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Abstract

Radar Cross Section (RCS) measurements are quintessential in understand-

ing target scattering phenomenon. The reduced RCS of modern weapons systems

stresses the capability of current RCS measurement ranges. A limiting factor that

has recently become more significant is the electromagnetic coupling between a test

target and the mounting hardware used to support it and control its orientation

during the RCS measurement. Equally important is the electromagnetic coupling

between the RCS calibration artifact and its mount, which provides an opportu-

nity to explore the coupling phenomena without delving into operationally sensitive

areas.

The primary research goal was to characterize the interaction between a cal-

ibration artifact and its mounting apparatus when measuring the RCS of the cali-

bration artifact as part of a larger RCS measurement process. Standard methods,

such as vector background subtraction, do not account for this interaction. By un-

derstanding the interaction term, a more accurate measurement of target RCS may

be obtained. Through careful characterization of the interaction, an additional term

can be included in the vector background subtraction equation to reduce the level

of uncertainty.

Two techniques were developed to isolate and characterize the interaction be-

tween the target and mount. The first involves evaluating the far-zone fields scat-

tered by the target under two conditions: the target alone and then the target with

mounting hardware present. The fields are then coherently subtracted to isolate

the interaction. This process was validated with measurements and computational

results. The second technique involves evaluating fields on the target surface under

the aforementioned conditions, which are subsequently subtracted from one another

xii



and radiated to the far-field. The advantages and disadvantages of each technique

are investigated.

Results for twin-cylinder and cylinder/pylon configurations are presented. Vali-

dation is achieved through comparison with physical measurements. Results indicate

the target-mount interaction is most significant at low frequencies.

xiii



CHARACTERIZATION OF THE TARGET-MOUNT

INTERACTION IN RADAR CROSS SECTION MEASUREMENT

CALIBRATIONS

I. Introduction

Radar Cross Section (RCS) measurements are quintessential in understanding

target scattering phenomenon. By determining the scattering centers of a tar-

get, major scattering contributions can be obtained. Such contributions can then be

reduced by the application of surface treatments, such as Radar Absorbing Materials

(RAM). Due to the significant contributions in the reduction of RCS signatures, con-

tributions other than those from the target have become increasingly important to

characterize/eliminate due to the demand of highly accurate measurements. Highly

accurate measurements are needed to determine the survivability of an aircraft. How

susceptible is a target to a threat radar? How large are the signature contributions

from certain aspects of the aircraft? Questions like these need to be answered, but

without accurate measurements, the answer is unknown or inaccurate.

1.1 Problem Defintion

In any measurement system, the measurements obtained are no more accurate

than the calibration taken. The primary goal of this research is to characterize the in-

teraction between a calibration target and mounting apparatus (e.g. forward canted

ogive cross-section pylon) when measuring the RCS of a target. Currently, the meth-

ods employed (vector background subtraction) do not account for this interaction,

therefore, by characterizing the interaction term, a more accurate measurement of

the target’s RCS can be obtained. By characterizing the interaction, an additional
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D

L

Figure 1.1: The quiet zone in a RCS measurement facility.
The downrange extent is based on a variation in amplitude of
1 dB and the crossrange extent on a π

8
phase variation.

term can be included in the vector background subtraction equation to eliminate

another level of uncertainty.

1.2 Assumptions

The following section will describe the assumptions used to create the model

and an explanation as to why each assumption can be made. The assumptions here

will apply to the model described in Chapter III and the computational results in

Chapter IV. The first assumption to be discussed is the far-field requirement. In

any RCS measurement facility there is a region, defined as the quiet zone, in which

the plane-wave excitation is approximately uniformly planar. A planar wavefront

is defined as a wavefront having planar equiphase and equiamplitude surfaces [1].

Typically, the limits of the amplitude and phase variations of a quiet zone are defined

such that the variation in amplitude is no more than 1 dB in the downrange extent,

and a maximum phase variation of π
8

in the crossrange extent. Although these limits
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tolerances are arbitrary, they are widely accepted. The downrange dimension, D, of

a quiet zone for a far-field range, using the previous limits is defined by [2],

D ≈ R

8.2
, (1.1)

where R is the distance from the radar to a common reference point on the tar-

get, respectively. Similarly, the cross range dimension of a quiet zone utilizing the

previous measurement tolerances is defined by [2],

L =

√

cR

2f
, (1.2)

where L is the cross range dimension, c is the speed of light, R is the distance from

the radar to a common reference point on the target, and f is the frequency. Another

way to envision the quiet zone is by a 3-dimensional box with dimensions L and D

depicted in Fig. 1.1. Outside this region, the amplitude and phase variations do not

meet the far-field requirement. That is, the incident field is no longer a uniform plane

wave. Therefore, caution must be used when modelling portions of the mount outside

the quiet zone region. Within the computational model, it is difficult to accurately

model the returns from a spherical wavefront on the lower portion of the mount,

therefore, returns from the lower portion of the mount must be mitigated. This can

be accomplished by placing impedance surface treatments on the lower portion of

the ogive mount. This model more closely resembles the measurement setup since

returns outside the quiet zone are excluded through hardware range gating, which

will be discussed in greater detail in Chapter II. Additionally, the model created is

illuminated by plane-waves.

Another assumption to the model is the clutter will be considered negligi-

ble. In the computational portion of this research the data obtained is noiseless,

which is comparable to the measurements taken in practice, using pulse integration.

Both vector background subtraction and hardware range gating help to eliminate

1-3



the clutter associated with the range, while pulse integration, helps to increase the

Signal-to-Noise Ratio (SNR).

1.3 Thesis Overview

The following section will provide a brief outline and overview of what each

chapter consists of.

Chapter II provides the reader with the background information pertaining to

previous work in the field of characterizing and eliminating the interaction, electro-

magnetic scattering theory, and a brief overview of the three-dimensional Method of

Moments code, CARLOS.

Chapter III provides the reader with the methodology on the two isolation/characterization

processes.

Chapter IV will discuss results on the two isolation/characterization process

described in Chapter III

Chapter V will provide a conclusion based on the analysis performed in Chapter

IV and potential future work in the area of characterizing the interaction term.

Again, the goal of this research is to characterize the interaction between a

calibration object and mount in a RCS measurement and apply this interaction to

the vector background subtraction equation and obtain a modified version that takes

the form:

σtgt =
| ~Es

tgt − ~Es
bkg|2

| ~Es
cal − ~Es

cbk − ~Es
cint|2

σcal (1.3)

This research provides another piece to the characterization of the interaction

puzzle, however, the ultimate goal is to provide an additional term ( ~Es
t int) to the

1-4



numerator of the vector background subtraction equation to account for the “true”

target and mount interaction. Future research will be discussed in Chapter V.

By modeling and characterizing the effects of the interaction, which is con-

sidered a low-level source of contamination, can be useful in the sense that it can

answer certain questions about the measurements. That is, when can the interaction

be ignored, or even more importantly when does one need to apply the interaction

term in the modified vector background subtraction equation? Questions like these

will be answered in the following research.

1-5



II. Literature Review and Background Information

The primary objective of this chapter is to discuss the work that has been

accomplished in the past in relation to the characterization or reduction of the

interaction term, and the theory necessary to properly utilize the tools to characterize

the interaction term. In particularly, the concept of Radar Cross Section, and how

measurements are currently taken will be explained. Moreover, basic electromagnetic

scattering theory will be described up to the formulation of the integral equations

to describe what the three-dimensional Method of Moments MoM code, CARLOS,

ultimately solves for. By providing a brief overview of these important concepts, the

goal of determining how to characterize the interaction and why the characterization

of the interaction term is necessary for accurate measurements will become evident.

2.1 Significant Contributions and Related Work

Minimal research in the area of characterizing the interaction between a cali-

bration target and mount has been previously conducted. However, a considerable

amount of research has been conducted in the area of reducing or eliminating the

interaction between the target and the mount. The following sections will describe

the research efforts in the areas of reduction/elimination and characterization of the

interaction between the target and the mount.

2.1.1 Reduction/Elimination Research Efforts. As previously mentioned,

the reduction or elimination of the interaction between the target and mount has

been the primary area of research pertaining to the interaction term in the RCS

community. In particularly, work done by Berrie and Wilson in the area of de-

signing support columns constructed out of Expanded Poly-Styrene (EPS) foam [3].

This work involved numerical simulations and validations through measurements.

Another area of research in the removal of the interaction has also been accom-

plished by LaHaie, et. all, using processing techniques on RCS measurements [4].

2-1



This technique involved image editing on data that had been preprocessed utilizing

cross-calibration between numerical and measured data and stationary background

removal. The research in effect showed an improvement in the RCS of the target

under consideration, but ultimately there were still levels of inaccuracy.

2.1.2 Characterization Research Efforts. Work in the realm of characteriz-

ing the interaction between the target and mount has been accomplished, but kept

to a minimum. One piece of work by Burns et. al, in particular, takes a look at

numerical and measured results to show that the measured results are in very close

agreement with the perturbations caused from the target and mount [5]. The data

shows that there is some form of interaction, which can be attributed to the electro-

magnetic coupling of the target and the mount, and such observations will be used

to develop post-processing techniques to mitigate the interaction.

As stated previously, very little work has been done in the area of character-

izing the interaction between calibration targets and the mounts utilized in RCS

measurements. The research efforts carried out in this paper, will provide an in-

teraction term that can be utilized to modify the vector background subtraction

equation, in hopes of obtaining a more accurate representation of a target’s radar

cross section, especially when the target is of low cross section.

2.2 Radar Cross Section Defined

Consider the situation in Figure 2.1 [2]. Assuming that the target is at a

great distance from the radar, the incident wave can be considered uniformly planar

with incident power flux, Pi in W
m2 . Now, consider the target to have hypothetical

some capture area, σ. Due to this capture area, the target captures σPi watts

of energy. Finally, the target radiates the captured energy isotropically over 4π

steradians, thereby the scattered power density at a distance R (considered large)
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R → ∞

(a) (b)

σPi Ps = σPi

4πR2

(c)

Figure 2.1: (a) Planar wave fronts with incident power flux
Pi. (b) Target with “capture area” σ which captures σPi of
energy. (c) Target then reradiates “captured energy” equally in
all directions (isotropically).

can be written

Ps =
σPi

4πR2
(2.1)

Radar Cross Section, σ, can be formally defined as the area of a perfect reflector

of electromagnetic waves that would reflect the equivalent amount of energy back

to the radar as would the hypothetical target [2]. As described previously, using

the situation in Fig. 2.1 and rearranging Eqn. (2.1), the RCS of the target can be

described mathematically as,

σ = lim
R→∞

4πR2Ps

Pi

. (2.2)

Traditionally, though, it is more convenient to express the RCS in terms of the

electric field. This can be accomplished by noting fact that the power density of

an electromagnetic wave is proportional to the magnitude squared of the electric

field [2]. Therefore Eqn. (2.2) can be rewritten in the form,

σ = lim
R→∞

4πR2 | ~Es|2

| ~Ei|2
, (2.3)

where ~Es is the scattered electric field at the receiver, and ~Ei is the incident electric

field at the target. For Eqn. (2.3) to hold the target is considered to be at a great
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distance from the radar (R → ∞) such that the incident wave is locally uniformly

planar and not spherical.

RCS, typically measured in square meters (m2), may mislead one into believing

that the RCS of a target is just the measure of the physical projected area of the

target. However, RCS is actually a function of many other parameters. RCS is a

function of [2]:

• target geometry and material composition

• angular orientation of target relative to transmitter and receiver

• frequency or wavelength;

• transmitter polarization;

• receiver polarization.

