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Abstract

Hyperspectral data collection and analysis is an increasing priority with the
growing need to obtain greater classification precision than offered by traditional
spatial imagery. In this thesis, trends in hyperspectral chromotomographic recon-
struction are explored where reconstruction is performed using a series of spatial-
chromatic images. Chromotomography involves capturing a series of two-dimensional
images where each image is created by placing a prism in front of the focal plane
array; causing spectral dispersion corresponding to a series of prism angles over a

single rotation.

Before testing reconstruction, synthetic data is produced, approximating what
would be produced from prism dispersion on the focal plane array. The pseudo-
inverse singular matrix problem is addressed where two methods are compared to

find which produces minimal error.

The standard iterative error reduction algorithm, SVD-POCS, is shown to be
incapable of reconstructing the mean of the source scene, making absolute radiometry
analysis impractical. However, SVD-POCS is shown to provide the least error if the
goal is to perform relative radiometry analysis. Additional constrains are needed to
make absolute radiometry analysis possible. The added constraints of non-negativity,
spatial extent of the cold field stop, forcing the sum, and keeping the mean for each

iteration improves absolute radiometric performance.

These additional constraints also allow use of a warm field stop to monitor
reconstruction error for both the pseudo-inverse and iterative improvement algo-
rithm. Error can be calculated each iteration to ascertain when a minimum has
been reached in a mean square error sense. Thus, minimum mean square error of

the reconstruction can be obtained with confidence.

xii



RECONSTRUCTION ALGORITHM CHARACTERIZATION AND
PERFORMANCE MONITORING IN LIMITED-ANGLE
CHROMOTOMOGRAHY

1. Introduction

1.1 Background

Initial work on chromotomography was led by Jonathan M. Mooney, formerly
of AFRL/SNHI [1], in the mid to late nineties with a goal of pursuing alternatives to
conventional hyperspectral imagers. It did not take Mooney long to discover a prob-
lem with his technique [2]. The system transfer matrix of the problem is singular,
and therefore, reconstruction cannot be described by a unique solution. Additionally,
the initial reconstruction result had large artifacts resulting in significant reconstruc-
tion error. Thus, techniques are needed in order to obtain a better reconstruction
which minimizes error. This thesis will explore current reconstruction methods and
adapt the iterative reconstruction improvement procedure to enable better radio-

metric analysis.

Chromotomography is tomography applied to hyperspectral imaging. Tomog-
raphy is best known for its medical application. A series of images is recorded where
each image contains a different slice of information about the same scene. For exam-
ple, the medical field uses computerized axial tomography scanning (CAT scan) to
obtain three dimensional images of human body parts. The imaging device captures
a series of two dimensional x-ray images while rotating around the body part of
interest. Computers then process the images, creating a three dimensional image of

the body part in a manner which maximizes the signal-to-noise ratio.



Reconstruction in chromotomography has not been explored in the same de-
tail as it has in medical tomography. Current reconstruction methods have various
limitations. These limitations must be overcome to provide the benefits of the tech-
nology to the intelligence community. Chromotomography has improved spatial
coverage and complete spectral coverage, versus conventional hyperspectral imaging
techniques that are limited in either spatial or spectral coverage. Conventional hy-
perspectral imagers fall into three categories; those which image through a slit, view
the scene through one spectral filter at a time, and those which use interference to
image spectrally. Hyperspectral imagers using a slit have a limited field of view and
low throughput. Hyperspectral imagers using a series of spectral filters have high
optical throughput, but are poor at measuring a rapidly changing spectral event or
providing good spectral resolution. Imagers using wavefront interference, such as the
Michelson interferometer, can view the entire scene and spectra, but at the cost of
complex instrument construction, alignment maintenance difficulty, severe vibration

sensitivity, and 50% optical throughput for the standard configuration.

Hyperspectral data is used for a variety of defense related as well as commer-
cial applications. The utility of hyperspectral images for determining the chemical
content of exhaust plumes helps to identify processes involved with creation of the
exhaust. Hyperspectral data is also used to find targets buried in camouflage by
taking advantage of the often unique spectral signatures of man made materials
as opposed to those found occurring in nature. Environmental monitoring of the
atmosphere is also accomplished using hyper-spectral data in order to identify tem-
perature profiles and aid in weather forecasting. The general utility of this type of
data makes research into basic methods for collecting and processing it of potentially

significant use to a wide variety of customers.



1.2 Problem Definition

The first goal of this thesis is to detail the state of the art reconstruction
method and make necessary additions to investigate the performance of absolute
radiometry versus relative radiometry. The second goal of this thesis is to aid AFIT
in development of a chromotomographic imager by characterizing the trade-offs in

the design with reconstruction complexities and implementing a reconstruction tool

in MATLAB.

The objective of reconstruction is to recover a complete spatial-chromatic 3D
hyperspectral scene from a series of images where chromatic information has been
obtained in each two-dimensional image (or data set). The images themselves do not
contain all the information necessary to recover the 3D hyperspectral scene directly,
requiring an additional routine to estimate missing information. The computer based
reconstruction algorithm is key to the effectiveness of the chromotomographic hy-
perspectral imager. The efficiency and performance of the algorithm determines how

useful the technology will be to end users.

Previous research by Mooney [3], Brodzik [4], and An [5] have left several issues
open with the current reconstruction algorithm. They include: What is the best
inversion approximation technique? How many principal eigenspectra are needed to
form the best missing cone estimate? How can convergence and scene improvement

be verified in the iterative procedures? Is absolute radiometry possible?

In order to better understand the problem, a few definitions must be covered.
Hyperspectral data sets consist of three dimensions: two spatial dimensions and
wavelength. Data is organized in a cube consisting of the three dimensions. Each
two dimensional image of the scene corresponds to the scene intensity at one partic-
ular wavelength. Time can be considered a fourth dimension, representing the data
as a “movie.” The discrete Fourier transform is a mathematical operation used to
show intensity relationships in the frequency domain. The discrete Fourier trans-

form (DFT) of an NxM image is also NxM where intensities correspond to spatial



frequencies in the x and y direction. The discrete convolution of two functions f and
g is a sum which expresses the amount of overlap of one of the functions with the

other as it is shifted over time or space [6].

1.3  Owutline

Chapter 2 provides the necessary background on hyperspectral imaging and
chromotomography. Included is a description of how data recorded by the sensor is
related to the imaged scene. The mathematics of the reconstruction are explained
followed by a discussion of problems that occur and why additional methods are
needed to reduce reconstruction error. Chapter 3 describes how data is generated
for use in algorithm modeling, how the pseudo-inverse is performed, how the imple-
mentation of iterative methods is done, and investigates the effects of changing the
model dimension in the SVD-POCS and modified method. Chapter 4 introduces a
new technique used to monitor reconstruction error in the iterative process. Chapter
5 provides a summary of results and a conclusion while presenting areas that need

to be further explored in the future.

1.4 Scope and Limitations

Research will focus on work performed at AFRL/SNHI at Hanscom, AFB by
Jonathan M. Mooney, Brodzik, et al. The state of the art reconstruction method
includes the pseudo-inverse solution followed by a series of iterations using a set of
constraints. The primary limitation results from the inherent nature of working with
a singular system transfer matrix. The solution cannot be uniquely recovered, thus a
set of infinite solutions exist. Additionally, data used for reconstruction is completely
synthetic since the instrument itself has yet to be built at AFIT. All modeling and
processing in this research is done on a computer, which means all data is discrete.
The aim of this thesis is to identify trends in chromotomographic reconstruction that

are dependant on constraints and not to infer specific performance bounds. The work



presented in this paper holds when the continuous spectrum has been adequately
sampled. Finally, the reconstruction for time dynamic events may be poor. If the
object being imaged changes rapidly during a single prism rotation, application of the
inverse system transfer matrix may cause unacceptable reconstruction error, since
expected dependencies in the data will not exist. The affect on reconstruction will
be an increase in the overall noise level. Time sensitive aspects are not analyzed in

this thesis

1.5 Standards

The quality of image reconstruction will be determined by comparing the re-
constructed images to known chromatic images of the scene. Known images are used
to create synthetic data which is in turn used for reconstruction. A problem with
error computation when comparing images is results are often subjective based on a

"which image looks the

human users opinion. There is no metric which can tell us
best." But, if the goal is to perform absolute radiometry, then a mean square error
metric will give an idea if reconstruction is good or not. The metric of choice for
quantitative error performance is Normalized Root Mean Square Error (NRMSE).

It is found by first obtaining the mean squared error (MSE) as:

s, = ZEltmn) = atm

(1)

where oy (m, n) is the known image and ci(m,n) is the reconstructed image for chro-
matic band k. The region of each image corresponding to the cold field stop is not
used when calculating MSE. The MSE measurement only looks at the quantitative
difference between each pixel which could be quite large depending on the units of
the data being evaluated. To account for this, the RMSE is divided by the mean
number of photons per pixel for that image. The NRMSE is:

VMSE, «+ M' % N' x K
> 22 2 [o(m, n, A)]

NRMSE, = %100 %, (2)



where the non-cold field stop area of the scene is dimension M’xN’ for all K bands.
The normalization factor is needed to show error performance in a more meaningful
way. Thus, NRMSE is a percentage of the root mean square pixel error divided
by the non-cold field stop mean value of the entire scene. In practice, the NRMSE
cannot be calculated because knowledge of the true hyperspectral scene content does
not exist. The NRMSE metric is by no means perfect, and may lead to misleading

results since the metric relies on a quantitative error measurement.

An alternative error metric, referred to as Normalized Mean Removed Error
(NMRE) in this thesis, does not include the means of the scene and reconstructed
data set in error calculation. Comparing the NMRE results with NRMSE provides
insight on how the mean effects error. It is calculated in the same manner as NRMSE,
but with the mean removed in the image difference calculation. It is found by

obtaining the mean removed square error:

3 Yok (m,n) — 3237 %y — (g (m, n) — Y2 3 Al ))2
M x N ’

MRSE), = (3)

where )73 2 Ok(m” and ") - c‘“(m” are the means of the source object scene and
reconstructed data respectively. The square root of MRSE is divided by the non-field
stop mean of the source to give NMRE:

VMRSE, « M'« N« K
> 22 2 [o(m, n, A)]

NMRE) = % 100 %. (4)

This is similar to Normalized Mean Square Error (NMSE) from Lim [6], which
uses variance differences between images, rather than intensity in an effort to remove
bias effects in image comparison. According to Lim, a human will typically judge
the reconstructed image with the smaller NVE as closer to the original. The NVE

is obtained by:
Varlog(m,n) — cx(m,n

NVE, = ! 4100 %, (5)

Var(og(m,n)]



where Var|-] is the variance. The NVE of the reconstruction is potentially infinite if
the object scene has zero variance between pixels. NVE results are similar to NMRE

but are normalized differently, which leads to a result that is hard to compare with

NRMSE.

The NVE error metric will be used only to gain a idea of which images visually
look the closest to the original. Both NMRE and NVE do not include the mean, but
NMRE is on the same normalization scale as NRMSE. Thus the error introduced by
the mean is the difference between NRMSE and NMRE. The scale of NVE is harder

to comprehend, since each variance error is divided by a mean cube variance.

1.6  Methodology

In order to solve the reconstruction problem, fundamentals of how data is
recorded by the imager must be understood. Thus, the first step is to take a look
at the math behind the problem. The imager mathematical model is then used to
create synthesized data. A known hyperspectral data cube is input to the model
to create synthesized data. Having a known cube allows for an error calculation

between known data and reconstructed data.

The pseudo-inverse solution produces the initial reconstruction. Trade-offs
associated with the pseudo-inverse reconstruction are explored in an effort to find
the pseudo-inverse solution with the least error. The next step is implementation of
an iterative improvement algorithm followed by a discussion about optimal variable
selection for the most improved solution. Additional constraints are considered to
improve absolute radiometric performance. Finally, the effectiveness of using a warm
field stop to monitor reconstruction performance is tested by comparing error in the

warm field stop versus error over the scene.



II. Fundamentals of Chromotomography
2.1 Characteristics of Hyperspectral Imaging

Hyperspectral images consist of data spanning three dimensions: two spatial
dimensions and wavelength. Data is organized in a cube consisting of the three
dimensions. Time can be considered a fourth dimension, representing the data as
a “movie.” Conventional hyperspectral imagers capture information in one of three
ways. In the scanned slit method (shown in Figure 1a), light is dispersed onto the
focal plane array after passing through a narrow slit. The slit direction is one spatial
dimension, while the direction normal to the slit is the wavelength dimension. Sensor
motion moves the slit imaging scene normal to the slit, creating the second spatial
dimension component. The scanned slit method’s biggest flaw is limited viewing
of the scene through a narrow slit at any given time. Any events occurring out of
the field of view are not detected. Another problem is the limited amount of light
the sensor receives through the slit which results in a reduced signal-to-noise ratio.
Increasing exposure time allows for some compensation, but the penalty is even
poorer spatial detection ability. Additionally, diffraction effects associated with the
slit produce undesired spectral mixing. In the filter method (shown in Figure 1b),
the scene is recorded in both spatial dimensions while a series of spectral filters are
applied, creating the wavelength dimension. The filter method has excellent spatial
coverage, but is very poor at measuring rapidly changing spectral events, has poor
spectral resolution due to filter bandwidth limitations, and/or has limited spectral
coverage. (See [1] for an expanded description.) The wave interference method, used
in Fouier transform spectrometers (FTS) such as the Michelson interferometer, uses
beamsplitters and mirrors to create an interference pattern on the focal plane. One
of the mirrors in the FTS moves, sweeping out an interferogram which is used to
find the real spectra of the scene The FT'S has spatial coverage of the filter method

with spectral coverage limited by the sweep distance of the moving mirror. The



a) Slit b) Filter c) Tomography

X X X

Figure 1  Hyperspectral information is typically obtained by: a) imaging through
a slit and scanning, b) imaging the entire scene and filtering, or ¢) tomo-
graphic processing. [1]

FTS is very difficult to build and maintain compared to other methods; and is much
more sensitive to vibration and noise amplification due to the multiplexing nature

of imager.

In Mooney’s chromotomography design [2], a direct vision prism is placed in
front of the imaging sensor. The prism disperses the intensity associated with each
wavelength of the scene along a different angle while allowing a single wavelength
to pass straight though. The prism then rotates a known angle and a new image
is recorded. The process is repeated until the prism completes one revolution. The
series of images is used by the reconstruction algorithm to obtain a 3D hyperspectral
data cube approximation. The reconstructed 3D scene provides an estimate of image
intensity as a function of position and wavelength. Mooney’s initial reconstruction

algorithm [2] used a pseudo-inverse of a singular system transfer function matrix.

The chromotomographic sensor’s main advantages are high optical throughput,
excellent spatial coverage, and continual spectral coverage as illustrated in Figure
1c). The main drawbacks are added computational complexity, non-unique recon-
struction, and potential noise amplification. These problems are addressed in the

literature by Brodzik [4], Mooney [3], An [5], and Chapter 3 of this thesis.
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Figure 2 A photon’s path from the object to the CCD will take it through two
aperture lenses, a field stop, a direct view prism, and finally a focusing
lens.

2.2 Instrument description

Mooney’s chromotomographic imager design [2] consists of three focusing lenses,
a field stop, a direct view prism, and a focal plane array (coupled charged device or
CCD). A simple system diagram is shown in Figure 2. The series of spatial tomo-
graphic projection images are captured at the FPA. A computer takes the images

and performs the reconstruction.

2.3 Basic Reconstruction: The Matriz Inverse Algorithm

To gain a better understanding of the reconstruction algorithm, it is useful
to understand how data recorded by the camera is formatted. Mooney used an
excellent illustration in [7] to describe how data is seen by the computer. Each image
on the focal plane contains spectral information which has been linearly dispersed
at an angle corresponding to a unique prism orientation for a single revolution. A
generalized three wavelength system is shown in Figure 3. The object, which for this

example only consists of three colors, is split into three spectral components by the
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Figure 3  The object is chromatically split by the direct vision prism and dispersed
on the CCD.
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Figure 4 Subsequent images are taken at different prism rotation angles causing
spectral dispersion to fall along a different line.

prism and dispersed on the CCD. The next image is taken after some known prism
rotation, as shown in Figure 4. Each spectral sub image traces a circular path with

a radius dependent on prism dispersion.

Each image recorded by the sensor consists of all spectral sub images convolved
with a unique point spread function based on prism dispersion and rotation angle.

For three spectral bands, the data recorded by the computer is:
di(m,n) = wi(z,y) **01(z,y) + wiz(z,y) * *02(x, y) + wis(@, y) * *x03(z,y), (6)

da(m, n) = war(x,y) * x01(x,y) + waa(x, y) * *02(x, y) + was(x, y) * *0s(x, y), (7)

ds(m, n) = ws1(x,y) * x01(x,y) + wsa(x, y) * *02(x, y) + wss(x, y) * *0s(x, y), (8)

11



where d;(m, n) is the recorded image for prism rotation i, w;x(z, y) is the point spread
function for prism rotation i at wavelength k, and og(z,y) is the chromatic image
at wavelength k. In this example, data is recorded at three different prism rotation

angles.

Mooney shows in [7] that by taking the Discrete Fourier Transform (DFT) of
both sides of Equations 6-8, the recorded data DFT, D, can be shown as a linear
transformation of the DFT of the chromatic images by the convolution theorem.
The convolution theorem states a convolution in the spatial domain is equal to

multiplication in the Fourier domain. This is expressed as:
Duv - Wu,vOu,va (9)

where D, , is a three by one vector, W, , is a three by three matrix, and O, , is
a three by one vector for the three band example. This relationship holds for each
spatial frequency (u,v) meaning there exists u * v (or m  n) different relationships

represented by Equation 9 for a CCD of size (m,n). Solving for O,,,, we get:

Oupw =W,y Dy (10)

If W, , is invertible, the final step would be to find the inverse 2D DFT of
Ok (u,v) Vk. The problem is W, , is almost always singular. Mooney uses singular
value decomposition (SVD) to find a pseudo-inverse of W, ,. From Strang [§8], the
SVD of matrix W is defined as:

W =UxvH" (11)
where U and V' are MaN and NxN orthogonal matrices such that

Ut =vu =viv =vvH =1, (12)

12



where [ is the Nx N identity matrix. ¥ is an Nx/N diagonal matrix of eigenvalues.

The pseudo-inverse of W, ,, is:

W, =V S Ul (13)

u,v U,V

and the pseudo-inverse solution is:

O, = Vuo X s U Dy, (14)

u,v U,

When additive noise on the CCD is considered, the recorded data is now:

’

Du,v = Wu,vOu,v + Nu,va (15)

where N, , is the spatial frequency vector resulting from the 2D DFT of the additive

noise matrix. The pseudo-inverse is now:

Of, =V S UL D, (16)
or
Of, = Vi Bt U (U020 o VI Oy + N (17)

The diagonal values of 3, ,, are potentially zero if W, , is singular, which will
cause the elements of ¥} to become very large and allow filtered noise to dominate
the restoration. To account for this, two different inversion methods for ¥, , can be
applied, the Threshold inverse and the Wiener inverse. For the threshold inverse,

values of ¥,,, less than some ¢ have the corresponding ¥} set to zero:

’ 271 ) 2 u,v > E
2—1 - (k,k)u,v (k,k)u, ) (18)

k.k)yup .
(1) 0, otherwise
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The best value of € is SNR dependent and specific choices are covered in Section 3.2.

Alternatively, the value of ¥} can be set as the Wiener inverse of:

: )Y k,k)u,v
S e = oY 19
(k,k)u,v (E?k,k)u,v _|_€2) ( )

where ¢ is some value which balances the loss of spectral resolution and noise am-

plification. Mooney used the Wiener inverse with an ¢ of 1.5 in [2].

