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Abstract  
 

The Department of Defense (DoD) is developing a Joint Battlespace Infosphere, 

linking a large number of data sources and user applications. Debugging and analysis 

tools are required to aid in this process.  Debugging of large object-oriented systems is a 

difficult cognitive process that requires understanding of both the overall and detailed 

behavior of the application.  In addition, many such applications linked through a 

distributed system add to this complexity.  Standard debuggers do not utilize 

visualization techniques, focusing mainly on information extracted directly from the 

source code. To overcome this deficiency, this research designs and implements a 

methodology that enables developers to analyze, troubleshoot and evaluate object-

oriented systems using visualization techniques. It uses the standard UML class diagram 

coupled with visualization features such as focus+context, animation, graph layout, color 

encoding and filtering techniques to organize and present information in a manner that 

facilitates greater program and system comprehension.  Multiple levels of abstraction, 

from low-level details such as source code and variable information to high-level 

structural detail in the form of a UML class diagram are accessible along with views of 

the program’s control flow.  The methods applied provide a considerable improvement 

(up to 1110%) in the number of classes that can be displayed in a set display area while 

still preserving user context and the semantics of UML, thus maintaining system 

understanding. Usability tests validated the application in terms of three criteria – 

software visualization, debugging, and general system usability. 
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VISUAL DEBUGGING OF OBJECT-ORIENTED SYSTEMS 
WITH THE UNIFIED MODELING LANGUAGE 

1. Research Introduction 
 

1.1 Problem Statement 

Information systems have become a critical aspect of successful military operations.  

The Joint Battlespace Infosphere (JBI) proposes “a combat information management 

system that provides individual users with the specific information required for their 

functional responsibilities during crisis or conflict” [USA00].  Such a system is 

inherently complex with distributed communications among numerous and diverse data 

sources. Any system of such complexity is difficult to design, analyze, test and debug.  

To aid in this activity, this research develops interactive program visualization techniques 

to facilitate debugging of object-oriented systems both as stand alone and connected in a 

distributed system.   

Debugging is a crucial activity in any software development process.  In an 

environment such as the JBI, where a large number of user applications and databases are 

linked, debugging is further complicated.  Further to this, the introduction of object-

oriented programming has presented challenges in the traditional way of debugging 

software.  Visualization techniques exist that aim to aid this debugging process, however 

whether these techniques actually help is yet to be determined [BDM97].  It is well 

known that visualization greatly increases human-computer data bandwidth and since 

debugging of software generally involves large amounts of data, it is appropriate to 

incorporate visualization in the debugging of software.  This thesis effort designs and 

implements a methodology that enables developers to analyze, troubleshoot and evaluate 
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object-oriented systems using visualization techniques.  It then validates the effectiveness 

of the developed tool through controlled user experiments. 

1.2 Background 

Prior work by AFIT in the visualization field established a Java based system 

primarily concerned with the analysis of distributed systems based on inter-agent 

communication [KIL02].  Further work by AFIT produced another Java based system 

that employs UML to analyze distributed systems [MUS03]. The features of Java ensure 

easy platform independence in distributed monitoring systems. 

Debugging software can result in enormous amounts of data.  Hence the use of 

visualization techniques can aid in this process by increasing the amount of data that can 

be taken in by the user. The traditional debugging method of character reading can be 

significantly improved by the use of visualization as it increases the human-computer 

data bandwidth.  Furthermore, pre-cognitive processing of the data is more efficient thus 

requiring less effort from the user [WAR00].  

Telles states that one of the most important aspects of debugging is the ability to take 

the “big picture” into account [TH01]. The user should base their hypothesis of the cause 

and location of the bug on the overall system behavior. As such, the inclusion of UML 

modeling to represent the system is considered advantageous.  Although a sequence 

diagram representation provides assistance in debugging in many existing tools, they are 

unable to provide an overview of the total system.  Class diagrams are able to describe 

the system adequately in most cases. The software engineering and design industry is 

very familiar with class diagrams and uses them frequently during system design and 

they are in fact the most commonly used type of UML diagram [CB99].  The system 
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developed at AFIT based on version 0.10.1 of ArgoUML – an open source CASE tool – 

is modified to enhance visualization features with the aim of improving space efficiency 

and its performance to make it useful for the purposes of real time debugging.  This thesis 

investigation shows that the use of dynamic UML class diagrams coupled with 

visualization techniques such as focus + context, hierarchical graph layout algorithm, and 

filtering assists the user during the debugging process. 

1.3 Research Focus 

This research focuses on developing more effective methods for applying 

visualization to the debugging of object-oriented systems. These methods are 

implemented in an existing Java based system.  Similar to other software visualization 

tools, it is necessary to view the system being debugged from various levels of 

abstraction to allow the user to analyze and correct the modules that are most likely 

causing errors.  The use of multiple levels of abstraction allows the user to gain a global 

view of the system while having access to detailed information essential to effective 

debugging. 

The domain of the solution is limited to Java based applications to simplify the data 

extraction process. The Java Platform Debug Architecture (JPDA) is used as the 

debugging framework while ArgoUML executes the visualization component of the 

system. 

1.3.1 Objectives 

The primary objective of this thesis effort is to develop visualization methodologies 

that allow more effective debugging of object-oriented systems. This research must meet 

several requirements in order to achieve this primary goal. Initially, the debugging 
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process is analyzed to determine key techniques and requirements.  The major 

requirement in the software debugging process is to gain an understanding of system 

behavior, which includes both static and dynamic information [TH01]. Wide varieties of 

views are necessary in order to present users with as wide a scope of information as they 

require without being too overwhelming. 

Any system with this goal should automate the method of data extraction, as large 

amounts of data are required for this debugging process. Displaying the program 

structure aids in the presentation of data. However users may not require access to all the 

information for many classes at any given time; hence the display of the system should 

accommodate for this case.  

It is essential that users performing the debugging have access to multiple levels of 

abstraction to aid in program understanding. Users should have views ranging from 

source code to high-level architectural views showing where the current code segment 

fits in with the rest of the system and the relationships it maintains with the modules that 

surround it.  

A display of the program structure is an important part of the visualization created 

for the debugging process.  The ability to see the source of the debug data in a well-

known layout representation assists the user in detecting program errors. It is crucial that 

the layout be in a well-known form to take advantage of inherent user knowledge of 

program layout – showing inheritance relationships vertically for instance. The program 

layout information should be rapidly reverse-engineered without the need for the 

debugee’s source code which may not be available or current.   
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As with all visualization systems, the application must address several key issues 

such as the use of color, patterns, animation, and space efficiency. Effective use of these 

visualization techniques are required to maximize the benefits of the system. To enhance 

visual processing by the user, other visualization techniques are incorporated to allow a 

global view with detail for areas of interest. 

Another major objective of this thesis effort is to evaluate the effectiveness of the 

resulting tool through user experiments. A combination of the three most common forms 

of usability testing – testing, inspection and inquiry [USA] – are used to achieve this task. 

1.3.2 Approach 

In order to extract run-time data from the system for debugging, the JPDA library is 

used. JPDA allows for distributed debugging to take place on any platform running the 

Java Virtual Machine (JVM).  A Graphical User Interface (GUI) is responsible for the 

display and collection of input from the user. This comprehensive GUI provides various 

levels of abstraction from system structure right down to source code level.  It allows the 

user to select any variable for expression evaluation and trace through code to identify 

observed errors. 

The system obtains the program structure to be represented through the reverse 

engineering of the extracted data from the JPDA.   The main visualization is presented as 

a UML class diagram and is supported by focus+context and information filtering 

techniques.  The system displays diagrams that follow UML conventions in accordance 

with UML version 1.4 [OMG00].   

The programs that are handled by the developed application may be extremely large, 

which implies the structural models are very large.  Focus+context visualization 
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techniques and fisheye views allow a much larger portion of the program structure to be 

displayed on the screen while allowing the user access to detailed information for an area 

of interest.  These have already been employed in existing systems but are enhanced in 

this research to provide a more efficient display. 

The visual system includes a graph layout algorithm to further increase the space 

efficiency of the visualization. The layered graph layout algorithm represents the 

hierarchical nature of UML class diagrams by using layering based on inheritance 

relationships within the program being debugged. The visual transformation system 

applies the algorithm in two phases to preserve context of the system where it already 

exists.  More specifically, smooth animation is applied in the visual transformation of the 

changing graph so that ‘context’ or ‘understanding’ of the visual representation is 

maintained by the user. 

 The debugger system highlights the execution path of programs on the structural 

view. This allows the user to see what the program is doing, rather than having to 

comprehend trace data. 

As well as the highlighting of the execution path, a variety of visualization tools are 

included to increase the effectiveness of the system. This research selects color, layouts, 

filtering and animation based on the foundations of program visualization to achieve 

maximum effect [WAR00]. Focus + context is also included to allow a more complete 

view of the UML object diagrams presented by the system. 

This research implements a debugging system with the described features to evaluate 

the effectiveness of the proposed visualization techniques. Testing takes place to measure 

the effectiveness of these techniques in various environments.  These tests are conducted 
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as an individual effort and validated through user experiments, involving subjects at 

AFIT.  Testing includes the use of questionnaires and interviews to correctly determine 

the effectiveness of the resultant application.  

1.4 Research Contributions 

 The effectiveness of the application is verified through a usability test and an 

analysis of it in terms of a chosen set of criteria and performance metrics. The 

effectiveness was measured in terms of software visualization effectiveness, debugging 

effectiveness and general system usability.  User responses to both the software 

visualization and debugging effectiveness of ArgoUML determined that the method of 

providing a UML diagram assisted by the visualization techniques provided in this 

research was indeed effective for the purposes of debugging object oriented systems.  

Some usability aspects of the application need further refinement, primarily in the area of 

system performance, however the general usability criteria scores from the conducted 

tests still gained positive results.  The presentation of UML class diagrams with a 

focus+context visualization feature and a hierarchical graph layout algorithm provides a 

considerable improvement (up to 1110%) in the number of classes that can be displayed 

in a set display area while still preserving the semantics of UML and thus maintaining 

system understanding.  This great improvement in space efficiency allows users to debug 

large systems more easily based on the amount of data that is made manageable in a set 

information space.  Chapter 6 provides a comprehensive summary of how each of the 

goals of this research was met.  
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1.5 Thesis Overview 

Chapter 2 provides a literature review discussing topics such as software 

visualization, debugging, and methods for testing user interfaces.  Chapter 3 outlines the 

methodology for obtaining the goals outlined in section 1.3.1.  Chapter 4 presents design 

considerations and related details of implementing a UML based visual debugger as well 

as the method used to determine its effectiveness.  This chapter is decomposed into three 

sections – that of Visual Design, Debugger Design and Experimental Design.  Chapter 5 

describes the application of the developed system and discusses results from analyzing its 

effectiveness as a debugger.  This includes explanation of the evaluation techniques used 

prior to presenting results.  Chapter 6 presents conclusions and potential avenues for 

future work. 
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2 Background 
 
2.1 Introduction 

This chapter discusses different ways in which Software Visualization (SV) has 

been used in the field of debugging and visualization of Object-oriented Software.  

Debugging is crucial to the success of any software development process, regardless of 

whether it is for a commercial, an enterprise or a personal application.  Techniques are 

being developed to reduce the time and effort spent on debugging, including the use of 

visual representations of program behavior [BDM97].  These techniques have major 

relevance to this research.  The topics covered in this chapter include SV and more 

specifically the domain of program visualization.  This is followed by a description of 

visualization methods as well as graphical concepts such as layout algorithms. It then 

discusses issues in debugging, including methods in detecting bugs and how SV can aid 

in this process.  It also covers visualization applications and visual representations of 

software, both for its static and dynamic characteristics and methods in determining the 

effectiveness of SV for debugging.  Since the research involves evaluating the 

effectiveness of a visualization application, different approaches in conducting this are 

also discussed.  The following sections provide a description of each topic along with its 

relevance to the research. 

2.2 Software Visualization 

Price et al. formally define Software Visualization to be “the systematic and 

imaginative use of the technology of interactive computer graphics and the disciplines of 

graphic design, typography, color, cinematography, animation, and sound design to 
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enhance the comprehension of algorithms and computer programs” [PBS93].  As can be 

deduced from this definition, SV comprises two main fields – algorithm visualization 

(AV) and program visualization (PV).  The main area of SV that is relevant to this 

research is that PV, which encompasses debugging as well as program analysis and 

software engineering.  Algorithm visualization is also commonly known as algorithm 

animation and is mainly used for educational purposes. 

Visualization has greatly contributed to the human ability to solve problems.  

According to Card et al. [CS99], information visualization amplifies cognition in the 

following ways: 

• Increased Resources 

• Reduced Search 

• Enhanced Recognition of Patterns 

• Perceptual Inference 

• Perceptual Monitoring 

• Manipulable Medium 

In other words, visualization greatly increases the bandwidth at which humans can 

accept data and make sense out of what otherwise would be a complex representation. 

2.2.1 Program Visualization 

 
This research evaluates techniques for visualizing program execution.   According to 

Roman and Cox, program visualization may be viewed as a mapping from programs to 

graphical representations [RC93].  This concept is crucial to this research as it provides 

the basis from which software can be transformed into a graphical representation to 

enable debugging.   
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Stasko affirms that an effective SV environment builds on the text based techniques 

that are generally used, with techniques such as pretty-printing of code to make better use 

of the human computer interface [STA98].  However, to improve on these methods and 

for ease of understanding, the represented visualization must allow the user to filter the 

visualization.  That is, the user must be able to control the visualization such that certain 

information that is not required at a certain time can be omitted.  

It is difficult for the user to have knowledge of erroneous behavior from the observed 

system in advance.  Therefore, the system must provide enough flexibility to capture this 

dynamic data.  Runtime data is more difficult to display than static data as it must be 

displayed dynamically.  Taking this into account, Stasko developed the following 

principles for dynamic software display [STA98]. 

• Animation – animation allows for the display of temporal relationships.  It 

can be constructed by modifying the size, shape, position or the appearance 

of an object. 

• Metaphors – this refers to symbols that represent objects in a way that 

makes the object more easily understood.  The idea behind using metaphors 

is to minimize cognitive load on the user. 

• Interconnection – this refers to the use of various techniques to represent 

relationships between components and their patterns of behavior 

• Interaction – this refers to the user’s ability to interact with and manipulate 

the data that is visually presented.  

Animation plays an important part in this research as it provides the means by 

which the user can maintain context in a changing display.  Context is an important 

concept in Human-Computer Interaction (HCI) and in essence refers to what determines 

the meaning of the display [SBG99].   The application of smooth animation ensures that 
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updates to the display do not result in confusing transformations caused by ‘sudden’ 

changes.  The final application minimizes the complexity of the animation by limiting the 

number of behaviors that are animated and selecting simple animation types.  

2.2.1.1 Program Visualization Taxonomies 
 

Visualization of program structure, control flow and data has long been a part of 

software development. Examples include flow charts, class diagrams, state-charts, pretty 

printing of code, and algorithm animation. To evaluate PV techniques, Roman and Cox 

propose a taxonomy consisting of five criteria – scope, abstraction, specification method, 

interface and presentation [RC93].  

Scope is concerned with which aspects of a program are being visualized.  The 

domain of an individual visualization is a program.  Formally, a program can be 

characterized by its code, data state, control state, and execution behavior.  Visualization 

systems often limit their scope to a subset of these program aspects; however, a broader 

scope is generally preferred in order to provide more options to the viewer.   Scope is an 

important criterion as it determines exactly what the application intends to visualize. 

Abstraction refers to the degree to which the visual representation is removed from 

the actual code.  The purpose of abstraction is to decrease complexity by aggregating 

details into entities, without losing the descriptive qualities of the system being 

visualized.  Roman and Cox define five levels of abstraction [RC93] as follows: 

• Direct representation. 

• Structural representation 

• Synthesized representation 

• Analytical representation 
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• Explanatory representation 

  With direct representation, some aspect of the program is mapped directly to a 

visual representation.  Some examples of direct representations include setting gauges to 

indicate the values of variables, or two-dimensional representation of binary trees, or 

color encoding of values stored in an array.  UML operates on a similar principle but 

leads more towards the structural representation, which encapsulates multiple sub-

components into a single object to conceal information that is not currently of interest.  

For example, diagrams and graphs typically used to depict program structures (like 

UML) and network connectivity structurally represent what otherwise would be a 

complex object, and reduce it to subcomponents treated as a single simple object, with its 

internal structure hidden.  The representation simply conveys the information in a more 

economical way by suppressing aspects that are not relevant to the viewer.  Synthesized 

representations go even further, deriving and presenting information that is not directly in 

the program.  The other levels of abstraction for PV that have been formally defined –  

analytical and explanatory representations – are more sophisticated and go beyond 

presenting simple representations of the program state.  They use a variety of visual 

techniques to illustrate program behavior and are added for the sake of improving the 

aesthetic quality of the presentation to communicate the implications of certain events, 

and in order to focus the viewer’s attention.  An example of an analytical representation 

would be highlighting an area that has already been computed in a dataset that is being 

evaluated by a certain sorting algorithm, to give insight as to the direction and behavior 

of the algorithm with respect to its input.  An example of  an explanatory representation, 

on the other hand, would be to apply a animation to a sorting algorithm that may 



 

14 

smoothly swap the position of two objects to represent the exchange of two array 

elements.  In this case, the intermediate positions of the objects during the animation do 

not represent any actual states of the computation.  Abstraction is useful for compacting 

large amounts of program information for presentation in a display of limited resolution.  

Multiple levels of abstraction are preferred for any visualization system. 

