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Abstract   

 This thesis continues the research begun by Storm, Bauer and Oxley in 2003 into 

the fusion of classifiers.  It examines the fusion of up to three correlated classifiers using 

three different fusion techniques.  The overall objective was to determine the optimal 

ensemble of classifiers to maximize the expected classification accuracy.  The ISOC 

fusion method (Haspert, 2000), the ROC “Within” fusion method (Oxley and Bauer, 

2002) and a Probabilistic Neural Network were the three fusion techniques employed in 

these set of experiments.  Performance of the classifiers and the fusion methods is 

measured via ROC curves. Two possible configurations of feature correlations were 

examined.  The expected true positive value relative to a prior distribution of correlation 

levels for each configuration was then used to compare the classifier and the fused 

classifiers performance and thereby allowing for the selection of an optimal ensemble. 
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AN INVESTIGATION OF THE OPTIMAL 

SENSOR ENSEMBLE FOR SENSOR FUSION 

 

I. Introduction 

Background 

 Effective Command and Control (C2) depends in large part on the ability to 

accurately identify all of the hostile, friendly and neutral entities in the battlespace 

referred to as Combat Identification (CID).  Accurate CID hinges on the ability to 

effectively process data to build a three-dimensional picture of the battlespace. This in 

turn permits real-time application of tactical options so weapons can be employed at 

optimal ranges against the most critical enemy targets (Peters and Ryan, 1998).  In other 

words, commanders require accurate CID to obtain a situational awareness of the 

battlespace which allows them to effectively prosecute their operations. 

Across the Department of Defense (DoD) reliable CID in operations has 

consistently proven to be an elusive capability.  Thirty-five Americans were killed and 72 

wounded due to “friendly fire” or fratricide during the Gulf War (Report to Congress, 

1992).  Approximately 68 percent of these incidents appeared to be the result of target 

misidentification and/or coordination problems (Report to Congress, 1992).  Since the 

Coalition controlled the battlespace in every aspect of the war these casualties 

represented a need for better situational awareness (i.e., identification) of forces in the 

battlespace.  Three years later, two F-15E aircraft shot down two UH-60 Blackhawks 

over Iraq in Operation Provide Comfort.  This tragedy also illustrates a breakdown in 

situational awareness/combat identification in that the F-15E pilots coordinated with an 

Airborne Warning and Control System (AWACS) aircraft before firing.  

Misidentification continued to be a problem even through the recent events in Operation 
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Iraqi Freedom.  For example, on 25 March 2003 a Patriot surface-to-air battery in Iraq 

came under mortar fire.  The crew engaged the batteries automatic systems and took 

cover.  The system’s radar misidentified a local F-16 as hostile and locked-on to the 

aircraft.  The F-16 responded by firing a High-speed Anti-Radiation Missile (HARM) at 

the battery, destroying its radar dish (Weisman, 2003).  More cases could be mentioned 

but these serve to illustrate that misidentification and subsequent fratricide is a very real 

problem for the U.S. military.  In fact, Lt. Gen. Conway, who led over 85,000 Marines 

into Operation Iraqi Freedom, has said that the amount of fratricide was probably his 

biggest disappointment of the war (Conway, 2003).  

 Combat identification can be divided into four mission areas: air-to-air, air-to-

ground, ground-to-air and ground-to-ground.  Each of these four mission areas has their 

own architecture.  There is no overarching architecture for CID (GAO Report, 2001).  

For example, U.S. aircraft often use Identification Friend or Foe (IFF) to identify other 

aircraft.  Vehicles on the ground; however, might use thermal plates or thermal tape to 

identify friendly forces.  Not only are the sensors in each of these architectures different 

but the decision makers in each case varies as well.  Frontline soldiers use their training 

and understanding of the Rule Of Engagement (ROE) to make friend or foe decisions.  

The air forces, on the other hand, usually coordinate with an air operations controller.  

Such varied environments and architectures have lent themselves only to partial 

solutions, so that there is no one general solution for CID across the DoD community. 

The Joint Combat Identification Advanced Concept Technology Demonstration 

office partitioned target determination into four basic CID system concepts.  A majority 

of CID systems, if not all, fall into one of the four system concepts. 

 
• Some systems align a sensor with the weapon sight.  The sensor interrogates the 

target.  A reply from the target identifies it as friendly, otherwise the target is 
unknown. 
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• “Don’t shoot me” systems use Global Positioning Systems (GPS) or location 
systems.  A weapon system sends out an interrogation in all directions containing 
the targeted position.  Friendly systems in the area return a “don’t shoot me” 
response. 

 
• Situational awareness systems receive periodic position updates from friendly 

forces.  From these updates, C2 systems are able to de-conflict friendly fire. 
 
• Non-cooperative target recognition systems find a signature in acoustic signals, 

thermal and electromagnetic emissions and other data sources.  The signature is 
then compared to a database to determine if the signature is indicative of a hostile, 
friendly or neutral target (Garamone, 2003).  

 

 Air Force CID systems predominately use situational awareness and non-

cooperative target recognition concepts when identifying air-to-air and air-to-ground 

targets.  A few examples will illustrate the diversity of applications these concepts have. 

The AWACS uses the situational awareness concept when its radar tracks friendly 

aircraft through its airspace.  An Unattended Ground Sensor (UGS), on the other hand, 

uses target signatures to identify vehicles on the ground.  Some systems use more than 

one concept like the Joint Surveillance Target Attack Radar System (JSTARS).  It tracks 

friendly forces while at the same time using target recognition to identify nearby hostile 

forces.  Fighters of all kinds use IFF systems.  Finally, Intelligence, Reconnaissance and 

Surveillance (ISR) platforms, like the U-2, use a variety of Electro-Optical (EO), Infrared 

(IR) and radar sensors among others on a single platform to perform non-cooperative 

target recognition.  Such an array of sensors on so many aircraft requires a focal point to 

fuse the sensor’s data, to analyze the intelligence, to identify contacts as hostile or 

friendly, to form a situational awareness picture and, ultimately, to direct air operations.  

This focal point is called an Air Operations Center (AOC).  

 The AOC is the weapon system by which the Joint Forces Air Component 

Command (JFACC) commands and controls aerospace forces in a theater of operations 

(AOC CONOPS, 2001).  Within the AOC there is one cycle, or process, for finding and 
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prosecuting targets.  That cycle is Find, Fix, Track, Target, Engage and Assess 

(F2T2EA).  Briefly, all sensor data, or selected sensor data, is sent through the AOC and 

potential targets are found.  The potential target is then identified as hostile or friendly 

and located.  Surveillance assets are then used to track targets until action can be taken.  

Targeteers in the AOC determine the target’s priority per JFACC guidance and the 

appropriate action.  If targeteers assign a weapons platform to attack the target, then the 

weapons system engages the target.  Finally, after the engagement Battle Damage 

Assessment (BDA) is performed on the target to determine if it was destroyed.   

Combat identification functions occur in the “Fix” cycle step.  In this step, sensor 

data has already arrived at the AOC indicating that there is an unknown contact.  In some 

instances, such as IFF, the sensor will give decision makers a positive or false 

identification of the target.  In other cases, such as U-2 imagery, an analyst will be 

required to make a determination.  In either case, analysts may fuse the intelligence from 

the sensors with other intelligence sources and the AOC’s situational awareness.  The 

analyst may also use automated target recognition and target cueing tools to help them 

identify targets.  After the initial analysis, an analyst can declare the target hostile, 

friendly, or unknown.  If the target is still unknown after the initial analysis, intelligence 

collection managers can cross-cue a different sensor to the same target to take advantage 

of complementary sensors and increase the analyst’s target identification confidence.  

The result is that the intelligence analyst, the decision maker, gives the commander target 

identification. 

 In the case of Time Critical Targeting (TCT), intelligence analysts are required to 

make a target determination in minutes.  The AOC CONOPS looks to information 

technologies to improve analyst’s ability to analyze sensor intelligence and confidently 

identify.  Furthermore, the document suggests that “information technology could 

provide the decision-making tools, decision support systems, and simulations to enable 
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commanders to make better and quicker decisions” (AOC CONOPS, 2001).  These 

decision tools, decision support systems and simulations are all based on statistics and 

probability.   
 The Air Force has tasked Air Combat Command (ACC) to study various 

combinations of combat identification sensors through modeling, simulation and analysis.  

Among the various efforts, ACC has supported basic research at the Air Force Institute of 

Technology (AFIT) in sensor fusion.  Last year, Capt Storm performed research for ACC 

entitled “An Investigation of the Effects of Correlation in Sensor Fusion” (Storm, 2003).  

Her research encompassed three fusion methods, the Identification Operating System 

Characteristic (ISOC) method, the Receiver Operating Characteristic (ROC) method and 

Neural Fusion; an example of which is fusion via Probabilistic Neural Networks (PNN).  

This thesis builds upon her research. 

Problem Statement 

 Decision makers, or analysts, are required to declare a target as friendly or hostile 

using the available sensor data.  If a determination can not be made, the decision makers 

must decide which additional sensor(s) to task to improve their probability of making a 

correct identification.  Additional sensor taskings are usually based on the decision 

maker’s prior experience with an expectation of improving their probability of correct 

target identification.  However, decision makers can not prove which sensor, or sensor 

ensemble, has the best probability of correctly identifying the target nor quantify by how 

much that probability will improve. 