2.3 Radar Cross Section Measurements Overview

In most measurement systems a calibration is paramount in obtaining accurate

measurements. This, too, holds for RCS measurements. Typically measurements are

taken in which a target and a calibration object (sphere, squat cylinder, etc.) are

sequentially illuminated and the signal received from each is recorded. By doing so,

and utilizing the exact solution for the calibration object, the RCS of the target can

be related to the calibration object [2]. Mathematically this is represented by,

σtgt =
Ptgt

Pcal

σcal, (2.4)

where σtgt and σcal are the RCS of the target and calibration object, respectively,

and Ptgt and Pcal are the power received from the target and calibration object,

respectively. Again, utilizing the fact that the power density of an electromagnetic

wave is proportional to the magnitude squared of the electric field, Eqn. (2.4), can

2-4



be rewritten as,

σtgt =
| ~Es

tgt|2

| ~Es
cal|2

σcal, (2.5)

where ~Es
tgt and ~Es

cal are the scattered electric fields for the target and calibration

object, respectively. To obtain a more accurate measurement of the RCS of a target,

vector background subtraction can be utilized to eliminate clutter sources associated

with the range and the target support hardware. To utilize vector background sub-

traction additional measurements must be made, and Eqn. (2.5) must be modified

to account for the additional measurements. The modified equation is

σtgt =
| ~Es

tgt − ~Es
bkg|2

| ~Es
cal − ~Es

cbk|2
σcal, (2.6)

where the measurements are:

• ~Es
tgt: Scattered field seen by the receiver when the target is present

• ~Es
bkg: Scattered field seen by the receiver when no target is present, but all

other hardware still in place

• ~Es
cal: Scattered field seen by the receiver when the calibration object is present

• ~Es
cbk: Scattered field seen by the receiver when the calibration object is not

present, but all other hardware still in place

Since radar and range responses tend to drift with environmental changes the addi-

tional measurements should be taken in relatively the same time frame [2]. Although

vector background subtraction helps to eliminate clutter due to the chamber, it

should be noted that Eqn. (2.6) is not perfect since it does not account for all of the

clutter sources in the chamber, specifically, it neglects target-mount interactions.

Table 2.1, although not a complete list of clutter sources, summarizes the clutter

sources in a RCS range and the possible techniques used for suppression. Addition-

ally, the following section will provide an overview of the current techniques utilized
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to suppress the clutter in a RCS range. It should be noted that according to Ta-

ble 2.1, there are no techniques that characterize/eliminate the interaction between

the target and mount.

2.3.1 Clutter Sources and Suppression Techniques. According to Table 2.1,

there are several techniques capable of suppressing clutter due to the RCS range.

Figure 2.2 depicts a general RCS range with clutter sources indicated. Introduced

in Section 2.3, vector background subtraction helps to reduce the clutter due to

the back-wall scattering. It however, does not account for other forms of clutter.

Therefore, other techniques were devised to suppress other forms of clutter. In

particularly, hardware range gating was developed to suppress the interactions with

target-floor interactions and also to aid in the suppression of the back-wall scattering.

Almost as equally important is the use of pulse integration to increase the Signal-

to-Noise Ratio, (SNR).

2.3.1.1 Hardware Range Gating. Hardware range gating involves

transmitting a signal for some period of time and then turning on the receiver when

the anticipated return from the target is expected. This technique is used to suppress

the returns from the floor and back-wall scatterers. It is apparent from Fig. 2.2 that

the signal that directly reflects off the target will return to the radar in a shorter

amount of time then those from the floor and back-wall, based on the distance

travelled. The one disadvantage to hardware gating is the case in which either

a cavity like target (open cylinder) or the target is in some sort of resonance is

Table 2.1: Potential clutter sources with techniques used to suppress.
Error Sources Background Hardware Pulse

Subtraction Gating Averaging
Receiver Noise No No Yes

Back-wall Scattering Yes Yes No
Target/Mount Interaction No No No
Target/Floor Interaction No Yes No
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Figure 2.2: An example RCS range with clutter sources
shown. All scattering is characterized by the following. The
target-floor interaction, target-backwall scattering, and tar-
get/mount interaction.

measured. Targets that have these features, typically, have returns that occur later

in time, therefore, hardware range gating may exclude the readings back to the

receiver [2].

2.3.1.2 Pulse Integration. Pulse integration is a technique utilized to

suppress noise in the range. Pulse integration is a process of summing all the avail-

able pulses to enhance detection [6]. Pulse integration more or less boosts the signal.

There are two types of integration that can be carried out, coherent and incoherent

integration. Coherent integration is carried out with phase information preserved,

which is discarded in incoherent integration. Another name for coherent and in-

coherent integration is predetection and post-detection integration, respectively [6].

As one might expect, since coherent integration requires that phase information of

the signal be preserved, it is more difficult to accomplish then that of incoherent
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integration. However, it will provide a much improved Signal to Noise Ratio, (SNR),

than that of its incoherent counterpart.

Ultimately, the point that needs to be addressed is the fact that certain clutter

sources occur with or without the presence of the target, however, certain clutter is

only present when the target is present i.e. target-mount interaction. Hence, the

need for some way of eliminating the interaction between the target and the mount

arises.

2.4 Basic Electromagnetic Theory

The development of Radar Cross Section would be incomplete without the in-

troduction of basic electromagnetic scattering theory, the formulation of the Electric

and Magnetic Field Integral Equations, EFIE and MFIE , respectively, and the solu-

tions to unknown equivalent current densities which ultimately solve for the scattered

fields.

To aid in the understanding of the formulation of the integral equations, a

brief summary of basic electromagnetic theory and how it is applied to scattering

is provided. Through the development of the Helmholtz wave equation, the use of

vector potentials as an intermediate step to the fields produced by a scatterer, and

the implementation of the surface equivalence theorem, the integral equations can

be formulated.

2.4.1 Maxwell’s Equations. Consider a region of space containing an in-

homogeneous medium characterized by permittivity, ǫ = ǫ0ǫr and permeability,

µ = µ0µr, as depicted in Fig. 2.3, illuminated by an electromagnetic field in which

both ~E and ~H vary with position on V . The fields in the region of the inhomoge-

neous, linear and isotropic medium, satisfy Maxwell’s equations (utilizing the ejωt
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V

ǫ0, µ0 ǫ0ǫr

µ0µr

~Es

~Hs
~E, ~H

~Einc

~H inc

~J

~M

Figure 2.3: Inhomogeneous material illuminated

time convention) [7]:

∇× ~E = −jωµ ~H − ~M (2.7)

∇× ~H = jωǫ ~E + ~J (2.8)

∇ · (ǫ ~E) = qev (2.9)

∇ · (µ ~H) = qmv (2.10)

where ~E and ~H are the electric and magnetic fields (both of which are a function of

position), ~J and ~M are electric and magnetic current densities, and qev and qmv are

the electric and magnetic source charges, respectively. To develop the inhomogeneous

wave equations one may start by dividing Faraday’s Law, Eqn. (2.7), by µ, followed

by a curl operation to both sides of the equation, and substituting Ampere’s Law,

Eqn. (2.8); the wave equation for the electric field, Eqn. (2.11), is obtained. Through

a similar process, except beginning with Ampere’s Law, and substituting in Faraday’s

Law, the magnetic field wave equation, Eqn. (2.12), is obtained. The electric and
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magnetic field wave equations for an inhomogeneous medium are:

∇×
[

1

µ
∇× ~E

]

− ω2ǫ ~E = −jω ~J −∇×
[

1

µ
~M

]

(2.11)

∇×
[

1

ǫ
∇× ~H

]

− ω2µ ~H = −jω ~M + ∇×
[

1

ǫ
~J

]

(2.12)

If the material is assumed to be linear, isotropic, and homogeneous, then Eqn’s. (2.11) and (2.12)

simplify to the well known result of:1

∇2 ~E + k2 ~E = jωµ ~J − ∇( ∇ · ~J )

jωǫ
+ ∇× ~M (2.13)

∇2 ~H + k2 ~H = jωǫ ~M − ∇( ∇ · ~M )

jωµ
−∇× ~J (2.14)

Equations (2.13) and (2.14) imply that the electric and magnetic fields satisfy the

forced wave equations. Due to the ∇∇· operation, though, solutions to ~E and ~H are

difficult to obtain. A classical approach to obtaining the solutions to the forced wave

equation is through the use of an intermediate step. Specifically, the step involves

the magnetic and electric vector potentials, ~A and ~F , respectively.

2.4.2 Vector Potentials. Vector potentials are considered the intermediate

step in determining the electric and magnetic fields. It will be shown that the

potential fields will satisfy a simpler (i.e. no ∇∇· operations) vector wave equation,

and how they relate to the electric and magnetic fields.

2.4.2.1 Magnetic Vector Potential: ~A and Electric Vector Potential:

~F . Assuming a magnetic source-free region ( ~M = qi
mv = 0, ~J = qi

mv 6= 0), Gauss’

Magnetic Law, Eqn. (2.10), is identically zero. Utilizing the the vector identity

∇ · ( ∇ × ~A ) = 0 in conjunction with the previous statement, the relationship

1Use vector identity ∇×∇× ~A = ∇( ∇· ~A )−∇2 ~A and the continuity equations: ∇· ~J = −jωqev

and ∇ · ~M = −jωqmv and k = ω
√

µǫ
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between ~HA and ~A is obtained,

~HA =
1

µ
∇× ~A, (2.15)

where ~HA represents the magnetic field due to the vector potential ~A. The electric

scalar potential, φe, is introduced by substituting Eqn. (2.15) into Faraday’s Law,

Eqn. (2.7), and obtaining a reduced equation in the form:

∇× [ ~EA + jω ~A] = 0 (2.16)

Utilizing another vector identity, ∇× (∇φe) = 0, in conjunction with Eqn. (2.16),

the electric scalar potential is defined as:

−∇φe
.
= ~EA + jω ~A (2.17)

Solving for ~EA in Eqn. (2.17), the relationship between ~EA and ~A is obtained,

~EA = −∇φe − jω ~A, (2.18)

where ~EA is the electric field due to the vector potential ~A. Now that the rela-

tionship between ~A and both ~EA and ~HA is defined, a vector wave equation for the

potential can be derived. By applying a curl operation on both sides of Eqn. (2.15),

substituting in Ampere’s Law, followed by a substitution of Eqn. (2.18) in for ~EA,

the following equation (assuming a homogeneous medium) is obtained,

∇2 ~A + k2 ~A = −µ~J + ∇( ∇ · ~A + jωµǫφe ) (2.19)

Previously, to obtain Eqn. (2.15), only the curl of ~A was defined. To uniquely define

a vector, both the curl and the divergence of the vector are required (Helmholtz

Theorem). This then implies that the divergence of ~A must be defined. By doing so
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Eqn. (2.19), can be simplified. By utilizing the Lorentz Gauge, ∇ · ~A = −jωµǫφe, a

simplified vector wave equation for the magnetic vector potential is defined as,

∇2 ~A + k2 ~A = −µ~J. (2.20)

Additionally, Eqn. (2.18), through the use of the Lorentz Gauge, can be simplified

to form,

~EA =
1

jωǫµ

[

k2 ~A + ∇(∇ · ~A)
]

(2.21)

Through a similar type of analysis with electric sources off, but magnetic sources on

( ~M = qi
mv 6= 0, ~J = qi

mv = 0), the simplified vector wave equation for the electric

vector potential can be obtained. The wave equation and the electric and magnetic

fields due to the electric vector potential are,

∇2 ~F + k2 ~F = −ǫ ~M. (2.22)

~EF = −1

ǫ
(∇× ~F ) (2.23)

~HF =
1

jωǫµ

[

k2 ~F + ∇(∇ · ~F )
]

(2.24)

By comparing Eqn.’s (2.20) and (2.22) to Eqn.’s (2.13) and (2.14), the benefit of

the intermediate step of vector potentials is obvious. As for the rest of the process,

once the vector potentials have been solved for, the relationship between ~A and

both ~E and ~H can be used to obtain the fields due to the potential ~A: ~EA and

~HA. Additionally, the relationship between ~F and both ~E and ~H can be used to

obtain the fields due to the potential ~F : ~EF and ~HF . Finally, the total fields can be

obtained by the superposition of the fields due to the potentials, ~A and ~F . This is
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summarized below:

~E = ~EA + ~EF =
1

jωǫµ

[

k2 ~A + ∇(∇ · ~A)
]

− 1

ǫ
(∇× ~F ) (2.25)

~H = ~HA + ~HF =
1

µ
(∇× ~A) +

1

jωǫµ

[

k2 ~F + ∇(∇ · ~F )
]

(2.26)

To begin the process of determining the total fields, the solution to the vector po-

tential wave equations is needed.