Designers of PV applications must be able to identify the specific program aspects 

that are to be extracted and how they are displayed.  Specification methods may be 

predefined by the visualization system or may require annotation of the code.  

Alternatively, visualization designers may use a declarative language or manipulation to 

specify the mapping between program aspects and visual objects.  Specification methods 

should require minimal effort from the viewer.  The ease and efficiency with which these 

operations can be done is a major factor in the utility of a visualization system; however, 

systems should also provide sufficient flexibility to tailor the information for specific 

viewer needs.   

The interface consists of graphical objects presented to the viewer and interaction 

with the display using buttons, menus, and other controls or through direct manipulation 

of the graphical objects.  The interface should be intuitive and easy to understand and 

use.  In general, direct manipulation interfaces tend to be more intuitive than interaction 

through controls. 

Presentation refers to the semantics of the graphical objects that are presented to the 

viewer. The presentation is that aspect of the visualization that facilitates interpretation 

and understanding of the graphics. This covers issues concerning human cognition and 

effective visual communication such as the use of color, size, spatial relationships and 
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other visual concepts to depict additional meanings.  Presentation semantics must be 

sufficiently abstract and powerful to reduce the cognitive load on the viewer.  It is 

especially important to capture the complex interrelationships between various program 

aspects. 

Debuggers such as those in Borland’s TogetherControlCenter illustrate the low end 

of PV techniques [BOR02]. This environment provides little abstraction and minimalist 

interface capabilities, that is, debugging takes place with a GUI but the data itself has not 

undergone any transformation. It is typical in these environments for users to be able to 

interact with textual representations of code and data state using simple text, menu, or 

button commands. However, users have very limited capability to specify the desired 

information and visual presentation. Presentation semantics are no more than those 

provided by the underlying code.  This research attempts to come up with a more 

effective means of visualizing software by satisfying all of the visualization criteria 

discussed in the taxonomy above.  According to Ungar et al., bringing the programmer 

closer to the program promotes immediacy and helps the programmer understand, change 

and ultimately debug [ULF97].  The vision of this research is to attain a reasonable level 

of immediacy in debugging through the dynamic visualization of program structure. 

2.2.1.2 The Unified Modeling Language (UML) 
 

An appropriate candidate for the visual representation of software is UML.  UML 

provides diagrams to model static system information and different aspects of dynamic 

system behavior [OMG00].  It is the standard used by many developers in the software 

industry to model and represent software characteristics. UML comprises a variety of 

diagrams relevant to software engineering, including class, use case, sequence, state, 
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collaboration and deployment diagrams.   This research investigates the use of UML as a 

visual representation for debugging.   

The most common UML diagram that is used is the Class Diagram [CB99].  A class 

diagram comprises a group of classes and interfaces that reflect the important entities of 

the system being modeled, and the relationships between those classes and interfaces.  

Classes in a class diagram are interconnected by association relationships, and  in a 

hierarchical fashion, by generalization and specification relationships consisting of a set 

of or an individual parent class and related sub-classes under those parent classes.  An 

important thing to remember is that a class diagram is a static view of a system.  It is used 

to represent the structure of the system being modeled.  However, prior work by Jacobs 

and Musial [JM03], has seen the use of animated class diagrams to represent some 

dynamic behavior of software.  This was achieved by drawing the class diagram node of 

each entity of the system being analyzed as it is called.    Object diagrams , which model 

instances of classes are also defined by UML.  This type of diagram is used to describe 

the system at a particular point in time and for this research, may be more appropriate for 

debugging purposes than class diagrams.  From a notation standpoint, object diagrams are 

very similar to class diagrams.   

A useful UML representation for debugging may be that of a state diagram.  A state 

diagram captures an object’s dynamically changing set of attributes called states.  

However, a state diagram representation is usually dependent on ‘interesting’ events that 

the system possesses.  This presents challenges in how to parse such events for a 

debugging application.  Specification methods presented in current SV literature are 

unsuitable for such a task since the information required is not explicit at the source code 
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level.  Therefore the specification method used for such an application would likely 

require a great amount of user intervention, which as discussed in section 2.2.1.1, is 

undesirable from a specification viewpoint.  Possible debug platforms that are considered 

for this research are covered in further sections of this chapter.  

2.2.2 Spatial Visualization 

There are a number of complications associated with designing a system to visualize 

object-oriented Programs.  Software systems can consist of hundreds or thousands of 

unique classes with complex inheritance and containment hierarchies and diverse patterns 

of dynamic interaction [DHKV93].  Analysis and comprehension of such a software 

system requires both a high-level overview of the system structure (consisting of 

numerous classes and the relationships among them) and a detailed examination of the 

characteristics of individual classes or small subsets of classes.  SV techniques should 

provide access to both high-level and detailed views.   

Systems that consist of several hundreds of thousands of lines of code and comprise 

thousands of classes pose challenges in terms of how to visually represent the big picture 

of the system.  One of the biggest problems in the science of visualization is the small 

window area available from which to view large information spaces.  Visualization 

methods exist that can make these large amounts of data much more manageable to the 

user. This section focuses on those techniques that show a complete view of the data 

while providing detail for an area of interest. This is known as spatial visualization and is 

concerned with maintaining a view of the whole information space while pursuing 

detailed analysis of a portion of it.  There are two common spatial visualization 
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techniques. Focus+context shows detail within the existing display, and overview + detail 

maintains separate areas for displaying the different levels of detail. 

2.2.2.1 Overview+Detail 
 

As discussed, browsing large information spaces like software can pose a big 

problem to the human visual system, which only has a limited bandwidth for the intake of 

information.  Card states that it is essential to maintain an overview [CS99].  Overview 

reduces search, allows easier detection of patterns, and helps the user to choose the next 

move. The display of the detail on the other hand allows the user access to meaningful 

data rapidly. This combination of the two views allows the user to track a region of 

interest in the global display while having a detailed view for further work. 

This method usually incorporates some highlighting of the global view to indicate 

the current region of detailed display. The detailed information is then presented 

elsewhere (e.g., in the background). The user then easily tracks updates to the position in 

the global context. Figure 1 shows an example of this technique applied to code in a 

software evolution application called SeeSoft; the highlighting is shown on each higher-

level view [CS99].  Shneiderman claims that this zoomed detail view should have an 

effective zoom factor of between 3 and 30 [SHN98]. 

Card stipulates that the detailed view can be presented either in a different location 

on the screen at the same time (space multiplexing) or one at a time (time multiplexing) 

[CS99]. There are obviously careful tradeoffs in the use of space that need to be made in 

the design of overview+detail applications. 

The detailed view is generally a scaled view of the overview.  However it may also 

use a different representation to present more clear and detailed information.  User 
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control of the views becomes an important issue in the design of overview + detail 

visualizations. Zoom-and-replace is a technique used with overview + detail where a 

mouse-click by the user on a location in the global display results in the display of the 

selected location in detail.  

 
Figure 1 - Overview + detail technique, with intermediate view [CS99].  

2.2.2.2 Focus+Context 
 

Card also reviews the focus+context technique. The concept behind it is based on 

three premises [CS99]. The first is that the user requires both the overview (context) and 

a detail view (focus) simultaneously. Secondly, there may be different requirements for 

information in the detail view than in the overall display. Third, the visualization 

combines this information into a single dynamic view, similar to human vision.  

Work by Furnas with Fisheye views showed that it is beneficial to combine the two 

views as user attention drops off away from the areas of detail [FUR81].  The Fisheye 

view is a Focus+Context technique that is analogous to a fisheye lens whereby objects 
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nearby are magnified and distant objects are shrunk.  It illustrates how the space-time 

efficiency for the user can be greatly improved as it takes advantage of a larger amount of 

useful information per unit of area and reduced amount of time to find that useful 

information [CS99].  Figure 2 shows a standard flat view of text from a journal paper 

displaying sequential headings. Figure 3 shows a fisheye view of the same text with 

focus+context applied, showing some localized headings with context provided by major 

headings for the entire chapter. 

 
 

Figure 2 - Flat view of article. 

70     i i. logarithmic compression, under user control 
71     i i i. branching factor is critical 
72    c.  Iso-DOI contours are ellipses 
73    e. The dangling tree 
74         Figure 2: shows the dangline DOI contours 
75    f. Changing focii --lowest common ancestor 
76  B. Examples of Fisheye for Tree Structured Files 
77   1. Indent Structured Files: Structured Programs, Outlines, etc. 
78    a. Examples: Programs, Outlines, etc. 
79    b. Usually ordered -fisheye is compatible 
80    c. Specific example 1: paper outline 
81        Figures 3,4,5: outline, regular and fisheye views 
82     i. some adjacent info missing 
83     ii. traded for global information 
84    d. Comment: standard window view = degenerate fisheye 
85    e. Specific example 2: C program code 
86        Figures 4: C-program, regular and fisheye views 
87     i. What is shown 
88     ii. What is traded for what 
89    f. Other indent structures: bioI. taxon. , org. hierarch. .. 
90   2. Count-Until: A Simple Generalization of Indent Structure 
91    a. Other similar structures 
92     i. in addition to indent
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Figure 3 - Furnas fisheye view of text from Figure 2 

In the case of class diagrams, not only is focus+context applicable to the whole 

diagram but for each node in the diagram as well.  Large systems (and in some cases, 

even small applications) can contain classes with many attributes and methods.  Showing 

all these attributes in the screen not only compromises the efficiency of the display but 

can also cause confusion.  For this research, it is therefore reasonable to consider 

applying focus+context to individual nodes, as necessary to increase the efficiency of the 

displayed information.   

There are a variety of methods that systems can implement to provide selective 

reduction of the presented information.  These include information filtering, selective 

aggregation of related information, micro-macro readings, highlighting, and distortion 

[CS99].  For class diagrams, the technique of information filtering can be useful, 

especially when nodes in the diagram become too large due to the many attributes and 

methods a class can have.  Prior work by Jacobs and Musial on ArgoUML made use of 
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selective aggregation [JM03].  This technique hides aggregate elements within other 

components.  It achieves a focus+context view by collapsing away hierarchical structures 

from the user’s focus.  When the user then brings the context into focus, the hierarchy 

expands to reveal the aggregate relationships contained within.  Filtering by way of 

information hiding is also useful when it comes to UML diagrams.  Since UML diagrams 

are composed of different compartments, allowing the user to enable or disable the 

display of compartments would be useful in increasing the display’s space efficiency.  

DIAGEN is another application in which focus+context has been applied [KM01].  This 

application provides an adjustable detail level for editing large diagrams.  It uses selective 

aggregation for UML diagrams to hide the contents of packages and other components to 

reduce the amount of detailed information displayed.  

2.3 Graph Layouts 

Since this research proposes the use of UML representations for the visualization of 

object-oriented systems, a major factor that comes into play is the graph layout 

algorithms that are used.  Efficient use of the small information window available is a key 

to SV and follows from Tufte’s principles of graphical excellence, one of which preaches 

to present many numbers (or information) in a small space [TUF01]. 

Aesthetics is an important consideration in graph drawing as it describes the qualities 

that define a ‘good’ and ‘visually pleasing’ graph.  From statistical analysis, several 

principles that influence the aesthetics of a particular graph were determined as follows 

by Batini et al. [BFN85]:  

• Minimize line crossing – keep the number of times that lines cross to a 
minimum. 
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• Minimize area – keep the area that the graph takes up to a minimum by 
producing a compact graph. 

 
• Minimize the sum of the edge lengths. 

 
• Obtain a uniform edge length – try to keep each of the edges at the same 

lengths. 
 

• Minimize bends – keep the number of times there is a bend to a minimum. 
 
• Permit easy reversal of actions – this allows the user to try something without 

the fear of errors destroying their work. 
 
• Support the internal locus of control – make the user the initiator of any 

system response so they feel they are in control. 
 

• Reduce short-term memory load – keep displays simple with online help to 
information. 

 
Drawing constraints are constraints placed on the drawing algorithm in order to 

create the final drawing. For example, a diagram representing a sequential model may 

show a number of nodes in a left-right sequence. Constraints control the layout in order to 

meet the expectations of users (conventions) or standards of a particular system. The 

constraints that can be placed on a graph drawing algorithm are as follows [DETT99]:  

• Center – place a given vertex in the center. 
 

• External – place a given vertex on the boundary. 
 

• Cluster – place a group of vertices together. 
 

• Pre-arrange a path. 
 
• Draw a sub-graph with a certain shape. 
 

There is no ultimate ‘magic’ solution for any graph due to conflicting aesthetics. 

Even if the chosen aesthetics do not conflict, it is computationally expensive to optimize 
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them all.  Therefore, precedence in aesthetics is often a necessary compromise for any 

graph layout algorithm [DETT99]. 

2.3.1 Hierarchical Approach 

The algorithm to layout a UML class or object diagram should preserve the 

hierarchical nature of the diagram. A variety of tools for displaying class diagrams 

present generalization hierarchies down the vertical axis [RAT02], [AUB02].  The best 

algorithm for this purpose is a layered drawing approach [DETT99].  A layered approach 

allows for a hierarchical presentation with vertices arranged in horizontal layers as shown 

in the example in Figure 4. One can apply this approach to any directed graph. By 

considering the UML diagram to be undirected for the purpose of layout, the complexity 

of the algorithm can be reduced. The layered approach comprises the following steps: 

1. Layer Assignment: Assign vertices to horizontal layers, this determines their y-

coordinate.  If there is a gap in between layers, such as when there is an edge from 

L1 to L3, a dummy vertex is placed at L2. For UML, a layer difference exists 

across each generalization relationship, with the top most vertex being the most 

generalized class. In the simple case where each vertex is the same size, the y-

coordinate of each layer is determined by adding a suitable gap to the last layer.  

2. Crossing reduction: Order the vertices within each layer to minimize edge 

crossings.  Here, the number of times that edges cross over is reduced to create a 

more aesthetically pleasing drawing. 

3. Horizontal coordinate assignment: determine the x-coordinate for each vertex. By 

this step, all the points are assigned a position, the dummy vertices are removed, 
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and the edges are all drawn. In this stage many different aesthetics can be stressed 

such as minimizing bends or minimizing area. 

 

Figure 4 - Example of graph with layered layout. 

The first step requires a process to determine the layer for each vertex.  The standard 

layered approach requires that the directed graph be compact in both dimensions and that 

the gaps between vertices are fixed. 

For the second step, Di Battista describes the insertion of dummy nodes to ensure 

that a relation does not directly cross more than one layer. This ensures minimization of 

edge crossing [DETT99]. When the vertices are of variable size however, the insertion of 

dummy nodes will not prevent edge crossings in the graph.   

The third step requires the positioning of each vertex on a layer. The choice of 

algorithm for this step is dependent on user requirements. 

2.3.2 Topology Shape Metrics Approach 

Another approach used in Graph drawing is the Topology-Shape-Metrics (TSM) 

approach. This approach results in an orthogonal drawing and is commonly used in 

electrical engineering schematics.  Orthogonal drawings only assign right angles between 
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connecting links. It stresses the minimization of crossings in the drawing as it applies 

planarization to the original graph [DETT99].  Like the hierarchical approach, the 

topology-shape-metrics consists of several steps [GJKKLM03]: 

1. Planarization: This step determines the topology of the drawing.  It ensures that 

graphs are planar by adding dummy nodes that represent crossings in the original 

graph.  

2. Orthogonalization: This step determines the angles and bends in the drawing.  

Only multiples of 90° are assigned as angles.  Generally, algorithms minimize the 

number of bends in this phase. 

3. Compaction: this step assigns final coordinates to the nodes and to the edge 

bends.  The main goal of this final step is to minimize the sum of the length of all 

edges and/or the area of the drawing.  

Eiglsperger et al. discovered an effective automatic layout algorithm based on the 

topology-shape-metrics approach [EKS03].  Their algorithm was used in an application 

implemented in Java called JarInspector which showed an effective and efficient use of 

this approach (Figure 5). 
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Figure 5 - Screenshot of JarInspector which uses topology-shape-metrics approach. 

2.4 User Interfaces 

User interactivity and control is an important subject to consider in software 

design. The user interface has a large effect on the usability factor of a program. As such, 

the system implemented in this research should strive to meet the goals required for an 

effective interface. With this in mind, Shneiderman discusses some goals for effective 

GUI design [SHN98]. The following are known as the Golden Rules for GUI Design: 

• Strive for consistency – use consistent sequences of actions as well as 
identical terminology for prompts. 

 
• Enable frequent users to use shortcuts – Hotkeys reduce the time taken to 

initiate an action for frequent users. 
 

• Offer informative feedback – System responses to user requests should be 
rapid and helpful to the user. 

 
• Design dialogs to yield closure – Group sequences of actions with an 

informative and meaningful end to that group. 
 

• Offer error prevention and simple error handling – design the system so the 
user cannot make a simple error and offer simple instructions to recover. 
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• Permit easy reversal of actions – this allows the user to try something without 
the fear of errors destroying their work. 

 
• Support the internal locus of control – make the user the initiator of any 

system response so they feel they are in control. 
 

• Reduce short-term memory load – keep displays simple with online help to 
information. 

 
2.5 Debugging Issues 

Software systems are becoming increasingly large and complicated as technology 

progresses and user requirements in different domains expand. This makes debugging 

difficult and is compounded by the fact that many developers are not familiar with the 

subject of the system they are creating.  According to Kolawa, it is not uncommon for the 

debugging phase to take 60-70% of the overall software development time, and that it is 

responsible for 80% of software project overruns [KOL96].  This is obviously brought 

about by the fact that programming is a human activity and is always prone to error. The 

following reviews some of the issues involved in the process of debugging and the 

essential tools for a debugger. 

