves of Combination Results and Comparative Fatigue Results 

 

Secant modulus degradation also occurred within the combination tests.  Figure 4-19 

displays this degradation as a function of life fraction, and is quite similar to Figure 4-16.  

Degradation of the secant modulus is very evident in the combination tests.  The modulus 

degradation was more evident in the 0.1 Hz (105 MPa) combination sample.  It degraded 

from 96.6 GPa to 19.4 GPa, while the 0.1 Hz (175 MPa) combination sample degraded 

from 96.6 GPa to 25.1 GPa.  This occurs because oxidation makes the composite less stiff 
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with time.  The 0.1 Hz (105 MPa) combination sample and the 0.1 Hz (105 MPa) sample 

last longer as seen from Figure 4-17.  Therefore, they degrade more than the higher 

stressed samples. 
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Figure 4-19.  Secant Modulus vs. Life Fraction – Combination Tests 

 

The combination test sample strain throughout the life of the composite was also 

observed.  It can be compared to similar fatigue data and is shown in Figure 4-20.  The 

maximum cycle strain data for the combination tests is very similar to that of the fatigue 

data in Figure 4-20.  The data curves look almost identical except for the fact that the 

combination tests fail before the fatigue tests.  One interesting note, however, is that one 

would expect the combination tests to have a lower strain at failure than the fatigue tests.  
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This would be expected because the creep-rupture tests at 105 MPa and 175 MPa have 

lower strain at failure values than the fatigue tests at these same stresses.  The strain at 

failure data for these two creep-rupture tests is shown in Figure 4-20 as well. 
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Figure 4-20.  Maximum Cycle Strain vs. Time – Combination Tests 

 

4.5  Combined Results 
 
 

The most straightforward way to combine all of the test results is to display a graph 

of maximum applied stress versus time to failure.  This plot will compare the times to 

failure of all of the creep-rupture, fatigue, and combination tests at once.  Figure 4-21 and 

4-22 display this data. 
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Maximum Stress vs. Time to Failure
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Figure 4-21.  Maximum Stress vs. Time to Failure (All Tests) 
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Figure 4-22.  Maximum Stress vs. Time to Failure (All Tests) – log scale 



 4-28

Figure 4-21 and Figure 4-22 verify what was stated in Section 4.3.  The longer 

composite lives belong to the high frequency fatigued samples.  This is not what occurred 

in Staehler’s (14) study at room temperature for C/SiC, and it is not the behavior 

observed in most materials at room temperature.  It doesn’t seem rational that a 375 Hz 

(175 MPa) fatigued sample will have a longer time to failure than a 1 Hz (175 MPa) 

fatigued sample.  This observation means that oxidation of the carbon fibers within the 

composite is reduced when frequency of fatigue is increased.  This could occur because 

the internal temperature from fiber matrix friction could reach the composite processing 

temperature of 1100ºC when frequency of fatigue is high.  At this processing 

temperature, the thermal expansion of the carbon fibers and the SiC matrix are matched, 

which in turn causes the crack edges to come together and stop the seeping of oxygen 

into the composite.  Another explanation is the possible formation of a silica scale (SiO2) 

within the C/SiC composite.  This growth of silica scale occurs as the SiC matrix 

oxidizes.  The silica scale helps to fill in matrix cracks, which seal off the fibers from the 

outside air (4:8).   The presence of oxidation within C/SiC is drastically reduced when 

this formation occurs.  The following two sections on microscopic analysis and scanning 

electron microscopic analysis will illustrate the effects that high frequency fatigue has on 

carbon fiber oxidation and micro-crack closing. 
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4.6  Microscopic Analysis 
 
 

Comparisons of the fracture surfaces and the polished fracture surfaces of various 

samples were analyzed.  Table 4-4 summarizes the details of the samples that are 

displayed in this section. 

