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Abstract

The reliability of a single-unit system experiencing degradation (wear) due to

the influence of a general, observable environment process is considered. In partic-

ular, the failure time distribution is evaluated using only observations of the unit’s

current operating environment which is characterized as a finite semi-Markov process

(SMP). In order to impose the Markov property, generally distributed environment

state sojourn times are approximated as phase-type (PH) random variables using

observations of state holding times and transition rates. The use of PH distributions

facilitates the use of existing analytical results for reliability evaluation of units sub-

ject to an environment process that evolves as a continuous-time Markov chain. The

procedure is illustrated through three numerical examples, and results are compared

with those obtained via Monte Carlo simulation. The maximum absolute deviation

in probability for failure time distributions was on the order of 0.004. The results of

this thesis provide a novel approach to the reliability analysis of units operating in

randomly evolving environments for which degradation or failure time observations

are difficult or impossible to obtain.
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PHASE-TYPE APPROXIMATIONS FOR WEAR PROCESSES IN

A SEMI-MARKOV ENVIRONMENT

1. Introduction

1.1 Background

Classical reliability analysis involves the estimation of the probability distribu-

tion of component lifetimes based on historical observations of failure time. This has

been the most thoroughly studied form of reliability analysis, and several standard

models have been used for decades in the design, manufacture, and maintenance of

components and systems. As an example, the exponential probability distribution

has been widely accepted as an estimate for the lifetime distribution of electronic

components. However, advances in technology and production methods have made

it impractical to observe failures of systems with very long lifetimes. Additionally,

the observation of failure times may be a prohibitively expensive approach given

the complexity and high costs of modern systems. For instance, consider a satellite

operating in orbit. Evaluating the reliability of a single component or the entire

system by running until failure is clearly an infeasible approach. An alternative

technique commonly applied to alleviate these shortfalls in failure time estimation is

accelerated lifetime testing. This technique involves lifetime testing of components

under accelerated laboratory conditions. However, the value of this approach may

be countered by the fact that such artificial laboratory tests often do not accurately

represent the realistic conditions of a unit’s operating environment.

Extremely long lifetimes, high costs, and unrealistic testing environments are

not the only drawbacks of failure-based reliability analysis. A system’s reliability

may not necessarily be defined as the time of a catastrophic failure–achievement of a
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threshold level of wear or degradation may signal the need for maintenance or the end

of a system’s useful operating life. With failure-based reliability analysis, these mea-

sures are not necessarily observed. In an effort to overcome these shortfalls, a more

recent trend in system lifetime estimation has been the application of degradation-

based reliability techniques. In contrast to failure-based approaches, these techniques

involve lifetime estimation of a component or system based on observations of cumu-

lative degradation over time. However, degradation measurements may be difficult

or even impossible to obtain. For instance, it may be infeasible or prohibitively

expensive to record degradation measurements for a solar panel attached to an on-

orbit satellite. Although this technique may more accurately predict the degradation

path leading to system failure, it does not necessarily take into account the ambient

environment that is causing the unit to degrade.

In such cases as the on-orbit satellite, the environment to which the system is

exposed is of great importance. For instance, differing levels of ultraviolet radiation

may have varied effects on the overall wear of the solar panel. An environment-

based approach to reliability analysis seeks to account for the impact the surrounding

environment has on the operation and degradation of the system under study. Since

very few systems operate in complete isolation, environment-based approaches are

valuable in evaluating reliability under realistic operating conditions. In lieu of

imposing an artificial setting, environment-based reliability models attempt to study

both the operating environment and its effects on the system. As with accelerated

testing techniques, this approach’s success in estimating system reliability depends on

the level of accuracy of the environment model under which the system is studied and

the effect of various environment conditions on the degradation of the system. If the

environment consists of easily recognizable and definable discrete states, modelling

of the environment may be a fairly straightforward process. However, characterizing

and defining the various states of a continuous environment process may not be an

easy task. Furthermore, in some cases, the transitions from one environment state
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to another are not easily observable. Therefore, another potential drawback of an

environment-based reliability approach is in the discretization of its feasible state

space. Finally, it may be difficult or even impossible to observe the environment.

Systems operating under deep water or in outer space are examples in which the

environment may be difficult to characterize.

Despite the drawbacks noted above, environment-based reliability models have

potential for accurate lifetime estimation of systems operating in known or observ-

able environments. Several techniques, both probabilistic and statistical in nature,

have been developed to evaluate the reliability, and particularly the failure time

distribution, of a system experiencing wear due to a dynamic environment process.

According to Singpurwalla [25], an advantage of probabilistic approaches, via the

use of stochastic models, is that both the physics of system or component failure

and the dynamic nature of the environment are taken into account. Following this

approach, Kharoufeh [16] studied the reliability (via derivation of the failure time

distribution) of a single-unit system experiencing wear due to a multi-state stochas-

tic environment process. This technique uses a Markov additive process (MAP), as

reviewed by Singpuwalla [25]. Using the MAP as the basis for the overall model,

the cumulative damage of the system is modelled as a continuous, nondecreasing

stochastic process, and the random environment process is modelled as a finite state

space stochastic process. In [16], Kharoufeh assumed the environment process to be

a continuous-time Markov chain (CTMC) in which the evolution of the environment

depends only upon the current state, and the time spent in each state is assumed to

be an exponentially distributed random variable. However, this model’s assumption

of exponentially distributed state holding times limits its real-world applicability.

In many situations, the distribution of the random time spent in each state of the

environment may be either nonexponential or simply unknown. A probabilistic tech-

nique based solely on measurements of the environment state holding times would

alleviate the restrictive need for exponential (or any other) state holding time dis-
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tributions. This thesis effort, based on the environment-based approach, attempts

to address this shortcoming by presenting numerical approximation procedures for

general environment models.

1.2 Problem Definition and Methodology

This thesis proposes a method for estimating the lifetime of a system based

solely on observations of the environment to which the system is exposed and knowl-

edge of the environment’s impact on the degradation of the system. In particular,

the reliability of a single-unit system experiencing nondecreasing wear due to a multi-

state environment process in which the evolution of the environment process depends

only upon its current state is investigated. Furthermore, it is assumed that the time

spent in each state is known only to be a positive-valued, nondefective random vari-

able. That is, there is zero probability that the environment process will remain in

any one state indefinitely.

This work will build upon and generalize the results of [16] and [17]. In those

works, the authors assumed the wear-inducing environment to be a continuous-time

Markov chain (CTMC). As such, the next state of the environment depends ex-

clusively on the current state, forming an embedded discrete-time Markov chain

(DTMC). Additionally, the time spent in each of the various environment states is

assumed to be an exponentially distributed random variable. In reality, state hold-

ing time distributions may not follow exponential distributions at all. In fact, the

particular state holding time distributions may be completely unknown. However,

it may be assumed that transitions to future states of the environment are still de-

pendent only upon the current state, thus retaining an embedded DTMC. In such

cases, the environment process may be characterized as a semi-Markov process. In

this work, the primary focus is the reliability analysis of systems experiencing cumu-

lative wear damage due to the influence of a dynamic external environment modelled
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as a finite state space semi-Markov process which allows for general state holding

time distributions.

The case of nonexponential environment state holding times is studied by ap-

proximating arbitrary distributions with phase-type (PH) distributions. That is, the

arbitrary holding time distributions are approximated as the time to absorption of

an underlying Markov process that must be estimated. In order to construct such

approximations, the environment process must be observed for some period of time,

and the time spent in each environment state must be recorded. Furthermore, the

number of transitions among the various states must be observed and recorded in

order to statistically estimate the inter-state transition rates. The advantage of PH

distributions is that they retain the Markov property, supplanting the need for ex-

ponential state holding time distributions. This thesis will demonstrate that, by

imposing the Markovian property by means of phase-type approximations, the semi-

Markov environment process can be converted to a CTMC, and the results developed

by Kharoufeh [16] and Kharoufeh and Sipe [17] can be applied.

The results of this research can be applied to the reliability analysis of com-

ponents or systems that degrade over time due to exposure to varying levels of

temperature, pressure, or some other environmental measure. This thesis effort will

be valuable to those who design, evaluate, repair, or replace systems exposed to ran-

dom environments. In particular, designers of components used aboard satellites or

underwater vessels, systems known to operate in extreme environments, may find the

technique developed in this thesis to be particularly useful. This work will also ad-

vance the current state-of-the-art in estimation techniques via stochastic modelling

of degradation and environment processes.
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1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews the cur-

rent literature on several probabilistic and statistical degradation-based reliability

analysis techniques. Chapter 3 describes the formal mathematical model, presents

the techniques used to construct phase-type approximations of arbitrary distribu-

tions, and proposes a method by which single-unit lifetime distributions may be ap-

proximated in semi-Markovian environments. Chapter 4 compares the failure time

distribution results of numerical examples of the proposed technique with those ob-

tained via simulation. Finally, chapter 5 presents conclusions and some suggestions

for future research.
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2. Review of the Literature

This chapter provides an overview of the literature concerning techniques for

the analysis of degradation- or environment-based reliability. Although certainly not

an exhaustive survey, it attempts to provide a sense of the two prominent methods

for evaluating the lifetime of systems experiencing wear over time: probabilistic and

statistical approaches.

2.1 Probabilistic Approaches to Degradation-Based Reliability

Several probabilistic approaches to degradation-based reliability are found in

the literature. In his extensive survey of probabilistic approaches to failure time

analysis, Singpurwalla [25] considers both the physics of failure and the characteris-

tics of the operating environment. In general, the variation of the degradation rate is

caused by a dynamic environment; this environment can be described by a stochastic

process. However, failure time distributions derived from stochastic processes often

do not have closed-form expressions and can only be expressed via Laplace trans-

forms, as seen in [16]. Singpurwalla [25] notes four broad strategies that have been

developed for modelling failure distributions based on stochastic processes:

1. Wear is described by a stochastic process with continuous sample path (i.e. a

diffusion process), such as Wiener, gamma, or deterministic;

2. failure rate is described by a stochastic process, such as gamma, shot-noise,

functionals of a Wiener process, or a Lévy process;

3. the environment is described by a stochastic process, typically a shock-inflicting

Poisson process;

4. a response variable correlated with the lifelength is described by a stochastic

process, such as a stationary, continuous-time Gaussian process.
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When wear is modelled as a stochastic process with continuous sample path, Singpur-

walla [25] notes that use of a Wiener process to describe diffusion of the item state

may provide better goodness-of-fit than use of the exponential and Weibull distribu-

tions. In [25], the author describes such a process, also known as Brownian motion,

as follows. The process {γ(s), s ≥ 0} is such that γ(0) = 0, γ(s) has stationary

independent incremements, and, for every s > 0, γ(s) ∼ N (0, c2s) for some c > 0.

Singpurwalla [25] adds that the Wiener process is a Markov process since the inde-

pendent increments property of {γ(s), s ≥ 0} implies that, for any t > 0,

P{γ(t+ s) ≤ α | γ(s) = x, γ(u), 0 ≤ u ≤ s} = P{γ(t+ s) ≤ α | γ(s) = x}. (2.1)

According to Singpurwalla [25], a disadvantage of the use of a Wiener process to

model the diffusion of item state is that the sample path of wear is not monotonically

increasing.

As an example of the failure rate (i.e. hazard rate function) being described

by a stochastic process, Singpurwalla [25] considers a shot noise hazard rate process

as follows. Suppose an item operates in a dynamic environment that inflicts shocks

over time u according to a Poisson process with rate m(u), u ≥ 0. Each shock results

in a stress on the item that contributes to its failure rate. If a shock of magnitude

D occurs at an epoch S, and h(t), a nonincreasing function of t, is the attenuation

function, then the contribution of the shock to the item’s failure rate is Dh(t) at

time S + t. The author presents the item’s failure rate at time t as

λ(t) =
∞∑
n=1

Dnh(t− Sn), (2.2)

where {Sn, n ≥ 1} are the epochs at which the shocks occur, {Dn, n ≥ 1} are the

respective shock magnitudes, and h(t) = 0 when t < 0.

In the case where the wear-inducing environment is modelled as a stochastic

process, Singpurwalla [25] summarizes the use of Markov additive processes (MAP).
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As an example of a MAP, one studies two stochastic processes: X(t), which repre-

sents the cumulative damage of the item at time t, and Z(t), which represents the

state of the environment at time t. This MAP approach was used by Kharoufeh [16]

and Kharoufeh and Sipe [17] and is reviewed in detail in the next chapter. Addition-

ally, a wear-inducing shock process may be incorporated into this model. Singpur-

walla [25] suggests that the MAP modelling approach, along with other stochastic

modelling techniques, will become most useful only upon the further development of

computational methodologies for reliability and survival analysis.

In the fourth and final strategy for the development of failure models studied

in [25], the author briefly discusses the approach in which a response variable cor-

related with the lifelength is described by a stochastic process, such as a stationary,

continuous-time Gaussian process. According to the author, there has been little de-

velopment in this area of research. Overall, Singpurwalla [25] emphasizes the value

of stochastic-based approaches for developing failure models, concluding that these

models better exploit the physics of failure process. One drawback, as noted in [25],

is the complexity of the resulting distributional forms, which must often be presented

via Laplace transforms.

Abdel-Hameed [2] studies properties of the failure time distribution when the

wear process is assumed to be an increasing Lévy process. Çinlar [10] introduced

variations of a general shock and wear model where shocks of random magnitude

occur at environment state transitions and cause degradation to the system. In

[10], the author incorporates the wear and environment processes into a MAP and

includes examples in which the wear process is both a Gamma and an increasing

Lévy process. Esary et al. [12] consider the failure time distribution of a system

subject to shocks governed by a Poisson process and then generalize the problem for

cases of continuous wear. Limnios and Oprisan [19] apply Markov renewal theory to

semi-Markov systems to obtain reliability and availability measures.

2-3



Kharoufeh [16] provides a brief overview of probabilistic techniques and notes

that stochastic shock and wear models are the most commonly studied approaches.

In the reliability analysis of a system that degrades over time, the author character-

izes the continuous wear process as a nondecreasing stochastic process. In that work,

the author considered a single-unit system whose cumulative damage over time is a

continuous wear process dependent on an external environment process assumed to

be a temporally homogeneous, Markov process with a finite state space. Kharoufeh

[16] derived the failure time distribution and moments in terms of Laplace-Stieltjes

transforms. Further discussion of the results in [16] is presented in the next chapter.

2.2 Statistical Approaches to Degradation-Based Reliability

In addition to the probabilistic models described above, the literature contains

models for degradation-based failure distributions derived via nonlinear regression

and other statistical techniques. Ahmad and Sheikh [3] present characteristics and

applications of the Bernstein probability density function (pdf). Also known as the

α-distribution, or inverted normal distribution, the Bernstein pdf was first developed

by Gertsbakh and Kordonsky [14] and Vysokovskii [27] to model the life character-

istics of machine components experiencing non-stationary linear wear. According to

Ahmad and Sheikh [3], the Bernstein probability distribution has been successfully

used to model cutting tool life, monitoring the dimensions of machine parts, testing

the slideways and rotating parts of machine tools, and determining tool replacement

intervals in precision machining. A potential drawback of the Bernstein probability

distribution, with respect to its use in reliability analysis, is that it belongs to a

bimodal family of probability distributions for which no moments exist [3]. This

reliability model is based on a random wear process of the form

W(t) = at+ b, (2.3)
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where a is a random variable that describes the rate of wear, W(t), and b = W(0) is

a random variable denoting the initial value of wear. When T is the lifetime of the

component, and W1 is the permissible wear limit, the three-parameter Bernstein’s

distribution is given by

F (t) = P (T ≤ t) = Φ

[
t− c√
αt2 + β

]
(2.4)

where

Φ(1/
√
α) ' 1,

c =
W1 − E(b)

E(a)
,

α = V (a)/E2(a),

β = V (b)/E2(a),

and

c, α, β, E[(a)] > 0.

Ahmad and Sheik [3] further propose a two-parameter inverted family of dis-

tributions with β = 0 to model wear-related life. Their work includes a thorough

study of the properties of the Bernstein distribution, including maximum likelihood

estimates of its parameters. Lu and Meeker [20] expand the statistical study of

degradation-based time-to-failure distributions by reviewing methods for fitting non-

linear regression models to observed fatigue-crack-growth measurements. The pa-

rameters of a mixed-effect path model are estimated using a two-stage method. The
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authors present a parametric degradation model with fixed-effect parameters com-

mon for all units inspected and random-effect parameters, representing individual

unit characteristics. Since expressing the time-to-failure distribution can be compli-

cated by the inclusion of more than one random parameter, the authors proposed

the use of Monte Carlo simulation to obtain the distribution numerically. For a

degradation path modeled by

η(t) = φ+ Θ(t), (2.5)

where φ is fixed and represents the common initial amount of degradation of all test

units, Θ, which represents the degradation rate, varies from unit to unit according

to a Weibull(α, β) distribution, and D is the critical degradation level, the time-to-

failure distribution is given by

FT (t) = exp

[
−
(
D − φ
αt

)β]
, t > 0. (2.6)

Since the random variable 1/T follows a Weibull distribution, this time-to-failure

distribution is known as the reciprocal Weibull. When Θ follows a lognormal distri-

bution with parameters (µ, σ2), T follows a lognormal distribution, and

FT (t) = Φ

[
log(t)− [log(D − φ)− µ]

σ

]
. (2.7)

When Θ ∼ N(µ, σ2) and σ � µ (to make P{Θ ≤ 0} negligible), the time-to-failure

approximates a special case of the Bernstein distribution:

FT (t) ≈ Φ

[
t− [D − φ]/µ

σt/µ

]
. (2.8)

Lu and Meeker [20] present another form of the Bernstein distribution when both the

intercept and the slope in the simple linear path model are assumed to be random,

normally distributed, and independent of each other (i.e. φ is replaced by Θ1, and
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Θ is replaced by Θ2 in (2.5).) In this case,

FT (t) ≈ Φ

(
t− [D − µ1]/µ2√

[σ2
1 + σ2

2t
2]/µ2

2

)
. (2.9)

Another nonlinear model presented in [20] is

η(t) = φ1 + Θ exp(φ2t), φ2 > 0. (2.10)

Here, φ1 and φ2 are fixed, and the resulting time-to-failure distribution is given as

FT (t) ≈ Φ

[
t− [log(D − φ1)− µ]/φ2

σ/φ2

]
. (2.11)

In this case,

T ∼ N

(
log(D − φ1)− µ

φ2

,
σ2

φ2
2

)
. (2.12)

Next, Lu and Meeker [20] present a multivariate normal model where the vector of

random effects Θ follows a multivariate normal distribution with mean vector µθ and

variance-covariance matrix Σθ. With this model, the time-to-failure distribution is

expressed as

FT (t) = FT (t;φ, µθ,Σθ). (2.13)

It is noted in [20] that there is generally no closed-form expression for this function.

A two-stage method for estimating the random-effects parameters is proposed to

avoid the computational intensity of full maximum likelihood estimation:

1. Fit the degradation model to the sample path for each sampled unit and obtain

the Stage 1 estimates of the model parameters.
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2. Model the random-effect parameters with a (multivariate) normal distribution

by transforming (if necessary) the Stage 1 estimates.

3. Combine the transformed Stage 1 estimates of the model parameters to produce

estimates of φ, µθ, and Σθ.

Once the estimated parameters are obtained, Lu and Meeker [20] propose a method

by which Monte Carlo simulation is used to generate a sufficiently large number of

random sample paths from the assumed path model (with the estimated parameters).

The proportion failing is then used as a function of time as an estimate of FT (t). This

method is particularly useful when there is no closed-form expression for FT (t) and

when numerical transformation methods are too complicated. The authors present

the following algorithm:

1. Estimate the path-model parameters φ, µθ, and Σθ;

2. Generate N simulated realizations Θ̃ of Θ from N(µΘ,ΣΘ) and obtain the

corresponding N simulated realizations Θ̃ of Θ;

3. Compute the corresponding N simulated failure times t̃ by substituting Θ̃ into

T = τ(Θ; φ̂, D, η);

4. Estimate FT (t) = (number of t̃ ≤ t)/N for any desired values of t.

Lu and Meeker [20] then apply a parametric bootstrap method to obtain pointwise

confidence intervals for FT (t). The same method is suggested for the construction of

simultaneous confidence bands.

Chao [8] examines both fixed effect and random effect models. A simple fixed

effect model for predicting the shelf life of drugs is given by

Yij = αi + βitij + εij, (2.14)

where Yij is the result of the j-th assay of the i-th batch of drugs, tij is of dimension

p× 1 and denotes the appropriate regressor (time), αi and βi are fixed but unknown
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parameters, and εij denotes the error term. In this case, “fixed effect model” refers

to the random selection of a single drug. Chao [8] notes that αi and βi can be

modelled as random variables for random effect models, which refer to those models

considering selection of a batch of drugs at random from many batches at hand.

Chao [8] suggests that growth curve models provide a more general framework than

the determination of shelf life. In cases where growth is bounded above, an S-shaped

curve, or “sigmoid”, may be used to model, from beginning to end, the changing

growth rate. Chao [8] proposes the following model for growth:

yi =
α

1 + exp[A−Bti] + εi, i = 1, 2, ..., n. (2.15)

This model is often called a logistic growth model.

Chao [8] suggests there are two basic approaches used to describe a degradation

process: the direct approach and the indirect approach. The direct approach begins

with equations and uses data fitting for analysis. The indirect approach begins with

theoretical justification and attempts to derive more theory without support from

data. If X(t) is a cumulative damage process with

X(t) = a+ bt+W (t), (2.16)

where W (t) is a Brownian motion, then T has a distribution which is inverse Gaus-

sian, and the exact solution can be found (cf. Bhattacharyya and Fries [5]).

Chinnam [9] developed a degradation-based approach for on-line drill-bit reli-

ability determination through the use of neural networks for modeling degradation

measures and self-organizing maps for modelling degradation variation. In [9] Chin-

nam proposes a failure time distribution based upon a nonlinear regressive degra-

dation model with predictions of future degradation levels provided by the artificial

neural network.
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Crk [11] estimated degradation model parameters for every single unit, then

combined them to obtain population parameters at every stress level. Crk [11] then

uses multiple multivariate regression to extrapolate parameters at use stress levels.

System reliability can be estimated using large numbers of generated failure times

derived by generating large numbers of model parameters.

Wu and Tsai [28] considered the case where a few of the degradation paths in

a test differ from the rest. After modelling the degradation paths via nonlinear re-

gression, the authors used an optimal fuzzy clustering method to improve estimation

of the random parameters and failure-time distribution.

Yacout, et al. [29] studied a mixed-effects degradation model for the case

of cladding strain in irradiated fuel pins. Yacout, et.al. [29] used Monte Carlo

simulation to obtain point estimates for the distribution and its confidence intervals

of this mixed-effects model which is based on the work of Lu and Meeker [20].