The pseudo-inverse solution can also be written as:

Of, = Vio(Ei 280 VE Oy + UL N, ), (20)

U0 UV

where it is more readily apparent that a large value of E;'}) will amplify the noise value
N, and allow noise to dominate the reconstruction. Mooney states that even with
the altered E;}), the reconstruction contains severe artifacts and is particularly bad
for images with low spatial or high chromatic frequencies. This result is attributed

to the null space of the transfer matrix W and is a reflection of the missing cone

problem.

2.4 The Missing Cone

In [3], Mooney et al describe the origins of the “cone of missing information.”
It is said the cone is best understood in the context of the central slice theorem
combined with the Radon transform. According to the central slice theorem, the
2D Fourier transform of a projection is equal to a plane through the origin of the
3D Fourier transform of the entire spectral object. The prism rotates around the
optical axis which is normal to the focal plane. The angle between the projection
plane and the optical axis, #, remains the same for all projections. As the number
of projections approach infinity, a cone will be traced out where the half angle of
the cone vertex is f. The missing cone is this area inside, where projections do not

provide any information about the object.

14



Figure 5 The Radon transform is the integration of the scene along parallel rays
at an angle 6 with the y-axis.

To understand the Radon transform, consider a 2D scene projected onto a 1D
line [6]. The Radon transform produces the projection of the 2D scene along parallel

rays onto a projection line. The transform is defined as:
ro(s) = /O(S cos(f) — usin(f), ssin(f) + usin())du, (21)

where s = xcos(f) + ysin(0) , u = xcos(f) — ysin(f) , 0 is the projection angle,
|s| is the distance from the origin, and o(z,y) is the 2D scene. Figure 5 graphically
shows the Radon transform from two to one dimension. Imagine an additional axis
normal to x and y. The projection is now 3D to 2D where Ry is now the projection
plane. Rotation of the prism has the affect of rotating this projection plane around

the y axis.

2.5 Methods for Filling In the Missing Cone

There are three methods in current literature for filling the missing cone in-

formation covered here in chronological order of development. The first approach,
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developed by Mooney, Brodzik, and An [3], uses principal component analysis in
an iterative technique that relies heavily on spectral imagery redundancy. The sec-
ond, developed by Brodzik and Mooney [9], uses a generalized technique based on
a hybrid of a direct pseudo-inverse method and the iterative method of projections
onto convex sets. Finally, the third approach, developed by An [5], is non-iterative

thereby improving computational efficiency at the cost of reconstruction accuracy.

SVD-PCA.  The first approach is to approximate the missing information by
using redundancy inherent to hyperspectral imagery. Data inside the missing cone
is forced to values consistent with data known to be outside the missing information
by projecting the all eigenspectra onto the eigenspectra corresponding to the largest
singular values of the previous reconstruction and then iterate. This technique is
known as principal component analysis (PCA). The assumption in PCA is that the L
largest eigenvectors and eigenvalues, corresponding to dimensionality L, contain the
actual "signal" while the rest of the eigenvalues and eigenvectors generally contain
noise. According to [10], PCA begins by first finding the K-dimensional mean vector
1 and the KxK covariance matrix Rpp for the complete data set. Compute the
eigenvectors and eigenvalues by Equation 11 and order them in descending order.
Form the L largest eigenvectors into the KxL matrix A. The data can then be

represented by the L largest principal components by finding:
Y =AY - p), (22)

where Y is the original scene and Y is the reduced dimension scene.

Unsatisfactory solutions to the reconstruction are thereby eliminated by requir-
ing the reconstruction meet the constraint based on the assumption incorrect data
values in the missing cone generate spectra outside a subset of eigenspectra from the

true spectral image. The number of eigenspectra required to describe the spectral
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reconstruction should be minimized. The technique was reported to reduce artifacts

by Mooney in [3] and is used as a building block for the next method, SVD-POCS.

SVD-POCS. In the second approach, the computation of a the pseudo-
inverse solution is followed by the enforcement of a series of projections which enforce
a set of constraints in an effort to reduce the reconstruction error. The algorithm’s
convergence speed is accelerated and reconstruction performance is improved if the
chosen constraint sets have a convex nature. The constraints need to add information
about the scene not shared by the initial estimate, they must be computationally
efficient, and should physically describe the scene to a high degree of accuracy. In [9],
Brodzik listed several options for constraints existing in both the spatial and trans-
form domains. He chose his transform domain constraint to be the “correct” spectral
information known from the original reconstruction which corresponds to non-zero
singular values. The spatial domain constraint, which is the fundamental missing
data estimator, comes from spatial redundancy between the adjacent chromatic im-
ages. The constraint is enforced as done in SVD-PCA. Hyperspectral images are
known to have a significant amount of correlation between adjacent spectral images
as seen in Figure 6. This redundancy can be estimated by finding the SVD of a
two dimensional data set where each row corresponds to one spectral band and each
column corresponds to the same pixel location of each chromatic image. A detailed

description of POCS by Combettes can be found in [11].

Figure 22 shows a flow chart for the SVD-POCS method as described in [9]. Af-
ter performing the original reconstruction, the transform data of the pseudo-inverse
reconstruction, O%, is reorganized and then subjected to two projections based on
an object domain constraint and a transform domain constraint. See Section 3.3
for a detailed explanation of the algorithm. Brodzik showed that SVD-POCS does
improve upon the pseudo-inverse by removing artifacts associated with the missing

cone. Most of the gain in the performance was accomplished within the first 10 iter-
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Figure 6 Shown is an example hyperspectral data cube taken using the AVIRIS
instrument. Notice the strong correlation between the spectral
bands. A broadband image is at the top of the cube. Source:
http://aviris.jpl.nasa.gov

ations but the algorithm has no way to check error performance while iterating since

the entire scene is unknown. Performance of SVD-POCS is analyzed in Section 3.3.

Non-Iterative PCA.  In [5], An desired to develop an algorithm that is better
suited to real-time image processing needs by improving computational efficiency
and constraining the algorithm to a single step. An used a combination of principal
components of the eigenspectra of the pseudo-inverse reconstruction combined with
either a masked threshold inverse where the value of Ea{%k)w was replaced with a zero
depending on a chosen threshold (1, 2 or 3) or an annular region of 20 pixels in width
centered at zero spatial frequency where the unknown information is constrained to
be. The algorithm is based on Mooney’s work and shares ideas from SVD-POCS.
The problem of finding the right degree of hyperspectral model reduction, L, is
encountered here as in SVD-POCS. An did in fact show that his algorithm improves

upon the pseudo-inverse solution for the imager at Hanscom AFB.

18



III.  Implementation and Analysis

Understanding the fundamentals of hyperspectral technology and chromotomogra-
phy now allows for implementation and analysis of the pseudo-inverse and iterative
improvement solutions. This chapter explains work that was necessary in order to
prepare for algorithm modeling and testing, discusses how data was sourced and
synthetically generated, how radiometric units are handled, how noise was modeled,
how both the pseudo-inverse and iterative algorithms are implemented in MATLAB,
and how they compare. The SVD-POCS algorithm can be improved by finding
additional constraints to maximize known information and by finding ways to aid
in reconstruction performance monitoring. Improvements may result from adding
additional known constraints which decrease error, automatically selecting variables
used in reconstruction, or automatically monitoring reconstruction error improve-
ment. Changes made to the SVD-POCS algorithm are tested against Brodzik’s

version from [9] in Section 3.5.

3.1 Data Preparation

Temperature Map. In order to gauge the effectiveness of reconstruction
models, some original reference object cube is needed. A two dimensional temper-
ature map is used to create the needed reference. The mean temperature of the
temperature map is 295.3K. The blackbody curves, corresponding to each spatial
temperature, are input into each spatial location creating a three dimensional hy-
perspectral data cube. Figure 7 shows the map and Figure 8 shows the expected
blackbody curve between 2 and 5 pum for a temperature of 295K assuming zero

atmosphere absorption.

A set of atmospheric absorption coefficients obtained from the Gemini Obser-

vatory [12] website are used to simulate atmospheric absorption. Figure 9 shows the
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Figure 7 A matrix of temperature values is used to create a known hyperspectral
data cube by finding the blackbody curves for each spatial location of
the image. The temperature map appears to have a river, fields, and
hills as terrain features.

attenuation assuming the observer is at the top of the atmosphere (20km) looking

straight down.

Heavy atmospheric attenuation from 2.5-3.0 ym combined with a very small
signal in the blackbody radiance around 295K from 2.0-3.0 um makes analysis of
the sub 3.0 ym region difficult, especially when also looking at the 3.0-5.0 um region.
Noise in the 2.0-3.0 um region is more significant compared to the signal, requiring
a very different optimal inversion threshold than the 3.0-5.0 um region. This study
will focus on the 3.0-5.0 um spectral region considering attenuation and noise factors.
Table 1 shows the center wavelength for each spectral band for the simulations to

follow.

AVIRIS Data.  AVIRIS hyperspectral data was obtained from NASA’s
Jet Propulsion Laboratory web site to analyze characteristics of actual hyperspectral
data and to use as a baseline for unit values and conversion from spectral radiance

to photons. Each AVIRIS scene consists of radiance data with 224 spectral bands
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Figure 8

Table 1

Photons
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Blackbody Curve for a Temperature of 295K
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The blackbody response increases rapidly as wavelength increases in the
region shown. The dominance of the larger wavelengths will result in
better reconstruction for those bands.
shown here is in number of photons.

The blackbody curve intensity

Each wavelength bin has a width of 83.33nm and is centered at a particular

wavelength corresponding to the wavelength bin number.

Bin | Center A (pm) | Bin | Center A (um) | Bin | Center A (um)

1 3.04 10 3.76 19 4.48
2 3.12 11 3.84 20 4.56
3 3.20 12 3.92 21 4.64
4 3.28 13 4.00 22 4.72
) 3.36 14 4.08 23 4.80
6 3.44 15 4.16 24 4.88
7 3.52 16 4.24 25 4.96
8 3.60 17 4.32

9 3.68 18 4.40
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Atmospheric Transmission
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Figure 9 There are two major attenuation regions within the 2-5pm band. The
first, occuring between 2.6-3.3 um, is mostly caused by water vapor and
ozone. Carbon Dioxide is responsible for heavy absorption in the second
region centered at 4.3 pm.
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of 512x614 images. AVIRIS is in units of [Gain x mW % cm™2 % nm™' % sr—!].
The drawback of using AVIRIS data as a known hyperspectral scene is the data
set is mostly for smaller wavelengths than the 2.0-5.0 um band of interest. AVIRIS
wavelengths range from .37 ym to 2.5 um. There is a contribution from the sun in the
2.0-2.5 um band that greatly amplifies the intensity making the blackbody generator

output insignificant in comparison.

Stmulated Cold Field Stop.  Setting the object image border region of
% to zero simulates the presence of a cold field stop assuming the field stop emits zero
intensity where K is the number of spectral bands being reconstructed and assuming
the prism has perfectly symmetrical dispersion for all wavelengths passed into the
imager. Thus, the number of possible reconstruction bands is twice the width of the

cold field stop assuming uniform prism dispersion. The cold field stop constraint is:

0, T, S §Rc s
o(2,y, N) = Poysol,y, \) = (2.9) € Res VE, (23)

ox(x,y),  otherwise

where ox(z,y) is each spectral image of the source object cube o(z,y, \), Reys is the
region the cold field stop occupies, and k is the spectral band index out of K spectral

images.

Conversion to Photons.  The output of the blackbody generator, O,

2 1

is in units of spectral radiance (Gain * mW * cm™2 % nm~! * sr™!) and is converted
to units of photons in order to model shot noise on the CCD. This conversion is done
to the initial object cube but could be made to the synthetic data at the focal plane.
The first step of the conversion process involves conversion from spectral radiance

to radiance, L. The conversion to radiance is:

_ O
L= / 1000 * Gain a7, (24)
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2 % sr~1) where the integration of \ occurs over the width

in units of (Watts * cm™
in nm of the spectral band of interest. The radiance theorem states that radiance
is equal to power divided by the area of the projection divided by the solid angle or
L = ®/(Apro;) where Q = Agperature/ Range* and @ is the power over A,,,;. By the

radiance theorem, the conversion to power (Watts) is:

L Aaperature
= *
1000 * Gain  Range?

(I)bb Apizeb (25)

where Agperature is the area of the aperture in cm?, Apizel is the area of the ground
footprint imaged by one pixel in ¢m? and is equal A,,,; since the imager will have a
negligible offset angle from the source being imaged. Range is distance to target in
cm, and Gain is the AVIRIS gain value. The AVIRIS website states that the angle
created by one CCD pixel width relative to the aperture is approximately 1 mrad.
Since Apizer/ Range? = Apiveicen/F ocallength? in any optical system, Equation 25

can be simplified to:

L

By — — =
% = 7000 * Gain |

Aaperature * (1 mrad)2- (26)

According to the AVIRIS website, the size of the aperture of the imager, Agperatures
is 18x13 cm.

To find the number of photons from watts:

)
#P = : P time, (27)

* U
where h is Planck’s constant, v is frequency in Hertz, and time is the pixel exposure

time in seconds.

Noise Model. = The number of photons incident onto the CCD, which
is needed to estimate the level of shot noise of the CCD, was found in Equation 27.

Shot noise results from the uncertainty in arrival of photons at a detector element
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in any light detection system [13]. The arrival of photons at the detector can be

modeled as a Poisson statistic with a standard deviation:

O-ShOtm,n =V #P’ (28)

where oo, ,, is expressed as a number of photons that fall within pixel (m,n).

Even though the distribution of photon arrival is Poisson, it can be modeled as
Gaussian as a consequence of the central limit theorem [14] since #P >> 1. Thus,

the additive noise at each pixel (m,n) is a random variable with the distribution:

NOLS€ n = (\/27T0'3h0tmm) exp(—=( ! )2 (29)

2 O-ShOtm n

The noise matrix for each rotation angle, ¢, is simply each value of noise,,,, for all
(m,n) ordered in an MxN matrix. The noise vector N, ,, first presented in Equation
15, is a vector of spatial frequencies resulting from the 2D DFT of each additive

noise matrix.

Other noise sources, such as read and dark noise, are assumed to have negligible
effects and are not considered in noise modeling. Dark noise can be reduced by using
a scientific grade CCD employing multi-pinned-phase (MPP) technology and cooling
the CCD to around -25°C. Read noise is negligible provided the imager is not under

low-light level conditions.

3.2 Implementation of Pseudo-inverse in MATLAB

The pseudo-inverse solution is the foundation to reconstruction in chromoto-
mography regardless of which error improvement iterative algorithm follows. This
section describes the implementation of the pseudo-inverse solution with an expla-
nation of why certain variables were chosen over others. MATLAB code is available

in Appendix A.
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Synthetic Data Generation. The method used in this thesis to simulate
synthetic data is most similar to Mooney’s model in [7]. This study is limited to the
use of synthetic data for modeling because a working instrument is not available.
Existing hyperspectral data cubes are used to create synthetic data as the CCD
recording estimate. The point spread function is calculated as a function of prism
dispersion per wavelength bin and prism rotation angle only. A more detailed transfer
function would also consider affects of the lenses or a precise prism dispersion pattern.
The pixels on the CCD are assumed to be square and the dispersion displacement
at one pixel on the CCD is the spectral bin width. A more precise system transfer
function of the hardware cannot be obtained at this time and is unnecessary since
the scope of this work is to identify trends in chromotomographic reconstruction,
not design a system specific optimal reconstruction design. See Appendix A for the
MATLAB code. The method used for this study to generate synthetic data involves
mimicking the effects a rotating prism has on the source object cube. In [9], Brodzik
did not create synthetic data to use for reconstruction but created a synthetic pseudo-
inverse reconstruction by removing zero spatial frequency information of the source
object cube; and then multiplying each spatial frequency column of the object cube

by vaWM,Where W, is the STF for the particular spatial frequency.

A point spread function matrix of matrices, w, of size (M, N, K, I) is created
where M is the height of the CCD in pixels, N is the width, K is the number of
wavelength bins, and [ is the number of prism rotation angles. Mooney showed in
[7] that the point spread function w can be written as a displaced delta function

given by:
w(m,n, k,i) = §(m — (k — ko) Am cos(¢;),n — (k — ko) Amsin(¢,)), (30)

where n and m are spatial coordinates, Am is the CCD pixel size, k is the spectral
variable, ky is the undeviated wavelength, and ¢, is the prism rotation angle at index

i (0 <¢; <2m).
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Possible Dispersion Locations (All Prism Angles Shown)
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Figure 10  Any pixel location of the object cube can be dispersed at a distance
from the origin represented by the circles shown here. The center of
the pattern represents a shift distance and direction of zero.

If there are K wavelength bins with I rotation angles, there exist M x N point
spread matrices of size (K, I) or alternatively, K x I matrices of size (M, N). Taking
the 2D DFT of each of these and looking at one spatial frequency gives W,, ,,, the STF
for each spatial frequency originally introduced in Equation 9. Each of the K % I
w(m,n) matrices are created using an interpolation routine to estimate recorded
pixel intensities based on the source object cube. An absolute dispersion distance,
(k—ko)Am, is dependent on the wavelength bin value. Each point in the object cube
is in effect mapped to a spot of the output data, d, based on the point’s location in
the cube and current prism rotation angle. The resulting dispersion pattern possible

for each pixel, shown in Figure 10, is circular in appearance.

The discrete nature of the output data requires an interpolation routine to

represent intensities that fall on non-integer pixel shift distances. To do this, the
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Figure 11  The object cube pixel intensity falls within the bounds of one ”pixel”
location of the synthetic data array. When this occurs, no interpolation
is needed.

Figure 12  Here the object cube pixel intensity falls over multiple pixels. One pixel
in the object cube can fall across up to four synthetic data ”pixels”.

magnitudes of the shift distances in both the X and Y directions is rounded down to
the closest integer. The rounded number is subtracted from the magnitude distance
of the corresponding direction resulting in a leftover fraction. This fraction is used
to determine the percentage of the intensity of the object cube value to the pixel

location of the recorded data.

Synthetic data is created in the transform domain by multiplying each spectral
frequency column of the data cube O(u,v) by the corresponding W, , which gives
D(u,v) as shown in Equation 9. The spatial domain data, which is the estimate
the CCD would record in an actual chromotomographic imager disregarding noise,
is easily obtained by finding the inverse two-dimensional DFT of D; Vi, giving d.
Figure 14 shows synthetic data representations for six different values of i, spaced

evenly at an angle of 57.6°. Noise was added to each pixel in the spatial-chromatic
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Figure 13  Intensities are assigned to the synthetic data pixels based on the per-
centage of overlap the object pixel has with the four data pixels. The
sum of the intensities of the four pixels adds to the object cube inten-
sity value. This method of interpolation was required to overcome the
obstacle of sub-pixel shifts.

cube d by finding:
di(m,n) = d;(m,n) + noisen n, (31)

where noise,, ,, comes from Equation 29. A description of how noise is accounted for

is found in Section 3.1.