2.5.1 Bugs 

Telles determined the human-centric definition for a bug to be “behaviors of the 

system that the software development team (developers, testers, and project managers) 

and customers have agreed as undesirable” [TH01]. A bug may originate in the 

requirements, architecture, design, or implementation of the system. Work-arounds may 

be implemented for many of the typical and expected errors, however the system should 

still meet the user requirements.  Telles explains that software defects have a potential to 

become bugs, and on average 25 defects are contained in every 1000 lines of code.  In 
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this sense, the difference between bugs and defects is that a defect is a logic error that 

produces unexpected results without causing the abnormal end (abend) or the undesirable 

behavior defined to be a bug.  Therefore all bugs are defects, but defects are not 

necessarily bugs.   

Defects can be introduced at every stage of the Software Life Cycle, but are 

generally caused by the designer’s lack of understanding of the domain. Kan found a 

correlation between the number of changes and enhancements made to a system and the 

number of defects [KAN95] to be approximately 0.628 defects for each 

change/enhancement.  

Telles provides a taxonomy for bugs with the following classifications [TH01]: 

• Requirement Bugs 
• Design Bugs 
• Implementation bugs 
• Process Bugs 
• Build Bugs  
• Deployment Bugs 
• Future Planning Bugs 

 
The types of bugs above are classified with the use of Telles’ taxonomy which 

presents the following characteristics of bugs: 

• Name 
• Description 
• Most common environment 
• Symptoms 
• Example  

 
As the bugs can be introduced at almost any stage, their effects may also vary 

greatly. Telles classifies the effects as one of the following [TH01]: 

• Memory or Resource Leaks 
• Logic Errors 
• Coding Errors 
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• Memory Overruns 
• Loop Errors 
• Conditional Errors 
• Pointer Errors 
• Allocation/De-allocation errors 
• Multi-threaded errors 
• Timing errors 
• Distributed Application errors 
• Storage 
• Integration 
• Conversion 
• Hard-Coded Lengths/Sizes 
• Versioning Bugs 
• Reuse 
• Boolean 
 

As illustrated, bugs can be classified into many different areas and by 

understanding these classifications, it is easier to predict the types of problems that may 

arise from these different types.  Each have varying magnitudes of negative 

consequences. 

2.5.2 Debugging 

Telles defines debugging as “the process of understanding the behavior of a system 

to facilitate the removal of bugs” [TH01]. Fixing the symptoms alone does not solve the 

problem, and in fact may create new ones. Anecdotal evidence suggests that the 

probability of introducing a new error while attempting to fix another is between 15 and 

50 percent [TH01].  Holzmann describes commonalities between software bugs and real-

life bugs, pointing out that both find a way to adapt to their environment [HOL02].  For 

example, software bugs can invade the test environment, adjust to the level of experience 

of the programmer, and quietly replace any one that is detected immediately to spawn 

one or more others. 
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The general process of debugging is stipulated by Telles to consist of four steps 

[TH01].  The first is problem identification, which entails determining exactly what needs 

to be fixed and whether or not the problem is really a bug, an enhancement (or a ‘nice to 

have’ fix), a document modification or simply a misunderstanding between the developer 

and user.  Once the problem has been established and it is determined that the problem is 

indeed a bug, the next step is information gathering which involves determining how the 

problem is occurring, what the symptoms of the problem is, and what users expect to 

occur when they follow prescribed steps.  After enough information has been gathered to 

make an educated guess as to what the root cause of the problem might be, hypothesis 

formation can be conducted.  The root cause may be directly or indirectly related to the 

symptoms.  The hypothesis should explain the symptoms and observations made in the 

application.   The final step is hypothesis testing which involves matching up the 

hypothesis against available observations to see if it fits all evidence.  If the hypothesis is 

indeed correct, a fix for the problem may be implemented. 

The link between PV and debugging is fairly obvious.  Since PV is used to aid in 

program understanding, and generally bugs are caused by a lack of understanding, it 

makes sense that the former should aid in addressing the latter. Any tool that can increase 

understanding goes a long way towards reducing the number of bugs in a system. 

There are two factors affecting understanding in the debugging process. Firstly, one 

must understand how the system should operate based on customer requirements. 

Secondly, the implementation of the system must also be understood in order to 

recognize the differences between expected and actual behavior. 
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There is not a straightforward process to determine the location of a bug and correct 

it. Techniques are discussed that may or may not work depending on the situation – each 

has its own strengths and weaknesses.  The following subsections highlight these 

methods. 

2.5.2.1 Scientific Method 
 

Once a failure or undesirable event is observed in debugging, using the scientific 

method involves forming a hypothesis about the cause of the failure.  This hypothesis 

needs to be consistent with the observations and necessary conditions.  This hypothesis 

can then be used to make predictions.  Further modifications to the hypothesis are then 

conducted through testing via experiments or further observations.  This whole process 

continues until the actual cause is found. This method works effectively when the 

problem is easily reproducible, for example, a particular input value results in an 

undesirable event [TH01] 

2.5.2.2 Intuition 
 

Intuition is the most commonly used debugging method (especially by debuggers 

that are very familiar with the code) [TH01].  In order to use this technique effectively, 

the analyst requires a thorough understanding of the system and be must able to narrow 

down the portion of code that is likely to be causing the bug. 

2.5.2.3 Leap Of Faith 
 

In effect, a leap of faith is simply an educated guess. The developer examines 

some of the symptoms and jumps to conclusion without truly examining the behavior of 
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the system. A leap of faith is more likely to lead one in the wrong direction than using 

other debugging methods.  

2.5.2.4 Diagnostics 
 

Diagnostic debugging, sometimes called advance strike debugging, attempts to 

predict in advance the problems that occur in the application, and to log these problems 

so that reoccurrences are easily fixed in the future.  It serves a useful purpose as it is 

based on statistics and events that were gathered at the time the bug eventuated.  

However, as effective as they may seem, pure diagnostic debugging is not ideal because 

it is highly improbable that every error condition can be identified. 

2.5.3 Debugging Tools 

Since this research proposes the implementation of a debugging application, this 

section briefly highlights some issues in debugging tools that have been implemented. 

There are many existing tools that can be used to aid in debugging.  These tools 

provide users with a great amount of the debugging information they require. Tools that 

transform the data to provide more meaning rather than just providing raw data are highly 

preferred, hence the attempt of this research to incorporate visualization.  Tools such as 

testing environments are effective tools for debugging and aid in limiting the scope of the 

tests to a likely region. Various debugging tools are able to narrow down the region of 

code under test using techniques such as logging and tracing.  However, although the 

process of logging or tracing bugs in the system provides an effective way to narrow the 

problem area, they both suffer in terms of the amount of information they output.  Telles 

recommends that although these techniques provide a rough estimate of where the 

problem might be, it is important to whittle down the large amount of output at any given 
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time [TH01]. Without disabling the output, the volume of data provided may actually 

confuse the issue. 

Once the likely cause of bug has been identified and ‘problem areas’ have been 

highlighted, the problem can be examined in more detail with the use of mid-level 

debugging tools.  These tools assume that the user has examined the symptoms of the 

problem, found the likely areas causing the symptoms, and provided an acceptable 

hypothesis for the cause of the bug.  Examples of mid-level debugging tools include 

memory leak detection tools and cross-indexing and usage tools.  The latter is used to see 

where various symbols such as global variables, methods or functions are used within the 

application [TH01].  Typical IDE debuggers such as Borland’s TogetherControlCenter 

and JBuilder have these capabilities built in. 

The most direct and obvious debugging tool available is the Debugger.  A debugger 

is a programming tool used to execute a program, test its states, update its environments, 

and set breakpoints [CPHEB97].  Debuggers allow programmers to stop the system in its 

execution at any point and examine the values of variables and in some cases step 

backwards over code to see what executed prior.  Telles states that although Debuggers 

are an essential tool, they nevertheless pose problems such as giving false sense of 

security to the developer and modifying the environment in which the application is run, 

and in turn modifying the normal behavior of that application [TH01].  Thus it is 

recommended that debuggers be restricted to single-user products where the environment 

the program is running under is not the cause of the problem. 
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2.6 Data Extraction  

This section discusses two Java debugging tools that are considered in this 

research.  These tools are used to extract static and dynamic program data for debugging 

purposes. 

2.6.1 The Java Platform Debug Architecture 

The JPDA is a recent addition to the Java Software Development Kit (SDK) 

providing the capability for remote debugging of applications in the JVM as described in 

[SUN].  It provides portability since debugging occurs at the JVM and not at the 

application itself.  Debugging with the JPDA can be performed by almost any two 

systems, a debugger and a debugee, with the JVM installed, regardless of the operating 

systems or configuration. The goals of JPDA are to: 

• Provide standard interfaces to simplify the creation and use of Java debugging 

tools, regardless of platform 

• Describe the complete architecture for these interfaces allowing remote 

debugging 

• Have a modular design 

The JPDA is comprised of two interfaces and a protocol. Figure 6 shows the 

integration of these components and these components are discussed in the following 

paragraphs:  

• Java Debug Interface (JDI),  

• Java Virtual Machine Debugger Interface (JVMDI), and 

• Java Debug Wire Protocol (JDWP). 
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Figure 6 - JPDA system overview. 

JDI provides an interface to a remote view of the debugging process occurring in a 

JVM that may be located in another system. JDI is the most commonly used layer for 

access as it is the highest level and easiest to use. 

JVMDI defines the interface for the JVM to allow debugging by debugger programs 

running in other JVMs. This is the source of all debugger specific information. It includes 

requests for information from the JVM, actions such as setting and removing breakpoints, 

and notification when the program counter reaches a breakpoint.  

JDWP is the protocol that defines how two-way transfer of information should occur 

between the debugee process and the debugger front-end. It does not provide low-level 

detail of the actual communication mechanisms; rather it defines the format of the data 

transfer between the debugger and debugee. 

The JPDA provides the capability to extract data in a platform-independent way 

from distributed systems for debugging. Use of the JPDA Application Programming 

Interface (API) means implementation of debugger connections and data extraction are 

     Components                         Debugger Interfaces 
 
                /    |--------------| 
               /     |     VM       | 
 debuggee ----(      |--------------|  <------- JVMDI - Java VM Debug Interface 
               \     |   back-end   | 
                \    |--------------| 
                /           | 
 comm channel -(            |  <--------------- JDWP - Java Debug Wire Protocol 
                \           | 
                     |--------------| 
                     | front-end    | 
                     |--------------|  <------- JDI - Java Debug Interface 
                     |      UI      | 
                     |--------------| 
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relatively simple. The JPDA also reduces the effects of some of the problems caused by 

other data extraction techniques as described. 

2.6.2 The Java Virtual Machine Profiler Interface (JVMPI) 

Jacobs and Musial incorporated the JPDA into ArgoUML [JM03].  However, the 

results obtained were less than suitable for debugging purposes due to the slow nature of 

the application.  This is typical of many applications that aim to present dynamic 

visualization of software, as they require the programmer to run the program in an 

environment that produces the appropriate trace data, thereby slowing program execution 

significantly.  In the case of ArgoUML, the cause of the lag is yet to be determined.  A 

successful visualization platform for Java programs that alleviated this problem to some 

extent was developed by Reiss [REI03].  His application made use of the JVMPI and byte 

code patching.  The JVMPI is a two-way function call interface between the Java virtual 

machine and an in-process profiler agent. On one hand, the virtual machine notifies the 

profiler agent of various events, corresponding to, for example, heap allocation, thread 

start, etc. On the other hand, the profiler agent issues controls and requests for more 

information through the JVMPI.  For example, the profiler agent can turn on or off a 

specific event notification, based on the needs of the profiler front-end [JVM03].  In 

short, the JVMPI is able to invoke user routines whenever profilable events such as 

method entry or exit, monitor waits, or garbage collection occurs. 

2.7 Testing the Effectiveness of the Application 

This research included experiments to confirm whether or not the final application 

succeeds in providing a UML based visualization that aids in debugging.  Several 

approaches are available in achieving this validation.  Only a very small number of 
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empirical studies have been conducted in the past to determine whether certain 

visualization aids help in the task of debugging [STA98].   For this research, the most 

appropriate method to validate the effectiveness of the final application is to use the same 

methods used in Human-Computer-Interaction (HCI) Evaluation.  For HCI, there are four 

main approaches in testing [RAU96]: 

1. The interaction-oriented view – this approach measures usability 

quality in terms of how the user interacts with the product.  This is 

the most common method. 

2. The user-oriented view – this approach measures usability quality in 

terms of the mental effort and attitude of the user (via questionnaires, 

surveys, interviews, etc.). 

3. The product-oriented view – this approach measures usability quality 

in terms of the ergonomic attributes of the product itself. 

4. The formal view – usability is formalized and simulated in terms of 

mental models. 

The first three approaches listed above are the most relevant to this research.  In 

visualization applications, it is necessary that user interaction is evaluated to determine 

the effectiveness of that particular visualization.  Questionnaires, interviews and surveys 

are also relevant and will provide supplementary results.  Although the goal of the final 

application is to visually debug software, the third point above is still an important 

criteria as the effectiveness of a particular visualization representation is negated if poor 

ergonomics are applied to the application.  Another measure that the tests need to capture 
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is the debugging metrics such as the speed at which bugs are detected by the user and the 

application’s accuracy in suggesting problem areas in the program. 

A study conducted by Baecker et al. to evaluate a particular SV tool for debugging 

used an observational ethnographic study to observe how programmers could make use 

of the subject visualization tool [BDM97].  In usability engineering, the traditional magic 

number for the number of participants needed in a test is 5 (plus or minus 2), however 

this theory has been challenged by many recently [BAR03].  This study only used three 

subjects and hence the results obtained, although interesting and supported the 

effectiveness of the application, was nevertheless only suggestive rather than definitive.  

Such an experiment needs to be supplemented by other methods to ensure that the final 

results are more convincing.  In this research, this usability heuristic of 5 plus or minus 2 

participants are followed.  It is considered acceptable since a significant amount of 

system tests are also conducted in addition to this test. 

2.8 Summary 

SV is an interesting area of research for developing debugging tools for object-

oriented systems.  However, little research has been conducted into the effectiveness of 

using visual representations to aid in debugging.  This is mainly due to the way software 

developers have performed debugging in the past, preferring the traditional way of 

stepping through program execution until the bug eventuates, and formulating and testing 

a hypothesis to rectify the cause of the problem.   Furthermore, until recently, dynamic 

PV has been computationally expensive, and the software industry is only just beginning 

to use new technologies that allow implementation of dynamic PV in an affordable way.   
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This chapter discusses the relevant and important background information on the 

visualization and debugging of object-oriented systems.  Software visualization and more 

specifically, Program visualization were defined in terms of taxonomies used to evaluate 

applications, and the techniques associated with this domain.  These techniques are 

crucial in the efficient use of the limited space available in PV.  Graphical principles, 

such as graph layout algorithms and use of color were also discussed.  Aesthetics that 

these principles add to the application determine to a large degree, the effectiveness of 

the displayed information.  A discussion on debugging was also provided in this chapter 

to highlight the nature of software bugs, the different ways in which to debug them and 

the debugging tools that are relevant to this research.  Finally, testing for the effectiveness 

of visualizing software for debugging was covered to illustrate the various considerations 

to be taken into account in the testing phase of this research.  
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3 Methodology 
 
3.1 Introduction 

The literature review summarized the advantages of using visualization techniques 

to aid in the presentation of large amounts of information.  Visual techniques can allow 

quicker and easier cognitive access to more relevant data in large information spaces like 

software. The objective is to provide a visual presentation that facilitates system 

evaluation using high-level design representations rather than using the low-level 

traditional way of stepping through lines of code.  The derived hypothesis from this 

objective is that a visually enhanced debugging system is more effective than a standard 

debugger for object-oriented systems.  To determine the success of this hypothesis, a 

prototype system is developed through modification and enhancement of an existing 

platform.  Tests are then conducted to prove the hypothesis. Section 3.2 provide, firstly, 

an initial discussion of the considerations in the methodology of the research then 

presents the visual and system design objectives.  Section 3.3 then explains the system 

architecture of the developed prototype.  Section 3.4 and 3.5 discusses the experimental 

techniques and metrics considered in testing the effectiveness of the system. 

3.2 Objectives  

The use of UML is a common way to communicate software design and analysis 

models, but once these models are implemented, the documentation containing all the 

UML representation is seldom used by software developers.  In recent times, researchers 

have begun exploring UML to analyze the execution of software. For example, Mehner 

extends UML to incorporate execution semantics of concurrent programs [MW00]. The 
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divide between design and implementation is further impacted by the lack of automated 

support for testing and debugging with UML. Debugging any system requires structural 

knowledge of the software and detailed information about components (down to the 

source code level).  Debugging of object-oriented systems is more challenging as it 

introduces concepts such as inheritance and polymorphism, making program 

understanding even more difficult.  Traditional debugging involves the user creating a 

mental image of the structure and execution path based on source code.  According to 

Miller, the 7 ± 2 rule makes it very difficult for humans to construct large mental models 

as the human short-term memory span is generally limited by this constraint [MIL56]. To 

alleviate this problem, this research aims to enhance an existing visual execution model 

for object-oriented systems.  This model is implemented in a Java based application and 

uses UML to visually represent the execution of the object-oriented system for the 

purposes of debugging.  Following is a detailed discussion on the visual and design 

objectives of this research. 