Lawless [18] gave an overview of degradation models and failure-time distribu-

tions, including shared random effects models. The author’s overview also includes

Wiener and gamma processes and references the random growth curve in [20].

As this brief review of the literature attempts to show, many probabilistic and

statistical methods for degradation-based reliability assessment are available and

can be extremely useful to the practitioner. Although many statistical, degradation-

based reliability techniques may provide accurate lifetime estimations, the use of

techniques such as nonlinear regression requires observation and measurement of

the system’s degradation over time in order to construct a failure time model and

estimate its parameters. Frequently, such measurements are prohibitively expensive

or even impossible to obtain.

Probabilistic models in which the wear-inducing environment is stochastically

modelled can also prove to be useful tools for reliability assessment. Unlike statisti-

cal, degradation-based models, a probabilistic approach does not require degradation
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measurements during the lifetime of the item. However, restrictions on either the

random environment or wear processes, such as the requirement for exponentially

distributed state holding times seen in [16], limit the scope of reliability problems to

be studied.

In this thesis, a probabilistic approach discussed by Singpurwalla [25] and thor-

oughly detailed by Kharoufeh [16] is chosen to evaluate the failure time distribution

of a system under the influence of a dynamic environment. The objective is to de-

velop a lifetime estimation model that does not rely upon degradation measurements

during the system’s lifetime and makes only minimal assumptions about the system’s

operating environment. Such a model provides an extremely useful tool for the relia-

bility assessment of systems operating and degrading in dynamic environments. The

next chapter utilizes and relaxes the assumptions of Kharoufeh [16] and Kharoufeh

and Sipe [17] and provides the main results of this research effort.
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3. Formal Mathematical Model

This chapter provides the mathematical model used to assess the failure time

distribution and moments of failure time of a single-unit system experiencing nonde-

creasing wear due to a multi-state random environment process. Since it is assumed

that the evolution of the environment depends only upon its current state, a discrete-

time Markov chain (DTMC) underlies the environment process. Furthermore, since

the distribution of random sojourn times is assumed to be nonexponential or even

unknown, the environment must be characterized as a semi-Markov process (SMP).

The model proposed herein converts the SMP environment process to a CTMC envi-

ronment process, allowing for the results of Kharoufeh [16] and Kharoufeh and Sipe

[17] to be applied.

In order for the environment to be characterized as a SMP, its true state space

must first be partitioned into K distinct states. Such a partitioning may be achieved

by observation and measurement or by consultation with subject matter experts.

Having partitioned the environment, the rate at which each state of the environment

causes degradation to the system must be obtained. In real-world applications, it

is likely that subject matter experts can provide insight into the degradation rates

associated with the states of a particular environment on a chosen system. In the

proposed model, the degradation rate associated with each environment state is

assumed to be a constant. Next, the environment process is observed over a long

period of time. Holding times in each of the environment states, as well as the

numbers of transitions between states, are recorded. Finally, the model is applied to

obtain a reliability estimate of the system based on its failure time distribution and

moments of failure time. A detailed discussion of this process follows in section 3.4.

Due to their relevance to this thesis research, the main results of [16] are

reviewed here. Kharoufeh [16] derived the failure time distribution and moments of

a single-unit system whose cumulative damage over time is a continuous wear process,
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{X(t) : t ≥ 0}, dependent on an external environment process. The environment

process was assumed to be a temporally homogeneous, Markov process, {Z(t) : t ≥
0} on a a finite state space S = {1, ..., K}. Kharoufeh [16] derived the cumulative

distribution function of Tx, the time until failure, by using transform methods to

solve a first-order linear partial differential equation satisfied by the joint probability

distribution of the Markov additive process {(X(t), Z(t)) : t ≥ 0}, conditioned upon

the initial state of the environment. Using the derived failure time distribution,

Kharoufeh [16] presented the Laplace-Stieltjes transform of the failure time moments.

Define,

G(x, t) := P{Tx ≤ t} (3.1)

as the unconditional distribution of Tx, and the K ×K matrix

V(x, t) = [Vi,j (x, t)], (3.2)

where

Vi,j (x, t) = P{X(t) ≤ x, Z(t) = j | Z(0) = i} (3.3)

is the joint probability that, at time t, the degradation of the system has not exceeded

a value x, and the environment process is in state j ∈ S given that the environment

was initially in state i ∈ S. When r : S → R+ is defined as a nonnegative function,

the transform of the joint probability above is given as

Ṽ
∗
(u, s) = [uRD + sI−Q]−1, (3.4)

where Re(u) > 0, Re(s) > 0,RD = diag(r(1), ..., r(K)), and Q = [qij] is the in-

finitesimal generator matrix of the Markov process, {Z(t) : t ≥ 0}. The failure time
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distribution of a single-unit system in a Markovian environment is given by

G̃∗(u, s) =
1

s
− αṼ

∗
(u, s)1, Re(u) > 0, Re(s) > 0, (3.5)

where α := [αi] is the initial distribution vector with αi := P{Z(0) = i}, and 1

is a K-dimensional column vector of ones. Kharoufeh and Sipe [17] simplified this

expression to a one-dimensional Laplace-Stieltjes transform with respect to t, and

their main result for the unit’s failure time is given by

G̃x(s) = α exp(R−1
D (Q− sI)x)1. (3.6)

Let ξn(x) := E[T nx ] be the unconditional nth moment of the failure time. Then,

if Z has initial probability distribution α, the Laplace-Stieltjes transform of the

unconditional nth moment of the failure time is given by

ξn(u) = n!α(uRD −Q)−n1. (3.7)

Any one of several one-dimensional numerical Laplace transform inversion algorithms

can be used to invert this transform. In [16] and [17], the authors provide a simplified

method for estimating the reliability of a system based solely on the degradation

effects of the operating environment on the system, where the environment process

is assumed to be characterized as a CTMC.

The reliability model of Equation (3.6) strictly assumes that the holding times

in each environment state are exponentially distributed random variables. This

requirement facilitates the analysis of the wear process via a CTMC environment

process. However, the real operating environment of a unit may not necessarily pos-

sess exponentially distributed state holding times. This thesis proposes a method

that permits the relaxation of the requirement for exponentially distributed holding

times while still applying the distribution result of Equation (3.6). In fact, the pro-
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posed technique does not require knowledge of the distributions of the state holding

times–only real observations of the sojourn times in each state. Furthermore, since

arbitrary distributions can be represented exactly or approximately by phase-type

distributions, such approximations will serve as the key to the relaxation of the re-

quirement for exponentially distributed state holding times [23]. By approximating

nonexponential state holding times with phase-type distributions, the Markovian

property may be retained, thereby permitting analysis via CTMC-based techniques.

In the following subsections, the rudimentary concepts of phase-type distributions

are reviewed, including a few of their applications and techniques for obtaining their

representations.

3.1 Phase-Type Distributions

In general, a phase-type distribution can be described as some mixture of ex-

ponential distributions, each representing a phase, with or without the same rate

parameter. The phase-type random variable, described by the total time spent

traversing the exponential phases, is equivalent to the time to absorption of an un-

derlying Markov process. For example, a k-Erlang random variable, the sum of k

independent and identically distributed exponential random variables, is equivalent

to the absorption time of an underlying k-state Markov process. As noted by Perros

[23], the value of phase-type distributions lies both in their possessing the Marko-

vian (memoryless) property and their usefulness in either exactly or approximately

representing arbitrary distributions. These two characteristics form the basis for the

use of phase-type distributions in this work.

The use of phase-type distributions to model nonexponential holding times is

thoroughly studied in the literature. One useful application of phase-type distribu-

tions is in approximating channel holding time distributions in mobile communica-

tions networks. Jayasuriya, et al [15] used generalized Erlang distributions to model

channel holding time distributions, while Ro and Trivedi [24] used three-phase hy-
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poexponential distributions. Boucherie and Van Dijk [6] apply mixtures of Erlang

distributions as approximations to call length distributions and the distribution of

the time spent in a cell. Fang and Chlamtac [13] utilized Erlang and hyper-Erlang

call holding time distributions in their analysis of handoff probability. Phase-type

distributions have also been used to approximate service times at different stations

in a production line. Vidalis and Papadopoulos [26] studied the transition matrices

of production lines by assuming a two-phase Coxian distribution for service times,

where the first phase describes the service period, and the second phase describes

the repair period which is reached with some specified probability.

The following is a slight modification of the description of the representation of

a phase-type distribution as found in [23]. Recall that the total time spent traversing

the k phases of a phase-type distribution is equivalent to the time to absorption of

some underlying Markov process. Any phase-type distribution can be represented by

a triplet (β,T,To), where β = (β, 0) is the 1×(k+1) initial probability vector of the

overall phase space of the underlying Markov process, β is the 1×k vector giving the

probabilities that the underlying Markov process will start in phase i, i = 1, 2, ..., k,

T is the k×k matrix of transition rates among the first k phases, and To is the k×1

vector of transition rates out of the first k phases into the absorbing phase k + 1.

Note that β = (β, 0) implies that the underlying Markov process never begins in

the absorbing phase k + 1. The rate matrix of the phase-type distribution (and the

underlying Markov process) is

S =


 T To

0 1


 . (3.8)

Using the representation (β,T,To), the density function of a phase-type distribution

is given by

f(x) = β exp (Tx)To, x ≥ 0, (3.9)
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with Laplace transform

f ∗(s) = β(sI−T)−1To, Re(s) ≥ 0. (3.10)

The nth moment (n ≥ 1) of a phase-type distribution with representation (β,T) is

given by

E[Xn] = (−1)nn!βT−n1. (3.11)

The next two sections describe various phase-type distributions, their structures of

their representations, and techniques for obtaining the parameters of their represen-

tations.

3.2 Types of Phase-Type Distributions

In this subsection, various types of phase-type approximations are briefly ex-

amined. In the next section, the technique used herein to construct phase-type

approximations when state holding times are known, either via observed data or

known parametric probability distributions, is reviewed.

3.2.1 General Phase-Type Distribution

The general case of a phase-type distribution, denoted by PHk, is one in which

the exponential phases are not necessarily visited sequentially. In other words, a

visit to any phase i, i = 1, ..., k, can be followed by a visit to any other phase

j, j = 1, ...k, i 6= j, with probability aij prior to absorption. It is assumed here

that absorption occurs upon reaching an unseen absorbing phase. Furthermore,

each phase i, i = 1, 2, ..., k, has exponential rate parameter µi. Figure 3.1 gives a

graphical depiction of the general case of a phase-type distribution. For the sake of

clarity, some of the transition probabilities have been omitted.
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exp(µk)
a0

b0

exp(µ2)exp(µ1)
a12 a2i a(k-1)k

b1 bk-1b2

a21 ai2
ak(k-1)

bk

ak1

a1k

Figure 3.1 Graphical depiction of a k-phase, phase-type distribution.

3.2.2 Coxian Distribution

The k-phase Coxian distribution, denoted by Ck, consists of a sequence of k

exponential distributions with respective rate parameters µi, i = 1, 2, ..., k. As a spe-

cial case of the general phase-type distribution, the Coxian distribution is sequential

in its phases and does not permit transitions from phase j to phase i when j > i.

exp(µk)
a0

b0

exp(µ2)exp(µ1)
a1 a2 ak-1

b1 bk-1b2

Figure 3.2 Graphical depiction of a k-phase Coxian distribution.

In Figure 3.2, ai, i = 0, 1, ..., k − 1, denotes the probability of departing phase i and

entering phase i+ 1, while bi, i = 0, 1, ..., k − 1, denotes the probability of departing

phase i and entering the absorbing phase. Also, note that a0 denotes the probability

of entering phase 1, while b0 denotes the probability of zero service time. A useful

property of the Coxian distribution is that it can exactly represent any distribution

having a rational Laplace transform [23]. Moreover, Perros [23] gives the Laplace
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transform of a Coxian distribution as

f ∗(s) = b0 +
k∑
i=1

a0...ai−1bi

i∏
j=1

µj
s+ µj

(3.12)

where ai + bi = 1, i = 1, 2, ..., k − 1, and bk = 1.

3.2.3 Erlang Distribution

The Erlang distribution is a special case of the Coxian in which each exponen-

tial phase has equal rate parameter µ, and there is zero probability of entering the

absorbing phase (or any phase other than phase i+ 1) until the kth phase is reached

[23]. Figure 3.3 gives a graphical depiction of this distribution.

exp(µ)exp(µ)exp(µ)

Figure 3.3 Graphical depiction of a k-phase Erlang distribution with rate parameter µ.

A more general form of the Erlang distribution, depicted in Figure 3.4, is obtained

by allowing distinct exponential phase rate parameters µi, i = 1, 2, ..., k.

exp(µk)exp(µ2)exp(µ1)

Figure 3.4 Graphical depiction of a k-phase Erlang distribution with distinct rate pa-
rameters.

The generalized Erlang distribution is a k-phase Erlang distribution that transitions

from phase 1 to phase 2 with probability a and from phase 1 to the absorbing phase

with probability 1-a. If phase 2 is reached, then all phases after phase 2 are also

reached (sequentially). Note that an alternative definition of the generalized Erlang
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distribution, equivalent to the multiple rate Erlang distribution described above, is

implied in [21].

exp(µ)exp(µ)exp(µ)
a

1-a

Figure 3.5 Graphical depiction of a k-phase generalized Erlang distribution with single
rate parameter.

Since the time required to traverse all phases of a k-phase Erlang distribution is

the sum of k independent and identically distributed, exponential random variables

with common rate parameter µ, the Laplace transform (LT) of the k-phase Erlang

distribution is given by

f ∗(s) =

(
µ

s+ µ

)k
, (3.13)

and the LT of the k-phase Erlang distribution with distinct rate parameters µi, i =

1, 2, ..., k, is

f ∗(s) =
k∏
i=1

(
µi

s+ µi

)
. (3.14)

3.3 Phase-type Approximation Technique

In this section, the procedure used in this thesis to approximate observed data

or parametric probability distributions with phase-type distributions is presented.

Table 3.1 provides some guidelines for choosing the particular phase-type approxi-

mation to use based on the squared coefficient of variation of the observed data or

parametric probability distribution [23]. More specifically, suppose X is an arbitrary
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nonnegative random variable. The objective is to obtain a phase-type distribution

to approximate the true distribution of X. The squared coefficient of variation for

the random variable X is

c2 =
V ar[X]

(E[X])2
. (3.15)

Table 3.1 Guidelines for selection of phase-type approximation.
Range of c2 Distribution
c2 > 1 three-moment, 2-phase Coxian
0.5 ≤ c2 ≤ 1 two-moment, 2-phase Coxian
c2 < 0.5 two-moment, k-phase generalized Erlang

The following calculations follow from [4] and [23].

3.3.1 Approximation via three-moment, 2-phase Coxian distribution

When c2 > 1, the observed holding time data or parametric probability dis-

tribution is approximated with a three-moment, 2-phase Coxian distribution. The

Laplace transform (LT) of this approximation is given as

f ∗(s) =
µ1s(1− a) + µ1µ2

s2 + (µ1 + µ2)s+ µ1µ2

, (3.16)

where s is a complex transform variable, and µ1, µ2, and a denote the parameters

of the Coxian representation as described in section 3.2. After taking successive

derivatives of the above LT and evaluating at s = 0, the first three moments of the

C2 distribution may be obtained. Let Y be a 2-phase Coxian distributed random

variable. Estimates (or exact values) of the first three moments (m1,m2, and m3,

respectively) of the observed data or parametric probability distribution are set equal

to the three C2 moments and are expressed as (cf. [4])

m1 ≡ E[Y ] =
1

µ1

+
a

µ2

, (3.17)

3-10



m2 ≡ E[Y 2] =
2(1− a)

µ2
1

− 2aµ1µ2 − 2a(µ1 + µ2)2

µ2
1µ

2
2

, (3.18)

and

m3 ≡ E[Y 3] =
6(1− a)

µ3
1

− 12aµ1µ2(µ1 + µ2)− 6a(µ1 + µ2)3

µ3
1µ

3
2

. (3.19)

For convenience, the following equalities are introduced:

A = µ1 + µ2 (3.20)

and

B = µ1µ2. (3.21)

Upon substitution and simplification of Equations (3.17), (3.18), and (3.19), the

following expressions are obtained:

A =
1

m1

+
m2B

2m1

(3.22)

and

B =
12m2

1 − 6m2

3m2
2 − 2m1m3

. (3.23)

Following [4], the parameters of the three-moment, 2-phase Coxian distribution are

µ1 = A+

√
A2 − 4B

2
, (3.24)

µ2 = A− µ1, (3.25)
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and

a =
µ2

µ1

(m1µ1 − 1). (3.26)

The three-moment, 2-phase Coxian distribution has the representation

T =


 −µ1 aµ1

0 −µ2


 , (3.27)

β = (1, 0, 0), (3.28)

To = [(1− a)µ1, µ2]. (3.29)

3.3.2 Approximation via two-moment, 2-phase Coxian distribution

When 0.5 ≤ c2 ≤ 1, a two-moment, 2-phase Coxian dsitribution is used to

approximate the observed holding time data or parametric probability distribution.

Following a moment-matching algorithm similar to that for the three-moment 2-

phase Coxian distribution, the parameters of the two-moment variant of the 2-phase

Coxian are

µ1 =
2

m1

, (3.30)

µ2 =
1

m1c2
, (3.31)

and

a =
1

2c2
. (3.32)

The two-moment, 2-phase Coxian distribution has the same representation as the

three-moment, 2-phase Coxian distribution described above. It is important to note

that using either variant of the 2-phase Coxian distribution as an approximation to
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observed holding time data or a parametric probability distribution helps to minimize

the growth of the overall state space. The drawback of state space growth is further

discussed in section 3.4.1.

3.3.3 Approximation via two-moment, k-phase Erlang distribution

When the squared coefficient of variation is less than 0.5, the observed holding

time data or parametric probability distribution is approximated by a two-moment,

k-phase generalized Erlang approximation. Following [23], the number of phases k

is chosen such that
1

k
≤ c2 ≤ 1

(k − 1)
. (3.33)

In the numerical examples of chapter 4, a simple linear program is implemented to

approximate the minimum number of phases k. The remaining parameters, µ and

a, corresponding to those shown in Figure 3.5, are computed as

1− a =
2kc2 + k − 2− (k2 + 4− 4kc2)1/2

2(c2 + 1)(k − 1)
(3.34)

and

µ =
1 + (k − 1)a

m1

. (3.35)

The k-phase generalized Erlang distribution is then represented by

T =




−µ aµ 0 0 · · · 0

0 −µ µ 0 · · · 0

0 0 −µ µ
. . .

...

0 0 0 −µ . . . 0
...

...
...

. . . . . . µ

0 0 0 . . . 0 −µ




(3.36)

β = (1, 0, · · · , 0) (3.37)
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To = [(1− a)µ, 0, · · · , 0, µ]. (3.38)

3.4 Phase-Type Approximations for Degradation-Based Reliability

In real-world situations, when analyzing the wear process of a single-unit sys-

tem subject to a multi-state stochastic environment process, knowledge of the en-

vironment process will likely be limited to the degradation rate associated with

each state and observations of the state holding times. Since there is no guarantee

that these holding times will be exponentially distributed, the environment process

cannot be assumed to be a continuous-time Markov chain. However, phase-type dis-

tributions, such as those described in section 3.2, may be used as approximations to

these nonexponential distributions to impose the Markovian property. That is, the

approximated environment process may be modelled as a continuous-time Markov

chain (CTMC), and subsequently a new (and expanded) infinitesimal generator ma-

trix may be used directly in Equation (3.6).

3.4.1 Conversion of the Environment Process to a CTMC

Consider a single-unit system subject to wear over time due to a multi-state

semi-Markov environment process, {Z(t) : t ≥ 0}, with finite state space S =

{1, 2, . . . , K}. For the sake of brevity, the SMP is abbreviated as Z. The objective

is to convert Z into a CTMC. To accomplish this, each sojourn time distribution

Hi, i ∈ S, of Z is approximated by a phase-type distribution Ĥi. The state space Ŝ of

the resulting CTMC consists of all of the phases in the K phase-type approximations

Hi.

Initially, the environment process must be observed over a long time interval of

length τ . The holding times in the K states and the random number of transitions

from one state to another are observed and recorded. The observed rate of transition

from state i to state j, i, j ∈ S, over τ is computed and denoted as q̂ij. The K ×K
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transition rate matrix Q, whose elements are q̂ij, is then formed. After computing

the required moments of the observed holding times in each state, the K holding time

distributions (Hi, i = 1, 2, ..., K) are approximated by K phase-type distributions

(Ĥi, i = 1, 2, ..., K) by applying the techniques of section 3.3. Recall that either a 2-

phase Coxian or a k-phase generalized Erlang distribution is chosen to approximate

each holding time distribution depending on the estimated squared coefficient of

variation of each state’s observed holding times.

A potential drawback of this technique is the possibility of a state space ex-

plosion. For example, consider a five-state semi-Markov environment process with

arbitrary sojourn time distributions Hi, i = 1, 2, ..., 5. If each distribution is approx-

imated by a four-phase, generalized Erlang distribution, the resulting CTMC will

have twenty states, represented by the phases used to approximate each distribution.

In an effort to minimize the dimensionality of the new state space, and therefore ease

the computational burden, one should use techniques that result in a minimal num-

ber of phases for each sojourn time distribution. The recent work of Osogami and

Harchol-Balter [22] aims at minimizing the number of phases while maximizing the

accuracy of the phase-type approximation.

Define ki as the number of phases used to approximate sojourn time distri-

bution Hi. For any state i ∈ S, the underlying Markov process has ki + 1 phases,

including ki exponential phases plus one absorbing phase. In order to complete the

conversion of Z into a CTMC, the infinitesimal generator matrix Ψ, whose elements

represent the transition rates among all phases of the newly partitioned K states,

must be created. Since the initial probability vector βi of each phase-type approx-

imation is of the form (1, 0, . . . , 0), transitions from state i to state j for i 6= j are

limited to transitions from the absorbing phase of state i to the first phase of state

j. In other words, any state must be exited via its absorbing phase, and a new state

must be entered via its first phase.
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As an example, suppose one seeks to convert (approximately) a K-state semi-

Markov environment process into a CTMC using 2-phase Coxian distributions for

each of the K states. After the number of transitions among the K states of the

original environment process have been observed and recorded, the observed rates of

transition from state i, i = 1, 2, . . . , K, to state j, j = 1, 2, . . . , K, are computed as

q̂ij =
Nτ (i, j)

Hτ (i)
, (3.39)

where Nτ (i, j) is the total number of transitions from state i to state j in time

τ , and Hτ (i) is the total time spent in state i during time τ . Figure 3.6 gives a

graphical depiction of the approximation of such an environment when K = 3. This

Phase 1µ11

Phase 2µ12

Absorbing
Phase

State 1

a1

1-a1

Phase 1µ31

Phase 2µ32

Absorbing
Phase

State 3

a3

1-a3

Phase 1µ21

Phase 2µ22

Absorbing
Phase

State 2

a2

1-a2

21q̂

23q̂

13q̂

32q̂

31q̂12q̂

Figure 3.6 Graphical depiction of a 3-state environment process with 2-phase Coxian
sojourn time approximations.