Pseudo-inverse Reconstruction. The pseudo-inverse reconstruction step is
the first image processing step of a fielded chromotomographic imager. After imag-
ing the scene through the direct vision prism, data recorded at the focal plane is
transformed to the frequency domain one image at a time via the 2D DFT (giving
D) The data cube D has two spatial frequency components u and v, and a rota-

tion index dimension 7. To form the pseudo-inverse solution O . the KxI spatial

frequency specific W, ,, matrix must first be decomposed by SVD, inverted by either
Equation 18 or Equation 19, and subjected to the operation in Equation 20 for each

spatial frequency (u,v). The spatial cube solution is:
ot (z,y,\) = IFFT2(Of (u,v)) Vk, (32)

where O;f (u,v) is the kth spatial frequency matrix and IFFT?2 is the inverse 2D

Fourier transform. Figure 15 shows an example of pseudo-inverse reconstruction for
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Synthetic Image #1 at 0° Synthetic Image #5 at 57.6° Synthetic Image #9 at 115.2°

L L

Synthetic Image #13 at 172.8° Synthetic Image #17 at 230.4° Synthetic Image #21 at 288°

Hinln

Figure 14 Data at the focal plane recorded by the CCD appears blurred in the
direction of prism dispertion. In this example, the prism roates counter-
clockwise starting in a horizontal disposition in the upper left image.
The dark border corresponds to the cold field stop. Noise is present in
each image.
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a)

Figure 15 The pseudoinverse solution, b), to the original object, a), is a good
estimate of the original scene. Noise on the CCD lowers reconstruction
performance. All error calculations compare a reconstructed scene to
a the original scene after atmospheric absorbtion has taken place if
absorption was taken into consideration.

wavelength bin 20 with atmosphere attenuation and additive shot noise on the CCD.
The reconstruction error increases with the addition of atmosphere attenuation and

noise.

Pseudo-inverse Solution with the Wiener Inverse.  Since the system transfer
function is not directly invertible, an estimate of the inversion must be found. As
mentioned earlier, there are two methods discussed previously in literature to do
this ([2], [7]). The question, not answered previously, is which method allows for the
smallest reconstruction error in general. To find a solution to the problem, recon-
struction was performed several times while only changing the inversion parameter,

g, for each method. For the Wiener inverse, each inverse of ¥, , is altered by finding:

S b k,k)u,v
S e = T 33
(k,k)u,v (E%k,k)u,v + 82)? ( )

where ¢ is chosen in a manner to balance reconstruction error from added noise with
noise amplification. Table 2 shows the effect of different values of £ under both a

noise free and noisy environment for both atmospheric pass bands within the 2.8-
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Table 2 NRMSE average for the pseudoinverse reconstruction using the Wiener
method. The best value of depends on the SNR over the band of interest.
e |2841pum | 2.841pum | 4.5-5.0um | 4.5-5.0 um 3.0-5.0 pm
(with noise) (with noise) || (with noise)
5e-9 53.24 5044 20.21 2520 59114
5e-6 53.23 637 20.23 339 398
5e-5 53.26 168 20.39 96.31 117
5e-4 53.41 72.52 20.91 34.56 72.28
le-4 53.29 126 20.45 69.59 94.50
5e-3 53.68 55.35 21.37 22.85 69.53
0.01 53.76 54.51 21.50 22.17 69.49
0.1 54.38 54.41 22.48 22.50 71.08
1.5 56.89 56.90 23.10 23.10 71.55
100 92.57 92.52 90.48 90.48 95.88

5.0 yum band and across the entire 3.0-5.0 um band. Mean square error was chosen
to determine which inversion method was best, since the goal is to perform absolute

radiometry.

Results are shown for an imager with the standard configuration shown in
Figure 3, however, error trends are the same for the advanced imager configuration
shown in Figure 50 which includes a warm field stop. The value of ¢ corresponding
to the smallest error is different for each band due to the increased influence of noise
for the smaller wavelengths. The congregate best value found experimentally for the
3.0-5.0 pm band is 0.01 resulting in an NRMSE of 69.49. The simulation was run
10 times for the 3.0-5.0 um band to account for variance caused by random noise.
When no noise is present, the best value of € is the same for all bands, the smallest

value tested of 5e-9.

Pseudo-inverse Solution with the Threshold Inverse.  In the threshold inver-
sion method, singular values resulting from SVD of W, , less than some ¢ have the

corresponding inverse set to zero; defined previously as:
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Table 3

NRMSE average of pseudoinverse reconstruction cube using the Threshold
method. The best value of depends on the SNR over the band of interest.

e |2841pum | 2.841pum | 4.5-5.0um | 4.5-5.0 um 3.0-5.0 pm
(with noise) (with noise) || (with noise)
5e-9 53.24 4737 20.21 4179 6531
le-6 53.24 1343 20.21 1132 1252
le-5 53.24 424 20.28 265 245
le-4 03.27 136 20.42 78.52 102
le-3 53.43 64.64 21.16 29.16 71.35
0.01 53.70 54.57 21.43 22.24 69.84
0.1 54.38 54.41 22.67 22.69 71.34
1 56.24 56.24 22.83 22.83 76.27
10 74.82 74.82 30.99 30.99 91.30
100 97.10 97.10 95.53 95.53 100
Z/:(_]'61716)141) - E(k%k)um, Z(hk)uw > ) ’ (34)
0, otherwise

Table 3 shows the NRMSE for several values of € looking at different recon-
struction bands under a noise free and noisy condition. All of the results include
atmosphere absorption. The two bands of severe atmospheric absorption are avoided
at first, but could not be avoided when looking across the entire 3-5 ym band, demon-
strating the increased influence of noise in those regions. The best value of ¢ for
3-5 um with noise is 0.01 with an NRMSE of 69.84, which is larger than the NRMSE
when looking at each atmospheric passband individually. The increase in error is
caused by atmospheric attenuation in the 4.1-4.5 um region. As expected, the opti-
mal value of € depends on the SNR of system, as it did for the Wiener inverse. With
no noise, the best choice of ¢ found experimentally for the entire 2-5puym band is
the smallest value tested, 5e-9 The 2.8-4.1 um band has the smallest SNR, therefore

requiring a larger € of 0.1 to minimize error.

The Best Inversion Method. As expected, reconstruction results for both

inversion methods are signal dependent. Both methods work about the same, mean-
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Table 4  Performance of Pseudoinverse Methods.
NRMSE NVE NMRE
All Bands-Wiener 69.68 | 2.0730e+005 | 8.83
All Bands-Threshold 69.84 1.7379e+005 | 8.82
Select Bands-Wiener 78.36 216.03 9.38
Select Bands-Threshold | 78.50 209.94 9.47

ing it makes little difference which is used. The NVE error metric will be used only
to gain a idea of which images visually look most similar to the original. As men-
tioned before, both NMRE and NVE do not include the mean, but NMRE is on the
same normalization scale as NRMSE. Thus the error introduced by the mean is the
difference between NRMSE and NMRE. The scale of NVE is harder to comprehend,

since each variance error is divided by a mean cube variance.

Reconstruction was performed 10 times, to offset the influence of random noise,
for each method to obtain the average NRMSE, NMRE and NVE. Certain bands
which are considered to have no information, are not used in the average NVE and
NMRE calculation. Information content was determined by calculating the SNR of
each band. Only source bands with SNR greater than 177 are used, where SNR is
calculated as the mean intensity in a band divided by the square root of the mean
noise value for the entire cube. On average, the Threshold method has a slightly
lower NVE while having a nearly equivalent NRMSE and NMRE as shown in Table
4. NVE values are much larger in regions of low signal presence. The smaller the
NVE, the closer the reconstruction looks like the original object. Figure 17 shows

how the NRMSE results are visually indistinguishable between the two methods.

Figure 18 shows that the bands which look the best are those which contain
the most energy. Reconstruction between 4.5-5.0 ym visually looks the best. Areas
of low signal from a weak plank curve or an atmospheric stop band do not look

anything like the source.

Figure 19 shows that with the mean removed, error looks greater in the bands

which look better according to NVE and visual observation. The bands from 4.5-
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Figure 16 The atmospheric transmission curve is repeated several times through
the text to provide a constant reference.
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Normalized Root Mean Square Error of the Pseudoinverse
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Figure 17  Error versus frequency curves of the pseudoinverse for the Wiener and

Threshold methods (¢ =.01) are visually indistinguishable from each
other.
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Figure 18

NVE

NVE of Each Psuedoinverse Image with Signal
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R & © O  Wiener Method
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The NVE values were lower overall for the Wiener method than the
Threshold method, meaning reconstructions for the Wiener method
more closely resemble the original than the Threshold method. The
results here are from the temperature map source with noise and at-
mospheric absorption.
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Figure 19 The NMRE looks similar to NVE, but the points occur at different
magnitudes. Larger signal no longer means less error.

5.0 um have more energy, which leads to a larger error magnitude, yet each band
error is divided by the same value, the mean of the original scene. If normalization
was done on a band to band basis, the plot would look more like Figure 18. Figure 20
demonstrates the NMRE error trend versus wavelength does not look like NRMSE.

A majority of error occurs due to not matching the mean of the original scene.

Impact of Signal Non-Uniformity. Over the course of performing recon-
structions for several scenes, it became obvious the intensity of the spectral content
relative to the scene as a whole greatly affected reconstruction potential. When
dealing with blackbody responses of the temperature map scene between 3.0-5.0 pum,
adequate reconstruction for chromatic information between 3.0-3.42 ym was not pos-
sible due to small blackbody signal presence, nor was reconstruction possible between

4.18-4.5 um due to atmospheric absorption. Adequate reconstruction across the en-
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Figure 20 The NMRE curves follow each other closely for both inversion methods.

tire spectral bandwidth, not including atmospheric stopbands, is only possible if
the average intensity of each source chromatic slice is relatively uniform across the

spectral bandwidth.

3.8 Implementation of the Iterative Improvement Algorithm

The next step is to implement the iterative algorithm SVD-POCS in order to
understand the trade-offs made in choosing parameters and showing how reconstruc-

tion error decreases compared to the pseudo-inverse.

The SVD-POCS Algorithm.  Figure 22 shows a flow chart for the SVD-POCS
method as described in [9]. The first step is to prepare the pseudo-inverse data set
for the iterative procedure. After performing the original reconstruction, the mean of
each spectral image in o™ is removed, creating the data set g. The 2D DFT of each of

the mean removed spectral images of ¢ is reorganized lexicographically into a spatial
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frequency-chromatic matrix Fy where each row corresponds to one of the K spectral
bands and each column corresponds to a spatial frequency. For this paper, the
function Lzshape(-) represents lexicographical ordering as previously defined. The
operator to reshape the information into the normal (z,y, A) hyperspectral cube is
defined as Cushape(-). The zero subscript shows this value of F' is for the zeroth
iteration, i.e. pseudo-inverse solution. Fj is then subjected to two projections based
on an object domain constraint and a transform domain constraint. Additionally, g
can also be reorganized lexicographically into a spatial-chromatic matrix, f,, where
each row corresponds to one the K spectral bands and each column corresponds to

a pixel location.

Object Domain Constraint. The object domain constraint takes ad-
vantage of the similarities between spectral images by shaping unknown regions of

data to be consistent with known similarities. The SVD of F is:
SVD(F) = UpSpVE, (35)

where Up is the eigenchroma matrix consisting of chromatic singular vectors, Xg
contains the singular values of F' along its diagonal, and Vr is the eigenimage matrix
containing spatial singular vectors. The values of ¥ are arranged in a descending
order where the largest values contains the majority of the information about the
scene. Figure 21 shows the values of ¥ for the temperature map source. Large
singular values typically correspond to true object information, while smaller values
correspond to noise and artifacts. The image may be better represented by using
the dominate singular values only, which is the foundation to the object domain

constraint.

Finding the covariance matrix Ry, r, = Fo(Fp)? provides a measurement of the
similarity between the rows in Fy. Finding SVD(Rp,r,) = AX AT gives a matrix

of eigenvectors A and a diagonal matrix of eigenvalues X since Rp,p, is symmetric.
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Figure 21  The first and second singular values dominate for the temperature map
infrared hyperspectral data cube.
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Brodzik explains that by using the first L columns of A (or A;) the dimensionality
of the object data can be reduced by finding the projection:

Qm = AL(AL) Fa, (36)

where L is the model dimension. Aj, has dimension LxK and can be used instead of
using A since AIL AT = Ap(ApL)T | thereby reducing computational complexity. The
matrix Ay (Ar)T is a projection matrix which projects the current solution onto the
L largest principal components of the reconstruction. This operation can be carried
out in the transform domain or the spatial domain since the eigenchroma matrix A
is the same for the object domain matrix fo(fo)? as it is for Fy(Fy)T where f; is the
lexicographically arranged spectral image with mean removed. The optimal value of
L, which leads to best reconstruction, is difficult to determine a priori and has been
studied by others seeking to solve similar dimension reduction problems. For testing
purposes, each value of L will be tried in a brute force approach to find the best L

for reconstruction.

Transform Domain Constraint. Given that the pseudo-inverse is a
unique solution created by disregarding the null-space of the STF W, the solution
itself can be considered to be known data and therefore used as a constraint set.
Most non-zero singular values of W are considered to be correct information in the
reconstruction, while zero or near zero singular values lead to incorrect data. By
projecting onto the column space of W, the null space of W will not be considered.
This limits the solution to the "known” spectral information. The transform domain
projection is:

Vi = (I = WIW)Qp, (37)

meaning (), is projected onto the null-space of W. Only the region of (),, that

corresponds to the null-space of W will be used in the iteration. For computational
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purposes, Brodzik simplifies this expression to:

Vm - BKfr<BKfT)HQm7 (38)

where WHW = BI.Bf and therefore (I — WTW) = By _,(Bx_,)". By setting
the first K — r columns of B to zero column vectors to get Bx_, with r being the
rank of W at a particular spatial frequency. Adding the projection of (),, onto the
null-space of W with the initial reconstruction completes the iteration as shown in
Figure 22. The reconstruction performance for SVD-POCS is discussed in Section
3.3. The mean is removed for each iteration which is shown to improve variance

image reconstruction performance while degrading mean square error performance..

Iteration Solution. The result of the m’th iteration, V,,, is the new
estimate for the missing information. The iteration solution is found by adding V/,
to C, which is a spatial-chromatic matrix of the pseudo-inverse arranged lexicograph-
ically where each row corresponds to a spectral band and each column corresponds

to a spatial frequency. The operation is:
Gp =C+Vpyp, (39)

where G,, is a 2D spatial-chromatic matrix arranged identically to the matrix C.
If the iterative process is to continue, the current solution has the mean removed
from each band by setting the zero spatial frequency column to zeros, which gives
F,,. If iterations stop, the current solution, (,,, must be rearranged back to the
hyperspectral data format and transformed to the spatial domain which yields the
new hyperspectral reconstruction cube, oy, The subscript "sp" designates the out-
put as SVD-POCS. Figure 22 shows a flowchart of the SVD-POCS process. The
iterative process is repeated until reconstruction error is reduced to a satisfactory

level. Performance of SVD-POCS is discussed in Sections 3.3 and 3.5.
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Figure 22 In SVD-POCS, the initial pseudoinverse reconsruction is projected onto
the L principal components of the correlation matrix which is projected
onto nullspace of the system transfer function W and finally added to
the original pseudoinverse solution. The process is repeated using the
new solution until error is satisfactorily reduced.

Performance.  The results found in this section are what one can expect when
trying to analyze algorithm reconstruction performance. There is not a single error
metric which fully describes reconstruction performance. If the goal is to perform
absolute radiometry by recovering the mean of the signal, then NRMSE is the metric
of choice. But, if one intends to do relative radiometry, then NVE or NMRE are
better.

Figure 23 shows how SVD-POCS, using the constraints of [9], is incapable
of reconstructing the mean of the signal. Instead, the reconstruction of each band
has an identical mean count; making absolute radiometric analysis impossible. The
mean photon count per pixel for each reconstructed band is equal to the mean photon
count per pixel of the entire original scene. Looking at a sample spatial frequency
location, corresponding to a temperature of 294.54K, the SVD-POCS reconstruction

does not match the original curve, as shown in Figure 24.

The performance of SVD-POCS depends on the selection of the pseudo-inverse

inversion method, the value of £, the model dimension L, and the number of iter-
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Figure 23 SVD-POCS cannot recover the mean of the original scene.
x 10° Photon Count of Original and SVD-POCS for spatial location 64,64
8 T T T T T T
—#— Original Scene
-4~ SVD-POCS
s *. /
6 * - -
sl |

Photons in spatial location 64,64

Figure 24

3.8 4
Wavelength(um)

4.6 4.8 5

The spectral curve is not reconstructed in this example.
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ations. The best choice of these variables depends on the scene content. The best
overall method was found to be the Threshold inverse in Section 3.2 with ¢ = 0.01
for the 3-5 um band under a noisy environment. The optimal value of L is difficult
to determine before running the algorithm, but, under a non-real time setting, can
easily be found by running the reconstruction algorithm for each possible value. Of
course that only works if you know the scene you are trying to view, or you have a

tool in the reconstruction routine to check error against. (See Chapter IV)

The problem of automatically selecting an optimal model dimension L has been
addressed previously by Shannon [15] and others who tried to establish a mathemat-
ical relation between the source and the dimensionality reduced result. The task of

automatically identify the best value of L is left for future research.

The pseudo-inverse solution in the example of Figure 25 has an NRMSE of
69.84. The lowest value after SVD-POCS is 69.31 with L=1 and the highest is
68.85 with L=22. Thus, the NRMSE metric tells us mean square error is not being
reduced. The mean of the reconstruction is uniform for the entire spectrum range and
the NRMSE does not change much versus iteration or versus L. As a consequence,
use of a mean square error metric requires an alteration of the standard SVD-POCS

implementation.

Even a suboptimal selection of L. does not increase the NRMSE or NMRE when
comparing to the pseudo-inverse solution, but instead usually results in lower NMRE
and an equivalent NRMSE. Figure 25 and 26 demonstrate that smaller NMRE or
NVE values do not suggest smaller NRMSE values. Also demonstrated is how the
mean NMRE and NVE of bands with signal follow nearly identical trends. This

occurs versus dimension and iteration, but not versus wavelength.

The majority of error improving power of SVD-POCS occurs within the first
10 iterations, as demonstrated in Figure 28. The solution converges to a value of
approximately 7.87 after just 10 iterations. The mean NMRE of bands which are

deemed to contain information (see Section 3.2) is shown when plotting NMRE
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NRMSE and Average NVE of "temp" vs L for 16 Iterations with WarmFS:Off CFSU:Off
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Figure 25 NVE increases as L increases, but NRMSE stays near the same value.
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Figure 26  Smaller NMRE values do not imply smaller NRMSE values.
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NRMSE of "temp" vs Iteration for dimension L=1 with WarmFS:Off CFSU:Off
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Figure 27  The NRMSE does not change as a function of iteration.

versus iteration at all times in this thesis. The particular result shown here does not
diverge within 10000 iterations (results not shown), but yet may diverge at some

point.

Figure 29 shows the reconstructed image for band 24 which corresponds to 4.84-
4.92 um after 25 iterations of SVD-POCS. This band had the least reconstruction
variance error and should look the best, according to NVE calculations. The small
error is due to strong signal presence in the band. Only the NVE values of bands
which have adequate signal are shown in Figure 32. The NVE was particularly bad
in areas of heavy atmospheric absorption due to the very small signal component.
NVE results do a better job than NRMSE of identifying which bands look most like
the original. NRMSE does a great job at measuring the error in the intensity of the
scene, which NVE cannot do. The SVD-POCS algorithm successfully lowered the

NVE for most chromatic reconstruction bands while maintaining the same NRMSE.

48



NMRE of "temp" vs Iteration for dimension L=1 with WarmFS:Off CFSU:Off
T T T T

10 b

NMRE

—©— Average NMRE of Passing Bands \
1 1

0 5 10 15 20 25
Iteration

Figure 28 The mean NMRE of values satisfying a the SNR critera decrease rapidly
at first with most improvement occuring within the first 10 iterations.
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a) c)

Figure 29  Source chromatic band #24, a), the pseudoinverse reconstruction using
the Weiner inversion method, b), and the SVD-POCS reconstruction
with L=1, c).