 
 

Table 4-4.  Samples Displayed in Micrographs 
 

Specimen Max Stress Type of Frequency Time to Cycles to
Number (Mpa) Loading (Hz) Failure (hrs) Failure
02-317 487 Monotonic N/A 0.01 1
02-314 105 Creep N/A 10.59 1
02-326 350 Creep N/A 0.43 1
02-315 105 Fatigue 0.1 13.09 4,701
02-325 350 Fatigue 0.1 0.59 212
02-320 105 Fatigue 10 19.84 575,607
02-321 350 Fatigue 10 0.22 6,376
02-304 175 Fatigue 375 55.75 75,265,164
02-271 425 Fatigue 375 0.23 313,976  

 
 
 

The fracture surfaces of the creep-rupture and the fatigue specimens are displayed in 

Figures 4-23 and 4-24.  These two figures demonstrate that there are no distinctive 

features on the fracture surface which can be attributed to test frequency or type of 

loading.  Staehler et al. (14) also noted the lack of distinguishing features between 

different frequencies at room temperature.  In order to get a clearer picture of the damage 

that is occurring within the C/SiC composite, the polished face samples of the fracture 

surfaces need to be analyzed more closely. 
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Figure 4-23.  Micrographs contrasting features between specimens fractured at 
(a) 105 MPa - Creep-Rupture (b) 105 MPa - 0.1 Hz 

(c) 105 MPa - 10 Hz, and (d) 175 MPa -375 Hz. 
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Figure 4-24.  Micrographs contrasting features between specimens fractured at 
(a) 350 MPa - Creep-Rupture (b) 350 MPa - 0.1 Hz 

(c) 350 MPa - 10 Hz, and (d) 425 MPa - 375 Hz. 
 
 
 

The polished samples are the cross-sections that are cut from the fracture surfaces.  

This procedure was explained in chapter 3.4.1.  Figure 4-25 through Figure 4-33 are 

micrographs of the nine samples listed in Table 4-4.  The load direction is perpendicular 

to all of these images.  Each figure displays the entire cross-section of the sample.  These 

detailed pictures were obtained by combining 12 separate area micrographs of the cross-

section.  In each figure, part (a) is the entire 12 portioned cross-section, part (b), (c), and 

(d) are enhanced portions of the other micrographs designated by a boxed area. 
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Verilli et al. (2) stated “Oxidation of the fibers is the dominant damage mode at 

550°C”.  Section 4.3 of this research effort also explained how oxidation is probably 

reduced as frequency of fatigue is increased at stresses lower than 350 MPa.  Therefore, 

oxidation of the carbon fibers within C/SiC needs to be evaluated in Figures 4-25 thru 

Figure 4-33.  Figure 4-25 displays the cross-sectional area of sample 02-317.  This 

sample was tested under monotonic loading conditions.  It was exposed during loading to 

an elevated temperature of 550°C for the least amount of time (20 seconds), hence, 

oxidation of the carbon fibers in sample 02-317 did not occur to a great extent.  Samples 

that displayed the next lowest amounts of oxidation within them were samples 02-321 

(10 Hz, 350 MPa, 0.22 hours), 02-326 (Creep-Rupture, 350 MPa, 0.43 hours), and 02-

325 (0.1 Hz, 350 MPa, 0.59 hours) shown in Figures 4-26, 4-27, and 4-28 respectively.  

These four samples showed small amounts of oxidation.  Large amounts of oxidation can 

be seen in samples 02-314 (Creep-Rupture, 105 MPa, 10.59 hours), 02-315 (0.1 Hz, 105 

MPa, 13.09 hours), and 02-320 (10 Hz, 105 MPa, 19.84 hours) shown in Figures 4-29, 4-

30, and 4-31 respectively.  These three figures show where entire tows have oxidized and 

are missing.  The edges of these samples also display large amounts of oxidation. 

The assumption that oxidation is entirely time dependent could be assumed by 

looking at the seven figures listed above.  However, sample 02-304, (375 Hz, 175 MPa, 

55.75 hours) displayed in Figure 4-32, shows that this is not the case.  Low oxidation 

levels can be seen in samples 02-271 (375 Hz, 425 MPa, 0.23 hours) and 02-304 (375 Hz, 

175 MPa, 55.75 hours) shown in Figures 4-32 and 4-33 respectively.  Sample 02-304 

lasted 55.75 hours, and it is obvious that less oxidation occurred within this specimen 

than that of samples 02-314 (Creep-Rupture, 105 MPa, 10.59 hours), 02-315 (0.1 Hz, 105 
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MPa, 13.09 hours), and 02-320 (10 Hz, 105 MPa, 19.84 hours).  Sample 02-304 was 

oxidized less even though it was exposed to an oxidizing environment for a longer period 

of time. 