 6

Research Objective 

 This research seeks to determine the optimal sensor ensemble and fusion 

technique combination across differing prior correlation distributions.  To support this 

objective, the research will develop both an implementation methodology to perform 

three-classifier fusion and a reasonable optimality criterion to measure ensemble 

performance.  Secondly, an empirical study will be conducted using the proposed 

methodology.  Lastly, the research will test the viability of creating posterior probabilities 

from a modified radial basis function neural network. 

Assumptions/Limitations. 

 Sensor data was not readily available for this effort; hence, sensors’ feature data 

was simulated using a Matlab program.  

Terminology. 

During the course of the research it became apparent that many terms in the 

operational world are synonymous with terms in the statistical world.  Often writers used 

these terms interchangeably.  Encapsulated here are some synonymous terms to help the 

reader.   Sensors create feature data.  A set of feature data comes from each sensor and 

because each data set is associated with one sensor sometimes the terms are used 

interchangeably.  Automatic Target Recognition (ATR) software or human operators 

examine the feature data looking for targets.  In statistical terms, the software and 

operators are considered classifiers of the data.  Here again the operators will identify the 

targets, while statisticians classify exemplars.  A hostile target misidentified as a friend is 

called a “leaker” in operations.  Misidentifying a friend as a hostile does not have a 
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specific term but leads to fratricide.  Statistically, a hostile classified as hostile is called a 

true positive.  A friendly classified as a hostile is called a false positive.  

Implications. 

 If expected sensor identification accuracies can be defined and quantified, 

decision makers will be able to make more informed decisions regarding sensors 

taskings. This will lead efficient use of high-demand/low-density ISR assets.  More 

accurate, timely decisions can be made regarding target identification. 
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II. Literature Review  

Introduction 

 This chapter reviews literature relevant to this research.  It begins with a brief 

overview of the sensor fusion process to provide the context in which the literature will 

be applied.  The rest of the chapter then discusses the literature in the order in which it 

pertains to the fusion process.  The fusion process begins with the data.  The data’s 

statistical dependence most affects this research, so a discussion of the statistical 

dependence is included.  Next, a review of posterior probabilities and neural networks 

leads to a discussion of the modifications made to the radial basis function neural 

network classifier.  The fusion methods follow the classifiers in the fusion process, so a 

description of the three fusion methods, the ISOC, ROC and PNN, comes next.  Lastly, a 

review of methods used to measure classifier and/or fusion performance completes the 

literature review. 

Fusion Process Overview 

 The objective of the fusion methods is to yield a better classification than the 

single best classifier alone.  Training data is used to train the individual classifiers.  The 

classifiers then classify two other data sets called, fusion training and testing.  The result 

of this classification is two sets of posterior probabilities: fusion training posterior 

probabilities and testing posterior probabilities.  The two sets of posterior probabilities 

are then sent to the fusion methods.  The fusion methods train with the fusion training 

posterior probabilities and are tested with the testing posterior probabilities.  All 

experimental designs used in this research are derived from this basic construct. 
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Figure 1: Fusion Overview 

Statistical Independence 

 Both the ISOC and the ROC methods assume that the data coming from the 

sensors are independent (Haspert, 2000; Oxley and Bauer, 2002).  Statistically 

independent data provides more new information than dependent data.  A fusion method 

should classify test data better given more training data.  Some have attempted to find a 

fusion method rule to apply to statistically dependent data.  One attempt used two 

classifiers on a bivariate Gaussian surface the simplest fusion case possible (Willet, 

2000). Three fusion rules were applied logical “AND”, “OR” and “XOR” to three 

partitions of a Gaussian mean-shifted space.  The “AND” rule could always classify data 

with one threshold in one partition, never classify the data with one threshold in the 

second partition and no consistent classification could be determined in the third partition 

(Willet, 2000).  Basically, even the simplest problem failed to yield a consistent fusion 
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rule for correlated data.  With that in mind, this research seeks to determine how resilient 

ISOC and ROC fusion rules are to correlated data.   

Discriminant Classifiers 

 Given a new exemplar and the probability density functions of multiple classes, 

discriminant analysis compares the ratio of the probability density functions at the new 

exemplar.  The ratio is then used to determine which class the exemplar belongs to. In 

this particular experiment, the classes have a bivariate normal distribution so that the 

discriminant calculates the ratio of the class one probability density function to class two 

probability density function.  The following equation represents the multivariate 

probability density function: 

  ⎥
⎦

⎤
⎢
⎣

⎡
−Σ−⎟

⎠
⎞

⎜
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where 0X represents a new exemplar, iµ represents the mean of class i andΣ  represents 

the pooled covariance of the classes.  For this research both classes are normally 

distributed and have equal covariance matrices.  Bayes’ rule is applied to the disciminant 

analysis to produce posterior probabilities.  The following equation then produces the 

posterior probability for each class.   
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The quadratic discriminant operates exactly like the linear discriminant except that it does 

not assume equal covariance matrices among the classes.  By using normal distributions 
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and applying Bayes’ rule, we arrive at different equation which produces the posterior 

probability for each class. 

∑
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where jΣ represents the covariance matrix of class j.  In this way, posterior probabilities 
were created for the linear and quadratic discriminant classifiers. 
 
Modified Radial Basis Function Network 

 The standard radial basis function network classifies new exemplars based on the 

sum of their weighted distances to exemplars of known classes.  This method outputs 

weights for each class given a new exemplar.  It does not produce posterior probabilities.  

Since the fusion methods require posterior probabilities, the standard radial basis function 

was modified. 

 It has been shown that the outputs of a multilayer perceptron network 

approximate the a posterior probability function of the classes for any number of layers 

and any type of activation functions (Ruck, et al., 1990).  The network’s backpropagation 

achieves this by minimizing its mean squared-error approximation to the Bayes optimal 

discriminant function (Ruck, et al., 1990).  The mean squared-error approximation is 

represented by the following equation: 

   ∫ −=
χ

ε dxxpxgwxFw )()](),([)( 2
0

2  

 where ),( wxF  represents the perceptron output for new exemplar x and weights w, 

)(0 xg  represents the Bayes optimal discriminant function and )(xp represents the density 

function.  Since a multi-layer perceptron network approximates the Bayes optimal 
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discriminant, it appears reasonable that a network utilizing a single perceptron output 

node and a non-perceptron hidden layer would exhibit some of the same qualities.  So the 

modified radial basis function outputs are treated as posterior probabilities in this 

research.   

 The modified radial basis function architecture consists of a hidden layer of radial 

basis neurons and a single log-Sigmoid output node.  The network uses n number of 

training exemplars each with m number of features to establish the weight vector for each 

neuron in the hidden layer, shown in Figure 2.  The bias into hidden layer is established 

empirically by varying the neuron’s spread.  The relationship between spread and bias 

was as follows: 

     spreadbias /8326.0=  

Both the weight vector and the bias are used in the activation function for each radial 

basis neuron is as follows: 

2)*( bpw
i eh −−=  

where pw −  represents the distance between the neuron’s weight vector and the new 

exemplar’s feature vector and b represents the neuron’s bias.   

The output node utilizes a Log-Sigmoid transfer function.  The transfer function 

requires weighted inputs and a bias to allow for training, so weights and bias are 

initialized the Nguyen-Widrow initialization method.  The weighted activations and the 

bias are then summed at the node and sent through the Log-Sigmoid transfer function.  

The function takes their sum and maps the output to a [0,1] range. 

)1/(1)(log nensig −+=  
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The weights and bias are adjusted using updates from a gradient descent momentum 

method and an adaptive learning rate. The output yields activations for class 1 only.  

Class 0 would be its complement.  Figure 2 illustrates the modified radial basis function 

architecture. 

      

 

Figure 2: Modified Radial Basis Function Network Architecture 

General Regression Neural Networks 

 General Regression Neural Networks subsume all other radial basis functions 

(Wasserman, 1993).  In fact, the GRNN network topology is identical to a normalized 

radial basis function network (Wasserman, 1993) as shown in Figure 3.  The GRNN 

assigns the target values as the weights.  Because zero and one are used as the target 

values (class values), this has the effect of separating the two classes.  The GRNN then 
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HIDDEN LAYER OUTPUT 

New 
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ignores any inputs from other classes until final probability calculation.  The result is that 

the GRNN approaches an optimal estimator in the mean-squared-error sense (German, 

Bienenstock and Doursat, 1992).  Further research by Richard and Lippman in 1991 has 

shown that if a classifier is optimal in the mean-squared-error sense then given enough 

data it will approach a Bayes optimal classifier.  Finally, if the classifier approaches the 

Bayes optimal classifier then its output will very closely approximate the posterior 

probabilities.  For purposes of this research, the posterior probabilities are desirable for 

fusion. 