K-state CTMC environment process possesses an infinitesimal generator matrix of
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the following form:

Ψ =




Ψ11 Ψ12 . . . Ψ1K

Ψ21 Ψ22 . . . Ψ2K

...
...

. . .
...

ΨK1 ΨK2 . . . ΨKK



, (3.40)

where

Ψii =




Ti To
i

0 −
∑

i6=j
q̂ijM


 , i ∈ S, (3.41)

Ψij =




0 0 0

0 0 0

q̂ijM 0 0


 , i 6= j ∈ S, (3.42)

and Ti and To
i are the phase-type representative T matrix and To vector, respec-

tively, of state i (see section 3.1).

The elements of Ψii, i ∈ S, represent the rates of transition among the ki + 1

phases of the newly partitioned state i, and the elements of Ψij, i 6= j ∈ S, represent

the rates of transition from the ki + 1 phases of state i to the kj + 1 phases of state

j. In other words, Ψii, i ∈ S, gives the transition rates among the ki + 1 phases of

a single state, and Ψij, i 6= j ∈ S, gives the transition rates from the ki + 1 phases

of one state to the kj + 1 phases of another state. It is helpful to note that, in

the general case where k-phase, phase-type distributions are used to approximate K

environment states, the dimensions of Ψii, are (ki+1)× (ki+1), and the dimensions

of Ψij, i 6= j, are (ki+1)× (kj +1). It is also important to note that the holding time

in the absorbing phase of any state is theoretically instantaneous, thereby implying

an infinite transition rate. Therefore, in numerical implementations, it is necessary

that the transition rate from the absorbing phase of any state to either itself or the
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first phase of any other state is multiplied by a very large number M . In other words,

each q̂ij in Ψ is multiplied by M to create a very large transition rate.

Given that the wear rate in environment state i is r(i), i = 1, 2, . . . , K, the

wear rate matrix of the semi-Markov environment process is

RD =




r(1) 0 . . . 0

0 r(2)
. . .

...
...

. . . . . . 0

0 . . . 0 r(K)



. (3.43)

Having expanded the original generator matrix to account for transitions among

the phases of the approximated environment states, the corresponding wear rate

matrix RD must also be expanded. The wear rate r(i) of each environment state i,

i = 1, 2, . . . , K, is assumed to be the same for all ki + 1 phases of the phase-type

approximation of state i. Therefore, if each state is approximated via a 2-phase

Coxian distribution, the expanded wear rate matrix of the K-state example is given

as

Λ =




r(1) 0 0 0 0 0 . . . 0 0 0

0 r(1) 0 0 0 0 . . . 0 0 0

0 0 r(1) 0 0 0 . . . 0 0 0

0 0 0 r(2) 0 0 . . . 0 0 0

0 0 0 0 r(2) 0 . . . 0 0 0

0 0 0 0 0 r(2)
. . .

...
...

...
...

...
...

...
...

. . . . . . 0 0 0

0 0 0 0 0 . . . 0 r(K) 0 0

0 0 0 0 0 . . . 0 0 r(K) 0

0 0 0 0 0 . . . 0 0 0 r(K)




. (3.44)
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In the next subsection, Ψ and Λ are used to compute the failure time distribution

and moments of failure of the single-unit system under study.

3.4.2 Computation of Failure Time Distribution and Moments

Once the semi-Markov environment has been converted into a CTMC with

infinitesimal generator matrix Ψ and wear rate matrix Λ, the results derived by

Kharoufeh [16] and Kharoufeh and Sipe [17] may be applied to compute the cumu-

lative distribution function of the failure time of the single-unit system under study.

Figure 3.7 provides a summary of the overall process. Applying Equations (3.6) and

(3.7), the Laplace-Stieltjes transform of the failure time distribution is given by

G̃x(s) = α exp(Λ−1(Ψ− sI)x)1, (3.45)

and the Laplace-Stieltjes transform of the nth moment of unit failure time is given

by

ξn(u) = n!α(uΛ−Ψ)−n1, (3.46)

where α is the 1 × K initial probability vector determining the beginning state of

the environment process. Any one of several one-dimensional inversion algorithms

may be used to numerically invert these transforms to obtain Gx(t) and ξn(x), the

failure time distribution and nth moment of unit failure time, respectively. The

next chapter provides three numerical examples that illustrate the conversion of a

semi-Markov environment process to a CTMC environment process via phase-type

approximations. The failure time distribution and lower moments of failure time are

estimated for each system under consideration.
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4. Numerical Results

In this chapter, applications of the reliability evaluation process described

in chapter 3 are illustrated. Using phase-type approximation techniques, the fail-

ure time distributions for single-unit systems subject to semi-Markov environment

processes will be evaluated via the results previously derived for systems subject to

environment processes characterized as CTMCs. Additionally, the first and second

moments of failure time will also be evaluated. The results are directly applicable

to real-world situations.

4.1 Degradation of Brake Pad Material

Consider a new brake pad installed on an automobile equipped with disc brakes.

In a disc brake system, a caliper holds the brake pad and pushes it against a rotor on

the automobile’s wheel when the brake pedal is depressed. In this example, assume

that the brake pad is always in contact with the rotor. (In modern disc brake systems,

the brake pad sits clear of the rotor when the brakes are not applied.) When the

brakes are applied, the caliper pushes the brake pad against the rotor with a force

proportional to the pressure applied to the brake pedal. The friction generated

between the brake pad and the rotor causes the automobile to slow down. Over

time, the brake pad experiences normal wear due to the friction between the pad

and the rotor and eventually reaches a failure threshold x. Reaching this threshold

may not necessarily lead to system failure but may be used to indicate the need for

preventive maintenance of the braking system. The degradation rate of the brake

pad is linear and completely determined by the system’s random environment, which

consists of three states. State 1, which is described by the normal contact of the

brake pad with the rotor, causes the brake pad to wear with rate r(1). States 2

and 3, achieved by depressing the brake pedal with two distinct pressures, cause the

brake pad to wear with rates r(2) and r(3), respectively. It is assumed that the
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system’s random environment is characterized by a semi-Markov process with state

space S = {1, 2, 3}. Let {Xn : n ≥ 0} be a DTMC embedded within the SMP such

that Xn is the state of the environment just after the nth transition. The DTMC

has transition probability matrix

P =




0 a 1− a
b 0 1− b
c 1− c 0


 ,

where a is the probability of transitioning from state 1 to state 2, b is the probability

of transitioning from state 2 to state 1, and c is the probability of transitioning from

state 3 to state 1.

Let X(t) denote the cumulative degradation of the brake pad at time t, let

RD be the diagonal matrix of wear rates r(1), r(2), and r(3), and let Tx denote the

random time required for the brake pad’s cumulative degradation to reach amount

x. The cumulative distribution function of Tx is desired.

In order to apply the results of [16] for the failure-time distribution, the semi-

Markov environment process is first converted into a CTMC via phase-type ap-

proximations of the state holding time distributions. After observing the random

environment over time τ , the transition rates q̂ij, i, j ∈ S, are computed for the

transitions among the environment’s three states. This is accomplished by dividing

the number of times the system transitions from state i to state j, i 6= j, by the

total amount of time the system spends in state i for i, j ∈ S. Additionally, the

observed holding times in each state of the environment are recorded and used to

construct phase-type approximations to the holding time distributions. The result-

ing representations of the phase-type distributions and the observed state transition

rates are used to construct Ψ, the generator matrix of the resulting CTMC. Using

the generator matrix, Ψ, the expanded degradation rate matrix, Λ, and the initial
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probability distribution of the environment states, α, as input, Equation (3.45) is

applied to calculate the solution of the failure time distribution in the transform.

For this example, the wear rates are r(1) = 0.1, r(2) = 1.0, and r(3) = 2.0.

In order to conduct a simulation of the environment process, the state holding time

distributions are assumed to be known and are given in Table 4.1. Additionally,

Table 4.1 State holding time distributions for the brake pad example.
State Distribution

1 Weibull(2,4)
2 Weibull(3,5)
3 Weibull(4,6)

the transition probability matrix values are a = 0.7, b = 0.6, and c = 0.2, and the

brake pad damage threshold is set at x = 30.0. Furthermore, it is assumed that the

environment process always begins in State 1. Therefore, the required input matrices

are

P =




0.0 0.7 0.3

0.6 0.0 0.4

0.2 0.8 0.0


 ,

RD =




0.1 0.0 0.0

0.0 1.0 0.0

0.0 0.0 2.0


 ,

and

α =
(

1 0 0
)
.

After observing the system for τ = 10000 time units, the Ti matrices and To
i vec-

tors of the phase-type representations of the three holding time distributions were
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estimated as

T1 =




−8.826 8.562 0.000 0.000

0.000 −8.826 8.826 0.000

0.000 0.000 −8.826 8.826

0.000 0.000 0.000 −8.826



, To

1 =




0.2633

0

0

8.8256



,

T2 =




−15.2250 15.1090 0 0 0 0 0 0

0 −15.2250 15.2250 0 0 0 0 0

0 0 −15.2250 15.2250 0 0 0 0

0 0 0 −15.2250 15.2250 0 0 0

0 0 0 0 −15.2250 15.2250 0 0

0 0 0 0 0 −15.2250 15.2250 0

0 0 0 0 0 0 −15.2250 15.2250

0 0 0 0 0 0 0 −15.2250




,

To
2 =




0.1135

0

0

0

0

0

0

15.2290




,

T3 = [δij] for i = 1, . . . , 13, j = 1, . . . , 13,

where

δij =





−22.4030, i = j

22.3580, i = 1, j = 2

22.4030, i = j − 1, j = 3, . . . , 13

0 otherwise

,

and

To
3 = [γi] for i = 1, . . . , 13,
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where

γi =





0.0450, i = 1

0, i = 2, . . . , 12

22.4030, i = 13

.

Furthermore, the observed transition rates among the three environment states are

presented as the elements of Q̂, where

Q̂ =




−2.2569 1.5809 0.6760

1.1501 −1.9162 0.7661

0.3403 1.3862 −1.7265


 .

Using the above phase-type representations and the q̂ij elements of Q̂, the 28 × 28

generator matrix of the newly formed CTMC is

Ψ =




Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33


 ,

where

Ψ11 =


 T1 To

1

0 −22569.0


 ,

Ψ12 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 9,

where

ψij =





15809.0, i = 5, j = 1

0 otherwise
,

Ψ13 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 14,

where

ψij =





6760.2, i = 5, j = 1

0 otherwise
,
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Ψ21 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 5,

where

ψij =





11501.0, i = 9, j = 1

0 otherwise
,

Ψ22 =


 T2 To

2

0 −19162.0


 ,

Ψ23 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 14,

where

ψij =





7660.9, i = 9, j = 1

0 otherwise
,

Ψ31 = [ψij] for i = 1, . . . , 14, j = 1, . . . , 5,

where

ψij =





3403.1, i = 14, j = 1

0 otherwise
,

Ψ32 = [ψij] for i = 1, . . . , 14, j = 1, . . . , 9,

where

ψij =





13862.0, i = 14, j = 1

0 otherwise
,

and

Ψ33 =


 T3 To

3

0 −17265.0


 .

As noted in chapter 3, the holding time in the absorbing phase of any state

is theoretically instantaneous, thereby implying a theoretically infinite transition

rate. Therefore, the transition rate from the absorbing phase of any state to either

itself or the first phase of any other state is multiplied by a large number M when

constructing the infinitesimal generator matrix Ψ. In this case, and in subsequent
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examples, M = 10000. The 28× 28 expanded degradation rate matrix is

Λ =




Λ11 0 0

0 Λ22 0

0 0 Λ33


 ,

where

Λ11 = [λij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

λij =





0.1, i = j

0.0 otherwise
,

Λ22 = [λij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

λij =





1.0, i = j

0.0 otherwise
,

and

Λ33 = [λij] for i = 1, . . . , 14, j = 1, . . . , 14,

where

λij =





2.0, i = j

0.0 otherwise
.

Substituting the matrices Ψ,Λ, and α into Equation (3.45) gives the failure time

distribution in the transform space. Application of the one-dimensional Laplace

transform inversion algorithm of Abate and Whitt [1] is used to arrive at the cumu-

lative distribution values for selected points in time. The results of the failure time

distribution are compared to results obtained from a simulation model in Table 4.2.
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Table 4.2 Cumulative probability values for the brake pad example.
t Simulated Analytical t Simulated Analytical

24.005 0.009900 0.009974 29.855 0.698370 0.698667
24.155 0.012130 0.012492 30.005 0.720320 0.720465
24.305 0.015210 0.015505 30.155 0.740820 0.741360
24.455 0.019080 0.019079 30.305 0.760130 0.761315
24.605 0.023290 0.023282 30.455 0.779130 0.780300
24.755 0.028480 0.028184 30.605 0.796970 0.798299
24.905 0.034180 0.033854 30.755 0.814180 0.815301
25.055 0.040840 0.040362 30.905 0.830210 0.831305
25.205 0.047980 0.047774 31.055 0.845830 0.846318
25.355 0.055930 0.056155 31.205 0.860470 0.860351
25.505 0.065210 0.065562 31.355 0.873860 0.873425
25.655 0.075500 0.076048 31.505 0.886670 0.885565
25.805 0.086910 0.087657 31.655 0.897460 0.896800
25.955 0.099610 0.100424 31.805 0.908100 0.907164
26.105 0.113240 0.114374 31.955 0.917590 0.916693
26.255 0.127900 0.129521 32.105 0.926270 0.925428
26.405 0.144520 0.145867 32.255 0.934120 0.933408
26.555 0.161680 0.163401 32.405 0.941310 0.940677
26.705 0.181090 0.182100 32.555 0.948080 0.947278
27.155 0.244520 0.244751 32.705 0.953890 0.953254
27.305 0.266340 0.267615 32.855 0.959580 0.958649
27.455 0.290150 0.291337 33.005 0.964200 0.963504
27.605 0.315800 0.315824 33.155 0.968540 0.967862
27.755 0.341430 0.340974 33.305 0.972330 0.971761
27.905 0.366960 0.366677 33.455 0.975700 0.975241
28.055 0.393380 0.392819 33.605 0.978610 0.978338
28.205 0.420010 0.419282 33.755 0.981160 0.981087
28.355 0.445410 0.445945 33.905 0.983770 0.983520
28.505 0.472630 0.472687 34.055 0.985840 0.985669
28.655 0.500000 0.499389 34.205 0.987830 0.987562
28.805 0.526700 0.525934 34.355 0.989590 0.989224
28.955 0.552120 0.552208 34.505 0.990880 0.990681
29.105 0.578320 0.578105 34.655 0.992160 0.991955
29.255 0.603280 0.603522 34.805 0.993230 0.993065
29.405 0.627850 0.628368 34.955 0.994270 0.994031
29.555 0.651890 0.652556 35.105 0.995220 0.994870
29.705 0.675710 0.676011 35.555 0.996890 0.996760
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Based on this comparison, the technique developed in this thesis provides sim-

ilar results to those computed via simulation. In fact, the maximum absolute devia-

tion (MAD) in probability for this example is 0.001721. Figure 4.1 gives a graphical

comparison of the cumulative distribution values at various time points.
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Figure 4.1 Simulated versus analytical cumulative distribution functions for the brake
pad example.

Substituting the matrices Ψ,Λ, and α into Equation (3.46) gives the moments

of failure time in the transform space. Application of the one-dimensional Laplace

transform inversion algorithm of Abate and Whitt [1] is used to obtain the first

and second moments of failure time, which are compared to results obtained via

simulation in Table 4.3.

4-9



Table 4.3 Lower moments of failure time for the brake pad example.
Measure Simulated Analytical
E[Tx] 28.7615 28.7522
E[T 2

x ] 832.2501 831.8517

4.2 Crack Propagation in a Turbine Blade

In this example, the propagation of a crack in a turbine blade of an aircraft

engine is considered. Assume the turbine blade begins operation in perfect working

order but develops a crack over time due to normal wear.

Let X(t) denote the length of the crack at time t. It is assumed that the crack

grows at a linear rate determined exclusively by the current state of the random

environment to which the turbine blade is exposed. This random environment can

be characterized as a four-state, semi-Markov process, {Z(t) : t ≥ 0}, whose four

states are defined by different ranges of turbine rotation speed. Moreover, the rates at

which the different states cause the crack to propagate are known based on previous

testing. The turbine blade fails when the crack reaches length x = 20.0. The state

descriptions, state holding time distributions, and crack growth rates are listed in

Table 4.4. Additionally, the transition probability matrix of the embedded DTMC

is given as

P =




0.0 0.6 0.2 0.2

0.5 0.0 0.4 0.1

0.2 0.4 0.0 0.4

0.1 0.3 0.6 0.0



.

Table 4.4 Description of state space and crack growth rates for the turbine blade ex-
ample.

State Rotation Speed (rpm) Holding Time Distribution Crack Growth Rate
1 1000 through 4999 Beta(3,5) 0.17
2 5000 through 8999 Beta(2,4) 0.43
3 9000 through 12999 Weibull(2,5) 0.75
4 13000 through 15999 Weibull(3,6) 1.29
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From Table 4.4, the matrix of degradation rates is

RD =




0.17 0.00 0.00 0.00

0.00 0.43 0.00 0.00

0.00 0.00 0.75 0.00

0.00 0.00 0.00 1.29



.

It is assumed that the environment process begins in the first state; therefore, the

initial probability vector is

α =
(

1 0 0 0
)
.

After observing the system over τ = 10000 time units, the Ti matrices and To
i

vectors of the phase-type representations of the four holding time distributions are

calculated as

T1 = [δij] for i = 1, . . . , 6, j = 1, . . . , 6,

where

δij =





−15.6780, i = j

15.3140, i = 1, j = 2

15.6780, i = j − 1, j = 3, . . . , 6

0 otherwise

,

To
1 = [γi] for i = 1, . . . , 6,

where

γi =





0.3638, i = 1

0, i = 2, . . . , 5

15.6780, i = 6

,

T2 = [δij] for i = 1, . . . , 4, j = 1, . . . , 4,
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where

δij =





−11.6220, i = j

11.0970, i = 1, j = 2

11.6220, i = j − 1, j = 3, 4

0 otherwise

,

To
2 = [γi] for i = 1, . . . , 4,

where

γi =





0.5254, i = 1

0, i = 2, 3

11.6220, i = 4

,

T3 = [δij] for i = 1, . . . , 4, j = 1, . . . , 4,

where

δij =





−9.8405, i = j

9.5442, i = 1, j = 2

9.8405, i = j − 1, j = 3, 4

0 otherwise

,

To
3 = [γi] for i = 1, . . . , 4,

where

γi =





0.2964, i = 1

0, i = 2, . . . , 3

9.8405, i = 4

,

T4 = [δij] for i = 1, . . . , 8, j = 1, . . . , 8,

where

δij =





−16.1640, i = j

16.0280, i = 1, j = 2

16.1640, i = j − 1, j = 3, . . . , 8

0 otherwise

,
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and

To
4 = [γi] for i = 1, . . . , 8,

where

γi =





0.1357, i = 1

0, i = 2, . . . , 7

16.1640, i = 8

.

Furthermore, the observed transition rates among the four environment states are

presented as the elements of Q̂, where

Q̂ =




−2.6646 1.5965 0.5313 0.5368

1.5020 −3.0075 1.1991 0.3064

0.5060 1.0083 −2.5170 1.0027

0.2033 0.6087 1.2234 −2.0354



.

Using the above phase-type representations and the q̂ij elements of Q̂, the 26 × 26

generator matrix of the newly formed CTMC is

Ψ =




Ψ11 Ψ12 Ψ13 Ψ14

Ψ21 Ψ22 Ψ23 Ψ24

Ψ31 Ψ32 Ψ33 Ψ34

Ψ41 Ψ42 Ψ43 Ψ44



,

where

Ψ11 =


 T1 To

1

0 −26646.0


 ,

Ψ12 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 5,

where

ψij =





15965.0, i = 7, j = 1

0 otherwise
,
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Ψ13 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 5,

where

ψij =





5312.6, i = 7, j = 1

0 otherwise
, and

Ψ14 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 9,

where

ψij =





5368.4, i = 7, j = 1

0 otherwise
,

Ψ21 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 7,

where

ψij =





15020.0, i = 5, j = 1

0 otherwise
,

Ψ22 =


 T2 To

2

0 −30075.0


 ,

Ψ23 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

ψij =





11991.0, i = 5, j = 1

0 otherwise
,

Ψ24 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 9,

where

ψij =





3063.6, i = 5, j = 1

0 otherwise
,

Ψ31 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 7,
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where

ψij =





5059.6, i = 5, j = 1

0 otherwise
,

Ψ32 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

ψij =





10083.0, i = 5, j = 1

0 otherwise
,

Ψ33 =


 T3 To

3

0 −25170.0


 ,

and

Ψ34 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 9,

where

ψij =





10027.0, i = 5, j = 1

0 otherwise
,

Ψ41 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 7,

where

ψij =





2033.2, i = 9, j = 1

0 otherwise
,

Ψ42 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 5,

where

ψij =





6086.7, i = 9, j = 1

0 otherwise
,

Ψ43 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 5,

where

ψij =





12234.0, i = 9, j = 1

0 otherwise
,
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and

Ψ44 =


 T4 To

4

0 −20354.0


 .

The 26× 26 expanded degradation rate matrix is

Λ =




Λ11 0 0 0

0 Λ22 0 0

0 0 Λ33 0

0 0 0 Λ44



,

where

Λ11 = [λij] for i = 1, . . . , 7, j = 1, . . . , 7,

where

λij =





1.7, i = j

0 otherwise
,

Λ22 = [λij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

λij =





4.3, i = j

0 otherwise
,

Λ33 = [λij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

λij =





7.5, i = j

0 otherwise
,

and

Λ44 = [λij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

λij =





12.9, i = j

0 otherwise
.
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Substituting the matrices Ψ,Λ, and α into Equation (3.45) gives the solution of the

failure time distribution in the transform space. Application of the one-dimensional

Laplace transform inversion algorithm of Abate and Whitt [1] is again used to arrive

at the cumulative distribution values for selected points in time. The results of the

failure time distribution are compared to those obtained from a simulation model in

Table 4.5. Based on this comparison, the technique developed in this thesis provides

similar results to those computed via simulation. In fact, the MAD in probability for

this example is 0.003297. Figure 4.2 gives a graphical comparison of the cumulative

distribution values at various time points. Substituting the matrices Ψ,Λ, and
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t
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.0
(t
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Figure 4.2 Simulated versus analytical cumulative distribution functions for the turbine
blade example.

α into Equation (3.46) gives the moments of failure time in the transform space.