Figure 4-32 supports the claim that at high frequencies and low stresses, oxidation 

within C/SiC is inhibited which then increases composite time life and cycle life.  Figure 

4-6 in section 4.3 and Figures 4-21 and 4-22 in section 4.5 also support this claim.  This 

claim is astonishing because in most materials, the higher the frequency of fatigue the 

shorter the time life and cycle life of the material.  This is also the case with C/SiC at 

room temperature.  Staehler’s (14) study showed that 375 Hz fatigued C/SiC composites 

had shorter time lives and cycle lives than 4 Hz and 40 Hz fatigued composites at room 

temperature.  However, at an elevated temperature of 550°C, this study shows that C/SiC 

behaves in an opposite fashion.  As frequency of fatigue is increased, the time life and 

cycle life of the C/SiC composite is also increased. 
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Figure 4-25.  Micrographs of polished Sample 02-317 (Monotonic). 

Time to failure was 20 seconds.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-26.  Micrographs of polished Sample 02-321 (10 Hz, 350 MPa). 
Time to failure was 0.22 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-27.  Micrographs of polished Sample 02-326 (Creep, 350 MPa). 

Time to failure was 0.43 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-28.  Micrographs of polished Sample 02-325 (0.1 Hz, 350 MPa). 
Time to failure was 0.59 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-29.  Micrographs of polished Sample 02-314 (Creep, 105 MPa). 

Time to failure was 10.59 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-30.  Micrographs of polished Sample 02-315 (0.1 Hz, 105 MPa). 

Time to failure was 13.09 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-31.  Micrographs of polished Sample 02-320 (10 Hz, 105 MPa). 

Time to failure was 19.84 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-32.  Micrographs of polished Sample 02-304 (375 Hz, 175 MPa). 
Time to failure was 55.75 hours.  Loading direction is perpendicular to image. 

(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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Figure 4-33.  Micrographs of polished Sample 02-271 (375 Hz, 425 MPa). 
Time to failure was 0.23 hours.  Loading direction is perpendicular to image. 
(a) Entire cross-section (b), (c), and (d) Enhanced portions of cross-section 
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4.7  Scanning Electron Microscopic Analysis 
 
 

A Scanning Electron Microscope (SEM) was also used to analyze the C/SiC fracture 

surfaces.  Many different areas on the fracture surfaces of the samples were observed in 

order to investigate the levels of oxidation that occurred within C/SiC.  The SEM 

photographs can be found in Figures 4-34 thru 4-46 and in Appendix A. 

4.7.1  Carbon Fiber Oxidation Within the SiC Matrix. 

Figures 4-34 thru 4-36 are excellent examples of oxidized [0º] carbon fiber tows 

within the SiC matrix.  Figure 4-34 is a picture of sample 02-310 (175 MPa, 1Hz, 

3.13 hours).  This figure shows carbon fibers that are well on their way to complete 

oxidation.  There are chunks of carbon already missing from the fibers.  In Figure 4-

35 there are two carbon fibers that are almost completely oxidized, and many other 

carbon fibers that are completely missing.  This is expected because this picture was 

taken of sample 02-314 (105 MPa, creep-rupture, 10.59 hours).  The long period of 

time the fibers were exposed to 550ºC allowed them to be oxidized extensively.  On 

the other hand, Figure 4-36 of sample 02-304 (175 MPa, 375 Hz, 55.75 hours) 

illustrates something extraordinary.  This sample lasted 55.75 hours; however, the 

carbon fibers show less oxidation than either of the previous two figures.  This once 

again demonstrates that high frequency fatigued samples have longer time lives and 

cycle lives than low frequency fatigued C/SiC samples.  They have longer lives 

because there fibers are not oxidized as thoroughly as fibers that are fatigued at 

lower frequencies.  One possible explanation is that because of the high frequency 