 

Figure 3: General Regression Neural Network 

HIDDEN 
INPUTS       LAYER 

OUTPUT 
LAVER OUTPUTS 
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Identification System Operating Characteristic Fusion Method 

The Identification System Operating Characteristic (ISOC) method provides an 

optimal sensor fusion rule to identify new targets.  The process to identify this optimal 

rule incorporates the ability to adapt the rule to the current environment.  Briefly, the 

method develops all possible boolean sensor fusion rules from a training data set, applies 

the costs and probability of misidentification to the rules and selects the optimal fusion 

rule based on the minimum cost.  If the targets encountered change, the training data set 

and, hence, the set of possible sensor fusion rules will change.  Likewise, if the cost 

and/or probability of misidentification changes then the set of all the possible rules 

remains the same but the optimal rule will change. This leads to a quantifiable adaptation 

of the sensor fusion rule to the anticipated targets and operating environments. Current 

adaptation of sensor fusion identification rules usually involves some subjective and 

often intuitive judgment or declared policy about the relative reliability or priority of 

different identification sensors and procedures, the consequences of making identification 

errors, the nature of the threat environment (Ralston, 1998).  The ISOC approach 

quantifies the key subjective factors to produce the optimal sensor fusion rule leading to 

the lowest total expected costs.  Figure 4 illustrates the ISOC process. 
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Figure 4: ISOC Fusion Process 
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a. Sensor Performance Matrices 

 The classification performance of each sensor can be expressed in a performance 

matrix similar to Table 1.  Table 1 shows an example of a two class, two output state 

example.  The matrix number of true classes and output states can be expanded if needed.  

Table 1:  Sensor Performance Matrix 

 

 

 

b. Combat Identification System States 

 To develop the Combat Identification System (CIS) states, the system of sensors 

must utilize two separate indexing schemes, one for the sensors and one for each sensor’s 

output states.  The sensors’ index scheme will be 1 ≤ i ≤ NS, where NS  represents the 

total number of sensors and i represents a particular sensor in that system.   

Table 2:  Sensor Performance Matrix with Indices 

 

 

 

 

 

 

The second index scheme for the individual sensor’s output states will be 1≤ ki ≤ ni, 

where ni represents the total number of sensor output states for the ith sensor and ki 

represents the specific output state of the ith sensor.  Table 2 illustrates the indexing 

True Class Output 
State H F 
“H” P(“H”|H) P(“H”|F) 
“F” P(“F”|H) P(“F”|F) 

Sensor (i) Friend Hostile 
output state(1i) p(1i|F) p(1i|H) 

. 

. 
. 
. 

. 

. 
output state(ki) p(ki|F) p(ki|H) 

. 

. 
. 
. 

. 

. 
output state(ni) p(ni|F) p(ni|H) 
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schemes for the ith sensor given two target types.  The number of output states may be 

different for each sensor.  However, the number of target types should remain the same 

across all sensors. 

 The Combat Identification System (CIS) is the system of sensors used to identify 

a particular target.  So, one combination of the sensors’ output states defines one CIS 

state (i.e., configuration).  Under this definition, each sensor can only assume one output 

state for any given CIS state.   Let each CIS state be designated as Sj and define j as the 

index that runs over all N states of the system, then 1 ≤ j ≤ N (Ralston, 1998).  It will 

form a vector where Sj = (s1
j, s2

j, …, s2
j, …, sNs

j).  So that si
j ≡ sensor output state of the ith 

sensor in the jth CIS state as illustrated in Table 3. 

Table 3:  CIS States (Sensors’ Output State Combinations) 

j Sj 

1 (s1
1, s2

1, …, si
1, … , sNs

1) 

: : 

j (s1
j, s2

j, …, si
j, … , sNs

j) 

: : 

N (s1
N, s2

N, … , si
N, … , sNs

N)
 

There will be N distinct configurations of the overall CIS given by (Ralston, 1998) 

     ∏
=

=
sN

i
inN

1

 

 Assuming the sensors are independent, the probability of each CIS state given a 

target type can be found by multiplying the probabilities of each sensor’s output state 

given the same target type (T): 
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c. Identification Fusion Rules 

 Some sensors’ output states within any particular CIS state will inevitably yield 

conflicting identifications.  The identification fusion rule must resolve all possible 

conflicting indications from two or more of the individual sensors, specifically whether 

or not to declare a target “hostile” and hence engageable for each of the N states of the 

system (Ralston, 1998). 

 Each fusion rule can be expressed as vector R = (r1, r2, … ,rj, … , rN), where j 

represents the CIS state index and rj ∈{0,1} represents either the inclusion (rj = 1) or 

exclusion (rj = 0) of a particular CIS state in the fusion rule.  The total number of distinct 

possible fusion rules is 2N (Ralston, 1998).  The probability that a particular fusion rule 

will correctly identify different target types can be found by multiplying the rule by the 

CIS states’ conditional probabilities.  The following equation (and an alternate form) 

holds, where )|( HhP  represents the probability of classifying a target as “hostile” given 

that it is truly hostile.   

    )()|()|(
1

jRHSPHhP
N

j
j ⋅= ∑

=

  

    ∑ ∏
= =

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

j

N

i

j
i jRHsPHhP

S

1 1

)()|()|(  

Conversely, the following probability represents probability of classifying a friendly as a 

“hostile.” 
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The conditional probabilities for each target type (i.e., Hostile, Friend, etc.) are found for 

each fusion rule.  The problem is to choose the fusion rule R to maximize declaring a 

hostile as a hostile while minimizing declaring a friend as a hostile (Ralston, 1998).  

Unfortunately, there are too many fusion rules to test them all.  Figure 5 illustrates the 

number of possible fusion rules resulting from nine sensors, which are 29 or 512 fusion 

rules. 

  

Figure 5: Possible Fusion Rules (Haspert, 2000) 

At the beginning two fusion rules are immediately obvious, “never declare 

hostile” and “always declare hostile”.  Let R(j) = rj, that is R(j) is the jth component of R. 

The “never declare hostile” rule means that R(j) = 0 for all j and is the most conservative 

rule (Ralston, 1998).  The next most conservative rule is to engage in the single state j for 
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which the likelihood ratio P(j|H)/P(j|F) is largest (Ralston, 1998).  By repeating this 

process, we create successively less conservative rules of engagements until the “always 

engage” rule, R(j) = 1 for all j, is reached (Ralston, 1998).  In other words, the likelihood 

ratios P(j|H)/P(j|F) are ordered.  The plot of the cumulative probabilities of P(j|H) vs 

P(j|F) according to the likelihood ratio order yields an Identification System Operating 

Characteristic (ISOC).  As might be expected, each point on the ISOC is a complete 

identification fusion rule (Ralston, 1998).  However, no point (i.e., fusion rule) appears 

better than any other to serve as the best operating point.  To determine that, requires 

additional information about the anticipated ratio of encountering true-friends and true-

hostiles in the theater of operations and about the costs of making identification errors of 

different kinds (Ralston, 1998).   

d. Cost of Identification Errors 

 The costs of misidentification reflect a trade-off between the relative 

undesirability of allowing enemy leakers versus incurring fratricide of friendly platforms 

(Haspert, 2000).  This trade-off uses a cost function to select an ISOC operating point 

(i.e., fusion rule) that minimizes cost.  The cost function is as follows: 

   CT = CFN * PH * PFN + CFP * PF * PFP 

where  CT =  expected cost of misidentification 

  CFN = cost of not identifying hostile as hostile (e.g., a potential leaker) 

  CFP = cost of declaring a friend as hostile (e.g., fractricide) 

  PH = a priori probability of hostile 

  PF = a priori probability of friend 

  PFN = probability hostile not declared hostile 
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  PFP = probability friend declared hostile 

where PFN and PFP can also be written as 

  PFN = 1 – PTP 

  PTP = P(j | H) 

  PFP = P(j | F) 

The a priori probability of hostile and friendly are proportional to the relative number of 

hostile targets, NH. Hence PH~NH and PF~NF (Haspert, 2000).  The Command authority 

must make a subjective determination regarding the cost figures.  The total cost of 

misidentification is calculated for each ISOC operating point.  The operating point with 

the lowest total cost is determined to be the optimal operating point.  The fusion rule 

associated with that operating point is declared to be the optimal sensor fusion 

identification rule.   

Receiver Operating Characteristic Fusion Method 

Whereas the ISOC method finds an optimal rule to fuse two or more classifiers, 

the Receiver Operating Curve (ROC) model finds the optimal thresholds needed in the 

individual classifiers to maintain optimal fusion performance for a fixed fusion rule 

(Storm, 2002).  The ROC model discussed in this paper can also be called a ROC 

“within” model because two classifiers (sensors) are applied to the same feature set 

(Oxley and Bauer, 2002).  The classifiers map the feature set into two different label sets.  

These label sets are then combined or fused via optimal thresholds and the logical “or” 

rule into a single system label set.  Figure 6 illustrates the ROC “within” fusion process.  
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Figure 6: ROC “Within” Fusion Process 
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e. Classifier Parameters 

 Let two classifiers Aθ and Bφ,, where Θ∈θ and Φ∈φ are the two parameter sets, 

act upon a set of feature vectors (i.e., exemplars) and label each set of features according 

to a label set.  In this case, the label set L = { Lh , Lf), where Lh means hostile label and Lf 

means friend label.  Further, let X be the complete set of feature vectors so that Xh 

represents the true set of feature vectors representing the hostile class and Xf represent the 

true set of feature vectors representing the friend class.  The normal definitions of true 

positive (TP), false positive (FP), true negative (TN) and false negative (FN) are 

illustrated in Table 4.  The probabilities of these conditions for each classifier are 

determined. 