The average NVE of the pseudo-inverse accepted values dropped to 159.05 from
209.94. Figure 31 shows that SVD-POCS does indeed reduce the NMRE.
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Figure 31 SVD-POCS improves upon the NMRE of the pseudoinverse.
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Figure 32 SVD-POCS reduces the NVE for most chromatic bands.
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3.4 Modified SVD-POCS (MSP)

Additional constrains are needed to make absolute radiometry analysis prac-
tical. Constraints considered here are from information we already know from the
scene and have been suggested previously by Brodzik and Mooney in [4]. The major
disadvantage of the first three constraints is the addition of an inverse Fouier trans-
form for each spectral image followed by a Fourier transform to change the data back
into the transform domain. The three constraints can only be applied in the spatial
domain. The advantage is improved radiometry can be performed which is validated

in NRMSE calculations. Figure 33 show the modified SVD-POCS algorithm.

Negative Intensity Check. It is possible for the pseudo-inverse solution to
contain negative intensities which never occur in reality since negative radiance (or
photon levels) never occurs. Negative values occur in the model as a consequence
of noise at the CCD or from noise introduced in the pseudo-inverse computation
attributed to an ill conditioned system transfer function. The negative values can
easily be set to zero by performing:

. Oa Ck(l', y) <0
é(x,y,\) = Pye(x,y,\) = vk, (40)

ck(z,y),  otherwise
where ¢ (x,y) is the k’th spectral band spatial solution to the pseudo-inverse. The

negative check is applied to the initial pseudo-inverse solution and to the reconstruc-

tion after each iteration.

Cold Field Stop Update. Another simple change made to SVD-POCS was
the inclusion of a cold field stop constraint for each iteration of the process, including
an update before the first iteration. This update takes advantage of information we

already know, the spatial extent of the cold field stop. The cold field stop update is
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simply:
0, Z, € 8:Ec s
. X) = Pugsil,y, ) = o) €Rers
ée(z,y),  otherwise

where ¢, (x,y) is the k’th spectral reconstruction band after the negative intensity

check and . ,is the known cold field stop region of the image.

Force Sum. Assuming the only portion of light which enters the aperture
of the instrument is that of the desired spectrum and prism dispersion does cause
information to fall off the focal plane array, the sum of intensities for each data set
for one prism angle is equal to the sum of the intensity of the entire scene. Thus the
cumulative intensity of the scene is known. After finding the pseudo-inverse solution
and subjecting the negative intensity and cold field stop constraints, the sum of the
solution should be equal to the sum of each data set captured at any single prism
angle. If it is not, the current solution magnitude is adjusted by dividing by the sum
of the current solution and then multiplying by the sum of a data set. It does not
matter which data set sum is used, since they are all equal. Mathematically, the

operation is simply:

= X di{m n) "

farr ) = Paf 9, A) = 8oy, )+ SIS

where é(z,y, \) is either the pseudo-inverse solution or the current iteration solution
of the modified SVD-POCS and d;(m, n) is the i’th recorded data set. The additional
constraints added prior to the force sum prevent energy from being placed into the

cold field stop or being put into negative intensities.

Include the Mean in the ODC. In SVD-POCS, the mean of each spectral
solution is removed before the object domain constraint is performed. Thus, the
mean removed image data is projected onto the L largest eigenspectra and no infor-

mation about the mean enters the iteration. The consequence of the mean removal
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Figure 33

is the SVD-POCS solution cannot change the mean of the pseudo-inverse solution.

In order to better estimate the mean of the scene, the mean of each iteration solution

MSP is SVD-POCS with additional constraints. The area corresponding
to the warm field stop, R, s, is compared to the blackbody curve, b,
of the temperature of the warm field stop. The atmospheric absorption
factor is not needed since the warm field stop has negligible attenuation.

is left in the object domain projection. The projection is once again:

where F), ;| includes projections F.fs, P,, and P, and the mean of the current so-
lution. The mean may be removed before the first iteration, but the outcome will
be the same, just one iteration later. The solution starts to track the mean of the

source after it is first included and converges over the iterative sequence provided

the mean

Qm = AL(AL)TFy, 4,

is included each iteration.

95
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Figure 34 The NRMSE of SVD-POCS changes very little as L increases. The
NRMSE decreases significantly for for L=3 and higher.

3.5  Performance Comparison

In Section 3.3, the configuration of SVD-POCS in the Brodzik paper [9] was
shown to not be a good match for a mean square error metric. Fortunately, adding
extra constraints enables the algorithm to track the mean of the scene at a small
cost of variance error, which also shows in the mean removed error results. Figure
34 shows how the NRMSE changes as a function of the dimension L. Once again,
SVD-POCS is nearly invariant, while MSP drops significantly at L=3, and stays
much lower than the pseudo-inverse NRMSE. Results displayed in Figures 34 and 35
show that =3 is the best dimension for MSP when the source is the temperature
map scene. The NMRE of MSP, seen in Figure 35 approaches that of SVD-POCS

at L=3, but yet remains larger.

The NVE of SVD-POCS is smaller on average than MSP as shown in Figure 39.
A bias variance trade-off is apparent. SVD-POCS does better at minimizing NVE
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Normalized Mean Removed Error of SVD-POCS and MSP
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Figure 35 The NMRE gets worse as dimension increases for both SVD-POCS and
MSP.
Table 5  Performance of Iterative Methods.
NRMSE | NVE | NMRE
Pseudo-inverse | 69.84 | 211.04 | 9.49
SVD-POCS 69.30 | 156.25 | 7.87
MSP 30.89 | 175.92 | 8.32

and NMRE while MSP does a better job at minimizing NRMSE. Both algorithms
did equally poor in at reconstructing bands with little or no signal energy. The
final NRMSE and mean of the points shown in Figure 39 are shown in Table 5.
SVD-POCS had the lowest NMRE while MSP had the lowest NRMSE.

The trend continues for error as a function of iteration as shown in Figures 40
and 41. For the particular trial of MSP shown here, the mean is removed in the first
iteration only, which is why the NRMSE does not drop until after the 2nd iteration.
MSP converges within about 15 iterations for the temperature map scene of Figure

7 for both NMRE and NRMSE metrics, while SVD-POCS takes about 10 iterations,
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Figure 36  The reconstruction at spatial location 64,64 is closer to the original for
MSP than SVD-POCS.
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Figure 38 The NMRE of SVD-POCS is lower on average than that of MSP.
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Figure 39 NVE for each spectral reconstruction. The NVE of SVD-POCS is lower
on average than that of MSP.
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Normalized Root Mean Square Error of SVD-POCS and MSP
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Figure 40 The NRMSE of SVD-POCS does not decrease while MSP reduces the
NRMSE, converging in about 15 iterations.

with progress only seen in NMRE reduction. Figure 42 shows the NRMSE of each
band for the entire 3.0-5.0 um spectral frequency range. The NRMSE curve of MSP
has a similar trend as the curve of SVD-POCS, but occurs at a lower value. The
smallest NRMSE values of SVD-POCS occur in the middle of the spectral frequency
range which is where the mean of the source crosses the mean of the reconstruction.
Thus, SVD-POCS simply gets lucky at that point in NRMSE calculations. MSP
actually tracks the mean, and provides a useful NRMSE result.

MSP can track the mean of the source while SVD-POCS cannot. The mean
square error metric is now useful under MSP and can be used for iteration error
monitoring. SVD-POCS has lower NVE than MSP, but provides no information on
NRMSE. The mean tracking and variance tracking trade-off once again is obvious.
The variance error between spectral bands doesn’t tell us how intensities relate from

band to band, but how the close the pixels vary compared to the original.
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Figure 41 The NMRE decreases each iteration for both SVD-POCS and MSP,
settling after 10 and 15 iterations respectively.
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Normalized Root Mean Square Error of Temperature Curves
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Figure 42 The NRMSE curve of MSP has a similar trend as the curve of SVD-
POCS, but is lower overall. Atmospheric attenuation causes NRMSE
to rise.

63



Error vs Temperature. The temperature map scene, shown in Figure 7,
was used to test reconstruction error versus temperature by finding the error for
each spatial location and grouping the spatial locations by temperature to find the
mean error per temperature. The range of temperatures in the scene is limited from
290.5-300.7K. Despite a limited temperature range, results do show a trend. Figure
43 shows a flat error where atmospheric absorption was not used and a slightly
increasing response with error variance mostly towards the upper and lower bounds
with atmospheric absorption. The error variance is likely caused by the reduced
number of spatial temperatures having the extreme temperatures of the end. Results
in Figure 43 are for all pixels of the scene, for one noise trial. To get a broader idea of
error versus temperature, the values of the map were scaled to range from 291-338K.
The value of each spatial temperature of the 2D map was rounded to the nearest
integer and once again all values spatial locations were used to obtain an average
error for each temperature. Results are shown in Figure 44. The error curves for
SVD-POCS and MSP look very similar in both plots, but occur at a different mean.
MSP has a much lower NRMSE, reflected by its ability to track the mean of the
scene while SVD-POCS cannot. The increase in error as temperature increases is

caused by the relation of the plank curve to the atmosphere attenuation curve.

The temperature error curves appear at an overall higher value than those for
the mean NRMSE of all bands when atmospheric absorption is on, and at a lower
value without atmospheric absorption. This means that atmospheric absorption
induces additional error that impacts temperature reconstruction more than it does
the reconstruction mean of each band. Absolute radiometry, although improved
with MSP, may still be impractical due to increased temperature reconstruction
error. The atmospheric attenuation appears to add additional spectral frequency

which the algorithms are have difficulty reconstructing.
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Figure 43 NRMSE Versus Temperature for 290.5-300.7K.

Normalized Root Mean Square Error of Temperature Curves
90

80

—©— SVD-POCS Atmosphere:OFF
70r —— MSP Atmosphere:OFF

—A~ SVD-POCS Atmosphere:ON
—£— MSP Atmosphere:ON

NRMSE

40

30

101 b

0
290 295 300 305 310 315 320 325 330 335 340
Temperature (K)

Figure 44 NRMSE Versus Temperature for 291-338K.
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Figure 45 A broadband view the the five bars.

3.6 Monochromatic Source Test

The objective of this test is to see if the algorithm can identify which spectral
band each source belongs to. Each source has a spectral response in only one spectral
band. The remaining scene has no spectral response for any band in the region.
Figure 45 shows a broadband representation of the object cube looking down the
spectral frequency axis. You can clearly see the five bars, each at an equal intensity.
Table 6 shows the band and frequency location of each bar. Each bar is located in
an atmospheric passband. Figure 46 shows the NVE plot of the reconstructed scene.
Notice the low NVE values passing the threshold criteria the correct corresponding
bands. Figure 47 shows the reconstruction image of bands five, six, and seven using
identical image display scaling. Ghost bars do appear in adjacent spectral bands
where no information should be present. Thus, there is spectral bleeding between
spectra that will effect spectral resolution. The bleeding gets stronger as the image

gets closer to that particular source spectral location.

The five monochromatic test shows that spectral interference exists between
neighboring bands in the reconstruction. The amount of intensity leaked into imme-
diate adjacent bands is on the order of 50% of the reconstruction in the correct band.
The spectral lineshape for a 25 band reconstruction is shown in Figure 48. The cross

band intensity declines significantly; becoming insignificant after six adjacent bands.
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Table 6 Location in Frequency of Each Bar.

Bar Band | Frequency (pum)
Center 2 3.08-3.16
Right 5 3.32-3.40

Bottom Center 9 3.64-3.72

Left 13 3.96-4.04

Top Center 21 4.60-4.68

NVE of each psuedoinverse image with allowable criteria of 500
80

O
(6]

0

50 * Fails Criteria
O Meets Criteria

Ok ————k—————F——F—k
0 5 10 15 20 25

Band #

Figure 46 The bars show up in the appropriate both visually and according to
NVE as shown here.

—
—

Figure 47 Bands 5, 6, and 7 are shown here from left to right. Bleeding from
sources located in nearby freqency bands is shown in each image. The
bleeding gets stronger as the image gets closer to that particlular source
location.
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Spectral lineshape width is a function of the number of reconstructed bands and
not a function of wavelength. The spectral bandwidth of each band establishes the
bandwidth range of the bleeding. The lineshape of a reconstruction with 25 bins of
80nm in width will be twice the size as a reconstruction with bins of 40 nm in width
because of the greater bin width. Figure 49 shows how wide the lines are with 43
wavelength bins (representing a bandwidth of 46.5nm). The lineshape continues to
span six adjacent bins on each side, but the contribution is much less severe due to
the increased number of bins, making the spectral interference range much less and

the lineshape more narrow.
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Figure 49  Spectral Lineshape with 43 Bands.
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IV. [Iteration Monitoring

4.1  The Warm Field Stop

In this chapter, a design change of the hardware configuration is introduced to
allow for a built in iteration performance monitor. The improvement idea requires a
change in the design of the imager, as shown in Figure 50. The chromotomographic
imager of Mooney has a cold field stop in the focusing optics. The purpose of the stop
is to limit stray photons from outside the field of view, induce high spatial frequency
in the scene, and to provide a dark area on the CCD for image edge dispersion. The
stop is cooled to a value where it has almost no spectral response and can therefore
be simulated in MATLAB as intensity zero in modeling of the pseudo-inverse and
SVD-POCS algorithms. The addition is a new set of optics in front of the original
design which includes an uncooled field stop. It is easy to obtain the temperature
at the “warm” field stop and, since we are working in the infrared, calculate the
blackbody curve the field stop should have. A small section of the warm field stop
is left unblocked by the cold field stop and therefore registers on the CCD as part
of the scene. The warm field stop will have a known spectrum if the temperature is
known which can be used to check error in reconstruction. The idea is to use this
additional known information to stop the iterations of MSP once a certain criteria
has been accomplished. Three possible stopping criteria exist 1) the error is worse
than the pseudo-inverse reconstruction, 2) the error improvement has stopped, and

3) error starts to diverge.

Error Calculation in the Warm Field Stop. ~ We have found that the NRMSE
can be misleading but when combined with NVE and NMRE, a better estimate of
reconstruction performance can be found. The known warm field stop is the same
value for each spatial location and therefore has a variance of zero. Therefore, NVE

as we have come to know it thus far cannot be obtained. However, NMRE can be
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Figure 50

The new imager has a warm field stop located forward of the cold field
stop. The warm field stop has a smaller opening than the cold fieldstop.

Figure 51

The pseudoinverse solution, b), to the original object, a), is a good
estimate of the original scene. The MSP solution, c), looks like the
scene, but yet has a smaller mean causing it to appear darker. The
bright border is due to the warm field stop which is located inside the
instrument and has negligible atmosphere absorption. This field stop is
at 300K.
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Table 7 Performance of Iterative Methods Including the Warm Field Stop
NRMSE | NMRE

Pseudo-inverse | 69.84 9.49
SVD-POCS 69.32 7.87
MSP 30.95 8.16
MSP-WarmF'S 37.12 7.50

obtained and to show trends where the mean is ignored; providing a result which is

very close to the variance error measurement.

4.2 Performance with the Warm Field Stop

For the warm field stop addition to be useful, it must not cause any problems
with the MSP algorithm. To determine the effects caused by the warm field stop,
five identical trials were conducted for each reconstruction type; pseudo-inverse,
SVD-POCS, MSP, and MSP with the warm field stop for a temperature of 300K.
NRMSE performance is shown for each in Figure 53. The pseudo-inverse and SVD-
POCS NRMSE curves are close, confirming SVD-POCS cannot reduce mean square
error. MSP reduces the NRMSE with and without the presence of the warm field
stop, although not identically. Figure 54 shows NMRE performance for all bands.
The NMRE curves are very close, but SVD-POCS has a smaller average NMRE.
Surprisingly, MSP with the warm field stop had an even smaller mean error which
is probably due to the small scene extent reduction from introducing the warm field
stop. Figure 55 shows that NVE is smallest in SVD-POCS and the MSP values with
and without the warm field stop are close. The warm field stop does not induce
odd reconstruction behavior which would limit the effectiveness of use as an error

monitor during the iterative reconstruction process.
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Figure 52 Atmospheric Transmission Curve
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Normalized Root Mean Square Error of SVD-POCS and MSP
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Figure 53 The NRMSE trends with and without the warm field stop are generally
the same.
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Normalized Mean Removed Error of SVD-POCS and MSP
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Figure 54 The NMRE of SVD-POCS is smaller on average than MSP. The warm
fieldstop reduces the NMRE for a temperature of 300K
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Figure 55 The NVE of SVD-POCS is smaller on average than MSP. The warm
fieldstop does not change MSP reconstruction performance.
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NRMSE of "temp" vs Iteration for dimension L=3 with WarmFS:On CFSU:On
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Figure 56 The NRMSE of the warm field stop follows the same trend as the
NRMSE of the image as iterations occur for MSP for a warm field stop
temperature of 300K.

4.8 Performance in the Warm Field Stop

The error in the warm field stop needs to follow the same trend as error in
the entire scene for the warm field stop to be useful as an iteration monitoring tool.
The NRMSE of the warm field stop was calculated as explained in Section 4.1 and
displayed on the same plot as the NRMSE of the entire scene. Figure 56 shows that
the error in the warm field stop indeed follows the same improvement relationship
for each iteration of MSP. Both curves drop significantly after the first iteration, and
are nearly converged by the 13th iteration. In an actual system, you would only
have access to the warm field stop curve which here tell us to stop iterating after
the 13th iteration. Stopping the iterative sequence at iteration 14 would lead to a

solution with nearly all error reduction possible for MSP.
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NMRE of "temp" vs Iteration for dimension L=3 with WarmFS:On CFSU:On
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Figure 57 The NMRE of the warm field stop also decreases, but does not follow
the exact curve for MSP for a warm field temperature of 300K.

The mean removed error relationship between the warm field stop region and
the rest of the image does not match as does the NRMSE. The error reduction trend
of the warm field stop is shown in Figure 57 along with the NMRE of the scene
as a function of iteration. The warm field stop curve drops for each iteration and
converges at nearly the same point, but not at the minimum of the scene NMRE
curve. The convergence properties are different for mean removed error than they
are for mean square error. NMRE would not be a good metric to monitor error

reduction.

Figure 58 shows the NRMSE relationship when the temperature in the warm
field stop is much hotter than the scene average. Here the warm field stop tem-
perature is 500K while the mean of the scene is about 295K. The MSP algorithm
converges after about 15 iterations for the warm field stop curve. The NRMSE curve

of the non-field stop scene is smaller than the warm field stop curve due to the nor-

78



NRMSE of "temp" vs Iteration for dimension L=3 WarmFS:On(500K) CFSU:On
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Figure 58 Even with a temperature of 500K, the warm fieldstop can still be used
to find where the mean square error is minimized. The NRMSE curve
of the non field stop scene is smaller than the warm field stop curve due
to the normalization of the entire object cube, which has a much larger
mean than the scene itself due to the 500K warm field stop.

malization of the entire object cube, which has a much larger mean than the scene
itself due to the 500K warm field stop. Figure 59 shows the curves for a field stop
temperature of 100K. Once again, the error in the warm field stop can be used to

estimate where MSP is no longer improving reconstruction.