2.4.2.2 Solution to Vector Potential Wave Equations. The solutions

to the forced vector wave equations, Eqn.’s (2.20) and (2.22), are given by,2

~A(~r) =

∫

V

µ0
~J(~r ′) G(~r | ~r ′)dV ′ (2.27)

~F (~r) =

∫

V

ǫ0
~M(~r ′) G(~r | ~r ′)dV ′, (2.28)

where G(~r | ~r ′) is the free-space Green’s function

G(~r | ~r ′) =
e−jk|~r−~r ′|

4π|~r − ~r ′| (2.29)

The position vectors, ~r and ~r ′, are the observation point and source point, respec-

tively. According to the Green’s function, there is a source point singularity at

~r = ~r ′, which makes determining ~J or ~M extremely difficult. However, when the

ultimate goal is to obtain the far-zone scattered fields, the source-point singularity

is not an issue when determining the far-field signature. On the other hand, when

solving for the currents that produce far-zone scattered fields, it is necessary to solve

the integral equations, which require evaluation of fields on the surface or within the

volume of the scatterer where ~r = ~r ′ is possible. Thus, great care must be taken to

handle the ~r = ~r ′ source point singularity.

2For a more in-depth discussion on the forced wave equation solution, reference [1, 7].
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~E, ~H 6= 0

~J, ~M = 0

~E1, ~H1 6= 0

~J
eq
s

~M
eq
s

(a) (b)

S

Figure 2.4: (a) Original Problem (b) General Equivalent
Problem using surface equivalence principle

To utilize the equations developed in this section (due to the free-space Green’s

function) the fields of interest must be maintained by equivalent sources ~Jeq/ ~M eq

immersed in unbounded free-space (ǫ0, µ0). To obtain such equivalent sources, the

surface equivalent principle can be used [1].

2.4.3 Scattering. Before defining the surface equivalence principle a brief

overview of scattering is given. The ultimate goal is to determine the scattered

fields, since they are required to determine the Radar Cross Section RCS of a tar-

get/scatterer. Reconsider the problem in Fig. 2.3. ~Ei and ~H i are defined as the

incident fields or the fields maintained by the impressed sources, ~J and ~M , in the

absence of the scatterer. ~E and ~H are defined as the total fields maintained by the

impressed sources, ~J and ~M , in the presence of the scatterer. Based on the linear-

ity of Maxwell’s equations, and the use of superposition the scattered fields can be

defined as [1],

~Es = ~E − ~Ei (2.30)

~Hs = ~H − ~H i (2.31)

The basic concept of incident and scattered fields are used throughout the surface

equivalence theorem and the formulation of the integral equations.
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2.4.4 Surface Equivalence Principle. Often times, when analyzing an elec-

tromagnetic problem it is much easier to form an equivalent problem that will yield

the same result within a region of interest (typically, an imaginary closed surface).

The surface equivalence principle allows us to generate an equivalent problem. Fig-

ure 2.4 represents an original problem and its equivalent. The surface equivalence

theorem is a principle in which actual objects/inhomogeneities are replaced by equiv-

alent sources. The sources are equivalent within a region, in that they radiate the

same fields as those scattered by objects replaced [1]. To utilize the surface equiv-

alence principle the equivalent sources must satisfy the boundary conditions on the

tangential electric and magnetic field components (which only holds on the surface

S:

n̂ × ( ~H − ~H1) = ~Jeq
s (2.32)

−n̂ × ( ~E − ~E1) = ~M eq
s (2.33)

Since the fields of interest are the fields outside the imaginary surface, the fields

within the imaginary surface can be assumed anything. Two specific cases of the

surface equivalence principle will be examined. Love’s Equivalence Theorem, where

the fields within are considered zero, and the Physical Equivalence for a Perfect

Electric Conductor, PEC.

2.4.4.1 Love’s Equivalence Theorem. Love’s Equivalence Theorem

is a special case of the surface equivalence principle in that the fields and sources

within the imaginary surface are considered zero [7]. If the imaginary surface is

condensed until it conforms to the scatterer, then by utilizing Love’s Equivalence,

Eqn.’s (2.32) and (2.33) reduce to,

n̂ × ~H(~r) = ~Jeq
s (~r) ~r ∈ S (2.34)

−n̂ × ~E(~r) = ~M eq
s (~r) ~r ∈ S (2.35)
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Figure 2.5: (a) Original Problem (b) Equivalent Problem us-
ing Love’s Equivalent

Figure 2.5 represents the original problem and the equivalent problem using

Love’s Equivalence Theorem. As previously noted, since the fields in the equivalent

problem are maintained by equivalent sources immersed in unbounded free-space,

Eqn.’s (2.27) and (2.28) apply with the modification of integrating over the surface,

rather than the volume,

~As(~r) =

∫

S

µ0
~Jeq
s (~r) G(~r | ~r ′)dS ′ (2.36)

~F s(~r) =

∫

S

ǫ0
~M eq

s (~r) G(~r | ~r ′)dS ′ (2.37)

Love’s equivalence can also be extended to a Perfect Electric Conductor PEC or a

Perfect Magnetic Conductor PMC, as long as the scatterer is infinitely planar [1].

2.4.4.2 Physical Equivalence Theorem for a PEC. The Physical

Equivalence Theorem for a PEC is another special case of the surface equivalence

principle in that the fields within the surface S are assumed to be − ~Ei and − ~H i.

According to Fig. 2.6, and utilizing the boundary conditions, Eqn.’s (2.32) and (2.33)
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~J
eq
s

~M
eq
s
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Figure 2.6: (a) Original Problem (b) Equivalent Problem us-
ing Physical Equivalence

simplify to,

n̂ × ( ~H − ~H1) = n̂ × ( ~Hs − (− ~H i)) = ~Jeq
s (~r) ~r ∈ S (2.38)

−n̂ × ( ~E − ~E1) = −n̂ × ( ~Es − (− ~Ei)) = ~M eq
s (~r) ~r ∈ S (2.39)

Finally, by utilizing Eqn.’s (2.30) and (2.31) and the PEC boundary conditions,

Eqn.’s (2.38) and (2.39) reduce to,

n̂ × ~H(~r) = ~Jeq
s (~r) ~r ∈ S (2.40)

−n̂ × ~E(~r) = ~M eq
s (~r) = 0 ~r ∈ S (2.41)

which are the equivalent currents sources that maintain ~Es and ~Hs outside S, and

− ~Ei and − ~H i inside S. Since the equivalent sources are immersed in unbounded

free-space, Eqn. (2.36) and (2.37) can be used to solve the vector potentials. Finally,

with the introduction of the concepts dealing with vector potentials, the solution

to the associated vector wave equations, and some basic equivalence principles, the

formulation of the integral equations can be accomplished.
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2.5 Integral Equation Formulation

Integral equations are often chosen to be the starting point for an electro-

magnetic scattering analysis. The key to the solution for a scattering problem is

to obtain knowledge of the equivalent current densities on the surface of the scat-

terer. Once these currents are known the scattered fields can be obtained using

Eqn.’s (2.36) and (2.37) and Eqn.’s (2.25) and (2.26). Therefore, the goal of the

solution method is to accurately predict the currents on the surface of the scat-

terer [7]. This can be accomplished using integral equations. The following sections

will describe how the integral equations are formulated. Each section will be broken

up into the electric and magnetic field integral equations, with subsections that deal

with specific scattering problems, specifically PEC and Dielectric Scatterers. A brief

discussion on the combined field integral equation will follow the formulation of the

electric and magnetic field integral equations.

2.5.1 Surface Electric Field Integral Equation. The EFIE is one of the

most popular integral equations used in the solution to the scattering problem. The

EFIE utilizes the boundary condition on the tangential electric field [1],

n̂ × ~E(~r) = − ~Ms(~r) ~r ∈ S (2.42)

The following sections will describe the EFIE for a PEC and dielectric scatterer.

2.5.1.1 Perfect Electric Conductor (PEC) Scatterer. The formulation

of the EFIE for a PEC scatterer, utilizes the boundary condition that the tangential

electric field is zero on a PEC [1],

n̂ × ~E(~r) = 0. ~r ∈ S (2.43)
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Figure 2.7: (a) Original Problem (b) Exterior Equivalent Problem (c) Interior Equivalent
Problem

By substituting Eqn. (2.30) in for ~E(~r), Eqn. (2.43) can be written in the form,

n̂ × ~Es(~r) = −n̂ × ~Ei(~r) ~r ∈ S (2.44)

Now utilizing the physical equivalence problem described in Fig. 2.6, and the vector

potentials, the EFIE can be written as,

n̂ × 1

jωǫ0

(k2
0 + ∇∇·)

∫

S

~Js(~r
′) G(~r | ~r ′)dS ′ = −n̂ × ~Ei(~r) ~r ∈ S (2.45)

where ~Js(~r) is the equivalent current as defined in Eqn. (2.40), and ~r is contained on

the surface S. According to Eqn. (2.45), the incident electric field, ~Ei(~r), is known,

however, ~Js(~r) is unknown. Once ~Js(~r) is determined3, the vector potentials can

be formed, the corresponding scattered fields can be obtained, and the RCS subse-

quently computed using Eqn. (2.3).

2.5.1.2 Dielectric Scatterer. When formulating the EFIE for a di-

electric scatterer, the original problem must be broken up into an exterior and in-

terior equivalent problem as depicted in Fig. 2.7. The exterior equivalent problem,

Fig. 2.7b, invokes Love’s equivalence. The equivalent sources ~Jeq
s1 (~r) and ~M eq

s1 (~r) have

3Refer to Section 2.6
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been placed on the surface of the original scatterer and are defined as,

~Jeq
s1 (~r) = n̂ × ~H1(~r) ~r ∈ S (2.46)

~M eq
s1 (~r) = −n̂ × ~E1(~r) ~r ∈ S (2.47)

where these sources maintain the scattered fields in region one, and in conjunction

with the original sources produce the total fields in region one. This is summarized

mathematically below,

~E1(~r) = ~Ei(~r) + ~Es
1(~r) ~r ∈ V1 (2.48)

~H1(~r) = ~H i(~r) + ~Hs
1(~r) ~r ∈ V1 (2.49)

According to Fig. 2.7b, since null fields are created within the scatterer, medium two

can be replaced with medium one and all theory from Section 2.4.2 can be utilized.

The interior equivalent problem is depicted in Fig. 2.7. The equivalent sources ~Jeq
s2 (~r)

and ~M eq
s2 (~r) are defined as

~Jeq
s2 (~r) = (−n̂) × ~H2(~r) (2.50)

~M eq
s2 (~r) = −(−n̂) × ~E2(~r) (2.51)

where these sources maintain the scattered fields in region two and create null fields

throughout region one. This then implies that the scattered fields are the fields

within the scatterer,

~E2(~r) = ~Es
2(~r)) ~r ∈ V2 (2.52)

~H2(~r) = ~Hs
2(~r ~r ∈ V2 (2.53)

Again, since the fields in region one are nulled out, medium one can be replaced

by medium two, therefore, all theory developed in Section 2.4.2 on vector potentials
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can be used. To relate ~Jeq
s1 (~r) to ~Jeq

s2 (~r) and ~M
eq(~r)
s1 to ~M eq

s2 (~r), the continuity of the

tangential electric and magnetic fields at the dielectric interface can be utilized to

obtain,

~Jeq
s1 (~r) = − ~Jeq

s2 (~r) ~r ∈ S (2.54)

~M eq
s1 (~r) = − ~M eq

s2 (~r) ~r ∈ S (2.55)

Due to the nature of the problem (2 equivalent problems and 2 unknown sources),

a coupled EFIE formulation is needed [7]. Utilizing the theory established in Sec-

tion 2.4.2 the coupled EFIE can be written as,

n̂ ×
[

1

jωǫ1µ1

[k2
1
~As

1 + ∇(∇ · ~As
1)] −

1

ǫ1

(∇× ~F s
1 )

]

+ ~M eq
s1 = −n̂ × ~Ei ~r ∈ S+

(2.56)

n̂ ×
[

1

jωǫ2µ2

[k2
2
~As

2 + ∇(∇ · ~As
2)] −

1

ǫ2

(∇× ~F s
2 )

]

− ~M eq
s1 = 0 ~r ∈ S−

(2.57)

where the subscripts 1 and 2 denote the medium in which the sources radiate and,

~As
1(~r) =

∫

S

µ1
~Jeq
s1 (~r ′) G1(~r | ~r ′)dS ′ ~r ∈ V1

~F s
1 (~r) =

∫

S

ǫ1
~M eq

s1 (~r ′) G1(~r | ~r ′)dS ′ ~r ∈ V1

~As
2(~r) = −

∫

S

µ2
~Jeq
s1 (~r ′) G2(~r | ~r ′)dS ′ ~r ∈ V2

~F s
2 (~r) = −

∫

S

ǫ2
~M eq

s1 (~r ′) G2(~r | ~r ′)dS ′ ~r ∈ V2

One should note that Eqn. (2.56) is evaluated just outside the surface (S+), while

Eqn. (2.57) is evaluated just inside the surface (S−). Again, once the equivalent

sources are determined, the vector potentials can be obtained, thereby, producing

the scattered fields.
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2.5.2 Surface Magnetic Field Integral Equation. The MFIE is another

popular integral equation used in the solution to the scattering problem. The MFIE

utilizes the boundary condition on the tangential magnetic field [1],

n̂ × ~H = ~Js ~r ∈ S (2.58)

The following sections will describe the MFIE for a PEC and dielectric scatterer.

