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AFIT/GOR/ENS/04-06 

Abstract 

 

This thesis extends the research found in Storm, Bauer, and Oxley, 2003.  Data 

correlation effects and sample size effects on three classifier fusion techniques and one 

data fusion technique were investigated.  Identification System Operating Characteristic 

Fusion (Haspert, 2000), the Receiver Operating Characteristic “Within” Fusion method 

(Oxley and Bauer, 2002), and a Probabilistic Neural Network were the three classifier 

fusion techniques; a Generalized Regression Neural Network was the data fusion 

technique.  Correlation was injected into the data set both within a feature set 

(autocorrelation) and across feature sets for a variety of classification problems, and 

sample size was varied throughout.  Total Probability of Misclassification (TPM) was 

calculated for some problems to show the effect of correlation on TPM.  Feature selection 

was performed in some experiments to show the effects of selecting only certain features.  

Finally, experiments were designed and analyzed using analysis of variance to identify 

what factors had the most significant impact on fusion algorithm performance. 
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AN INVESTIGATION OF THE EFFECTS OF CORRELATION, 

AUTOCORRELATION, AND SAMPLE SIZE IN CLASSIFIER FUSION 

 

I.  Introduction 

Background 

 In general, a classification problem is a situation where it is of interest to describe 

members of a specific number of classes by certain attributes, or features, that the 

members possess.  In the Air Force, a common classification problem is trying to classify 

targets as hostile, friendly, neutral, or otherwise, based upon certain features that each 

class possess.  In Air Force Doctrine, the Air Force warns its members not to strike 

targets based on single source intelligence; at some level, intelligence information should 

be fused together (AFPAM 14-210).  Many fusion models are based on the assumption 

that each of the inputs, in some cases individual classifiers, to the model is independent.  

In the real world, there are times when classifiers are looking at similar information and 

are not actually independent; that is, knowing the output of one classifier provides 

information about the output of another classifier.  The more dependent one classifier is 

on the other, the less new information is present from the additional classifier.  In 

addition, if a classifier is observing a target through time, each observation that it takes 

may not be independent of the previous observations.  Again, this means that less new 

information is present if the observations are correlated in time.  Not much is known 

about the performance of fusion techniques when faced with correlation (Willett, et al, 

2000).  In addition, the number of observations that are gathered can significantly impact 

the performance of an individual classifier and thus fusion of individual classifiers.  If 
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there are many features present in each observation, it may be beneficial to only select 

certain features that provide more information than others.  This thesis examines the 

effects of sample size, both of these types of correlation, and feature selection on four 

different fusion models in a variety of different problems.  Four different fusion models 

are used throughout this thesis.  Two of these models assume that each classifier is 

independent from the other classifier, Identification System Operating Characteristic 

(ISOC) (Haspert, 2002) and Receiver Operating Characteristic (ROC) “Within” (Oxley 

and Bauer, 2002); two of these models make no such assumption, Probabilistic Neural 

Network (PNN) and One Big Network (OBN). 

Problem Statement 

 In this thesis, the effects of sample size, two types of correlation, and feature 

selection on four different fusion models in a variety of different problems are examined.  

Each problem is constrained to a two-class problem where the two classes are friendly 

and hostile, and for each problem, only two classifiers are fused via each fusion method.  

The fusion models are first tested on simple problems, and the problems increase in 

degree of complexity. 

Outline of Thesis 

 This thesis is divided into five chapters:  Introduction, Literature Review, 

Methodology, Findings and Analysis, and Conclusions.  The following is a brief 

description of the contents of each chapter. 

 Chapter 1:  Introduction – This chapter discusses the background, problem 

statement, and outline of the thesis.  
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 Chapter 2: Literature Review – This chapter summarizes the pertinent literature 

on reasons for fusing classifiers, four types of classifier fusion, statistical independence of 

classifiers, and sample size considerations. 

 Chapter 3:  Methodology – This chapter describes the general methodology 

employed in this thesis.  It describes the two types of correlation, the data generation 

process for each of the different problems, application issues for each of the four fusion 

methods, feature selection, TPM, and sample size variation. 

 Chapter 4:  Findings and Analysis – This chapter describes the findings and 

analysis for each of the problems explored in this thesis. 

 Chapter 5:  Conclusion – This chapter summarizes the results of the research and 

provides suggestions for future research. 
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II.  Literature Review 

Introduction 

 This chapter provides a summary of the pertinent literature available on reasons 

for fusing classifiers as well as classifier fusion techniques.  First, the Air Force mandates 

that fusion take place when attacking a target; reasons for fusing classifiers are given in 

Air Force Doctrine.  Next, the statistical independence of the classifiers assumption is 

discussed.  Then, details from each of the four fusion models are provided.  Finally, some 

sample size considerations are discussed. 

Air Force Targeting 

 Any time the United States Air Force prepares to attack a target, there are six 

steps necessary for the mission:  detection, location, combat identification, decision, 

execution, and assessment (AFPAM 14-210, 1998).  Often, combat identification is 

perceived as the weakest of these six steps since no sensor performs perfectly all of the 

time (Haspert, 2000).  Commanders should be cautious of even the best intelligence on a 

target, especially when it comes from a single source (AFDD 2-1, 2000).  Normally, 

intelligence on a target should not be based on a single source (AFPAM 14-210, 1998).  

This leads to the implementation of multiple sensors; combining information from 

multiple sources, data fusion, increases the confidence in the combat identification step 

(AFPAM 14-210, 1998).  Also, data fusion increases the reliability of the information and 

makes it more credible and reliable (AFPAM 14-210, 1998).  Combining outputs from 

multiple sensors in order to get a better overall classification accuracy is called sensor 

fusion.  This thesis focuses on improving combat identification through sensor fusion. 
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Statistical Independence 

 Many sensor fusion methods make the assumption that the individual sensors are 

statistically independent.  If two or more sensors are statistically independent, it makes 

sense to combine these sensors to make a better overall decision.  However, if two or 

more sensors are identical, no more information can be gained by adding the additional 

sensors (Shipp and Kuncheva, 2002).  In real world, there are times when the features 

observed by one sensor are correlated with features observed by another sensor; this 

creates statistically dependent sensors.  Little is known about how sensor fusion methods 

perform in the presence of statistical dependence since most methods assume statistical 

independence (Willett, et al, 2000).  In previous research, the Gaussian shift-in-means 

problem was examined in the presence of correlation, and this problem can be broken 

down into three regions: the “good,” the “bad,” and the “ugly (Willet, et al., 2000).”  It 

was shown that for the logical “and” and logical “or” rules, any problem in the “good” 

threshold region should use optimal sensor rules just like those used in the presence of 

statistical independence (Willet, et al., 2000). 

Fusion Methods 

 Three methods of sensor fusion are used in this thesis:  Identification System 

Operating Characteristic (ISOC) Fusion, Receiver Operating Characteristic (ROC) 

“Within” Fusion, and Probabilistic Neural Network (PNN) Fusion.  Although these 

methods take different approaches, they have the same overall goal.  Each sensor fusion 

method seeks to improve upon the classification accuracy of a single sensor by 

combining the outputs of multiple sensors into a single output.  Figure 1 shows the 

overall sensor fusion process. 
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Figure 1:  Sensor Fusion Process Overview. 

ISOC Fusion Method 

 The Identification System Operating Characteristic (ISOC) method determines the 

optimal fusion rule set for a given threshold through a novel algorithm (Haspert, 2000).  
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This is a paradigm shift from the traditional fixed rules.  Although fixed rules are easy to 

employ, they are not usually optimal (Haspert, 2000).  On the other hand, adaptive rules 

such as Bayesian techniques find an optimal ID sensor fusion rule based on data from a 

specific target instead of fixing a rule across all data sets (Haspert, 2000).  These adaptive 

rules are based on the results of individual classifiers through a sensor probability matrix 

(Haspert, 2000). 

Sensor Probability Matrices 

 Combat Identification Systems (CID) take inputs from individual sensors and 

combine these inputs to form an overall classification (Haspert, 2000).  The output of 

each individual sensor for a given threshold can be output in the following format shown 

in Table 1. 

Table 1:  Sensor Probability Matrix. 

 

 

 

The values in this table will change as the threshold changes for each individual sensor.  

The rows of this matrix represent the possible types of targets that each individual sensor 

can observe where F represents friend and H represents hostile, and the columns of this 

matrix represent the possible sensor outputs.  P(“H”|H) is the conditional probability of 

the sensor designating the target as “H” given the target is a hostile.  The other 

conditional probabilities are similar.  In this case, the indication “H” is considered a 

positive and the indication “F” is considered a negative.  Therefore, P(“H”|H) is the 

 Indication 
 “H” “F” 

H P(“H”|H) P(“F”|H)

T
ru

th
 

F P(“H”|F) P(“F”|F) 
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probability of true positive, P(“H”|F) is a false positive, P(“F”|H) is a false negative, and 

P(“F”|F) is a true negative. 

Combat ID System States 

 Let Ns be the number of sensors on a target.  Let i denote the index of those 

sensors where 1≤ i ≤ Ns.  Let ni denote the number of indicator states for sensor i.  Let ki 

be a specific output state for sensor i.  Using these definitions, there will be N total 

distinct configurations of the Combat ID system where 

∏
=

=
sN

i
inN

1

(Ralson, 1998)  

Let U
N

j
jSS

1=

=  be all possible configurations of the CIS where Sj is the jth output state of 

the CIS and 1≤ j ≤ N.  Each },...,,,{ 321
j
N

jjj
j s

ssssS =  where j
is  is the state of the ith sensor 

in the jth configuration (Storm, Bauer, and Oxley, 2003).  Thus, S is an N x Ns matrix.  

Table 2 shows the possible combinations of S. 

Table 2:  Sensor Output State Combinations. 

j 
 

Sj 

1 
 

),...,,,( 11
3

1
2

1
1 sNssss  

2 
 

),...,,,( 22
3

2
2

2
1 sNssss  

3 
 

),...,,,( 33
3

3
2

3
1 sNssss  

. 

. 
. 
. 

. 

. 
. 
. 

N ),...,,,( 321
N
N

NNN
s

ssss
 

 



  9

For the two sensor, two state case, S is a 4 x 2 matrix.  Table 3 shows the possible 

combinations of S for this case. 

Table 3:  Sensor Output State Combinations, Two Sensors and Two Output States. 

J 
 

Sj 

1 
 

),( 1
2

1
1 ss =(“H”,“H”)

2 
 

),( 2
2

2
1 ss =(“H”,“F”)

3 
 

),( 3
2

3
1 ss =(“F”,“H”)

4 ),( 4
2

4
1 ss =(“F”,“F”) 

 
 

 Under the assumption that all sensors are independent, the probability of a sensor 

configuration given truth simply equals the multiplication of the probabilities of the 

individual sensors in that configuration given truth (Ralston, 1998).  This is given by the 

following equation 

.)|()|(
1
∏
=

=
sN

i

j
ij TsPTSP  

For the two-class problem, in the previous equation, T∈{H,F}.  For each possible output 

combination, Sj, the probabilities P(Sj|H) and P(Sj|F) must be calculated.  Since every 

potential target, regardless of whether it is friendly or hostile, will put the CIS into some 

state, 1)|()|(
11

==∑∑
==

N

j
j

N

j
j HSPFSP  (Ralston, 1998).  After all these probabilities have 

been calculated, the fusion rules must be defined (Ralston, 1998). 

Fusion Rules 

 There will be times when the CIS will receive conflicting indications from the 

individual sensors.  The fusion rules resolve all of these conflicts by specifying when to 
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declare hostile and when not to declare hostile (Ralston, 1998).  In the two state problem, 

a complete ID fusion rule can be expressed as an N-dimensional vector R = (r1, r2, … , rN) 

where rj ∈{0,1} and j = 1, 2,…, N (Ralston, 1998).  In this case, each element of R 

corresponds to an element of S.  If rj = 1, rule Sj should be included in the rule set 

(Ralston, 1998).  For example, in the two-class, two sensor problem defined above, if R = 

(1, 0, 1, 0), rules S1 = (“H”,“H”) and S3 = (“F”,“H”) should be included in the rule set.  

Thus, a target will be declared hostile if either S1 or S3 occurs.  For each specific fusion 

rule, the probability of that rule given truth can be found with the following equation. 

∑
=

⋅=
N

j
jj rTSPTRP

1

)|()|( . 

By substituting the equation above,  

j

N

j

N

i

j
i rTsPTRP

s

⋅= ∑ ∏
= =

))|(()|(
1 1

. 