From the three different warm field stop temperature trials, we can see that the
temperature of the warm field stop does not have to be at the mean temperature of
the scene or close to it. It just have to provide enough signal to do mean square error
analysis. The curves for all three temperatures would be adequate in finding when
convergence has been reached, or whether the scene was not reconstructing. The
objective of absolute radiometry is to measure how the spectra of the reconstruction

lines up with the original source. This measurement fits a mean square error metric,
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NRMSE of "temp" vs Iteration for dimension L=3 WarmFS:On(100K) CFSU:On
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Figure 59 At 100K, the warm fieldstop continues to be useful in finding where the
improvement from MSP has ended.
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not a normalized variance metric or mean removed metric. Thus NRMSE is the
metric to use for warm field stop monitoring. The warm field stop can be used as a
tool to know when to stop the iterative sequence of MSP using a mean square error
metric such as NRMSE without having a stringent requirement on warm field stop

temperature.
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Table 8 Performance of Iterative Methods With a Fireball
NRMSE | NMRE

Pseudo-inverse | 62.80 42.62
SVD-POCS 61.50 41.38
MSP 58.52 46.43
MSP-WarmF'S 63.39 48.31

4.4 Fireball in the Field of View

Additional scenes test reconstruction performance when a fireball appears in
the field of view. The scenes contain a 1000K fireball at the center of the standard
temperature map scene. Reconstruction results for a scene with a 67 pixel diameter
fireball of a 103x103 non-cold field stop scene was first used to compare NRMSE,
NMRE, and NVE. NRMSE versus wavelength trends are very similar for each re-
construction technique. Mean error values are shown in Table 8 where the NRMSE
value is the average for each band, and the NMRE value is the average bands with

adequate signal..

Figure 60 shows NRMSE for SVD-POCS and MSP is about the same. The
mean values in Table 8 also show the same relationship. The mean removed error
has a larger percent difference, with MSP doing the worst. Less error for this scene
is due to the mean, meaning more is due to the variation between pixels. The
large area of the fireball results in an extensive portion of the scene having a very
large magnitude. Thus difference between pixels will be larger. The differences are
caused by error introduced by the CCD and by the singular matrix inversion of
the pseudo-inverse solution. NMRE versus wavelength is shown in Figure 61. Each
NMRE curve increased compared to the non-fireball NMRE result shown in Figure
54. Both NVE and NMRE follow the same trends versus wavelength, but NVE
values are still relatively low compared to NMRE. Different normalization factors
for each metric cause this relationship. Relative variance error is not so bad, but
the error in magnitude is, when a large fireball of 1000K is in the scene. Figure

62 shows the variance error for passing bands. The average variance must be quite
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Figure 60 NRMSE for a scene with a 1000K fireball on the temperature map.

large for the entire cube compared to the average variance error, while the variation
error causes large error in photon levels, but is normalized by a relatively less intense

mean photon amount.

The warm field stop at 300K is able to track mean square error reduction in
the scene as shown in Figure 63. However, Figure 64 shows the NMRE of the scene
is not directly related to NMRE of the warm field stop. NMRE does not provide

enough information for halting the iterative sequence of MSP.

The fireball size was varied to establish trends in reconstruction performance
versus fireball size. Three fireball diameters are used; 6 pixels, 32 pixels, and 67
pixels. The atmospheric absorption curve is shown again in Figure 65 to provide a
quick reference. The 6 pixel fireball has the least magnitude. The MSP reconstruc-
tion curve, shown in Figure 66, is not capable of matching the mean of the scene.

Peaks and valleys of the source mean are cutoff. The intensity of the reconstruc-
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Figure 61 NMRE for a scene with a 1000K fireball on the temperature map.

tion does not have a dynamic photon range as does the source. The mean of the

reconstructed scene follows the atmospheric absorption curve.

The same trends apply for the larger fireballs. The source mean intensity curve
matches the atmospheric absorption curve better as fireball size increases. The recon-
struction mean photon amount curve becomes smoother, appearing as a sinusoidal
looking curve in the 67 pixel fireball scene. Mean reconstruction performance for the

32 pixel fireball is shown in Figure 67 and in Figure 68 for 67 pixels.
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Figure 62
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NVE of the fireball scene. SVD-POCS has a lower overall NVE.

NVE of both MSP trials looks to be nearly identical.
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NRMSE

NRMSE of "fbtemp" vs Iteration for dimension L=3 with WarmFS:On CFSU:On
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NRMSE Versus Iteration for the Fireball Scene
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NMRE of "fbtemp" vs Iteration for dimension L=3 with WarmFS:On CFSU:On
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Figure 64 The NMRE curve of the warm field stop does not follow the same trend
as the NMRE of the scene. Both do converge at the 4th iteration.
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Figure 65  Atmospheric Transmission Curve
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Figure 66 Mean Photon Count for MSP with a Fireball Diameter of 6 Pixels.
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Figure 67 Mean Photon Count for MSP with Fireball Diameter of 32 Pixels.

Mean Photon #

Figure 68

X 10 Mean Photon Count for MSP with Fireball Diameter: 67 Pixels
2.5 T A A AT T T T T
A o Aia
&% 0= A
£ S A
21+ & <>\ /4
A / : X /
A <>\ A
A P\ $
4 %, A /
, A S A A
9 \ '
Q o #
15F N / T
o &
N /
&
Q. . ,
&
r v, S i
oo
: A
A
05F A 1
A Source
©- MSP :
0 | | | | | 1 A A A Il |
3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Wavelength(um)

Mean Photon Count for MSP with a Fireball Diameter

89

of 67 Pixels.



NRMSE for MSP with Fireball Diameter: 6 Pixels
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Figure 69 NRMSE for MSP with Fireball Diameter of 6 Pixels.

NRMSE results for each fireball size are shown in Figures 69-71. Content not in
the fireball spatial extent is non-reconstructable and therefore unrecoverable. This
phenomena is reflected in the poor NRMSE reconstruction of the 6 pixel fireball.
The 67 pixel fireball has the least NRMSE, attributed to having the least non-
reconstructable field of view. The NRMSE error metric does not know the fireball
size and therefore uses the entire scene for error calculation. The 6 pixel fireball scene
has the worst mean square error reconstruction despite having the smallest photon
levels. The spatial extent of the fireball does show in the image reconstruction and
spectral analysis of only the fireball portion of the image will lead to much improved
error results. The reconstructed image scaled to the maximum of the original scene

only shows the fireball with dark content elsewhere in the image.

The warm field stop can still provide a means to track mean square error

reduction. Figures 72-74 show the convergence of both the warm field stop and
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NRMSE for MSP with Fireball Diameter: 32 Pixels
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Figure 70 NRMSE for MSP with Fireball Diameter of 32 Pixels.
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Figure 71 NRMSE for MSP with Fireball Diameter of 67 Pixels.
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NRMSE Versus lteration for MSP (diameter=6pixels)
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Figure 72 NRMSE Versus Iteration for MSP with Fireball Diameter of 6 Pixels.

scene occur at the same iteration, regardless of fireball size when using a field stop

temperature of 300K.

The mean removed error is largest in the 6 pixel fireball scene. Figures 75-77
show NMRE results for each fireball scene. Error in mean recovery is not causing a
significant portion of reconstruction error for the fireball scenes. Most mean square
error results from not being able to reconstruct the non-fireball portion of the scene.
Not being able to reconstruct the rest of the scene is likely not a problem, since the

fireball contains all the information desirable to the user.
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NRMSE Versus Iteration for MSP (diameter=32pixels)
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Figure 73 NRMSE Versus Iteration for MSP with Fireball Diameter of 32 Pixels.

NRMSE Versus Iteration for MSP (diameter=67pixels)
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Figure 74 NRMSE Versus Iteration for MSP with Fireball Diameter of 67 Pixels.
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Figure 75 NMRE for MSP with Fireball Diameter of 6 Pixels.
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Figure 76 NMRE for MSP with Fireball Diameter of 32 Pixels.
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NMRE for MSP with Fireball Diameter: 67 Pixels
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Figure 77 NMRE for MSP with Fireball Diameter of 67 Pixels.
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x 10° Mean Photon Count of SVD-POCS and MSP
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Figure 78 The mean proves hard to recover. Only MSP has any mean recovery
capability, yet it does not track the mean exactly.

4.5 Absolute Radiometry in Photons

In order to perform radiometric analysis on the reconstruction, the recon-
structed photon information needs to be similar in magnitude to the source infor-
mation. The reconstruction must be a good approximation of the original signal to
estimate temperatures or spectral intensities. A comparison of the pseudo-inverse,
SVD-POCS, and MSP are shown in Figures 78 and 79. For both scenes, only MSP
has any mean tracking ability. The reconstruction provided by MSP with a warm
field stop scene cannot be compared directly to the other curves, since the scene is
slightly different due to the addition of the warm field stop. Results show that the
warm field stop does not affect the performance of MSP for scenes tested in this the-
sis. However, MSP is only a step in the direction of performing absolute radiometry,
and cannot fully enable temperature reconstruction based on reconstructed spectral

solutions.
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Figure 79  The mean tracking at each band is not as close when a fireball is intro-
duced.

97



V. Conclusions
5.1  Summary

Hyperspectral data collection and analysis is an increasing priority with the
growing need to obtain greater classification precision than offered by traditional
spatial imagery. In this thesis, trends in hyperspectral reconstruction were explored
where reconstruction was performed after obtaining a series of chromotomographic
images. Chromotomography, developed initially by Jonathan M. Mooney formerly
of AFRL/SNHI, involves capturing a series of two-dimensional images where spectral
information has been dispersed on each in a unique manner by a prism rotating in

front of the focal plane array.

Before the reconstruction could be tested, synthetic data was produced, ap-
proximating what would be produced from prism dispersion on the focal plane array.
The pseudo-inverse singular matrix problem was addressed where two methods are

compared to find which produces minimal error.

The standard iterative error reduction algorithm, SVD-POCS, was shown to
not be capable of reconstructing the mean of the source scene, making absolute
radiometry analysis impractical. However, SVD-POCS was shown to provide the
good reconstruction if the goal is to perform relative radiometry analysis. Additional
constrains are needed to make absolute radiometry analysis possible. The added
constraints of non-negativity, spatial extent of the cold field stop, forcing the sum,
and keeping the mean for each iteration improves radiometric performance and begins

to make absolute radiometry possible.

The added constraints also make possible the use of a warm field stop to
monitor reconstruction error for both the pseudo-inverse and iterative improvement
algorithm. Error can be calculated each iteration to determine when a minimum has

been reached in a mean square error sense. Thus, minimum mean square error of
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the reconstruction can be obtained with confidence. Spatial and spectral resolution

trade-offs are discussed in the next section.

5.2 Lessons Learned

The iterative improvement method must have constraints which change the
mean of the solution to allow absolute radiometry measurements. SVD-POCS does
better at shaping the reconstruction back to the original scene if the mean of the
scene does not need to be recovered. Otherwise, constraints like those found in MSP

are needed to recover the mean, but at a cost to variance reconstruction.

Temperature reconstruction error curves appear to have larger error than the
overall scene when atmospheric absorption is on, and at a lower value without at-
mospheric absorption; meaning atmospheric absorption induces additional spectral
frequency which the algorithms are have difficulty reconstructing. Absolute radiom-
etry, although improved with MSP, may still be impractical due to increased tem-

perature reconstruction error.

Several limitations to spectral resolution were discovered. The number of im-
ages recorded during prism rotation has to be at least the number of spectral bands
desired. Additionally, spectral resolution is limited by the number of pixels the
spectral dispersion of the prism falls over on the focal plane array. The spatial and
spectral resolution are limited by the width of the cold field stop, which is limited
by the size of the focal plane array. Spectral resolution can be increased if a smaller
portion of the scene is desired for reconstruction. Likewise, spatial resolution can
be increased if the number of wavelength bins is reduced. The cold field stop size is
increased by either decreasing the field of view or forcing the original field to fall on
fewer pixels of the focal plane. Spatial resolution is determined by the resolution of
the scene entering the optics, pixel size on the CCD, and by the extent of the non-

cold field stop image. The extent of reconstructed spectral crossband interference is
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band dependent, not wavelength dependent. Increasing the number of reconstructed

bands decreases the bandwidth of the spectral interference.

If you are only interested in obtaining the spectrum of a very bright object
with a relatively cool background, you can allow the rest of the non-fireball portion
of the scene to fall off the cold field stop while keeping the fireball content within the
extent of the CCD. This will not work if the spatial extent of the fireball is not known
prior to chromotomographic imaging, since spectral resolution is also determined by
the prism dispersion onto a number of pixel elements of the CCD. When the warm
field stop is used, the spatial extent of the scene is fixed and no scene content can
fall off the cold field stop. Computer processing limitations also exist. The size of

an 512x161x224 hyperspectral datacube is on the order of hundreds of megabytes.

5.8  Future Work

Automated Model Dimension Selection. Work in this thesis demonstrated
the warm field stop is capable of finding the model dimension which results in the
least mean square error, but this can only be done if reconstruction is performed
for each model dimension size. The reconstruction process would be less expensive
computationally and more effective if the dimension value could be automatically

selected.

Warm Field Stop.  Several warm field stop parameters come to mind which
were not explored in this thesis. The question of the minimum warm field stop
size which provides adequate performance monitoring has yet to be answered. Only
three warm field stop temperatures were tested in this thesis, meaning additional
temperature performance tests are needed to get higher degree of certainty in warm

field stop performance versus temperature.

Improving Radiometry.  The additional constraints used for MSP do improve

absolute radiometry performance, but allow for improvement to reduce spectral re-
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covery error. Additional constraints or numerical techniques may be used to reduce
absolute radiometric error even further. If fireball spectral recovery is the goal of
reconstruction, improvements can be made to automatically calculate spatial con-
straints of the fireball and then perform absolute radiometry to that spatial area.
Additional constraints or numeric techniques may lead to practical absolute radio-
metric capabilities. An investigation of relative radiometric performance can also be
done to take advantage of the strength of SVD-POCS and compare reconstruction

performance to absolute radiometry results.

Speed Enhancement.  The speed at which spectral cubes can be measured and
processed provides a severe performance limitation for chromotomographic imagers.
One possibility for improving the speed of these systems involves collecting spatial
projections of the frames from the CCD used to gather the images. These spatial
projections would represent vectors that are the result of row or column summing
the image on the CCD array itself. The improvement in throughput would allow
spectral cubes to be collected as much as one thousand times faster and would reduce
the processing burden by the same factor. Spatial information would be sacrificed

in an efficient way in order to improve the temporal resolution of the sensor.

Time Analysis.  The work in this thesis assumed the scene was not changing
with time. Additional work should be done to explore the consequences resulting

from imaging a transient event.

A method for improving the temporal resolution of the sensor without sacri-
ficing spatial information would possibly involve deconvolving the temporal window
of the sensor from a sequence of temporally overlapping image reconstructions. If
M image frames are required to form a spectral cube, then every time a new frame
is captured the M frame window would be shifted by one frame and a new spectral

cube would be reconstructed using M-1 old frames as well as the new frame. The
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goal of this project would be to remove the temporal redundancy via a deconvolution

along the temporal axis.

5.4 Conclusion

This study shows trends associated with chromotomographic reconstruction
and how a design of the instrument allows the ability to stop iterative reconstruction
when the solution has reached minimum mean square error. Additional information
is needed to enable SVD-POCS reconstruction for absolute radiometry. Even with
the additional constraints, the modified algorithm only improves absolute radiometry
performance and does not provide a radiometrically accurate reconstruction. If you
try to do absolute radiometry by adding constraints, you make relative radiometry
results worse. The mean intensity of the reconstruction changes much slower between
spectral bands than in the original scene, thereby limiting chromatic frequency re-
construction. High chromatic frequencies introduced by atmospheric attenuation
cannot be reconstructed, causing temperature estimation to be difficult. The warm
field stop does not affect performance of MSP and can be used to monitor reconstruc-
tion error during the iterative process; allowing acquisition of the minimum mean

square error solution with certainty.
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Appendiz A. MATLAB Code
A.1  Master Routine Code

The following code comprises the “master.m” script file:

%Master Routine
clear all
close all
%This script executes the following subroutines
% 1 Get Source Object
% 2 Synthesize Data
% 3 Pseudoinverse Reconstruction
% 4 SVD-POCS or MSP
%Parameters
%k sk ke sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk sk ok sk sk sk ok sk ok sk sk sk ok ok sk sk ok sk ok sk sk sk ok sk ok ok sk sk ok ok ok
brod=0;
gus=1;
runpocs=1; % Run SVD-POCS
epstest=0; %Run the epsilon tester
warmcheck=0; %Use the warm field stop to halt the iterative process (1=Yes, 0=No)
unitchange=1; %Use the photon model instead of spectral radiance.
if brod==
cfsu=0; %Add the cold field stop update to SVD-POCS (1=Yes, 0=No)
zerop=0; %Force negative values of ¢ to be zero. Turn this off along with cfsu to get Brodzik’s
pocs.
rmeanpocs=1; %Remove the mean of c2 for each iteration. (pat rec def)
forcesum=0; %Force the sum of the reconstructed cube to be that of the first data set.
L=1; %Model Dimension. Set to ’step’ to test each possible.
elseif gus==
cfsu=1; %Add the cold field stop update to SVD-POCS (1=Yes, 0=No)
zerop=1; %Force negative values of ¢ to be zero. Turn this off along with cfsu to get Brodzik’s

pocs.
rmeanpocs=0; %Remove the mean of c2 for each iteration. (pat rec def)
forcesum=1; %Force the sum of the reconstructed cube to be that of the first data set.
L=3; %Model Dimension. Set to ’step’ to test each possible.
else
%MANUAL ENTRY OF POCS PARAMETERS
cfsu=1; %Add the cold field stop update to SVD-POCS (1=Yes, 0=No)
zerop=1; %Force negative values of ¢ to be zero. Turn this off along with cfsu to get Brodzik’s
pocs.
rmeanpocs=0; %Remove the mean of c2 for each iteration. (pat rec def)
forcesum=1; %Force the sum of the reconstructed cube to be that of the first data set.
L="step’; %Model Dimension. Set to ’step’ to test each possible.
end

source=’temp’; % ’temp’ for the temperature map

numlam=25; % Number of Wavelength Bins

angles=25; % Number of Prism Rotation Angles

noise=1; % Noise (On:1 or 0ff:0)

atmosphere=1; % Run with estimated atmosphere attenuation (1=Yes, 0=No)
warm=1; % Use the Warm Field Stop Model (1=Yes, 0=No)

warmwidth=4; 7% Width of the Warm Field Stop

start=3000; % Starting wavelength in nm

stop=5000; % Maximum wavelength in nm

T=300; % Temperature of warm field stop

iterations=25; J Number of Iterations for SVD-POCS

method=1; % Method to find Hinv (1=threshold inverse, O=Wiener)

%Plots

%5k sk o sk ok ok ok sk sk ok ok ok ok o ok ok o ok oK ok ok oK ok o K oK ok K ok o K oK o K oK o sk sk ok ok o oK oK o K ok K oK oK ok ok ok oK oK ok oK
imageo=0; % Image the Object Cube

imaged=0; % Image the Synthetic Images
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imagec=0; % Image the Pseudoinverse Cube
imagec2=0; % Image the POCS Reconstruction Cube
nrmseit=1; % Get a plot of NRMSE vs Iteration for SVD-POCS
plotwarm=1; % Plot the warm fieldstop error vs L or vs iterations
%Settings based on the input parameters
Yyttt ke sk sk ks sk sk ke ek sk ke sk ks ke ke sk ks ke ok stk ke sk ks ks ke sk ok sk ke ko sk ke ke sk ok
if noise==
epsl=5e-9; YBest for no noise
eps0=5e-9; %Also best for no noise

else
eps1=0.01; 7%0.01 Best for noise from 4-5um. 1 is best for 2.1-2.5um
eps0=0.01; %Best with noise from 3-5um
end
if method==
leps=length(epsl);
epss=epsl;
else
leps=length(eps0) ;
epss=eps0;
end
if warm==
warmwidth=0;
end

lam=1:numlam; % Wavelength Bins
phi=0:2*pi/angles:2xpi-2%pi/angles; % Rotation Angles
numphi=length(phi); % Number of Angles
bw=abs (stop-start)/numlam; % Specral Bandwidth
wavenm=start+bw/2:bw:stop-bw/2; % Spectral Band of Interest
coldfswidth=floor (numlam/2); % Width of the cold field stop (assume uniform prism disp)
if L==’step’ % Needed for Dimensionality Tests
dim=1:numlam;

else
dim=L;
end
NMREforL=zeros (numlam,length(dim)) ;
if warm==
warmoffon=’0n’;
else
warmoffon="0£ff’;
end
if cfsu==
cfsuoffon=’0n’;
else
cfsuoffon="0ff’;
end