Application of the one-dimensional Laplace transform inversion algorithm of Abate
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Table 4.5 Cumulative probability values for the turbine blade example.
t Simulated Analytical t Simulated Analytical

25.605 0.016640 0.016979 32.005 0.765210 0.767488
25.805 0.021170 0.021731 32.205 0.788620 0.791122
26.005 0.026420 0.027490 32.405 0.811180 0.813169
26.205 0.032860 0.034391 32.605 0.831400 0.833613
26.405 0.040910 0.042564 32.805 0.850860 0.852463
26.605 0.050410 0.052139 33.005 0.869020 0.869743
26.805 0.061490 0.063234 33.205 0.884060 0.885496
27.005 0.074020 0.075958 33.405 0.898080 0.899777
27.205 0.088680 0.090403 33.605 0.910950 0.912653
27.405 0.104930 0.106641 33.805 0.923320 0.924198
27.605 0.123250 0.124720 34.005 0.933560 0.934495
27.805 0.143160 0.144660 34.205 0.942700 0.943631
28.005 0.164710 0.166455 34.405 0.951060 0.951694
28.205 0.187980 0.190066 34.605 0.958330 0.958773
28.405 0.213170 0.215423 34.805 0.964630 0.964957
28.605 0.240960 0.242425 35.005 0.970190 0.970332
28.805 0.269260 0.270942 35.205 0.974880 0.974981
29.005 0.299300 0.300818 35.405 0.978940 0.978982
29.205 0.330490 0.331868 35.605 0.982560 0.982410
29.405 0.362360 0.363891 35.805 0.985580 0.985332
29.605 0.395080 0.396667 36.005 0.987980 0.987811
29.805 0.428160 0.429965 36.205 0.990040 0.989906
30.005 0.461350 0.463548 36.405 0.992030 0.991668
30.205 0.493880 0.497177 36.605 0.993350 0.993143
30.405 0.527590 0.530617 36.805 0.994600 0.994374
30.605 0.561840 0.563640 37.005 0.995600 0.995395
30.805 0.594630 0.596032 37.205 0.996300 0.996239
31.005 0.626510 0.627594 37.405 0.996860 0.996934
31.205 0.656950 0.658147 37.605 0.997450 0.997503
31.405 0.685580 0.687534 37.805 0.997990 0.997966
31.605 0.713420 0.715622 38.005 0.998490 0.998342
31.805 0.740940 0.742302 38.205 0.998750 0.998644

and Whitt [1] is used to obtain the first and second moments of failure time, which

are compared to results obtained via simulation in Table 4.6.
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Table 4.6 Lower moments of failure time for the turbine blade example.
Measure Simulated Analytical
E[Tx] 30.3253 30.3046
E[T 2

x ] 925.2438 924.0687

4.3 Chemical Decomposition of an Automotive Coating

In this final example, consider an automotive coating that is subject to weath-

ering by the outdoor environment. Environmental effects such as temperature and

solar radiation cause chemical decomposition of the coating, which can be measured

in terms of gloss loss and/or color change [7]. When the cumulative decomposition of

the coating reaches a certain threshold x, the coating is said to have reached failure.

Assume the chemical decomposition (degradation) rate is linear and depends

strictly on the random state of the outdoor weather environment to which the coating

is exposed. When the cumulative chemical decomposition of the coating reaches the

value x = 5.0, the coating is said to have failed. The weather environment, whose

next state depends only upon the current state, can be characterized as a semi-

Markov process and consists of five distinct states. These states, their definitions, the

probability distributions of their holding times, and their associated decomposition

rates are displayed in Table 4.7. Additionally, the transition probability matrix of

Table 4.7 Description of state space and decomposition rates for the coating example.
State Sky Temp Holding Times Decomposition Rate

1 Cloudy ≤ 32 deg F Weibull(3,5) 0.46
2 Cloudy > 32 deg F Beta(2,5) 0.82
3 Sunny ≤ 32 deg F Weibull(4,6) 1.10
4 Sunny > 32 deg F Beta(6,3) 1.34
5 Rain > 32 deg F Gamma(.5,.1) 1.98
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the embedded DTMC is given as

P =




0.0 0.5 0.2 0.2 0.1

0.5 0.0 0.3 0.1 0.1

0.2 0.4 0.0 0.2 0.2

0.1 0.1 0.2 0.0 0.6

0.2 0.1 0.1 0.6 0.0




.

From Table 4.7, the matrix of degradation rates is

RD =




0.46 0.00 0.00 0.00 0.00

0.00 0.82 0.00 0.00 0.00

0.00 0.00 1.10 0.00 0.00

0.00 0.00 0.00 1.34 0.00

0.00 0.00 0.00 0.00 1.98




.

Again, it is assumed that the environment process begins in the first state; therefore,

the initial probability vector is

α =
(

1 0 0 0 0
)
.

After observing the system over τ = 40000 time units, the Ti matrices and To
i

vectors of the phase-type representations of the five holding time distributions are

calculated as

T1 = [δij] for i = 1, . . . , 6, j = 1, . . . , 6,

where

δij =





−15.694, i = j

15.328, i = 1, j = 2

15.694, i = j − 1, j = 3, . . . , 6

0 otherwise

,
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To
1 = [γi] for i = 1, . . . , 6,

where

γi =





0.36645, i = 1

0, i = 2, . . . , 5

15.694, i = 6

,

T2 = [δij] for i = 1, . . . , 4, j = 1, . . . , 4,

where

δij =





−9.8485, i = j

9.602, i = 1, j = 2

9.8485, i = j − 1, j = 3, 4

0 otherwise

,

To
2 = [γi] for i = 1, . . . , 4,

where

γi =





0.24652, i = 1

0, i = 2, . . . , 3

9.8485, i = 4

,

T3 = [δij] for i = 1, . . . , 8, j = 1, . . . , 8,

where

δij =





−19.704, i = j

19.444, i = 1, j = 2

19.704, i = j − 1, j = 3, . . . , 8

0 otherwise

,

To
3 = [γi] for i = 1, . . . , 8,

where

γi =





0.25978, i = 1

0, i = 2, . . . , 7

19.704, i = 8

,
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T4 = [δij] for i = 1, . . . , 8, j = 1, . . . , 8,

where

δij =





−16.122, i = j

16.01, i = 1, j = 2

16.122, i = j − 1, j = 3, . . . , 8

0 otherwise

,

To
4 = [γi] for i = 1, . . . , 8,

where

γi =





0.11148, i = 1

0, i = 2, . . . , 7

16.122, i = 8

,

T5 = [δij] for i = 1, . . . , 2, j = 1, . . . , 2,

where

δij =





−22.404, i = j

0.43763, i = 1, j = 2

−3.6311, i = 2, j = 2

0 otherwise

,

and

To
5 = [γi] for i = 1, 2,

where

γi =





21.967, i = 1

3.6311, i = 2
.
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Furthermore, the observed transition rates among the five environment states are

presented as the elements of Q̂, where

Q̂ =




−2.6675 1.3358 0.5379 0.5336 0.2603

1.2608 −2.5092 0.7500 0.2502 0.2483

0.5079 0.9927 −2.4917 0.5004 0.4907

0.2001 0.2033 0.4167 −2.0275 1.2074

4.0752 1.9409 1.9833 11.9950 −19.9940




.

Using the above phase-type representations, the q̂ij elements of Q̂, and M = 10000,

the 33× 33 generator matrix of the newly formed CTMC is

Ψ =




Ψ11 Ψ12 Ψ13 Ψ14 Ψ15

Ψ21 Ψ22 Ψ23 Ψ24 Ψ25

Ψ31 Ψ32 Ψ33 Ψ34 Ψ35

Ψ41 Ψ42 Ψ43 Ψ44 Ψ45

Ψ51 Ψ52 Ψ53 Ψ54 Ψ55




,

where

Ψ11 =


 T1 To

1

0 −26675.0


 ,

Ψ12 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 5,

where

ψij =





13358.0, i = 7, j = 1

0 otherwise
,

Ψ13 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 9,

where

ψij =





5378.7, i = 7, j = 1

0 otherwise
, and
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Ψ14 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 9,

where

ψij =





5335.6, i = 7,j = 1

0 otherwise
,

Ψ15 = [ψij] for i = 1, . . . , 7, j = 1, . . . , 3,

where

ψij =





2602.6, i = 7, j = 1

0 otherwise
,

Ψ21 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 7,

where

ψij =





12608.0, i = 5, j = 1

0 otherwise
,

Ψ22 =


 T2 To

2

0 −25092.0


 ,

Ψ23 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 9,

where

ψij =





7499.9, i = 5, j = 1

0 otherwise
,

Ψ24 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 9,

where

ψij =





2502.0, i = 5, j = 1

0 otherwise
,

Ψ25 = [ψij] for i = 1, . . . , 5, j = 1, . . . , 3,

where

ψij =





2482.5, i = 5, j = 1

0 otherwise
,
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Ψ31 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 7,

where

ψij =





5079.3, i = 9, j = 1

0 otherwise
,

Ψ32 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 5,

where

ψij =





9926.7, i = 9, j = 1

0 otherwise
,

Ψ33 =


 T3 To

3

0 −24917.0


 ,

and

Ψ34 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

ψij =





5004.1, i = 9, j = 1

0 otherwise
,

Ψ35 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 3,

where

ψij =





4907.3, i = 9, j = 1

0 otherwise
,

Ψ41 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 7,

where

ψij =





2000.5, i = 9, j = 1

0 otherwise
,

Ψ42 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 5,
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where

ψij =





2033.4, i = 9, j = 1

0 otherwise
,

Ψ43 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

ψij =





4167.4, i = 9, j = 1

0 otherwise
,

and

Ψ44 =


 T4 To

4

0 −20275.0


 .

Ψ45 = [ψij] for i = 1, . . . , 9, j = 1, . . . , 3,

where

ψij =





12074.0, i = 9, j = 1

0 otherwise
,

Ψ51 = [ψij] for i = 1, . . . , 3, j = 1, . . . , 7,

where

ψij =





40752.0, i = 3, j = 1

0 otherwise
,

Ψ52 = [ψij] for i = 1, . . . , 3, j = 1, . . . , 5,

where

ψij =





19409.0, i = 3, j = 1

0 otherwise
,

Ψ53 = [ψij] for i = 1, . . . , 3, j = 1, . . . , 9,

where

ψij =





19833.0, i = 3, j = 1

0 otherwise
, and

Ψ54 = [ψij] for i = 1, . . . , 3, j = 1, . . . , 9,
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where

ψij =





119950.0000, i = 3, j = 1

0 otherwise
,

and

Ψ55 =


 T5 To

5

0 −199940.0


 .

The 33× 33 expanded degradation rate matrix is

Λ =




Λ11 0 0 0 0

0 Λ22 0 0 0

0 0 Λ33 0 0

0 0 0 Λ44 0

0 0 0 0 Λ55




,

where

Λ11 = [λij] for i = 1, . . . , 7, j = 1, . . . , 7,

where

λij =





2.3, i = j

0 otherwise
,

Λ22 = [λij] for i = 1, . . . , 5, j = 1, . . . , 5,

where

λij =





4.1, i = j

0 otherwise
,

Λ33 = [λij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

λij =





5.5, i = j

0 otherwise
,
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and

Λ44 = [λij] for i = 1, . . . , 9, j = 1, . . . , 9,

where

λij =





6.7, i = j

0 otherwise
,

and

Λ55 = [λij] for i = 1, . . . , 3, j = 1, . . . , 3,

where

λij =





9.9, i = j

0 otherwise
.

Applying Ψ,Λ, and α to Equation (3.45) gives the solution of the failure time distri-

bution in the transform space. The analytical results of the failure time distribution

in the time domain are compared to results derived via simulation in Table 4.8.

Based on this comparison, the technique developed in this thesis provides similar

results to those computed via simulation. In fact, the MAD in probability for this

example is 0.004181. Figure 4.3 gives a graphical comparison of the cumulative dis-

tribution values at various time points.
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Table 4.8 Cumulative probability values for the coating example.
t Simulated Analytical t Simulated Analytical

4.155 0.021700 0.022164 5.640 0.726490 0.723197
4.210 0.029530 0.029350 5.695 0.754040 0.750956
4.265 0.038490 0.038055 5.750 0.780140 0.777106
4.320 0.049100 0.048431 5.805 0.804230 0.801577
4.375 0.061180 0.060610 5.860 0.827300 0.824326
4.430 0.075030 0.074701 5.915 0.847530 0.845333
4.485 0.091160 0.090782 5.970 0.866250 0.864603
4.540 0.109060 0.108900 6.025 0.883390 0.882159
4.595 0.128770 0.129070 6.080 0.898950 0.898048
4.650 0.150780 0.151274 6.135 0.912910 0.912330
4.705 0.174850 0.175464 6.190 0.925670 0.925079
4.760 0.201460 0.201560 6.245 0.937570 0.936383
4.815 0.228750 0.229453 6.300 0.947580 0.946335
4.870 0.259000 0.259001 6.355 0.955760 0.955035
4.925 0.291560 0.290033 6.410 0.963040 0.962588
4.980 0.323730 0.322352 6.465 0.968900 0.969095
5.035 0.356320 0.355736 6.520 0.974440 0.974662
5.090 0.390980 0.389948 6.575 0.978930 0.979388
5.145 0.425950 0.424735 6.630 0.983290 0.983370
5.200 0.461860 0.459840 6.685 0.986990 0.986698
5.255 0.496930 0.495004 6.740 0.989770 0.989457
5.310 0.532100 0.529974 6.795 0.991880 0.991726
5.365 0.567740 0.564506 6.850 0.993720 0.993576
5.420 0.601350 0.598370 6.905 0.995140 0.995071
5.475 0.634620 0.631353 6.960 0.996270 0.996268
5.530 0.667410 0.663261 7.015 0.997180 0.997218
5.585 0.697890 0.693925 7.070 0.997820 0.997964
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Figure 4.3 Simulated versus analytical cumulative distribution functions for the coating
example.

Substituting the matrices Ψ,Λ, and α into Equation (3.46) gives the moments

of failure time in the transform space. Application of the one-dimensional Laplace

transform inversion algorithm of Abate and Whitt [1] is used to obtain the first

and second moments of failure time, which are compared to results obtained via

simulation in Table 4.9.

Table 4.9 Lower moments of failure time for the coating example.
Measure Simulated Analytical
E[Tx] 5.2830 5.2867
E[T 2

x ] 28.2738 28.3145

The examples in this chapter show that the failure time distribution of a system

experiencing wear due to an environment characterized as a semi-Markov process can

be approximated by simply observing the environment over time. In all three nu-

merical examples, the maximum absolute deviation (MAD) in probability was less
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than or equal to 0.0042. Considering the inherent inaccuracies due to the use of

phase-type approximations, the results are favorable. Assuming that the wear rates

imposed on the system by each state are known, lifetime estimation can be done

without monitoring the cumulative degradation level during the system’s operating

lifetime. This environment-based method is particularly advantageous over tradi-

tional degradation-based reliability techniques when the operating environment of

the system is known or observable but degradation measurements are difficult or

impossible to obtain.
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5. Conclusions and Future Research

This thesis presented a reliability analysis technique for a system that expe-

riences wear under the influence of a dynamic environment process. In particular,

this effort provided a means to compute the failure time distribution and moments

of failure time for a single-unit system whose wear rate depends on the state of

its stochastic environment when the environment is characterized as a semi-Markov

process. The numerical examples showed that a lifetime prediction can be made for

a degrading system simply by observing the system’s operating environment over

time.

The first step in this research effort was to review the two main approaches to

system lifetime estimation: classical failure time analysis and degradation-based reli-

ability analysis. After a more through study of the current literature on degradation-

based reliability techniques, it was observed that a common drawback of these ap-

proaches is the lack of consideration of the effects of the operating environment on the

performance of the system. Since many systems operate under complex and chang-

ing conditions, a study of the effects of the environment on a system is necessary

to obtain a realistic estimation of the system’s reliability. One environment-based

model produced good results, as compared to those from a simulation model, when

the state-dependent wear rates were known and the environment was characterized

as a finite state continuous-time Markov chain (CTMC) [16]. However, this model

assumed that the time spent in each of the environment states is an exponentially

distributed random variable. Under realistic conditions, the state holding time dis-

tributions may not be exponentially distributed or even known.

If the evolution of the environment is assumed to depend only upon the current

state, then any such environment process has an embedded discrete-time Markov

chain (DTMC) and can be characterized as a semi-Markov process. In such cases,

knowledge of the holding times in each state may be gained solely by observation.
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This thesis presented a technique in which an environment characterized as a semi-

Markov process can be re-characterized as a continuous-time Markov chain. This was

accomplished by approximating the state holding time distributions with phase-type

distributions. An overview of phase-type approximation techniques was presented in

chapter 3. The transition rates among the various states of the environment and the

phase-type representations were then used to construct the infinitesimal generator

matrix of the newly created CTMC. This generator matrix, the appropriately resized

matrix of wear rates, and the initial probability vector of the environment process

were used to compute the failure time distribution and moments of failure time of

the system in the transform using the one-dimensional technique found in [17].

After the entire procedure was outlined in chapter 3, numerical examples were

illustrated in chapter 4 to show the potential accuracy of failure time predictions

using the phase-type approximation technique. In each example, the environment

was observed for a sufficiently long time period during which the number of transi-

tions among the various states and the state holding times were observed. From the

transition observations, transition rates were estimated for each state of the environ-

ment. Phase-type representations of the state holding time distributions, computed

using an algorithm implemented in MATLABr, were then used with the transition

rates to construct the infinitesimal generator matrix of the newly formed CTMC.

The degradation rate matrix was expanded to account for the number of phases used

to approximate each state. The expanded degradation rate matrix, the generator

matrix, and the initial probability vector of the environment process were then used

as inputs to Equations (3.45) and (3.46) to obtain the failure time distribution val-

ues and moments of failure time, respectively, in the transform space. A numerical

inversion technique [1], implemented in MATLABr, was then used to obtain dis-

tribution values and moments in the time domain. These values were compared to

those obtained via simulation to show the relative accuracy of lifetime estimation. In

all three examples, the maximum absolute deviation (MAD) in probability was less
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than or equal to 0.0042. Considering that the infinitesimal generator matrix used

in Equation (3.45) was based upon phase-type approximations of the state holding

time distributions, these comparisons provide very favorable results.

The main contribution of this thesis effort is the resulting procedure for mak-

ing lifetime predictions of degrading systems based solely upon observations of their

operating environments. In particular, this work generalizes the results in [16] and

[17] to the case where state holding time distributions are nonexponential or even

unknown. By using phase-type distributions to approximate state holding time

distributions, the method developed in this thesis eliminates the requirement for

exponentially distributed holding times, allowing any environment that can be char-

acterized as a semi-Markov process to be converted into a CTMC. Furthermore, this

thesis expands the knowledge base of degradation-based reliability analysis by pro-

viding a technique for failure time estimation that does not rely upon degradation

measurements during the lifetime of the system. This technique can prove partic-

ularly useful in situations where the system’s operating environment is observable

or known, but where observations of the cumulative wear to the system over time

are not easy (or even possible) to obtain. For example, designers of components on

satellites or systems that operate under deep water may benefit from this technique.

Such systems may operate in predictable or observable environments, but restric-

tions due to weight, cost, or environmental conditions may prevent the collection of

degradation data.

Suggested areas for future research include expansion of the phase-type ap-

proximation technique to those other than the Coxian and Erlang distributions.

These distributions were used due to their simplicity and the fact that all arbitrary

distributions can be approximated by a Coxian or Erlang distribution based on the

coefficient of variation of the original distribution. The use of other phase-type distri-

butions may increase the accuracy of the approximation when compared to empirical

or known parametric distributions. This improved approximation technique should
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enhance the accuracy of the lifetime estimation when compared to simulated results.