For the two-class problem where T∈{H,F}, an equation for each element of T 

follow: 

j

N

j

N

i

j
i rHsPHRP

s

⋅= ∑ ∏
= =

))|(()|(
1 1

 

j

N

j

N

i

j
i rFsPFRP

s

⋅= ∑ ∏
= =

))|(()|(
1 1

 

 Now that these probabilities have been calculated, R must be chosen so that the 

probability of a true positive, P(R|H) in the two-class problem, is maximized while the 

probability of a false positive, P(R|F) in the two-class problem, is minimized (Ralston, 

1998).  However, there are a total of 2N distinct possible Boolean fusion rules. When N is 

large, it is not feasible to test this many rules, but a smaller subset of all possible fusion 
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rules that represents the best performance can be defined and selected for a given sensor 

suite (Ralston, 1998). 

 When finding the subset of all possible Boolean fusion rules, there are two 

obvious rules: “never declare hostile” and “always declare hostile.”  The least 

conservative rule is “always declare hostile” where Rj = 1 for all j.  The most 

conservative rule is “never declare hostile” where Rj = 0 for all j (Ralston, 1998).  The 

next most conservative rule is the rule which includes just one state which has the highest 

likelihood ratio P(Sj|H)/P(Sj|F).  This fusion rule is better than any other fusion rule with 

just one single state included.  The next fusion rule includes the previous rule as well as 

the next most likely state (i.e., the second rule includes two states).  This fusion rule is 

better than any other fusion rule with just two states included.  This process is repeated 

until the least conservative rule is reached or Rj = 1 for all j (Ralston, 1998).  In essence, 

this method creates the ISOC boundary.  The following ISOC boundary algorithm will 

create this boundary (Storm, Bauer, and Oxley, 2003). 

1.  Compute P(Sj|T) for all j and T using data from the sensor probability matrices from 

the individual sensors. 

2.  Compute LRj=P(SjH)/P(Sj|F) for all j, the likelihood ratio for all sensor output state 

combinations. 

3.  Rank LRj for all j from highest to lowest, where 1
]1[

jLR  is the largest LRj and Nj
NLR ][ is 

the smallest LRj, such that 

Nj
N

jj LRLRLR ][]2[]1[ ...21 >>> . 

4.  Choose Sj corresponding to the largest remaining Nj
NLR ][  to be included in the fusion 

rule (i.e., 1=
Nj

r  in R). 
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5.  Go to 3 unless rj = 1 for all j. 

 Using the data from the sensor probability matrices, the N distinct CIS 

configurations are tested and “turned on” in decreasing order of their likelihood ratios 

(Ralston, 1998).  In a system with N states, there will be N+1 points that connect the 

most conservative rule and least conservative rule.  Each of these points is a valid fusion 

rule; each rule provides an alternative trade-off between fratricide (incorrectly targeting a 

friendly) and effectiveness (correctly targeting a hostile).  There is no rule that provides a 

higher level of effectiveness at the same or lower fratricide rate; there is no rule that can 

provide a lower level of fratricide at the same or higher level of effectiveness (Ralston, 

1998).  The optimal trade-off between fratricide and effectiveness depends on combat 

requirements (Ralston, 1998). 

Optimal Rule Using Total Cost 

 Now that a subset of all possible rules has been identified, the optimal rule must 

be chosen.  For each of the rules in the subset, a cost can be calculated.  These costs 

depend only on the prior probabilities and the relative costs (Haspert, 2000).  The cost 

equation is given by 

CTotal = CFalse Negative*PHostile*P(False Negative)+CFalse Positive*PFriend*P(False Positive). 

where 

CTotal = Total Cost 

CFalse Negative = Cost of False Negative  

CFalse Positive = Cost of False Positive 

PHostile = Prior Probability of a Hostile 

PFriend = Prior Probability of a Friend 
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P(True Positive) = P(R|H) = Probability of a True Positive 

P(False Negative) = 1-P(R|H) = Probability of a False Negative 

P(False Positive) = P(R|F) = Probability of a False Positive 

P(False Negative) = 1 – P(True Positive) (Haspert, 2000). 

Finally, the lowest cost rule can be chosen as the optimal rule.  Figure 2 is a process 

diagram of the ISOC Fusion Method.   
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Figure 2:  ISOC Sensor Fusion Process (Haspert, 2002). 
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ROC Fusion Methods 

 Two possible procedures for sensor fusion are called the ROC “Across” Fusion 

Method and the ROC “Within” Fusion Method.  ROC “Across” Fusion is applicable 

when multiple sensors are monitoring multiple critical components in different feature 

sets.  The ROC “Across” Method is concerned with the state of a collection of 

components as viewed by multiple sensors.  On the other hand, ROC “Within” Fusion is 

applicable when multiple sensors are monitoring the same critical component in the same 

feature set.  The ROC “Within” Method is concerned with the state of a single component 

as viewed by multiple sensors.  In this thesis, only the ROC “Within” Method is used for 

sensor fusion. 

ROC “Within” Fusion Method 

While the ISOC method finds the optimal rule for a given threshold, the ROC 

“Within” Fusion method finds the optimal thresholds for each classifier for a given rule, 

the “logical or” rule.  The “Within” Fusion method fuses the ROC curves together from 

individual sensors using the same or different feature sets to form a fused ROC curve 

(Clutz, 2000).  Each individual classifier will output a sensor probability matrix shown in 

Table 1 where the definitions of true positive, false positive, true negative, and false 

negative are the same as above.  Again, any indication “H” (“H”|H and “H”|F) is 

considered a positive and any indication “F” (“F”|H and “F”|F) is considered a negative.  

Let A
TPP be the probability of true positive for classifier A, A

FPP be the probability of false 

positive for classifier A, A
TNP be the probability of true negative for classifier A, and 

A
FNP be the probability of false negative for classifier A.  Let B

TPP be the probability of true 
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positive for classifier B, B
FPP be the probability of false positive for classifier B, B

TNP be the 

probability of true negative for classifier B, and B
FNP be the probability of false negative 

for classifier B (Clutz, 2000).  The ROC curve for each classifier is the set of coordinate 

points where a value of true positive (ordinate) is specified for every value of false 

positive (abscissa).  Each of these coordinate points corresponds to a different threshold 

value for the individual classifier.  The ROC “Within” Fusion Method uses these 

coordinate pairs, at common points along the abscissa for classifier A and classifier B, to 

form a new fused ROC curve (Clutz, 2000).  Let classifier C be the classifier resulting 

from fusing classifiers A and B according to the “logical or” rule.  Classifier C will result 

in a positive indication in three cases:  when both classifier A and classifier B indicate 

positive, when only classifier A indicates positive, and when only classifier B indicates 

positive.  For a two-class problem, TNFP PP −=1   which implies C
TN

C
FP PP −=1 .  Assuming 

the logical “or” rule is used and assuming the independence of classifiers A and B, then 

)()1()1(1)(1 B
FP

A
FP

B
FP

A
FP

B
FP

A
FP

B
TN

A
TN

C
FP PPPPPPPPP ∗−+=−∗−−=∗−= .   

For a two-class problem, FNTP PP −=1   so that C
FN

C
TP PP −=1 .  Assuming 

independence of classifiers A and B, then (Clutz, 2000) 

)()1()1(11 B
TP

A
TP

B
TP

A
TP

B
TP

A
TP

B
FN

A
FN

C
TP PPPPPPPPP ∗−+=−∗−−=∗−= .   

Thus, the point on the fused ROC curve is given by the coordinate pair (Clutz, 2000) 

),(),( B
TP

A
TP

B
TP

A
TP

B
FP

A
FP

B
FP

A
FP

C
TP

C
FP PPPPPPPPPP ∗−+∗−+= . 

 Using these results, an optimization algorithm can be used to form the fused ROC 

curve and find the optimal thresholds for each individual classifier.  Let p be a value of 

false positive for classifier A and fA(p) be a value of true positive for classifier A.  
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Similarly, let q be a value of false positive for classifier B and fB(q) be a value of true 

positive for classifier B.  Let r* be a value of the false positive for the fused classifier C 

and fC(r*) be a value of true positive for the fused classifier C.  It should be noted that q is 

a function of r and p; that is  

r = p + q – p*q. 

Thus, 
)1(
)(),(

p
prprQq

−
−

== .  Using this notation, the equation above can be rewritten as 

))]),((*)()),(()([max,*())(,( 0 prQfpfprQfpfqpqprfr BABArpC −+−+= ≤≤  .  

Now, for each value of r, a value of p, denoted p*, can be found such 

)),((*)()),(()( prQfpfprQfpf BABA −+ is maximized subject to 0≤ p≤r (Storm, Bauer, 

and Oxley, 2003).  After p* is determined, fA(p*) can be read from the ROC curve for 

classifier A.  The optimal threshold for classifier A is the value θ* that yields p* and 

fA(p*).  Using the relationship ***** * qpqpr −+=  , *q can be determined, and fB(q*) 

can be read from the ROC curve for classifier B.  The optimal threshold for classifier B is 

the value φ* that yields q* and fB(q*).  This can be done for all values of r*.  After 

thresholds for each classifier have been found for each value of r*, these thresholds can be 

applied to an independent data set for validation.  Figure 3 is a process diagram of the 

ROC “Within” OR Fusion Process.   
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Figure 3:  ROC “Within” OR Sensor Fusion Process. 
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PNN Fusion Method 

 The probabilistic neural network (PNN) fusion method is a simplistic fusion 

method that involves training a PNN on the posterior probabilities from the individual 

classifiers.  The result is a single, fused classification.  The PNN has been used 

successfully to solve a variety of classification problems (Wasserman and Nostrand, 

1993).  When compared to the standard back-propagation algorithm, the PNN has the 

following major advantages:  rapid training, guaranteed convergence to a Bayesian 

Optimal Classifier with enough training data, allows deletion or addition from training 

data without retraining, and confidence indication on its output (Wasserman and 

Nostrand, 1993).   
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Figure 4:  A Probabilistic Neural Network (Wasserman and Nostrand, 1993). 

This method is based on the assumption that the feature sets are normalized and 

independent and identically distributed multivariate normal with common variance σ2.  

The normalized input vector X = (X1, X2, … , Xn) is applied to the distribution layer 

neurons.  This input vector contains the features to be classified by the PNN.  The 

distribution layer does not perform any calculations; it is simply a connection point 
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(Wasserman and Nostrand, 1993).  Each training vector is used to calculate a set of 

weights where each weight has a value from a component of that vector.  The pattern 

layer neurons are grouped together by the true classification of the associated training 

vector; these individual neurons sum the weighted inputs from the distribution layer 

neurons (Wasserman and Nostrand, 1993).  This is equivalent to taking the sum of 

squares of the training set and the test set, (X-XRi)T(X-XRi) where XRi is the ith exemplar 

in the Rth class from the training set.  Because of the normalization, this reduces 

to )1( −i
T
Ri XX (Wasserman and Nostrand, 1993).  Then, the pattern layer neurons apply a 

nonlinear function to the corresponding sum.  This produces the output Zc,i, where c 

indicates the true class of the training vector and i indicates the pattern layer neuron 

(Wasserman and Nostrand, 1993).  The nonlinear function for Zc,i is 

]
1

exp[ 2, σ
−

= i
T
Ri

ic
XX

Z . 

In this equation, X is defined above and the set of weights corresponding to a pattern 

neuron represent a training vector XRi = (XR1, XR2, … , XRn).  The summation layer 

simply sums the Zci for each class (Wasserman and Nostrand, 1993).  Thus, the output of 

the summation layer for a specific class, Sc is 

Sc = ∑
=1i

ciZ . 

 The decision layer compares Sc for all classes and assigns the input vector to the 

class with the largest corresponding Sc.  In essence, this PNN assigns a new feature set to 

the class that the feature set has the largest probability of being in under the multivariate 

normal distribution.  A PNN can be extended to any number of classes by adding pattern 

layer neurons and a summation layer neuron for each class (Wasserman and Nostrand, 
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1993).  Figure 5 is a process diagram of the PNN Fusion Process.  The PNN Fusion 

process only uses half the data that the ISOC and ROC “Within” Fusion methods use. 

 

Figure 5:  PNN Sensor Fusion Process. 

Generalized Regression Neural Network (GRNN) Model 

 A GRNN has a very similar structure to a PNN, but it has one slight difference.  

While the PNN simply sums the nonlinear function for each class, the GRNN also sums 

this across all classes.  Then, each Sc is divided by the sum of all the Sc values and that is 

the corresponding activation.  Thus, all activations are standardized to a value between 0 

and 1 (Wasserman and Nostrand, 1993).  
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Sample Size Considerations 

 In real world problems, distribution parameters are not known, and analysts are 

typically restrained to small training sets.  The size of the training set, especially relative 

to the dimensionality of the problem or number of features used, will ultimately 

determine how close the estimated distribution parameters are to those of the true 

distribution.  In other words, in a problem with few features, fewer training exemplars 

would be needed when compared to the requirements of a problem with many features.  