Table 4:  Class Definitions 

 True Class 
Classified as: H F 

“H” TP FP 
“F” FN TN 

 

Let PA
TP represent the probability of classifier Aθ correctly labeling a hostile exemplar, 

true positive.  The following defines PA
TP as well as the other possible probabilities. 

PA
TP = Pr (Aθ(x) ∈ Lh | x ∈Xh) 

PA
FP = Pr (Aθ(x) ∈ Lh | x ∈Xf) 

PA
TN = Pr (Aθ(x) ∈ Lf | x ∈Xf) 

PA
FN = Pr (Aθ(x) ∈ Lf | x ∈Xh). 

 
The definitions for Bφ  are similar (Clutz, 2002).  This concept along with a varied 

threshold (θ ) generates a ROC curve.  One such threshold could be the probability level 

that determines if a set of features is hostile or friendly.  For example, if the threshold is 

0.5 and the set of features has a 0.6 probability of being hostile, then the set of features is 
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declared hostile.  As the threshold varies from zero to one, the probability of TP and FP 

change.  The plot of the FP vs TP as the threshold changes defines the ROC curve, so that 

each point on the curve represents a threshold.   

 Once the hostile and friendly probabilities are determined for each classifier they 

will be combined for all possible label sets.  A conditional probability table for classifiers  

Aθ and Bφ is given in Table 5. 

Table 5:  Conditional Probabilities for Two Classifiers 

 

 

 

 

f. Classifier Fusion 

 Allow Cθ,φ to be defined as the concatenation of classifiers Aθ and Bφ.  As a result 

of the concatenation, Cθ,φ yields a concatenated label from two labels l1 and l2.  Some rule 

or method will be required to reconcile the two labels should there be any conflicts.  The 

conditional probabilities in Table 5 are the starting point to resolving that conflict.  The 

table can also be titled as the “Conditional Probabilities for Cθ,φ” as it already 

concatenates the two classifiers. Using the logical “or” rule to label hostile, Cθ,φ will only 

be declared friendly when both classifiers are friendly.  The general form of this equation 

is PTP = 1 – PFN.  When applied to this case,  

    PC
TP = 1 – PC

FN 

 = 1 – (PA
FN) (PB

FN) 

 = 1 – (1 - PA
TP) (1 - PB

TP) 

(Aθ,Bφ) Reports as:  
“H, H” “H, F” “F, H” “F, F” 

Friend PA
FPPB

FP PA
FPPB

TN PA
TNPB

FP PA
TNPB

TN 

Tr
ue

 
St

at
e Hostile PA

TPPB
TP PA

TPPB
FN PA

FNPB
TP PA

FNPB
FN 
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 = 1 – (1 - PA
TP - PB

TP + (PA
TP)(PB

TP)) 

 = 1 – 1 + PA
TP + PB

TP - (PA
TP)(PB

TP) 

    PC
TP = PA

TP + PB
TP - (PA

TP)(PB
TP) 

Applying the same logic to the hostile label using the logical “or” rule, Cθ,φ will be 

labeled hostile if both or either classifiers Aθ and Bφ are hostile.  Since PFP = 1 – PTN, then 

PC
FP = 1 – PC

TN = 1 – (PA
TN)(PB

TN).  This results in PC
FP = PA

FP + PB
FP – (PA

FP)(PB
FP).    

 The maximum PC
TP associated with the each PC

FP value must now be found to 

develop an optimal ROC curve.  Let r represent PC
FP, p represent PA

FP and q represent 

PB
FP.  So that PC

FP = PA
FP + PB

FP – (PA
FP)(PB

FP) can be re-stated as r = p + q – (p)(q). 

Solving for q yields Q(p) = (r – p)/(1 - p).  Now let r vary across all false positive values, 

r∈[0,1].  For every r value, let p vary so that p∈[0,r].  Then for every p value calculate a 

corresponding q value from the equation.  The result is a (p, q) vector for every r value.  

We seek the optimal pair (p,q) that maximizes the PC
TP given by:  

PC
TP = PA

TP + PB
TP - (PA

TP)(PB
TP) 

which becomes: 

)](()())(()([)(
]1,0[

pQfpfpQfpfMaxrP BABAp
TP

C −+=
∈

 

The ROC curve of classifier A is a function and yields a true positive value (i.e., )( pf A ) 

for every false positive value p.  Likewise, the ROC curve of classifier B is a function 

and yields a true positive value (i.e., )(qfB ) for every false positive value q.  Since the 

value of q is derived from the p value, )(qfB  is seen as the composition ))(( pQfB in the 

equation.  In this way, each set of (p,q) values generates a unique PC
TP value, therefore 

we get a function, )(rfC .  The pair maximizing the equation are denoted as p* and q* and 
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the associated point is denoted as *))(*,( rfr C .  As r varies over its range, a complete set 

of fusion points are generated. 

 This process may also be described in terms of thresholds.  Briefly, every point on 

a ROC curve represents a true positive and false positive pair.  These declaration pairs are 

generated by comparing the original classifier posterior probabilities to different 

thresholds values.  So each declaration pair is associated with a particular threshold. 

Probabilistic Neural Network Method 

 The Probabilistic Neural Network (PNN) can be considered a deterministic 

network that approaches a Bayesian optimality given a large training data set 

(Wasserman, 1993).   Some other advantages include the network’s instantaneous 

training and its robustness to noise (Wasserman, 1993).  Its main drawback is that the 

hidden layer is proportional to the number training exemplars.  So the hidden layer’s 

activation calculations may become excessively large. 

 

Figure 7:  Probabilistic Neural Network Architecture 
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 In this implementation, as shown in Figure 7, the PNN receives fusion training 

posterior probabilities to establish the network and testing posterior probabilities to test 

its classification abilities.  The method described here assumes that both the training and 

testing posterior probabilities are normalized.  This simplifies the Euclidean distance 

between the mean of radbas neurons and the new exemplar.  Given a new 

exemplar )...,( 21 mxxxX =  and radbas neuron’s weights )...,( 21 RmRRRi xxxX = , the 

activation out of the radbas neuron can be represented as: 

   ])*(exp[ 2biasXXZ Rici −−=  

Here c represents the class and i represents the pattern layer neuron.  The implication is 

that the training data groups the hidden layer neurons into classes.  The bias to the hidden 

layer is calculated as follows, where the spread is determined in the experiments. 

   spreadbias /8326.0=  

The summation layer simply sums the activations associated with a given class 

(Wasserman, 53).  It can be represented as follows: 

   ∑
=

−−=
1

2 ])*(exp[
i

Ric biasXXS  

The output layer compares the sums of activations from the various classes.  The class 

having maximum value receives a one; the other classes receive a zero.  Figure 8 

illustrates the PNN process.  Since the PNN outperforms the other fusion methods, it 

trains only two-thirds of the fusion training posterior probabilities and tests on the 

remaining one-third of the fusion training posterior probabilities. 
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Figure 8:  Probabilistic Neural Network Fusion Process 

Classifier Fusion Considerations 

 There are two different approaches to combining a set of classifiers.  The first 

approach selects a classifier from the set that is an “expert” in a particular local area of 

the feature space (Kuncheva, 2001).  Feature vectors drawn from this local area are 

classified by the “expert” classifier.  Sometimes more than one “local expert” can be used 

for different local areas of the feature space.  The second approach, classifiers fusion, 

assumes that all classifiers are trained over the whole feature space, and are thereby 

considered as competitive rather than complementary (Kuncheva, 2001).   
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 Fusion is useful only if the combined classifiers are mutually complementary, that 

is, classifiers should make different classification errors over the feature space (Roili, 

2002).  So, one tries to choose classifiers that are optimal in different regions of the 

feature space (Roili, 2002).  Given the relationship between optimality and classification 

error, some have considered just the classifier ensemble’s error diversity over the feature 

space.  Unfortunately, while this is intuitive, there is some evidence that suggests that the 

diversity of classifiers does not affect the overall accuracies of the combination methods 

and their improvement over the single best classifier (Kuncheva, 2002).  An experiment 

using ten different measures of classifier diversity and ten different combination methods 

found very little evidence of any correlation between the measures of diversity and the 

classifier combination performance (Kuncheva, 2002). 

Performance Measurements 

 There are several methods of measurement used to determine classifier 

performance.  ROC curves, for example, are commonly used for summarizing the 

performance in automatic target recognition when classification accuracy alone is not 

sufficient (Alsing, 2000).  The ROC curve depicts the relationship between the detection 

rate (i.e., probability of true positive) and false alarm rate (i.e., probability of false 

positive) as a decision threshold is varied.  The decision threshold usually varies between 

a high, or conservative, threshold where no targets are detected to a low, or aggressive, 

threshold where all targets are detected and all non-targets are labeled as targets. Figure 9 

illustrates the probability density function of the two classes as they relate to the features.  

The thresholds are varied, for example, the illustration shows a threshold of 20 percent.  
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By determining the true positive and false positive rates for each threshold, we are able to 

construct the ROC curve, illustrated on the right. 
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Figure 9: Receiver Operating Characteristics Curve 
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III. Methodology 

Overview 

 This research consists of four classifier fusion experiments and one related 

excursion.  The main distinction between the four experiments is that each one uses a 

different data set.  The four data sets are a simple Gaussian, a XOR (close) Gaussian, a 

XOR (spread) Gaussian and a “domino” Gaussian.  The fusion process applied to each 

dataset remained same across all the experiments.  The linear discriminant classifier, the 

quadratic discriminant classifier and the radial basis function were used as the classifiers.  