Furthermore, modifications of this procedure that reduce the number of phases used

to approximate each sojourn time distribution would greatly reduce computational

effort due to a dimensionality reduction of the infinitesimal generator matrix and as-

sociated degradation rate matrix. In their recent work on phase-type distributions,

Osogami and Harchol-Balter [22] present a moment-matching algorithm that nearly

minimizes the number of phases used to approximate an arbitrary distribution. The

time available for observation of the system’s operating environment, and an accept-

able balance between the accuracy of the phase-type approximations and the number

of phases used for each state, will determine the efficacy of the procedures developed

in this thesis.
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Appendix A. Code for Brake Pad Example

%************************************************** ************************ 
% Plot_SMP_weib.m 
% 
% This MATLAB program runs the semi-Markov process (SMP) simulation 
(semi_Markov_weib.m) and then the 'simulation plus phase-type approximations 
plus analytical solution' program SMPweibstates.m.  The CDF values are then 
compared in a plot (Figure 2). 
% 
%************************************************** ************************ 
%  
% Author:  Captain Christopher J. Solo, M.S. candid ate, Operations Research 
%          Air Force Institute of Technology 
%   Date:  January 29, 2004 
% 
%************************************************** ************************ 
% 
clear all; 
% 
t=0.005:0.05:50.0;  % vector of time points at whic h to evaluate both CDFs 
% 
semi_Markov_weib;   % calls program to simulate sem i-Markov process (SMP) and 
obtain  
%                     failure times  
% 
SMPweibstates;   % calls program to simulate SMP (l ong term), compute phase-type  
%                  approximations, and produce anal ytical results of failure  
                   time distribution 
%     
% F = cdf values from simulation 
% FailureTimeProb = cdf values from phase-type anal ytical solution 
% 
% Produces plot of simulated failure time distribut ion vs. analytical 
% CDF derived via conversion of environment process  from SMP to CTMC 
% 
figure(2); 
plot(t,F,'r'); 
hold on;                      
plot(t,FailureTimeProb,'b'); 
grid off; 
title('Failure-time CDF values:  Simulated vs. Anal ytical'); 
xlabel('t'); 
ylabel('P(T < t)'); 
legend('Simulated CDF','Analytical CDF',0); 
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%******************************************************************************* 
% PROGRAM semi_Markov_weib.m 
% 
% The purpose of this MATLAB program is to simulate a finite-state semi-Markov  
% process.  The process is simulated in order to validate analytical solutions  
% for the distribution and moments of the lifetime of components whose  
% degradation threshold is WearThreshold.  The program uses function "rando" in  
% order to select the next state after a state transition. 
% 
%  Orig Author: Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%         Date: January 15, 2001 
%   Revised by: Captain Chris Solo, M.S. candidate, OR,  
%               Air Force Institute of Technology  
%         Date: January 29, 2004 
% 
%******************************************************************************* 
% VARIABLE DEFINTIONS 
***************************************************************** 
% 
% WearThreshold  = Degradation threshold (signifies failure) 
% k  = an index variable 
%******************************************************************************* 
 
% VECTOR/FUNCTION DEFINITIONS 
%********************************************************* 
% 
% Lifetime = Vector of lifetimes 
% B = Vector for the initial probability distribution of the Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degradation rate when environment  
%     is in state i). 
% Z = Vector of environment states 
%******************************************************************************* 
 
% The program assumes a state space of the form S={1,2,...K} 
 
semi_Markov_input_weib;   % Obtain intialization parameters 
Z = [];           % Initialize Z. 
for k = 1:length(Lifetime) 
   Z = []; 
   Z(1)=rando(B);   % Initial state of the environment at time 0 
   Lifetime(k) = weibrnd(K(Z(1),1),K(Z(1),2)); % Time spent in initial state 
   D = 0.0;        % At time 0, degradation is 0 
   D = D + Lifetime(k)*V(Z(1));   % Add degradation to cumulative degradation 
   i=1; 
   while D < WearThreshold % Do while cumulative degradation < WearThreshold 
      Z(i+1) = rando(P(Z(i),:));  % Use the matrix P to determine next state 
      new_time = weibrnd(K(Z(i+1),1),K(Z(i+1),2)); % Time spent in state i+1 
      D = D + new_time*V(Z(i+1)); % Update cumulative degradation 
      Lifetime(k) = Lifetime(k) + new_time; % Update total lifetime 
      i=i+1; 
   end 
Lifetime(k)=Lifetime(k)-(1/V(Z(i)))*(D-WearThreshold); % Subtract time after  
                                                       % reaching threshold 
end 
get_cdf_weib; % Computes empirical distribution 
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%************************************************** ***************************** 
% PROGRAM semi_Markov_input_weib.m 
% 
% The purpose of this MATLAB program is to provide input data to program  
% semi_Markov_weib.m for simulation of a finite-sta te semi-Markov process  
% (K states).  The process is simulated in order to  validate analytical  
% solutions for the distribution and moments of the  failure time of systems with  
% degradation threshold L subject to a SMP environm ent.  The program uses  
% function "rando" in order to select the next stat e after a state transition. 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  January 15, 2001 
%   Revised by:  Captain Christopher Solo, M.S., OR ,  
%                Air Force Institute of Technology 
% Last Revised:  January 17, 2004 
% 
%************************************************** ***************************** 
% VARIABLE DEFINTIONS 
*************************************************** ************** 
% 
% WearThreshold  = degradation threshold (system fa ils after accumulating L  
%                  amount of damage) 
% 
%************************************************** ***************************** 
% VECTOR/FUNCTION DEFINITIONS 
%************************************************** ******** 
% 
% T = Vector of failure time observations  
% B = Vector for the initial probability distributi on of the semi-Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degr ad. rate when environment is  
%     in state i). 
%************************************************** ***************************** 
 
% Initialize variable and vector values 
 
WearThreshold = 3.0;  % Component reaches 'failure'  with this level of 
degradation 
N = 3;                % number of states 
 
Lifetime = zeros(1,100000);   % number of simulatio ns (failure time 
observations) 
B = [1 zeros(1,N-1)];  
% 
S = [1,2,3];               % states of the environm ent 
V = [1,10,20];      % vector of degradation rates 
% 
P = [0.0 0.7 0.3;   % transition probability matrix ;  
     0.6 0.0 0.4;       
     0.2 0.8 0.0]; 
 
K = [4 2;  % Parameter matrix--each row gives param eters of distribution 
     5 3;             
     6 4]; 

A-3



%************************************************** ***************************** 
% PROGRAM get_cdf_weib.m 
% 
% The purpose of this MATLAB program is to construc t an empirical distribution  
% function based upon a vector of observations of s ome continuous random  
% variable.  The values of the CDF are generally us ed for the purpose of  
% performing hypothesis tests on the equality of tw o nonparametric distributions.   
% Other approaches for testing may be the Cramer vo n Mises test, which is  
% similar to the K-S two-sample test, but slightly more robust.  
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  June 2000 
%   Revised by:  Captain Chris Solo, M.S. candidate , OR,  
%                Air Force Institute of Technology 
% Last Revised:  January 18, 2004 
%************************************************** ***************************** 
% VECTOR DEFINITIONS  
%************************************************** ***************** 
% 
% Lifetime = The finite-dimensional vector of real observations (read from  
%            semi_Markov_weib.m) 
% t = The vector of points at which to estimate the  CDF. 
% F = The vector of CDF estimates.  That is, F(i) =  F(t(i)), i=1,2,...,n of  
%     {1,2,...,C}.   
%************************************************** *****************************    
% 
F = zeros(1,length(t));  % This ensures that t and F are vectors of equal length 
% 
% Compute the cdf value at the point t0 
% 
for i = 1:length(t) 
    F(i) = 0.0; 
    for j = 1:length(Lifetime) 
        if Lifetime(j)<= t(i) 
            F(i) = F(i) + 1/length(Lifetime); 
        else 
            F(i) = F(i); 
        end 
    end 
end 
% 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('F:\AFIT\Thesis\Solo Thesis\SMP 
simulation\results\brakesimulated.out','w'); 
for b=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(b),F(b)); 
end 
fclose(fid) 
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%************************************************************************** 
% SMPweibstates.m 
% 
% The purpose of this MATLAB program is to simulate a semi-Markov process (SMP)  
% on a state space S and convert it into a continuous-time Markov chain, using a  
% phase-type distribution to approximate the holding time distribution of each 
% environment state.  Each of the environment states is known to have a Weibull 
% holding time distribution (each with different parameters.)  The output 
% is the analytical solution for the failure time distribution of a system  
% subject to the SMP environment, based on the results of Kharoufeh (2003) and  
% Kharoufeh and Sipe (2004). 
% 
% Original code for process.m and rando.m obtained from Craig L. Zirbel at  
% http://www-math.bgsu.edu/~zirbel/ap/  It appeared that the code was based 
% on a discrete time Markov chain, and Captain Steve Cox modified it to work 
% for a continuous-time Markov chain.  Captain Chris Solo modified it to be 
% a SMP (January 2004). 
% 
%************************************************************************** 
%  
%       Author:  Captain Christopher J. Solo, M.S. candidate,  
%                Operations Research, Air Force Institute of Technology 
%         Date:  September 13, 2003 
% Last Revised:  January 18, 2004 
% 
%************************************************************************** 
%                             USER INPUTS 
% Tmax = time of SMP run 
% numruns = number of simulations (runs) 
% mu = initial probability vector of environment states 
% S = state space vector 
% R = degradation rate vector of environment states 
% P = transition probability matrix 
% K = matrix of Weibull parameters for environment states 
% M = large value used in Big M (hot potato) method 
% 
% Additionally, rando.m, phasetypeapprox.m, PHvalues.m, invt_lap_Solo.m, and  
% failLST.m are needed.   
% 
%******************************************************************************* 
% For many short runs, set numruns high and Tmax low.  For one long run, 
% set numruns equal to 1 and make Tmax high. 
 
format long g; 
 
%********************************************************************* 
%                           User Inputs 
% 
numruns = 1;       % the number of times (runs) to simulate the process 
 
Tmax = 10000;     % This is the length of the run of the environment process 
 
mu = [1,0,0,0];    % Semi-Markov process (SMP) starts in state 1 
 
S =  [1,2,3];    % There are three states defined 
 
R =  [.1,1,2];  % Degradation rate of each state of environment 
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P = [0.0 0.7 0.3;   % transition probability matrix;  
     0.6 0.0 0.4;       
     0.2 0.8 0.0]; 
 
K = [4 2;          % Parameter matrix--each row gives parameters of different 
distribution 
     5 3;             
     6 4]; 
%  
%****************************************************************** 
% 
% Simulation of the semi-Markov process (SMP) 
% 
statetimeTij = zeros(length(S),length(S)); 
statetimeTi = []; 
scale = 1; 
% 
TimeToFail(1) = 0;       % start times at 0 
%Tall(runnum,1) = 0; 
x(1) = rando(mu);        % determine starting state (time 0, not time 1) 
%xall(runnum,1) = x(1); 
rates(1) = R(x(1)); 
%ratesall(runnum,1) = rates(1); 
i = 1; 
%       
while TimeToFail(i) < Tmax, 
    x(i+1) = rando(P(x(i),:));              % Row vector from P-matrix 
determines next transitions 
    %xall(runnum,i+1) = x(i+1); 
    time(i) = weibrnd(K(x(i),1),K(x(i),2)); % Generate Weibull rv based on  
                                            % current state 
    statetimeTij(x(i),x(i+1)) = statetimeTij(x(i),x(i+1)) + time(i); 
    TimeToFail(i+1) = TimeToFail(i) + time(i);  % Add to current time   
    %Tall(runnum,i+1) = T(i+1); 
    rates(i+1) = R(x(i+1));     % Determine the rate needed for this transition 
    %ratesall(runnum,i+1) = rates(i+1); 
    i=i+1; 
end 
%     
% Determine the number of transitions from one state to the next 
% 
numij = zeros(length(S),length(S)); 
for k = 1:length(x)-2 
    numij(x(k),x(k+1)) = numij(x(k),x(k+1)) + 1; 
end 
% 
% Compute the observed transition rates among the environment states 
%     
for i = 1:length(numij) 
        for j = 1:length(numij) 
            if j ~= i 
                Qhat(i,j) = numij(i,j)/sum(statetimeTij(i,:)); 
            else 
                Qhat(i,j) = 0; 
            end 
        end 
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        Qhat(i,i) = -sum(Qhat(i,:)); 
        statetimeTi(i,1) = sum(statetimeTij(i,:)); % total time spent in state i 
    end 
%       
%************************************************** ************************ 
% This section creates vectors of the holding times  in States 1,2, and 3 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
for i = 1:length(time) 
    for j = 1:length(S)  
        if rates(i) == R(j) 
           HoldingTime(i,j) = time(i);   % creates matrix where column i 
        end                              % represen ts holding times in state i  
    end 
end 
State1times = HoldingTime(:,1); 
State1times = State1times(find(State1times)); % eli minates zeros in holding time  
                                              % col umn  
State2times = HoldingTime(:,2); 
State2times = State2times(find(State2times)); % eli minates zeros in holding time  
                                              % col umn 
State3times = HoldingTime(:,3); 
State3times = State3times(find(State3times)); % eli minates zeros in holding time  
                                              % col umn 
% 
%************************************************** ************************ 
% This section computes the phase-type approximatio ns for each of the  
% environment states 
%    ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
M=10000;     % this is the large value for the 'hot  potato method' 
             % i.e. since there is really no 'absor bing phase' for any 
             % state, we wish to visit each absorbi ng phase 
             % instantaneously. 
             % therefore, its rate is extremely lar ge (approaches infinity) 
% 
 
for State = 1:length(S) 
    clear A; 
    clear alpha1; 
    clear alpha2; 
    clear alpha; 
    clear beta; 
    clear k; 
    clear T; 
    clear To; 
    if State == 1 
        distribution = 2; 
        A = State1times; 
        alpha1=0; % parameter not needed; dummy val ue only 
        alpha2=0; % parameter not needed; dummy val ue only 
        alpha=K(State,2);  
        beta=K(State,1);   
        Aparam = 0; % parameter not needed; dummy v alue only 
        Bparam = 0; % parameter not needed; dummy v alue only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Apa ram,Bparam,distribution);  
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% creates phase-type approximations to each of the holding time distributions 
        k1=k; 
        T1=T; 
        To1=To; 
        zerovector1=zeros(1,k1); 
        Psimatrix11 = [ T1          To1;      % subgenerator matrix for state 1 
                    zerovector1  Qhat(1,1)*M]; 
    elseif State == 2 
        distribution = 2; 
        A = State2times; 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0; % parameter not needed; dummy value only 
        alpha=K(State,2);  
        beta=K(State,1);  
        Aparam = 0; % parameter not needed; dummy value only 
        Bparam = 0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k2=k; 
        T2=T; 
        To2=To; 
        zerovector2=zeros(1,k2); 
        Psimatrix22 = [  T2       To2;   % subgenerator matrix for state 2 
                    zerovector2  Qhat(2,2)*M]; 
    elseif State == 3 
        distribution = 2; 
        A = State3times; 
        alpha=K(State,2); 
        beta=K(State,1); 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0;  % parameter not needed; dummy value only 
        Aparam = 0; % parameter not needed; dummy value only 
        Bparam = 0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k3=k; 
        T3=T; 
        To3=To; 
        zerovector3=zeros(1,k3); 
        Psimatrix33 = [  T3     To3;      % subgenerator matrix for state 3 
                  zerovector3  Qhat(3,3)*M]; 
    end 
end 
% 
%************************************************************************** 
% OFF-DIAGONAL subgenerator matrices  
% ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
Psimatrix12 = zeros(k1+1,k2+1); 
Psimatrix12(k1+1,1)=Qhat(1,2)*M; 
% 
Psimatrix13 = zeros(k1+1,k3+1); 
Psimatrix13(k1+1,1)=Qhat(1,3)*M; 
% 
Psimatrix21 = zeros(k2+1,k1+1); 
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Psimatrix21(k2+1,1)=Qhat(2,1)*M; 
% 
Psimatrix23 = zeros(k2+1,k3+1); 
Psimatrix23(k2+1,1)=Qhat(2,3)*M; 
% 
Psimatrix31 = zeros(k3+1,k1+1); 
Psimatrix31(k3+1,1)=Qhat(3,1)*M; 
% 
Psimatrix32 = zeros(k3+1,k2+1); 
Psimatrix32(k3+1,1)=Qhat(3,2)*M; 
% 
Psimatrix = [Psimatrix11 Psimatrix12 Psimatrix13;   % overall generator matrix  
             Psimatrix21 Psimatrix22 Psimatrix23;   % of (newly-created) CTMC 
             Psimatrix31 Psimatrix32 Psimatrix33]; 
% 
%************************************************** ************************ 
%      This section creates the expanded degradatio n rate matrix Lambda 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
V=diag(R); 
L11 = diag(diag(V(1,1)*ones(k1+1))); 
L12 = zeros(k1+1,k2+1); 
L13 = zeros(k1+1,k3+1); 
L21 = zeros(k2+1,k1+1); 
L22 = diag(diag(V(2,2)*ones(k2+1))); 
L23 = zeros(k2+1,k3+1); 
L31 = zeros(k3+1,k1+1); 
L32 = zeros(k3+1,k2+1); 
L33 = diag(diag(V(3,3)*ones(k3+1))); 
% 
L = [L11 L12 L13;  % expanded degradation rate matr ix 
     L21 L22 L23; 
     L31 L32 L33]; 
% 
%************************************************** ************************ 
% Display the results of the phase-type approximati ons 
% 
fprintf(' Size of generator matrix (Psimatrix):  %g  x %g \n', length(Psimatrix), 
length(Psimatrix)) 
fprintf('\n') 
fprintf(' Size of expanded degradation rate matrix (Lambda):  %g x %g \n', 
length(L), length(L)) 
fprintf('\n') 
fprintf(' ****************************** \n') 
fprintf('\n') 
% 
%************************************************** ************************ 
% This section computes and plots the failure time distribution of the 
% system exposed to the SMP environment  
% 
for w = 1:length(t) 
    FailureTimeProb(w) = invt_lap_Solo(t(w),Psimatr ix,L); 
    if FailureTimeProb(w) > 1       
        FailureTimeProb(w) = 1;   % eliminates CDF values > 1 
    elseif FailureTimeProb(w) < 0  
        FailureTimeProb(w) = 0;   % eliminates CDF values < 0 
    end 
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end 
% 
%************************************************** ************************ 
%  Compute first and second moment of failure time distribution 
% 
First_Moment = invt_lap_first_moment(WearThreshold, Psimatrix,L); 
% 
Second_Moment = invt_lap_second_moment(WearThreshol d,Psimatrix,L); 
% 
%************************************************** ************************ 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('f:\AFIT\Thesis\Solo Thesis\MATLAB file s\SMP 
simulation\results\brakeanalytical.out','w'); 
for k=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(k),FailureTimePr ob(k)); 
end 
fclose(fid); 
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Appendix B. Code for Turbine Blade Example

%************************************************** ************************ 
% Plot_SMP_mixed.m 
% 
% This MATLAB program runs the semi-Markov process (SMP) simulation  
% (semi_Markov.m) and then the 'simulation plus pha se-type approximations plus  
% analytical solution' program SMPmixedstates.m.  T he CDF values are then  
% compared in a plot (Figure 2). 
% 
%************************************************** ************************ 
%  
% Author:  Captain Christopher J. Solo, M.S. candid ate, Operations Research 
%          Air Force Institute of Technology 
%   Date:  January 29, 2004 
% 
%************************************************** ************************ 
% 
clear all; 
% 
t=0.005:0.05:50.0;  % vector of time points at whic h to evaluate both CDFs 
% 
semi_Markov_mixed;  % calls program to simulate sem i-Markov process (SMP) and 
obtain  
%                     failure times  
% 
% SMPmixedstates;   % calls program to simulate SMP  (long term), compute phase- 
                    % type approximations, and prod uce analytical results of  
                    % failure time distribution 
%    
% F = cdf values from simulation 
% FailureTimeProb = cdf values from phase-type anal ytical solution 
% 
% Produces plot of simulated failure-time distribut ion vs. analytical 
% CDF derived via conversion of environment process  from SMP to CTMC 
% 
 figure(2); 
 plot(t,F,'r'); 
 hold on;                      
 plot(t,FailureTimeProb,'b'); 
 grid off; 
 title('Failure-time CDF values:  Simulated vs. Ana lytical'); 
 xlabel('t'); 
 ylabel('P(T < t)'); 
 legend('Simulated CDF','Analytical CDF',0); 
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%******************************************************************************* 
% PROGRAM semi_Markov_mixed.m 
% 
% The purpose of this MATLAB program is to simulate a finite-state semi-Markov  
% process.  The process is simulated in order to validate analytical solutions  
% for the distribution and moments of the lifetime of components whose  
% degradation threshold is WearThreshold.  The program uses function "rando" in  
% order to select the next state after a state transition. 
% 
%  Orig Author: Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%         Date: January 15, 2001 
%   Revised by: Captain Chris Solo, M.S. candidate, OR, \ 
%               Air Force Institute of Technology  
%         Date: 29 January 2004 
% 
%******************************************************************************* 
% VARIABLE DEFINTIONS 
***************************************************************** 
% 
% WearThreshold  = Degradation threshold (signifies failure) 
% k  = an index variable 
%******************************************************************************* 
% VECTOR/FUNCTION DEFINITIONS 
%********************************************************* 
% 
% Lifetime = Vector of lifetimes 
% B = Vector for the initial probability distribution of the Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degradation rate when environment  
%     is in state i). 
% Z = Vector of environment states 
%******************************************************************************* 
 
% The program assumes a state space of the form S={1,2,...K} 
 
semi_Markov_input_mixed;   % Obtain intialization parameters 
Z = [];            % Initialize Z. 
 
for k = 1:length(Lifetime) 
   Z = []; 
   Z(1)=rando(B);       % Initial state of the environment at time 0 
    
   if (Z(1) == S(1)) | (Z(1) == S(2)) 
       Lifetime(k) = betarnd(K(Z(1),1),K(Z(1),2)); % Time spent in initial state 
   elseif (Z(1) == S(3)) | (Z(1) == S(4)) 
       Lifetime(k) = weibrnd(K(Z(1),1),K(Z(1),2)); % Time spent in initial state 
   end 
             
   D = 0.0;        % At time 0, degradation is 0 
   D = D + Lifetime(k)*V(Z(1));   % Add degradation to cumulative degradation 
   i=1; 
   while D < WearThreshold % Do while cumulative degradation is < WearThreshold 
      Z(i+1) = rando(P(Z(i),:));  % Use the matrix P to determine next state 
      if (Z(i+1) == S(1)) | (Z(i+1) == S(2)) 
         new_time = betarnd(K(Z(i+1),1),K(Z(i+1),2)); % Time spent in state i+1 
      elseif (Z(i+1) == S(3)) | (Z(i+1) == S(4)) 
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         new_time = weibrnd(K(Z(i+1),1),K(Z(i+1),2)); % Time spent in state i+1 
      end 
      D = D + new_time*V(Z(i+1)); % Update cumulative degradation 
      Lifetime(k) = Lifetime(k) + new_time; % Update total lifetime 
      i=i+1;  
   end 
   Lifetime(k)=Lifetime(k)-(1/V(Z(i)))*(D-WearThreshold); % Subtract time after  
                                                          % reaching threshold 
end 
get_cdf_mixed; % Computes empirical distribution 
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%************************************************** ***************************** 
% PROGRAM semi_Markov_input_mixed.m 
% 
% The purpose of this MATLAB program is to provide input data to program  
% semi_Markov_mixed.m for simulation of a finite-st ate semi-Markov process (K  
% states).  The process is simulated in order to va lidate analytical solutions  
% for the distribution and moments of the failure t ime of systems with  
% degradation threshold L subject to a SMP environm ent.  The program uses  
% function "rando" in order to select the next stat e after a state transition. 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  January 15, 2001 
%   Revised by:  Captain Christopher Solo, M.S., OR ,  
%                Air Force Institute of Technology 
% Last Revised:  January 17, 2004 
%************************************************** ***************************** 
% VARIABLE DEFINTIONS 
*************************************************** ************** 
% 
% WearThreshold  = degradation threshold (system fa ils after accumulating this  
% amount of damage) 
% 
%************************************************** ***************************** 
% VECTOR/FUNCTION DEFINITIONS  
%************************************************** ******** 
% 
% T = Vector of failure time observations  
% B = Vector for the initial probability distributi on of the semi-Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degr ad. rate when environment is  
%     in state i). 
%************************************************** ***************************** 
% Initialize variable and vector values 
 
WearThreshold = 20.0;  % Component reaches 'failure ' with this level of  
                       % degradation 
N = 4;                 % number of states 
 