As the number of features grows, the sample size of the training set must also grow 

(Fukunaga and Hayes, 1989). 

 Sample size also plays a key part in comparing a linear classifier and quadratic 

classifier.  If the covariance matrices for the two classes are equal and the true covariance 

matrix was used, the quadratic classifier and the linear classifier are the same.  However, 

when the approximated covariance matrices are used, the approximations of the 

covariance matrices will not be the same even though their true covariance matrices yield 

the same results.  Since the linear classifier will use all the data to calculate the 

covariance matrix, it will provide a better approximation of the true covariance matrix 

than that of the quadratic classifier.  The quadratic classifier would need much more data 

to get as good of an approximation as the linear classifier.  Thus, in a case where the 

covariance matrices are truly equal, the linear classifier is the more robust classifier 

(Fukunaga and Hayes, 1989). 

Chapter Summary 

 This chapter summarized the important literature used to conduct this thesis.  

First, Air Force guidance on data fusion was summarized, and the statistical 
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independence assumption was explored.  Next, the four fusion methods employed in this 

thesis were described in detail.  Finally, some sample size considerations were discussed.



  24

III.  Methodology 

Introduction 

 This chapter lays out the basic methodology used in this thesis.  First, it describes 

the different types of correlation introduced into the fusion models.  Next, it describes the 

data generation process for each of the different problems explored.  Next, the general 

experimental design is discussed and some application issues for each of the four fusion 

methods are detailed.  Finally, feature selection, Total Probability of Misclassification 

(TPM), and sample size variation are discussed. 

Correlation 

 In this thesis, multiple feature sets, each containing multiple features, are 

generated for experimentation.  Some level of correlation is present among these features.   

Two types of correlation are considered: inter-correlation and intra-correlation.  The first 

type of correlation considered is inter-correlation; this is the correlation between features 

in a given data set.  Figure 6 is a notional diagram representing inter-correlation. 
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Figure 6:  Inter-correlation. 
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 The second type of correlation considered is intra-correlation or autocorrelation; 

this is the correlation between observations in a single feature.  Figure 7 is a notional 

diagram representing intra-correlation. 
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Figure 7:  Intra-correlation. 

Data Generation 

 Since real-world data is not available, data was generated for a variety of 

problems for analysis for this thesis.  The following Table 4 summarizes the problems 

analyzed in this thesis. 
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Table 4:  Data Generation Descriptions. 

Problem # Problem Name Problem Description 

1   
4 Feature Case Recreates Storm work; average ROC curve 

of 5 runs as response 

2   
8 Feature Case Adds noise and redundant features to 

problem 1; changes mean of class 1 

3   
8 Feature with Autocorrelation 
Case 

Adds autocorrelation to problem 2; changes 
mean of class 1 

4   
8 Feature Triangle Case Changes geometry of problem 2 

5   
8 Feature XOR Case Changes geometry of problem 4 

6   
8 Feature XOR with 
Autocorrelation Case 

Adds autocorrelation to problem 5 

7   
20 Feature with Feature Selection 
Case 

Adds more noise and redundant features to 
problem 2; explores only 2 sample sizes; 
changes mean of class 1 

8   
36 Feature with Feature Selection 
Case 

Adds more noise and redundant features to 
problem 7; explores only 1 sample size and 1 
correlation level 

9   
TPM Exploration Examines problem 1 at 3 specific levels of 

correlation 

   

Problem 1:  4 Feature Case    

Let 4
21 RFFF ⊂×= where 2

1 RF ⊂  is the feature set observed by sensor 1, a 

linear discriminant function, and 2
2 RF ⊂ is the feature set observed by sensor 2, a 

quadratic discriminant function.  The correlation of the data is given by 
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i
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 where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ  

and i
FF kj ,Σ is the correlation matrix between the features contained in feature set j and 

feature set k in class i (i = 0,1; j, k = 1,2).  Now, let 0
1F be the features from feature set 1 

in class 0 and 1
1F  be the features from feature set 1 in class 1 where 1

1
0

11 FFF ∪= .  Let 

0
1µ  be the mean of feature set 1 in class 0 and 1

1µ  be the mean of feature set 1 in class 1.  

Let ),(~ 0
,

0
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0
1 11 FFNF Σµ  and ),(~ 1
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Problem 2:  8 Feature Case    

Let 8
21 RFFF ⊂×= where 4

1 RF ⊂  is the feature set observed by sensor 1, a 

linear discriminant function, and 4
2 RF ⊂ is the feature set observed by sensor 2, a 

quadratic discriminant function.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 1 

redundant feature, and 1 noise feature (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , 95.0=redρ  is the correlation level of the redundant 

feature, and redind ρρρ *=  is the correlation level induced by ρ and redρ .  i
FF kj ,Σ is the 

correlation matrix between the features contained in feature set j and feature set k in class 

i (i = 0,1; j, k = 1,2).  Now, let 0
1F be the features from feature set 1 in class 0 and 1

1F  be 

the features from feature set 1 in class 1 where 1
1

0
11 FFF ∪= .  Let 0

1µ  be the mean of 

feature set 1 in class 0 and 1
1µ  be the mean of feature set 1 in class 1.  Let 
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Problem 3:  8 Feature with Autocorrelation Case    

Let 8
21 RFFF ⊂×= where 4

1 RF ⊂  is the feature set observed by sensor 1, a 

linear discriminant function, and 4
2 RF ⊂ is the feature set observed by sensor 2, a 

quadratic discriminant function.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 1 

redundant feature, and 1 noise feature (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , 95.0=redρ  is the correlation level of the redundant 

feature, and redind ρρρ *=  is the correlation level induced by ρ and redρ .  i
FF kj ,Σ is the 

correlation matrix between the features contained in feature set j and feature set k in class 

i (i = 0,1; j, k = 1,2).  Now, let 0
1F be the features from feature set 1 in class 0 and 1

1F  be 

the features from feature set 1 in class 1 where 1
1

0
11 FFF ∪= .  Let 0

1µ  be the mean of 

feature set 1 in class 0 and 1
1µ  be the mean of feature set 1 in class 1.  Let 
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appropriate level of correlation between feature sets.  In addition, }9.0,5.0,0.0{∈autoρ  is 

the level of autocorrelation within a feature set.  Let },...,2,1{,)( 8 NtRtz ∈⊂  where N is 

the number of training exemplars, be one exemplar in the feature space where 

),0(~)( 0ΣNtz ; it is one row of the matrix of features described above.  Let 

IA auto *ρ= , IB auto *)1( 2ρ−= , and ))**(,0(~)( 0 BBNt Σε  for each t.  Then, 
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)()1(*)( ttzAtz ε+−= (Laine, 2003).  Once the appropriate number of exemplars has 

been generated, the means can be added to the corresponding classes.   

Problem 4:  8 Feature Triangle Case    

Every problem up to this point is a fairly simple problem separating two 

multivariate normal populations.  The Triangle problem is a slightly more complicated 

problem building toward the XOR problem.  It is interesting to see how each of the 

fusion methods will perform in the face of this more complicated problem.  Each class 

will contain two multivariate populations; thus, four multivariate populations will be 

generated.  Two will be assigned to one class and two to the other class.  All four 

multivariate distributions will have the same covariance structure.  Let 

8
21 RFFF ⊂×= where 4

1 RF ⊂  is the feature set observed by sensor 1, a linear 

discriminant function, and 4
2 RF ⊂ is the feature set observed by sensor 2, a quadratic 

discriminant function.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 1 

redundant feature, and 1 noise feature (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , 95.0=redρ  is the correlation level of the redundant 

feature, and redind ρρρ *=  is the correlation level induced by ρ and redρ .  i
FF kj ,Σ is the 

correlation matrix between the features contained in feature set j and feature set k in class 

i (i = 0,1; j, k = 1,2).  Now, let 01
1F be the first set of features from feature set 1 in class 0, 

02
1F be the second set of features from feature set 1 in class 0, 11

1F  be the first set of 

features from feature set 1 in class 1, and 12
1F be the second set of features from feature 

set 1 in class 1 where 02
1

01
1

0
1 FFF ∪= , 12

1
11

1
1

1 FFF ∪=  and 1
1

0
11 FFF ∪= .  Let 01

1µ  be 

the mean of the first set of features in feature set 1 in class 0, 02
1µ  be the mean of the 

second set of features in feature set 1 in class 0, 11
1µ  be the mean of the first set of 

features in feature set 1 in class 1, and 12
1µ  be the mean of the second set of features in 

feature set 1 in class 1.  Let ),(~ 0
,

01
1

01
1 11 FFNF Σµ , ),(~ 0

,
02
1

02
1 11 FFNF Σµ , 

),(~ 1
,

11
1

11
1 11 FFNF Σµ , and ),(~ 1

,
12
1

12
1 11 FFNF Σµ  where T)0,0,0,0(01

1 =µ , 

T)0,95.0,95.0,95.0(02
1 =µ , T)0,0,0,95.0(11

1 =µ  and T)0,0,0,95.0(12
1 =µ .   

Let 02
2

01
2

0
2 FFF ∪= , 12

2
11
2

1
2 FFF ∪= , and 1

2
0

22 FFF ∪=  

 where ),(~ 0
,

01
2

01
2 11 FFNF Σµ , ),(~ 0

,
02
2

02
2 11 FFNF Σµ , ),(~ 1

,
11
2

11
2 11 FFNF Σµ , and 

),(~ 1
,

12
2

12
2 11 FFNF Σµ  where T)0,0,0,0(01

2 =µ , T)0,15.1,15.1,15.1(02
2 =µ , 

T)0,0,0,15.1(11
2 =µ , and T)0,0,0,15.1(12

2 =µ . 
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Problem 5:  8 Feature XOR Case    

Every problem up to this point is a fairly simple problem separating two 

multivariate normal populations.  The XOR problem is a more complicated problem.  It is 

interesting to see how each of the fusion methods will perform in the face of this more 

complicated problem.  Each class will contain two multivariate populations; thus, four 

multivariate populations will be generated.  Two will be assigned to one class and two to 

the other class.  All four multivariate distributions will have the same covariance 

structure.  Let 8
21 RFFF ⊂×= where 4

1 RF ⊂  is the feature set observed by sensor 1, a 

linear discriminant function, and 4
2 RF ⊂ is the feature set observed by sensor 2, a 

quadratic discriminant function.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 1 

redundant feature, and 1 noise feature (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , 95.0=redρ  is the correlation level of the redundant 

feature, and redind ρρρ *=  is the correlation level induced by ρ and redρ .  i
FF kj ,Σ is the 

correlation matrix between the features contained in feature set j and feature set k in class 

i (i = 0,1; j, k = 1,2).  Now, let 01
1F be the first set of features from feature set 1 in class 0, 

02
1F be the second set of features from feature set 1 in class 0, 11

1F  be the first set of 

features from feature set 1 in class 1, and 12
1F be the second set of features from feature 

set 1 in class 1 where 02
1

01
1

0
1 FFF ∪= , 12

1
11

1
1

1 FFF ∪=  and 1
1

0
11 FFF ∪= .  Let 01

1µ  be 

the mean of the first set of features in feature set 1 in class 0, 02
1µ  be the mean of the 

second set of features in feature set 1 in class 0, 11
1µ  be the mean of the first set of 

features in feature set 1 in class 1, and 12
1µ  be the mean of the second set of features in 

feature set 1 in class 1.  Let ),(~ 0
,

01
1

01
1 11 FFNF Σµ , ),(~ 0

,
02
1

02
1 11 FFNF Σµ , 

),(~ 1
,

11
1

11
1 11 FFNF Σµ , and ),(~ 1

,
12
1

12
1 11 FFNF Σµ  where T)0,0,0,0(01

1 =µ , 

T)0,95.0,95.0,95.0(02
1 =µ , T)0,95.0,95.0,0(11

1 =µ  and T)0,0,0,95.0(12
1 =µ .   

Let 02
2

01
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0
2 FFF ∪= , 12

2
11
2

1
2 FFF ∪= , and 1

2
0

22 FFF ∪=  

 where ),(~ 0
,

01
2
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2 11 FFNF Σµ , ),(~ 0

,
02
2
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2 11 FFNF Σµ , ),(~ 1

,
11
2

11
2 11 FFNF Σµ , and 

),(~ 1
,

12
2

12
2 11 FFNF Σµ  where T)0,0,0,0(01

2 =µ , T)0,15.1,15.1,15.1(02
2 =µ , 

T)0,15.1,15.1,0(11
2 =µ , and T)0,0,0,15.1(12

2 =µ . 