3.2.1 Visual Objectives 

The main intention of the visualization generated for this research is to enhance the 

debugging process. For effective debugging, it is essential for users to have access to 

various levels of abstraction. The system should present both high-level views and 

detailed information to allow for more precise debugging.  

Regardless of the visual language used in any SV tool, large software systems still 

result in models that are extremely large and complicated.  In the case of UML, a typical 

class diagram for a moderately sized system would cover many pages and be too large for 

efficient navigation of the whole system.  Common solutions to this problem include 
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multi-page printouts and incorporation of an overview+detail capability.  Multi-page 

printouts or multiple windows as used in IDEs such as JBuilder and 

TogetherControlCenter can show overall system structure and individual component 

details.  However, this technique has several shortcomings such as increased visual 

scanning leading to increased cognitive load, difficult production and management and 

lack of support for interaction and dynamic editing.  Furthermore, with the multiple 

windows method, the ‘big picture’ can be lost.  Wong et al. states that when analyzing 

static information of large software systems, it is preferable to obtain an understanding of 

the overall, high-level structure of the software before proceeding to lower level details 

[WTMS95].  On the other hand, use of the overview+detail technique can provide access 

to overall system structure and individual component details; however, with this 

technique, the information is not provided in one single view.  Therefore, it also suffers 

from drawbacks such as increased cognitive load and thus reduces the overall 

effectiveness of the visualization. 

In their presentation of principles for a Modeling Language Design, Paige et al. 

identify nine factors to consider when designing and evaluating modeling languages —

simplicity, uniqueness, consistency, seamlessness, reversibility, scalability, 

supportability, reliability, and space economy [POB00]. This research only considers 

space economy.  The extent to which UML satisfies the remaining criteria will varies 

depending on the user’s experience with modeling languages, as most of them requires 

subjective judgment.  Space economy requires that “models should take up as little space 

on the printed page as possible” since smaller models have less to understand and less 

work is required for modelers and tools to perform in order to maintain the models 
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[POB00].  UML does not effectively address space economy, leaving a lot of unused 

space within and between components.  Graph layout algorithms are required to make the 

display of such graphs more space efficient.  UML’s inefficient use of space results in 

models that cover many pages for large systems.  Navigating through many pages 

significantly increases the time to access relevant components.   The problem is further 

compounded by the resulting inability to simultaneously view high-level system structure 

and individual component details.  One goal of this research is to maintain the symbology 

and semantics of UML while enhancing its space efficiency by the use of visualization 

and graph layout techniques  to accommodate rapid access to both high-level and detailed 

system information. 

The visual objectives of this research are summarized as follows: 

● Present information through multiple levels of abstraction. 

● Present the visualization model in a familiar manner, 

● Preserve context to aid in better program understanding, 

● Present a dynamic visualization display such that it is suitable for real time 
debugging and match the changing runtime nature of programs, and 

● Improve space efficiency to reduce search while presenting the user with detail 
for a region of interest. 

3.2.2 System Design Objectives 

The prototype system is based on a Java CASE tool, ArgoUML, which is described 

in more detail.  This section addresses the functional, performance and user requirements 

for this system to be effective.  First, the system must be user-friendly and functional.  

Software engineering principles, including the use of design patterns, are taken into 

account to make the tool more adaptable to future requirements. As many of the actions 



 

45 

and their associated algorithms are computationally intensive, there is also consideration 

of efficient processing and data storage. Objectives for the modified ArgoUML as part of 

this research are summarized below.  It shall: 

● have the ability to monitor processes for debugging, 

● have the ability to automatically reverse engineer object-oriented systems, 

● have the ability to display multiple systems over socket connections for 
debugging, 

● have no effect on the functional system behavior of monitored programs, 

● have minimal effect on system performance to enable real time debugging, 

● provide standard debugging controls, 

● provide a well designed GUI with consideration of Shneiderman’s principles as 
stated in Chapter 2 [SHN98], 

● have a low CPU load and memory usage for the monitoring system, and 

● have a design adhering to software engineering principles wherever possible to 
ensure it adapts to future requirements. 

3.3 System Architecture  

This section analyzes the system architecture of the developed prototype. To 

simplify the development process, modifications are made to existing code where 

possible. This re-used code is based on the ArgoUML project [MUS03]. Figure 7 shows a 

high-level architectural view of the overall system.  

This research adds a series of visual modifications, primarily an improved 

focus+context capability and animation techniques, to the ArgoUML framework. Chapter 

4 provides a more detailed description of these modifications.  The visual modification 

process retrieves input data from a NovoSoft UML Model, an open-source library for 

storing UML data.  The type of UML diagram that was chosen to be the visualization 
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presentation for ArgoUML was the class diagram.  Although the Novosoft UML library 

stores object diagram data, little documentation exists that would help in implementing 

the use of object diagrams within ArgoUML.  Classes already existed in the original 

version of ArgoUML that makes use of the Novosoft UML library to draw class 

diagrams.  These classes are discussed further in this chapter.  The drawing of object 

diagrams for ArgoUML is further complicated by data parsing issues between the JVM 

and the debugger interface.  Drawing object diagrams obviously would require a much 

larger volume of data since there are many more objects than classes.  The complexity is 

further increased due to the way in which object information is accessed, in that the 

execution of the program needs to be suspended before accessing the appropriate stack 

frame and getting all the object information required at that particular time.  Therefore, it 

is a very challenging task to come up with a reverse engineering procedure (or a 

specification method) that would automatically create an object diagram.  Several 

attempts to efficiently extract the JPDA information into object diagram form failed.  

Accessing object information is still a requirement of this research even though its 

visualization as an object diagram is not provided. 

Figure 7 also shows the integration of the debugee JVMs and the connections from 

them into the rest of the system. The JPDA forms the basis for the debugee connection 

system. Two types of connections to the JVM are provided: shared memory and sockets.  

The JVMPI was also discussed in Chapter 2.  Although profiling information can be 

useful, especially in providing different aspects of object information, the JPDA was 

chosen since it provides all the debugging capability required of a standard debugger.  

The JVMPI is useful in providing a log of profilable events but is not appropriate for the 
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purposes of debugging systems as it has no actual debugging capability.  That is, typical 

debugging functionality like breakpoint specification and stepping are not available.  The 

option of adding the JVMPI to the ArgoUML framework was also waived as it would 

over-burden the system performance, since two separate threads would need to be created 

to communicate with each of the different interfaces. 

As well as functionality, this research added a numerous amount of bug fixes to the 

system.  These bugs varied from debugger deficiencies to display deficiencies.   

The overall system architecture is primarily event-based.  Modifications to the UML 

models are detected by observer threads for each JVM. These observers then trigger 

visual modifications and perform updates to the display. 

Figure 8 shows a high-level data flow model for the entire system. The observer 

searches for new classes and class information in the debugee JVM. The UML model is 

constructed and updated through a reverse-engineering process as information becomes 

available from the connected JVMs. The UML model is stored in a NovoSoft UML 

library. The ExecutionManager classes control the connections and pass the data to 

observer threads. These threads add to the UML model and call visual modification 

processes when required. The display of the model updates when the threads call the 

visual modification processes. The user is able to see the resultant view of the software 

along with source code and debugee process input and output. The user may also update 

the display by retrieving further information from the NovoSoft model. 
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Figure 7 - High-level system architecture. 

 

 
 

Figure 8 - system data flow model  
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Figure 9 is a pseudo-code representation of the processing involved for each debugee 

process.  

 

Figure 9 - Pseudo code for data flow 

3.3.1 ArgoUML 

ArgoUML is derived from the Graph Editing Framework (GEF) which is a Java 

Class library that provides basic capabilities to display a variety of simple shapes and 

connect them via links [GEF].  GEF itself is not a drawing program, rather, it is a library 

supporting the construction of custom drawing programs for particular domains. 

ArgoUML was developed by a separate research project [ARG02] and it provides 

additional functionality to form a CASE tool. The most important parts of ArgoUML for 

this research are the components responsible for drawing class diagrams. This section 

explores these components further.   

Figure 10 shows the inheritance hierarchy in the figure elements contained in both 

GEF and ArgoUML. The basic class used to represent a graphical component is Fig.  

Figs (short for Figures) are basic drawing elements such as lines and rectangles.  Other 

classes extend Fig to provide the functionality required for each UML component.  

Connect to JVM 
While JVM is running 
  Do 

Perform reverse engineering (extract data out of JPDA and 
convert to UML model info) 

Listen for changes to model 
If model changes  
 Update model 
 Update diagram on display panel 
 For each segment 
  Set focal points 

Apply Visualization changes  
Apply Graph layout  
Reposition nodes with smooth animation 
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Developers of GEF used a unique coding style so in most cases, the functionality can be 

determined from the name of the class.  For example, FigEdgePoly is a class that 

extends FigEdge which represents a start and end point for a line.  The FigEdgePoly 

class is used to draw the line between these points as a series of connected lines in order 

to avoid line crossings. 

 

Figure 10 - Display figure hierarchy for ArgoUML. 

The inheritance hierarchy shown in Figure 11 describes the relationships between 

classes used to represent UML components. These classes are all contained in the 

NovoSoft UML library used by ArgoUML.   

3.3.2 Debugger Interface 

The  debugger component in the system is based on JPDA demo code provided by 

the Sun JDK version 1.3 and higher [JPD02]. This component establishes a connection to 

the debugee JVM which is stored in an execution manager. The JPDA defines an API for 

accessing data from the JVM. The execution manager maintains methods to extract data 

from the JVM by using the JPDA API. The user should have a simple means of 

extracting data from the debugee program but the execution manager is still too low-level 



 

51 

for this function. To improve data access, the system includes a 

CommandInterpreter class. The user or a user program can retrieve data from the 

JVM with simple commands, for example “classes” which returns a list of the classes 

currently loaded in the JVM. The CommandInterpreter operates as an adapter 

pattern.  Several commands were included in the debugger as part of this research to 

allow users access to other information available from the JPDA that are not visually 

presented by ArgoUML. 

 

 
Figure 11 - NovoSoft UML hierarchy. 

3.4 Experimental and Testing Techniques  

To test the hypothesis that a visual debugger with the capabilities described is more 

effective than a standard debugger for object-oriented systems requires that a prototype 

system be developed to enable this comparison.   

Most objective methods require months of test design, special facilities, and user 

trials on many subjects to provide quantitative results [USA02].  Examples of these 
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methods include the performance measurement technique and retrospective testing. 

Alternatively, users or expert analysts may compare the system with a previous system in 

a more subjective manner and then support the findings with a simple usability test.  In 

this research, the debugger prototype is compared against debuggers currently available 

in an integrated development environment (IDE) such as Borland’s JBuilder or 

TogetherControlCenter. A mixture of quantitative estimates (wherever possible) and 

empirical results is used to support the hypothesis of this research. The research evaluates 

the system against the PV criteria established in Chapter 2.  To further support testing and 

to be able to more appropriately determine the effectiveness of the system, test subjects at 

AFIT will be involved in testing the system.  The coaching method of usability testing is 

deemed the most appropriate for this purpose [USA02].  This technique has test 

participants ask any system-related questions of an expert coach (in this case, the tester), 

who will then answer to the best of his/her capability.  At the same time, the tester can 

determine not only inherent problems in the system due to the questions asked, but also 

the level at which the debugging process is enhanced.  This is achieved by coupling the 

coaching method with interview questions.  Neilsen lists guidance for developing an 

effective interview [NEI93].  In essence there are two ways to interview for the purpose 

of usability testing – unstructured and structured interviewing.  For this research, a set of 

specific, predetermined agenda with specific questions to guide and direct the interview 

exists and therefore the structured approach is more appropriate. 

Since the design and implementation of the prototype is conducted in a modular 

manner, testing of the system takes place in the same way. Initial analysis takes place on 

the effectiveness of the visualization techniques. The modified UML displays are 
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compared to those in the original ArgoUML as well as other typical IDEs that provide 

UML representation of software.  The overall goal of this part of the research is to 

maintain the symbology and semantics of UML while improving its space efficiency to 

accommodate speedy access to both high and low-level details.  The research analyzes 

the effectiveness of the techniques with respect to this goal.  

Quantitative results are provided based on the number of classes displayable in a set 

display area. Empirical discussion is also generated to support the hypothesis that these 

visualization techniques more effectively display object-oriented systems than would 

standard debuggers. Overall, the evaluation of the effectiveness of the debugging system 

is empirically based. 

3.5 Metrics 

As with most human-computer interactive activities, it is difficult to quantify the 

effectiveness of this system under test, in this case, the visual debugger. This section 

discusses the quantitative and empirical techniques used to gather as much objective 

evidence where possible and subjective evidence where it is not.   

This research considers four types of metrics.  The main one is the number of 

viewable classes displayed in a unit area.  This metric is easy to measure and gives a very 

accurate and appropriate indication of the application’s space economy.  The empirical 

evidence gathered in support of the hypothesis as discussed in section 3.3 is another set of 

metrics and the final two are memory usage and CPU utilization. The empirical evidence 

includes discussion on the effectiveness of debugging with these techniques including the 

effects on access time, cognition and the size of portion of the model able to be displayed 

on a screen. This empirical analysis is supported by findings from a standard usability 
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test that involves human subjects.  The CPU utilization metric is presented as a 

percentage of that available and memory usage is the amount of memory (in KB) 

consumed by the debugger system.  Profiling tools are used to aid in these activities. 

3.6 Summary 

This chapter presents the methodology behind the system developed for this thesis 

research based on the objectives for the visual display and the design objectives for the 

prototype debugger that is required for testing.  This chapter introduces the experimental 

techniques that are used to validate the system. Chapter 4 discusses the experimental 

design in more detail.  This chapter also introduced the metrics that are used in the 

validation process of this research.  In addition, this chapter explores the overall 

architecture of the prototype system including the chosen visualization platform – 

ArgoUML; and the debug platform – the JPDA. 
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4 Detailed Design and Implementation 
 
4.1 Introduction 

This chapter discusses the design and implementation details related to this research.  

Section 4.2 discusses the visualization elements the visualization techniques implemented 

into ArgoUML.  Section 4.3 discusses the design details related to the debugger platform 

that interfaces with the visualization platform.  Finally section 4.4 discusses the design of 

the experiment used to validate the application in terms of its effectiveness as a visual 

debugger. 

4.2 Visualization Elements 

The visualization elements incorporated into ArgoUML to facilitate debugging form 

the basis of this thesis effort.  This research implements a focus+context methodology to 

a UML diagram-editing tool – ArgoUML – which is described in Chapter 3. 

Altnernatives to focus+context such as overview+detail and use of multiple windows 

through a drill-down capability are available.  However as section 3.2.1 discusses, these 

alternatives had several disadvantages, primarily concerning increased cognitive load to 

the user.  The prototype focus+context system presents an appropriate level of detail for 

each component using a degree of interest function that is based on distance from a focal 

point (either user specified or automatically selected) and frequency of access.  It then 

uses smooth animation to reposition diagram elements to emphasize hierarchical 

relationships and maximize space economy while maintaining user context.  The final 

space-efficient layout is achieved using a hierarchical graph layout algorithm.  These 

visual modifications are described in the following sub-sections. 
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4.2.1 Visual Modifications – Focus + Context 

Selective filtering and modification to graphical elements is employed to create 

multiple level-of-detail (LOD) representations for UML classes determined by distance 

between nodes (the number of links that separate them) and frequency of access.  There 

are five levels of detail used in the application: 

● LOD 4 contains the highest amount of detail.  For a UML class representation, 

this includes a full size graphical representation that includes textual labels for all 

attributes and methods along with type information. 

 
 
 
 
 

● LOD 3 hides attribute and return types while minimizing margin size. 

 
 
 
 

● LOD 2 only displays the name of the class at a reduced font size. 

 

 
● LOD 1 removes all textual information and only indicates the presence of a 

component. 

 
 

● LOD 0 contains no textual information and indicates the presence of a component 

at a reduced size. 

 
 

Class0 

Attribute: int 

Operation (): void

Class1 

Attribute      

Operation ():

Class2 
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 The technique used in ArgoUML selectively filters the textual labels at lower levels 

of detail according to the perceived relevance of the information.  It displays a class at a 

particular level of detail using a degree of interest (DOI) function based on the frequency 

of access to a particular class and its distance from the current class in focus as given by 

the following equation: 

)_()lg( distdoimaxfreqDOI −+∝  (1) 
 

In Equation 1, freq refers to the number of times the node in question has been 

accessed by the user since it was generated in the current debugger session;  dist refers to 

the graphical distance from the node to the focal point (defaults to one if being 

considered is the focal point); and max_ doi refers to the maximum DOI designed into the 

system (in this case 4). 

The degree of interest is recalculated when the user accesses a node.  The display 

then updates to reflect the appropriate LOD for each node.   

As an example, consider the class diagram in Figure 12.  If the user selects Class A as 

the node of focus, the representations of all remaining classes are modified as shown in 

Figure 13. Here Class A is the node of focus; hence it is displayed with no change at LOD 

4.  The degree of interest for Class B is one lower than that for Class A so Class B is 

displayed at LOD 3.  As each subsequent class in this diagram is one additional link away 

from the node of focus, Class A, each of those classes is displayed at the next lower LOD.  

Beyond Class E, all classes in this path would be displayed at LOD 0.  Similarly, the 

reverse effect would occur if Class E were to be selected as the node of focus initially as 

shown in Figure 14. 
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Figure 12 - Initial Class diagram. 

 

 

Figure 13 - Class diagram following application of Focus+Context techniques. 