(375 Hz), there is a lot of internal friction between the fibers and the matrix.  This 
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internal friction causes an increase in the internal temperature of the composite.  The 

micro-cracks within the matrix began to close as the temperature of the sample 

approaches the approximate processing temperature of 1100°C (4:8).  Another 

explanation is the possible formation of a silica scale (SiO2) within the C/SiC 

composite.  This growth of silica scale occurs as the SiC matrix oxidizes.  The silica 

scale helps to fill in matrix cracks, which seal off the fibers from the outside air 

(4:8). 
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Figure 4-34.  Fiber Oxidation Within SiC - Sample 02-310 (175 MPa, 1 Hz, 3.13 hrs.) 
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Figure 4-35.  Fiber Oxidation Within SiC - Sample 02-314 (105 MPa, Creep, 10.59 hrs.) 
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Figure 4-36.  Fiber Oxidation Within SiC - Sample 02-304 (175 MPa, 375 Hz, 55.75 hrs.) 
 

 

4.7.2  Individual Fiber Oxidation. 

Examining individual [90º] carbon fibers also demonstrates how much 

oxidation a C/SiC sample has undergone.  Figures 4-37 thru 4-39 are photographs of 

individual [90º] carbon fibers being oxidized on the fracture surface.  An example of 

a carbon fiber that has undergone a small amount of oxidation is seen in Figure 4-37.  

This fiber was only oxidized a little because it was exposed to 550ºC for only 0.22 

hours.  On the other hand, Figure 4-38 shows a fiber that has been oxidized 
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extensively.  This fiber was exposed to 550ºC for 19.84 hours.  The fiber has been 

broken down a great deal, and much of the carbon has already been dissipated.  One 

would expect a fiber that lasted 55.75 hours to look much like the one in Figure 4-

38.  However, in Figure 4-39 we see a [90º] fiber from sample 02-304 (175 MPa, 

375 Hz, 55.75 hours).  This fiber shows almost no evidence of oxidation attack on it.  

Figure 4-39 demonstrates that high frequency fatigued fibers are oxidized less than 

low frequency fatigued fibers. 

 

 
 

Figure 4-37.  Individual Fiber Oxidation - Sample 02-321 (350 MPa, 10 Hz, 0.22 hrs.) 
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Figure 4-38.  Individual Fiber Oxidation - Sample 02-320 (105 MPa, 10 Hz, 19.84 hrs.) 
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Figure 4-39.  Individual Fiber Oxidation - Sample 02-304 (175 MPa, 375 Hz, 55.75 hrs.) 
 
 
 

4.7.3  Examination of Fibers on Sample Edges. 

The carbon fibers on a sample edge are often the fibers that succumb to 

oxidation first.  Figures 4-40 and 4-41 demonstrate the many carbon fibers that are 

missing on the sample edges of two different C/SiC specimens.  These two 

specimens underwent a large amount of oxidative attack.  There are many carbon 

fibers that have disappeared due to oxidation effects.  Figures 4-42 and 4-43 display 

the opposite effect.  The majority of the fibers are still intact and present within the 
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samples.  These two figures are of sample 02-304 (175 MPa, 375 Hz, 55.75 hours).  

This once again supports what sections 4.7.2 and 4.7.3 already stated.  Oxidation of 

carbon fibers is reduced in high frequency fatigued C/SiC samples which then 

increases the fatigue life and time life of C/SiC. 

 

 
 

Figure 4-40.  Oxidation on C/SiC Edge - Sample 02-314 (105 MPa, Creep, 10.59 hrs.) 
 
 
 
 
 
 

Many fibers 
have been 
oxidized 



 4-52

 
 
 
 
 
 
 

 
 

 
 

Figure 4-41.  Oxidation on C/SiC Edge - Sample 02-315 (105 MPa, 0.1 Hz, 13.09 hrs.) 
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Figure 4-42.  Oxidation on C/SiC Edge – Sample 02-304 (175 MPa, 375 Hz, 55.75 hrs.) 
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Figure 4-43.  Oxidation on C/SiC Edge – Sample 02-304 (175 MPa, 375 Hz, 55.75 hrs.) 
 