Problem 6:  8 Feature XOR with Autocorrelation Case    

This problem adds autocorrelation to the 8 feature XOR Problem.  Again, each 

class will contain two multivariate populations; thus, four multivariate populations will 
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be generated.  Two will be assigned to one class and two to the other class.  All four 

multivariate distributions will have the same covariance structure.  Let 

8
21 RFFF ⊂×= where 4

1 RF ⊂  is the feature set observed by sensor 1, a linear 

discriminant function, and 4
2 RF ⊂ is the feature set observed by sensor 2, a quadratic 

discriminant function.  The correlation of the data is given by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΣΣ
ΣΣ

=Σ i
FF

i
FF

i
FF

i
FFi

2212

2111

,,

,, . 

In this case, each feature set will contain 2 independent features (separated in mean), 1 

redundant feature, and 1 noise feature (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , 95.0=redρ  is the correlation level of the redundant 

feature, and redind ρρρ *=  is the correlation level induced by ρ and redρ .  i
FF kj ,Σ is the 

correlation matrix between the features contained in feature set j and feature set k in class 

i (i = 0,1; j, k = 1,2).  Now, let 01
1F be the first set of features from feature set 1 in class 0, 

02
1F be the second set of features from feature set 1 in class 0, 11

1F  be the first set of 

features from feature set 1 in class 1, and 12
1F be the second set of features from feature 
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set 1 in class 1 where 02
1

01
1

0
1 FFF ∪= , 12

1
11

1
1

1 FFF ∪=  and 1
1

0
11 FFF ∪= .  Let 01

1µ  be 

the mean of the first set of features in feature set 1 in class 0, 02
1µ  be the mean of the 

second set of features in feature set 1 in class 0, 11
1µ  be the mean of the first set of 

features in feature set 1 in class 1, and 12
1µ  be the mean of the second set of features in 

feature set 1 in class 1.  Let ),(~ 0
,

01
1

01
1 11 FFNF Σµ , ),(~ 0

,
02
1

02
1 11 FFNF Σµ , 

),(~ 1
,

11
1

11
1 11 FFNF Σµ , and ),(~ 1

,
12
1

12
1 11 FFNF Σµ  where T)0,0,0,0(01

1 =µ , 

T)0,95.0,95.0,95.0(02
1 =µ , T)0,95.0,95.0,0(11

1 =µ  and T)0,0,0,95.0(12
1 =µ .   

Let 02
2

01
2

0
2 FFF ∪= , 12

2
11
2

1
2 FFF ∪= , and 1

2
0

22 FFF ∪=  

 where ),(~ 0
,

01
2

01
2 11 FFNF Σµ , ),(~ 0

,
02
2

02
2 11 FFNF Σµ , ),(~ 1

,
11
2

11
2 11 FFNF Σµ , and 

),(~ 1
,

12
2

12
2 11 FFNF Σµ  where T)0,0,0,0(01

2 =µ , T)0,15.1,15.1,15.1(02
2 =µ , 

T)0,15.1,15.1,0(11
2 =µ , and T)0,0,0,15.1(12

2 =µ .  This adds the appropriate level of 

correlation between feature sets.  In addition, }9.0,5.0,0.0{∈autoρ  is the level of 

autocorrelation within a feature set.  Let },...,2,1{,)( 8
01 NtRtz ∈⊂  where N is the 

number of training exemplars, be one exemplar in the feature space for the first set of 

features in class 0 where ),0(~)( 0
01 ΣNtz  for all t; it is one row of the matrix of features 

described above.  Let },...,2,1{,)( 8
02 NtRtz ∈⊂  where N is the number of training 

exemplars, be one exemplar in the feature space for the second set of features in class 0 

where ),0(~)( 0
02 ΣNtz for all t; it is one row of the matrix of features described above.  

Let },...,2,1{,)( 8
11 NtRtz ∈⊂  where N is the number of training exemplars, be one 

exemplar in the feature space for the first set of features in class 1 where 
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),0(~)( 0
11 ΣNtz for all t; it is one row of the matrix of features described above.  Let 

},...,2,1{,)( 8
12 NtRtz ∈⊂  where N is the number of training exemplars, be one exemplar 

in the feature space for the second set of features in class 1 where ),0(~)( 0
12 ΣNtz for all 

t; it is one row of the matrix of features described above.  Let IA auto *ρ= , 

IB auto *)1( 2ρ−= , ))**(,0(~)( 0
01 BBNt Σε , ))**(,0(~)( 0

02 BBNt Σε , 

))**(,0(~)( 0
11 BBNt Σε , and ))**(,0(~)( 0

12 BBNt Σε .  Then, 

)()1(*)( 010101 ttzAtz ε+−= , )()1(*)( 020202 ttzAtz ε+−=  , )()1(*)( 111111 ttzAtz ε+−=  

, and )()1(*)( 121212 ttzAtz ε+−=  (Laine, 2003).  Once the appropriate number of 

exemplars has been generated, the means can be added to the corresponding populations, 

and the populations can be grouped together into the appropriate classes.  Class 0 is 

composed of )(01 tz and )(02 tz ; Class 1 is composed of )(11 tz and )(12 tz . 

Problem 7:  20 Feature with Feature Selection Case    

Let 20
21 RFFF ⊂×= where 10

1 RF ⊂  is the feature set observed by sensor 1 and 

10
2 RF ⊂ is the feature set observed by sensor 2.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 4 

redundant features, and 4 noise features (same mean). 
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where }9.0,8.0,6.0,4.0,2.0,0.0{∈ρ , ,30.0,40.0,50.0,60.0 4321 ==== redredredred ρρρρ  

are the correlation levels of the redundant features, and 
mm redind ρρρ *=  are the 

correlation levels induced by ρ and 
mredρ  for all m=1,2,3,4.  i

FF kj ,Σ is the correlation 

matrix between the features contained in feature set j and feature set k in class i (i = 0,1; j, 

k = 1,2).  Now, let 0
1F be the features from feature set 1 in class 0 and 1

1F  be the features 

from feature set 1 in class 1 where 1
1

0
11 FFF ∪= .  Let 0

1µ  be the mean of feature set 1 in 

class 0 and 1
1µ  be the mean of feature set 1 in class 1.  Let ),(~ 0

,
0
1

0
1 11 FFNF Σµ  and 
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),(~ 1
,

1
1

1
1 11 FFNF Σµ  where T)0,0,0,0,0,0,0,0,0,0(0

1 =µ  and 

T)0,0,0,0,5.0,5.0,5.0,5.0,5.0,5.0(1
1 =µ .  Let 1

2
0

22 FFF ∪=  where ),(~ 0
,

0
2

0
2 22 FFNF Σµ  and 

),(~ 1
,

1
2

1
2 22 FFNF Σµ  where T)0,0,0,0,0,0,0,0,0,0(0

2 =µ  and 

T)0,0,0,0,75.0,75.0,75.0,75.0,75.0,75.0(1
2 =µ .  Two different sample sizes were used for 

this problem:  50 exemplars in each class and 1000 exemplars in each class.  Three data 

sets were generated for each sample size and used as shown in the process flow diagrams 

above. 

 In this problem, after the data was generated as described above, feature selection 

was performed.  To perform feature selection, discriminant loadings were calculated for 

each feature.  In this project, the loading is defined to be the correlation between the 

feature and the posterior probability of being in class 1.  After the loadings were 

calculated, any feature with a loading greater than 0.45 was kept as a good feature.  In the 

small sample size problem, there were cases where none of the loadings were larger than 

0.45.  In these cases, only the feature with the largest loading was considered a good 

feature and kept for the remainder of the analysis.  Then, discriminant analysis and 

classifier fusion were redone using only those good features.  For comparison, analysis 

was also done without feature selection where all the features were kept and used for the 

discriminant analysis and sensor fusion.  These two results were compared.  This process 

was completed for each of the six correlation levels, each of the two sample sizes (50 

exemplars in each class and 1000 exemplars in each class), with and without feature 

selection, over 15 runs; there were a total of 360 runs in this first experiment. 
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Problem 8:  36 Feature Case with Feature Selection Case    

Let 36
21 RFFF ⊂×= where 18

1 RF ⊂  is the feature set observed by sensor 1 and 

18
2 RF ⊂ is the feature set observed by sensor 2.  The correlation of the data is given by 
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In this case, each feature set will contain 2 independent features (separated in mean), 8 

redundant features, and 8 noise features (same mean). 
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where 8.0=ρ , 

,20.0,30.0,40.0,50.0 84736251 ======== redredredredredredredred ρρρρρρρρ  are the 

correlation levels of the redundant features, and 
mm redind ρρρ *=  are the correlation 

levels induced by ρ and 
mredρ  for all m=1,…,8.  i

FF kj ,Σ is the correlation matrix between 

the features contained in feature set j and feature set k in class i (i = 0,1; j, k = 1,2).  Now, 

let 0
1F be the features from feature set 1 in class 0 and 1

1F  be the features from feature set 

1 in class 1 where 1
1

0
11 FFF ∪= .  Let 0

1µ  be the mean of feature set 1 in class 0 and 1
1µ  

be the mean of feature set 1 in class 1.  Let ),(~ 0
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1 11 FFNF Σµ  

where T)0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0(0
1 =µ  and 

T)0,0,0,0,0,0,0,0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0(1
1 =µ .  Let 1
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,
1
2

1
2 22 FFNF Σµ  where 
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T)0,0,0,0,0,0,0,0,75.0,75.0,75.0,75.0,75.0,75.0,75.0,75.0,75.0,75.0(1
2 =µ .  Only the low 
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sample size was used for this experiment.  Three data sets were generated and used as 

shown in the process flow diagram in Figure 1. 

 In this problem, the feature set was expanded for a more thorough examination of 

feature selection on a single run for one sample size (50 exemplars in each class) with 

one level of correlation (ρ = 0.8) of the same process.  In this case, data was generated as 

described above, and discriminant loadings were calculated in the same manner as in the 

first feature selection problem.  In this problem, the classification accuracy is defined to 

be the sum of the true positive values and true negative values (the sum of the correct 

classifications).  The number of features was reduced from all 18 features for each 

classifier to 1 feature for each classifier.  For each number of features, the classification 

accuracy was calculated for each fusion method.   

Experimental Design 

 In the data generation, three data sets were generated.  For all of the problems 

described in Table 4, the same general experimental design was followed.  The only 

difference was in the data generation phase of the process.  The first data set was used to 

train the individual classifiers, the linear and quadratic discriminant functions.  Once the 

individual classifiers were trained, the second data set was used to validate the individual 

classifiers.  Posterior probabilities were calculated from the second and third data sets for 

later use.  The second data set posterior probabilities, in addition to being validation data 

for the individual classifiers, were used to train the fusion methods.  The posterior 

probabilities from the third data set were used to validate the fusion methods.  All of the 

plots generated are results from the third data set. 
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ISOC Application 

 The ISOC Fusion model takes a given threshold, 0.5, and determines the optimal 

fusion rule.  Using the methodology described in the Literature Review, the optimal rule 

was calculated from the posterior probabilities from the second data set.  After the 

optimal rule was calculated, the thresholds for both individual classifiers were varied 

together from 0.0 to 1.0, and the optimal rule was applied on the independent posterior 

probabilities from the third data set.  The false positive values were plotted against the 

true positive values as the thresholds were varied; the result is six ISOC curves, one for 

each level of correlation.  This process was replicated, and the average ISOC curve from 

the replications was calculated. 

ROC “Within” OR Application 

 The ROC “Within” Fusion model takes a given rule, the “Logical OR” rule, and 

determines the optimal thresholds for each individual classifier. Using the methodology 

described in the Literature Review, the optimal threshold pairs were calculated from the 

posterior probabilities from the second data set.  After the optimal threshold pairs were 

calculated, the optimal threshold pairs along with the “Logical OR” rule were applied to 

the independent posterior probabilities from the third data set.  The false positive values 

were plotted against the true positive values as the thresholds were varied; the result is six 

ROC curves, one for each level of correlation.  This process was replicated, and the 

average ROC curve from the replications was calculated. 