  

Figure 14 – Reversed version of Figure 13 

This algorithm is further explained in the following text.  In Figure 12, once all 

diagrams have been drawn and, each node has been accessed once. When Class A was 

made the node of focus, it is automatically set at the highest LOD, that is, LOD 4.  Since 

each of the other nodes have only been accessed once, equation 1 gives the following 

LOD values for each class: 

• Class B: lg(1) + (4-1) = 0 + 3 = 3 

• Class C: lg(1) + (4-2) = 0 + 2 = 2 

• Class D: lg(1) + (4-3) = 0 + 1 = 1 

• Class E: lg(1) + (4-4) = 0 + 0 = 0 

It is clear from above that any distance further than 4 from the node of focus will 

yield an negative LOD.  However, notice that equation one is not an equivalence 

equation; rather it is a proportional equation.  For this system, the lowest LOD that can be 

♦ ri^irtiAttr inl 
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assigned to a node is 0 and the highest LOD is 4, regardless of what the equation may 

give.   

4.2.2 Visual Modifications - Graph Layout 

To maximize the space efficiency of the focus+context techniques for UML, the 

graph layout algorithm used in the prototype application modifies the positions of 

elements in the model.  Chapter 2 briefly presented the findings from the literature survey 

of common graph layout algorithms.  A common method is to present generalization 

hierarchies down the vertical axis and as such is used in this application (hierarchical 

approach).  The layout algorithm also considers the size of the nodes in order to 

maximize space efficiency and preserves context of the system (if any exists) by 

minimizing the relative reassignment of node positions. Chapter 2 also mentioned prior 

work on ArgoUML that employed a selective aggregation function as a display feature 

[JM03].  This was removed as part of this research as it introduced a great amount of 

confusion to the display.  As much as possible, this research intends to follow a familiar 

schematic – UML – and the addition of a selective aggregation function breaches this 

schematic as it replaces nodes with lines, arrows or diamonds.  Furthermore, the selective 

aggregation function that was employed on ArgoUML forcibly hid certain nodes that, 

although far away from a given focal point, may nevertheless be required by the user.  

The layout algorithm applied by this research satisfies all the display goals and preserves 

context.  Results of the layout algorithm are discussed in Chapter 5. 

4.2.2.1 Algorithm Details 
 

The main algorithm requirement is to present the UML Class diagram 

hierarchically, that is, the algorithm should position generalization relationships vertically 
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on the display. Layered layout algorithms, as discussed in Chapter 2, meet this 

requirement. This approach was preferred to the TSM approach since it is simpler and 

provides an easier way to incorporate space efficiency due to less restrictions.  The TSM 

approach would be more useful if graph aesthetics were the priority.  The hierarchical 

approach is simpler to implement and flexible enough to incorporate some level of graph 

aesthetics.  These algorithms allow the hierarchical presentation of diagrams with vertices 

arranged in horizontal layers. The standard method consists of the following steps as 

discussed in Chapter 2: 

1. Layer Assignment 

2. Crossing reduction 

3. Horizontal coordinate assignment 

Layer assignment requires a process to determine which layer each vertex belongs to.  

With the ArgoUML class diagram, a layer difference is considered to exist across each 

generalization relationship, with the top most vertex being the most generalized class.  

The algorithm places a node that is a direct descendant of an inheritance relationship at a 

lower level.  All other nodes remain at their original level determined through  

association relationships. In the simple case where each vertex is the same size, the y-

coordinate of each layer is determined by adding a suitable gap to the last layer. 

Due to the great variation in vertex sizes, this research will not apply the crossing 

reduction process. With variable vertex sizes, the edge crossing minimization process 

would not apply as it relies on uniform row sizes to reduce crossings. 

The last step deals with the positioning of each vertex on a layer. The priority for the 

algorithm for ArgoUML is to preserve context rather than minimize edge crossings, so 
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the algorithm allocates the position of each vertex on each row based on its position prior 

to ordering. The idea behind this is to allow the user to see objects in the same relative 

position as they were prior to the modification. 

Application of the layout algorithm results in the repositioning of nodes and links in 

the class diagram.  If done instantaneously or rapidly, this movement may cause the user 

to lose context.  This problem is avoided by using smooth animation when moving 

graphical elements between their original and adjusted positions.  To further preserve 

context, the technique moves elements in the class diagram in two stages.  The first stage 

positions elements in the appropriate level of the inheritance hierarchy.  The second stage 

positions leaf nodes to optimize space efficiency.  The system employs the graph layout 

algorithm after all degree of interest functions are applied.   

The layout algorithm also involves segments.  A segment is a group of connected 

nodes.  Each segment is treated separately in the layout algorithm and placed next to each 

other across a row.  The following example illustrates the effect of the graph layout 

algorithm used in this research. 

4.2.2.2 Graph Layout Example 

Consider the graph shown in Figure 15.  This graph was drawn using the original 

version of ArgoUML.  The modified version resulting from this research automatically 

applies a hierarchical layout to any graph drawn and therefore such a graph could not be 

displayed in the modified version.  It is provided below to illustrate the graph layout 

algorithm. 
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Figure 15 – Initial layout from original ArgoUML. 

If the same connected set of nodes were to be drawn using the modified application, 

the resulting display would be as shown in Figure 16.  Here, degree of interest display is 

enabled as well as the focus+context feature with the focal point being set at the upper 

left node. 

  

Figure 16 – Class diagram layout with focus+context applied. 

 Prior to the application of the hierarchical layout algorithm, the level of each visible 

node is determined.  Superclasses are separated from their subclasses by 1 level and 

nodes connected via an association or aggregation relationship are placed in the same 

level. 

From here, the first stage of the layout algorithm will examine each row, starting 

from the top and searches for inheritance links within that row.  The horizontal (x) 

Level 0: 

Level 1: 

Level 2: 
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position of any node with an inheritance link is equivalent to the average x position of its 

parents in the row above it.  Figure 16 illustrates this point with the bottom inheritance 

leaf residing in a horizontal position in between the horizontal positions of its parent 

nodes.  On the other hand, when one node has more than one child in an inheritance 

relationship, that node is simply shifted right according to the number of child node it 

has.  Figure 16 also shows this type of relationship with the fourth node in level 0 being 

shifted to the right once since it has one extra child node.  This was done for 

computational efficiency.  Shifting parent nodes to the right was just as space efficient for 

reasonably large systems than finding a central x position above all the children nodes.   

When room exists to fit more than one node in a level, then those nodes are stacked 

on top of each other within the same level so long as no inheritance relationship exists 

between those nodes.  Figure 16 shows where each level commences.  As evident in this 

illustration, although only three hierarchical levels exists, we can distinguish 4 distinct 

rows.  This is because the nodes far from the focal point that are not connected by an 

inheritance relationship are stacked on top of each other within the same level, according 

to the height of the largest node in that level.  Here only two LOD 0 nodes can fit within 

level 0, however more would fit if the upper left node was greater in size.  Figure 17 

shows the same configuration with the upper left node slightly enlarged.  Here we see 

that the outer leaf node from Figure 16 is now placed below its association node. 

Each segment (or group of connected nodes) added to the display is treated 

separately and the process explained above is repeated for each one of them.  They are 

each placed in order, with the first segment on the upper left side of the display then 

continues across the display. Hence for this research, when using ArgoUML to debug 
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more than one program, each program is placed on the display starting from the upper left 

side of the display then is laid out next to each other, separated by a gap.  This is 

illustrated later in Figures 25 and 26, where the display contains four segments (see 

chapter 5). 

 

Figure 17 – Class diagram illustrating hierarchical layout schema 

4.2.3 Implementation 

This section further explains the design choices involved in integrating the SV 

features into the ArgoUML. To determine the most effective design for integrating these 

features, the processes that must occur are considered.  

From a visualization standpoint, the modifications applied to ArgoUML are largely 

to do with presentation of the graph nodes and links.  As such, large parts of the changes 

occur in the objects that represent the graphical elements for classes and the various UML 

link types. The classes representing the display of these objects include FigClass, 

FigEdgeModelElement, FigAssociation, FigGeneralization. No 

changes are necessary to the NovoSoft UML library that stores the model information. 

 The ClassDiagramGraphModel class maintains a list of the figure elements to 

display for an object diagram, making it a suitable location for the modification methods. 
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The ClassDiagramGraphModel class controls most of the fish-eye view 

modifications. It calculates the hierarchical level of each FigClass (the class that 

represents the image of a class), the DOI and LOD for each, and finally calls a method to 

apply the visual modifications. The ClassDiagramGraphModel class also 

determines how each link should be drawn, that is either fully displayed, only the arrow, 

a partial line, or not at all. If a FigClass has hierarchical or aggregate relationships, the 

class also determines whether the branches for these relationships should collapse.  

Mouse and debugger events in FigClass trigger the alteration process. These two 

events largely control the visualization process. Therefore, this module of the overall 

system is event driven. The “change” method within this class paints the object based on 

its LOD value. 

4.3 Debugger Design  

The debugger system consists of several key features to extract and transform the 

data, and provide the standard debugging features required by users. The following 

sections discuss these topics with additional information provided on implementation. 

4.3.1 Data Extraction 

Chapter 2 discusses the need to minimize the effects caused from observing a 

system. Failure to do this may cause the monitor to obtain inaccurate results. The JPDA 

allows system data extraction directly from the observed JVM requiring no modifications 

to the original code. Thus, some reduction in processing speed is expected to occur, 

however synchronization points and all data values remain unchanged from an 

unmonitored system. This research modifies a GUI demo application available in the 

JPDA to interface with ArgoUML.  The system gives the user two options to connect to a 
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JVM: via specified arguments or attach to an existing JVM and communicate via socket 

as shown in Figure 18.   

 

Figure 18 - Connector options. 

4.3.2 Reverse Engineering and the Debugger Subsystem 

Once connected via the JPDA, raw data is available from each monitored JVM. The 

basic premise behind this research, however, states that the user can debug more 

effectively with the data presented in a visual format in the form of a UML class diagram. 

To produce this diagram, the system applies a reverse-engineering process. The following 

discusses some of the issues involved in this process. 

Once ArgoUML connects to the debugee process, the JVM sends a signal notifying 

the debugger that it is running.  A separate observer thread is created within ArgoUML. 

The observer queries the JVM and suspends and resumes the execution of the debugee 

process at set intervals.  This solution also improves system performance. If the debugee 

process executes without interruption, then the JVMs will provide too much data to the 

debugger and the display will not be able to update in time. 

 When the observer thread detects new classes in the JVM, the reverse-engineering 

process examines them for operations and fields, where a field contains the name and 

type of an attribute. The observer constructs a NovoSoft UML model from each of the 

added classes. The observer also adds association, aggregation and inheritance 

Select Connector Type 
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relationships to the model as it detects these relationships. Figure 19 describes the 

algorithm for the reverse engineering process. 

 
Figure 19 – Pseudo code for Reverse Engineering algorithm 

Figure 20 shows a typical screen shot of a program connected to ArgoUML for 

debugging.  As mentioned in chapter 3, the debugger sub-system is largely based upon 

example code provided by Sun with version 1.3 (and later) of the JDK. Operation of this 

code is mainly event driven. The requirements of this component are that it 

communicates with the GUI to request or display information provided by the debugee 

JVM. This usage scenario suggests that an event driven interface might also be effective 

between the GUI and the debugee process.  

for each class detected  
   if class not yet in model 
 Get fields 
 Get Methods 
 for each field 
  Add attribute information to class 
  If attribute type is contained in the model 
   Build an association from the class to the attribute type 
 for each method 
  Add method information to the class 
  If the method parameter type is contained in the model  
   Build an association from the class to the parameter type 
for each class in the model 
   If there is an inheritance relationship to an existing type in the model 
  Add the inheritance link 
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Figure 20 – Debugging screen layout 

 

Figure 21 – Accessing object information in ArgoUML 

The observer thread handles communication between the debugee process and the 

GUI. This thread periodically accesses the JVM to determine if there are any changes to 

the observed system. If a change is detected, an event triggers the reverse engineering 

process and updates the model on the screen.  

A variety of commands may be issued via a command prompt facility. On another 

window pane, results from these commands are displayed.  It is via this command prompt 

that the user can access debugging information that may not be accessible from the 
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ArgoUML GUI.  For example, this research adds a ‘dump’ command that dumps object 

information, not available on the class diagram displayed.  Here the user can access 

attribute values of objects of interest.    An example of this is shown in Figure 20 with the 

enlarged command panel shown in Figure 21.  Here the user can access required values 

for variables or instance counts for classes.  A great amount of consideration was given to 

the possibility of representing this object information graphically rather than in a pretty 

printed format.  Another Java debugger, JSwat by Blue Marsh Softworks, uses jtrees to 

represent this information [JSW04].  Figure 22 shows such a representation from JSwat.  

It was eventually decided that a pretty printed format, although not ideal, would be 

preferable to the possibility of having to slow down the reverse engineering process 

further with the addition of another data structure. 

 

Figure 22 – Jtree representation of object information in JSwat 
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Figure 23 – Breakpoint setting in ArgoUML 

To be effective as a visual debugging system, access to the source code should be 

provided. The ability to enable and disable breakpoints via direct manipulation of the 

source code is also highly desirable. The system allows breakpoints to be set and 

removed by double-clicking the mouse on the appropriate line. The observer queries the 

execution manager to determine if the breakpoint is valid.  This research highlights the 

chosen breakpoint line in red as shown by the example in Figure 23.  The source code for 

a class with a “main” method is automatically requested from the user when the process 

begins.  The user can then navigate to the appropriate file before debugging commences.  

In addition, the current execution point is also highlighted red on the displayed class 

diagram.  As shown by the magnified node on the side of the diagram in Figure 20, the 

user is presented with a visualization of the control flow by the highlighting of the current 

method in execution.  In this particular instance, we can see that the add()method in the 

DrawPanel class is highlighted red.  This capability is highly desirable in debuggers as 

it provides for easier cognition than manual tracking of the program’s execution.  It 
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allows the user to follow execution at a higher level of abstraction rather than follow the 

execution through each line of code. The ability to follow program execution provides the 

user with an understanding of the order of executed components and some insight into 

system behavior.  

This visual debugging system allows the user to control the execution of the debugee 

process as do most other debuggers. That is, controls exist to provide for unrestricted 

execution or resumption from a suspended state (the green play button), stepping through 

the code line-by-line (step), a step up command (the green next arrow), suspension of 

execution (a red circle). The step up command is incorporated by this research to allow 

for faster stepping through code.  It essentially completes execution of the current method 

and resumes debugging one process higher in the stack.  If connections to multiple JVMs 

exist, the user must select a component from the segment of interest prior to selecting the 

control. The listener then determines which component to select and carries out the 

appropriate action in the selected JVM.  The control buttons are shown in Figure 24. 

To allow a flexible and easily maintainable interface between the debugger 

component and ArgoUML, patterns are used. An adapter pattern in the 

CommandInterpreter class allows the observer thread to issue simple commands 

without an underlying knowledge of the operation of the system. The 

ExecutionManager class maintains knowledge of the JVM parameters.  This 

relationship is depicted in Figure 25. 

 

Figure 24 – The ArgoUML Debug Control buttons 
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Figure 25 – Adapter Pattern used in the visual debugger system 

4.4 Experimental Design 

This section outlines the resources and methods to be used for the experiment to 

determine the effectiveness of the developed visual debugger prototype.   

4.4.1 Experimental Objectives 

In this research, the debugger prototype is compared against debuggers currently 

available in IDEs such as Borland’s JBuilder or TogetherControlCenter.  The objective of 

the experiment is to examine the effectiveness of the prototype application in terms of the 

following: 

1. Software Visualization criteria 

2. Debugging criteria 

3. Usability criteria 

Each of the above criteria is measured via a questionnaire and are described in the 

following sections. 

JPDA 
Command 
interpreter 

observer 
Execution mgr 

ArgoUML 
Request() 

Request() 

SpecificRequest() 

ArgoUML vO.10.1 
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4.4.2 Criteria 

The following briefly describes the criteria used for the experiment.  Each section 

also includes the questions included in the corresponding portion of the questionnaire. 

4.4.2.1 Software Visualization 
 

Several SV techniques are used in the prototype application.  Table 1 shows 

questions designed to determine the level that the application satisfied some generic SV 

criteria. 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY (focus+context, 
layout algorithm) 

Inefficient           Very efficient 

2. METAPHORS (graphical symbology 
used) 

Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION (relationships 
between components)  

Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE (what can you see? code? 
diagram?) 

narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

Table 1 – Survey: Software Visualization Criteria 

The above questions do not directly address the level at which UML semantics were 

adhered to.  UML is a standard and is either met or breached.  Since the application 

directly makes use of the Novosoft UML library, it is accepted that the semantics of 

UML are met.  However, the questions do address the ease of understanding the graphical 

metaphors and the interaction between components within the visualization presented.  

The criteria selected are based on the Roman and Cox Program Visualization taxonomy 

discussed in Chapter 2.   
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Space Economy refers to the application’s ability to efficiently display Class 

information.  Participants will respond in terms of its perceived efficiency.  This criterion 

addresses the effectiveness of the layout algorithm and focus+context features.  