Then the ROC, ISOC and PNN methods were used to fuse all combinations of two and 

three classifiers.  The ensemble results were then measured using two techniques: ROC 

curves and expected true positive classification values.  While the ROC curves are 

described in the literature review, the expected true positive classification rates were 

devised as part of this research and are described in the experiments’ methodology.  

Since the classifiers, fusion methods and measures of performance are identically 

implemented in each of the four experiments, their methodology is described only once in 

the first experiment.  Since the data sets vary from experiment to experiment, the data 

sets will be described in the methodology for each experiment. 

 An assumption was made based upon related work that the modified radial basis 

network would approximate a Bayes optimal classifier closely enough that the output 

could be treated as a posterior probability.  This excursion compares the results of the 

modified radial basis function to results from the GRNN given the same data.  The 

GRNN has been proven to approximate the Bayes optimal classifier so that if the radial 
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basis function approximates the GRNN then the assumption is reasonable.  For clarity, a 

list of the experiments and excursion are as follows: 

Table 6: List of Experimental Designs 

Experiment # Experiment Description

1 Simple Gaussian Distribution
(3 Good Classifiers)

2 XOR (close) Gaussian Distribution
(No Good Classifiers)

3 XOR (spread) Gaussian Distribution
(2 Good Classifiers)

4 Complex Gaussian Distribution
(1 Good Classifier)

5 XOR Gaussian Distribtuion RBF vs GRNN 
 

Experiment 1: Simple Gaussian Distribution      

Data Generation 

 A feature data set represents all the data collected by various sensors on the same 

targets.  Any given sensor only generates a couple features of that data set.  The 

classifiers represent the algorithm a sensor uses to determine the probability of a target in 

its feature data.  So data set features are broken out of the data set and sent to the 

appropriate classifier to generate posterior probabilities of a target. 

 Let 1F  represent the set of features from sensor 1 and let the aggregation of the 

feature sets be represented as Ni FFFFF ×××××= LL21 , where N represents the 

number of feature sets.  The terms “feature set” and “sensor” are used interchangeably 

because a particular feature set is associated with a particular sensor.  Each set of features 

o 
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may contain any number of features.  So let i
jf  represent the number of features j  in 

feature set iF .  Table 1 illustrates the relationship of the exemplars, features and feature 

sets. 

Table 7:  Exemplars, Features and Feature Sets 

F1    Fi    FN  
Exemplars 

f 1
1  f 1

2  …… f i
1  f i

2  …… f N
1  f N

2  
1 0.199 0.923  0.155 0.87  0.029 0.211 
2 0.626 0.76  0.365 0.678  0.401 0.492 
: : :  : :  : : 
: : :  : :  : : 

m 0.327 0.648   0.024 0.478   0.878 0.695 
 

Here we have assumed two features per sensor.  If the features, if , are independent their 

correlation matrix reduces to an identity. 

I
ii FF =Σ ,  

The data generation process creates several feature sets.  A generalized correlation matrix 

would be constructed as follows with potential correlations within and between feature 

sets. 
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 Inter-correlation between features in different feature sets causes the two feature 

sets (sensors) to become dependent.  Figure 10 below illustrates inter-correlation between 

feature sets.    
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Figure 10: Inter-correlation between Feature Sets 

In this research, a single classifier is used to classify single feature set.  The posterior 

probabilities between the classifiers reflect the statistical independence or dependence 

between the feature sets.  Both the ROC and ISOC fusion methods assume that the 

classifiers’ posterior probabilities, and by extension the feature sets, are independent.  By 

making the features sets dependent, we violate this assumption and can quantify the 

sensitivity of the fusion methods to this assumption. 

 Some fusion methods fuse two feature sets and then fuse a third feature set.  The 

correlation matrix must maintain the correct feature independence and correlation with 

regard to its sub-matrices so that the fusion method works correctly.  Having defined the 

features and their correlations, we now define the distributions of the two classes of 

features.  Let 0F represent the feature sets from class zero and 1F represent the feature 

sets from class one.  All feature sets for each class are generated at the same time using a 

multivariate normal distribution.  The only difference between 0F and 1F  is that the 

mean of their distributions are different 10 µµ ≠  so that ),(~ 00 ΣµNF  and 

),(~ 11 ΣµNF .  Once the features are generated for both classes, the features are 

concatenated so that 10 FFF ∪= .  All exemplars are then randomized.  This data 
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generation process is repeated to provide the required three independent data sets.  If 

multiple correlation levels are required, this process generates three data sets for each 

correlation level.  The data is then presented to the first level classifiers. 

 For this particular experiment, the number of exemplars will vary so that 

}100,50,25{∈exN .  The feature sets have independent features; however, the features are 

correlated between feature sets.  The correlation will vary from 0 to 1 where 

}0.1,8.0,6.0,4.0,2.0,0{∈ρ .  Let iF  represent the set of features, where }3,2,1{∈i .  This 

implies 321 FFFF ××=  and the feature set space 6ℜ⊂F .  All feature sets have two 

independent features.  This leads to a correlation matrix within each feature set. 
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Equation shows a possible two feature set correlation matrix using feature set notation 

and features. This structure must be preserved in a three feature set correlation matrix for 

the fusion methods. 
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The three-feature set correlation matrix is presented here in terms of features. 
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Figure 11:  Feature Correlation Matrix 
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It can be seen that 1
1f  and 1

2f are statistically independent as are the other feature pairs.  

Further, it can be seen that correlation is induced between feature sets, in that, 1
1f , 2

2f  

and 3
2f  are correlated, as are 1

2f , 2
1f  and 3

1f .  The feature correlation matrix, shown in 

Figure 11, was used to generate data for both classes; however, the two classes used 

different means.  Let }0,0,0,0,0,0{0 =µ  be the mean for class 0 and }1,1,1,1,1,1{1 =µ  be 

the mean for class 1.  Further, let 0F be class 0 data distributed as ),(~ 00 ΣµNF  and 

1F be class 1 data distributed as ),(~ 11 ΣµNF .   
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Figure 12: Two-Class Simple Gaussian Distributed Data 



 38

The two class data set are aggregated 10 FFF ∪=  and presented to the classifiers.  

There are forty repetitions of each sample size, so that data will be generated forty times 

for each sample size.  Figure 12 illustrates the distribution of one feature set with two 

classes of data. 

Classifiers 

 Three classifiers were used in this experiment.  They were the linear discriminant, 

the quadratic discriminant and the modified radial basis function.  Each classifier 

received its own feature set from the training data, fusion training data and the testing 

data.  The data within the feature sets were independent.  The feature sets themselves 

were correlated.  The classifiers were trained with the training data’s feature set.  Then 

the classifiers assigned posterior probabilities to each exemplar in the fusion training data 

and testing data.  These two sets of posterior probabilities were then sent to each of the 

three fusion methods. 

Fusion Methods 

 Some decisions were made in applying the fusion techniques.  The ROC method 

requires that the ROC curves from two classifiers be fused first to form a two-classifier 

fused ROC curve.  This new ROC curve is then fused with the ROC curve from the third 

classifier which produces the final three-classifier fused ROC curve.  In this research, the 

linear and quadratic discriminant classifiers were chosen as the first two classifiers and 

the modified radial basis function was chosen as the third classifier.  The fusion training 

posterior probabilities were used to create the three-classifier fused ROC curve.  The final 

ROC curve was then tested using the test posterior probabilities. 
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 The other two fusion methods are scalable to accept greater or fewer number of 

classifiers so no decisions were required.  The ISOC method required only the addition of 

the third classifier’s posterior probabilities to the Combat Identification System (CIS) 

states.  The PNN method only required additional hidden layer nodes.  Once both 

methods had been trained with the fusion training posterior probabilities, they were tested 

using the test posterior probabilities. 

Optimal Ensemble / Fusion technique combination 

 All ensemble / fusion technique combination classification performances were 

measured using two techniques.  ROC curves are applied as described in the literature 

review.  However, the second technique, expected true positive classification rates was 

devised for this research to serve as an optimality criterion.   

 The expected true positive classification rates were calculated for all ensemble / 

fusion technique combinations at the 0.1 false positive level.  Each ensemble / fusion 

technique combination classified data correlated at six different levels.  The features 

correlated at the different correlation levels could be assigned a distribution so that each 

correlation level would have a discrete probability density value.  Two distributions were 

used in this research, a uniform and a linear distribution.  Their values from 0 to 0.9 

correlations are as follows: 

Uniform:   { }167.0,167.0,167.0,167.0,167.0,167.0)( =xp  

Linear:    { }28.0,24.0,19.0,14.0,09.0,05.0)( =xp   

When the probability densities are applied to the true positive value of each correlation at 

the 0.1 false positive level, then the expected true positive classification rate can be 

calculated.  The expected true positive classification rate is calculated for each ensemble / 
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fusion technique combination.  The ensemble / fusion technique combination yielding the 

highest classification rate according to this optimality criterion was then determined to be 

the best.  A mathematical description might appear as follows: 

1.0)(     
s.t.