 
 

4.7.4  Examination of SiC Matrix Cracks. 

When C/SiC reaches its processing temperature (approximately 1100ºC), the 

micro-cracks within the SiC matrix begin to close.  At this high temperature, the 

formation of a silica scale (SiO2) also helps to fill matrix micro-cracks.  Two SiC 

matrix micro-cracks can be seen in Figure 4-44.  These cracks are very open which 

allowed oxygen to seep into the composite and oxidize the carbon fibers.  Evidence 

of micro-crack closure is seen in Figure 4-45.  This figure is a picture of sample 02-
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304 (175 MPa, 375 Hz, 55.75 hours).  The matrix micro-crack appears to be sealed 

shut, which most likely stopped the flow of oxygen into the composite.  Matrix crack 

closure within high frequency fatigued specimens would definitely increase C/SiC 

cycle lives and time lives. 

 

 

 

 

 
 

Figure 4-44.  SiC Matrix Micro-Cracks - Sample 02-310 (175 MPa, 1 Hz, 3.13 hrs.) 
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Figure 4-45.  SiC Matrix Micro-Crack - Sample 02-304 (175 MPa, 375 Hz, 55.75 hrs.)  
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V.  Conclusions and Recommendations 

 
 
 

The main objective of this research effort was to examine the impact that cyclic 

loading frequency has on the life of a C/SiC composite at an elevated temperature of 

550°C.  There have been several previous studies that have investigated the creep-rupture 

life and monotonic strength of C/SiC at elevated temperatures.  However, the effect that 

cyclic loading frequency has on the oxidation of the carbon fibers within C/SiC at 

elevated temperatures has not been studied to a great extent.       

Twenty-five tests on C/SiC at a temperature of 550°C were performed in this study.  

Cyclic loading of C/SiC was investigated at frequencies of 375 Hz, 10 Hz, 1 Hz, and 0.1 

Hz.  Creep-Rupture tests and tests that were combinations of creep-rupture and fatigue 

were also accomplished at 550°C and compared to the cyclic data.  A monotonic tensile 

test was performed at 550°C and compared to a room temperature monotonic tensile test 

conducted by Staehler et al. (14).  Strain histories and modulus data were analyzed to 

show how C/SiC degraded and ultimately failed during the different tests.  Microscopic 

evidence also identified to what extent carbon fibers were oxidized within C/SiC during 

the various tests. 

This study showed that an elevated temperature of 550°C has very little effect on the 

Ultimate Tensile Strength (UTS) of C/SiC.  The UTS of C/SiC at 550°C was 487 MPa, 

while the room temperature UTS is 493 MPa (14). 

The three creep-rupture tests in this study performed at 350 MPa, 175 MPa and 105 

MPa had lives of less than 11 hours despite the fact that the UTS of C/SiC is 487 MPa at 
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550°C.  The short life of the specimens is due to the oxidation of the carbon fibers within 

the C/SiC composite.  The data from these tests were similar to that of Verilli’s (8) tests 

at 550°C. 

S-N curves were developed from the data of fatigue tests performed in this 

experiment.  The S-N curves indicate that there is an increase in cycles to failure as the 

frequency is increased at 550°C.  This is opposite of the room temperature results in 

Staehler’s et al. (14) study.  Their research found that there was a reduction in cycles to 

failure as frequency is increased at room temperature.  Another very important discovery 

in this study was the fact that oxidation of the carbon fibers within C/SiC is reduced when 

frequency of fatigue is increased.  At high frequency fatigue (10Hz to 375 Hz), C/SiC 

composites have longer cycle lives and time lives than at low cycle fatigue.  This occurs 

because the internal friction between the fibers and the matrix at high frequencies cause 

an increase in the internal temperature of the composite.  The micro-cracks within the 

matrix began to close as the temperature of the sample approaches the approximate 

processing temperature of 1100°C (2:8).  At this processing temperature, the thermal 

expansion of the carbon fibers and the SiC matrix are matched.  At high internal 

temperatures, growth of a silica scale (SiO2) also occurs as the SiC matrix oxidizes.  The 

silica scale helps to fill in matrix cracks, which seal off the fibers from the outside air.  