2.5.2.1 Perfect Electric Conductor (PEC) Scatterer. The formulation

of the MFIE for a PEC scatterer can be obtained by substituting Eqn. (2.31) for ~H

into Eqn. (2.58) and rearranging to form,

n̂ × ~Hs − ~Js = −n̂ × ~H i ~r ∈ S (2.59)

We are now in a position to invoke the physical equivalence problem described in

Fig. (2.6), and the vector potentials, to formulate the MFIE,

n̂ ×∇×
∫

S

~Js(~r
′) G(~r | ~r ′)dS ′ − ~Js(~r) = −n̂ × ~H i ~r ∈ S (2.60)

where ~Js is the equivalent current as defined in Eqn. (2.40) and ~r is contained just out-

side the surface S. In the limit as ~r approaches S it can be shown [2] that Eqn (2.60)

reduces to Maue’s Integral Equation [2],

n̂ ×∇×
∫

S

− ~Js(~r
′) G(~r | ~r ′)dS ′ − 1

2
~Js(~r) = −n̂ × ~H i ~r ∈ S (2.61)

Again, since the equivalent current is immersed in unbounded free-space the theory

from Section 2.4.2 applies.

2.5.2.2 Dielectric Scatterer. To formulate the MFIE for the dielectric

scatterer reconsider Fig. 2.7, and the development of Eqn.’s (2.46) through (2.55).
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Utilizing the equivalent problems and the boundary condition for the tangential

magnetic field, the coupled MFIE for a dielectric is defined as,

n̂ ×
[

1

jωǫ1µ1

[k2
1
~F s

1 + ∇(∇ · ~F s
1 )] +

1

µ1

(∇× ~As
1)

]

− ~Jeq
s1 = −n̂ × ~H i ~r ∈ S+

(2.62)

n̂ ×
[

1

jωǫ2µ2

[k2
2
~F s

2 + ∇(∇ · ~F s
2 )] +

1

µ2

(∇× ~As
2)

]

+ ~Jeq
s1 = 0 ~r ∈ S−

(2.63)

where the subscripts 1 and 2 denote the medium in which the sources radiate and

~As
1(~r), ~F s

1 (~r), ~As
2(~r), and ~F s

2 (~r) were defined in the EFIE formulation. One should

note that Eqn. (2.62) is evaluated just outside the surface S+, while Eqn. (2.63)

is evaluated just inside the surface S−. Again, once the equivalent sources are de-

termined, the vector potentials can be obtained, thereby, producing the scattered

fields.

2.5.3 Surface Combined Field Integral Equation. When deriving the EFIE

or the MFIE either the boundary condition for the tangential electric or magnetic

field was enforced. By enforcing the boundary conditions individually, there are scat-

terers in which the solution is not unique. This is considered the internal resonance

problem with the EFIE and the MFIE [8]. The Combined Field Integral Equation,

CFIE, is developed to mitigate the internal resonance problem. The CFIE is a linear

combination of the EFIE and the MFIE. For a closed conducting surface the CFIE

can be defined as,4

αEFIE + (1 − α)MFIE (2.64)

where α is used as a scaling term and as a fix-up to the units. The scaling term ranges

from 0 < α < 1 and typically is set to 0.8. By setting α to zero or one, the CFIE

4For complete development reference [9]
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reduces to the MFIE or EFIE, respectively. Throughout the development of the

EFIE and MFIE, once the integral equation was formulated, if the equivalent sources

could be determined than the problem was solved. To solve these equations the use

of the Method of Moments can be utilized. The following section will describe how

to solve for the equivalent current densities, find the scattered fields, and ultimately

determine the RCS of the scatterer.

2.6 Method of Moments (MoM)

MoM is a procedure for solving linear operator equations (such as an integral

equation) that have the form:

Lf = g (2.65)

where in our case L is a linear integral operator on ~J or ~M , g is the known forcing

function (typically related to ~Ei), and f being the unknown currenty density ~J or

~M [10]. By obtaining the induced current density

f = L−1g, (2.66)

the scattered fields from a target can be obtained from the traditional radiation

integrals as defined in Section 2.4.2, Eqn.’s (2.27) and (2.28). To solve Eqn. (2.66)

the following procedure must be applied to determine the domain of the operator L.

The procedure is [2, 10,11]:

• Express the unknown function f in terms of a set of basis functions with un-

known coefficients

f ≈
N

∑

n=1

anen (2.67)
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where an is an expansion constant (unknown) and en is an expansion function

(known)

• Determine a suitable inner product and define weighting functions

• Form the matrix equation by taking the inner product

• Invert the matrix and solve for the unknown coefficients

Typically, the expansion functions that are chosen closely model the physical behav-

ior of the unknown. By doing this, fewer expansion functions are needed, however it

may also lead to integrals that cannot be solved in closed form [7]. Additionally, by

selecting expansion functions that allow mathematical operations to be performed

in closed form allows numerical integration or differentiation to be minimized. As

for testing functions they should be chosen such that mathematical operations can

be performed in closed form and numerical convergence can be achieved. The ex-

pansion and testing functions can be divided into two classes: subdomain and entire

domain. Subdomain functions are defined as being non-zero over a portion of the do-

main, which is typically the scattering surface. Some common subdomain functions

are: delta functions, piecewise constant defined as being non-zero over the entire

domain of the unknown. Some common entire domain functions are sines, cosines,

and polynomials [7]. Recently many MoM codes have been implemented to take

advantage of the processing capabilities of today’s computers. The following section

will describe the three dimensional MoM code, CARLOS [12], that was utilized in

providing computational results to the model which will be described in Chapter III.

2.6.1 CARLOS. Code for Analysis of Radiators on Lossy Surfaces, or

CARLOS, is a general purpose MoM code that calculates radiation or scattering

from complex geometries. As mentioned, CARLOS, is a general MoM code that

utilizes the Galerkin Method, which signifies that the testing and basis functions are

of the same type, to solve the Stratton-Chu integral equations [13]. The Stratton-Chu

integral equations are identical to the EFIE and MFIE developed earlier. For the
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Figure 2.8: Example ACAD generated
facet file.

testing and basis functions CARLOS utilizes the RWG basis functions. RWG basis

functions are defined over pairs of adjacent triangles with the current approximated

by flowing between two opposite vertices, across their common edge. The current

component normal to the common edge is continuous and since the current has no

component normal to the boundaries of the triangles, there exists no line charges

[14]. CARLOS offers many input parameters to accommodate many different types

of geometries. CARLOS has the option of analyzing bodies of revolution, two-

dimensional bodies of translation, three-dimensional wires, and three-dimensional

triangular and quadrilateral patch surfaces. Within the user input file, the geometry

must be in a format that CARLOS can read. Throughout this research all geometry

facet files were created using Advanced Computer Aided Design, ACAD [15]. An

example of an ACAD generated facet file is depicted in Fig. 2.8. The mesh utilized

has certain suggested criterion for accurate computations. The criteria are [12]:

• Grid Density such that maximum edge length is less than λ
10

• Increased Mesh Densities Near Edges, and Surface and Material Discontinuities
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• Maximize Aspect Ratio (i.e. Equilateral Triangles best case scenario)

• Matching Nodes at different surfaces

For a complete theoretical background on the CARLOS code, please refer to

[12].
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III. Methodology

In this chapter we define the methodology used to isolate and characterize the

interaction between the target and mount in Radar Cross Section (RCS) mea-

surements. The methodology presented explains how to isolate and characterize the

interaction. Two approaches were applied to validate the isolation and characteriza-

tion of the interaction. The first approach computationally isolated the interaction

of two simple geometry objects utilizing the three-dimensional Method of Moments

(MoM) code CARLOS and validated against measurements taken in AFIT’s RCS

range. The second approach modeled a general target-mount calibration config-

uration in a RCS range. The mount model replicated the forward canted ogive

cross-section pylon, and the target was modeled as a calibration target. This re-

search is carried out through simulations in CARLOS due to the complexity of the

system being analyzed. The primary goal of the research is to obtain a modified

vector background subtraction equation to account for the interaction between the

calibration target and mount. The modified equation, Eqn. (1.3), that includes the

interaction term is:

σtgt =
| ~Es

tgt − ~Es
bkg|2

| ~Es
cal − ~Es

cbk − ~Es
cint|2

σcal (3.1)

3.1 Generalized Isolation Process of the Interaction Scattering Mechanism

The interaction between the target and the mount must first be isolated prior

to the characterization. The concept of isolation is quite simple. Recall that the

RCS (σ) of a target is defined as [2],

σ = lim
R→∞

4πR2 | ~Es|2

| ~Ei|2
, (3.2)

3-1



where ~Es is a spherical wavefront, but “locally” planar at R → ∞, and ~Ei is the

planar wavefront incident upon the target. Typically, the incident field is assumed

to have a magnitude of one, therefore, the scattered electric field is related to the

RCS by,

lim
R→∞

| ~E| ∝
√

σ (3.3)

If the RCS is known, the scattered electric field magnitude can be determined. How-

ever, in most radar systems, the in-phase and quadrature (I and Q) data is measured

and available to the operator. In-phase and quadrature data is analogous to the real

and imaginary components of a complex number. Therefore, the I and Q data pre-

serves the phase information and fields can be coherently added or subtracted [6].

From a computational standpoint, the three-dimensional Method of Moments (MoM)

code, CARLOS, is used specifically to obtain the interaction term in the ogive cross

section pylon and target configuration. CARLOS provides two outputs: 1) a field

file with complex scattered fields stored in a format conducive to coherent addi-

tion/subtraction, and 2) the complex surface current densities at facet centroids

which can then be radiated to the far-field utilizing the radiation integrals developed

in Sec. 2.4.2.2 to obtain the far-zone scattered fields [12].

The concept of coherence is the key element in isolating the interaction. The

interaction isolation process is similar to the vector background subtraction tech-

nique introduced in Sec. 2.3. The interaction isolation process requires, through

measurements or CARLOS simulations, the following scattered fields:

~Es
tm : The scattered field due to the target-mount configuration. Contained within

this field is the interaction, ~Es
int, between the target and mount.

~Es
t : The scattered field due to the target “floating” in free-space. Although this

measurement may not be physically realizable, simulated results are used to
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characterize the interaction between the calibration target-mount configura-

tion.

~Es
m : The scattered field due to the mount. In the simple cylinder geometry case,

the ~Es
m measurement can be taken. However, in the ogive mount-target con-

figuration, the ~Es
m measurement cannot be physically taken. This is due to

the ogive’s top termination, which is “invisible” to the radar when measuring

~Es
tm, but visible when measuring ~Es

m. Section 3.3.1 describes the computa-

tional process to obtain the scattered field due to the mount in the calibration

target-mount configuration.