Metaphors refer to the graphical symbology used in the application.  This addresses the 

suitability of using UML semantics in a debugging application.  Interconnection refers to 

the relationship between graphical components used to display Class information.  Since 

standard UML is used in ArgoUML, this question addresses whether or not the 

interconnection between nodes are intuitive and clear to the user.  The interface consists 

of graphical objects presented to the viewer and interaction with the presentation using 

buttons, menus, and other controls or through direct manipulation of the graphical 

objects.  This addresses whether or not the interface controls used in ArgoUML allow for 

easy manipulation of data. The level of abstraction criterion refers to the application’s 

ability to display multiple levels of information, from source code right up to high-level 

structural representations.  Related to this is the scope, which refers to the amount of 

different information made visually available by the application to aid the user in 

debugging.  Presentation refers to the semantics of the graphical objects that are 

presented to the viewer. The presentation is that aspect of the visualization that facilitates 

interpretation and understanding of the graphics. This covers issues concerning human 

cognition and effective visual communication such as the use of color, size, spatial 

relationships and other visual concepts to depict additional meanings. 

4.4.2.2 Debugging 

A debugger is a programming tool used to execute a program, test (and view) its 

states, update its environments, and set breakpoints. The questions in Table 2 do not 
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address the ease of finding a particular bug with using the prototype application.  Instead, 

they present general desired functionality for debuggers and the level at which the 

prototype application satisfied those.  Section 4.5.3 further discusses other activities that 

determine the debugging effectiveness of the tool. 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 
1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

Table 2 – Survey: Debugging Criteria 

4.4.2.3 Usability 

Usability considerations are vital in determining the ‘effectiveness’ of a debugger, or 

any other software application for that matter.  Since one of the focuses of this research is 

to determine the effectiveness of providing a dynamic UML class diagram visualization 

of an executing object-oriented program for the purposes of debugging, it is important to 

consider the major usability factors that can greatly influence this activity.  Even though 

the application may be capable of certain functionality, it will not be ‘effective’ if sound 

usability concepts are not incorporated into the design of the program.  The following 

sets of questions (Tables 3, 4 and 5) are separated into three categories – screen, learning, 

and system capabilities.  This questionnaire is a slightly edited form of a Questionnaire 

for User Interface Satisfaction designed by Chin, Diehl and Norman [CDN88]. 
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SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram 
and debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 

Table 3 – Survey: Usability Criteria-Screen 

LEARNING  1 2 3 4 5 6 7 8 9 10 
 

 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and 
error 

difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight 
forward  

never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material confusing           clear 

Table 4 – Survey: Usability Criteria-Learning 

SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 
 

 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

Table 5 – Survey: Usability Criteria-System Capabilities 

4.4.3 Approach 

Apart from using the results of the questionnaire, this research gathers quantitative 

results based on the number of classes displayable in a set display area. Empirical 

discussion is also generated to support the hypothesis that these visualization techniques 

more effectively display object-oriented systems than standard debuggers.  In this case, 

evaluation of the effectiveness of the overall debugging system is empirically based.  A 

java profiler will also be used to present performance bottlenecks within the debugger 

application.   
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A test program with a simple bug is used in the experiment.  Participants are coached 

in using ArgoUML prior to the experiment and are informed of the correct behavior of 

the test program.  During the experiment, participants were asked to perform a number of 

simple tasks with the test program as input.  For example, listing down certain variable 

values, setting breakpoints, etc.  Success or failure to detect the bug within the allocated 

time (25 min) are recorded on the bottom of the questionnaire.  Five participants were 

chosen to take part in the survey in accordance with the heuristic for usability testing of 

computer systems [BAR03].  Selection of participants were based on individual 

experience with standard debuggers as well as general software engineering knowledge.  

Since only a small sample size was used, this research does not apply any predictive or 

descriptive statistical analysis to the results.  The average scores for each criteria were 

evaluated and a deduction was made as to what those scores meant, based on user 

comments and general responses. 

As well as marking responses to the questions presented in Section 3, participants 

were asked to comment on and list down the three most positive and negative aspects of 

the application.  These will be used to incorporate enhancements, or remove certain 

functionality in the prototype application.  A general overall comment on how the 

prototype application compares with standard IDE debuggers will also be requested. 

4.5 Summary 

The hypothesis for this research states that visualizations can be of assistance to 

users in distributed and large system debugging. Based on this hypothesis, the 

visualizations are of great importance. This chapter defined the algorithms and processes 

developed to produce these visualizations.  It describes the modifications to ArgoUML to 
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include these visual transformations and additional debugging capabilities. The research 

interfaces ArgoUML to the debugee JVM via JPDA and other debug code. The class 

diagram of the model for the display is reverse-engineered from data accessed in the 

debugee JVM.   It then presents a guideline for the experiment to test the research 

hypothesis.  The experiment relies on three sets of criteria – Software Visualization, 

Debugging and Usability. 
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5 Results and Analysis 
 
5.1 Introduction 

This chapter presents the results of the conducted experiments discussed in 

Chapters 3 and 4 and provides an analysis of the effectiveness of the modified ArgoUML 

visual debugger based on these results. 

5.1.1 Presentation of Results 

Testing debuggers relies heavily on the analysis of other programs and verifying that 

the debugger returns expected values.  This however only forms part of the testing 

portion of this research since much of it is focused on the visualization aspects of the 

application.  The approach taken by this research in meeting the requirements stated in 

Chapter 3 is divided into 4 phases.  Firstly, it verifies that previous distributed system 

capability is met at an equal or higher standard.  In essence, this phase is a regression test 

phase – an activity that is typically required in any software development process that 

involves updating an existing platform.  The second phase of the test analyzes the 

graphical display capability of the system.  This primarily focuses on the analysis of the 

layout algorithm discussed in Chapter 4.  The third phase of the test is debugging 

applications and analyzing the visual display capability and how it aids in the debugging 

process.  This includes debugging both small and large object-oriented systems and 

provides quantitative results in terms of its space efficiency and other visualization and 

debugging criteria as stated in Chapter 3.  The fourth portion of the test is the Usability 

survey outlined in Chapter 4.  This involves subjects coached at using the prototype 

application and providing responses to a Usability survey.  Since Visualization can be a 

subjective technique, and may work differently for different people, the survey is also an 
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important part of the research as it establishes not only how Visualization criteria or 

debugging criteria are met, but also its perceived effectiveness. 

5.2 Testing Preparation and Procedure 

All four phases of the experiment use the same hardware and operating system 

configuration.  The PC in use for testing contains a Pentium 4, 1.7GHz processor and 512 

MB RAM running under the Windows 2000 environment.  The tests use Java Runtime 

Environment v1.3.7 on each PC.  The initial part of the test (phase 1) uses additional PCs 

with the same configuration as it tests the distributed system capability of the application.  

The following sub sections highlight details of each test. 

5.3 Phase I – Regression Test 

The only test performed in this phase was that of the distributed system connectivity 

capability of ArgoUML.  This was the only function that was not changed as part of this 

research.  However from a debugging standpoint, it remains a critical portion of the 

application as it allows multiple programs to be debugged.  Table 6 summarizes the 

procedure of this regression test.  

Figure 26 shows a screen capture of ArgoUML with two simple OOP agents ported 

and ready for debugging activity.   

ArgoUML was able to test each agent using the debugging buttons or through the 

command line facility.  Each of the agents was able to be manipulated separately, and 

was distinguished from each other with the use of a segment number.  Figure 27 shows 

the same two agents as in Figure 26 but with a node in the second agent being set as the 

focal point of the display. 
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Regression Test 
Objective 

Ensure that a distributed system can be connected to 
ArgoUML. 

Technique: 1. Run ArgoUML 

2. Run batch files created for two agents*. 

3. For each agent, select ‘Generate from JVM’, then set port 
and machine name information. 

4. Ensure each system is displayed on the screen. 

5. Ensure display layout is correct (e.g. check horizontal 
separation of agents) 

6. Test the following debug controls with a node from each 
agent selected: 

a) Step up  

b) Step 

c) Pause 

d) Resume 
Special 
Considerations: 

Evaluation of the effectiveness of displays will be empirically 
based. 
*selected agent is a simple 200 line Object-oriented Program 
called AFITShape. 
Table 6 – Regression Test Procedure 

 

Figure 26 – Diagram Panel after two OO agents are connected to ArgoUML 

^ Diagram 

J  ► 'I K M B m c— T t B -i S a Cbss DB^an: cbss ib^an I 

p^ g    q— q-oa^e^J-^o iPAWArrrsiHft 

iccil 

n      g.QCK^^Q^^ DPAWArrrsiHft 



 

82 

 

Figure 27 – ArgoUML with two agents loaded and focus point on the second agent 

5.4 Phase II – General System Display Analysis 

Chapter 4 explained how the graph layout algorithm in ArgoUML operates. This 

section now analyzes the graph layout algorithm.  It presents a simple example that 

illustrates the effects of the algorithm and primarily focuses on the space efficiency 

aspects that the algorithm provides. 

With the screen resolution set at 1400×1050 pixels, a display area is created and a 

set of nodes similar to those in Figure 12 are connected in a 3 × 3 configuration as shown 

in Figure 28.   After applying the graph layout algorithm coupled with the degree of 

interest display capability (with the focus point set at the top left node), the number of 

nodes displayable in the same set area is 32 as shown in Figure 29.  This is an 

improvement of 355%.  It is obvious from Figure 28 that this improvement would be 

even greater if more nodes were initially considered (e.g. if a 5x5 configuration was used 

rather than a 3x3).   
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Figure 28 – 9 nodes linked up with no visualization techniques applied 

 

Figure 29 – Nodes with degree of interest display and hierarchical layout applied 

The above example illustrates the main advantage of the focus+context technique.  

With the use of this technique, only one component can be in focus at any given time.  If 

the original UML representation of the system is to be used, then details are available for 

as many full classes that can fit in a display, however the user can still only focus on one 

area of the screen at a time.  With focus+context enabled, the user needs to select focal 

points of interest to access detailed information on that node.  If the system being 

analyzed is small, then it is likely that switching focus would be faster with the original 
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UML representation. However for systems where the UML diagram would span several 

pages, the focus+context features are likely to improve access time since a much greater 

amount of information is accessible in the same set display area.   

5.5 Phase III – Visual Debugging Analysis 

This phase involves general display testing with small, medium and large systems.  

It covers the visualization capabilities of ArgoUML and how its interface to the JPDA 

effectively aids in the debugging process.   The following sub-sections covers each of the 

three system tests.  

5.5.1 Small System Testing 

The program analyzed in this phase of the experiment is AFITShape, a simple 

graphical program that allows users to draw three different shapes on a display panel and 

outputs the area and perimeter of each along with the total area and perimeter of all 

shapes drawn.  AFITShape comprises 9 main classes and approximately 400 lines of 

code.  When being debugged, this program would be represented in a typical IDE 

debugger such as TogetherControlCenter as shown in Figure 30.  

A significant amount of direct manipulation is required in IDE’s to view different 

levels of abstraction, even for a small system like AFITShape.  In Figure 30, the top pane 

shows a small part of the class diagram.  The user would need to rearrange windows as 

well as directly manipulate the class diagram in order to display all required information.  

On the other hand, loading AFITShape into ArgoUML yields the display shown in Figure 

31. 
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Figure 30 – Typical display of a small system in an IDE 

 

Figure 31 – Initial display on ArgoUML after loading AFITShape 
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Here, several items stand out.  Firstly, the class diagram shown on the display panel 

is automatically laid out hierarchically as a result of the graph layout algorithm that is 

applied.  In this instance, no filtering or focus+context techniques are applied to the 

display.  However the application still manages to fit all classes into the editor pane.  

Notice in this case that there are 11 classes displayed.  This is due to two internal classes 

within the DrawPanel class of AFITShape.  Figure 31 also shows the general display 

configuration of ArgoUML.  In the top left hand pane, is the navigation tree that allows 

the user to navigate to a selected class.  Clicking onto a node in the navigation tree 

enables that node to be the node of focus in the display panel.  The top right hand pane is 

the display pane that contains the class diagram.  The user is also given the option to open 

a diagram window that is dedicated only to this pane.  The two panels on the lower left 

hand side are the JPDA input and output panels.  These allow the user to enter in specific 

debugging commands and inspect different text outputs as a result of those commands.  

The panel on the lower right is the source code panel.  As discussed in Chapter 3, the 

visualization objectives of this research includes that of presenting the information 

through multiple levels of abstraction.  This is clearly achieved by the modified 

ArgoUML as discussed and illustrated in Figure 31.  In this example, no focus+context 

was necessary as the system analyzed was small enough to be represented fully without 

any filtering techniques. 

5.5.2 Medium System Testing 

The system chosen to be analyzed for this phase of the testing was JUnit.  JUnit is an 

open source unit testing suite for Java programs [JUN02].  It is ideal for this phase of the 

analysis as it comprises approximately 3000 lines of code and 52 classes.  The diagram 
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generated by TogetherControlCenter for this system is shown in a package diagram view 

in Figure 32. 

 

Figure 32 – Package Diagram representation of JUnit in TogetherControlCenter 

 

Figure 33 – Initial view of JUnit 
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Here, TogetherControlCenter uses a drill down capability technique rather than 

showing the whole class diagram. The user can click on a package of interest to see the 

classes within that package, and each package may then be viewed through multiple 

windows.  As mentioned in Chapter 2, although this method is space efficient, it still 

suffers from the possibility that the ‘big picture’ may be lost. 

Loading JUnit into ArgoUML yields the display shown in Figure 33.  This particular 

screen capture only shows 5 classes (where the name is visible) and part of one more.   

This is because there are several Java classes within JUnit that has been filtered out by 

ArgoUML since they only contain native methods.  Also this figure only shows JUnit at 

its initial status.  Here we see that only part of the class diagram is displayed.  Figure 34 

shows the diagram after additional filtering techniques are applied.  This is a combination 

of both focus+context and information hiding.  Another feature added to ArgoUML is the 

ability to hide node compartments.  Some classes may end up being too large to be 

accommodated into one page.  Therefore the user is given the option to close either or 

both of the attribute and operation compartments to result in a smaller graph that still 

preserves context and does not diminish program understanding.  In Figure 34, the 

operation compartment of the largest node is hidden so that the user can see the full high-

level structural view of JUnit without having to span multiple pages.  We now see that 16 

classes are displayed, an improvement of 320%. 
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Figure 34 – The JUnit display after application of filtering techniques 

5.5.3 Large System Testing 

One of the major aims of this research is to be able to utilize the developed 

application in an environment where it is analyzing either a singular large object-oriented 

systems or multiple systems connected through a distributed network.  Prior large system 

testing of ArgoUML was limited to analyzing BubbleWorld – an AFIT developed 

information retrieval system that comprised approximately 30,000 lines of code and 84 

classes.  With the original layout algorithm, the system became too recursive to handle 

anything larger than BubbleWorld.  Since much larger applications are likely to be used, 

this phase of the experiment loads ArgoUML for debugging into ArgoUML.  The 

modified version of ArgoUML comprises more than 1,000 classes and a little over 

200,000 lines of code.   
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At the commencement of this testing activity, similar to both the medium and small 

system testing, reverse engineering is applied to the model to immediately provide the 

user with a class diagram representation to eliminate the need to form a mental model by 

either reading through documentation or browsing through the source code.  Assuming 

that a monitor set at a resolution of 1400 × 1050 would fit approximately 50 lines of code 

in one page, then browsing through all of ArgoUML’s source code would require more 

than  4,000 pages. 

As was the case for JUnit, ArgoUML contains many classes with a large number of 

attributes and methods.  This results in very large nodes as shown in Figure 35, where 

only 3 classes in the diagram panel are displayed.  Further on in the execution cycle 

however, when the graph layout has been applied and different nodes are in focus, we are 

able to fit 17 classes as shown in Figure 36, an improvement of 566%.  Further filtering 

techniques, by closing compartments yields the graph in Figure 37.  Although only the 

same 17 classes are visible in this filtered display, only approximately half the display 

area is used compared to the display in Figure 37 so the effective improvement actually 

totals to approximately 1100%.  Notice that in Figure 37, the process was already at a 

stage where the class diagram would span many pages as indicated by the scroll bars 

below the diagram panel. 
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Figure 35 – Initial graph display for ArgoUML 
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memory.  Once this initial processing is complete the requirements reduce significantly 

allowing for consecutive debugging of large programs or multiple programs in a 

networked system. 

 

Figure 36 – ArgoUML later in its execution cycle 

The debug controls incorporated into ArgoUML allow the user to step through the 

program execution and follow the control flow on the displayed UML class diagram.  

The node containing the method currently executing becomes the node in focus.  Due to 

the filtered native classes, the method that is currently executing may not belong to any of 

the classes contained in the display.  This change in level of detail as each method 

executes is valuable as it reduces cognitive search when viewing a large graph. 
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Figure 37 – ArgoUML layout after filtering is applied 

5.6 Phase IV - Usability Tests 

This section discusses the results obtained from the usability survey conducted at 

AFIT to establish the effectiveness of the modified ArgoUML debugger.  Chapter 4 

discussed the experimental setup of this usability test.  Table 7 lists the average score of 

each criteria addressed by the survey.  The following sections analyze the results in terms 

of each of the measured criteria. 

5.6.1 Software Visualization 

This portion of the survey, taken from the Roman and Cox PV taxonomy discussed 

in Chapter 2, received the highest scores from all five participants.   
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 Criteria Score (/10) 
 Space Economy 9.4 
 Metaphors 9.2 

Software Interconnection 9.4 
Visualization Interface 8.6 

Criteria Scope 9.2 
 Levels of Abstraction 9.6 
 Presentation 8.8 
 Suspend, Step, Resume program execution 7.4 

Debugging View threads, method calls 7.4 
Criteria View object information 7.0 

 View variable information 7.2 
 Breakpoint specification 8.2 
 Reading characters on diagram panel 8.8 
 Organization of information 9.2 
 Sequence of Screens 8.6 
 Learning to operate the system 7.2 
 Exploring features by trial and error 8.6 

Usability Remembering names and use of commands 7.6 
Criteria Straightforwardness of performing tasks 7.4 

 Help messages on the screen 6.2 
 Reference Material 6.6 
 System Speed 6.6 
 System Stability 7 
 Ease of correcting mistakes 7 
 Design for all levels of users 5.8 

Table 7 – Survey Results showing average scores for each criteria 

Figure 38 is a chart graphing the results from the software visualization criteria.  This 

group of criteria scored the highest among the three tested with an average of 9.17. 