)|(ArgMax    
RS

≤

∈

SFP

STPEρ

 

where,     )(*)|()(
6

1

1.0

i
i

i

fp

xPxTPTPE === ∑
=

=

ρρρ  

and;    R represents the set of all possible single sensor and sensor fusions, where 

ISOC, ROC and PNN fusion techniques are applied to all subsets with 2 or more sensors. 

 

Experiment 2: XOR (close) Gaussian Distribution     

Data Generation 

 The data generated in experiment two required two distribution means per class.  

This resulted in four total distributions of the feature data in an XOR pattern.  The means 

used were as follows: 

Class 0:  }0,0,0,0,0,0{0
1 =µ  and }1,1,1,1,1,1{0

2 =µ  

Class 1: }1,0,1,0,1,0{0
1 =µ  and }0,1,0,1,0,1{0

2 =µ  

The Gaussian distributions possess equal variances which are equal to one for all 

distributions.  Figure 13  represents the two feature data set to the linear classifier. 
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Figure 13: Two-Class XOR (close) Gaussian Distributed Data 

 

Experiment 3: XOR (spread) Gaussian Distribution     

Data Generation 

The data generated for the third experiment used same XOR pattern but increased 

the distance between the individual Gaussian distributions.  This experiment has the same 

number of distributions as the second experiment.  

Class 0:  }0,0,0,0,0,0{0
1 =µ          and }5.2,5.2,5.2,5.2,5.2,5.2{0

2 =µ  

Class 1: }5.2,0,5.2,0,5.2,0{0
1 =µ  and }0,5.2,0,5.2,0,5.2{0

2 =µ  
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Here again, Gaussian distributions possess equal variances which are equal to one for all 

distributions.  Figure 14 represents the two feature data set to the linear classifier. 
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Figure 14: Two-Class XOR Gaussian Distributed Data 

Experiment 4: “Domino” Gaussian Distribution      

Data Generation 

The data generated for the fourth experiment added a distribution to each class to 

change the pattern into a “domino.”  The means were as follows: 

Class 0: }0,0,0,0,0,0{0
1 =µ , }5.2,5.2,5.2,5.2,5.2,5.2{0

2 =µ  and }5,0,5,0,5,0{0
2 =µ  

Class 1: }5.2,0,5.2,0,5.2,0{1
1 =µ , }0,5.2,0,5.2,0,5.2{1

2 =µ and }5,5.2,5,5.2,5,5.2{1
2 =µ  
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All variances were set equal to one for all distributions.  Figure 15 represents the two 

feature data set to the linear classifier. 
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Figure 15: Two-Class “Domino” Gaussian Distributed Data 

 

Excursion 1: Radial basis function vs general regression neural network  

Data Generation 

 Both the simple Gaussian distributed data and the XOR Gaussian distributed data 

were used for this experiment.  However, the means used for the distributions were 

changed to allow for greater separation of the data and better classification results.  For 

the simple Gaussian distributed data, let the class 0 have }0,0,0,0,0,0{0 =µ  and the class 



 44

1 have }5.2,5.2,5.2,5.2,5.2,5.2{1 =µ .  For the XOR Gaussian distributed data, let class 0 

have }0,0,0,0,0,0{0
1 =µ  and }0,5.2,0,5.2,0,5.2{0

2 =µ  and let class 1 

have }5.2,5.2,5.2,5.2,5.2,5.2{1
1 =µ  and }5.2,0,5.2,0,5.2,0{1

1 =µ . 

Performance Measurement 

 ROC curves generated from each classifiers results were used for comparison.  

Classification accuracy is not the primary concern in this comparison.  The main concern 

is how well the radial basis function approximates the general regression neural network.  

If the ROC curves from each classifier approximate one another, then the posterior 

probabilities assigned approximate one another and the two classifiers are approximating 

similar mean-squared-errors. 
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IV. Findings and Analysis 

Result 1: Two-Class Simple Gaussian Data Experiment    

 The methodology was applied to the two-class simple Gaussian dataset.  In 

analyzing the results, the finding will step through the ensembles’ ROC curve 

performance.  Then the analysis will compare the ensemble results using the expected 

true positive classification rates.  The two separate performance measures were 

necessary.  It is significant to note that while an ensemble may do well based on the 

overall ROC curve, it may perform poorly at the particular threshold of interest. 

All single classifier ensembles had comparable performances.  The data was 

reasonably separated so that the linear classifier was able to distinguish between the two 

classes. 
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Figure 16: Linear Classifier ROC Curve (SG) 

o 



 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PROBABILITY OF FALSE POSITIVE

P
R

O
B

A
B

IL
IT

Y
 O

F 
TR

U
E

 P
O

S
IT

IV
E

0 correlation
0.2 correlation
0.4 correlation
0.6 correlation
0.8 correlation
0.9 correlation

 

Figure 17: Quadratic Classifier ROC Curve (SG) 

 
Radial basis and quadratic classifiers were also able to distinguish between the classes.  

The quadratic classifier’s performance is shown in Figure 17.  The radial basis classifier’s 

performance was slightly worse than the quadratic classifier. 

The PNN two-classifier ensemble reflects the posterior probabilities of the fused 

classifiers.  The linear-quadratic ensemble, having the two best classifiers, offers the best 

classification performance. The linear-radial and quadratic-radial ensembles have 

comparable, slightly degraded classifications performances since they include the worst 

classifier, the radial basis function neural network.   The three-classifier ensemble 

performs slightly better than the linear-quadratic ensemble at the lower correlation levels 

but poorer at the higher levels of correlation.  This can be attributed to the fact that the 

PNN uses posterior probabilities from all three classifiers and ignores no information.  

Lower correlation levels offer the PNN more data to train on so that the three-classifier 

ensemble offers more data than just two-classifier ensemble.   
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Figure 18: PNN Fusion of Linear & Quadratic Classifiers (SG) 

At the higher correlation levels, the three-classifier ensemble performs worse than 

the two-classifier ensemble.  This appears to be due to the idea that while three-classifier 

ensemble offers more data relative to the two-classifier ensemble, it also includes more 

errant classifications.  In all cases, the PNN exhibits sensitivity to correlation levels. 
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Figure 19: PNN Fusion of Linear, Quadratic & Radial Basis Classifiers (SG) 
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The ISOC two-classifier ensembles exhibited “robustness” to correlation.  Two-

classifier ensembles which included the radial basis classifier performed slightly worse. 
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Figure 20: ISOC Fusion of Linear & Quadratic Classifiers (SG) 

However, a ROC curve of the three-classifier ensemble provides remarkable separation 

between the correlation levels despite the fact that neither the single classifiers nor the 

two-classifier ensembles exhibited any separation.   
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Figure 21: ISOC Fusion of Linear, Quadratic & Radial Basis Classifiers (SG) 
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Examination of the optimal ISOC rule for the ensemble revealed that the rule reduced to 

a majority voting method.  For Table 8, shown below, the ones represent a “hostile” 

classification and zeros represent a “friendly” classification. 

Table 8: Optimal ISOC Rule 3-Classifier Fusion 

1 1 1 1
1 1 0 1
1 0 1 1
0 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

Linear Quadratic Radial Basis
Optimal ISOC 

Rule

 

Comparing the optimal ISOC rule with the ROC curves, it appears that the three 

classifiers are making slightly different errors. The majority voting method style-rule 

eliminates the errors a single classifier is making different from the other two classifiers.  

So, the result is that the fusion rule keeps only the errors common to all three classifiers 

and this increases the ensemble’s performance.  The separation of the correlation levels 

can be explained by realizing that correlation represents the amount of new information 

available to the ensemble.  At the zero correlation level, the ensemble has the most new 

information available and yields the best classification performance.  As the correlation 

increases the ensemble has less new information to classify new exemplars with and the 

ensemble’s performance deteriorates. 

 The ROC two-classifier ensembles performed as expected.  The linear-quadratic 

ensemble, having the two best classifiers, offered the best classification performance. The 

linear-radial and quadratic-radial ensembles have comparable, slightly degraded 

classifications performances since they include the worst classifier, the radial basis.      
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Figure 22: ROC Fusion of Linear & Quadratic Classifiers (SG) 
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Figure 23: ROC Fusion of Linear, Quadratic & Radial Basis Classifiers (SG) 

 
The three-classifier ensemble’s performance fell between the best and worst two-

classifier ensembles because it included all three classifiers. 
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The methodology to calculate the expected true positive classification rates was 

then applied to each ensemble’s results.  The rates are shown in Figure 24. 

 

Figure 24: Simple Gaussian Expected True Positive Classification Rates 

Of the three classifiers, the linear and quadratic outperformed the radial basis 

classifier.  This fact becomes significant as the fusion methods use the posterior 

probabilities from these classifiers to form ensembles.  ISOC two-classifier ensembles 

have an expected true positive classification rate that follows the performance of the 

classifiers being fused.  However, the ISOC three-classifier ensemble’s performance is 

better than any single classifier by approximately ten percent.  This separation between 

the single best classifier and the best ensemble was the greatest separation found across 
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all experiments.  It is interesting to note that fusion, in the cases studying, only provided a 

marginal increase in classification accuracy.  The three-classifier ISOC ensemble 

performance reflects the analysis described for the ROC curves.  Briefly, the classifiers 

are making different errors and the optimal ISOC fusion is able to identify some of the 

individual classifiers error.  The ROC ensembles’ performance follows the performances 

of their member classifiers, but never worse than the worse classifier.  In the PNN two-

classifier ensembles, the ensembles follow the performances of their member classifiers.  