PNN Application 

 The PNN Fusion model treats the posterior probabilities from the individual 

classifiers as features and outputs an overall posterior probability of an exemplar being in 
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a given class using the methodology described in the Literature Review.  Unlike the 

ISOC Fusion model and the ROC “Within” Fusion model, the PNN only observes the 

posterior probabilities from the third data set.  The PNN is trained on the first 1/3 of the 

data set and validated on the last 2/3 of the data set.  On the validation set, the threshold 

was varied from 0.0 to 1.0.  The false positive values were plotted against the true 

positive values as the thresholds were varied; the result is six ROC curves, one for each 

level of correlation.  This process was replicated, and the average ROC curve from the 

replications was calculated. 

One Big Network Application 

 The One Big Network model eliminates the individual classifiers and takes all 

features as inputs to a generalized regression neural network using the methodology 

described in the Literature Review Section (reference actual section number).  The false 

positive values were plotted against the true positive values as the thresholds were varied; 

the result is six ROC curves, one for each level of correlation.  This process was 

replicated, and the average ROC curve from the replications was calculated. 

Feature Selection 

 In problems where each classifier observes many features, many of which are 

noise or redundant features, it may be beneficial to select only those features that are 

relevant for classification.  This prevents the classifier from being confused by those 

features that add little to classification accuracy.  

Total Probability of Misclassification 

 The total probability of misclassification (TPM) is calculated by summing the two 

error probabilities:  probability of false positive and probability of false negative.  This 
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calculation can be made for both of the classifiers used in this thesis, the linear 

discriminant function and the quadratic discriminant function, by using only those 

features that the classifier actually observes.  This calculation will give a prior estimation 

of the errors to be observed by the classifiers.  Another approach is to calculate an overall 

TPM, as if all the features were observed by one big classifier.  This calculation will also 

give a prior estimation of the errors to be observed by the fusion.  As the correlation 

between feature sets increases, less independent information is presented to the 

classifiers.  Thus, as the correlation between feature sets increases, the TPM is expected 

to increase; as less independent information is presented to the classifiers, more errors are 

expected.   

Sample Size Variation 

 Another experiment was designed to examine the effects of sample size.  For this 

experiment, the sample size is defined to be the number of exemplars in each class in 

each data set.  For each sample size, the above fusion methods were performed, and the 

resulting curves were generated.  It is realistic that the actual amount of correlation 

present in the data will not be known ahead of time.  It also may be realistic to assume 

that there is equally likely probability of observing each of the six levels of correlation.  

Therefore, the six ROC curves generated for each method, one for each level of 

correlation, were averaged into one ROC curve for each sample size.  Then, the average 

ROC curve for each of the sample sizes was plotted to see the effects of sample size on 

the fusion process. 
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Chapter Summary 

 This chapter described the methodology employed throughout this thesis.  First, 

the two types of correlation used in this thesis were presented.  Then, the data generation 

process for each of the problems was provided.  Next, the overall experimental design, as 

well as some general application issues for each of the four fusion methods, was given.  

Finally, feature selection, TPM, and sample size variation were discussed. 
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IV.  Findings and Analysis 

Introduction 

 After the data was generated, the four fusion methods were performed and results 

were generated and analyzed for each of the problems described in the data generation 

section.  This section provides findings and analysis for each of the problems described 

above.  Table 5 summarizes how the results are presented. All results are average results 

from 5 replications. 

Table 5:  Results Descriptions. 

Problem # Problem Name Results Description 

1   
4 Feature Case ROC curves, N=1000 

ROC curves, Across Sample Sizes 

2   
8 Feature Case ROC curves, N=1000 

ROC curves, Across Sample Sizes 

3   
8 Feature with Autocorrelation 
Case 

ROC curves, N=1000 
ROC curves, Across Sample Sizes 

4   
8 Feature Triangle Case ROC curves, N=1000 

ROC curves, Across Sample Sizes 

5   
8 Feature XOR Case ROC curves, N=1000 

ROC curves, Across Sample Sizes 

6   
8 Feature XOR with 
Autocorrelation Case 

ROC curves, N=1000 
ROC curves, Across Sample Sizes 

7   
20 Feature with Feature Selection 
Case 

ROC curves, N=50 N=1000 
Feature Selection vs Non-Feature Selection 

8   
36 Feature with Feature Selection 
Case 

Classification Accuracy, N=50, rho=0.8 
 

9   
TPM Exploration ROC Curves, N=50, N=1000 

3 specific levels of correlation 

 

Problem 1 Results:  4 Feature Case, Single Sample Size    

 Features were generated according to the methodology described in the Data 

Generation:  4 feature without autocorrelation, and the fusion process was followed as 

o 

cj 

m 

I 
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described in the Experimental Design section.  Figure 8 shows four plots, one for each of 

the four fusion methods.  These are average ROC curves over five replications with 1000 

exemplars in each class.  Each plot contains six ROC curves, one for each of the six 

levels of correlation.  In addition, crosshairs are place at the point (0.1, 0.6) to add a point 

of reference common for all four plots. 
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Figure 8:  4 Feature ROC Curves, N=1000. 

 From these plots, some meaningful conclusions can be made.  First, ISOC Fusion 

and ROC “Within” Fusion appear to be very robust to correlation; however, they are on 

the low end of performance.  On the other hand, the PNN is not as robust to correlation as 

the first two methods; that is, performance varies depending on the level of across 

correlation.  However, the simplistic PNN performs as well as ISOC and ROC “Within” 
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at high levels of correlation, and it drastically outperforms them at low levels of 

correlation.  Again, the PNN observes only half of the data that ISOC, ROC “Within”, 

and OBN observe.  The OBN approach performs comparably to the PNN. 

Problem 1 Results:  4 Feature Case, Varying Sample Size    

 Features were generated according to the methodology described in the Data 

Generation:  4 feature without autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  This process was repeated for multiple 

sample sizes.  Figure 9 shows four plots, one for each of the four fusion methods.  They 

are the average ROC curves over the six levels of correlation for a given sample size.  

Each plot contains six ROC curves, one for each of the six sample sizes.  In addition, 

crosshairs are place at the point (0.1, 0.6) to add a point of reference common for all four 

plots. 

 

o 
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Figure 9:  4 Feature ROC Curves, Across Sample Sizes. 

 From these plots, it is obvious that in this simple problem, sample size is not 

much of a factor.  For each of the 4 methods, the ROC curves for a sample size of 25 

resulted in different ROC curves than the ROC curves for a sample size of 50.  After a 

sample size of 50 is obtained, little increase in performance is gained as the sample size is 

increased to 2000.  ISOC and OBN appear to be the most robust to sample size, and the 

ROC curves for the PNN appear to be better at all sample sizes. 

Problem 2 Results:  8 Feature Case, Single Sample Size    

 Features were generated according to the methodology described in the Data 

Generation:  8 feature without autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  Figure 10 shows four plots, one for each 

o' 
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of the four fusion methods.  They are average ROC curves over five replications with 

1000 exemplars in each class.  Each plot contains six ROC curves, one for each of the six 

levels of correlation.  In addition, crosshairs are place at the point (0.1, 0.4) to add a point 

of reference common for all four plots. 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(FP)

P
(T

P
)

ISOC Fusion Correlation Comparison N=1000

0.0 corr
0.2 corr
0.4 corr
0.6 corr
0.8 corr
0.9 corr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(FP)

P
(T

P
)

ROC "Within" Fusion Correlation Comparison N=1000

0.0 corr
0.2 corr
0.4 corr
0.6 corr
0.8 corr
0.9 corr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(FP)

P
(T

P
)

PNN Fusion Correlation Comparison N=1000

0.0 corr
0.2 corr
0.4 corr
0.6 corr
0.8 corr
0.9 corr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(FP)

P
(T

P
)

One Big Network Fusion Correlation Comparison N=1000

0.0 corr
0.2 corr
0.4 corr
0.6 corr
0.8 corr
0.9 corr

 

Figure 10:  8 Feature ROC Curves, N=1000. 

 From the plots above, many of the same conclusions can be drawn.  First, as 

described in the data generation section, the means in this problem are closer together.  

That is the cause of the shift in the ROC curves; it is not the addition of the noise and 

redundant features.  Second, as in the 4 feature problem, the ISOC and ROC “Within” 

Fusion methods are the most robust, but they are on the low end of performance.  The 
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OBN is fairly robust, but it outperforms the ISOC and ROC “Within” at 0.0 level of 

correlation.  The PNN does as well as ISOC, ROC “Within,” and OBN at high levels of 

correlation, and it outperforms them at low levels of correlation.  

Problem 2 Results:  8 Feature Case, Varying Sample Size    

 Features were generated according to the methodology described in the Data 

Generation:  8 feature without autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  This process was repeated for multiple 

sample sizes.  Figure 11 shows four plots, one for each of the four fusion methods.  They 

are the average ROC curves over the six levels of correlation for a given sample size.  

Each plot contains six ROC curves, one for each of the six sample sizes.  In addition, 

crosshairs are place at the point (0.1, 0.4) to add a point of reference common for all four 

plots. 

o' 
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Figure 11:  8 Feature ROC Curves, Across Sample Sizes. 

 The sample size effect is more evident in the 8 feature case than it was in the 4 

feature case.  There is a fairly obvious break between the first three sample sizes and the 

second three sample sizes for all four fusion methods.  After a sample size of 250, there is 

little increase in performance by increasing the sample size up to 500 or 1000.  The 

ISOC, ROC “Within,” and OBN methods seem to perform about the same for all sample 

sizes.  The PNN does as well as the other three methods at the lower sample sizes, and it 

outperforms the other three methods at the higher sample sizes. 
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Problem 3 Results:  8 Feature with Autocorrelation Case, Single Sample Size   

 

Features were generated according to the methodology described in the Data 

Generation:  8 feature with autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  Figure 12 shows one feature over time at 

0.0 level of autocorrelation, and Figure 13 shows one feature over time at 0.9 level of 

autocorrelation. 
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Figure 12:  Feature 1 over Time:  0.0 Level of Autocorrelation.  
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Figure 13:  Feature 1 over Time:  0.9 Level of Autocorrelation. 

Figure 12 shows that, as expected, feature 1 is independent over time; this is 

evident because there is no pattern in the data over time.  Figure 13 shows that 

autocorrelation is present; this is evident because there is a definite pattern over time.  

Thus, the appropriate levels of autocorrelation are present.  

Figure 14 shows four plots, one for each of the four fusion methods.  They are the 

values of true positive for a false positive value of 0.1 on the average ROC curves over 

five replications with 1000 exemplars in each class.  The true positive value is plotted 

against the level of across correlation.  Each plot contains three lines, one for each of the 

three levels of autocorrelation.   
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Figure 14:  8 Feature with Autocorrelation Case, N=1000. 

 Figure 14 shows that there is an effect of autocorrelation; although, it is not 

dramatic at this high sample size.  It also seems to make a more significant difference in 

those fusion methods that assume independence of the classifiers, ISOC and ROC 

“Within.”  There is less of a difference in those fusion methods that make no such 

assumption about the classifiers, PNN and OBN.  Once again, at this sample size, the 

OBN and PNN fusion far exceed the performance of ISOC and ROC “Within” at low 

levels of correlation and perform at least as well at high levels of correlation.   
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Problem 3 Results:  8 Feature with Autocorrelation Case, Across Sample Sizes   

 

Features were generated according to the methodology described in the Data 

Generation:  8 feature with autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  This process was repeated for multiple 

sample sizes.  Figure 15 shows four plots, one for each of the four fusion methods, They 

are the true positive values for a false positive value of 0.1 on the average ROC curves 

over the six levels of correlation for a given sample size.  Sample size is varied from 50 

exemplars in each class to 1000 exemplars in each class.  Each plot contains three lines, 

one for each of the three levels of autocorrelation. 
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Figure 15:  8 Feature with Autocorrelation Case, Across Sample Sizes. 
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 Figure 15 shows that the PNN is fairly robust to the autocorrelation while the 

other three methods are more affected by the presence of autocorrelation.  This is 

especially true as the level of autocorrelation reaches 0.9.  That is, there is little difference 

between 0.0 level of autocorrelation and 0.5 level of autocorrelation for any of the three 

methods; however, there is a difference between 0.5 level of autocorrelation and 0.9 level 

of autocorrelation.  This degradation in performance is more dramatic as the sample size 

decreases.  At high sample size, there is little difference between 0.0 level of correlation 

and 0.9 level of correlation for any of the three methods.  By the time the sample size 

drops to 500 or 200, there is significant degradation in performance for all methods 

except the PNN.  In conclusion, the PNN and OBN outperform the other two methods 

regardless of the level of autocorrelation or the sample size. 

Problem 3 Results:  8 Feature with Autocorrelation Case, An ANOVA Approach   

 

 This same set of data can also be examined using an ANOVA approach.  