Lifetime = zeros(1,100000);   % number of simulatio ns (failure time obs) 
B = [1 zeros(1,N-1)];  
% 
S = [1,2,3,4];               % states of the enviro nment 
V = [1.7/10, 4.3/10, 7.5/10, 12.9/10];      % vecto r of degradation rates 
% 
P = [0 .6 .2 .2;      % transition probability matr ix;  
    .5  0 .4 .1;       
    .2 .4  0 .4; 
    .1 .3 .6  0]; 
%     
K = [3 5;     % Parameter matrix--each row gives pa rameters of distribution 
     2 4;             
     5 2; 
     6 3]; 
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%************************************************** ***************************** 
% PROGRAM get_cdf_mixed.m 
% 
% The purpose of this MATLAB program is to construc t an empirical distribution  
% function based upon a vector of observations of s ome continuous random  
% variable.  The values of the CDF are generally us ed for the purpose of  
% performing hypothesis test on the equality of two  nonparametric distributions.   
% Other approaches for testing may be the Cramer vo n Mises test, which is  
% similar to the K-S two-sample test, but slightly more robust.  
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  June 2000 
%   Revised by:  Captain Chris Solo, M.S. candidate , OR, 
%                Air Force Institute of Technology 
% Last Revised:  January 18, 2004 
% 
%************************************************** ***************************** 
% VECTOR DEFINITIONS 
%************************************************** ***************** 
% 
% Lifetime = The finite-dimensional vector of real obs 
% t = The vector of points at which to estimate the  CDF. 
% F = The vector of CDF estimates.  That is, F(i) =  F(t(i)), i=1,2,...,nof  
%     {1,2,...,C}.   
%************************************************** *****************************    
% 
F = zeros(1,length(t));  % This ensures that t and F are vectors of equal length 
% 
% Compute the cdf value at the point t0 
% 
for i = 1:length(t) 
    F(i) = 0.0; 
    for j = 1:length(Lifetime) 
        if Lifetime(j)<= t(i) 
            F(i) = F(i) + 1/length(Lifetime); 
        else 
            F(i) = F(i); 
        end 
    end 
end 
% 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('F:\AFIT\Thesis\Solo Thesis\SMP 
simulation\results\turbinesimulated.out','w'); 
for b=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(b),F(b)); 
end 
fclose(fid) 
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%************************************************************************** 
% SMPmixedstates.m 
% 
% The purpose of this MATLAB program is to simulate a semi-Markov process (SMP)  
% on a state space S and convert it into a continuous-time Markov chain, using a  
% phase-type distribution to approximate the holding time distribution of each 
% environment state.  Each of the environment states is known to have a Weibull 
% holding time distribution (each with different parameters.)  The output 
% is the analytical solution for the failure-time distribution of a system  
% subject to the SMP environment, based on the results of Kharoufeh (2003) and  
% Kharoufeh and Sipe (2004). 
% 
% Original code for process.m and rando.m obtained from Craig L. Zirbel at  
% http://www-math.bgsu.edu/~zirbel/ap/  It appeared that the code was based 
% on a discrete time Markov chain, and Captain Steve Cox modified it to work 
% for a continuous-time Markov chain.  Captain Chris Solo modified it to be 
% a SMP (January 2004). 
% 
%************************************************************************** 
%  
%       Author:  Captain Christopher J. Solo, M.S. candidate,  
%                Operations Research 
%                Air Force Institute of Technology 
%         Date:  September 13, 2003 
% Last Revised:  January 18, 2004 
% 
%************************************************************************** 
%                             USER INPUTS 
% Tmax = time of SMP run 
% numruns = number of simulations (runs) 
% mu = initial probability vector of environment states 
% S = state space vector 
% R = degradation rate vector of environment states 
% P = transition probability matrix 
% K = matrix of Weibull parameters for environment states 
% M = large value used in Big M (hot potato) method 
% 
% Additionally, rando.m, phasetypeapproxmixed.m, PHvalues.m, invt_lap_Solo.m,  
% and failLST.m are needed.   
% 
%******************************************************************************* 
% For many short runs, set numruns high and Tmax low.  For one long run, 
% set numruns equal to 1 and make Tmax high. 
 
format long g; 
 
%********************************************************************* 
%                           User Inputs 
% 
numruns = 1;       % the number of times (runs) to simulate the process 
 
Tmax = 10000;     % This is the length of the run of the environment process 
 
mu = [1,0,0,0];    % Semi-Markov process (SMP) starts in state 1 
 
S =  [1,2,3,4];    % There are three states defined 
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R =  [1.7/10, 4.3/10, 7.5/10, 12.9/10];  % Degradation rate of each state of  
                                         % environment 
 
P = [0 .6 .2 .2;   % transition probability matrix;  
    .5  0 .4 .1;       
    .2 .4  0 .4; 
    .1 .3 .6  0]; 
 
K = [3 5;      % Parameter matrix--each row gives parameters of distribution 
     2 4;             
     5 2; 
     6 3]; 
%  
%****************************************************************** 
% 
% Simulation of the semi-Markov process (SMP) 
% 
statetimeTij = zeros(length(S),length(S)); 
statetimeTi = []; 
scale = 1; 
% 
TimeToFail(1) = 0;       % start times at 0 
%Tall(runnum,1) = 0; 
x(1) = rando(mu);        % determine starting state (time 0, not time 1) 
%xall(runnum,1) = x(1); 
rates(1) = R(x(1)); 
%ratesall(runnum,1) = rates(1); 
i = 1; 
%       
while TimeToFail(i) < Tmax, 
    x(i+1) = rando(P(x(i),:)); % Row vector from P-matrix determines next  
                               % transitions 
    %xall(runnum,i+1) = x(i+1); 
    if x(i) == S(1) |  x(i) == S(2) 
        time(i) = betarnd(K(x(i),1),K(x(i),2)); % Generate beta rv based on  
                                                % current state 
    elseif x(i) == S(3) |  x(i) == S(4) 
        time(i) = weibrnd(K(x(i),1),K(x(i),2)); % Generate Weibull rv based on  
                                                % current state 
    end 
    statetimeTij(x(i),x(i+1)) = statetimeTij(x(i),x(i+1)) + time(i); 
    TimeToFail(i+1) = TimeToFail(i) + time(i);  % Add to current time   
    %Tall(runnum,i+1) = T(i+1); 
    rates(i+1) = R(x(i+1));      % Determine the rate needed for this transition 
    %ratesall(runnum,i+1) = rates(i+1); 
    i=i+1; 
end 
%     
% Determine the number of transitions from one state to the next 
% 
numij = zeros(length(S),length(S)); 
for k = 1:length(x)-2 
    numij(x(k),x(k+1)) = numij(x(k),x(k+1)) + 1; 
end 
% 
% Compute the observed transition rates among the environment states 
%     
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for i = 1:length(numij) 
        for j = 1:length(numij) 
            if j ~= i 
                Qhat(i,j) = numij(i,j)/sum(statetim eTij(i,:)); 
            else 
                Qhat(i,j) = 0; 
            end 
        end 
        Qhat(i,i) = -sum(Qhat(i,:)); 
        statetimeTi(i,1) = sum(statetimeTij(i,:)); % total time spent in state i 
    end 
%       
%************************************************** ************************ 
% This section creates vectors of the holding times  in States 1,2, and 3 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
for i = 1:length(time) 
    for j = 1:length(S)  
        if rates(i) == R(j) 
           HoldingTime(i,j) = time(i);   % creates matrix where column i 
        end                               % represe nts holding times in state i  
    end 
end 
State1times = HoldingTime(:,1); 
State1times = State1times(find(State1times)); % eli minates zeros in holding time  
                                              % col umn  
State2times = HoldingTime(:,2); 
State2times = State2times(find(State2times)); % eli minates zeros in holding time  
                                              % col umn 
State3times = HoldingTime(:,3); 
State3times = State3times(find(State3times)); % eli minates zeros in holding time  
                                              % col umn 
State4times = HoldingTime(:,4); 
State4times = State4times(find(State4times)); % eli minates zeros in holding time  
                                              % col umn 
% 
%************************************************** ************************ 
% This section computes the phase-type approximatio ns for each of the  
% environment states 
%    ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
M=10000;     % this is the large value for the 'hot  potato method' 
             % i.e. since there is really no 'absor bing phase' for any 
             % state, we wish to visit each absorbi ng phase 
             % instantaneously. 
             % therefore, its rate is extremely lar ge (approaches infinity) 
% 
 
for State = 1:length(S) 
    clear A; 
    clear alpha1; 
    clear alpha2; 
    clear alpha; 
    clear beta; 
    clear k; 
    clear T; 
    clear To; 
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    if State == 1 
        distribution = 3; 
        A = State1times; 
        alpha1=K(State,1); 
        alpha2=K(State,2); 
        alpha=0; % parameter not needed; dummy value only 
        beta=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k1=k; 
        T1=T; 
        To1=To; 
        zerovector1=zeros(1,k1); 
        Psimatrix11 = [   T1     To1;  % subgenerator matrix for state 1 
                      zerovector1  Qhat(1,1)*M]; 
    elseif State == 2 
        distribution = 3; 
        A = State2times; 
        alpha1=K(State,1); 
        alpha2=K(State,2); 
        alpha=0; % parameter not needed; dummy value only 
        beta=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k2=k; 
        T2=T; 
        To2=To; 
        zerovector2=zeros(1,k2); 
        Psimatrix22 = [     T2    To2;      % subgenerator matrix for state 2 
                    zerovector2  Qhat(2,2)*M]; 
    elseif State == 3 
        distribution = 2; 
        A = State3times; 
        alpha=K(State,2); 
        beta=K(State,1); 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k3=k; 
        T3=T; 
        To3=To; 
        zerovector3=zeros(1,k3); 
        Psimatrix33 = [   T3     To3;      % subgenerator matrix for state 3 
                  zerovector3  Qhat(3,3)*M]; 
    elseif State == 4 
        distribution = 2; 
        A = State4times; 
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        alpha=K(State,2); 
        beta=K(State,1); 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k4=k; 
        T4=T; 
        To4=To; 
        zerovector4=zeros(1,k4); 
        Psimatrix44 = [     T4      To4;      % subgenerator matrix for state 3 
                    zerovector4  Qhat(4,4)*M]; 
    end 
end 
% 
%************************************************************************** 
% OFF-DIAGONAL subgenerator matrices  
% ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
Psimatrix12 = zeros(k1+1,k2+1); 
Psimatrix12(k1+1,1)=Qhat(1,2)*M; 
% 
Psimatrix13 = zeros(k1+1,k3+1); 
Psimatrix13(k1+1,1)=Qhat(1,3)*M; 
% 
Psimatrix14 = zeros(k1+1,k4+1); 
Psimatrix14(k1+1,1)=Qhat(1,4)*M; 
% 
Psimatrix21 = zeros(k2+1,k1+1); 
Psimatrix21(k2+1,1)=Qhat(2,1)*M; 
% 
Psimatrix23 = zeros(k2+1,k3+1); 
Psimatrix23(k2+1,1)=Qhat(2,3)*M; 
% 
Psimatrix24 = zeros(k2+1,k4+1); 
Psimatrix24(k2+1,1)=Qhat(2,4)*M; 
% 
Psimatrix31 = zeros(k3+1,k1+1); 
Psimatrix31(k3+1,1)=Qhat(3,1)*M; 
% 
Psimatrix32 = zeros(k3+1,k2+1); 
Psimatrix32(k3+1,1)=Qhat(3,2)*M; 
% 
Psimatrix34 = zeros(k3+1,k4+1); 
Psimatrix34(k3+1,1)=Qhat(3,4)*M; 
% 
Psimatrix41 = zeros(k4+1,k1+1); 
Psimatrix41(k4+1,1)=Qhat(4,1)*M; 
% 
Psimatrix42 = zeros(k4+1,k2+1); 
Psimatrix42(k4+1,1)=Qhat(4,2)*M; 
% 
Psimatrix43 = zeros(k4+1,k3+1); 
Psimatrix43(k4+1,1)=Qhat(4,3)*M; 

B-10



 
Psimatrix = [Psimatrix11 Psimatrix12 Psimatrix13 Ps imatrix14;  % overall  
             Psimatrix21 Psimatrix22 Psimatrix23 Ps imatrix24;  % gener. matrix  
             Psimatrix31 Psimatrix32 Psimatrix33 Ps imatrix34;  % of (newly-  
             Psimatrix41 Psimatrix42 Psimatrix43 Ps imatrix44]; % created) CTMC  
% 
%************************************************** ************************ 
%      This section creates the expanded degradatio n rate matrix Lambda 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
V=diag(R); 
L11 = diag(diag(V(1,1)*ones(k1+1))); 
L12 = zeros(k1+1,k2+1); 
L13 = zeros(k1+1,k3+1); 
L14 = zeros(k1+1,k4+1); 
L21 = zeros(k2+1,k1+1); 
L22 = diag(diag(V(2,2)*ones(k2+1))); 
L23 = zeros(k2+1,k3+1); 
L24 = zeros(k2+1,k4+1); 
L31 = zeros(k3+1,k1+1); 
L32 = zeros(k3+1,k2+1); 
L33 = diag(diag(V(3,3)*ones(k3+1))); 
L34 = zeros(k3+1,k4+1); 
L41 = zeros(k4+1,k1+1); 
L42 = zeros(k4+1,k2+1); 
L43 = zeros(k4+1,k3+1); 
L44 = diag(diag(V(4,4)*ones(k4+1))); 
% 
L = [L11 L12 L13 L14;  % expanded degradation rate matrix 
     L21 L22 L23 L24; 
     L31 L32 L33 L34; 
     L41 L42 L43 L44]; 
% 
%************************************************** ************************ 
% Display the results of the phase-type approximati ons 
% 
fprintf(' Size of generator matrix (Psimatrix):  %g  x %g \n', length(Psimatrix), 
length(Psimatrix)) 
fprintf('\n') 
fprintf(' Size of expanded degradation rate matrix (Lambda):  %g x %g \n', 
length(L), length(L)) 
fprintf('\n') 
fprintf(' ****************************** \n') 
fprintf('\n') 
% 
%************************************************** ************************ 
% This section computes and plots the failure time distribution of the 
% system exposed to the SMP environment 
% 
for w = 1:length(t) 
    FailureTimeProb(w) = invt_lap_Solo(t(w),Psimatr ix,L); 
    if FailureTimeProb(w) > 1       
        FailureTimeProb(w) = 1;   % eliminates CDF values > 1 
    elseif FailureTimeProb(w) < 0  
        FailureTimeProb(w) = 0;   % eliminates CDF values < 0 
    end 
end 

B-11



%************************************************** ************************ 
%  Compute first and second moment of failure time distribution 
% 
First_Moment = invt_lap_first_moment(WearThreshold, Psimatrix,L); 
% 
Second_Moment = invt_lap_second_moment(WearThreshol d,Psimatrix,L); 
% 
%************************************************** ************************ 
% 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('F:\AFIT\Thesis\Solo Thesis\SMP 
simulation\results\turbineanalytical.out','w'); 
for k=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(k),FailureTimePr ob(k)); 
end 
fclose(fid); 
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Appendix C. Code for Coating Example

%************************************************** ************************ 
% Plot_SMP_five.m 
% 
% This MATLAB program runs the semi-Markov process (SMP) simulation  
% (semi_Markov_five.m) and then the 'simulation plu s phase-type approximations  
% plus analytical solution' program SMPfivestates.m .  The CDF values are then  
% compared in a plot (Figure 2). 
% 
%************************************************** ************************ 
%  
% Author:  Captain Christopher J. Solo, M.S. candid ate, Operations Research 
%          Air Force Institute of Technology 
%   Date:  January 29, 2004 
% 
%************************************************** ************************ 
% 
clear all; 
% 
t=0.05:0.005:10;  % vector of time points at which to evaluate both CDFs 
% 
semi_Markov_five;   % calls program to simulate sem i-Markov process (SMP) and 
obtain  
%                     failure times  
% 
SMPfivestates;   % calls program to simulate SMP (l ong term), compute phase-type  
                 % approximations, & produce analyt ical results of failure time  
                 % distribution 
%     
% F = cdf values from simulation 
% FailureTimeProb = cdf values from phase-type anal ytical solution 
% 
% Produces plot of simulated failure-time distribut ion vs. analytical 
% CDF derived via conversion of environment process  from SMP to CTMC 
% 
figure(2); 
plot(t,F,'r'); 
hold on;                      
plot(t,FailureTimeProb,'b'); 
grid off; 
title('Failure-time CDF values:  Simulated vs. Anal ytical'); 
xlabel('t'); 
ylabel('P(T < t)'); 
legend('Simulated CDF','Analytical CDF',0); 
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%******************************************************************************* 
% PROGRAM semi_Markov_five.m 
% 
% The purpose of this MATLAB program is to simulate a finite-state semi-Markov  
% process.  The process is simulated in order to validate analytical solutions  
% for the distribution and moments of the failure time of systems with  
% degradation threshold L subject to a SMP environment.  The program uses  
% function "rando" in order to select the next state after a state transition. 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%                Penn State University 
%         Date:  January 15, 2001 
%   Revised by:  Captain Christopher Solo, M.S., OR,  
%                Air Force Institute of Technology 
% Last Revised:  January 18, 2004 
%******************************************************************************* 
% VARIABLE DEFINTIONS  
% 
% WearThreshold  = degradation threshold (system fails after accumulating this  
% amount of damage) 
% k  = an index variable 
%******************************************************************************* 
% VECTOR/FUNCTION DEFINITIONS 
% 
% T = Vector of failure time observations  
% B = Vector for the initial probability distribution of the semi-Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degrad. rate when environment is  
%     in state i). 
% Z = Vector of environment states 
%******************************************************************************* 
% 
% The program assumes a state space of the form S={1,2,...K} 
% 
% Simulation of semi-Markov process (SMP) 
% 
semi_Markov_input_five;     % Obtain initialization parameters 
Z = [];        % Initialize Z. 
% 
for k = 1:length(Lifetime) 
   Z = []; 
   Z(1)=rando(B);  
 
   if Z(1) == S(1) |  Z(1) == S(3) 
      Lifetime(k) = betarnd(K(Z(1),1),K(Z(1),2)); % Time spent in initial state 
   elseif Z(1) == S(2) |  Z(1) == S(4) 
      Lifetime(k) = weibrnd(K(Z(1),1),K(Z(1),2)); 
   elseif Z(1) == S(5) 
      Lifetime(k) = gamrnd(K(Z(1),1),K(Z(1),2));        
   end 
   D = 0.0;        % At time 0, distance traveled is 0 
   D = D + Lifetime(k)*V(Z(1));   % Add traveled distance to cumulative distance 
   i=1; 
   while D < WearThreshold % Do while distance traveled is less than WearThr 
      Z(i+1) = rando(P(Z(i),:));    % Use the matrix P to determine next state 
       
      if Z(i+1) == S(1) |  Z(i+1) == S(3) 
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         new_time = betarnd(K(Z(i+1),1),K(Z(i+1),2));  
% Generate beta rv based on current state 
      elseif Z(i+1) == S(2) |  Z(i+1) == S(4) 
         new_time = weibrnd(K(Z(i+1),1),K(Z(i+1),2));  
% Generate beta rv based on current state 
      elseif Z(i+1) == S(5) 
         new_time = gamrnd(K(Z(i+1),1),K(Z(i+1),2));   
% Generate gamma rv based on current state 
      end 
      D = D + new_time*V(Z(i+1));       % Update cumulative damage 
      Lifetime(k) = Lifetime(k) + new_time;    % Update total lifetime 
      i=i+1 
   end 
   Lifetime(k)=Lifetime(k)-(1/V(Z(i)))*(D-WearThreshold);  % Subtract extra time  
                                                           % after WearThr is 
                                                           % reached 
end 
get_cdf_five; % computes the empirical distribution of observed failure times 
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%******************************************************************************* 
% PROGRAM semi_Markov_input_five.m 
% 
% The purpose of this MATLAB program is to provide input data to program  
% semi_Markov_five.m for simulation of a finite-state semi-Markov process (K  
% states).  The process is simulated in order to validate analytical solutions  
% for the distribution and moments of the failure time of systems with  
% degradation threshold L subject to a SMP environment.  The program uses  
% function "rando" in order to select the next state after a state transition. 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
                 Penn State University 
%         Date:  January 15, 2001 
%   Revised by:  Captain Christopher Solo, M.S., OR,  
                 Air Force Institute of Technology 
% Last Revised:  January 17, 2004 
% 
%******************************************************************************* 
% VARIABLE DEFINTIONS 
***************************************************************** 
% 
% WearThreshold  = degradation threshold (system fails after accumulating this  
%                  amount of damage) 
% 
%******************************************************************************* 
% VECTOR/FUNCTION DEFINITIONS 
%********************************************************** 
% 
% T = Vector of failure time observations  
% B = Vector for the initial probability distribution of the semi-Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degrad. rate when environment is  
%     in state i). 
%******************************************************************************* 
% Initialize variable and vector values 
 
WearThreshold = 5.0; 
N = 5;                   % number of states 
 
Lifetime = zeros(1,100000);     % number of simulations (failure time obs) 
B = [1 zeros(1,N-1)];  
% 
S = [1 2 3 4 5];                   % states of the environment 
V = [0.46 0.82 1.10 1.34 1.98];    % matrix of degradation rates 
% 
P = [0 .5 .2 .2 .1;   % transition probability matrix;  
    .5  0 .3 .1 .1;       
    .2 .4  0 .2 .2; 
    .1 .1 .2  0 .6; 
    .2 .1 .1 .6  0]; 
 
K = [3 5;     % Parameter matrix--each row gives parameters of distribution 
     5 2;             
     4 6; 
     6 3 
    .5 .10]; 
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%************************************************** ***************************** 
% PROGRAM get_cdf_five.m 
% 
% The purpose of this MATLAB program is to construc t an empirical distribution  
% function based upon a vector of observations of s ome continuous random  
% variable.  The values of the CDF are generally us ed for the purpose of  
% performing hypothesis test on the equality of two  nonparametric distributions.   
% Other approaches for testing may be the Cramer vo n Mises test, which is  
% similar to the K-S two-sample test, but slightly more robust.  
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  June 2000 
%   Revised by:  Captain Chris Solo, M.S. candidate , OR,  
%                Air Force Institute of Technology 
% Last Revised:  January 18, 2004 
%************************************************** ***************************** 
% VECTOR DEFINITIONS 
%************************************************** ***************** 
% 
% Lifetime = The finite-dimensional vector of real observations  
% t = The vector of points at which to estimate the  CDF. 
% F = The vector of CDF estimates.  That is, F(i) =  F(t(i)), i=1,2,...,nof  
%     {1,2,...,C}.   
%************************************************** *****************************    
% 
F = zeros(1,length(t));  % This ensures that t and F are vectors of equal length 
% 
% Compute the cdf value at the point t0 
% 
for i = 1:length(t) 
    F(i) = 0.0; 
    for j = 1:length(Lifetime) 
        if Lifetime(j)<= t(i) 
            F(i) = F(i) + 1/length(Lifetime); 
        else 
            F(i) = F(i); 
        end 
    end 
end 
% 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('F:\AFIT\Thesis\Solo Thesis\SMP 
simulation\results\chemsimulated.out','w'); 
for b=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(b),F(b)); 
end 
fclose(fid) 
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%************************************************************************** 
% SMPfivestates.m 
% 
% The purpose of this MATLAB program is to simulate a semi-Markov process (SMP)  
% on a state space S and convert it into a continuous-time Markov chain, using a  
% phase-type distribution to approximate the holding time distribution of each 
% environment state.  Each of the environment states is known to have a Weibull 
% holding time distribution (each with different parameters.)  The output 
% is the analytical solution for the failure-time distribution of a system  
% subject to the SMP environment, based on the results of Kharoufeh (2003) and  
% Kharoufeh and Sipe (2004). 
% 
% Original code for process.m and rando.m obtained from Craig L. Zirbel at  
% http://www-math.bgsu.edu/~zirbel/ap/  It appeared that the code was based 
% on a discrete time Markov chain, and Captain Steve Cox modified it to work 
% for a continuous-time Markov chain.  Captain Chris Solo modified it to be 
% a SMP (January 2004). 
% 
%************************************************************************** 
%  
%       Author:  Captain Christopher J. Solo, M.S. candidate,  
%                Operations Research 
%                Air Force Institute of Technology 
%         Date:  September 13, 2003 
% Last Revised:  January 18, 2004 
% 
%************************************************************************** 
%                             USER INPUTS 
% Tmax = time of SMP run 
% numruns = number of simulations (runs) 
% mu = initial probability vector of environment states 
% S = state space vector 
% R = degradation rate vector of environment states 
% P = transition probability matrix 
% K = matrix of Weibull parameters for environment states 
% M = large value used in Big M (hot potato) method 
% 
% Additionally, rando.m, phasetypeapproxmixed.m, PHvalues.m, invt_lap_Solo.m,  
% and failLST.m are needed.   
% 
%******************************************************************************* 
% For many short runs, set numruns high and Tmax low.  For one long run, 
% set numruns equal to 1 and make Tmax high. 
 