For reasons discussed in the PNN three-classifier ensemble, the three-classifier ensemble 

performs poorest of all PNN ensembles.  The PNN ensemble performances are always 

outperform most of the other ensembles.  In this case, even the poorest PNN ensemble 

performs approximately as well as the best single classifier.  Finally, the prior linear 

distribution of correlation levels shows that the distribution only affects classification 

when the ensemble is sensitive to correlation. 

Result 2: Two-Class XOR (close) Gaussian Data Experiment    

All single classifier ensembles had comparable performances.  The data was 

poorly separated so that the classifiers had some difficultly distinguishing between the 

two classes.  The poor classification across all the classifiers caused all ensembles to 

perform poorly as well.  Figure 25 shows the linear classifier ROC curve.  It is 

representative of all the classifier and ROC and PNN ensembles.  Even the PNN 

ensembles, which are usually sensitive to correlation levels, showed no distinction 

between 0 correlation and 0.9 correlation levels.  The ISOC ensembles provided the only 

notable variation among the ensembles.  
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Figure 25: Linear Classifier ROC Curve 

The ISOC ensembles can not construct a complete ROC curve under the given 

conditions.  All three two-classifier ISOC ensembles and the three-classifier ISOC 

ensemble failed to construct ROC curves over the full 0 to 1 false positive range. 
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Figure 26: ISOC – Linear/Quadratic Ensemble ROC Curve 
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The reason for this failure can be seen in the optimal ISOC rule and its application to the 

classifiers posterior probabilities.   

Table 9: Optimal ISOC Rule 

1 1 0
0 1 1
1 0 0
0 0 0

Linear Quadratic
Optimal ISOC 

Rule

 

If a poor classifier has a condition where its P(fp) > P(tp) at the threshold used to develop 

the ISOC rule, then the “all hostile”, or (1,1), sensor output state will not be the first 

introduced into the optimal ISOC rule.  Furthermore, if the lowest cost ISOC rule only 

contains one sensor output state, then the “all hostile” sensor output state will be 

excluded from the optimal ISOC rule.  When constructing the ROC curve, one expects to 

find an increasing number of hostile indications with lower threshold values.  And hence, 

the ROC curve will reach 100 percent probability of finding all true positive and false 

positive exemplars when the threshold reaches zero.  However, given the optimal ISOC 

rule in Table 9, when the threshold approaches zero and the “all hostile” sensor output 

state becomes prevalent, the optimal ISOC rule labels the exemplars as “friendly” and 

returns the ROC curve to the origin.  Appendix A provides more details. 

 The expected true positive classification rates were determined for each ensemble 

and provide no new insight.  All ensembles performed poorly.  The single best classifier’s 

performance and the best ensemble were approximately the same.  Among the ensembles 

there appears to be very slight improvements and degradation of performance depending 
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upon the relative performance of the single classifier members.  Figure 27 shows the 

expected true positive classification rates.  

 

Figure 27: XOR (close) Gaussian Expected True Positive Classification Rates 

Result 3: Two-Class XOR (spread) Gaussian Data Experiment    

 This experiment represents the case where one classifier fails while two other 

classifiers perform well.  The linear classifier performed about as well as chance, while 

the quadratic and modified radial basis classifiers performed well.  The two good 

classifiers have nearly identical performances.  Figure 28 shown below illustrates the 
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linear performance and Figure 29 illustrates the quadratic and modified radial basis 

performances. 
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Figure 28: Linear Classifier ROC Curve 
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Figure 29: Quadratic Classifier ROC Curve 

 The PNN’s two-classifier ensembles exhibited two notable characteristics.  If 

either of the good classifiers (i.e., quadratic or radial basis) were fused with the linear 
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classifier, the ensemble’s ROC curve results were very similar to the better classifier’s 

results.  In essence, the linear classifier was ignored and since the remaining had a very 

tight correlation level range the ensemble produced very tight correlation level range. 
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Figure 30: PNN Fusion of Linear & Radial Basis Classifiers (XOR) 

 

The quadratic-radial basis ensemble showed the best performance.  Here again, the PNN 

demonstrates better classification at lower correlations due to the increase in new data 

from more independent features.  Also, while both classifiers had very tight correlation 

level ranges, they made different errors so that the ensemble classification performance 

was better than either one classifier’s performance. 

 Since the linear classifier was extremely poor the two-classifier PNN ensemble 

and the three-classifier PNN ensembles are nearly identical.  In fact, the data has some 

variation so that the two ROC curves could be considered identical.   
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Figure 31: PNN Fusion of Quadratic & Radial Basis Classifiers (XOR) 
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Figure 32: PNN Fusion of Linear, Quadratic & Radial Basis Classifiers (XOR) 

 
The two-classifier ROC ensembles were similar to the two-classifier PNN 

ensembles, in that, the linear classifier always has an equal probability of true positive 
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and false positive and its thresholds are largely of no affect.  The quadratic-radial basis 

ensemble shows some sensitivity to correlation levels.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PROBABILITY OF FALSE POSITIVE

P
R

O
B

A
B

IL
IT

Y
 O

F 
TR

U
E

 P
O

S
IT

IV
E

0 correlation
0.2 correlation
0.4 correlation
0.6 correlation
0.8 correlation
0.9 correlation

 

Figure 33: ROC Fusion of Linear & Radial Basis Classifiers (XOR) 
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Figure 34: ROC Fusion of Quadratic & Radial Basis Classifiers (XOR) 

 

The three-classifier ROC ensemble is identical to the quadratic-radial basis ensemble. 
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 In the two-classifier ISOC ensembles method ignored the poor linear classifier 

and classified the exemplars nearly exclusively the same as the better classifiers.  There is 

a very slight difference between the radial basis and quadratic classifiers so that when 

ISOC fuses the two classifiers there is a slight classification improvement.  The three-

classifier ISOC ensemble mostly ignores the linear classifier and performs nearly 

identically to the quadratic/radial basis ISOC ensemble. 
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Figure 35: ISOC Fusion of Linear, Quadratic & Radial Basis Classifiers (XOR) 

 
 The expected true positive classification rates highlights the ensembles’ 

classification differences more dramatically.  It illustrates the linear classifiers poor 

performance. It also shows that the linear classifier detracted from the classification 

performance of an ensemble in which it was included.  Another trend which is readily 

evident in Figure 36 is that the ensemble methods are fairly resilient to the poor 

classifiers affects.  For example, the expected linear true positive classification rate is 
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approximately 10 percent.  After fusion with any other classifier, the worst performance 

was approximately 57%.   

 

Figure 36: XOR (spread) Gaussian Expected True Positive Classification Rates 

The last significant remark regarding the Figure 36 concerns the PNN ensemble 

performance.  In the linear/radial basis PNN ensemble, its performance is reduced by 

fusion with a poor classifier.  However, in the case three-classifier PNN ensemble, the 

performance is actually increased above the quadratic/radial basis PNN ensemble.  The 

question may be how the linear classifier can improve classification in one case and 

reduce classification in another.  In the linear/radial basis PNN ensemble, PNN must use 

1 

0.9 

—1 

Comparison 

 1— 

of E(TP) Given U 

 1  

ni =orm & Lfnear Distributions 
 1 1 1  

. V'     Uniform Distribution . 

Linear   Dlatribution 

0,8 

§ 
Qj   0.5 

2 

^ ̂             4 

 ^  

i 

.^J ^ ^ ' ^ 
^     ^    ^             ^1 

 : * \  

O   0.4 
z 

-   

0.2 

O.T 
U 
c 

'i 
t 
1 
T 

C 

\ _■■■■'£ 

IS
O

C
fL

R
):

 

IS
O

C
(L

O
R

) 

R
O

C
(L

Q
) a    2^    o    a    a    a    o 

_i    a    "    -1    -1    a    -j 
y    o    u    z    z    z'   z'    - 
g    o    o    z    z    z    z 
Q^      a:      [£      CL      EL      a_      Q. 

-1 '                           ' '                 ' 1                 1                 1 

6 B 10 
Classifiers & Ensembles 

13 14 le 



 62

all the training data given to it.  It discards nothing so it incorporates some of the linear 

classifiers errors when it fuses.  PNN, by design, can not ignore the linear classifier.  

However, in the three-classifier PNN fusion the quadratic and radial basis function 

correct classifications outweigh the linear classifier’s errors.  In addition, the linear 

classifier and one of the other good classifiers must outweigh some of the errors of the 

third to improve the three-classifier ensemble’s performance. 