Consider a three factor design where the three factors are Level of Autocorrelation, Level 

of Across Correlation, and Sample Size.  Level of Autocorrelation has three levels, 0.0, 

0.5, and 0.9.  Level of Across Correlation has six levels, 0.0, 0.2, 0.4, 0.6, 0.8, and 0.9.  

Sample Size has five levels, 50, 100, 250, 500, and 1000 exemplars in each class.  A full 

factorial design consists of all possible combinations of these three factors.  Each design 

point was replicated five times; there were a total of 450 runs for each of the four 

methods.  Table 6 summarizes the results of each ANOVA.   

 

 

o 
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Table 6:  Summary of ANOVA Results. 

Method ISOC ROC “Within” PNN OBN 
R2 0.406 0.371 0.372 0.383 
Adjusted R2 0.259 0.215 0.216 0.230 
Mean Response 0.572 0.532 0.623 0.617 
Root MSE 0.134 0.151 0.154 0.130 
Factors Considered and corresponding p-values 
Autocorrelation <.0001 <.0001 0.1639 <.0001 
Sample Size <.0001 <.0001 <.0001 <.0001 
Auto*Sample <.0001 0.1431 0.5337 0.6097 
Correlation 0.8973 0.2866 <.0001 <.0001 
Auto*Corr 0.3613 0.8030 0.7965 0.5096 
Corr*Sample 0.6699 0.2815 0.0801 0.3318 
Auto*Corr*Sample 0.8428 0.9243 0.9997 0.9995 
 

These results seem to confirm statistically the results that were already shown 

graphically.  ISOC and ROC “Within” are very robust to across correlation, but they are 

not robust to autocorrelation or sample size.  In other words, changing the autocorrelation 

level and sample size level will have an impact on the performance of these two types of 

fusion.  The OBN is not robust to any of the three factors.  The PNN is robust to 

autocorrelation level, but the PNN performance will change as the level of 

autocorrelation and sample size change.  The good news for the PNN and OBN is that 

although their performance is less robust to across correlation, they also do as well or 

better than the other two methods.  This is also apparent in the Mean Response for each 

method.  PNN has the highest mean response, and OBN has the second highest mean 

response.  ISOC has the third highest mean response, and ROC “Within” has the lowest 

mean response.  It is also worth noting that none of the R2 or Adjusted R2 are particularly 

good.  This means that only approximately 20% of the variation in the data can be 

explained by the particular models.  
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Validation of the assumptions, normal errors and constant variance, via residual 

analysis was done for each of the four methods.  All four followed the same pattern so 

only those for ISOC are shown.  Figure 16 shows a histogram of the residuals; Figure 17 

shows the residuals vs Row Number. 

 

Figure 16:  ISOC Histogram of Residuals. 
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Figure 17:  ISOC Residual TP Probability vs Row Number. 

Figure 16 shows that the errors are approximately normally distributed so the 

normal error assumption holds.  Figure 17 shows that there is a violation of the constant 

variance assumption.  This means that the variance of the residuals is not constant over 

the entire process.  This plot can be divided into three parts: the first 150 rows correspond 

to 0.0 level of autocorrelation, the second 150 rows correspond to 0.5 level of 

autocorrelation, and the final 150 rows correspond to 0.9 level of autocorrelation.  The 

first 300 rows seem to have constant variance; that is, for all the responses for 0.0 level of 

autocorrelation and 0.5 level of autocorrelation, the variance seems to stay the same 

regardless of the level of across correlation or sample size.  The variance of the residuals 

seems to explode right around row 300.  This is the start of the 0.9 level of 

autocorrelation.  At this point, there is a much wider variance in responses than for the 

first two levels of autocorrelation.  Figure 18 is a similar plot, but the rows are in slightly 
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different order.  Now, the data is first sorted by autocorrelation in ascending order and 

then by sample size in descending order.   

 

Figure 18:  ISOC Residuals vs Row Number, Resorted 

Figure 18 shows even more discernable pattern of heteroskedasticity.  Within 

each group of 150 rows, there is an even more evident pattern.  As the sample size 

decreases, the variance within a level of autocorrelation increases.  Thus, one can expect 

the variance to increase not only as the autocorrelation level increases, but also as the 

sample size decreases.   

 Since there is so much variability in the data, another approach is to average the 

five replications for each design point and use the average TP value as the response.  

Table 7 shows the results for this analysis. 
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Table 7:  Summary of ANOVA Results, Averaged. 

Method ISOC ROC 
“Within” 

PNN OBN 

R2 0.871 0.894 0.926 0.906 
Adjusted R2 0.705 0.764 0.835 0.791 
Mean Response 0.557 0.524 0.623 0.604 
Root MSE 0.060 0.064 0.043 0.051 
Factors Considered and corresponding p-values 
Autocorrelation <.0001 <.0001 0.0160 <.0001 
Sample Size <.0001 <.0001 <.0001 <.0001 
Auto*Sample 0.0005 0.0040 0.0459 0.0053 
Correlation 0.7204 0.8582 <.0001 <.0001 
Auto*Corr 0.2231 0.0444 0.1519 0.2656 
Corr*Sample 0.4223 0.1227 0.0002 0.1448 
 

 
 The same trends hold in this analysis in terms of the most significant factors for a 

given method.  Also, the mean responses hold the same ranking.  That is, PNN has the 

highest mean response, and OBN has the second highest mean response.  ROC “Within” 

has the lowest mean response, and ISOC has the second lowest mean response.  This 

analysis does reduce the root mean square error since there is less inherent variability in 

this process.  Finally, the R2 and Adjusted R2 values for all four methods are much higher 

than they were in the previous analysis.  Again, since there is much more variability in 

this data, the model does a much better job of explaining the variation in the data. 

Validation of the assumptions, normal errors and constant variance, via residual 

analysis was also done for each of the four methods in this analysis.  All four followed 

the same pattern so only those for ISOC are shown.  Figure 19 shows a histogram of the 

residuals; Figure 20 shows the residuals over time.   
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Figure 19:  ISOC Histogram of Average Residuals 

-4

-3

-2

-1

0

1

2

3

4

5

S
tu

de
nt

iz
ed

 R
es

id
 T

P

-10 0 10 20 30 40 50 60 70 80 90 100
Row Number

 
Figure 20:  ISOC Residual TP Probability vs Row Number. 

   These residual plots show resolution to the violation of assumptions above.  

Figure 19 shows that the residuals are approximately normally distributed, and Figure 20 
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shows that there is approximately a constant variance over the entire process. This means 

that the data in this new analysis does not violate either of the two assumptions. 

Problem 4 Results:  8 Feature Triangle Case, Single Sample Size  

 Features were generated according to the methodology described in the Data 

Generation:  8 feature Triangle Problem, and the fusion process was followed as 

described in the Experimental Design section.  Figure 21 shows four plots, one for each 

of the four fusion methods.  They are average ROC curves over five replications with 

1000 exemplars in each class.  Each plot contains six ROC curves, one for each of the six 

levels of correlation.  In addition, crosshairs are place at the point (0.1, 0.4) to add a point 

of reference common for all four plots. 
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Figure 21:  8 Feature Triangle ROC Curves, N=1000. 
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 There is a wide difference between the four methods in this problem.  First of all, 

ISOC is the most robust to correlation, and ROC “Within” is second most robust to 

correlation.  Although, they are the most robust to correlation, they are both on the very 

low end of performance.  On the other hand, the PNN and OBN are not very robust to 

correlation, but they outperform the other two methods at all levels of correlation.  They 

far outperform the other two methods at high levels of correlation and slightly outperform 

at low levels of correlation.  In general, in the simpler problems, the higher the level of 

correlation results in a lower the level of performance.  In this problem, there is an 

inverse effect; this is particularly evident in the PNN and OBN results.  The higher level 

of correlation results in a higher level of performance.   

 At first glance, this result seems highly counter-intuitive, but a look at the 

geometry of the problem provides valuable insight into the results for the PNN.  Figure 

22 shows a plot of the posterior probabilities from the linear classifier vs the posterior 

probabilities from the quadratic classifier for the 0.0 correlation level.  In essence, this is 

the feature space of the PNN.  



  66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Posterior Probability Linear Classifier

P
os

te
rio

r P
ro

ba
bi

lit
y 

Q
ua

dr
at

ic
 C

la
ss

ifi
er

Posterior Probability of Individual Classifiers rho=0.0, N=1000

Class 0
Class 1

 

Figure 22:  PNN Feature Space Plot, 0.0 Correlation, N=1000. 

 Figure 22 shows very little separation between the two classes; thus, it is difficult 

for the PNN to distinguish between the two classes.  However, this plot is much different 

when the correlation is 0.9.  Figure 23 shows a plot of the posterior probabilities from the 

linear classifier vs the posterior probabilities from the quadratic classifier for the 0.9 

correlation level.   
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Figure 23:  PNN Feature Space Plot, 0.9 Correlation, N=1000. 

 As is obvious from Figure 23, adding the correlation significantly alters the 

geometry of the problem posed to the PNN.  Now, the PNN can very easily solve the 

problem since the classes are much more distinguishable.  This explains why, in this 

problem, the PNN has increased performance as the correlation level increases. 

 The OBN results also seem highly counter-intuitive, but as was the case with the 

PNN, a look at the geometry of the OBN problem provides valuable insight into the 

results.  Figure 24 shows the feature space of feature 1 and feature 2 at 0.0 level of 

correlation.  Figure 25 shows the feature space of feature 1 and feature 4 at 0.0 level of 

correlation. 
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Figure 24:  Feature Space of Feature 1 and Feature 2, 0.0 Correlation, N=1000. 
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Figure 25:  Feature Space of Feature 1 and Feature 2, 0.9 Correlation, N=1000. 

Neither of these plots is unexpected.  Since Feature 1 and Feature 2 are always 

independent, the correlation level does not change the geometry of the plot.  Figure 24 

shows very little separation between the two classes in the feature space of feature 1 and 

feature 2 at 0.0 level of correlation, and Figure 25 shows very little separation between 

the two classes in the feature space of feature 1 and feature 2 at 0.9 level of correlation.  

Thus, it is difficult for the OBN to distinguish between the two classes in this dimension 

regardless of correlation. 

Figure 26 shows the feature space of feature 1 and feature 4 at 0.0 level of 

correlation.  Figure 27 shows the feature space of feature 1 and feature 4 at 0.9 level of 

correlation. 
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Figure 26:  Feature Space of Feature 1 and Feature 4, 0.0 Correlation, N=1000. 
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Figure 27:  Feature Space of Feature 1 and Feature 4, 0.9 Correlation, N=1000. 

 Since there is no correlation between features 1 and 4 in Figure 26, there is still 

little separation between the classes.  At a high level of correlation, the shape of the 

feature space in this dimension is significantly changed such that the OBN can easily tell 

the difference between the two classes.  This change in geometry explains why the OBN 

performance increases as the level of correlation increases. As the problem is 

complicated slightly, the ISOC and ROC “Within” methods continue to diminish in 

performance while the OBN and PNN methods continue to outperform at some levels of 

correlation. 
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Problem 4 Results:  8 Feature Triangle Case, Varying Sample Size  

 Features were generated according to the methodology described in the Data 

Generation:  8 feature Triangle Problem, and the fusion process was followed as 

described in the Experimental Design section.  This process was repeated for multiple 

sample sizes.  Figure 28 shows four plots, one for each of the four fusion methods.  They 

are the average ROC curves over the six levels of correlation for a given sample size.  

Each plot contains six ROC curves, one for each of the six sample sizes.  In addition, 

crosshairs are place at the point (0.1, 0.4) to add a point of reference common for all four 

plots. 
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Figure 28:  8 Feature Triangle ROC Curves, Across Sample Sizes. 
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 As the problem becomes more complicated, more samples are needed.  The first 

three sample sizes are fairly well separated in all four methods while there is little 

difference between N=500 and N=1000 for any of the four methods.  This means that 

once the sample size is 500, there is little to be gained by increasing the sample size in 

this problem.  Again, as the problem is slightly more complicated, the ISOC and ROC 

“Within” methods continue to diminish in performance while the OBN and PNN methods 

continue to outperform at some levels of correlation. 

Problem 5 Results:  8 Feature XOR Case, Single Sample Size  

Features were generated according to the methodology described in the Data 

Generation:  8 feature XOR Problem, and the fusion process was followed as described in 

the Experimental Design section.  Figure 29 shows four plots, one for each of the four 

fusion methods.  They are average ROC curves over five replications with 1000 

exemplars in each class.  Each plot contains six ROC curves, one for each of the six 

levels of correlation.  In addition, crosshairs are place at the point (0.1, 0.2) to add a point 

of reference common for all four plots. 
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Figure 29:  8 Feature XOR ROC Curves, N=1000. 