The general technique to isolate the interaction is summarized in Fig. 3.1 and math-

ematically represented by

~Es
int = ~Es

tm − ( ~Es
t + ~Es

m) (3.4)

Isolating the interaction scattering mechanism requires coherently subtracting the

sum of the scattered fields due to the target ( ~Es
t ) and mount ( ~Es

m) from the total

scattered electric field from the target-mount configuration ( ~Es
tm). The following

sections describe the experimental setup used to obtain the RCS measurements of the

target, mount, and calibration target-mount configurations required for interaction

isolation. The first section provides a simple two cylinder geometry as a proof of

concept in which physical measurements are validated against computational results.

The second section describes the RCS measurement setup used to characterize the

interaction between the calibration target and ogive cross section pylon.
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Figure 3.1: Summary of methodology of isolating the interaction scattering mechanism. Chart is read from left
to right. Square boxes represent processes that must be carried out, trapezoids represent data from the processes,
and the diamond represents a decision that must be made by the user.
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3.2 Proof of Concept: A Simple Two Cylinder Geometry

This section specifies the geometry and parameters applied to isolate and char-

acterize the interaction between two, right circular cylinders. The geometry was

selected since the configuration inherently contains a significant contribution from

electromagnetic coupling (i.e. interaction) between the two cylinders. In fact, the

electrical separation distance varies with increasing frequency and demonstrates the

effects of frequency on the interaction between multiple scatterers. The simple con-

figuration allows measurements in the AFIT RCS range. The comparison between

measured and computational results validate the isolation process. The Perfect Elec-

tric Conductors (PEC), cylinders 1 and 2 in Fig. 3.2, separately represent the RCS

measurement mount and target, respectively. The combination represents the target-

mount configuration for a RCS measurement. The following sections describe the

analytical tools used to characterize the interaction. The analyses include three in-

dependent methods: three-dimensional Method of Moments (MoM) computations

(CARLOS), physical measurements, and the high frequency computations (GO).

3.2.1 Computational Experimental Setup. Computationally, the problem is

set up utilizing CARLOS. The simulation geometry must be specified to begin obtain

the RCS from CARLOS. To accomplish this task, the geometry is meshed as trian-

gular or quadrilateral patches. As stated in Sec. 2.6.1, CARLOS utilizes RWG basis

functions. Therefore, the geometry in Fig. 3.2 is triangularly meshed using ACAD.

The resultant simple cylinder mesh is depicted in Fig. 3.3. The mesh properties meet

the generally accepted guidelines summarized in Sec. 2.6.1. Using the conventional

spherical coordinate system (θ measured from the +ẑ-axis and φ measured from the

+x̂-axis), a monostatic frequency sweep measurement is performed. A monostatic

frequency sweep measurement is an RCS measurement in which the frequency is

varied, while the target is fixed at some θ and φ. Since the objective of this research

is to characterize the interaction in calibration measurements, the model is oriented

to replicate a standard calibration setup in physical measurements. A monostatic
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ẑ
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Figure 3.2: Geometry utilized to isolate the interaction term.
Perfect Electric Conducting (PEC) Cylinder 1 represents the
mount, PEC Cylinder 2 represents the target, and the combina-
tion of both cylinders represent the target-mount configuration
in a RCS measurement

frequency sweep is taken over a frequency span of 6.2 GHz to 10.2 GHz by 200 MHz

increments, with θ = 90◦, and φ = 0◦. The setup accommodates a frequency band

within the operating limits of the AFIT range radar, and the angular orientation is

representative of a standard calibration setup. Both horizontal and vertical polar-

izations are explored to determine the polarization dependence of the interaction.

In total six simulations are carried out to isolate the interaction scattering mecha-

nism between the cylinders in each polarization. The interaction is isolated through

the process defined in Sec. 3.1. That is, the interaction between the two cylinders

is isolated by coherently subtracting the computed far-zone scattered fields in each

configuration. The configurations are: cylinder 1 alone which scatters ~Es
m, cylinder 2

alone which scatters ~Es
t , and finally the combination of both cylinders which scatters

~Es
tm. The results and analysis are presented in Chapter IV.
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Figure 3.3: Triangular Mesh used as input to CARLOS for the cylinder geometry.
Mesh meets all requirements as specified in Section 2.6.1

3.2.2 RCS Measurement Setup. The computational results are compared

to measurements taken in the AFIT RCS range. The experimental setup is shown

in Fig. 3.4. The experimental setup consists of two 3-inch length by 1-inch diameter

aluminum cylinders separated by 6 inches center-to-center. Individually the two

cylinders represent the mount and target in a RCS measurement. A monostatic

frequency sweep is taken over a frequency span of 6.2 GHz to 10.2 GHz by 200 MHz

increments with θ = 90◦ and φ = 0◦. Both horizontal and vertical polarizations are

exploited to determine the polarization dependence of the interaction.

The interaction between the two cylinders is isolated by coherently subtracting

the measured far-zone scattered fields in each configuration. The configurations are:

cylinder 1 alone which scatters ~Es
m, cylinder 2 alone which scatters ~Es

t , and finally

the combination of both cylinders which scatters ~Es
tm. The results and analysis of

the physical measurements are presented in Chapter IV.
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(a) (b) (c)

Figure 3.4: Pictures of experimental setup. (a) Physical dimensions of the cylin-
ders utilized. (b) Separation distance between the two cylinders. (c) Measurement
configuration in the range as seen by the radar.

The primary goal of these measurements is to validate the isolation process.

However, neither the computational results nor the physical measurements provide

sufficient physical insight into what is occurring in the configuration, therefore, a

Geometrical Optics (GO) analysis is included. The following section provides the

basis for the GO analysis that is carried out in Chapter IV.

3.2.3 Geometric Optics Setup and Approximation. Geometric Optics is a

high frequency ray tracing technique to obtain the scattered field. Geometric Optics

obeys Snell’s Law of Reflection, in that the incident angle is equal to the reflected

angle [1]. An important GO analysis characteristic is the returns can be isolated and

coherently summed to obtain a particular configuration’s total scattered field. The

GO analysis on the simple two-cylinder geometry allows us to isolate the specular

returns (denoted i), and the “double bounce” (denoted ii) returns illustrated in

Fig. 3.5. The specular return, measured on a single cylinder is either ~Es
t or ~Es

m in

the isolation process. The specular return is the dominant return in the GO analysis.

The “double bounce” return is 2 ~Es
int, and can be envisioned as the incident ray upon

the cylinder at Q1, reflected to the second cylinder at Q2, and finally reflected back

to the radar. In the two-cylinder configuration, the dominant returns are the two

specular returns (one from each cylinder) and two “double bounce” returns, which
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result in ~Es
tm in the isolation process. Appendix A provides the analysis to obtain

the far zone scattered fields for each polarization presented here by

Vertical Polarization (VV-Pol):

~Ei = ẑE0e
−jk0x (3.5)

~Es
t,m = −ẑE0e

j2k0a

√

a

2

e−jk0R

√
R

(3.6)

~Es
int = ẑE0e

jk0(2a sin θi−ℓ) a cos θi

2
√

a cos θi + ℓ

e−jk0R

√
R

(3.7)

~Es
tm = 2 ~Es

t,m + 2 ~Es
int (3.8)

Horizontal Polarization (HH-Pol)):

~Ei = −ŷE0e
−jk0x (3.9)

~Es
t,m = ŷE0e

j2k0a

√

a

2

e−jk0R

√
R

(3.10)

~Es
int = ŷE0e

jk0(2a sin θi−ℓ) a cos θi

2
√

a cos θi + ℓ

e−jk0R

√
R

(3.11)

~Es
tm = 2 ~Es

t,m + 2 ~Es
int (3.12)

where a is the cylinder radius , ℓ = d − 2a cos θi, and θi = π
4
.

Applying the two-dimensional definition of RCS, in conjunction with Equations

(3.6) through (3.12), and then applying the two-dimensional to three-dimensional

transformation (derived in Appendix A), the RCS of each return is:

σgo(t,m) = kaℓ2
c (VV-and-HH-Pol) (3.13)

σgoint =
k(a cos θiℓc)

2

a cos θi + ℓ
(VV-and-HH-Pol) (3.14)

σgotm = 8kℓ2
c

∣

∣

∣

∣

∣

ejk0(2a sin θi−ℓ) a cos θi

2
√

(a cos θi + ℓ)
± ej2k0a

√

a

2

∣

∣

∣

∣

∣

2

(3.15)
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Figure 3.5: Two-dimensional view of the simple cylinder geometry.
Geometry was utilized for the GO analysis. The only returns considered
were the direct specular scattering and the “double-bounce” scattering
mechanism.

where ℓc is the length of the cylinders, σgo is the RCS of a single cylinder, σgoint is

the RCS of the interaction term, and σgotm is the RCS of the combination of cylin-

der 1 and 2. In horizontal polarization (HH-pol), the fields that produce σgotm sum

coherently (+ in Eqn. (3.15)), while the fields subtract coherently (- in Eqn. (3.15))

in vertical polarization (VV-pol). Figure 3.5 illustrates the two specular and two

“double-bounce” returns. The effects of diffraction, creeping wave returns, and

higher order bounces are neglected in the GO analysis. The results are presented in

Chapter IV.

3.3 Pylon Model and Its Parameters

Once the process of isolating the interaction scattering mechanism is validated

against the simple cylinder geometry, a more complex target-mount configuration

is modeled to characterize the interaction. Due to the complexity of the configura-

tions, the target-mount configuration will be carried out computationally. Figure 3.6
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Figure 3.6: Geometry of an ogive cross section pylon. The

radius of curvature, r, defines the circle centered at (0,±d). L
2

and xo describe the semi-major and semi-minor axis lengths of
the ogive, respectively. θL and θT represent the angles off normal
from the leading and trailing edges, respectively.

illustrates the pylon geometry. The ogive cross-section pylon is defined as the cross-

section with the radius of curvature of a circle centered at (0,±d), and half major

and minor axes of lengths L/2 and xo, respectively. Through geometrical analysis

the radius r and distance d can be obtained if the ogive parameters L and xo are

specified. The radius of the circle r and distance from the origin d are mathematically

represented by

r =
4x2

o + L2

8xo

(3.16)

d = r − xo (3.17)

The ogive’s geometrical description would be incomplete without defining the leading

and trailing edge lengths (Le and Te) and their corresponding angles. The leading
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Table 3.1: Ogive Pylon Parameters

Top Bottom

L 7 inch 21 inch
xo 1 inch 3 inch

Vertical Dimensions

θT 46.5◦

θL 25◦

Te 28.32 inch
Le 21.25 inch

edge is specified by a off-normal angle (θL), and the trailing edge by an off-normal

angle (θT ). The leading and trailing edges meet at an apex which is depicted in

Fig. 3.6. The pylon parameters are listed in Table 3.1. It is unrealistic to model an

infinite length pylon so only a portion is modeled. Modeling a portion of the pylon

is a suitable technique since physical measurement techniques try to minimize the

unwanted returns, but certain issues arise and need to be considered. In physical

RCS measurements there are techniques that mitigate the returns from the lower

portion of the ogive pylon. In particularly, hardware range gating, as described in

Sec. 2.3.1.1, helps mitigate the returns from the traveling wave down the knife edge

of the ogive pylon. From a computational standpoint, hardware range gating can-

not be accomplished, therefore, it may be necessary to utilize other techniques to

suppress the returns from the traveling wave down the ogive. The traveling wave

caused by the sharp discontinuity (termination) at the base of the pylon creates a

standing wave on the pylon surface due to the forward and reverse traveling waves.

Thus, impedance surface treatments may be needed to mitigate the returns from the

“shorter” pylon and the termination to accurately simulate the RCS measurement.

The termination effects are assessed in Chapter IV. Another effect is the field taper

in RCS measurements. Outside the quiet zone where the wavefront is no longer con-

sidered planar, the field has both an amplitude and phase taper. In measurements,

these returns can be mitigated through the use of range gating. However, within

3-12



simulations there is no way to range gate nor to specify a quiet zone. Moreover,

the incident field cannot be decomposed into planar wavefronts for one region and

spherical wavefronts outside that region. Since the spherical wavefront contributions

in physical measurements are assumed to be negligible, we assume minimal contri-

butions in simulations as well. The ogive model just described, in conjunction with

two calibration targets, are used to characterize the interaction.