45k sk sk ok ok ok sk sk ok ok ok ook o ok ok o ok oK o oK oK K oK o K o oK ok R oK o K o K ok K oK K ok ok ok ok o sk o oK ok oK oK sk sk ok ok ok ok ok ok

%k sk ke sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk ok sk sk ok ok ok sk sk o sk ok sk sk sk ok ok ok sk sk ok ok ok
%Call for the object

[0,wavenm] =getobject (source,numlam,warm,warmwidth,T,wavenm,atmosphere,unitchange) ;
%Create synthetic data d, output the DFT D

[D, W, sumofd]=synth(lam,phi,o,imaged,noise);

%k sk ke sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk ok sk ok sk sk sk ok sk ok sk sk ok ok ok sk sk o sk ok sk sk sk ok ok ok ok sk ok ok ok
mino=min(min(min(o))); % Used for output display scaling

peako=max (max(max(0)));

[oheight,owidth,olam]=size(o0);

lexlength=oheight*owidth; % Length of lexicographical rows

%k sk sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk ok sk ok sk sk ok ok ok sk sk o sk ok sk sk sk ok ok sk sk ok ok ok
%Plotting the Object

%k sk ke sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk sk ok sk sk sk ok sk ok sk sk ok ok ok sk sk o ok ok sk sk sk ok ok ok sk sk ok ok ok

if imageo==
for p=1:numlam
figure(p)
imagesc(o(:,:,p), [mino peakol)
colormap (gray(256))

axis image
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title([’Original Band ’ num2str(p) ”])

end
end
ok ok ok ek k sk ok ok ok ok K K ok ok ok ok ok o K K K oK ok ok ok o K K KoK ok ok ok o K KK ok ok ok ok o o KK ok sk ok ok ok K K Kok ok ok ok K K Kok ok ok ok K K KoK
%PSEUDOINVERSE RECONSTRUCTION
ok ok o kK sk sk ok ok ok K K ok ok ok ok ok o K K K oK ok ok ok o K K K oK ok ok ok o K KK ok ok ok ok o K K ok sk ok ok ok K K Kok ok ok ok K K Kok ok ok ok K K K oK
[c, C, H, Hinv]=reco_inline(D,W,method,epss(id),epstest,zerop,cfsu,forcesum,sumofd) ;
if epstest==

clear D; clear W;
else

clear H; clear Hinv; clear C;
end
ok 3 o kK sk sk ok ok ok K K ok ok ok ok ok o K oK K ok ok ok ok o K oK K oK ok ok ok o K KK ok ok ok ok o K K oK sk ok ok ok K K Kok ok ok ok K K Kok ok ok ok K K KoK
minc=min (min(min(c)));
peakc=max (max(max(c)));
%Plotting the reconstruction
ok ok o ok ks ok ok ok ok ok Kk ok ok ok ok o oK KK oK oK ok ok KK K oK ok ok ok K KK oK ok ok ok o K K ok oK ok o o K KK oK ok ok R K KoK ok ok ok K K oK
if imagec==1

for p=numlam+numphi+1:2*numlam+numphi

figure(p)
imagesc(c(:,:,p-numlam-numphi) , [minc peakcl)
colormap (gray(256))

axis image
title([’Reconstructed Band #’ num2str(p-numlam-numphi) ”])
end
end
Yk ks ook ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk R ok ok ok ok sk ok ok o ok o sk ok ok o ok ok ok ok ook sk ok sk ok o ok ok K sk ok ok ok
% Plot results
ok ks ko ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk R ok ok ok ok ok ok ok o ok sk sk ok o ok ok ok ok o ok sk ok ok ok o ok oK K sk ok ok ok
intensityplot3
ok ks ok ok ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk R ok ok ok ok sk ok ok o ok o sk sk ok o ok ok ok ok ok sk ok sk ok o ok ok K ok ok ok ok
%Find the initial NMRE of the Warm FS
Yok ks ok ko sk sk ok ok ok ok ok sk K ok oK ok ok K K ok oK ook oK ok oK ok oK oK oK oK oK oK oK oK o KoK K ok ok ok KoK ok oK o oK oK K ok ok ok ok o
%ind=[8 9 10 11 12 13 14 20 21 22 23 24 25]; Ychange this to the same "index" in plotspseudo.m
ind=find (mean(mean(o))>=.5*mean(mean(mean(o)))); %change this to the same "index" in plotspseudo.m
load bbgo
if plotwarm==1 & warm==
for k=1:numlam
rangevl_l=coldfswidth+1l:coldfswidth+warmwidth;
rangevl_2=coldfswidth+l+warmwidth:owidth-coldfswidth-1-warmwidth;
vi=c(rangevl_1,rangevl_2,k)-bb(k);
%The mean blackbody value is equal to the value, so they cancel out
vimr=c(rangevl_1,rangevl_2,k)-mean(mean(c(rangevl_1,rangevi_2,k)));
rangev2_l=oheight-coldfswidth-warmwidth:oheight-coldfswidth-1;
rangev2_2=coldfswidth+l+warmwidth:owidth-coldfswidth-1-warmwidth;
v2=c(rangev2_1,rangev2_2,k)-bb(k);
v2mr=c(rangev2_1,rangev2_2,k)-mean(mean(c(rangev2_1,rangev2_2,k)));
rangev34_l=coldfswidth+1:oheight-coldfswidth-1;
rangev3_2=coldfswidth+1:coldfswidth+warmwidth;
v3=c(rangev34_1,rangev3_2,k)-bb(k);
v3mr=c(rangev34_1,rangev3_2,k) -mean(mean(c(rangev34_1,rangev3_2,k)));
rangev4_2=owidth-coldfswidth-warmwidth:owidth-coldfswidth-1;
v4=c(rangev34_1,rangev4_2,k)-bb(k);
vdmr=c (rangev34_1,rangev4_2,k)-mean(mean(c(rangev34_1,rangev4_2,k)));
value=[v1i(:).’ v2(:).” v3(:).” v4(:).’];
valuemr=[vimr(:).’> v2mr(:).’ v3mr(:).’ védmr(:).’];
if max(ind==k)==1 %To only use spectra used elsewhere in NVE calculatiosn
VARinFS (k)=var(value);
end
RMSEinFS (k)=sqrt ((sum(value.942))/length(value));
MREinFS(k)=sqrt ((sum(valuemr.942))/length(valuemr));
end
[m,n] = size(c(coldfswidth+l+warmwidth:oheight-coldfswidth-1-warmwidth,coldfswidth...
+1+warmwidth:owidth-coldfswidth-1-warmwidth,1)); %Size of the non-field stop
opseudomean=sum(sum(sum (o)) )/ ((m+2*warmwidth) * (n+2*warmwidth) *numlam) ;
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NRMSEinFS = RMSEinFS./opseudomean.*100;
NMREinFS = MREinFS./opseudomean.*100;
NRMSEFSmean_0O=mean (NRMSEinFS) ;
NMREmean_O=mean (NMREinFS) ;
VARinFS_O=mean (VARinFS) ;
end
ook ok o ok ks ok ok ok ok ok Kk ok ok ok ok o K KK oK oK oK ok KKK oK ok ok ok K KK oK ok ok ok o K K ok oK ok o o K KK oK oK o ok oK KoK ok ok ok K K oK
%SVD-POCS RECONSTRUCTION
ok 3 ok kK sk sk ok ok ok K K ok ok ok ok ok o K K K oK ok ok ok o K K K oK ok ok ok o K K KoK ok ok ok o K K ok sk ok ok ok K ok Kok ok ok ok K K Kok ok ok ok K K KoK
if runpocs==
for Ldim=min(dim) :max(dim)
imgnum=1;
[c2, dL, dLratio,NRMSEmean_it,NRMSEinFSmean_it,NMREit,NMREFSmean_it]=pocsfun(c, C, o,...
numphi, iterations, Ldim, method, imgnum, warmwidth, warm, warmcheck, H, Hinv,epss,...
cfsu,zerop,rmeanpocs,sumofd,forcesum) ;
if warm==
NRMSEinFSmean_it=0; %mean(NRMSEinFS); %Junk value for a filler.
NMREFSmean_it=0;
end
data(Ldim, 2:7)=[Ldim, dL(Ldim), dLratio(Ldim), NRMSEmean_it(end),...
NRMSEinFSmean_it(end), NMREFSmean_it(end)];

%If the NRMSEvsIterations is desired... plot the results.
9% sk sk sk sk ok sk s sk sk ok ok sk sk stk sk sk sk sk ok sk sk stk sk sk sk sk ok sk sk stk stk sk sk sk sk sk sk sk stk sk ok sk ok sk ok
if nrmseit==
close(figure (3*numlam+numphi+12))
figure (3*numlam+numphi+12)
plot(0:iterations, [mean_NRMSE NRMSEmean_it],’o-’)
hold on
if plotwarm==1 & warm==
plot(0:iterations, [NRMSEFSmean_0 NRMSEinFSmean_it],’xr-’)
legend([[’NRMSE of Scene ’];[’NRMSE of Warm FS’]],0);
grid on; axis([0 iterations O max(max([NRMSEmean_it NRMSEFSmean O...
NRMSEinFSmean_it]))+10])
title([’NRMSE of "’ source ’" vs Iteration for dimension L=’ num2str(Ldim) ’ WarmFS:’...
char (warmoffon) ’(’ num2str(T) ’K) CFSU:’ char(cfsuoffon) ”])
else
legend ([’NRMSE of Scene ’],0);
grid on; axis([0 iterations O max(max(NRMSEmean_it)+10)1)
title([’NRMSE of "’ source ’" vs Iteration for dimension L=’ num2str(Ldim) ’ with WarmFS:’...
char (warmoffon) ’> CFSU:’ char(cfsuoffon) ”])
end
xlabel([’Iteration’])
ylabel([’NRMSE’])
set (3*numlam+numphi+12, ’color’, [1 1 1]);
close(figure (3*numlam+numphi+14))
figure (3*numlam+numphi+14)
plot(0:iterations, [mean(NMRE(ind)) NMREit],’o-’)
hold on
if plotwarm==1 & warm==
scale=mean( [NMREmean_0 NMREFSmean_it])/mean(NMREit);
plot(0:iterations, [NMREmean O NMREFSmean_it]./scale,’xr-’)
legend([[’NMRE of Scene ’];[’NMRE of Warm FS’]],0);
grid on; axis([0 iterations O max(max([mean(NMRE(ind)) NMREit...
[NMREmean_O NMREFSmean_it]./scale]))+10])
else
legend([’Average NMRE of Passing Bands’],0);
grid on; axis([0 iterations O max(max([mean(NMRE(ind)) NMREit]))+...
. 1*max (max ([mean (NMRE(ind)) NMREit]))1])
end
title([’NMRE of "’ source ’" vs Iteration for dimension L=’ num2str(Ldim) ’ with WarmFS:’...
char (warmoffon) ’ CFSU:’ char(cfsuoffon) ”])
xlabel([’Iteration’])
ylabel([’NMRE’])
set (3*numlam+numphi+14, ’color’, [1 1 1]);
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end

sk ok ok o ok sk ok sk ok o ok o K ok sk ok ok ok ok o K K oK ok ok ok ok o K K ok ok ok ok o K K KoK ok ok ok o K K K sk ok ok ok K K Kok ok ok ok o K Kok ok ok ok ok K K K

%Get the NMRE The NRMSE was already found and so the NRMSE value is thrown away as ’temp’

for k=1:numlam
[temp NMRE_L(k)]=getnrmse(c2(coldfswidth+l+warmwidth:oheight-coldfswidth-1-warmwidth,...
coldfswidth+l+warmwidth:owidth-coldfswidth-1-warmwidth,k),o(coldfswidth+1+...
warmwith:oheight-coldfswidth-1-warmwidth, coldfswidth+l+warmwidth:owidth-...
coldfswdth-1-warmwidth,k) ,o,warmwidth) ;

end

clear temp

NMREforL(:,Ldim)=NMRE_L(:);

end
O sk s sk sk ok ok sk ko ok sk sk sk sk ok sk sk sk sk sk st sk sk sk sk sk sk sk o sk stk ko sk sk sk ok ok sk sk sk ok ok sk sk ok ok ok
%If L was stepped through... plot the results.
O sk s sk ok ok sk sk ok ook sk sk sk sk ok sk sk ok sk sk st sk sk sk sk sk sk sk o sk sk stk ko sk sk sk ok ok ok sk sk ok ok sk sk ok ok ok
if L==’step’
close(figure (3*numlam+numphi+8))
figure (3*numlam+numphi+8)
plot(data(:,2),data(:,5),%0-")
hold on
if plotwarm==1 & warm==
plot(data(:,2),data(:,6),’-.r’)
legend ([[’NRMSE of Scene ’];[’NRMSE of Warm FS’]],0);
grid on; axis([1 numlam O max(max([data(:,5) data(:,6)]1))]1)
I2=find(data(:,6)==min(data(:,6)))
plot(I2, min(data(:,6)),’r*’)
else
legend([[’NRMSE of Scene ’]]1,0);
grid on; axis([1 numlam 0 max(max([data(:,5)+10 1))]1)
end
title([’NRMSE of "’ source ’" vs L for ’ num2str(iterations) ’ Iterations with WarmFS:’...
char (warmoffon) ’ CFSU:’ char(cfsuoffon) ”])
xlabel([’Dimension’])
ylabel([’NRMSE’])
set (101, ’color’, [1 1 1]1);
I=find(data(:,5)==min(data(:,5)))
% plot(I, min(data(:,5)),’*’)
%NMRE for each L
%ind=[9 11 12 13 14 19 20 21 22 23]; % Can use ind, or use index2 from intensityplot2.m
aveNMRE_orig=mean (NMRE(ind)) ;
for Ldim=min(dim) :max(dim)
temp=NMREforL(:,Ldim);
avgNMRE_indpts (Ldim)=mean (temp (ind)) ;
end
close(figure (3*numlam+numphi+10))
figure (3*numlam+numphi+10)
plot(1l:numlam, avgNMRE_indpts,’o-’)
title([’Average NMRE of "’ source ’" vs L for ’ num2str(iterations) ’ Iterations with WarmFS:’...
char (warmoffon) ’ CFSU:’ char(cfsuoffon) ”])
xlabel([’Dimension’])
ylabel([’NMRE’])

close (figure (3*numlam+numphi+11))
figure (3*numlam+numphi+11)
plot(data(:,2),data(:,5),’0-")
hold on
plot(1:numlam, avgNMRE_indpts,’:xr’)
title ([’NRMSE and Average NMRE of "’ source ’" vs L for ’ num2str(iterations) ’ Iteratioms...
with WarmFS:’ char(warmoffon) ’ CFSU:’ char(cfsuoffon) ”])
xlabel([’Dimension’])
ylabel([’NRMSE or NMRE’])
legend([’NRMSE ’; ’Average NMRE’],0);
set (3*numlam+numphi+11, ’color’, [1 1 1])
end
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save (num2str (datafile),’data’)
Yk ks ks ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok o ok sk sk ok o ok ok ok ok o sk sk ok sk ok o sk sk K ok ok ok ok
%Plotting the final reconstruction
ok ks ks ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok ok o ok o sk sk ok o ok ok ok ok o sk sk ok sk ok o ok sk K ok ok ok ook
if imagec2==
minc2=min(min(min(c2)));
peakc2=max (max (max(c2)));
for p=2*numlam+numphi+1:3*numlam+numphi
figure(p)
imagesc(c2(:,:,p-2*numlam-numphi) , [minc2 peakc2])
colormap (gray(256))
axis image
title([’Reconstructed Band After POCS #’ num2str(p-2*numlam-numphi) ”])
end
end
Yok ks ok ko sk sk ok ok ok ok ok sk K ok oK ok ok KK K oK oK ook oK oK oK ok oK oK ok oK oK oK oK oK o KKK K ok ok oK KoK ok ok o KoK K ok ok ok ok o
intensityplot_pocs4
plotNMRE
end

A.2  Get Object Code

The following code comprises the “getobject.m” script file:

function [oat,wavenm]=getobject(source,numlam,warm,warmwidth,T,wavenm,atmosphere,unitchange)
%function [oat,wavenm]=getobject(source,numlam,warm,warmwidth,T,wavenm,atmosphere,unitchange)
%This function gets the object cube and inserts the warm and cold field stop.

%The Source can be a temperature map, AVIRIS data, or test sources such as

%a point.