 A linear discriminant function can not adequately solve the XOR problem so the 

linear classifier is not a good classifier.  With adequate separation of the classes, the 

quadratic discriminant function could solve the XOR problem, but in this problem 

without adequate separation, the quadratic classifier is not a good classifier either.  Thus, 

both the ISOC and ROC “Within” can not improve upon fusing two bad classifiers.  Now 

that the problem has become too complicated for either the linear or quadratic classifier 

to adequately solve, the posterior probabilities from each of the classifiers do not offer 

much more information than the binary predicted classes.  Thus, the PNN does not 

improve upon either of ROC “Within” or ISOC Fusion methods.  On the other hand, 

since the OBN eliminates the bad classifiers altogether, it is able to mildly outperform the 
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other three methods at low levels of correlation, and it is able to greatly outperform the 

other three methods at high levels of correlation.  This improvement as a result of 

increasing correlation is due to similar geometric effects as were shown in previous 

sections. 

Interestingly, even when the classes are further separated, the PNN only does as 

well as the ISOC and ROC “Within.”  There is never a huge increase in performance at 

any levels of correlation as there was in the simpler problems.  To show this, the above 

problem was rerun with further separation in the classes for a single sample size.  Figure 

30 shows four plots, one for each of the four fusion methods where there is further 

separation in the classes.   
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Figure 30:  8 Feature XOR ROC Curves with More Separation, N=1000. 
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Again, the PNN performs only as well as the ISOC and ROC “Within” fusion 

methods.  This is explained with further investigation.  Since the linear classifier is a bad 

classifier in this XOR problem, the posterior probabilities from the linear classifier are 

also bad.  Thus, the PNN fusion method only uses the information from the quadratic 

classifier.  Figure 31 shows the individual classifier average ROC curves over 5 

replications for 0.0 correlation and Figure 32 shows the individual classifier average 

ROC curves over 5 replications for 0.9 correlation. 
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Figure 31:  Individual Classifier ROC Curves for 0.0 Correlation. 
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Figure 32:  Individual Classifier ROC Curves for 0.9 Correlation. 

 Since the quadratic classifier observes independent information, regardless of the 

across correlation, the performance of this classifier does not change as the level of 

correlation changes.  Also, the performance of the PNN fusion is almost identical to the 

performance of the quadratic classifier.  This explains the difference in performance in 

the PNN fusion between this type of problem and the simpler type of problem.  The OBN 

continues to outperform the other methods in this type of problem because of the same 

geometric explanation in the previous problem. 

Problem 5 Results:  8 Feature XOR Case, Varying Sample Size  

 Features were generated according to the methodology described in the Data 

Generation:  8 feature XOR Problem, and the fusion process was followed as described in 
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the Experimental Design section.  This process was repeated for multiple sample sizes.  

Figure 33 shows four plots, one for each of the four fusion methods.  They are the 

average ROC curves over the six levels of correlation for a given sample size.  Each plot 

contains six ROC curves, one for each of the six sample sizes.  In addition, crosshairs are 

place at the point (0.1, 0.2) to add a point of reference common for all four plots. 
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Figure 33:  8 Feature XOR ROC Curves, Across Sample Sizes. 

 As the problem becomes even more complicated, more samples are needed.  For 

the ISOC, ROC “Within,” and PNN Fusion Methods, there seems to be increasing 

performance between the first sample sizes.  After a sample size of 500 in each class is 

reached, the performance stops increasing.  The OBN shows a similar pattern.  There is 

definitely a smaller return in performance from increasing the sample size from 500 to 
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1000 exemplars in each class, but it may be possible to increase performance a little more 

by further increasing the sample size. 

Problem 6 Results:  8 Feature XOR with Autocorrelation Case, Single Sample Size 

 

Features were generated according to the methodology described in the Data 

Generation:  8 feature XOR with autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  Figure 34 shows four plots, one for each 

of the four fusion methods.  They are the values of true positive for a false positive value 

of 0.1 on the average ROC curves over five replications with 1000 exemplars in each 

class.  The true positive value is plotted against the level of across correlation.  Each plot 

contains three lines, one for each of the three levels of autocorrelation.   
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Figure 34:  8 Feature XOR with Autocorrelation Case, N=1000. 

 In this problem, as in previous problems, the ISOC Fusion and ROC “Within” are 

very robust to correlation.  Also, as autocorrelation increases from 0.0 to 0.5, there is no 

degradation in performance for the ISOC and ROC “Within.”  As the autocorrelation 

increases from 0.5 to 0.9, there is a drop in performance across all levels of correlation, 

but it is a small decrease for both ISOC and ROC “Within.”  The PNN seems to be robust 

to both types of correlation.  That is, all mostly flat and on top of one another.  This is 

also the first problem that the PNN performance is as low as the ISOC and ROC 

“Within” performance.  The OBN seems to be affected by both types of correlation, but it 

always performs as well or better than the other three methods at all combinations of the 

two types of correlation.  As with the first two methods, it seems there is little difference 
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between an autocorrelation of 0.0 and 0.5, but there is a difference between an 

autocorrelation of 0.5 and 0.9.  Also, there is an interesting pattern in performance for the 

OBN across levels of correlation for a given level of autocorrelation.  The performance 

seems to decrease slightly at a correlation level of 0.2, but it increases as the geometry 

changes with the higher levels of correlation.  The OBN continues to outperform the 

other methods, especially as the correlation level increases, in this type of problem 

because of the same geometric explanation in the previous problem.  This is the first 

obvious example where it is better to eliminate the individual classifiers and treat the 

entire problem as One Big Network. 

Problem 6 Results:  8 Feature with Autocorrelation Case, Across Sample Sizes 

 

Features were generated according to the methodology described in the Data 

Generation:  8 feature XOR with autocorrelation, and the fusion process was followed as 

described in the Experimental Design section.  This process was repeated for multiple 

sample sizes.  Figure 35 shows four plots, one for each of the four fusion methods, They 

are the true positive values for a false positive value of 0.1 on the average ROC curves 

over the six levels of correlation for a given sample size.  Sample size is varied from 50 

exemplars in each class to 1000 exemplars in each class.  Each plot contains three curves, 

one for each of the three levels of autocorrelation. 
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Figure 35:  8 Feature XOR with Autocorrelation Case, Across Sample Sizes. 

 For ISOC, ROC “Within,” and OBN fusion, the performance decreases as the 

sample size decreases.  While this degradation in performance is not dramatic, it is still 

present.  There are a few exceptions, but this is mostly true across all levels of 

autocorrelation for these three methods.  The PNN shows a much different result.  For the 

two lower levels of autocorrelation, it follows the same trend the other three methods; as 

the sample size decreases, the performance decreases.  There is an anomaly for the high 

level of autocorrelation that is explained by further examination of the posterior 

probabilities.  Just as when the posterior probabilities where correlated with 

approximately the same level of across correlation as was inputted, the posterior 

probabilities are also approximately autocorrelated as the level of autocorrelation 
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inputted.  Figure 36 shows the feature space of the PNN fusion from a single run at 0.0 

level of autocorrelation, and Figure 37 shows the feature space of the PNN fusion from a 

single run at 0.9 level of autocorrelation.   
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Figure 36:  PNN Fusion Feature Space, 0.0 Autocorrelation. 
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Figure 37:  PNN Fusion Feature Space, 0.9 Autocorrelation. 

 Since the posterior probabilities are not autocorrelated in Figure 36, there is little 

separation between the classes; however, since the posterior probabilities are highly 

autocorrelated in Figure 37, there is a great deal of separation between the classes.  In 

Figure 36 the autocorrelation of the posterior probabilities from the quadratic classifier, 

for instance, are -0.09, essentially 0.  In Figure 37 the autocorrelation of the posterior 

probabilities from the quadratic classifier, for instance, are 0.83.  This is especially 

evident at the low sample sizes because with only limited sample sizes at the high 

autocorrelation level, the features do not have enough observations to recover from the 

high autocorrelation levels.  With the high samples, there will eventually be a great deal 
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of overlap between the two classes in the feature space.  This explains the anomaly with 

the PNN fusion in this problem. 

Problem 6 Results:  8 Feature XOR with Autocorrelation Case, An ANOVA 

Approach  

This same set of data can also be examined using an ANOVA approach.  

Consider a three factor design where the three factors are Level of Autocorrelation, Level 

of Across Correlation, and Sample Size.  Level of Autocorrelation has three levels, 0.0, 

0.5, and 0.9.  Level of Across Correlation has six levels, 0.0, 0.2, 0.4, 0.6, 0.8, and 0.9.  

Sample Size has five levels, 50, 100, 250, 500, and 1000 exemplars in each class.  A full 

factorial design consists of all possible combinations of these three factors.  Each design 

point was replicated five times, and the response variable is the average response over the 

five replications.  Table 8 summarizes the results of each ANOVA. 

Table 8:  Summary of XOR ANOVA Results, Averaged. 

Method ISOC ROC “Within” PNN OBN 
R2 0.874706 0.768371 0.914785 0.944138 
Adjusted R2 0.713143 0.484626 0.810397 0.875708 
Mean Response 0.149846 0.162378 0.223818 0.261231 
Root MSE 0.027504 0.030867 0.042539 0.04626 
Factors Considered and corresponding p-values 
Autocorrelation <.0001 0.0009 <.0001 <.0001 
Sample Size <.0001 <.0001 0.0014 <.0001 
Auto*Sample 0.0101 0.1110 <.0001 0.0004 
Correlation 0.0183 0.0493 0.8690 <.0001 
Auto*Corr 0.4385 0.8881 0.3466 0.0003 
Corr*Sample 0.5225 0.7314 0.8049 <.0001 
 
 

Again, in terms of significant variables, the results of the ANOVA confirm the 

results that were shown graphically.  For the ISOC Fusion, autocorrelation, sample size, 
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and their two way interaction have the highest significance.  That is, a change in these 

variables is most likely to trigger a change in the response.  Although autocorrelation did 

not appear significant in the high sample size case shown graphically, it has a low p-

value.  Across correlation is the least significant of the main effects.  For ROC “Within” 

Fusion, autocorrelation and sample size are the most significant which is what was shown 

graphically above.  For PNN Fusion, autocorrelation, sample size, and their two way 

interaction have the highest significance.  Again, this confirms the graphical results.  For 

the OBN, all variables are significant.  The OBN seems to be the most sensitive to 

changes in all three main effects.  Overall, the OBN has the highest mean response, and 

the PNN has the second highest mean response.  ISOC has the lowest mean response, and 

ROC “Within” has the second lowest mean response.  The OBN has the highest R2 

values, and the PNN has the second highest R2 values.  The ROC “Within” has the lowest 

R2 values, and the ISOC has the second lowest R2 values.  This different approach to 

looking at the same data a different way seems to confirm what was already show 

graphically. 

 Validation of the assumptions, normal errors and constant variance, via residual 

analysis was done for each of the four methods.  All four followed the same pattern so 

only those for ISOC are shown.  Figure 38 shows a histogram of the residuals; Figure 39 

shows the residuals vs Row Number. 
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Figure 38:  ISOC Histogram of Residuals. 
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Figure 39:  ISOC Residual TP Probability vs Row Number. 

Figure 38 shows that the residuals are approximately normally distributed.  Figure 

39 shows that the residuals have approximately constant variance.  These figures show 

that the two assumptions of the model, normal errors and constant variance, hold for this 

analysis. 
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Problem 7 Results:  20 Feature without Autocorrelation Case using Feature 

Selection   

Features were generated according to the methodology described in the Data 

Generation:  20 feature without autocorrelation, and the fusion process and feature 

selection process was followed as described in the Experimental Design section.  This 

process was repeated for two sample sizes over 15 replications.  For each method and 

sample size, the average ROC curve was calculated with and without feature selection 

(twelve total ROC curves).  Each plot contains six ROC curves, one for each level of 

correlation.  Figure 40 shows the six ROC curves for sample size 50 in each class, and 

Figure 41 shows the six ROC curves for sample size of 1000 in each class. 
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Figure 40:  20 Feature without Autocorrelation Case, N=50. 
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 From these plots, it is obvious that in this particular problem, reducing the 

dimensionality of the feature set does not decrease performance in terms of ROC curves.  

There is not a big difference between the ROC curves with feature selection and without 

feature selection.  This means that the feature set can be significantly reduced via feature 

selection without decreasing fusion performance. 

For the low sample size problem, the feature selection process was not consistent.  

Sometimes the good features had high loadings, and sometimes they had low loadings.  