Result 4: Two-Class “Domino” Gaussian Data Experiment   

This experiment represents the case where two classifiers perform poorly while 

only one classifier performs well.  The linear and quadratic classifiers perform nearly 

identically poorly but the modified radial basis classifier performs well.  Figure 37 

illustrates the linear and quadratic classifiers’ performance while Figure 38 illustrates the 

modified radial basis classifier’s performance. 
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Figure 37:  Linear Classifier ROC Curve 
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Figure 38:  Radial Basis Classifier ROC Curve 

 The three fusion methods ignore the poor classifiers in the fusion ensembles.  All 

two-classifier ensemble performances are nearly identical.  Since the linear and quadratic 

classifiers perform equally poor and apparently make the same type of errors, all the 

linear/quadratic fusion ensembles are also nearly identical.  The only notable finding is 

that the three-classifier PNN ensemble classification performance improves as the 

correlation increases.  Figure X shows the three-classifier PNN ensemble performance.  

This can be attributed to the geometry of the data as the correlation levels increase.  At 

the 0 correlation level, the two-class data appears to be circular in two-space with 

particular means and equal concentric distributions about the means.  However, as the 

correlation levels increase the distribution of the data becomes oblong about the means.  

This in turn leads to a better separation of the classes and hence better classification 

performance.  The “domino” case exhibited this phenomenon whereas the other data sets 
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did not because the means of the classes must be off-center from one another for the 

elongating data to separate.  Otherwise, the data elongates into the other class.  
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Figure 39:  Three-Classifier PNN Ensemble ROC Curve 

  The expected true positive classification rates showed a variety of results across 

the ensembles.  As is expected, linear / quadratic fusion ensembles performed poorly.  

The ISOC ensembles which include the modified radial basis classifier, ignore the linear 

and quadratic classifiers.  However, the three-classifier ISOC ensemble does not ignore 

the linear and quadratic classifiers.  This is due to the fact that the modified radial basis 

performs poorly at the mid-points between the data.  Given that the linear and quadratic 

classifiers perform well at these points, they are included in the optimal ISOC rule.  

Unfortunately, the two classifiers perform poorly overall and the overall classification 

decreases.  The ROC ensembles perform as expected.  The fusion of poor classifiers with 

a good classifier causes the classification accuracy to decrease.  When two poor 

classifiers are used the classification drops even more.   
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Figure 40:  “Domino” Gaussian Expected True Positive Classification Rates 

Finally, the PNN ensembles appear to overcome the poor classifiers performance. 

This can be attributed to the classifiers making different types of errors in the mid-point 

region of the “domino.”  The PNN ensemble can adjust for these errors using the training 

data while the other methods can not.  

Result 5: Radial basis function vs general regression neural network   

 An initial conjecture was made that the radial basis function approximates an 

optimal Bayes classifier.  A general regression neural network does, in fact, approximate 

an optimal Bayes classifier.  This experiment used scatter plots of both classifiers’ 
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labeled exemplars and their respective ROC curves to compare the classification 

performance and determine if the initial conjecture was reasonable. 

 The scatter plots show the GRNN and modified RBF classifiers classification of 

the same exemplars.  In this case, the GRNN classifier has very distinct line of 

classification between the two classes.  The RBF, on the other hand, does not have that 

distinct line of classification.  There is some “bleeding” into each of the other classes’ 

space.  The most noticeable difference between the two classifiers is that the RBF more 

often misclassifies outliers.  The differences in classification could be attributed to an 

insufficient amount of data.  The GRNN ROC curve very slightly outperforms the 

modified RBF ROC curve but enough to reject the concept that the modified RBF 

classifier’s output could be used as posterior probabilities.  
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Figure 41: Modified Radial Basis Classifier ROC Curve 
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Figure 42: General Regression Neural Network Classifier ROC Curve 
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V. Conclusions 

Introduction 

The objective of the research was to determine the optimal sensor ensemble and 

fusion technique combination across differing prior correlation distributions.  To this end, 

four different feature geometries were generated and classified by all possible ensembles.  

The possible ensembles consisted of three single classifier ensembles and all possible 

combinations of the single classifier ensembles using three different fusion techniques.  

Finally, the ensemble performances were measured using ROC curves and expected true 

positive classification rates.  

Conclusions 

 Several conclusions can be drawn from the findings and analysis.  When only 

good classifiers were used, the ISOC ensemble was able to reduce the optimal ISOC rule 

to a majority vote method which successfully eliminated individual classification errors.  

Only errors common to all three classifiers affected the ISOC ensemble’s performance.  

In this case, ISOC fusion method outperformed both the ROC and PNN fusion methods. 

When good and bad classifiers are used, then PNN ensembles consistently outperformed 

the other fusion methods.  Finally, when only poor classifiers are used, none of the three 

fusion techniques could significantly improve the classification performance.  In addition, 

the optimal ISOC rule declared a target as “friendly” when the underlying classifiers 

indicated the was target “hostile.”  This caused the ROC curve construction to fail.  The 

last experiment, affirmed that it was reasonable to use the modified radial basis function 

neural network outputs as posterior probabilities. 
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 Overall, the fusion techniques exhibited consistent characteristics.  ROC fusion 

always performed no worse than the worst classifier.  ISOC and ROC techniques were 

generally very “robust” to correlation.  Lastly, fusion does not yield large increases in 

classification accuracy above the single best classifier.  It is useful, in that, it mitigates the 

affects of poor classifiers.  When a good and poor classifier are fused by any method the 

resulting classification accuracy is generally close to the better classifier.  

Recommendations for Future Research 

 There are several possible areas for future research.  This research used feature 

data generated from code developed in Matlab.  However, the next logical step in the  

investigation of fusion ensembles would use real sensor feature data.  This would allow 

researchers to find any similarities and differences between the artificial environment and 

the “real” world.   

 Another area of future research would use sensor classifiers appropriate for the 

actual sensor data obtained.  These classifiers may optimize different regions of the 

feature space or be sensitive to correlated features or have any number of characteristics 

that will affect the classification accuracy.  In addition, fusion techniques perform best 

with classifiers possessing complementary error types.  In other words, classifiers that 

make different types of errors. 

 Lastly, the number of classes used for this experimentation should be expanded to 

three and/or four classes.  In the operational world, there are non-combatants such as 

civilians and international relief workers that do not participate in combat.  A fourth class 

would be hostile, friendly or non-combatants that can not be identified with any degree of 

confidence.  This class might be called an “unknown” class.
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Appendix A: ISOC Likelihood Ratios and Cost Rules 

 The ISOC method uses an optimal rule to classify new exemplars.  The optimal 

rule receives the classifiers’ output states and if the combination of the classifiers’ output 

states matches an output state in the optimal rule, then the target is declared hostile.  

Otherwise, the target is declared friendly.  However, when the ISOC method fuses a poor 

classifier and a good classifier, it may exclude the output state of both classifiers 

indicating hostile from the optimal rule.  The effect is that the target is declared friendly 

when both classifiers indicate hostile.  This circumstance requires two conditions in the 

ISOC process.  First, the likelihood ratio of some output state must be higher than the 

likelihood ratio of an all hostile output state.  Secondly, the cost of the ordered set of 

rules must be less with the rule associated with the all hostile output state excluded. 

 This research considers only a two class, two classifier problem.  The possible 

number of Combat Identification States (CIS) is defined by the number of classifiers and 

output states.  In this case, there are four CIS states.  The probability of each CIS state 

given a hostile and friendly are found. 

Table 10:  ISOC Output States and Conditional Probabilities 

 Output State    
State 
(Si) Classifier1  Classifier2  P(Si | H) P(Si | F) 
S1  1 1  P(tp)1*P(tp)2 P(fp)1*P(fp)2  
S2  1 0  P(tp)1*P(fn)2 P(fp)1*P(tn)2  
S3  0 1  P(fn)1*P(tp)2 P(tn)1*P(fp)2  
S4  0 0  P(fn)1*P(fn)2 P(tn)1*P(tn)2  
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Where 1 represents a hostile target and 0 represents a friendly target.  The true positive, 

false positive, true negative and false negative indications are taken from this notation.  A 

confusion matrix would look as follows: 

Table 11:  Confusion Matrix 
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The likelihood ratios of the four CIS states are the ratios of the P(Si | H) / P(Si | F). 
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In this case, first likelihood ratio represents the CIS state where both classifiers indicate 

that the target is hostile.  What is of interest is when one of the other likelihood ratios is 
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greater than the first.  
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A proof shows that the third likelihood ratio is greater than the first when the probability 

of a false positive is greater than the probability of a true positive for first classifier.  The 

same could be said of the second likelihood ratio and the second classifier.  Once it is 

established that a likelihood ratio other than the all hostile likelihood ratio is greater, then 

the ordered likelihood ratio will have that greater likelihood ratio as the first to enter the 

optimal rule. 

 The second condition requires that the cost of the optimal rule without the all 

hostile output state be greater than with the all hostile output state.  Given the following 
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order in which output states enter the optimal rule a comparison can be made between the 

first and second possible optimal rules’ costs.   

Table 12:  Combat Identification States 

 Combat Identification States (CIS) 
Rulei  (1 , 1) (1 , 0) (0 , 1) (0 , 0) 
Rule1  0 0 1 0 
Rule2  1 0 1 0 
Rule3  1 0 1 1 
Rule4  1 1 1 1 

 

The cost associated with the first rule, which is associated with CIS output state and the 

third likelihood ratio, needs to be greater than the cost of the second rule.  The second 

rule includes the all hostile CIS output state.  When the first cost is less than the second 

then the ISOC method will exclude the all hostile CIS state from the optimal rule. 
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