format long g; 
 
%********************************************************************* 
%                           User Inputs 
% 
numruns = 1;       % the number of times (runs) to simulate the process 
 
Tmax = 40000;     % This is the length of the run of the environment process 
 
mu = [1,0,0,0,0];    % Semi-Markov process (SMP) starts in state 1 
 
S =  [1,2,3,4,5];    % There are three states defined 
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R =  [2.3, 4.1, 5.5, 6.7, 9.9];  % Degradation rate of each state of environment 
 
P = [0 .5 .2 .2 .1;   % transition probability matrix;  
    .5  0 .3 .1 .1;       
    .2 .4  0 .2 .2; 
    .1 .1 .2  0 .6; 
    .2 .1 .1 .6  0]; 
 
K = [3 5;          % Parameter matrix--each row gives parameters of different 
distribution 
     5 2;             
     4 6; 
     6 3 
    .5 .10]; 
%  
%****************************************************************** 
% 
% Simulation of the semi-Markov process (SMP) 
% 
statetimeTij = zeros(length(S),length(S)); 
statetimeTi = []; 
scale = 1; 
% 
TimeToFail(1) = 0;       % start times at 0 
%Tall(runnum,1) = 0; 
x(1) = rando(mu);        % determine starting state (time 0, not time 1) 
%xall(runnum,1) = x(1); 
rates(1) = R(x(1)); 
%ratesall(runnum,1) = rates(1); 
i = 1; 
%       
while TimeToFail(i) < Tmax, 
    x(i+1) = rando(P(x(i),:));              % Row vector from P-matrix 
determines next transitions 
    %xall(runnum,i+1) = x(i+1); 
    if x(i) == S(1) |  x(i) == S(3) 
        time(i) = betarnd(K(x(i),1),K(x(i),2));  
% Generate beta rv based on current state 
    elseif x(i) == S(2) |  x(i) == S(4) 
        time(i) = weibrnd(K(x(i),1),K(x(i),2));  
% Generate Weibull rv based on current state 
    elseif x(i) == S(5) 
        time(i) = gamrnd(K(x(i),1),K(x(i),2));    
% Generate gamma rv based on current state 
    end 
    statetimeTij(x(i),x(i+1)) = statetimeTij(x(i),x(i+1)) + time(i); 
    TimeToFail(i+1) = TimeToFail(i) + time(i);  % Add to current time   
    %Tall(runnum,i+1) = T(i+1); 
    rates(i+1) = R(x(i+1));     % Determine the rate needed for this transition 
    %ratesall(runnum,i+1) = rates(i+1); 
    i=i+1; 
end 
%     
% Determine the number of transitions from one state to the next 
% 
numij = zeros(length(S),length(S)); 
for k = 1:length(x)-2 
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    numij(x(k),x(k+1)) = numij(x(k),x(k+1)) + 1; 
end 
% 
% Compute the observed transition rates among the e nvironment states 
%     
for i = 1:length(numij) 
        for j = 1:length(numij) 
            if j ~= i 
                Qhat(i,j) = numij(i,j)/sum(statetim eTij(i,:)); 
            else 
                Qhat(i,j) = 0; 
            end 
        end 
        Qhat(i,i) = -sum(Qhat(i,:)); 
        statetimeTi(i,1) = sum(statetimeTij(i,:)); % total time spent in state i 
    end 
%       
%************************************************** ************************ 
% This section creates vectors of the holding times  in States 1,2, and 3 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
for i = 1:length(time) 
    for j = 1:length(S)  
        if rates(i) == R(j) 
           HoldingTime(i,j) = time(i);   % creates matrix where column i 
        end                              % represen ts holding times in state i  
    end 
end 
State1times = HoldingTime(:,1); 
State1times = State1times(find(State1times));  
% eliminates zeros in holding time column  
State2times = HoldingTime(:,2); 
State2times = State2times(find(State2times));  
% eliminates zeros in holding time column 
State3times = HoldingTime(:,3); 
State3times = State3times(find(State3times));  
% eliminates zeros in holding time column 
State4times = HoldingTime(:,4); 
State4times = State4times(find(State4times));  
% eliminates zeros in holding time column 
State5times = HoldingTime(:,5); 
State5times = State5times(find(State5times));  
% eliminates zeros in holding time column 
% 
%************************************************** ************************ 
% This section computes the phase-type approximatio ns for each of the 
environment states 
%    ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
M=10000;     % this is the large value for the 'hot  potato method' 
             % i.e. since there is really no 'absor bing phase' for any 
             % state, we wish to visit each absorbi ng phase 
             % instantaneously. 
             % therefore, its rate is extremely lar ge (approaches infinity) 
% 
 
for State = 1:length(S) 
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    clear A; 
    clear alpha1; 
    clear alpha2; 
    clear alpha; 
    clear beta; 
    clear Aparam; 
    clear Bparam; 
    clear k; 
    clear T; 
    clear To; 
    if State == 1 
        distribution = 3; 
        A = State1times; 
        alpha1=K(State,1); 
        alpha2=K(State,2); 
        alpha=0; % parameter not needed; dummy value only 
        beta=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k1=k; 
        T1=T; 
        To1=To; 
        zerovector1=zeros(1,k1); 
        Psimatrix11 = [     T1      To1;      % subgenerator matrix for state 1 
                    zerovector1  Qhat(1,1)*M]; 
    elseif State == 2 
        distribution = 2; 
        A = State2times; 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0; % parameter not needed; dummy value only 
        alpha=K(State,2);  
        beta=K(State,1);  
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k2=k; 
        T2=T; 
        To2=To; 
        zerovector2=zeros(1,k2); 
        Psimatrix22 = [     T2     To2;      % subgenerator matrix for state 2 
                   zerovector2  Qhat(2,2)*M]; 
    elseif State == 3 
        distribution = 3; 
        A = State3times; 
        alpha=0; % parameter not needed; dummy value only 
        beta=0;  % parameter not needed; dummy value only 
        alpha1=K(State,1);  
        alpha2=K(State,2);   
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
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% creates phase-type approximations to each of the holding time distributions 
        k3=k; 
        T3=T; 
        To3=To; 
        zerovector3=zeros(1,k3); 
        Psimatrix33 = [     T3    To3;      % subgenerator matrix for state 3 
                    zerovector3  Qhat(3,3)*M]; 
    elseif State == 4 
        distribution = 2; 
        A = State4times; 
        alpha=K(State,2); 
        beta=K(State,1); 
        alpha1=0; % parameter not needed; dummy value only 
        alpha2=0;  % parameter not needed; dummy value only 
        Aparam=0; % parameter not needed; dummy value only 
        Bparam=0; % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k4=k; 
        T4=T; 
        To4=To; 
        zerovector4=zeros(1,k4); 
        Psimatrix44 = [     T4     To4;      % subgenerator matrix for state 4 
                    zerovector4  Qhat(4,4)*M]; 
    elseif State == 5 
        distribution = 5; 
        A = State5times; 
        Aparam=K(State,1); 
        Bparam=K(State,2); 
        alpha=0;   % parameter not needed; dummy value only 
        beta=0;    % parameter not needed; dummy value only 
        alpha1=0;  % parameter not needed; dummy value only 
        alpha2=0;  % parameter not needed; dummy value only 
        [k,T,To] = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Aparam,Bparam,distribution);  
% creates phase-type approximations to each of the holding time distributions 
        k5=k; 
        T5=T; 
        To5=To; 
        zerovector5=zeros(1,k5); 
        Psimatrix55 = [     T5      To5;      % subgenerator matrix for state 5 
                   zerovector5  Qhat(5,5)*M]; 
    end 
end 
% 
%************************************************************************** 
% OFF-DIAGONAL subgenerator matrices (see p.3-15 of thesis) 
% ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE HARDCODED HERE**** 
% 
Psimatrix12 = zeros(k1+1,k2+1); 
Psimatrix12(k1+1,1)=Qhat(1,2)*M; 
% 
Psimatrix13 = zeros(k1+1,k3+1); 
Psimatrix13(k1+1,1)=Qhat(1,3)*M; 
% 
Psimatrix14 = zeros(k1+1,k4+1); 
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Psimatrix14(k1+1,1)=Qhat(1,4)*M; 
% 
Psimatrix15 = zeros(k1+1,k5+1); 
Psimatrix15(k1+1,1)=Qhat(1,5)*M; 
% 
Psimatrix21 = zeros(k2+1,k1+1); 
Psimatrix21(k2+1,1)=Qhat(2,1)*M; 
% 
Psimatrix23 = zeros(k2+1,k3+1); 
Psimatrix23(k2+1,1)=Qhat(2,3)*M; 
% 
Psimatrix24 = zeros(k2+1,k4+1); 
Psimatrix24(k2+1,1)=Qhat(2,4)*M; 
% 
Psimatrix25 = zeros(k2+1,k5+1); 
Psimatrix25(k2+1,1)=Qhat(2,5)*M; 
% 
Psimatrix31 = zeros(k3+1,k1+1); 
Psimatrix31(k3+1,1)=Qhat(3,1)*M; 
% 
Psimatrix32 = zeros(k3+1,k2+1); 
Psimatrix32(k3+1,1)=Qhat(3,2)*M; 
% 
Psimatrix34 = zeros(k3+1,k4+1); 
Psimatrix34(k3+1,1)=Qhat(3,4)*M; 
% 
Psimatrix35 = zeros(k3+1,k5+1); 
Psimatrix35(k3+1,1)=Qhat(3,5)*M; 
% 
Psimatrix41 = zeros(k4+1,k1+1); 
Psimatrix41(k4+1,1)=Qhat(4,1)*M; 
% 
Psimatrix42 = zeros(k4+1,k2+1); 
Psimatrix42(k4+1,1)=Qhat(4,2)*M; 
% 
Psimatrix43 = zeros(k4+1,k3+1); 
Psimatrix43(k4+1,1)=Qhat(4,3)*M; 
% 
Psimatrix45 = zeros(k4+1,k5+1); 
Psimatrix45(k4+1,1)=Qhat(4,5)*M; 
% 
Psimatrix51 = zeros(k5+1,k1+1); 
Psimatrix51(k5+1,1)=Qhat(5,1)*M; 
% 
Psimatrix52 = zeros(k5+1,k2+1); 
Psimatrix52(k5+1,1)=Qhat(5,2)*M; 
% 
Psimatrix53 = zeros(k5+1,k3+1); 
Psimatrix53(k5+1,1)=Qhat(5,3)*M; 
% 
Psimatrix54 = zeros(k5+1,k4+1); 
Psimatrix54(k5+1,1)=Qhat(5,4)*M; 
% 
Psimatrix = [Psimatrix11 Psimatrix12 Psimatrix13 Psimatrix14 Psimatrix15;                
             Psimatrix21 Psimatrix22 Psimatrix23 Psimatrix24 Psimatrix25;                
             Psimatrix31 Psimatrix32 Psimatrix33 Psimatrix34 Psimatrix35; 
             Psimatrix41 Psimatrix42 Psimatrix43 Psimatrix44 Psimatrix45; 
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             Psimatrix51 Psimatrix52 Psimatrix53 Ps imatrix54 Psimatrix55]; 
% 
%************************************************** ************************ 
%      This section creates the expanded degradatio n rate matrix Lambda 
%  ****IF ADDITIONAL STATES ARE ADDED, THEY MUST BE  HARDCODED HERE**** 
% 
V=diag(R); 
L11 = diag(diag(V(1,1)*ones(k1+1))); 
L12 = zeros(k1+1,k2+1); 
L13 = zeros(k1+1,k3+1); 
L14 = zeros(k1+1,k4+1); 
L15 = zeros(k1+1,k5+1); 
L21 = zeros(k2+1,k1+1); 
L22 = diag(diag(V(2,2)*ones(k2+1))); 
L23 = zeros(k2+1,k3+1); 
L24 = zeros(k2+1,k4+1); 
L25 = zeros(k2+1,k5+1); 
L31 = zeros(k3+1,k1+1); 
L32 = zeros(k3+1,k2+1); 
L33 = diag(diag(V(3,3)*ones(k3+1))); 
L34 = zeros(k3+1,k4+1); 
L35 = zeros(k3+1,k5+1); 
L41 = zeros(k4+1,k1+1); 
L42 = zeros(k4+1,k2+1); 
L43 = zeros(k4+1,k3+1); 
L44 = diag(diag(V(4,4)*ones(k4+1))); 
L45 = zeros(k4+1,k5+1); 
L51 = zeros(k5+1,k1+1); 
L52 = zeros(k5+1,k2+1); 
L53 = zeros(k5+1,k3+1); 
L54 = zeros(k5+1,k4+1); 
L55 = diag(diag(V(5,5)*ones(k5+1))); 
% 
L = [L11 L12 L13 L14 L15;  % expanded degradation r ate matrix 
     L21 L22 L23 L24 L25; 
     L31 L32 L33 L34 L35; 
     L41 L42 L43 L44 L45; 
     L51 L52 L53 L54 L55]; 
% 
%************************************************** ************************ 
% Display the results of the phase-type approximati ons 
% 
fprintf(' Size of generator matrix (Psimatrix):  %g  x %g \n', length(Psimatrix), 
length(Psimatrix)) 
fprintf('\n') 
fprintf(' Size of expanded degradation rate matrix (Lambda):  %g x %g \n', 
length(L), length(L)) 
fprintf('\n') 
fprintf(' ****************************** \n') 
fprintf('\n') 
% 
%************************************************** ************************ 
% This section computes and plots the failure time distribution of the 
% system exposed to the SMP environment 
% 
for w = 1:length(t) 
    FailureTimeProb(w) = invt_lap_Solo(t(w),Psimatr ix,L); 
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    if FailureTimeProb(w) > 1       
        FailureTimeProb(w) = 1;   % eliminates CDF values > 1 
    elseif FailureTimeProb(w) < 0  
        FailureTimeProb(w) = 0;   % eliminates CDF values < 0 
    end 
end 
%************************************************** ************************ 
%  Compute first and second moment of failure time distribution 
% 
First_Moment = invt_lap_first_moment(WearThreshold, Psimatrix,L); 
% 
Second_Moment = invt_lap_second_moment(WearThreshol d,Psimatrix,L); 
% 
%************************************************** ************************ 
% 
% WRITE OUTPUTS TO A TAB DELIMITED TEXT FILE 
%    
fid = fopen('f:\AFIT\Thesis\Solo Thesis\MATLAB file s\SMP 
simulation\results\chemanalytical.out','w'); 
for k=1:length(t) 
   fprintf(fid, '%4.6f\t%4.6f\n',t(k),FailureTimePr ob(k)); 
end 
fclose(fid); 
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Appendix D. Shared Code for Examples

%************************************************** ************************ 
% Plot_SMP_five.m 
% 
% This MATLAB program runs the semi-Markov process (SMP) simulation  
% (semi_Markov_five.m) and then the 'simulation plu s phase-type approximations  
% plus analytical solution' program SMPfivestates.m .  The CDF values are then  
% compared in a plot (Figure 2). 
% 
%************************************************** ************************ 
%  
% Author:  Captain Christopher J. Solo, M.S. candid ate, Operations Research 
%          Air Force Institute of Technology 
%   Date:  January 29, 2004 
% 
%************************************************** ************************ 
% 
clear all; 
% 
t=0.05:0.005:10;  % vector of time points at which to evaluate both CDFs 
% 
semi_Markov_five;   % calls program to simulate sem i-Markov process (SMP) and 
obtain  
%                     failure times  
% 
SMPfivestates;   % calls program to simulate SMP (l ong term), compute phase-type  
                 % approximations, & produce analyt ical results of failure time  
                 % distribution 
%     
% F = cdf values from simulation 
% FailureTimeProb = cdf values from phase-type anal ytical solution 
% 
% Produces plot of simulated failure-time distribut ion vs. analytical 
% CDF derived via conversion of environment process  from SMP to CTMC 
% 
figure(2); 
plot(t,F,'r'); 
hold on;                      
plot(t,FailureTimeProb,'b'); 
grid off; 
title('Failure-time CDF values:  Simulated vs. Anal ytical'); 
xlabel('t'); 
ylabel('P(T < t)'); 
legend('Simulated CDF','Analytical CDF',0); 
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%******************************************************************************* 
% PROGRAM semi_Markov_five.m 
% 
% The purpose of this MATLAB program is to simulate a finite-state semi-Markov  
% process.  The process is simulated in order to validate analytical solutions  
% for the distribution and moments of the failure time of systems with  
% degradation threshold L subject to a SMP environment.  The program uses  
% function "rando" in order to select the next state after a state transition. 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%                Penn State University 
%         Date:  January 15, 2001 
%   Revised by:  Captain Christopher Solo, M.S., OR,  
%                Air Force Institute of Technology 
% Last Revised:  January 18, 2004 
%******************************************************************************* 
% VARIABLE DEFINTIONS  
% 
% WearThreshold  = degradation threshold (system fails after accumulating this  
% amount of damage) 
% k  = an index variable 
%******************************************************************************* 
% VECTOR/FUNCTION DEFINITIONS 
% 
% T = Vector of failure time observations  
% B = Vector for the initial probability distribution of the semi-Markov process 
% P = Probability transition matrix 
% V = Vector of degradation rates (i.e., V(i)= degrad. rate when environment is  
%     in state i). 
% Z = Vector of environment states 
%******************************************************************************* 
% 
% The program assumes a state space of the form S={1,2,...K} 
% 
% Simulation of semi-Markov process (SMP) 
% 
semi_Markov_input_five;     % Obtain initialization parameters 
Z = [];        % Initialize Z. 
% 
for k = 1:length(Lifetime) 
   Z = []; 
   Z(1)=rando(B);  
 
   if Z(1) == S(1) |  Z(1) == S(3) 
      Lifetime(k) = betarnd(K(Z(1),1),K(Z(1),2)); % Time spent in initial state 
   elseif Z(1) == S(2) |  Z(1) == S(4) 
      Lifetime(k) = weibrnd(K(Z(1),1),K(Z(1),2)); 
   elseif Z(1) == S(5) 
      Lifetime(k) = gamrnd(K(Z(1),1),K(Z(1),2));        
   end 
   D = 0.0;        % At time 0, distance traveled is 0 
   D = D + Lifetime(k)*V(Z(1));   % Add traveled distance to cumulative distance 
   i=1; 
   while D < WearThreshold % Do while distance traveled is less than WearThr 
      Z(i+1) = rando(P(Z(i),:));    % Use the matrix P to determine next state 
       
      if Z(i+1) == S(1) |  Z(i+1) == S(3) 
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         new_time = betarnd(K(Z(i+1),1),K(Z(i+1),2));  
% Generate beta rv based on current state 
      elseif Z(i+1) == S(2) |  Z(i+1) == S(4) 
         new_time = weibrnd(K(Z(i+1),1),K(Z(i+1),2));  
% Generate beta rv based on current state 
      elseif Z(i+1) == S(5) 
         new_time = gamrnd(K(Z(i+1),1),K(Z(i+1),2));   
% Generate gamma rv based on current state 
      end 
      D = D + new_time*V(Z(i+1));       % Update cumulative damage 
      Lifetime(k) = Lifetime(k) + new_time;    % Update total lifetime 
      i=i+1 
   end 
   Lifetime(k)=Lifetime(k)-(1/V(Z(i)))*(D-WearThreshold);  % Subtract extra time  
                                                           % after WearThr is 
                                                           % reached 
end 
get_cdf_five; % computes the empirical distribution of observed failure times 
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%************************************************** ***************************** 
% phasetypeapproxmixed.m 
% 
% The purpose of this MATLAB program is to compare the values of an arbitrary  
% probability distribution with those of its 2-phas e Coxian or k-phase  
% generalized Erlang approximation.   
%  
%       Author:  Captain Christopher J. Solo, M.S. candidate,  
%                Operations Research, Air Force Ins titute of Technology 
%         Date:  September 13, 2003 
% Last Revised:  January 18, 2004 
%   References:  Perros, H.G. (1994). Queueing Netw orks with Blocking, 18-21. 
%                Altiok, T. (1985). On the phase-ty pe approximations of general  
%                  distributions, IIE Transactions,  Vol. 17, No. 2, 110-116 
%                Neuts, M.F. (1981). Matrix-Geometr ic Solutions in Stochastic  
%                  Models, 41-63. 
%                Sauer, C.H. and Chandy, K.M. (1975 ). Approximate analysis of  
%                central server models, IBM Journal  of Research and Development,  
%                Vol. 19, No. 3, 301-313. 
%                Cox, S.R. (2003).  Draft MATLAB co de, Air Force Institute of  
%                  Technology. 
%                Law, A.M. and Kelton, W.D. (2000).  Simulation Modeling and  
%                  Analysis. 
%                Wackerly, D., Mendenhall, W., and Scheaffer, R. (2002).  
%                  Mathematical Statistics with App lications, 444.  
%              
%************************************************** ***************************** 
% 
function [k,T,To]  = 
phasetypeapproxmixed(A,alpha,beta,alpha1,alpha2,Apa ram,Bparam,distribution) 
 