%Setup to determine the source input. There is a better way i’m sure.

len=length(source);

var=source;

for k=len+1:6;

var=[var num2str(ones(1,1))];

end

al=’zoomll’;

a2=’pointl’;

a3=’linell’;

a4=’temptn’; Normal Temperature Test
ab="fbt_s1’;

a6=’bfreqs’;

a7="fbt_ml’;

a8=’fbtemp’;

a9=’tempt2’; JHigher Temperature Test
al0=’templl’;

all=’smallc’;
al2=’tempte’; %Smallcirc Temperature Test
%Atmosphere attenuation preperation
%k sk ke sk ok ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk sk ok sk sk sk ok sk ok sk sk ok ok ok sk sk o sk ok sk sk sk ok ok ok ok sk ok ok ok
curve=load(’trans_10_10.dat’); %Atmosphere absortion curve for 1.0mm water column from .9-5.6 microns
% wavelength spacing is 5.0100e-004 microns
for k=1:numlam
spot=find (min(abs(wavenm(k)/1000-curve(:,1)))==(abs(wavenm(k)/1000-curve(:,1))));
index(k)=spot(1); %spot is used to pick an index value when it so happens that a wavenm value falls
exactly between values in curve
end
mycurve=curve(index,2); %This is my atmosphere absorbtion coefficient
index=find (mycurve<0.01); %A mycurve value equal to zero will cause a ZERO intensity/variance image. That
causes error metrics to misbehave.
mycurve (index)=0.01;
%43k sk sk ok ok ok sk sk ok ok ok ook o sk ok o ok oK ok ok oK ok o K oK ok K ok o K ok o K oK o sk sk ok ok o K oK o K ok oK ok ok ok ok oK oK ok oK
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%GET THE OBJECT
ok ks ks ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok o ok o sk sk ok o ok ok ok ok o sk sk ok sk ok o sk ok K ok ok ook ok
fprintf([’Retrieving Object "’ source ’" ...\n’1);
if var==al %AVIRIS 64x64x16
load cube6416;
o=newcube;
[oheight,owidth,numlam] =size (newcube) ;
type=’aviris’;
elseif var==a2 %Point Source
o=zeros (64,64 ,numlam) ;
intensity = blackbodyg(wavenm,T);
gain=1000;
intensity=1000*gain*intensity;
extragain=1;
[oheight,owidth,numlam]=size (o) ;
for k=1:numlam
o(oheight/2+1,0owidth/2+1,k)=intensity(k);
end
type=’templl’;
elseif var==a3 %A Line
o=zeros (64,64 ,numlam) ;
intensity = blackbodyg(median(wavenm),T);
gain=1000;
intensity=1000*gain;
extragain=1;
[oheight,owidth,numlam] =size (o) ;
for k=1:2
0(:,2:2:64,k+4)=intensity;
end
type=’templl’;
elseif var==a4 J, Temptest where regular temperatures used
load temp;
temp=round (temp*10) /10; %Rounded to have less temperatures
temptestfile2=temp;
tt=2;
opt_£f1x=0;
[cube] =makecube (temp,wavenm,opt_flx,tt);
gain=1000;
cube=cube.*gain*x1000;
extragain=1;
o=cube;
[oheight,owidth,numlam] =size (o) ;
type=’templl’;
elseif var==ab % Small Fireball
load temp;
fid=fopen(’fireballs.bmp’,’r’);
fclose(fid);
temporary = imread(’fireballs.bmp’,’bmp’);
temporary=double (real (temporary)) ;
infire=find(temporary==0) ;
diameter=find(temporary (63, :)==0)
temp (infire)=1000;
tt=2;
opt_£f1x=0;
[cube]=makecube (temp,wavenm,opt_flx,tt);
gain=1000;
o=cube.*gain*1000;
extragain=1;
type=’templl’;
[oheight,owidth,numlam] =size (o) ;
elseif var==a6 J5Freqgs
I=find(mycurve>=.85)
if length(I)<5
error (’Chose a larger waveband to have enough passbands for the blocks’);
end
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o=zeros (128,128,numlam) ;
intensity = blackbodyg(median(wavenm),T);
gain=1000;
intensity=intensity*1000*gain;
0(54:74,39:90,I(1))=intensity; %Freq 1
0(23:105,100:110,I(2))=intensity; %Freq 2
0(85:105,39:90,median(I))=intensity; %Freq 3
0(23:105,18:29,I(end-1))=intensity; %Freq 4
0(23:43,39:90,I(end))=intensity; %Freq 5
extragain=1;
type=’templl’;
[oheight,owidth,numlam] =size (o) ;

elseif var==a7 YFireball
load temp;
fid=fopen(’fireballm.bmp’,’r’);
fclose(fid);
temporary = imread(’fireballm.bmp’,’bmp’);
temporary=double (real (temporary)) ;
diameter=find(temporary (63, :)==0)
infire=find(temporary==0) ;
temp(infire)=1000;
tt=2;
opt_f1x=0;
[cube] =makecube (temp,wavenm,opt_flx,tt);
gain=1000;
o=cube.*gain*1000;
extragain=1;
type=’templl’;
[oheight,owidth,numlam]=size (o) ;

elseif var==a8 JFireball on temp
load temp;
fid=fopen(’fireball.bmp’,’r’);
fclose(fid);
temporary = imread(’fireball.bmp’, ’bmp’);
temporary=double (real (temporary)) ;
infire=find(temporary==0) ;
diameter=find(temporary (63, :)==0)
temp(infire)=1000;
tt=2;
opt_f1x=0;
[cube]=makecube (temp,wavenm,opt_flx,tt);
gain=1000;
o=cube.*gain*1000;
extragain=1;
type=’templl’;
[oheight,owidth,numlam] =size (o) ;

elseif var==a9 For Temptest_temp Where temp map is used
load temp;
temp=temp-min(min(temp)) ;
temp=temp-mean(mean (temp)) ;
maxtemp=max (max (temp)) ;
mintemp=min(min(temp));
temp=temp.*30/maxtemp;
temp=310+temp;
temp=round (temp) ;
temp(14479)=337; %So I have one temperature at 337
temptestfile=temp;
tt=2;
opt_£f1x=0;
[cube] =makecube (temp,wavenm,opt_flx,tt);
gain=1000;
cube=cube.*gain*x1000;
extragain=1;
o=cube;
[oheight,owidth,numlam] =size (o) ;
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type=’templl’;
elseif var==al0 Temperaturemap data
load temp;
tt=2;
opt_f1x=0;
[cube]=makecube (temp,wavenm,opt_flx,tt);
gain=1000;
cube=cube.*gain*1000;
extragain=1;
o=cube;
[oheight,owidth,numlam]=size (o) ;
type=’templl’;
elseif var==all
fid=fopen(’smallcirc.bmp’,’r’);
fclose(fid);
temporary = imread(’smallcirc.bmp’,’bmp’);
intensity = blackbodyg(median(wavenm),T) ;
temporary=temporary(19:82,19:82);
temporary=double (real (temporary)) ;
in=find(temporary==1);
temporary(in)=intensity;
for k=1:numlam
cube(:,:,k)=temporary;
end
gain=1000;
o=cube*gain*1000;
extragain=1;
type=’templl’;
[oheight,owidth,numlam]=size (o) ;
elseif var==al2 JError vs Temperature
fid=fopen(’smallcirc.bmp’,’r’);
fclose(fid);
temporary = imread(’smallcirc.bmp’,’bmp’);
intensity = blackbodyg(wavenm,T);
temporary=double (real (temporary)) ;
temporary=temporary(19:82,19:82);
in=find(temporary==1) ;
cube=zeros([size(temporary) numlam]);
for k=1:numlam
temporary(in)=intensity (k) ;
cube(:,:,k)=temporary;
end
gain=1000;
o=cube*gain*1000;
extragain=1;
[oheight,owidth,numlam] =size (o) ;
type=’templl’;
else %Invalid
error(’Invalid object handle!’)
end
Yok ks ok ko sk sk ok ok ok ok ok ok K ok oK ok ok K K oK oK ook oK oK oK ok oK oK ok oK oK oK K oK o KKK K ok oK ok oK oK ok oK o KoK K ok ok ok ok o
%%%%BLACKBODY GENERATION FOR THE WARM FIELD STOP
Yok ks ok ko sk sk o ok ok ok ok sk K ok oK ok ok K K oK oK ook oK ok oK ok oK oK K oK oK oK oK oK oK o KKK K ok ok ok koK ok oK o KoK K ok ok ok ok o
coldfswidth=floor (numlam/2) ;
Do
if type==’templl’
Celsius=T-273.3;
Fahrenheit=Celsius/5%9+32;
bb2= blackbodyg(wavenm,T); %units of [watt cm94-2 nm94-1 sr94-1]
gain=1000;
bb=bb2.*gain*1000; % Units [gain*miliwatt/cm942 nm94-1 sr]
bb=extragain.*bb;
elseif type==’aviris’ %I tried this since aviris data is too intense compared to the bb curve
T=400
Celsius=T-273.3
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Fahrenheit=Celsius/5%9+32
bb2= blackbodyg(wavenm,T); %units of [watt cm94-2 nm94-1 sr94-1]
gain=1000;
bb=bb2.*gain*1000; 7% Units [gain*miliwatt/cm942 nm94-1 sr]
else % This path is followed when temp or aviris is not used
for k=1:coldfswidth
bb (k) =k*255/numlam;
bb (numlam-k+1)=k*256/numlam;
bborig=bb;
end
end
Yok ks ok ko sk sk ok ok ok ok ok sk K ok ok ok ok K K oK oK ook oK oK oK ok oK oK KoK oK oK oK oK oK o KoK K ok oK oK KoK oK oK o K oK K ok ok ok ok o
%INSERT WARM FIELD STOP
Yok ks ok ko sk sk ok ok ok ok ok sk K ok ok ok ok oK K ok oK ook oK oK oK ok oK oK ok oK ook oK KoK o KoK K ok ok oK oK oK oK oK o KoK K ok ok ok ok ok
if warm==
fprintf(’Inserting Warm FieldStop to the Object...\n’);
for k=1:numlam
o(coldfswidth+1:coldfswidth+warmwidth, :,k)=bb(k);
o(oheight-coldfswidth-warmwidth:oheight-coldfswidth-1,:,k)=bb(k);
o(:,coldfswidth+1:coldfswidth+warmwidth,k)=bb(k);
o(:,owidth-coldfswidth-warmwidth:owidth-coldfswidth-1,k)=bb(k);
end
end
Yok ks ok ko sk sk ok ok ok ok ok ok K ok oK ok ok sk K oK oK ook oK K oK oK ok ok oK ok oK oK oK oK oK o KKK K ok ok ok KoK ok oK o K KoK K ok ok ok ok o
%INSERT THE COLD FIELD STOP
Yok ks ok ko sk sk ok ok ok ok ok ook K ok oK ok ok K K oK oK ook oK ok oK ok oK oK KoK oK oK oK oK oK o KKK K ok ok ok koK ok oK o KoK K ok ok ok ok o
fprintf ([’ Inserting Cold Stop of width ’ num2str(coldfswidth) ’ to the Object...\n’1);
o(1:coldfswidth, :,:)=0;
o(oheight-coldfswidth:oheight,:,:)=0;
o(:,1:coldfswidth,:)=0;
o(:,owidth-coldfswidth:owidth, :)=0;
ok ks ok ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok sk R ok ok ok ok sk ok ok o ok sk ok ok o ok ok ok ok o sk sk ok sk ok o ok ok K sk ok ok ok
%Atmosphere Absorbsion
ok ks ks ko sk sk ok ok ok o sk sk ok ok ok ok ok sk ok ok ok ok sk R ok ok ok ok sk ok ok o ok o sk sk ok o ok ok ok ok o ok sk ok sk ok o ok ok K ok ok ok ook
if atmosphere==1;
fprintf([’Applying Atmospheric Absorption Estimation to the Object...\n’1);
curve=load(’trans_10_10.dat’); %Atmosphere absortion curve for 1.0mm water column from .9-5.6 microns
for k=1:numlam
spot=find(min(abs(wavenm(k)/1000-curve(:,1)))==(abs(wavenm(k)/1000-curve(:,1))));
index (k) =spot(1);
end
mycurve=curve(index,2); %This is my atmosphere absorbtion coefficient
index=find (mycurve<0.01); %A mycurve value equal to zero will cause a ZERO intensity/variance image.
mycurve (index)=0.01;
oat=o0; %o with atmosphere
for k=1:numlam
oat(coldfswidth+l+warmwidth:oheight-coldfswidth-1-warmwidth,coldfswidth. ..
+1+warmwidth:owidth-coldfswidth-1-warmwidth,k)...
=o(coldfswidth+1+warmwidth:oheight-coldfswidth-1-warmwidth, ...
coldfswidth+l+warmwidth:owidth-coldfswidth-1-warmwidth,k)*mycurve (k) ;
end
else
oat=o0;
end
%hhAssume the warm blackbody bb is not affected by atmosphere. Thus is why
%%hkthe index above is set as it is.
Yk ks ks ko sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok o ok o sk ok ok o ok ok ok ok o sk sk ok sk ok o ok ok K sk ok ok ok
%UNIT CHANGE TO PHOTONS
Yk ks ks ko sk sk ok ok ok o sk sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok o ok o sk sk ok o ok ok ok ok ook sk ok sk ok o ok ok K ok ok ok ok
% # of Photons Calculation
% %#Photons (NP)=R./h./v.*Area.*deltnm.*pi.*time./gain
% %12 Hz Scan Rate = 12 lines/sec
% %614 pixels/line... so 7368 pixels/sec.. thus time is
if unitchange==
%Constants:
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con = 299792458; Y%Speed of light [m/s]
planck = 6.6260755e-34; %[J*s]
bw=wavenm(2)-wavenm(1) ;
wavenmspan=wavenm(1)-1/2%bw:bw:wavenm(end)+1/2*%bw+bw;
wavem=wavenm.*1e-9;% [m]
v=con./wavem; %[Hertz]
time=1.357e-4; % [s]
gain=1000;
Area=10%*18; % [cm942]
sfsqrd=(1e-3)942;
deltnm=wavenm(2)-wavenm(1); % [nm]
for k=1:numlam
oat(:,:,k)=oat(:,:,k)./planck./v(k).*Area.*deltnm.*sfsqrd.*time./gain./1000;
end
%o is now in photons
bb=bb./planck./v.*Area.*deltnm.*sfsqrd.*time./gain./1000; %if bb is in [gain*miliwatt/cm942 nm sr]
%bb is now in photons
end
Yok ook Kok KoK KK KKK KK KKK KKK KK KKK oK KK KKK K KKK K KKK K KKK Kk K
save bbgo bb %for use in pocs

A.8 Data Synthesis Code

The following code comprises the “synth.m” script file:

function [D, W, sumofd]=synth(lam,phi,o,imaged,noise)
%function [D, W, sumofd]=synth(lam,phi,o,imaged,noise)
%Synthetic Data Generation using the "circletrace method"
%lam and phi are vectors of equal length.
%The point spread function is wavelength dependent and will have an x and y
%component .
numlam=length(lam); % Number of lambdas
numphi=length(phi); % Number of Phis
[oheight,owidth,numlam] =size (o) ;
lexlength=oheight*owidth;
%Defind the point spread function w
%phi is the current "prism" rotation angle
%Plan of attack
%1. Create ’w’ for each lambda
% 2. Take the FT of W
% 3. Take the FT of the object at that lambda
% 4 Mult in Freq WxF
% 5. Sum to get D(m,n,phi)
% 6. Repeat for all Phis
lamO=round (numlam/2) ;
disp=(lam-lam0) ;
shiftx=cos(phi).’*disp; %Shift values for the x direction.
shifty=sin(phi).’*disp; %Shift values for the y direction.
if size(o)==[128 128 24] & numphi==numlam

fprintf(’Loading W... \n’);

load W
else

w=zeros (oheight,owidth,numlam, numphi) ;

svalue=1; %Scaling value

fprintf(’Calculating Point Spread Function W...\n’);

%Phi Loop

for p=1:numphi

for k=1:numlam %Lambda loop
tbyt=zeros(3);

Gt hototo o lototo o toto oo totosubpixel shift routine Yhhhhletshlolslslhlolsllotolshhd

xdis=shiftx(p,k); %absolute shift distance from center xdirection
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ydis=shifty(p,k); %absolute shift distance from center ydirection
if ydis < 0 & xdis < 0
rxdis=ceil(xdis); %rounded distance to get operating point
rydis=ceil(ydis); %rounded distance to get operating point
elseif ydis < 0 & xdis > 0
rxdis=floor(xdis); %rounded distance to get operating point
rydis=ceil(ydis); %rounded distance to get operating point
elseif ydis >0 & xdis < 0O
rxdis=ceil(xdis); %rounded distance to get operating point
rydis=floor(ydis); ’%rounded distance to get operating point
else
rxdis=floor(xdis); ’%rounded distance to get operating point
rydis=floor(ydis); %rounded distance to get operating point
end
difx=xdis-rxdis; dify=ydis-rydis;
difya=abs(dify); difxa=abs(difx);

if difya==0 & difxal26=0
tbyt (2,2)=(1-difxa)*1*svalue;
tbyt (2,2+sign(difx))=difxa*l*svalue;
elseif difxa==0 & difyal26=0
tbyt (2,2)=(1)*(1-difya)*svalue;
tbyt (2-sign(dify),2)=(1)*difya*svalue; %always in column 2, dependent on y shift
elseif difxa==0 & difya==
tbyt (2,2)=(1)*(1)*svalue;
else
tbyt (2,2+sign(difx))=difxa*(1-difya)*svalue; %always in row 2, dependent on x shift
tbyt (2-sign(dify),2)=(1-difxa)*difya*svalue; %always in column 2, dependent on y shift
tbyt (2-sign(dify) ,2+sign(difx))=difxa*difya*svalue;
tbyt(2,2)=(1-difxa)*(1-difya)*svalue; %2,2 for pos
end
Wbl bt lihdihend subpixel shift routine %hhhhhh st tohls
pixspace=1;
midx=owidth/2+1+pixspace*rxdis; midy=oheight/2+1-pixspace*rydis; %pixspace is the pixelspacing
between wavelength bins
w(midy-1:midy+1,midx-1:midx+1,k,p)=tbyt; ’%spread to neighboring pixels
end
end
%Find W, the FFT2 of w
W=zeros (oheight,owidth,numlam,numphi) ;
for i=1:numlam
for j=1:numphi
tempw=w(:,:,1i,j);
W(:,:,1i,j)=fft2(fftshift(tempw));
end
end
end
%Find 0, the FFT2 of o
O=zeros(oheight,owidth,numlam) ;
for i=1:numlam
0(:,:,i)=fft2Co(:,:,1));
end
%Initialize Ouput data matricies
D=zeros(oheight,owidth,numphi);
fprintf (’Applying W to the Object Cube (0)...\n’);
for p=1:oheight
for k=1:owidth
WT=reshape (W(k,p,:,:) ,numlam,numphi) ;
0T=squeeze(0(k,p,:));
D(k,p,:)=WT.’*0T;
end
end
clear O
%Find the inverse FFT2 of D
d=zeros(oheight,owidth,numphi) ;
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for k = 1:numphi
d(:,:,k)=>Gfft2(D(:,:,k)));
end
d=real(d);
%Negative Check Constraint
Index=find (d<0);
d(Index)=0;
clear Index
save dclean d
sumofd=sum(sum(d(:,:,1)));
%Noise
ok ok o ok ks ok ok ok ok ok Kk ok ok ok ok o oK KK oK oK oK oK KKK oK ok ok ok K KK oK ok ok ok o K K ok Kok ok o K K KoK ok ok R oK KoK oK ok ok K K oK
noisevalue=zeros(1,lexlength*numphi) ;
if noise==
for k=1:lexlength*numphi
noisevalue (k)=normrnd(0,sqrt(d(k)));
d(k)=d(k)+noisevalue(k);
end
d=real(d);
meannoise=mean(noisevalue);
save meannoise meannoise
clear noisevalues
Index=find (d<0);
d(Index)=0;
clear Index
save dnoise d
for p = 1:numphi
D(:,:,p)=fft2(d(:,:,p));
end
end
ok ok ok ok k sk sk ok ok ok K K ok ok ok ok ok o K oK K ok ok ok ok o K oK K oK ok ok ok o K KK oK ok ok ok o K K ok ok ok ok ok K K Kok ok ok ok K K Kok ok ok ok K K KoK
save D D
if imaged==
for p=numlam+1:numphi+numlam
figure(p)
imagesc(d(:,:,p-numlam))
colormap (gray (256))
axis image
title([’Synthetic Image #’ num2str(p-numlam) ”])
end
end
save dd d

A.4 Pseudo-inverse Reconstruction Code

The following code comprises the “reco_inline.m” script file:

function [c, C, H, Hinv]=reco_inline(D,W,method,epss,epstest,zerop,cfsu,forcesum,sumofd)
%This is the initial pseudoinverse reconstruction.
%Recond differs from recon3 in that I changed the spatial frequency to corner, to zero middle spatial
frequency
%The method used is the matrix inversion from Mooney et al
%Dpts will be numlamxl lexlength times containing the k,h point from all D matricies
[oheight owidth numlam numphi]=size (W) ;
coldfswidth=floor (numlam/2) ;
lexlength=oheight*owidth;
Dpts=zeros (numphi,lexlength) ;
for j=1:numphi
DT=D(:,:,j);
DT=DT(:).’;
Dpts(j,:)=DT;
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end
clear D; clear DT;
%AUTOMATIC H AND HINV LOADER, MAKER, SAVER