Space economy earned an average score of 9.4.  It is obvious that the incorporation 

of the focus+context, graph layout algorithm and filtering techniques greatly satisfied this 

criteria.  All users responded positively to the space economy that these techniques 

provided. 

Comprehension of the metaphors used in ArgoUML scored 9.2.  Metaphors refer to 

the graphical symbols used in the application.  Since ArgoUML uses the standard UML 

class diagram semantics, and all participants were familiar with UML, they found the 
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display very easy to understand.  Similarly with the Interconnection criteria scoring 9.4, 

users responded positively since the interconnections between nodes (i.e. inheritance 

links, aggregation links) follow the UML class diagram semantics.   

Software Visualization Criteria

0 1 2 3 4 5 6 7 8 9 10

Space Economy

Metaphors

Interconnection

Interface

Scope

Levels of Abstraction

Presentation

Score (/10)
 

Figure 38 – Software Visualization Criteria Survey Results 

Although the interface criteria still scored highly, receiving 8.6, this was the lowest 

rated criteria within the SV section.  ArgoUML’s interface was designed to be user 

friendly and all modifications to the interface as a result of this research used the existing 

GUI framework within ArgoUML and GEF.  However the interface scored as low as 

7/10 from one of the participants.  This is expected due to the behavior of nodes in 

ArgoUML.  Sometimes it is difficult to select a node on the display panel.  It may require 

the user to click around the node before it is selected.  This behavior is not due to any 

modifications introduced by this research.  Even the latest release of ArgoUML from its 

originators behave similarly [ARG02].  Since this criteria measures the ease of 

manipulating data, it is expected that the deficiency above would have a negative impact. 
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The scope and level of abstraction criteria scored 9.2 and 9.6 respectively.  

Participants responded well to the general layout of ArgoUML, showing a number of 

different types and levels of information.   

Presentation earned a score of 8.8.  Participants were able to easily interpret, not only 

the UML representation but all the other cognitive visual aspects such as use of color to 

highlight breakpoints or to indicate the current method in execution.   

5.6.2 Debugging 

This portion of the survey earned an average score of 7.44 across its five sub 

criteria.  Figure 39 shows the average scores of each criterion.  The first criteria – 

Suspend/Step/Resume capability scored an average of 7.4 from the five participants.  The 

general response was although it was simple to perform these steps with the use of the 

ArgoUML debug buttons incorporated by this research, it was still not complete.  As 

discussed in Chapter 4, this research added a step up function to the step capabilities of 

ArgoUML.  This allows for rapid stepping through code.  However a more  precise 

control of program execution would still be preferable, such as the inclusion of step 

filters that allows the user to specify classes, packages, or class patterns that they do not 

want to step into.  This is a very useful suggestion as it will allows for code tracing while 

avoiding external libraries that are not of interest. 

View threads/method calls criteria also scored 7.4.  The general response was that 

although current methods in execution are highlighted, no visualization was provided for 

viewing threads.  Only a command line output is provided by ArgoUML to display 

threads and threadgroups. 
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Viewing object information and variable information scored 7 and 7.2 

respectively.  Once again, only a command line output is provided for these types of 

information rather than a displayed graphical visualization.  

Breakpoint specification earned a fair score of 8.2 from the participants.  Users are 

able to set and clear breakpoints either through a command line input or mouse selection 

over a chosen line on the source code display.   

Debugging Criteria

0 1 2 3 4 5 6 7 8 9 10

Suspend/Step/Resume

View Threads, method calls

View Object Information

View Variable information

Breakpoint specification

Score (/10)
 

Figure 39 – Debugging Criteria Survey Results 

5.6.3 Usability  

The usability criteria were divided into three sections – Screen, Learning, and 

System Capabilities.  The first criterion – reading characters on the display – scored an 

average of 8.8.   ArgoUML provides a clear display of text on all display panels.  

However during animation, text can sometimes be distorted due to the smaller size of 

nodes.   

All participants responded well to the organization of information, with the criterion 

earning an average score of 9.2.  Similarly, the screen sequence scored in the top end 

among the usability criteria, earning an average of 8.6.  The general response was that no 
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major aspect of the ArgoUML screen presentation was confusing.  The graph comparing 

the average scores of these criteria is shown in Figure 40. 

Screen Criteria

0 1 2 3 4 5 6 7 8 9 10

Reading Characters

Organization of Info

Sequence of Screens

Score(/10)

 
Figure 40 – Screen Criteria Survey Results 

 

Figure 41 – Learning Criteria Survey Results 

The learning criteria were fairly difficult to establish since participants are only 

briefly coached on the operation of ArgoUML and only basic operation was covered.  

Average scores are graphed in Figure 41.  The score of the first learning criterion was 

7.2.  Although it is fairly easy to perform simple tasks, some of the more complex tasks 

like viewing object information requires remembering a sequence of commands.  This is 

related to both the ‘straight forward task execution’ criterion and the ‘remembering of 

names and commands’ criterion which both earned similar scores at 7.6 and 7.4 
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respectively.  The trial and error criterion scored an average of 8.5.  Users were in general 

able to figure out how to perform debugging tasks or display modification tasks from trial 

and error.  The help messages and reference material criteria scored a low 6.2 and 6.6 

respectively.  Only minimal help screens were included by this research and the current 

documentation on ArgoUML is still lacking.  This criteria was included as part of the 

research to flag this documentation deficiency with ArgoUML. 

System Capability

0 1 2 3 4 5 6 7 8 9 10

system speed

system stability

ease of correcting mistakes

design for all levels of users

Score (/10)

 
Figure 42 – System Capability Survey Results 

The system capability criteria scored relatively low in comparison with the other 

criteria in the survey.  The average scores are shown in Figure 42.  Participants accepted 

that when using ArgoUML to debug systems, consideration must be given to the platform 

being used due to the CPU intensive nature of the system during the reverse engineering 

process.   The speed criteria earned an average score of 6.6 while system stability scored 

7.  This is again related to the slower nature of the system during the reverse engineering 

process and animated display.  ‘Correcting mistakes’ earned a score of 7.  The user is not 

allowed to correct a command entered into the command line.  The system will flag if the 

command is unknown, however if the command was accidentally entered, then there is 

no undo step to return to the original state.  In terms of the diagram panel, users are 
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allowed to add and remove graphical components as they please.  The lowest score of the 

survey was received by the last criterion – designing for all levels of users, which scored 

5.8.  Although all the participants had considerable experience in software engineering 

and using IDEs and standard debuggers, the general response was that ArgoUML was not 

at a stage where it can easily be used by novice users.  An experience with simpler 

debuggers is required and an appreciation of UML semantics is preferred prior to using 

the modified introduced by this research ArgoUML.   

5.7 Summary 

This chapter presents the results obtained from the testing and experiments 

conducted to test the research hypothesis.  It discusses the initial experimental set up and 

procedure for the different phases of testing.  This is followed by an analysis of the 

results obtained from each phase.  The phases comprise a Regression Test phase, General 

Display testing, Visual Debugging for different sized systems and the Usability test 

phase. 

In the first three phases, the results are analyzed using resource requirements and 

visual effectiveness.  The system showed an improvement in space efficiency over the 

standard ArgoUML layout, of at least 200% and as much as 1110% in the tests 

conducted.  The fourth phase supports the initial investigation through a usability test that 

validates ArgoUML in terms of its usability aspects.  The evaluation that resulted 

suggests that the visualization techniques used are promising, with their perceived visual 

effectiveness gaining relatively high scores.  On the other hand, the experiment also 

flagged deficiencies in the debugging functionality and system capability aspects.  These 

primarily relate to the slow reverse engineering process to display the class diagram on 
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the panel and lack of visual support in accessing some debugging information. Overall, 

feedback from participants suggests that the inclusion of a visual representation in the 

form of a dynamic UML class diagram aids in the debugging process as it negates the 

need to form a mental model of the program structure, while dealing with the lower level 

details.   

A combination of the results from all phases leads to the conclusion that the 

developed system aids the user in the debugging process by increasing space efficiency 

and providing a wide scope of information as well as multiple levels of abstraction.  

These advantages provide a much greater understanding of the relationship between 

classes of interest and the remainder of the system. 

 



 

102 

6 Conclusion and Future Work 
 
6.1 Introduction 

This research designed, implemented and validated a visual debugger that 

effectively makes use of the standard UML class diagram to aid in the debugging of 

object-oriented systems.  This chapter summarizes the research in terms of the goals 

stated in Chapter 1.  First, it reviews the problem definition for the research. It then 

revisits the goals and the process used to demonstrate how these goals were met, as well 

as providing a brief discussion of results obtained from the tests conducted.  Finally, it 

presents possible avenues for future work. 

6.2 Motivation and Objectives 

This section reviews the need for motivation behind this research, the objectives 

set out at the beginning of the research and its success at meeting those objectives. 

6.2.1 Background 

The JBI is a large distributed system that links many types of applications and 

databases to multiple users over multiple protocols.  Debugging and analysis tools are 

required support this structure.  Debugging of large object-oriented systems is a difficult 

cognitive process that requires understanding of both the overall and detailed behavior of 

the application.  In addition, many such applications linked through a distributed system 

such as the JBI adds to this complexity. 

There are many debugging tools currently available in the software development 

industry that deal with object-oriented systems.  However few are capable of effectively 

promoting program understanding by presenting large amounts of data efficiently.  

Traditional debuggers limits the user to examine the source code line by line.   
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The motivation behind this research is to alleviate the problem discussed above.  

The presented hypothesis is that the incorporation of visualization techniques will reduce 

the complexity involved in the debugging process as it reduces cognitive load involved in 

forming a mental mapping of the program structure.  More specifically, this research 

ports a UML class diagram display capability to an existing debug architecture. It 

considers UML class diagrams to be appropriate for this purpose as it is a familiar 

standard commonly used in the software engineering and design industry.  The class 

diagram is obtained by reverse engineering the data extracted from the debugee process 

by a debug architecture – the JPDA.  This method ensures that the debugee process is not 

affected at compile time and that there is only minimal effect at run-time. 

Even with moderately sized systems, the UML class diagram may take up many 

pages. This research introduces a focus+context system that aims to provide detail for 

those objects which are considered interesting to the user while maintaining access to the 

overall context in which the detail exists. This allows the overall system structure to be 

displayed in a much smaller area while still preserving UML notation. The system’s 

space efficiency is further improved with the application of an automatic hierarchical 

graph layout algorithm. 

6.2.2 Research Impact 

The effectiveness of the methodology introduced by this research is tested by 

implementing the proposed features in a modified version of ArgoUML.  The 

presentation of UML class diagrams with a focus+context system provides a considerable 

improvement (up to 1110%) in the number of classes that can be displayed in a set 

display area while still preserving the semantics of UML.  This great improvement in 
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space efficiency will allow users to debug large systems more easily based on the amount 

of data that is made manageable in a set information space.   

The research applies the visual debugger to a number of different systems of 

varying sizes, to determine its effectiveness in different situations. Standard debug 

control features such as breakpoint setting and stepping functions are included. The 

developed visual debugger also allows the user to follow the control flow.  This is 

achieved by highlighting the current method in execution.  Various levels of abstraction 

are provided to the user, ranging from object and variable information (direct), to source 

code (direct), right up to the high-level class diagram representation (structural).   

The research further supports the tests by conducting a usability type survey that 

involves participants testing the functionality of the application and responding to a 

developed questionnaire that involves 3 criteria – Software Visualization, Debugging, 

and Usability.  The result obtained from these tests further supported the hypothesis of 

this research.  The survey flagged a number of deficiencies but overall gave very positive 

feedback to the methodology introduced by this research. 

The visual and debugger objectives systems are considered throughout the design 

and implementation processes. Objectives were initially defined in Chapter 1, then 

further refined in Chapter 3.  All these objectives were satisfied and are summarized as 

follows: 

• Present information through multiple levels of abstraction, ranging from 

source code to high-level architectural views:- this objective was clearly met 

by the modified ArgoUML.  The system tests and the usability evaluation 

concluded that one of the main advantages of the system is its ability to present 

information through multiple levels of abstraction.  Access to low-level details 

such as object information, variable information, and source code is combined 
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with a visualization of the high-level architectural view in the form of a UML 

Class Diagram. 

• Present the visualization model in a familiar manner:- This objective was met 

with the use of UML.  UML is a familiar modeling language for software and 

was deemed appropriate as the visualization model of this research.  The 

effectiveness of using UML was evident from the results obtained in the 

system tests and usability survey. 

• Preserve context to aid in better program understanding:- This objective was 

achieved with the incorporation of smooth animation when repositioning 

nodes.  The overall effect of the animation enabled the user to maintain 

context, thus aiding programming understanding and the debugging process. 

• Present a dynamic visualization display such that it is suitable for real time 

debugging and match the changing runtime nature of programs:- This 

objective was achieved by using the JPDA to extract data from the debugee 

process and by creating an observer thread that reengineers this extracted data 

for the purpose of displaying its UML class diagram representation.  The 

system tests verified that ArgoUML was able to map systems of various 

magnitude, ranging from the small simple systems to systems that comprise 

hundreds of classes. 

• Improve space efficiency to reduce search while presenting the user with detail 

for a region of interest:- This objective was greatly satisfied by the 

incorporation of focus+context capability into the display. Space efficiency 

was further improved by coupling this focus+context feature with a 

hierarchical graph layout algorithm and filtering techniques. 

• Provide the ability to monitor processes for debugging:- This was also 

achieved by porting an existing debug architecture (JPDA) into ArgoUML. 
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• Have the ability to automatically reverse engineer object-oriented systems:- 

Once again, the development of an observer thread that automatically reverse 

engineers data taken from the JPDA satisfies this requirement. 

• Have the ability to display multiple systems over socket connections for 

debugging:- this requirement was satisfied during the Regression Test phase of 

the System Test. 

• Have no effect on the system behavior of monitored program:- minimal system 

degradation was experienced, mainly occurring at load up time for large 

systems.  This was caused by the large amount of data being reverse 

engineered. 

• Have minimal effect on system performance to enable real time debugging:- 

Only minimal degradation in system performance was experienced for same 

reason as the previous requirement. 

• Provide standard debugging controls:- Although other debugging controls 

were identified to be beneficial to the application, ArgoUML incorporates 

basic controls to enable the user to perform standard debugging procedures. 

• Provide a well designed GUI with consideration of Shneiderman’s principles 

as stated in Chapter 2 [SHN98]. – the usability survey verified that these 

principles were satisfactorily met by  ArgoUML 

• Have a low CPU load and memory usage for the monitoring system:- This 

requirement was generally met except at load up time of large debugee 

programs. 

• Have a design adhering to software engineering principles wherever possible 

to ensure it adapts to future requirements:- Use of software engineering 

patterns throughout the design and implementation of the system satisfactorily 

met this requirement. 
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6.3 Future Developments  

In the course of this research, a number of improvements have been identified to 

further aid the debugging of object-oriented systems.  The primary future addition 

identified by this research effort would be the visual representation of object information. 

Currently this is achieved only in ‘pretty-printed’ format by entering a command on the 

ArgoUML command line. The work presented here will require restructuring the data 

structures taken in by the observer thread in a form similar to Jtrees.  This will allow easy 

navigation of object information in a given stack frame.  The idea behind this is to be able 

to access local variables and objects in a presented scrollable view to allow easy 

navigation to values of interest.   

Another avenue for a future addition is to vary the LOD algorithm to include user 

input.  This will allow the user the option of setting the relative importance of each type 

of information displayed in the UML class diagram.  This addition will further improve 

program understanding and will decrease cognitive search as it will allow important 

nodes to be displayed at a level of detail specified by the user. 

A user controlled JPDA data filtering system would also be very beneficial to this 

application.  Currently, the developer is required to edit the source code from the JPDA 

interface to filter certain packages that may not be of interest.  A possible option within 

the ArgoUML menu is a data filtering option that allows users to enter packages that are 

not of interest, thereby negating the need to display those irrelevant classes in the 

diagram panel. 

An intelligent stepping system would be advantageous, as flagged during the 

usability test.  The current system although able to step up the execution tree, does not 

have any intelligent features that will allow users to specify classes that they do not wish 
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to step into.  This would be very useful for users working in developing an integrated 

system like the JBI and would only be interested in tracing their own code.  Moreover an 

intelligent stepping system may also allow users to control the speed of 

execution/stepping.  This is particularly useful when the user has inadequate system 

knowledge or for examining new systems for idiosyncrasies. 

Finally, a visual watch functionality is a desirable feature as part of the debugging 

features of ArgoUML.  As stated previously, although object information can be accessed 

via command line in the current system, the addition of a ‘view watch’ capability 

whereby users are allowed to add local variables, fields, or expressions to a list that will 

be evaluated whenever the debugger is paused will significantly improve the debugging 

capability.  In effect, addition of this functionality automatically informs users of 

information regarding objects or variables of interest. 

6.4 Summary 

Large software systems are difficult to debug.  This complexity is further amplified 

by the introduction of object-oriented systems and systems connected in a distributed 

network such as those involved with the JBI.   This research introduces a methodology 

that uses visualization techniques in order to aid in this debugging process.  The research 

effort also includes the validation of the methodology in terms of its effectiveness as a 

visual debugger, though usability tests.   