CDFdistr=[];   % CDF values of probability distribu tion 
pdfdistr=[];   % density values of probability dist ribution 
CDFapprox=[];  % CDF values of 2-phase Coxian appro ximation 
pdfapprox=[];  % density values of 2-phase Coxian a pproximation 
% 
%************************************************** ************************ 
%                  INDICATE TYPE OF INPUT DISTRIBTU ION (if known) 
% 1 = exponential 
% 2 = Weibull 
% 3 = beta 
% 4 = uniform 
% 5 = gamma 
% 
%************************************************** ************************ 
syms x; % symbolic x used in calculation of first t hree moments 
%************************************************** ************************ 
%                       INDICATE INPUT DISTRIBUTION  
%******************************************* 
%         EXPONENTIAL DISTRIBUTION 
% 
if distribution == 1 
    lambda = 27.74563544200000; % parameter of expo nential distribution 
    f = lambda*exp(-lambda*x); % exponential pdf 
    obs = 2000; % number of observations from distr ibution 
    t = linspace(0,.5,5*obs);  
% time points--'obs' points between 0 and 2, includ ing 0 
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    %A = RANDOM('exp',1/lambda,obs,1); % generates a 'obs' x 1 vector A of 
observations 
%                
%******************************************* 
%           WEIBULL DISTRIBUTION 
% 
elseif distribution == 2 
   f = alpha*(beta^(-alpha))*(x^(alpha - 1))*exp(-( x/beta)^alpha); % Weibull pdf 
   obs = 200; 
   t = linspace(0,1.4,5*obs); % time points--'obs' points between 0 and 2 
    %A = RANDOM('weib',beta,alpha,obs,1); % generat es 'obs' x 1 vector of obs 
%  
%******************************************* 
%            BETA DISTRIBUTION 
% 
elseif distribution == 3 
    BetaParam = exp(gammaln(alpha1)+gammaln(alpha2) -gammaln(alpha1+alpha2)); 
    f = ((x^(alpha1 - 1))*(1 - x)^(alpha2 - 1))/Bet aParam;  
% beta pdf from Law and Kelton 
    obs = 200; 
    t = linspace(0,1,5*obs);  
% time points--'obs' points between 0 and 2, includ ing 0 
    %A = RANDOM('beta',alpha1,alpha2,5*obs,1);  
% generates a 'obs' x 1 vector A of observations 
% 
%******************************************* 
%           UNIFORM DISTRBUTION 
% 
elseif distribution == 4 
    f = 1/(theta2 - theta1); 
    obs = 2000; 
    %A = RANDOM('unif',theta1,theta2,5*obs,1); % ge nerates a 'obs' x 1 vector A  
                                               % of  observations 
% 
%******************************************** 
%           GAMMA DISTRIBUTION 
% 
elseif distribution == 5 
    obs = 2000;   
    t = linspace(0,1.4,5*obs); 
end 
%************************************************** ************************ 
% %                     Moments of given distributi on 
%                (use this when input distribution is known) 
% %                   
% if (distribution == 1) | (distribution == 2) % ex ponential or Weibull 
%     lowerlimit = 0; 
%     upperlimit = inf;                        % up per limit of integration 
%     t = linspace(0,2,500); % time points--500 poi nts between 0 and 2, 
including 0 
% elseif distribution == 3                     % be ta distribution 
%     lowerlimit = 0; 
%     upperlimit = 1; 
%     t = linspace(0,2,500);  
% elseif distribution == 4 
%     lowerlimit = theta1; 
%     upperlimit = theta2; 
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%     t = linspace(0,theta2 + 4,500); 
% end 
% % 
% m1 = eval(int((x*f),lowerlimit,upperlimit));     % 1st moment of given  
                                                   % distribution  
% m2 = eval(int(((x^2)*f),lowerlimit,upperlimit)); % 2nd moment of given  
                                                   % distribution 
% m3 = eval(int(((x^3)*f),lowerlimit,upperlimit)); % 3rd moment of given  
                                                   % distribution 
%  
%************************************************** ************************ 
%                     Moments derived from input da ta 
% 
%if A is the vector of input values (holding time o bservations) 
for m = 1:length(A)            
    cubed(m,1) = (A(m,1))^3; 
end 
%  
m1 = mean(A); 
m2 = var(A) + m1^2; 
m3 = (1/length(A))*(sum(cubed)); % from Wackerly 
% 
%************************************************** ************************ 
%    Moments derived via successive derivatives of Laplace transform 
%          THIS APPLIES ONLY TO THE EXPONENTIAL DIS TRIBUTION 
% 
% m1=1/lambda; 
% m2=2/lambda^2; 
% m3=6/lambda^3; 
% 
%************************************************** ************************ 
%                   (Squared) Coefficient of Variat ion 
% 
c = (m2-m1^2)/m1^2; % squared coefficient of variat ion = var/mean^2 
z = 3*(m2^2); 
v = 2*m1*m3; 
% 
%************************************************** ************************ 
%************************************************** ************************ 
%                           FOR c > 1 
%   approximation is made using the 2-phase Coxian distribution 
% 
if c > 1 
k=2; % default number of phases 
phase = '3-moment, 2-phase Coxian'; 
%************************************************** ************************ 
%                 Moments of 2-phase Coxian approxi mation 
% 
Y = (6*m1 - (3*m2/m1))/((6*m2^2/4*m1) - m3); % Alti ok (1985), p.112 
X = (1/m1) + ((m2*Y)/(2*m1));                % Perr os (1994), p.27 
mu1 = (X + sqrt(X^2 - 4*Y))/2;   % first moment of 2-phase approximation 
mu2 = X - mu1;                   % second moment of  2-phase approximation 
% 
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%************************************************** ************************ 
%                        Underlying CTMC 
% 
a = (mu2/mu1)*((m1*mu1) - 1);  % prob of transition  from phase 1 to phase 2 
T = [-mu1 a*mu1;               % matrix of rate tra nsitions among 2 phases 
      0    -mu2]; 
To = [(1-a)*mu1; mu2];   % 2x1 vector of rates of t ransition out of both states  
                         % into absorbing state 
initialprob = [1 0];    % initial probability vecto r  
ones=[1;1]; % vector of ones 
% 
%************************************************** ************************ 
%       Original distribution and approximation val ues and plots 
% 
PHvalues(c,k,T,To,phase,t,initialprob,ones,distribu tion,alpha,beta,alpha1,alpha2
,Aparam,Bparam); % calls PHvalues.m file  
% 
%************************************************** ************************ 
%************************************************** ************************ 
%                        FOR 0.5 <= c <= 1 
% use the two-moment approximation from above (see Perros (1994), p.30) 
% 
elseif (c >= 0.5) & (c <= 1) 
k=2; % default number of phases 
mu1 = 2/m1;         
mu2 = 1/(m1*c); 
phase = '2-moment 2-phase Coxian'; 
% 
%************************************************** **************** 
%                        Underlying CTMC 
% 
a = 1/(2*c);            % probability of transition  from phase 1 to phase 2 
T = [-mu1 a*mu1;        % matrix of rate transition s among 2 phases 
      0    -mu2]; 
To = [(1-a)*mu1; mu2];   % 2x1 vector of rates of t ransition out of both states 
into absorbing state 
initialprob = [1 0];        % initial probability v ector  
ones = [1; 1];           % vector of ones 
% 
%************************************************** **************** 
%       Original distribution and approximation val ues and plots 
% 
PHvalues(c,k,T,To,phase,t,initialprob,ones,distribu tion,alpha,beta,alpha1,alpha2
,Aparam,Bparam); % calls PHvalues.m file  
% 
%************************************************** **************** 
%************************************************** **************** 
%                         FOR c < 0.5 
% approximation is made using a generalized Erlang distribution with k phases 
%                  (see Perros (1994), p.29-30) 
else 
% % 
% Linear program to determine minimum number of pha ses in generalized Erlang  
% distribution 
%  
Aeq=[]; 
beq=[]; 

D-7



ub=[]; 
d = [1];  % choose k such that 1/k <= c AND 1/(k-1)  >= c  
Y = [-1; 
     1]; 
b = [-1/c (1/c)+1]; 
lb = 0; 
k = ceil(linprog(d,Y,b,Aeq,beq,lb,ub)); % chooses f irst integer greater than 
solution 
phase = 'k-phase generalized Erlang'; 
% 
%************************************************** ***************** 
%                        Underlying CTMC 
%  
% prob of transition from phase i to phase i+1 (see  Perros (1994), p.29-30) 
a = 1 - (((2*k*c)+k-2-(k^2+4-(4*k*c))^(1/2))/(2*(c+ 1)*(k-1))); 
%                                                                  
mu = (1+((k-1)*a))/m1; % rate of transition 
% 
%************************************************** ***************** 
% 
% This "for" loop creates the kxk matrix T of trans ition rates 
% 
T = zeros(k,k); % preallocates zeroes to the matrix  
T(1,2)=a*mu; 
for (f=1:k) 
    for (g=1:k) 
         
        if f == g 
            T (f,g) = -mu;  % diagonal elements 
        elseif f > g 
            T (f,g) = 0;    % below diagonal elemen ts 
        elseif g == (f + 1) 
            T (f,g) = mu; % just above diagonal ele ments 
        elseif g > (f + 1) 
            T (f,g) = 0;    % above diagonal elemen ts 
        end 
         
    end 
end 
T(1,2)=a*mu; 
%************************************************** ***************** 
To = zeros(k,1); % pre-allocates zeroes to the vect or 
ones = zeros(k,1); 
initialprob = zeros(1,k); 
To(1,1) = (1-a)*mu; % can enter absorbing state fro m first phase with prob (1-a) 
To(k,1) = mu; % rate of transition out of last phas e into absorbing state 
ones(1,1)=1; 
ones(k,1)=1; 
for r=2:k-1 
    To(r,1) = 0;  % kx1 vector of rates of transiti on out of phases 2 through k- 
                  % 1 into absorbing state 
    ones(r,1) = 1;       % kx1 vector of ones (1,1, 1,...1) 
end 
initialprob(1,1) = 1;    % initial probability vect or (1,0,0,...0) 
for s=2:k 
    initialprob(1,s) = 0;                    
end 
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%****************************************************************** 
%     Original distribution and approximation values and plots 
% 
PHvalues(c,k,T,To,phase,t,initialprob,ones,distribution,alpha,beta,alpha1,alpha2
,Aparam,Bparam); % calls PHvalues.m file  
% 
%****************************************************************** 
end 
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%************************************************** **************** 
% PHvalues.m 
% 
% The purpose of this MATLAB program is to compute the approximated  
% CDF values, the exact CDF values, and their diffe rences, as derived 
% from the phasetypeapproxmixed.m program.  This pr ogram then plots the  
% approximated CDF vs. exact CDF values. 
%  
%       Author:  Captain Christopher J. Solo, M.S. candidate,  
%                Operations Research, Air Force Ins titute of Technology 
%         Date:  September 13, 2003 
% Last Revised:  January 18, 2004 
%   References:  Perros, H.G. (1994). Queueing Netw orks with Blocking, 18-21. 
%                Neuts, M.F. (1981). Matrix-Geometr ic Solutions in Stochastic  
%                  Models, 41-63. 
%                 
%************************************************** **************** 
% 
function [] = 
PHvalues(c,k,T,To,phase,t,initialprob,ones,distribu tion,alpha,beta,alpha1,alpha2
,Aparam,Bparam) 
%                         Output Display 
% 
fprintf('\n') 
%fprintf(' State: %g \n', State) 
fprintf('\n') 
fprintf(' Number of phases:  %g  \n',k) 
fprintf('\n') 
fprintf(' Type of approximation: %s \n', phase) 
fprintf('\n') 
fprintf(' Coefficient of variation  c = %f \n', c) 
fprintf('\n') 
fprintf(' ****************************** \n') 
fprintf('\n') 
 
% fprintf('         t       approx CDF      exact C DF      Difference \n') 
% 
%************************************************** **************** 
for u=1:length(t) 
     if distribution == 1 
         CDFdistr(u)  = expcdf(t(u),1/lambda);       % CDF of the distribution 
         pdfdistr(u)  = exppdf(t(u),1/lambda);       % pdf of the distribution 
         trueCDF(u,1) = t(u);  
         trueCDF(u,2) = CDFdistr(u); 
     elseif distribution == 2 
         CDFdistr(u)  = weibcdf(t(u),beta,alpha);    % CDF of the distribution 
         pdfdistr(u)  = weibpdf(t(u),beta,alpha);    % pdf of the distribution 
         trueCDF(u,1) = t(u);  
         trueCDF(u,2) = CDFdistr(u); 
     elseif distribution == 3 
         CDFdistr(u)  = betacdf(t(u),alpha1,alpha2) ; % CDF of the distribution 
         pdfdistr(u)  = betapdf(t(u),alpha1,alpha2) ; % pdf of the distribution 
         trueCDF(u,1) = t(u);  
         trueCDF(u,2) = CDFdistr(u); 
     elseif distribution == 4 
         CDFdistr(u)  = unifcdf(t(u),theta1,theta2) ; % CDF of the distribution 
         pdfdistr(u)  = unifpdf(t(u),theta1,theta2) ; % pdf of the distribution 
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         trueCDF(u,1) = t(u);  
         trueCDF(u,2) = CDFdistr(u); 
     elseif distribution == 5 
         CDFdistr(u)  = gamcdf(t(u),Aparam,Bparam);  % CDF of the distribution 
         pdfdistr(u)  = gampdf(t(u),Aparam,Bparam);  % pdf of the distribution 
         trueCDF(u,1) = t(u);  
         trueCDF(u,2) = CDFdistr(u); 
     end 
     CDFapprox(u) = 1-initialprob*(expm(T*t(u)))*on es;   
% CDF of approximation (see Neuts, 1981) 
     pdfapprox(u) = initialprob*((expm(T*(t(u))))*T o);       
% pdf of approximation (see Perros, 1994) 
       
    % fprintf('     %f     %f       %f        %f\n' , t(u), CDFdistr(u), 
CDFapprox(u), abs(CDFdistr(u)-CDFapprox(u))) 
end 
% 
%************************************************** **************** 
%                    Kolmogorov-Smirnov test 
% (determines if approximated values and exact valu es come from same 
% distribution) 
% 
H = kstest2(CDFapprox,CDFdistr); 
value = zeros(1,length(t)); 
for j = 1:length(t) 
    value(j) = (CDFapprox(j)-CDFdistr(j))^2; 
end 
%res = 0.5*sum(value) 
%H % H = 1 => reject null that both come from same distribution 
%c 
%k 
%phase 
%************************************************** **************** 
%          Plot of k-phase PH approx CDF vs. exact CDF 
% 
figure(1); 
plot(t,CDFapprox,'r:'); 
hold on; 
plot(t,CDFdistr,'b'); 
grid off; 
title('CDF values:  Phase-type vs. Input'); 
xlabel('t'); 
ylabel('P(T < t)'); 
legend('Phase-type','Input',0); 
%  
% ************************************************* **************** 
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%******************************************************************************* 
% PROGRAM invt_lap_Solo.m 
% 
% The purpose of this MATLAB program is to approximate the inverse transform of  
% a one-dimensional Laplace transform in order to find the moments of the  
% probability distribution, G(t). The program is based on the algorithm of Abate  
% and Whitt (1995). 
% 
%  Orig Author: Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%         Date: January 23, 2001 
%   Revised by: Captain Chris Solo, M.S. candidate, OR,  
%               Air Force Institute of Technology 
%         Date: January 29, 2004 
%   References: Abate, J. and W. Whitt (1995).  Numerical Inversion of the  
%                 Laplace Transform of Probability Distribution. ORSA Journal on  
%                 Computing, 7, 36-43. 
%              
%******************************************************************************* 
 
%Initialize variables, set parameters 
 
function f1 = invt_lap_Solo(t,Psimatrix,L) % inputs time vector, generator  
                                           % matrix, and degradation matrix 
rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m; 
% 
for k=0:m 
   d=nchoosek(m,k);  
   c=[c d]; 
end 
for t = t;  
   tx = t;  
   ntr=15;  
   u=exp(A/2)/t;  
   x=A/(2*t);  
   h=pi/t;  
   su=zeros(m+2); 
   sm=failLST(x,0,Psimatrix,L)/2; 
   for k=1:ntr 
      y=k*h; 
      sm=sm+((-1)^k)*failLST(x,y,Psimatrix,L); 
   end 
   su(1)=sm; 
   for k=1:12 
      n=ntr+k; 
      y=n*h; 
      su(k+1)=su(k)+((-1)^n)*failLST(x,y,Psimatrix,L); 
   end 
   av1=0; av2=0; 
   for k=1:12 
      av1=av1+c(k)*su(k); 
      av2=av2+c(k)*su(k+1); 
   end 
   f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2]; 
end 
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%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%         Date:  June 2000 
%************************************************* 
function eq=failLST(x,y,Psimatrix,L) 
 
% This program computes the LST of the failure time  according to 
% Kharoufeh's paper, Sipe's results 
 
s = x+y*i; 
I=eye(size(Psimatrix));            % Create identit y matrix 
A1=inv(L)*((Psimatrix-(s*I))*5.0); % The last argum ent is the degradation  
                                   % threshold leve l, x. 
A2=expm(A1); 
J = zeros(1,(length(Psimatrix)-1)); % total number of phases minus one = number  
                                    % of zeros to u se 
alphavec = [1 J];   % initial probability vector:  Ensure the # columns = #  
                    % states (phases). 
m=ones(size(Psimatrix,1),1); 
z = (1/s)*(alphavec*A2*m);  % get the cdf 
eq = real(z);               % get the cdf  
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%******************************************************************************* 
% PROGRAM invt_lap_first_moment.m 
% 
% The purpose of this MATLAB program is to approximate the inverse transform of  
% a one-dimensional Laplace transform in order to find the moments of the  
% probability distribution, G(t). The program is based on the algorithm of Abate  
% and Whitt (1995). 
% 
%  Orig Author: Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%         Date: January 23, 2001 
%   Revised by: Captain Chris Solo, M.S. candidate, OR,  
%               Air Force Institute of Technology 
%         Date: January 29, 2004 
%   References: Abate, J. and W. Whitt (1995).  Numerical Inversion of the  
%                 Laplace Transform of Probability Distribution. ORSA Journal on  
%                 Computing, 7, 36-43. 
%              
%******************************************************************************* 
% 
%Initialize variables, set parameters 
 
function f1 = invt_lap_first_moment(t,Psimatrix,L) % inputs time vector,  
                                                   % generator matrix, 
                                                   % and degradation matrix 
rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m; 
% 
for k=0:m 
   d=nchoosek(m,k);  
   c=[c d]; 
end 
for t = t;  
   tx = t;  
   ntr=15;  
   u=exp(A/2)/t;  
   x=A/(2*t);  
   h=pi/t;  
   su=zeros(m+2); 
   sm=first_momentLST(x,0,Psimatrix,L)/2; 
   for k=1:ntr 
      y=k*h; 
      sm=sm+((-1)^k)*first_momentLST(x,y,Psimatrix,L); 
   end 
   su(1)=sm; 
   for k=1:12 
      n=ntr+k; 
      y=n*h; 
      su(k+1)=su(k)+((-1)^n)*first_momentLST(x,y,Psimatrix,L); 
   end 
   av1=0; av2=0; 
   for k=1:12 
      av1=av1+c(k)*su(k); 
      av2=av2+c(k)*su(k+1); 
   end 
   f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2]; 
end 

D-14



%******************************************************************************* 
% PROGRAM invt_lap_second_moment.m 
% 
% The purpose of this MATLAB program is to approximate the inverse transform of  
% a one-dimensional Laplace transform in order to find the moments of the  
% probability distribution, G(t). The program is based on the algorithm of Abate  
% and Whitt (1995). 
% 
%  Orig Author: Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%         Date: January 23, 2001 
%   Revised by: Captain Chris Solo, M.S. candidate, OR,  
%               Air Force Institute of Technology 
%         Date: January 29, 2004 
%   References: Abate, J. and W. Whitt (1995).  Numerical Inversion of the  
%                 Laplace Transform of Probability Distribution. ORSA Journal on  
%                 Computing, 7, 36-43. 
%              
%******************************************************************************* 
% 
%Initialize variables, set parameters 
 
function f1 = invt_lap_second_moment(t,Psimatrix,L) % inputs time vector,  
                                                    % generator matrix, 
                                                    % and degradation matrix 
rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m; 
% 
for k=0:m 
   d=nchoosek(m,k);  
   c=[c d]; 
end 
for t = t;  
   tx = t;  
   ntr=15;  
   u=exp(A/2)/t;  
   x=A/(2*t);  
   h=pi/t;  
   su=zeros(m+2); 
   sm=second_momentLST(x,0,Psimatrix,L)/2; 
   for k=1:ntr 
      y=k*h; 
      sm=sm+((-1)^k)*second_momentLST(x,y,Psimatrix,L); 
   end 
   su(1)=sm; 
   for k=1:12 
      n=ntr+k; 
      y=n*h; 
      su(k+1)=su(k)+((-1)^n)*second_momentLST(x,y,Psimatrix,L); 
   end 
   av1=0; av2=0; 
   for k=1:12 
      av1=av1+c(k)*su(k); 
      av2=av2+c(k)*su(k+1); 
   end 
   f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2]; 
end 

D-15



%******************************************************************************* 
% PROGRAM first_momentLST.m 
% 
% This program computes the LST of the first moment according to 
% Kharoufeh (2003) and Kharoufeh and Sipe (2004). 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%                Penn State University 
%   Revised by:  Captain Christopher Solo, M.S. candidate, OR,  
%                Air Force Institute of Technology 
% Last Revised:  March 11, 2004 
%******************************************************************************* 
% 
function eq=first_momentLST(x,y,Psimatrix,L) 
 
clear r; 
n = 1; 
r = x+y*i; 
B1=(r*L)-Psimatrix; 
J = zeros(1,(length(Psimatrix)-1)); % total number of phases minus one = number  
                                    % of zeros to use 
alphavec = [1 J];   % initial probability vector:  Ensure the # columns = #  
                    % states (phases). 
m=ones(size(Psimatrix,1),1); 
z = (1/r)*(factorial(n))*alphavec*((B1)^(-n))*m;  % get the first moment 
eq = real(z);          % get the cdf  
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%************************************************** ***************************** 
% PROGRAM second_momentLST.m 
% 
% This program computes the LST of the second momen t according to 
% Kharoufeh (2003) and Kharoufeh and Sipe (2004). 
% 
%  Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candid ate, IE & OR,  
%                Penn State University 
%   Revised by:  Captain Christopher Solo, M.S. can didate, OR,  
%                Air Force Institute of Technology 
% Last Revised:  March 11, 2004 
%************************************************** ***************************** 
% 
function eq=second_momentLST(x,y,Psimatrix,L) 
 
% This program computes the LST of the failure time  according to 
% Kharoufeh's paper, Sipe's results 
clear r; 
n = 2; 
r = x+y*i; 
B1=(r*L)-Psimatrix; 
J = zeros(1,(length(Psimatrix)-1)); % total number of phases minus one = number  
                                    % of zeros to u se 
alphavec = [1 J];   % initial probability vector:  Ensure the # columns = #  
                    % states (phases). 
m=ones(size(Psimatrix,1),1); 
z = (1/r)*(factorial(n))*alphavec*((B1)^(-n))*m;  %  get the first moment 
eq = real(z);          % get the cdf  
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%******************************************************************************* 
% PROGRAM rando.m 
% 
% This program generates a random variable in 1,2,...,n given a distribution  
% vector. 
% 
% Orig Author:  Jeffrey P. Kharoufeh, Ph.D. candidate, IE & OR,  
%               Penn State University 
%        Date:  June 2000 
%******************************************************************************* 
% 
function [index] = rando(p)             % Example x(1) = rando(mu) then p = mu 
u = rand; 
i = 1; 
s = p(1);                                   % s = first probability in p 
 
while ((u > s) & (i < length(p))),          % Random draw compared to 
probability 
  i=i+1; 
  s=s+p(i);                             % Must be a stochastic vector (sum = 1) 
end 
 
index=i;                                % Returns state to transition to next 
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