3.3.1 Computational Setup for the Pylon-Cylinder Model. To isolate and

characterize the interaction between the calibration target and mount, the mount

described in Sec. 3.3 is simulated computationally with two calibration objects placed

in the target-mount configuration, as shown in Fig. 3.7. The two calibration targets

are: 1) a 15-inch diameter x 3.5-inch height cylinder (denoted “1500x350”) and 2)

a 18-inch diameter x 12-inch height cylinder (“denoted 1800x1200”). The cylinders

were chosen to be representative of calibration targets, and to explore the functional

dependence of the interaction on target geometry. The simulations parallel those

performed for the simple two-cylinder geometry. The only difference is the frequency

range over which the measurements are taken. The complexity of the configuration

and the computational size of the problem dictate this change. Each triangular facet

edge represents an unknown that must be solved. Also a denser grid is suggested

to satisfy a minimum edge length of λ/10 for moderate accuracy within CARLOS

at higher frequencies. For example, doubling the frequency reduces the minimum

facet edge length by one half. This quadruples the number of edges which directly

relates to an increase of 64 times the amount of computational time. Therefore, lower

frequencies were specified to minimize computer processing time. The simulations

on the 1800x1200 and 1500x350 calibration target-mount configuration consisted of

a monostatic frequency sweep of 100 MHz to 4.033 GHz by 192 MHz and 96 MHz

increments, respectively, with angular orientations of θ = 90◦ and φ = 0◦ in vertical

and horizontal polarizations.
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Figure 3.7: Representation of the target-mount configurations utilized computa-
tionally for the isolation and characterization of the interaction. The configuration
on the left represents an 1800x1200 (18 inch x 12 inch) calibration target, whereas
the configuration on the right represents a 1500x350 (15 in diameter x 3.5 in height)
calibration target.

3.3.2 Isolation of the Interaction in the Calibration Target-Mount Configura-

tion. The shadowing of the top of the pylon by the target in the target-mount

configuration does not allow the general isolation process developed in Sec. 3.1 to be

applied directly. The direct measurement of the scattered fields due to the mount

cannot be carried out due to the termination at the top of the ogive present in the

measurement obtaining ~Es
m, but “invisible” to the radar in the measurement obtain-

ing ~Es
tm. Therefore, an extraction of the mount’s far-field signature in the presence

of the calibration target must be performed. CARLOS provides the complex sur-

face current densities ~Js(~r ′) at facet centers. The radiation integrals developed in

Sec. 2.4.2.2 are utilized to obtain the far-zone scattered fields due to the mount. It

is more convenient to utilize the ~N and ~L vectors (where ~L = 0 since there are no

magnetic currents) developed by [1] to obtain the far-zone scattered fields. There-

fore, Equations (3.18) and (3.19) are used to extract the scattered electric field due
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to the mount. The ~N vectors are defined as,

Nθ(θ, φ) =

∫

S

[Jx(~r
′) cos θ cos φ + Jy(~r

′) cos θ sin φ − Jz(~r
′) sin θ] ejkr′cosψds′

(3.18)

Nφ(θ, φ) =

∫

S

[−Jx(~r
′) sin φ + Jy(~r

′) cos φ] ejkr′ cos ψds′ (3.19)

where Jx, Jy, and Jz are the x-, y-, and z-components of the electric current density

on the surface, Ss of the target and mount, ~r ′ is the position vector from the origin

to a source point on S, ~r is the position vector from the origin to an observation

point, and ψ is the angle between ~r(θ, φ) and ~r ′. Once Nθ and Nφ are obtained, Eθ

and Eφ are found via

Eθ(r, θ, φ) ≃ −jke−jkr

4πr
[η0Nθ(θ, φ)] (3.20)

Eφ(r, θ, φ) ≃ −jke−jkr

4πr
[η0Nφ(θ, φ)] (3.21)

where Eθ and Eφ are the θ and φ components of the radiated electric field, r is

the distance from the origin to the observer (radar), and η0 is the impedance of

free-space, 120π Ω. In the calibration configuration, r̂ = −x̂, θ = π/2, φ = 0,

r′ cos ψ = x′, and r = −x, therefore, equations (3.18) and (3.19) reduce to

Nθ

(

π

2
, 0

)

= −
∑

n

∫

Sn

Jz(~r
′)ejkx′

ds′ (3.22)

Nφ

(

π

2
, 0

)

=
∑

n

∫

Sn

Jy(~r
′)ejkx′

ds′ (3.23)

where Jz and Jy were previously defined for Equations (3.18) and (3.19). The fol-

lowing assumptions allow us to evaluate Equations (3.22) and (3.23) in closed form:

• The triangular facets are electrically small, therefore, the current density on

each is approximately constant
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• The fields radiated by the current density on a facet are nearly identical to

those radiated by a Hertzian dipole located at the facet centroid

• The current on the Hertzian Dipole is given by:

Nθ

(

π

2
, 0

)

= −
∫

S

Jz(~r
′)ejkx′

ds′ ≃ −Jz(~r
′)ejkx′

A (3.24)

Nφ

(

π

2
, 0

)

=

∫

S

Jy(~r
′)ejkx′

ds′ ≃ Jy(~r
′)ejkx′

A (3.25)

where A is the area of the facet

Applying the assumptions, Equations (3.22) and (3.23) reduce to,

Nθ = −
∑

n

Jz(~r
′
n)Ane

jkx′

(3.26)

Nφ =
∑

n

Jy(~r
′
n)Ane

jkx′

(3.27)

where n represents the nth facet. Once Nθ and Nφ are obtained, Equations (3.20)

and (3.21) are employed to calculate Eθ and Eφ, which ultimately yield the far-zone

scattered fields due to the currents on an arbitrary surface. It should be noted that

in this configuration, Eθ corresponds to vertical polarization, and Eφ corresponds

to horizontal polarization. The assumptions made to extract the far-zone scattered

fields will be validated against CARLOS’ results in Chapter IV.

Now that the tool for extracting the far-zone scattered fields due to the cur-

rents on an arbitrary surface is built, the scattered fields caused by the mount are

obtainable. From that point forward, the isolation process developed in Sec. 3.1 is

used. Simulations of the 1500x350 and 1800x1200 calibration targets in free space are

performed to obtain the scattered field due to the target, ~Es
t . Finally, the scattered

field due to the calibration target-mount configuration is simulated to obtain ~Es
tm.

Utilizing the scattered fields obtained through the simulations in conjunction with

3-16



Eqn. (3.4) the interaction can be isolated and characterized in a general manner.

Results obtained utilizing the modified extraction method and the isolation process

are presented in Chapter IV.

3.4 “Difference” Currents

This section utilizes the extraction method developed in the previous section to

look at the difference currents on the surface of the calibration target in the presence

and absence of the pylon. This process is identical to coherently subtracting the

effects of the mount in the far-field, but the subtraction is carried out in the near-

field and then radiated to the far-field. The purpose of this section is to look at the

perturbations on the target in the presence and absence of the mount to obtain an

understanding of the pylon effects on the target. The ultimate goal of looking at the

difference currents on the surface of the target is to gain physical insight into the

interaction. All results are presented in Chapter IV.
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IV. Results and Analysis

This chapter contains the results and analysis for the two experimental/comp-

utational setups described in Chapter III. Results for the simple cylinder

geometry are presented first followed by results for the two calibration target-mount

configurations. Recall that the simple two cylinder case was developed as a proof

of concept for isolating the interaction scattering mechanism. Results for the cali-

bration target-mount configuration are used to characterize the interaction for both

calibration targets simulated in CARLOS.

4.1 Two Cylinder Geometry

The simple two-cylinder geometry serves to validate the isolation process de-

scribed in Sec. 3.1. Consider again the geometry in Fig. 3.2. The experimental setup

consisted of two, 3-inch long x 1-inch diameter right circular cylinders separated by

a center-to-center distance of 6 inches. The measurements consisted of monostatic

frequency sweeps from 6.2 GHz to 10.2 GHz in 200 MHz increments, at an aspect

of θ = 90◦ and φ = 0◦, in which both horizontal and vertical polarizations were

exploited. The measurements taken, both computationally and in a RCS range, are

utilized in conjunction with Eqn. (3.4) to isolate the interaction.

4.1.1 Perfect Electric Conductor (PEC) Cylinder 1 and 2 Results. PEC

cylinders 1 and 2 represent the mount and target in a RCS measurement Therefore,

the far-zone scattered fields due to each individual cylinder are denoted as in the iso-

lation process ~Es
m and ~Es

t , respectively. Moment Method, RCS measurements, and

Geometric Optics (GO) results are shown in Fig. 4.1 for cylinder 1 and 2. The plots

indicate the RCS for cylinder 1 and 2 in each polarization are virtually identical when

measured individually. Small variations in the RCS levels for different polarizations

are attributable to the scattering mechanisms inherent in the particular polarization.

In both polarizations, the dominant scattering mechanism is specularly off the singly
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Figure 4.1: Simple two cylinder CARLOS, measured, and GO results for cylinder 1
and 2. (a) Cylinder 1 VV-polarization. (b) Cylinder 1 HH-polarization. (c) Cylinder
2, VV-polarization. (d) Cylinder 2 HH-polarization.

curved surface. However, there are additional contributions. Horizontal polarization

(Figs. 4.1b and 4.1d) contributions are due to the creeping wave returns and diffrac-

tion from the rim edges. Additionally, the vertical polarization contributions are

produced by surface traveling waves and diffraction from the rim edges. The surface

traveling wave induces surface currents and produces a “sinusoidal” standing wave

pattern resulting from the forward and reverse traveling waves created by the tip

terminations. Figure 4.2 illustrates the surface currents on the cylinder in horizontal

and vertical polarization at 6.2 GHz. The standing wave pattern in vertical polariza-

tion is evident in the plot as “hot spots” in the left-hand plot. The two “hot spots”
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Figure 4.2: Surface Currents on Cylinder 2. (a) Verifies the standing
wave in vertical polarization, which relates to a higher RCS in the Far-
Field due to the specular scattering in addition to the standing wave on
the surface. (b) Specular Scattering in Horizontal polarization which
has a lower overall RCS due to the only contributor being the specular
return in this polarization.

are representative of sinusoidal waveform peaks. Therefore, the separation distance

should equate to one wavelength which at 6.2 GHz corresponds to approximately

1.9 inches. This agrees favorably with Fig. 4.2, where the center-to-center distance

of the “hot spots” is 2 inches. Since the GO approximation only accounts for spec-

ular returns, intuitively the GO would predict lower RCS values for CARLOS or

physical measurements. However, this is dependent on phase; which is dependent

on fields constructively or destructively interfering. As shown in Fig.4.1, this holds

true for vertical polarization, but in horizontal polarization it seems to hold true

only over the band of 7 to 9 GHz.
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Figure 4.3: Simple two cylinder CARLOS, Measured, and GO results. (a) VV-
polarization. (b)HH-polarization.

4.1.2 Combination of Cylinder 1 and 2. Attention is now turned to the two-

cylinder configuration. The scattered field from this measurement is represented as

~Es
tm in Eqn. (3.4). The RCS results from the three techniques are depicted in Fig. 4.3.

Measurements from the RCS range and the predictions from GO and CARLOS are

in decent agreement and show similar trends. The GO analysis described in Sec 3.2.3

was carried out using only the “double bounce” and specular returns. Similar trends,

i.e. peaks and valleys, among GO and CARLOS are prevalent. Since CARLOS ac-

counts for traveling wave contributions, creeping waves, etc., the predicted results

are in general higher. As expected, the lobing patterns between the three techniques
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Figure 4.4: Downrange image of the two-cylinder configuration. (a) Specular Re-
turn apparent in both polarizations. (b) Contributions from diffraction off the back
rim in VV-Pol. (c) Contributions from the creeping wave in HH-pol.

are in close agreement for both polarizations. Recall from Sec 3.1 that the scattered

field due to the two-cylinder configuration contains the interaction between the cylin-

ders. This can be visually represented by inverse Fourier Transforming the frequency

domain data from the physical measurements to convert it to the time domain. This

creates a downrange image of the cylinder’s impulse response. Figure 4.4 depicts

the downrange images of the two-cylinder configuration in horizontal and vertical

polarization. The large impulse response at zero inches downrange (denoted by a)

corresponds to the specular return from the cylinders. To relate the other impulse

responses in the plot, several scattering mechanisms and their associated path length

differences are taken into account. Consider the geometries in Fig. 4.5. Based on
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Table 4.1: Scattering mechanisms and their downrange dis-
tances.