The matrix micro-crack closure that occurs due to these two occurrences reduces the flow 

of oxygen within C/SiC, which then reduces oxidation of the carbon fibers 

The Microscopic and SEM analysis verified that oxidation of carbon within C/SiC is 

slowed as frequency of fatigue is increased.  The SEM photographs showed that high 

frequency fatigued C/SiC specimens had less sample edge oxidation as well.  Micro-
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cracks within the SiC matrix are also closed in SEM photographs of high frequency 

fatigued samples. 

Further studies should focus on different temperature levels and fatigue frequencies 

between 10 Hz and 375 Hz.  The studies should also investigate the mechanistic reasons 

that cause high frequency fatigue to reduce oxidation at elevated temperatures.  This 

further research would bring closure to the effect that frequency of fatigue plays in the 

failure of C/SiC composites at elevated temperatures. 
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Appendix A:  Additional SEM Photographs 

 
 
 

 
 

Figure A-1.  Sample 02-325 (350 MPa, 0.1 Hz, 0.59 hours) 
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Figure A-2.  Sample 02-326 (350 MPa, Creep, 0.43 hours) 

 

 
Figure A-3.  Sample 02-271 (425 MPa, 375 Hz, 0.23 hours) 
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Figure A-4.  Sample 02-304 (175 MPa, 375 Hz, 55.75 hours) 

 

 
Figure A-5.  Sample 02-304 (175 MPa, 375 Hz, 55.75 hours) 
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Figure A-6.  Sample 02-304 (175 MPa, 375 Hz, 55.75 hours) 

 

 
Figure A-7.  Sample 02-314 (105 MPa, Creep, 10.59 hours) 
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Figure A-8.  Sample 02-314 (105 MPa, Creep, 10.59 hours) 

 

 
Figure A-9.  Sample 02-314 (105 MPa, Creep, 10.59 hours) 
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Figure A-10.  Sample 02-315 (105 MPa, 0.1 Hz, 13.09 hours) 

 

 
Figure A-11.  Sample 02-315 (105 MPa, 0.1 Hz, 13.09 hours) 
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Figure A-12.  Sample 02-315 (105 MPa, 0.1 Hz, 13.09 hours) 

 

 
Figure A-13.  Sample 02-320 (105 MPa, 10 Hz, 19.84 hours) 
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Figure A-14.  Sample 02-320 (105 MPa, 10 Hz, 19.84 hours) 

 

 
Figure A-15.  Sample 02-325 (350 MPa, 0.1 Hz, 0.59 hours) 
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Figure A-16.  Sample 02-321 (350 MPa, 10 Hz, 0.22 hours) 

 

 
Figure A-17.  Sample 02-314 (105 MPa, Creep, 10.59 hours) 
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Figure A-18.  Sample 02-326 (350 MPa, Creep, 0.43 hours) 

 

 
Figure A-19.  Sample 02-325 (350 MPa, 0.1 Hz, 0.59 hours) 
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Figure A-20.  Sample 02-310 (175 MPa, 1 Hz, 3.13 hours) 

 

 
Figure A-21.  Sample 02-304 (175 MPa, 375 Hz, 55.75 hours) 
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Figure A-22.  Sample 02-320 (105 MPa, 10 Hz, 19.84 hours) 

 

 
Figure A-23.  Sample 02-326 (350 MPa, Creep, 0.43 hours) 
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Figure A-24.  Sample 02-325 (350 MPa, 0.1 Hz, 0.59 hours) 

 

 
Figure A-25.  Sample 02-310 (175 MPa, 1 Hz, 3.13 hours) 
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Figure A-26.  Sample 02-314 (105 MPa, Creep, 10.59 hours) 

 

 
Figure A-27.  Sample 02-320 (105 MPa, 10 Hz, 19.84 hours) 
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Figure A-28.  Sample 02-315 (105 MPa, 0.1 Hz, 13.09 hours) 

 

 
Figure A-29.  Sample 02-304 (175 MPa, 375 Hz, 55.75 hours)
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