The research implements the methodology in ArgoUML – a graphical CASE tool, 

and interfaces it with the JPDA.  The resulting ‘visual’ debugger monitors debugee 

processes through the attached JPDA framework and reverse engineers the extracted data 

to form a UML class diagram representation. The user is able to use standard debugging 
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controls with the debugee program. The visual debugger highlights the current method of 

execution on the class diagram to allow the user to track control flow within the program.  

The main visualization technique incorporated is the focus+context feature which 

enables the user to view large quantities of information by focusing on an area of interest 

and applying a fisheye lens effect across the remainder of the displayed information.  

Despite the application of this technique, the visual debugger maintains the semantics of  

UML.  These visualization techniques improve access to the information and allows the 

user to take in more information in the same amount of time.  Moreover, a hierarchical 

graph layout algorithm is applied to the display to improve space efficiency even further.  

To enhance user understanding of the underlying software system, access to multiple 

levels of abstraction and a wide scope of information is provided.  These include detailed 

information such as variable and object data and source code, to higher level 

representations displayed in the form of a UML class diagram.  

These visualization techniques provide a more effective way of visually debugging 

object-oriented systems, both small and large.  The effectiveness of the resulting system 

is supported by positive results from system testing and usability test.  The  system 

developed as part of this research was successful at meeting all objectives.   
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Appendix: Usability Survey Responses 
 

RESEARCH SURVEY 
 

for Master Thesis – Visual Debugging of Object-Oriented Systems with the Unified 
Modeling Language 

 
by Flight Lieutenant Wendell Fox, RAAF, AFIT GCS-04M 

 
Participant’s No: 1 
 
Date: 22 Jan 04 
 
Time Commenced: 0835h 
 
Time Finished: 0855h 
 
 
1.0 Software Visualization Effectiveness 
 
Please rate each criterion from the scale of 1-10 as indicated in the table below.  A definition of each of 
these criteria is included below. 
 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY  Inefficient           Very efficient 

2. METAPHORS  Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION  Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE  narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

 
General Comments: 
• Use of visualization techniques aided in program understanding 

• The levels of abstraction provided in one screen was effective 

Space Economy refers to the Application’s ability to efficiently display Class information.  Were 
visualization techniques used effectively? (e.g. Focus+Context, effective layout algorithm). 
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Metaphors refer to the graphical symbology used in the application. 
 
Interconnection refers to the relationship between graphical components used to display Class information. 
 
The interface consists of graphical objects presented to the viewer and interaction with the presentation 
using buttons, menus, and other controls or through direct manipulation of the graphical objects.  The 
interface should be intuitive and easy to understand and use.  In general, direct manipulation interfaces tend 
to be more intuitive than interaction through controls. 
 
Scope refers to the amount of different information made available by the application to aid the user in 
debugging object oriented programs. 
 
Presentation refers to the semantics of the graphical objects that are presented to the viewer. The 
presentation is that aspect of the visualization that facilitates interpretation and understanding of the 
graphics. This will cover issues concerning human cognition and effective visual communication such as 
the use of color, size, spatial relationships and other visual concepts to depict additional meanings. 
 
2.0 Debugging Functionality 
 
Please rate the level at which each of the listed debugging functionality was satisfied by ArgoUML from a 
scale of 1-10 as indicated in the table below. 
 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 

1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to 
perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to 
perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to 
perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to 
perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to 
perform/ 
adequately 
satisfied 

 
General Comments: 
• Prefer if viewing of object info is incorporated into GUI 

3.0 Software Usability  
 
The following survey items covers usability characteristics associated with the prototype debugger.  Each 
criteria is self explanatory and is separated into three categories – screen, learning, and system capabilities.  
Please rate each item on a scale of 1-10 as indicated in the table below. 
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SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram and 
debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 

 
LEARNING  1 2 3 4 5 6 7 8 9 10 

 
 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and error difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight forward  never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material  confusing           clear 

 
SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 

 
 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

General Comments: 
• Help function at command line is helpful 

4.0 Comments 
List 3 most positive aspects of the ArgoUML Visual Debugger:  

1. Focus+Context display looks good 

2. Layout algorithm very space efficient 

3. wide scope of info presented 

List 3 most negative aspects of the ArgoUML Visual Debugger:  
1. No way to visually (point and click) at object data (e.g. array) 

2. slow at start up 

3. java debugger not very intuitive 
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RESEARCH SURVEY 
 

for Master Thesis – Visual Debugging of Object-Oriented Systems with the Unified 
Modeling Language 

 
by Flight Lieutenant Wendell Fox, RAAF, AFIT GCS-04M 

 
Participant’s No: 2 
 
Date: 22 Jan 04 
 
Time Commenced: 0900h 
 
Time Finished: 0930h 
 
 
1.0 Software Visualization Effectiveness 
 
Please rate each criterion from the scale of 1-10 as indicated in the table below.  A definition of each of 
these criteria is included below. 
 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY  Inefficient           Very efficient 

2. METAPHORS  Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION  Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE  narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

 
General Comments: 
• Very well organized.  I like the way the boxes auto arrange themselves 

Space Economy refers to the Application’s ability to efficiently display Class information.  Were 
visualization techniques used effectively? (e.g. Focus+Context, effective layout algorithm). 
 
Metaphors refer to the graphical symbology used in the application. 
 
Interconnection refers to the relationship between graphical components used to display Class information. 
 
The interface consists of graphical objects presented to the viewer and interaction with the presentation 
using buttons, menus, and other controls or through direct manipulation of the graphical objects.  The 
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interface should be intuitive and easy to understand and use.  In general, direct manipulation interfaces tend 
to be more intuitive than interaction through controls. 
 
Scope refers to the amount of different information made available by the application to aid the user in 
debugging object oriented programs. 
 
Presentation refers to the semantics of the graphical objects that are presented to the viewer. The 
presentation is that aspect of the visualization that facilitates interpretation and understanding of the 
graphics. This will cover issues concerning human cognition and effective visual communication such as 
the use of color, size, spatial relationships and other visual concepts to depict additional meanings. 
 
2.0 Debugging Functionality 
 
Please rate the level at which each of the listed debugging functionality was satisfied by ArgoUML from a 
scale of 1-10 as indicated in the table below. 
 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 

1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

 
General Comments: 
• Limited by the debugger 

• Software still allows the setting of breakpoints and view object information – however this requires 

significant user interaction. 

3.0 Software Usability  
 
The following survey items covers usability characteristics associated with the prototype debugger.  Each 
criteria is self explanatory and is separated into three categories – screen, learning, and system capabilities.  
Please rate each item on a scale of 1-10 as indicated in the table below. 
 

SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram and 
debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 

 
 
 



 

115 

LEARNING  1 2 3 4 5 6 7 8 9 10 
 

 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and error difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight forward  never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material  confusing           clear 

SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 
 

 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

General Comments: 
• Knowledge of Java is required 

• Especially knowledge of objects and classes 

• Speed is limited by the debugger 

 
4.0 Comments 
 
List 3 most positive aspects of the ArgoUML Visual Debugger:  
 

1. UML representation of java program (reverse engineered!). 

2. Very clear layout and great self-organizing display. 

3. easy and intuitive to use. 

List 3 most negative aspects of the ArgoUML Visual Debugger:  
 

1. Difficult to get object information 

2. speed can be an issue for slower computers 

3. need documentation 
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RESEARCH SURVEY 
 

for Master Thesis – Visual Debugging of Object-Oriented Systems with the Unified 
Modeling Language 

 
by Flight Lieutenant Wendell Fox, RAAF, AFIT GCS-04M 

 
Participant’s No: 3 
 
Date: 22 Jan 04 
 
Time Commenced: 0945h 
 
Time Finished: 1010h 
 
 
1.0 Software Visualization Effectiveness 
 
Please rate each criterion from the scale of 1-10 as indicated in the table below.  A definition of each of 
these criteria is included below. 
 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY  Inefficient           Very efficient 

2. METAPHORS  Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION  Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE  narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

 
General Comments: 
• Appropriate levels of detail used for class nodes 
 
Space Economy refers to the Application’s ability to efficiently display Class information.  Were 
visualization techniques used effectively? (e.g. Focus+Context, effective layout algorithm). 
 
Metaphors refer to the graphical symbology used in the application. 
 
Interconnection refers to the relationship between graphical components used to display Class information. 
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The interface consists of graphical objects presented to the viewer and interaction with the presentation 
using buttons, menus, and other controls or through direct manipulation of the graphical objects.  The 
interface should be intuitive and easy to understand and use.  In general, direct manipulation interfaces tend 
to be more intuitive than interaction through controls. 
 
Scope refers to the amount of different information made available by the application to aid the user in 
debugging object oriented programs. 
 
Presentation refers to the semantics of the graphical objects that are presented to the viewer. The 
presentation is that aspect of the visualization that facilitates interpretation and understanding of the 
graphics. This will cover issues concerning human cognition and effective visual communication such as 
the use of color, size, spatial relationships and other visual concepts to depict additional meanings. 
 
2.0 Debugging Functionality 
 
Please rate the level at which each of the listed debugging functionality was satisfied by ArgoUML from a 
scale of 1-10 as indicated in the table below. 
 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 

1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

 
General Comments: 
• Command line arguments not intuitively obvious 

3.0 Software Usability  
 
The following survey items covers usability characteristics associated with the prototype debugger.  Each 
criteria is self explanatory and is separated into three categories – screen, learning, and system capabilities.  
Please rate each item on a scale of 1-10 as indicated in the table below. 
 

SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram and 
debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 
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LEARNING  1 2 3 4 5 6 7 8 9 10 
 

 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and error difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight forward  never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material  confusing           clear 

 
SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 

 
 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

 
General Comments: 
• Need faster pc to be more effective 

 
4.0 Comments 
 
List 3 most positive aspects of the ArgoUML Visual Debugger:  
 

1. Class Diagram from reverse engineered data 

2. Good info on values of variables 

3. Not too difficult to use 

List 3 most negative aspects of the ArgoUML Visual Debugger:  
 

1. CPU-intensive at load up 

2. too much command line arguments required for access to object information 

3. need more help messages on visualization stuff 

 

 



 

119 

RESEARCH SURVEY 
 

for Master Thesis – Visual Debugging of Object-Oriented Systems with the Unified 
Modeling Language 

 
by Flight Lieutenant Wendell Fox, RAAF, AFIT GCS-04M 

 
Participant’s No: 4 
 
Date: 22 Jan 04 
 
Time Commenced: 1450h 
 
Time Finished: 1510h 
 
 
1.0 Software Visualization Effectiveness 
 
Please rate each criterion from the scale of 1-10 as indicated in the table below.  A definition of each of 
these criteria is included below. 
 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY  Inefficient           Very efficient 

2. METAPHORS  Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION  Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE  narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

General Comments: 
• Use of standard UML notation useful for higher level understanding of system. 

Space Economy refers to the Application’s ability to efficiently display Class information.  Were 
visualization techniques used effectively? (e.g. Focus+Context, effective layout algorithm). 
 
Metaphors refer to the graphical symbology used in the application. 
 
Interconnection refers to the relationship between graphical components used to display Class information. 
 
The interface consists of graphical objects presented to the viewer and interaction with the presentation 
using buttons, menus, and other controls or through direct manipulation of the graphical objects.  The 
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interface should be intuitive and easy to understand and use.  In general, direct manipulation interfaces tend 
to be more intuitive than interaction through controls. 
 
Scope refers to the amount of different information made available by the application to aid the user in 
debugging object oriented programs. 
 
Presentation refers to the semantics of the graphical objects that are presented to the viewer. The 
presentation is that aspect of the visualization that facilitates interpretation and understanding of the 
graphics. This will cover issues concerning human cognition and effective visual communication such as 
the use of color, size, spatial relationships and other visual concepts to depict additional meanings. 
 
2.0 Debugging Functionality 
 
Please rate the level at which each of the listed debugging functionality was satisfied by ArgoUML from a 
scale of 1-10 as indicated in the table below. 
 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 

1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

 
General Comments: 
• Most of the stuff only available through use of command line. 

3.0 Software Usability  
 
The following survey items covers usability characteristics associated with the prototype debugger.  Each 
criteria is self explanatory and is separated into three categories – screen, learning, and system capabilities.  
Please rate each item on a scale of 1-10 as indicated in the table below. 
 

SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram and 
debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 
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LEARNING  1 2 3 4 5 6 7 8 9 10 
 

 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and error difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight forward  never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material  confusing           clear 

 
SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 

 
 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

 
General Comments: 
• User must have some computer/software background to understand the UML visualization 

• Animations could be faster 

 
4.0 Comments 

 
List 3 most positive aspects of the ArgoUML Visual Debugger:  
 

1. use of standard UML semantics. 

2. great application of focus+context. 

3. allows view of code, UML and object/debugger data all in the same screen. 

List 3 most negative aspects of the ArgoUML Visual Debugger:  
 

1. A little on the slow side at load up time 

2. some stuff only available by command line 

3. difficult to click on nodes at times 
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RESEARCH SURVEY 
 

for Master Thesis – Visual Debugging of Object-Oriented Systems with the Unified 
Modeling Language 

 
by Flight Lieutenant Wendell Fox, RAAF, AFIT GCS-04M 

 
Participant’s No: 5 
 
Date: 22 Jan 04 
 
Time Commenced: 1530h 
 
Time Finished: 1555h 
 
 
1.0 Software Visualization Effectiveness 
 
Please rate each criterion from the scale of 1-10 as indicated in the table below.  A definition of each of 
these criteria is included below. 
 

SOFTWARE VISUALIZATION 
CRITERIA 

 1 2 3 4 5 6 7 8 9 10 
 

 

1. SPACE ECONOMY  Inefficient           Very efficient 

2. METAPHORS  Difficult to 
understand 

          Easy to 
understand 

3. INTERCONNECTION  Confusing           Very clear 

4. INTERFACE Hard to 
manipulate 

data 

          Easy to 
manipulate data 

5. SCOPE  narrow           wide 

6. LEVELS OF ABSTRACTION Very limited           Multiple levels 

7. PRESENTATION Difficult to 
interpret 

          Easy to interpret 

General Comments: 
• Presentation of visuals is well organized and easy to understand. 

• Animation useful in maintaining context of diagram 

Space Economy refers to the Application’s ability to efficiently display class information.  Were 
visualization techniques used effectively? (e.g. Focus+Context, effective layout algorithm). 
Metaphors refer to the graphical symbology used in the application. 
 
Interconnection refers to the relationship between graphical components used to display Class information. 
 
The interface consists of graphical objects presented to the viewer and interaction with the presentation 
using buttons, menus, and other controls or through direct manipulation of the graphical objects.  The 
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interface should be intuitive and easy to understand and use.  In general, direct manipulation interfaces tend 
to be more intuitive than interaction through controls. 
 
Scope refers to the amount of different information made available by the application to aid the user in 
debugging object oriented programs. 
 
Presentation refers to the semantics of the graphical objects that are presented to the viewer. The 
presentation is that aspect of the visualization that facilitates interpretation and understanding of the 
graphics. This will cover issues concerning human cognition and effective visual communication such as 
the use of color, size, spatial relationships and other visual concepts to depict additional meanings. 
 
2.0 Debugging Functionality 
 
Please rate the level at which each of the listed debugging functionality was satisfied by ArgoUML from a 
scale of 1-10 as indicated in the table below. 
 

DEBUGGING CRITERIA  1 2 3 4 5 6 7 8 9 10 
 

 

1. Suspend, Step, Resume program 
execution 

Difficult to 
perform/not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

2. View threads, method calls Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

3. View object information  Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

4. View variable information Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

5. Breakpoint specification Difficult to 
perform/ not 

satisfied 

          Easy to perform/ 
adequately 
satisfied 

 
General Comments: 
• Not all debugging function are incorporated into the GUI. 

3.0 Software Usability  
 
The following survey items covers usability characteristics associated with the prototype debugger.  Each 
criteria is self explanatory and is separated into three categories – screen, learning, and system capabilities.  
Please rate each item on a scale of 1-10 as indicated in the table below. 
 

SCREEN  1 2 3 4 5 6 7 8 9 10 
 

 

1. Reading characters on diagram and 
debugger panel 

hard           easy 

2. Organization of information confusing           very clear 

3. Sequence of screens  confusing           very clear 
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LEARNING  1 2 3 4 5 6 7 8 9 10 
 

 

1. Learning to operate the system difficult           easy 

2. Exploring features by trial and error difficult           easy 

3. Remembering names and use of 
commands 

difficult           easy 

4. Performing tasks is straight forward  never           always 

5. Help messages on the screen unhelpful           helpful 

6. Supplemental reference material  confusing           clear 

 
SYSTEM CAPABILITIES  1 2 3 4 5 6 7 8 9 10 

 
 

1. System speed too slow           fast enough 

2. System tends to be noisy/ 
unstable 

          quiet/stable 

3. Correcting your mistakes  difficult           easy 

4. Designed for all levels of users never           always 

 
General Comments: 
• More help messages needed, but trial and error is usually successful  

 
4.0 Comments 

 
List 3 most positive aspects of the ArgoUML Visual Debugger:  
 

1. excellent use of visualization techniques. 

2. good use of animation. 

3. screen presentation is well organized. 

List 3 most negative aspects of the ArgoUML Visual Debugger:  
 

1. need more help messages 

2. need more advanced debugger 

3. need more GUI debug interfaces 
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