% haveH=0;

fileH=[’H_’ num2str(owidth) ’_’ num2str(numlam) ’_’ num2str(numphi) ”];

fileHinv=[’Hinv_’ num2str(owidth) ’_’ num2str(numlam) °’_’ num2str(numphi) ’_’ num2str(method) ’_’ num2str(epss)
"1

flag=[num2str(oheight) num2str(numlam) num2str (numphi)];
hmade=exist ([num2str(fileH) °’.mat’],’file’);
hinvmade=exist ([num2str(fileHinv) ’.mat’],’file’);

fileBkp=[’Bkp_’ num2str(owidth) ’_’ num2str(numlam) °’_’ num2str(numphi) ’_’ num2str(method) ’_’ num2str(epss)
"1
bkpmade=exist ([num2str(fileBkp) °’.mat’],’file’);
if hmade==
clear W

load([num2str(fileH) ’.mat’]);% Load Hinv off the disk.
end
if hinvmade==
fprintf(’Loading Hinv...\n’);
load([num2str(fileHinv) ’.mat’]); % Load Hinv off the disk.
end
if hmade==0;
%Calculation of the big H matrix, were each H(v,u,g) corresponds to one spatial frequency g.

fprintf([’Creating H for ’ num2str(numlam) ’ bands and ’ num2str(numphi) ’ rotations of dimension
J

num2str(oheight) ’ x ’ num2str(owidth) ’...\n’1);
H=zeros (numphi,numlam,lexlength);
g=1;

for h=1:owidth;
for k=1:oheight;
HT=W(k,h,:,:); %W is oheight,owidth,numlam,numphi
HT=HT(:)’; %HT=HT(:)’;
Htemp=reshape (HT ,numlam,numphi) ;
H(:,:,g)=Htemp’; Take off the transpose ot see the affect
g=g*1;
end
end
%The above works, dont break it!
clear W
end
%% Done making H
if hinvmade==
fprintf([’Calculating Hinv for ’ num2str(numlam) °’ bands and ’ num2str(numphi) ’ rotations of dimension
> num2str(oheight) ’ x ’ num2str(owidth) ’...\n’]);
U=zeros (numphi,numlam) ;
V=zeros (numlam,numlam) ; Sinv=V;
info.clearance=0.5;
info.msg=’Processing Matrix Inversion’;
p=progbar (info) ;
epssqrd=epss942;Fudge factor
Hinv=zeros(numlam,numphi,lexlength); %Define Hinv to speed it up. Hinv is about 16meg for 64x64
scenes
warning off
for k=1:lexlength
[U,S,V] = svd(H(:,:,k),0);
G=diag(s);
%0riginal way to get G
%%ASTART ALT
if method==
for h=1:numlam
if G(h) >epss
G(h)=1/G(h); %Threshold Inverse Method
else
G(h)=0;
end
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end
else
for h=1:numphi
G(h)=G(h)/(G(h) .942+epssqrd); % Wiener Inverse Method
end
end
%% END ALT
for j=1:length(G)
Sinv(j,j)=G(3);
end
%Hinv (:,:,k)=V*Sinv*U’; %this line is the speed killer
%0r do the following, does it speedup? IT DOES!
UT=U’ ; SU=zeros (numlam,numphi) ;
for j=1:numlam
SU(j,:)=Sinv(j, ) .*¥UT(j,:);
end
Hinv(:,:,k)=V*SU;
pro=k*100/lexlength; %Progress Bar
progbar (p,pro) %Progress Bar
end
warning on
progbar(p,-1)
if epstest==0
save ([num2str(fileHinv) ’.mat’],’Hinv’)
end
if bkpmade==2
H=’erased’;
% Set H and Hinv to dummy variables since they are not needed to make Bkp.
end
end
clear U; clear S; clear V; clear UT; clear SU;
C=zeros(numlam,lexlength);
info.clearance=0.5;
fprintf (’Applying Hinv to the Data...\n’);
info.msg=’Applying Hinv to the Data’;
p=progbar (info) ;
for g=1:lexlength
C(:,g)=Hinv(:,:,g)*Dpts(:,g);
pro=g+100/lexlength; JProgress Bar
progbar (p,pro) %Progress Bar
end
progbar(p,-1)
clear Dpts
if bkpmade==
Hinv=’erased’;
end
for j=1:numlam
Csq(:,:,j)=reshape(C(j,:),oheight,owidth);
end
for j=1:numlam
c(:,:,j)=ifft2((Csq(:,:,3)));
end
clear Csq %To save some RAM
c=real(c);
csum=sum(sum(sum(c))) ;
factor_pre=sumofd/csum
%Negative Check Constraint
if zerop==
Index=find(c<0);
c(Index)=0;
clear Index
end
% %hConstrain the result by the known field stop
if cfsu==
fprintf(’Subjecting Field Stop Constraint...\n’);
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c(1:coldfswidth, :,:)=0;
c(oheight-coldfswidth:oheight,:,:)=0;
c(:,1:coldfswidth,:)=0;
c(:,owidth-coldfswidth:owidth, :)=0;
end
if forcesum==
csum=sum(sum(sum(c)));
factor=sumofd/csum
c=cx*factor;
end

A.5 SVD-POCS Code

The following code comprises the “pocsfun.m” script file:

function [c2, dL, dLratio, NRMSEmean_it, NRMSEFSmean_it,NMREit,NMREFSmean_it]=...
pocsfun(c, C, o, numphi, iterations, L, method, imgnum, warmwidth, warm, warmcheck,...
H, Hinv, epss, cfsu, zerop, rmeanpocs,sumofd,forcesum)
%This script performs the pocs algorithm on the initial pseudoinverse reconstruction
%Initialize
clear error_sep_last
if length(H)>10
[numphi, numlam, lexblah]=size(H); %Needed to get numphi
end
[oheight,owidth,numlam]=size(c);
lexlength=oheight*owidth;
stop=0;
coldfswidth=floor (numlam/2) ;
%tic
%%%%0BJECT DOMAIN CONSTRAINT PREP%%%%
ok 3k ok kK sk sk ok ok ok K K ok ok ok ok ok o K K K ok ok ok ok o K K K oK ok ok ok o K K Kok ok ok ok o K K ok sk ok ok ok K ok Kok ok ok ok K Kk ok ok ok ok K K K oK
%Remove the mean of ¢ (cmeanremoved)
cmean=squeeze (mean(mean(c,1)));
cmeanremoved=zeros (size(c));
for k=1:numlam
cmeanremoved(:,:,k)=c(:,:,k)-cmean(k);
end
%Create lexicographically orded c (clexicon)
clexicon=zeros (numlam,lexlength) ;
for k=1:numlam
ctemp=cmeanremoved(:,:,k);
clexicon(k,:)=ctemp(:).’;
end
%Find the SVD of Rff
Rff=clexicon*clexicon’; Hermetian here did nothing
[A,LAM2,J] = svd(Rff);
clear Rff; clear J; clear clexicon;
%% HCHOOSE L%%%
%Examine the eigenvalues, look at the total
dL=diag(LAM2) ;
dsum=sum(dL) ;
dLratio=dL/dsum;
fprintf ([’Applying SVD-POCS for ’ num2str(iterations) ’ iterations with L=’ num2str(L) ’ ...\n’]);
Il=zeros(size(A));
for k=1:L
I1(k,k)=1;
end
Pf=A*I1%A.’;
Al=A(:,1:L);
ok ok ok kK sk sk ok ok ok K K ok ok ok ok ok o K K K ok ok ok ok o K K K oK ok ok ok o K K K ok ok ok ok o K K ok sk ok ok ok K ok Kok ok ok ok K K Kok ok ok ok K K K oK
%Transform cmeanremoved, then rearrainge lexicographically to form (Cnomeanlex)
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Cnomeanlex=zeros(size(C));
for k=1:numlam
ctemp=fft2(cmeanremoved(:,:,k));
Cnomeanlex(k,:)=ctemp(:).’;
end
clear cmeanremoved
ok ok o ok ks ok ok ok ok ok Kk ok ok ok ok o oK KK oK oK oK o KKK oK ok ok ok K KK oK ok ok ok o K Kok Kok ok o K K KoK oK o ok K KoK oK ok ok K K oK
%Warm Fieldstop Prepl%
ok 3 ok kK sk sk ok ok ok K K ok ok ok ok ok o K K K oK ok ok ok o K K K oK ok ok ok o K K KoK ok ok ok o K K ok sk ok ok ok K ok Kok ok ok ok K K Kok ok ok ok K K KoK
if warm==
load bbgo %load the known blackbody values
for k=1:numlam
vi=c(coldfswidth+1:coldfswidth+warmwidth, coldfswidth+il+warmwidth:...
owidth-coldfswidth-1-warmwidth,k)-bb(k);
v2=c(oheight-coldfswidth-warmwidth:oheight-coldfswidth-1,coldfswidth...
+1+warmwidth:owidth-coldfswidth-1-warmwidth,k)-bb(k) ;
v3=c(coldfswidth+1:oheight-coldfswidth-1,coldfswidth+1:coldfswidth...
+warmwidth,k)-bb(k) ;

v4=c(coldfswidth+1:oheight-coldfswidth-1,owidth-coldfswidth-warmwidth:. ..

owidth-coldfswidth-1,k)-bb(k);
value=[v1(:).’> v2(:).” v3(:).’> v4(:).’];
RMSEinFS_initial (k)=sqrt((sum(value.942))/length(value));
end
[m,n] = size(c(coldfswidth+l+warmwidth:oheight-coldfswidth-1-warmwidth,...
coldfswidth+1+warmwidth:owidth-coldfswidth-1-warmwidth,1));
opseudomean=sum(sum(sum (o)) )/ ((m+2*warmwidth) * (n+2*warmwidth) *numlam) ;
FSerror = RMSEinFS_initial./opseudomean.*100;
end
%%%ATRANSFORM DOMAIN CONSTRAINT PREPY%%%%
O sk s sk ok ok sk sk ok ok sk sk sk sk ook sk sk stk ok sk sk st sk sk sk sk sk sk sk o sk stk ko sk sk sk ok ok sk sk sk sk ok ok sk sk ok ok ok

fileBkp=[’Bkp_’ num2str(owidth) ’_’ num2str(numlam) ’_’ num2str(numphi) ’_’...
num2str (method) ’_’ num2str(epss) ”];

bkpmade=exist ([num2str(fileBkp) ’.mat’],’file’);

if bkpmade==

clear H; clear Hinv;
load([num2str(fileBkp) ’.mat’]);’% Load Bkp off the disk.
else
Yotoholohlohteth Start the uncomment below if B is not available. H is used.
fprintf(’Calculating Hinv+H ...\n’);
B=zeros(numlam,numlam,lexlength) ;
info.clearance=1.0;
info.msg=’Calculating HinvxH ...’;
h=progbar (info) ;
for g=1:lexlength
T=Hinv(:,:,g)*H(:,:,g);
[B1 I B2]=svd(T);
clear I; clear B2;
B(:,:,g)=B1;
pro=g+100/lexlength; %Progress Bar
progbar (h,pro) %Progress Bar
end
progbar(h,-1)
clear Hinv;
% The number r comes from the rank at that particular spatial frequency.
% Get the rank
fprintf ([’Finding the rank of H...\n’1);
for k=1:lexlength
r(k)=rank(H(:,:,k));
end
clear H;
Bk=B;
clear B
%Now replace the first r columns of B with zeros. (Bk)
fprintf([’Finding Bk...\n’]);
for k=1:lexlength
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for p=1:r(k)
Bk(:,p,k)=zeros(numlam,1);

end
end
%To speed up the iterations, pre-multiply Bk(:,:,g)*Bk(:,:,g) (Bkp)
fprintf([’Pre-Multpiling Bk*Bk.’ ”’ ...\n’l);

info.clearance=1.0;
info.msg="Pre-Multpiling Bk’;
p=progbar (info) ;
for g=1:lexlength
Bkp=Bk(:,:,g)*Bk(:,:,g8)’;
% *For memory, I will reuse the Bk matrix to store Bkp values
Bk(:,:,g)=Bkp; clear Bkp;
pro=g+100/lexlength; %Progress Bar
progbar (p,pro) %Progress Bar
end
progbar(p,-1)
Bkp=Bk; % Now the Bkp Matrix values have completely replaced the Bk values.
clear Bk
save([num2str(fileBkp) ’.mat’],’Bkp’)

end
Clex=Cnomeanlex;
clear Cnomeanlex
%AITERATIONSY
Yok ks ok ko sk sk ok ok ok ok ok ok K ok ok ok ok K K oK oK ook oK K ok oK ok oK oK ok oK oK oK oK oK o KK oK ok ok ok KoK ok oK o K KoK K ok ok ok ok ok
info.clearance=1.0;
if rmeanpocs==
info.msg=[’Applying POCS for ’ num2str(iterations) ’ iterations for L=’...
num2str(L) ’ and image ’ num2str(imgnum) ”];
elseif rmeanpocs==
info.msg=[’Applying POCS for ’ num2str(iterations) °’ iterations for L=’...
num2str(L) ’ and image ’ num2str(imgnum) ”];
end
ppp=progbar (info) ;
A —
for m=1:iterations
%%APPLICATION OF OBJECT DOMAIN CONSTRAINY%Y
Q=Pf*Clex;
%4APPLICATION OF TRANSFORM DOMAIN CONSTRAINY%
P=zeros(numlam,lexlength);
for g=1:lexlength
P(:,g)=Bkp(:,:,g)*Q(:,g);

end
clear Q
%%ADD TO THE ORIGINAL RECONSTRUCTION
Y .
Cnew=C+P;
clear P
Y .
%Fieldstop Constraint’
Y .

Csq2=zeros (oheight,owidth) ;

c2=zeros(size(c));

for k=1:numlam
Csq2=reshape(Cnew(k, :) ,oheight,owidth) ;
c2(:,:,k)=1f£f£2(Csq2);

end

c2=real(c2);

clear Cnew

if zerop==
Index=find(c2<0);
c2(Index)=0;
clear Index

end
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if cfsu==
c2(1:coldfswidth, :,:)=0;
c2(oheight-coldfswidth:oheight,:,:)=0;
c2(:,1:coldfswidth,:)=0;
c2(:,owidth-coldfswidth:owidth, :)=0;
end
if forcesum==
c2sum=sum(sum(sum(c2))) ;
factor=sumofd/c2sum;
c2=c2xfactor;
end
%Remove the mean, transform, and reshape to the lexicographical form
v S
if rmeanpocs==
c2mean=squeeze (mean (mean(c2,1)));
for k=1:numlam
ctemp=c2(:, :,k)-c2mean(k) ;
%This only affects NRMSE. if we subtract the mean, the final mean is
%equivelant for all bands. The NMRE is unchanged.
Ctemp=(fft2(ctemp)) ;
Clex(k,:)=Ctemp(:).’;

end
clear ctemp; clear Ctemp;
else
%Transform and reshape to the lexicographical form
Y -
for k=1:numlam
Ctemp=(£ft2(c2(:,:,k)));
Clex(k, :)=reshape(Ctemp,1,lexlength);
end
end
Y .
%Find the PSNR for each Iteration
Y .
for k=1:numlam
[NRMSE_it (k) NMRE_it(k)]=getnrmse(c2(coldfswidth+l+warmwidth:oheight...
-coldfswidth-1-warmwidth,coldfswidth+l+warmwidth:owidth-coldfswidth. ..
-1-warmwidth,k) ,o(coldfswidth+l+warmwidth:oheight-coldfswidth-1-warmwidth. ..
,coldfswidth+l+warmwidth:owidth-coldfswidth-1-warmwidth,k),o,warmwidth) ;
end
NRMSEmean_it (m)=mean(NRMSE_it) ;
ind=[8 9 10 11 12 13 14 20 21 22 23 24 25];
NMREit (m)=mean(NMRE_it(ind)); %Special metric only good for tempmap source
Y -
%Find the mean for each Iteration
Y -
Meanit (m)=mean (mean (mean(c2)));
Y .
%Warm Fieldstop MonitorY
Y .
NRMSEFSmean_it (m)=0;
NMREFSmean_it (m)=0;
VARinFS_it(m)=0;
if warm==1 J0verall reconstruciton is better, but may be due to using warm field stop and smaller
image

fprintf (’Running Warm Fieldstop Monitor...\n’);

for k=1:numlam
rangevl_l=coldfswidth+1:coldfswidth+warmwidth;
rangevl_2=coldfswidth+1l+warmwidth:owidth-coldfswidth-1-warmwidth;
vi=c2(rangevl_1,rangevl_2,k)-bb(k);
vimr=c2(rangevl_1,rangevl_2,k)-mean(mean(c2(rangevl_1,rangevi_2,k)));

%The mean blackbody value is equal to the value, so they cancel out

rangev2_l=oheight-coldfswidth-warmwidth:oheight-coldfswidth-1;
rangev2_2=coldfswidth+1l+warmwidth:owidth-coldfswidth-1-warmwidth;
v2=c2(rangev2_1,rangev2_2,k)-bb(k);

121



v2mr=c2(rangev2_1,rangev2_2,k) -mean(mean(c2(rangev2_1,rangev2_2,k)));
rangev34_l=coldfswidth+l:oheight-coldfswidth-1;
rangev3_2=coldfswidth+1:coldfswidth+warmwidth;
v3=c2(rangev34_1,rangev3_2,k)-bb(k);
v3mr=c2(rangev34_1,rangev3_2,k)-mean(mean(c2(rangev34_1,rangev3_2,k)));
rangev4_2=owidth-coldfswidth-warmwidth:owidth-coldfswidth-1;
v4=c2(rangev34_1,rangev4_2,k)-bb(k);
vdmr=c2(rangev34_1,rangev4_2,k)-mean(mean(c2(rangev34_1,rangev4_2,k)));
value=[v1(:).’ v2(:).” v3(:).’” v4(:).’];
valuemr=[vimr(:).’ v2mr(:).’ v3mr(:).’ vidmr(:).’];
if max(ind==k)==1 %To only use spectra used elsewhere in NVE calculatiosn
VARinFS (k)=var(value);

end
RMSEinFS (k) =sqrt ((sum(value.942))/length(value));
MREinFS(k)=sqrt ((sum(valuemr.942))/length(valuemr)) ;

end

NRMSEinFS = RMSEinFS./opseudomean.*100;

NRMSEFSmean_it (m)=mean (NRMSEinFS) ;

NMREinFS = MREinFS./opseudomean.*100;

NMREFSmean_it (m)=mean (NMREinFS) ;

VARinFS_it (m)=mean (VARinFS);

error_separation=mean(FSerror-NRMSEinFS)

end
if warmcheck==
%The following Routine watches for convergence or divergence of the error
if exist(’error_sep_last’) Halter is commented out for testing L
sep=error_separation-error_sep_last;

if sep<O

if stop==
fprintf ([’DIVERGENCE REACHED! Halted after ’ num2str(m-1) ’ iterations. \n’])
fprintf ([’Output is likely best after ’ num2str(m-2) ’ iteratioms. \n’])
c2=cout;
break;

end

cout=c2;

stop=1;

end

if sep<=1 & sep>=0
fprintf ([’CONVERGENCE REACHED! Halted after ’ num2str(m) ’ iteratioms. \n’])

break;
end
end
error_sep_last=error_separation;
end
Y —
pro=m*100/iterations; %Progress Bar
progbar (ppp,pro) %Progress Bar
end

progbar (ppp,-1)
%**************************************************************************

%%End Iterations
fprintf([’Stopped after ’ num2str(m) ’ iteratioms. \n’l)
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Appendiz B. Additional Figures

B.1  Warm Field Stop NVE Versus Iteration

NVE of "temp" vs Iteration for dimension L=3 with WarmFS:On CFSU:On
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Figure 80 The NVE of the warm field stop also decreases, but does not follow the
exact curve for MSP for a warm field temperature of 300K.
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