Scatt. Mech. Down Range[in] Ref. in Fig. 4.4 Ref. in Fig. 4.5
Specular Return 0.0 a a1
Creeping Wave 1.3 c a2

Diffraction from rim 1.0 b b1
Diffraction around Cylinder 2.5 Indistinguishable b2

“Double Bounce” 2.75 Indistinguishable c

this geometry, the impulses can be attributed to the scattering mechanisms and

their calculated downrange distances as summarized in Table 4.1. Several scatter-

ing mechanisms are listed as indistinguishable within the impulse response based on

downrange resolution given by [2]

△x =
c

2B
(4.1)

where c is the speed of light in meters per second and B is the electrical bandwidth.

For the bandwidth used here, resolution calculates to be approximately 1.5 inches.

The resolution can be thought of as the minimum distance scatterers must be sepa-

rated to be resolvable.

4.1.3 Isolation of the Interaction Between Cylinder 1 and 2. With com-

pleted measurements, both computational and physical, the isolation process can be

validated using Eqn. (3.4) (repeated below).

~Es
int = ~Es

tm − ( ~Es
t + ~Es

m)

The fields are coherently subtracted and the results presented in Fig. 4.6. Comparing

the computational to the physical measurement results, validate the isolation process,

and also indicate a very important characteristic about the interaction term. As

the frequency increases the electrical size of the cylinders increases. This is also

true for the electrical distance between the cylinders. For example, at 6.2 GHz the

4-6



(a) (b) (c)

0.5 in

1 in

3 in 6 in

0.5 in
1 in

0.5 in

a1

a2

b1

b2

Figure 4.5: Geometrical path length differences. (a) Specu-
lar return apparent in both polarizations and creeping wave in
horizontal polarization. (b) Contributions from diffracted fields
traveling across the top of the cylinder, down the cylinder, and
back across the bottom of the cylinder, apparent in VV-pol. (c)
Contributions from the “double-bounce” in both polarizations.

wavelength is approximately 1.9 inches. Therefore, since the edge-to-edge distance

of the cylinders is 5.0 inches, the cylinders are approximately 2.5 wavelengths apart.

At 10.2 GHz the wavelength is approximately 1.2 inches and the electrical distance

between the two cylinders increases to 5 wavelengths. As frequency continues to

increase, so too does the electrical separation. This makes physical sense; as two

object’s electrical separation continues to increase, the electromagnetic coupling (i.e.

interaction) between the objects tends to decrease; electrical separation distance and

interaction are inversely proportional. Overall, the predicted results from GO and

CARLOS are corroborated through RCS measurements. Therefore, the isolation

process can be utilized in a modified manner to tackle the problem of characterizing

the interaction between the calibration targets and the ogive pylon.

4.2 Cylinder/Pylon Configuration

Results here are for the calibration target-ogive cross section pylon configura-

tion. First, validation is performed for the Hertzian dipole approximation presented
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Figure 4.6: Simple Cylinder Computational, Measured, and GO results for the
Interaction Scattering Mechanism. (a) VV-polarization. (b) HH-polarization.

in Sec. 3.3.2 for radiating the surface currents to the far-field. The results are then

presented on the individual measurements needed in the isolation process, and finally

the isolation process is carried out and the interaction is characterized. The analysis

here involves computations with CARLOS only.

4.2.1 Validation of Hertzian Dipole Approximation. Section 3.3.2 described

the process of extracting the far-field signature due to surface currents. Recall that

the current on each facet was concentrated onto an equivalent Hertzian dipole and

radiated to the far-field. Here we compare this method against results from CAR-

LOS for the RCS of both calibration target-mount configurations. The results are
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bration target-mount configuration VV-Pol.

presented in Figures 4.7 and 4.8. The plots show the target-mount configuration

RCS between the outputs of the Hertzian dipole approximation and the CARLOS

simulation. The plots indicate that the Hertzian dipole approximation is an accurate

and viable approximation.

4.2.2 Results for Calibration Targets. The following section describes re-

sults for the 1500x350 and 1800x1200 calibration target that scatters the field ~Es
t

for the isolation process. Although this measurement may not be physically realiz-

able, simulated results are used to characterize the interaction between the calibra-

tion target-mount configuration. Figure 4.9 depicts the triangular mesh utilized by

CARLOS to find the surface currents for the calibration targets. Once the surface

currents are known, the far zone fields are found utilizing the process in Sec 3.3.2 to
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Figure 4.9: Triangular mesh for the calibration target utilized
within CARLOS. 1800x1200 Cylinder.

obtain ~Es
t . The physical target dimensions consisted of a 15-inch diameter by 3.5-

inch height for the 1500x350 cylinder and an 18-inch diameter by 12-inch height for

the 1800x1200 cylinder. The computation consisted of a monostatic frequency sweep

from 4 MHz to 4.003 GHz in 96 MHz increments, at an aspect of θ = 90◦ and φ = 0◦,

in vertical and horizontal polarizations. The angular orientation replicates typical

calibration measurements. Figure 4.10 shows the RCS of both calibration targets

for horizontal and vertical polarization. Similar to the results obtained in the simple

two cylinder geometry, the overall target RCS of the targets is relatively independent

of polarization except at lower frequencies. The polarization independence may be

partly due to the dominant specular scattering mechanism.

4.2.3 Cylinder Mounted on Pylon. As stated in the isolation process of

Sec. 3.1, the scattered field due to the mount alone ( ~Es
m) is not measurable in the
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Figure 4.10: Frequency sweep computations for the 1500x350
and 1800x1200 calibration targets. (a) 1500x350 Cylinder VV-
and HH-Pol. (b) 1800x1200 VV- and HH-Pol.

calibration target and mount configuration. The reasoning is simple; in the target-

mount configuration the top of the ogive cross section pylon is shadowed, but when

the mount is measured alone, the top of the pylon is visible to the radar. There-

fore, a modified version of the isolation process, described in Sec. 3.3.2 is used to

extract currents on the surface of the ogive cross section pylon in the presence of

the calibration targets. Then those currents are radiated to the far-field to obtain a

true representation of the contributions due to the mount alone. Figure 4.11 depicts

the mesh utilized for the 1800x1200 targets within CARLOS to obtain the surface

currents. The RCS of the mount alone is not presented. However, the fields radiated

by the currents on the mount ( ~Es
m) are utilized in isolating the interaction. The

RCS of the target-mount configuration is presented. Figure 4.12 depicts the RCS

of both calibration target-mount configurations in vertical and horizontal polariza-

tion. The target-mount scattered field ( ~Es
tm) in this configuration is included in the
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Figure 4.11: Meshed Geometry for the calibration target-
mount configuration utilized with CARLOS to obtain the sur-
face currents. 1800x1200 Calibration Target-Mount Configura-
tion.

isolation process. The RCS of the target-mount configuration indicates interesting

characteristics of the ogive cross section pylon. By comparing the overall RCS levels

in Fig. 4.10 with Fig. 4.12, the pylon can be characterized as an extremely low RCS

target. However, the ~Es
m scattered field incorporates the interaction term. The in-

teraction can now be isolated since all measurements are available to carry out the

isolation process.

4.2.4 Isolation of the Interaction in the Calibration Target-Mount Configu-

ration. The isolation process for the calibration target-mount configuration is

presented in a similar fashion as the simple two-cylinder geometry. That is, the RCS
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Figure 4.12: RCS of: (a) 1500x350 calibration
target-mount configuration and (b) 1800x1200 calibra-
tion target-mount configuration.

of the interaction is presented as a function of frequency. Again, once the measure-

ments ~Es
tm, ~Es

t , and ~Es
m, have been obtained computationally or through extraction,

the interaction term ~Es
int can be extracted from ~Es

tm. The interaction term for both

calibration targets in vertical and horizontal polarizations are presented in Fig. 4.13.

Based on the RCS levels, the interaction in the 1500x350 calibration target-mount

configuration (Fig. 4.13a) is significantly less (approximately -30 dB) than the RCS

of the target-mount configuration (Fig. 4.12a). This implies the interaction effects

are extremely low, allowing the returns to be neglected. Similar results are obtained

for the 1800x1200 calibration target-mount configuration. The following section,

utilizes the extraction process described in Sec. 3.3.2 and evaluates the “difference”

currents on the surface of the calibration targets with and without the pylon present.

The purpose of the following section is to gain insight into, and characterize, the

interaction.
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Figure 4.13: RCS of interaction in: (a) 1500x350 cal-
ibration target-mount configuration and (b) 1800x1200
calibration target-mount configuration.

4.2.5 Difference Currents on the Surface of the Calibration Targets. The

purpose of this section is to determine the effects on the target with and without the

pylon present. From a macro perspective, if the currents are coherently subtracted,

the difference if radiated to the far-field is the interaction term described in the

previous section. Fig. 4.14 and Fig. 4.16 shows the pylon effects on the 1800x1200

calibration target in vertical and horizontal polarization, respectively. The plots

depict the surface currents of the target simulated alone, in the presence of the pylon,

and the “difference currents” on the surface of the target at the lowest, middle,

and highest frequency simulated. The plot depicted in Fig.4.14a is indicative of

frequency effects on the interaction term in VV-pol. At the lowest frequency of

196 MHz, the “difference” cylinder shows an extremely high amount of coupling

on the base of the cylinder. At 196 MHz, the target (18 inches) is electrically

small compared to a wavelength (60 inches), and therefore the effects of coupling

is strongest. Another interesting characteristic of the cylinder extracted from the

target-mount configuration is that at low frequencies the specular flash off the front
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of the cylinder is not the dominant scattering mechanism, the interaction between

the target and pylon is, though.

Figure 4.14b represents the middle frequency of 2.115 GHz simulated in CAR-

LOS. The standing wave pattern illustrates a full cycle, which agrees well with the

approximate 6 inch wavelength. The cylinder that signifies the difference currents on

the surface illustrates that as the frequency increases the target becomes electrically

smaller, and therefore the interaction between the target-pylon also decreases.

Finally at the highest frequency simulated, 4.033 GHz, the difference currents

on the surface of the cylinder indicate an extremely low interaction. Specular returns

from the cylinder surface provides the largest contribution. The four complete cycles

that the standing waves progress through agrees well with the approximate 3 inch

wavelength at 4.033 GHz.

Overall, Fig. 4.14 illustrates the frequency effects on the target-pylon interac-

tion in VV-pol. The interaction becomes more prevalent when the surface cylinder

currents are radiated to the far-field. Figure 4.15 highlights the interaction-frequency

relationship. In general, the plot indicates that at low frequencies in VV-pol, where

the target is electrically small, the interaction is significant and may not be ne-

glected. However, when the target becomes electrically large (higher frequencies),

the interaction is less significant and may possibly be neglected without degrading

overall RCS measurements. To account for the interaction at the lower frequencies

the frequency sweep measurements created for the interaction can be used in con-

junction with the modified vector background subtraction equation, Eqn. (1.3), to

obtain a more accurate representation of the target’s RCS.

The plot depicted in Fig.4.16a is indicative of frequency effects on the interac-

tion term in HH-pol at the lowest frequency sampled of 196 MHz. The plot indicates

that overall there is a low level of interaction.
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Figure 4.16b represents the middle frequency of 2.115 GHz simulated in CAR-

LOS. At this frequency the interaction seems to show some strange anomalies. Fur-

ther investigation, that is radiating to the far-field, must be carried out to fully

understand what is occurring.

Finally at the highest frequency simulated, 4.033 GHz, the difference currents

on the surface of the cylinder indicate an extremely low interaction.

Overall, Fig. 4.16 illustrates the frequency effects on the target-pylon interac-

tion in HH-pol. The interaction becomes more prevalent when the surface cylinder

currents are radiated to the far-field. Figure 4.17 highlights the interaction-frequency

relationship. The anomalies that are evident in the mid-frequencies could possibly

be a resonance issue and could be further investigated by looking that the solution

using the Combined Field Integral Equation. In general, though, the plot indicates

that in HH-pol the interaction is minimal and can be neglected without degrading

the overall RCS measurements.