Sometimes the redundant features had high loadings, and sometimes they had low 

loadings.  Sometimes even the noise features had high loadings, and sometimes they had 

low loadings.  Regardless, similar performance was obtained using a significantly 

reduced feature set resulting from the feature selection. 
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Figure 41:  20 Feature without Autocorrelation Case, N=1000. 

 From these plots, as in the low sample size problem, it is obvious that in this high 

sample size problem, reducing the dimensionality of the feature set does not decrease 

performance in terms of ROC curves.  There is not a big difference between the ROC 

curves with feature selection and without feature selection.  This means that the feature 

set can be significantly reduced via feature selection without decreasing fusion 

performance. 

For the high sample size problem, the feature selection process was very 

consistent.  In all fifteen runs, both the good features and all four redundant features had 

loadings greater than 0.45.  This means that the feature selection process was able to 
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detect and delete all the noise features but not the redundant features.  In addition, similar 

results were obtained using a much smaller feature set resulting from feature selection. 

Since it is hard to visually compare the ROC curves, Figure 42 shows the value of 

true positive on the ROC curve for a false positive value of 0.1 for all six values of 

correlation for three methods for the low sample size problem.  Figure 43 shows the value 

of true positive on the ROC curve for a false positive value of 0.1 for all six values of 

correlation for three methods for the high sample size problem. 
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Figure 42:  True Positive Values vs. Correlation Level for 0.1 False Positive Rate. 

In Figure 42, it is apparent that reducing the feature set via feature selection 

results in little or no degradation in performance at the low sample size; however, 

regardless of feature selection, performance remains nearly the same across all levels of 
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correlation.  In addition, this shows that these three fusion methods are fairly robust to 

correlation; that is, the value of true positive stays nearly constant across all levels of 

correlation.  Also, the PNN performs comparably to the other two methods despite being 

given only half the data that the other two methods are given. 
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Figure 43:  True Positive Values vs. Correlation Level for 0.1 False Positive Rate. 

Figure 43 shows that, in the high sample size problem, performing feature 

selection always does as good or better than no feature selection; although, the 

improvement is minimal across all levels of correlation.  In addition, this shows that these 

three methods are fairly robust to the level of correlation; that is, the value of true 

positive stays nearly constant across all levels of correlation.  Also, the PNN outperforms 
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both the ISOC and ROC “Within” Fusion methods despite being given only half the data 

of those methods. 

Problem 8 Results:  36 Feature without Autocorrelation Case, Single Correlation, 

Single Sample Size, using Feature Selection    

For this problem, the data was generated and the loadings were calculated as 

described above.  First, the classification accuracy was calculated for each classifier 

fusion method using all 18 features for each classifier.  Next, the features with the lowest 

six loadings were excluded and the classification accuracy was recalculated.  Then, the 

classification accuracy was calculated for one feature up to twelve features for each 

individual classifier (e.g., when the number of features was five, the three methods used 

the five features with the highest loadings).  These values were plotted for each fusion 

method in Figure 44. 

o' 
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Figure 44:  Classification Accuracy vs. Number of Features for 3 Fusion Methods. 

In all three plots, the graph is relatively flat, indicating that in this run, the 

classification accuracy is relatively insensitive to the number of features that the 

individual classifiers observe.  This means that, potentially, very few features could be 

used for the individual classifiers underlying the fusion, via feature selection, while 

maintaining the same level of performance as having many features.  There seems to be 

some rising and falling of classification accuracy, but all increases and decreases are 

extremely mild. 

Problem 9 Results:  TPM Exploration    

 An observation was made in all or part of the above analysis.  There seems to be a 

declining trend in terms of fusion performance (i.e., ROC curves) as the correlation 

o 
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between feature sets increases, but there also seems to be a point, usually at a higher level 

of correlation, where fusion performance actually benefits from the level of correlation 

between feature sets.  To more fully understand this phenomenon, the TPM was 

calculated for different values of correlation between features for two of the problems 

already explored above.  Figure 45 shows the TPM values vs correlation values for the 4 

feature without autocorrelation case.  
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Figure 45:  TPM Values vs Correlation, 4 Feature No Autocorrelation Case. 

 In Figure 45, it is apparent that the TPM rises as the correlation increases from 0.0 

to 0.84, but there is a sharp decline after this point.  The TPM at 0.99 correlation actually 

drops below the TPM at 0.00 correlation. 
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 This led to additional experiments where the correlation between feature sets had 

only three values:  one at 0.00 correlation, one at the highest point of the TPM plot, and 

one at 0.99 correlation.  This process was replicated 5 times, and the average ROC curves 

were calculated.  This was done at two sample sizes:  1000 exemplars in each class and 

50 exemplars in each class.  Figure 46 shows the average ROC curve for each fusion 

method with 1000 exemplars in each class for the 4 feature problem.  Figure 47 shows 

the average ROC curve for each fusion method with 50 exemplars in each class for the 4 

feature problem. 
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Figure 46:  4 Feature Problem, N=1000. 

 The ISOC plot from Figure 46 shows again that the ISOC Fusion is the most 

robust to correlation.  It is very hard to tell the difference between any of the three 



  97

correlation levels.  Thus, the ISOC plot does not show the results expected from the TPM 

calculations.  The ROC “Within” plot shows that the 0.00 correlation curve is better on 

average than the two higher correlation levels, but the two curves for 0.84 and 0.99 

correlation levels are almost identical.  Thus, the ROC “Within” plot does not show the 

results expected from the TPM calculations.  The PNN plot finally shows some 

separation between the three correlation levels.  The 0.99 correlation was expected to 

outperform both the 0.00 correlation and the 0.84 correlation.  While the 0.99 correlation 

does not outperform the 0.00 correlation, it does outperform the 0.84 correlation.   
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Figure 47:  4 Feature Problem, N=50. 

 The ISOC plot from Figure 47 shows a little different result than Figure 46.  The 

0.99 correlation actually outperforms the other two correlations at some points on the 
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ROC curves.  This is what was expected from the TPM calculations.  The ROC “Within” 

plot shows nearly the same results as Figure 46.  While there is more separation between 

the higher correlation levels, the 0.00 correlation still outperforms the 0.99 correlation.  

The PNN plot in Figure 47 also shows nearly the same result as Figure 46.  The 0.99 

correlation outperforms the 0.84 correlation, but it does not outperform the 0.00 

correlation. 

Chapter Summary 

 This chapter provided the details of the findings and analysis of this thesis.  

Results from each of the problems posed in Chapter 3 were presented in this chapter.  

Insights resulting from each analysis were also given. 
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V.  Conclusion 

Introduction 

 This chapter concludes the thesis research.  First, the major literature review 

findings are presented, and the general methodology employed is reviewed.  The major 

results of this research are summarized, and recommendations for future research are 

discussed. 

Literature Review Findings 

 In the current day, the United States Air Force is focused on accurate and timely 

targeting.  Air Force Doctrine states that targets should not be struck with only single 

source intelligence (AFPAM 14-210, 1998).  Instead, intelligence information from more 

than one source should be fused together in order to ensure a higher degree of accuracy 

(AFPAM 14-210, 1998).  This higher degree of accuracy ensures less fratricide in combat 

operations. 

 There are many different ways to fuse data, and data can be fused at a variety of 

different levels.  Many of these methods of fusing data assume that the inputs to the 

fusion are independent, and little is known about what happens when the inputs to the 

fusion are not independent (Willett, et al, 2000).  In this research, four different ways of 

fusing information are exercised.  The first two models, ISOC fusion (Haspert, 2000) and 

ROC “Within” fusion (Oxley and Bauer, 2002) are classifier fusion techniques that 

assume that the individual classifiers are independent.  The third fusion method, PNN 

fusion, is a classifier fusion technique that makes no assumption about the independence 

of the classifiers.  The fourth fusion method, OBN fusion, is not a classifier fusion 



  100

technique.  It simply treats all the individual features as inputs to one big network.  It 

makes no assumption about the independence of the features.   

Methodology Employed 

 Data was generated for a variety of problems for this thesis.  Correlation was 

introduced in two forms to the process:  across correlation and autocorrelation.  The level 

of these correlations were varied to observe how each method reacted to the correlation 

and to observe how these methods compared to each other at the same levels of 

correlation.  In addition, sample size was varied throughout.  In some cases, a feature 

selection process was performed to compare how the fusion performed in the presence 

and absence of feature selection both within and across the fusion methods.  Finally, 

some explorations in TPM were performed. 

Results 

 This thesis yielded many interesting results and a great deal of insight into the 

fusion process was obtained.  Problem 1 and problem 2 possess a very similar structure, 

and they both provide similar insight.  They both show that, in this type of problem, the 

PNN and OBN are superior to the ISOC and ROC “Within” fusion methods at all levels 

of across correlation.  While the ISOC and ROC “Within” fusion methods are very robust 

to the across correlation, they do not perform as well as the other two methods.  In fact, 

the PNN outperforms the other three methods while only observing half the data as the 

other three methods.  This trend is true regardless of sample size.   

Problems 3 introduces autocorrelation into the fusion process.  Despite this 

addition of autocorrelation, all four methods observe the same trends in terms of across 

correlation and sample size as those observed in problem 1 and problem 2.  In problem 3, 



  101

ISOC, ROC “Within,” and OBN are susceptible to autocorrelation, especially at low 

sample sizes.  The PNN seems to be robust to autocorrelation in this type of problem.   

Problem 4 is the first problem where something unexpected occurred.  For all four 

methods, increasing the level of correlation actually improves the performance of the 

fusion.  This is easily explained with a geometric interpretation of the problem.  Again, 

the ISOC and ROC are very robust to the across correlation, but they are always 

outperformed by the PNN and OBN.  This is true across all sample sizes. 

Up until this point, the PNN and OBN had been performing very similarly; they 

always outperformed the other two methods.  In problem 5, the PNN only performs as 

well as the ISOC and ROC “Within” fusion methods; on the other hand, the OBN 

outperforms the other three methods at all levels of correlation.  Problem 6 showed that 

the OBN continued to outperform the other three methods in the presence of 

autocorrelation.  This is true in almost every case; the PNN outperforms the OBN at low 

sample size cases with high autocorrelation.  This is another case that is counter-intuitive, 

but it is easily explained with a geometric interpretation.   

Problem 7 and problem 8 are two problems in which the number of features is 

increased so that feature selection can be explored.  In both problems, it was shown that 

feature selection can be very beneficial.  Feature selection was used to reduce the 

dimensionality of the problems without degradation in fusion performance.   

Problem 9 is a further investigation into problem 1 at only specific levels of 

across correlation.  There are cases where the TPM will actually decrease at very high 

levels of across correlation.  The results from problem 9 show that the fusion for a highly 
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correlation feature set can actually be better than the fusion for a more moderately 

correlated feature set.   

Overall, some key insights were gained from this research.  First, the across 

correlation injected into the fusion process is approximately equal to the correlation of 

the posterior probabilities of the individual classifiers.  Second, the autocorrelation 

injected into the fusion process is approximately equal to the autocorrelation of the 

posterior probabilities of the individual classifier.  Next, while a high level of correlation 

is usually associated with having less information, sometimes this high level of 

correlation actually aids the fusion as it changes the geometry of the problem.  Next, 

ISOC and ROC “Within” seem to be the most robust to across correlation even though 

they are the methods that assume independence of the classifiers.  Although, they are 

robust methods, they are always outperformed by one of the other two methods which do 

not make the independence assumption.  High levels of autocorrelation seemed to 

decrease performance of each of the fusion methods for all sample sizes except the PNN 

at low sample sizes.  Also, generally a lower sample size results in lower performance, 

and usually, there is a point where adding more samples will not necessarily increase 

performance.  Finally, OBN seems to be the most successful fusion method as it 

performed as well or better than the other three methods for each of the problems in this 

thesis. 

Recommendations for Future Research 

 While this thesis provided a great deal of insight into the fusion process, there is 

still much more research that can be done in the field.  First, the biggest shortcoming of 

this research is that all the data was fabricated.  As real-world data sets become available, 
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this fusion process should be applied to those data sets.  In the absence of real world data, 

the feature sets used in this thesis could be expanded so that more noise and redundant 

features are added.  Next, different classifiers, such as neural networks, could be used as 

the individual classifiers instead of using the linear and quadratic discriminant functions.  

Also, in concurrent thesis research, fusion has been done with three classifiers, but this 

could be extended even further to a larger number of classifiers.  Once the number of 

classifiers has been extended, classifier selection, similar to feature selection, can be 

performed to select only good classifiers to be fused.  Finally, all of this research focuses 

on the two-class problem; research could be extended to a three-class or higher problem.   
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