From a physical stand-point it makes sense that the interaction is strongest

in VV-pol due to the induced currents on the knife edge of the pylon, which in

turn creates a “pile up” of charge at the termination of the pylon. This charge

then radiates and interaction can become most significant. However, in HH-pol

the traveling waves that “wrap” around the ogive cross section shed energy while

traversing the surface of the pylon, therefore the build up of charge is less significant

on the trailing knife edge which equates to a less significant interaction.
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Figure 4.14: Surface Currents on the 1800x1200 calibration target, VV-pol: (a)
Frequency: 196 MHz (b) Frequency: 2.1150 GHz (c) 4.033 GHz
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Figure 4.15: RCS of target in the presence and absence of the pylon in VV-Pol.
Plot indicates that as the target becomes electrically large (increasing frequency) the
interaction becomes relatively small.
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Figure 4.16: Surface Currents on the 1800x1200 calibration target, HH-pol: (a)
Frequency: 196 MHz (b) Frequency: 2.1150 GHz (c) 4.033 GHz
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Figure 4.17: RCS of target in the presence and absence of the pylon in HH-Pol.
Plot indicates that in general interaction is negligible in HH-Pol.
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V. Conclusions and Future Work

Throughout this research the ultimate goal was to characterize the interaction in

Radar Cross Section (RCS) calibration measurements to obtain a modified vec-

tor background subtraction formula that accounts for the interaction. The contents

of this chapter present the overall conclusions based on the results of Chapter IV.

5.1 Conclusions

The thesis was divided up into two sections: a simple two cylinder geometry

to validate the process of isolation, and the 1500x350 and 1800x1200 calibration

target-mount configuration to characterize the interaction.

5.1.1 Conclusions on Simple Two Cylinder Geometry. The process of iso-

lation involved the coherent subtraction of scattered fields due to the target, the

mount, and target-mount configuration in an RCS measurement. Measurements

were taken in AFIT’s RCS Range on a simple two cylinder geometry, and validated

against both a 3-dimensional Method of Moments code CARLOS and the high fre-

quency Geometric Optics technique. The computational techniques corroborate the

measurements. Therefore, using the isolation interaction process is a valid tech-

nique. More generally, it can be utilized to isolate the interaction between multiple

scatterers.

5.1.2 Conclusions on Calibration Target-Mount Configuration. Upon con-

ducting further research it was determined that the isolation process utilized on the

simple two cylinder geometry provides a concise process for obtaining the interac-

tion. However, it does not account for shadowing of the mount by the target in RCS

measurements. In practice, in a pylon/rotator configuration, the mount is never

measured alone. Therefore, a modified version of the isolation process was devel-

oped using the surface currents provided by CARLOS. This new method involves
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extracting currents associated with a given surface and radiating to the far-field.

The method was validated against results from CARLOS. Moving on, the extrac-

tion process was utilized to obtain the RCS of the interaction by carrying out the

coherent subtraction process on fields extracted from the calibration target-mount

configuration. Through this process several general conclusions are made regarding

the interaction in calibration measurements, including:

• The interaction is target dependent

• The interaction is more apparent in the VV-polarization than HH-polarization

• The interaction is a function of electrical size. For targets that are electrically

small, or on the same order of magnitude as a wavelength, the interaction

between the target-pylon is significant. However, when the target becomes

electrically large the interaction decrease and can be considered negligible.

• To account for the interactions at lower frequencies, interaction frequency

sweeps (similar to the plots in Fig. 4.13) can be utilized in conjunction with

the modified vector background subtraction equation given by

σtgt =
| ~Es

tgt − ~Es
bkg|2

| ~Es
cal − ~Es

cbk − ~Es
cint|2

σcal

to obtain a more accurate RCS of the target under consideration.

5.2 Future Work

Since this was the first of what hopes to be many endeavors into the char-

acterization of the target-mount interaction, several other areas can be pursued to

provide a better understanding of the interaction scattering mechanism. Other areas

for further study include:

• Classification of calibration targets based on their interaction with the pylon.

This could include creating a graphical user interface to provide the user with
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tools for determining the interaction based on the calibration target of their

choice.

• Modelling an actual RCS range ogive-pylon and determining the dependence

on the interaction by varying the pylon length.

• Application of surface treatments to mitigate returns from the pylon termina-

tion.

• Extension of the extraction process to include other angular orientations.

• Simulation of foam mounts to gain insight on the interaction scattering mech-

anism.

• Extend process to look at targets to include an additional term in the numer-

ator of modified vector background subtraction which will take the form,

σtgt =
| ~Es

tgt − ~Es
bkg − ~Es

tint|2

| ~Es
cal − ~Es

cbk − ~Es
cint|2

σcal
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Appendix A. Geometric Optics Analysis

This appendix describes the Geometric Optics (GO) analysis to obtain the scat-

tered fields presented in Sec. 3.2.3. The analysis is carried out two dimension-

ally, followed by a two-dimensional to three-dimensional transformation to obtain

the RCS of the GO fields. [1] was used throughout this derivation.

y

x

Q1

a

i

t

Figure A.1: Single Cylinder Geometry

A.1 Single Cylinder Derivation

Begin with the single cylinder return VV-pol or soft polarization.

~Ei = ẑEoe
−j~k·~r (A.1)

where ~k = −kox̂, ~r = x̂x + ŷy ⇒ ~k · ~r = −kox, and

~Ei = ẑEoe
jkox (A.2)

A-1



The incident wave at the point Q1 then becomes

~Ei(Q1) = ẑEoe
jkox(Q1) (A.3)

where x(Q1) = a cos θ. For this research θ = 0 radians ⇒ x(Q1) = a, and

~Ei(Q1) = ẑEoe
jkoa (A.4)

~Es
t,m = ~Ei(Q1)(−1)

√

ρ1

ρ1 + s1

e−jkos1

since S1 = R − a cos θ, as cos θ → 1, s1 = R − a, and

~Es
t,m = −ẑEoe

jkoa

√

ρ1

ρ1 + s1

e−jkos1

= −ẑEoe
jkoa

√

a
2

a
2

+ R − a
e−jkos1

= −ẑEoe
jkoa

√

a

a + 2R − 2a
e−jkos1

= −ẑEoe
jkoa

√

a

2R − a
e−jkos1 (A.5)

one final substitution produces

where R → ∞ ~Es
t,m ≃ −ẑEoe

jko2a

√

a

2

e−jkoR

√
R

(A.6)

A-2



θi

θi

θi

θi

aa

x

y

d

ℓQ2

Q1

ρ1

ρ2

Figure A.2: Two-Cylinder Geometry

A.2 “Double Bounce” Derivation

Analysis of the two-cylinder geometry requires the calculation of three fields;

1. The field incident upon Q1

2. The field incident upon Q2 emanating from Q1

3. The field radiating from Q2 out to R → ∞

The field incident upon Q1 is

~Ei (Q1) = ẑEoe
jkoa sin θi (A.7)
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The field incident upon Q2 emanating from Q1 is defined as

~Ei (Q2) = ~Ei (Q1) (−1)

√

ρ1

ρ1 + s1

e−jkos1 where ρ1 =
a cos θi

2
and s1 = ℓ

= −ẑEo ejkoa sin θi

√

a cos θi

2
a cos θi

2
+ ℓ

e−jkoℓ

= −ẑEo ejko(a sin θi−ℓ)

√

a cos θi

a cos θi + 2ℓ
(A.8)

The field radiating from Q2 out to R → ∞ is

~Es
int = ~Ei (Q2) (−1)

√

ρ2

ρ2 + s2

e−jkos2 , s2 = R − a sin θi (A.9)

from [1]

1

ρ2

=
1

ρ0

+
2

a cos θi

=
1

ρ1 + S1

+
2

a cos θi

=
1

a cos θi

2
+ ℓ

+
2

a cos θi

⇒ ρ2 =
(a cos θi + 2ℓ)a cos θi

4(a cos θi + ℓ)
(A.10)

substitution creates

~Eint = ~Ei (Q2) (−1)

√

ρ2

ρ2 + s2

e−jkos2

= −ẑEoe
jko(a sin θi−ℓ)

√

a cos θi

a cos θi + 2ℓ

√

√

√

√

(a cos θi+2ℓ)a cos θi

4(a cos θi+ℓ)

(a cos θi+2ℓ)a cos θi

4(a cos θi+ℓ)+(R−a sin θi)

e−jko(R−a sin θi)

which simplifies to

= −ẑEoe
jko(2a sin θi−ℓ)

√

(a cos θi)2

4(a cos θi + ℓ)

e−jkoR

√
R

(A.11)

A-4



Scattered field two-cylinder configuration

Es
tm = 2 ~Es

int + 2 ~Et,m

=

[

2ẑEoe
jko(2a sin θi−ℓ)

√

(a cos θi)2

4(a cos θi + ℓ)
− 2ẑEoe

2jkoa

√

a

2

]

e−jkoR

√
R

= 2ẑEo

[

ejko(2a sin θi−ℓ)

√

(a cos θi)2

4(a cos θi + ℓ)
− e2jkoa

√

a

2

]

e−jkoR

√
R

|Es
tm|2 =

4E2
o

R

∣

∣

∣

∣

∣

ejko(2a sin θi−ℓ)

√

(a cos θi)2

4(a cos θi + ℓ)
− e2jkoa

√

a

2

∣

∣

∣

∣

∣

2

(A.12)

A.3 RCS Calculations

A.3.1 ~Es
t,m RCS Calculation.

∣

∣

∣

~Es
t,m

∣

∣

∣

2

=
E2

o

R

a

2
(A.13)

where E2
o =

∣

∣

∣

~Ei

∣

∣

∣

2

σ2D = lim
R→∞

2πR

∣

∣

∣

~Es
t,m

∣

∣

∣

2

∣

∣

∣

~Ei

∣

∣

∣

2

= lim
R→∞

2πRE2
o

RE2
o

a

2

= πa

σ3D ≃ σ2D

2ℓ2
c

λ

≃ aℓ2
c

2π

λ

(A.14)

let k = 2π
λ

, then

σ3D ≃ kaℓ2
c (A.15)
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A.3.2 ~Es
int RCS Calculation.

∣

∣

∣

~Es
int

∣

∣

∣

2

=
E2

o

R

(a cos θi)
2

R

σ2D = lim
R→∞

2πR

∣

∣

∣

~Es
dB

∣

∣

∣

2

∣

∣

∣

~Ei

∣

∣

∣

2

= lim
R→∞

2πRE2
o

4RE2
o

(a cos θi)
2

a cos θi + ℓ

=
π

2

(a cos θi)
2

a cos θi + ℓ
∗ 2(double bounce term)

=
π(a cos θi)

2

a cos θi + ℓ
(A.16)

σ3D ≃ σ2D

2ℓ2
c

λ

≃ 2π

λ

(a cos θi)
2

a cos θi + ℓ
ℓ2
c

(A.17)

let k = 2π
λ

and ℓ = d − 2a cos θi, then

σ3D ≃ k
(a cos θiℓc)

2

a cos θi + ℓ
(A.18)

A.3.3 ~Es
tm RCS Calculation.

σ2D = lim
R→∞

2πR

∣

∣

∣

~Es
tm

∣

∣

∣

2

∣

∣

∣

~Ei

∣

∣

∣

2

= 8π

∣

∣

∣

∣

a cos θi

2
√

a cos θi + ℓ
ejko(2a sin θi−ℓ) −

√

a

2
ej2koa

∣

∣

∣

∣

2

(A.19)

σ3D ≃ σ2D

2ℓ2
c

λ

≃ 8
2π

λ
ℓ2
c

∣

∣

∣

∣

a cos θi

2
√

a cos θi + ℓ
ejko(2a sin θi−ℓ) −

√

a

2
ej2koa

∣

∣

∣

∣

2
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let k = 2π
λ

, then

σ3D ≃ 8kℓ2
c

∣

∣

∣

∣

a cos θi

2
√

a cos θi + ℓ
ejko(2a sin θi−ℓ) −

√

a

2
ej2koa

∣

∣

∣

∣

2

(A.20)
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