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AFIT/GAE/ENY/04-J04 
 

Abstract 
 

 The aim of this research was a continued study of gas-dynamic phenomena that occurred 

in a set of stacked nozzles as reported by Captains Ian Bautista in 2003 and Scott Bergren in 

2002.  The arrangement of the stacked nozzles was a modified version of a 1/5th scale-model of 

one quadrant of the conceptual Space Based Laser Integrated Flight Experiment (SBL IFX) gas 

dynamic laser.  Rather than cylindrical rings of nozzles, the stacked nozzles were flat and able to 

be rotated about a vector normal to the nozzle exits.  This set of stacked flat nozzles was installed 

on a blow-down/vacuum wind tunnel, which in addition to the nozzles, consisted of a stilling 

chamber, centerbody, supersonic diffuser, and transition structure to join the vacuum and test 

sections.   

 The goals of this research were two fold; first, modify the original scale-model of the 

stacked cylindrical rings of nozzles so schlieren photography could be used to visualize an 

average flow field across the nozzles.  Secondly, using the schlieren photographs, in conjunction 

with pressure data, observe the interactions between the individual nozzles.  Results have shown 

that the modified nozzle array produces a vastly complex flow field as well as a highly 

supersonic flow régime, with Mach numbers that reach as high as 5.6. 
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COLD FLOW TESTING OF A MODIFIED SUBSCALE MODEL EXHAUST SYSTEM FOR 

A SPACE BASED LASER 

 
 

I. Introduction 
 

 

Background 

 From its inception in World War II, the Intercontinental Ballistic Missiles (ICBM) has 

been a major threat to the United States and its allies.  Since that time, the U.S. has sought ways 

to counter the threat posed by an ICBM launched by an aggressive or rogue state.  To that end, 

the Defense Advanced Research Projects Agency (DARPA), in conjunction with the Airborne 

Laser Laboratory, have studied the use of an Airborne Laser (ABL) to counter the ICBM threats.  

Preliminary tests conducted in the early 1970’s through the 1980’s yielded a Mid Infrared 

Advanced Chemical Laser (MIRACL) for use against airborne threats.  This system was “tested 

against tactical missiles and drone aircraft.” (Federation, 2002)  More recently the U. S. Air 

Force, the Ballistic Missile Defense Organization (BMDO), and an industry joint venture 

continue to evaluate the value of a Space Based Laser (SBL) for use against a ballistic missile 

threat in a program called the Space-Based Laser Integrated Flight Experiment (SBL IFX) 

(Possel, 1998).  Today the U.S. Army in cooperation with the government of Israel have 

developed the Tactical High Energy Laser (THEL), with the specific objective of neutralizing 

theater ballistic missiles (Perram, 2004).  

The SBL IFX planned to investigate the possibility of using a gas dynamic laser (GDL) 

in space, rather than on an airborne platform, with the objective of destroying ballistic missiles 

during their boost phase of flight (Bautista, 2003: 1-1).  A hydrogen fluoride (HF) laser, powered 
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by an exothermic reaction of hydrogen and dissociated fluorine, was planned as the primary 

weapon for the SBL.  However, this technology had to be proven before HF laser system can be 

implemented.  The goal of the SBL IFX was to prove this technology by demonstrating the 

capability of the HF laser and by using integrated components of an SBL in a ground experiment 

via a demonstration of the high power elements of a space-based laser (Bautista, 2003: 1-2).  

Since then, it has become clear that the practicality of putting a laser in space and maintaining it 

is unfeasible.  Rather than abandon the concept of using lasers as a counter to theater ballistic 

missiles, and lose the knowledge, the THEL program has studied the feasibility of using the 

same technology in a ground-based system.  

Internal fluid dynamics are paramount to producing a GDL of sufficient power to be used 

in this application.  It was therefore the purpose of this study to continue the work already 

completed in this area.  As mentioned before, the hydrogen fluorine laser is powered by an 

exothermic reaction between hydrogen and dissociated fluorine.  This exothermic reaction is 

accomplished by accelerating fluorine supersonically through an array of nozzles.  In the 

divergent section of the nozzles, molecular hydrogen is injected to produce a well-mixed 

efficient reaction with the fluorine.  The result is a vibrationally inverted HF molecule, which is 

required for the lasing process.  Additionally, beam quality is also highly dependent on fluid 

flow properties within the lasing cavity.  In a personal interview of Peter Lohn, conducted by 

Capt. Bautista, Mr. Lohn stated that low density, pressure, and temperature are all required for a 

high quality beam (Bautista, 2003: 1-2).  Lowered density reduces the deactivation of excited HF 

molecules, lowered pressure promotes molecular diffusion, while low temperatures promotes 

laser inversion and ultimately higher gain.  Shock waves and boundary layer separation cause 



  

 3

beam distortion, so simply high Mach number flow is not enough.  What is truly desired in the 

lasing cavity is a high Mach number homogeneous fluid.  

Problem Statement  

 It can now be seen that a high Mach number homogeneous fluid is ideal when developing 

a laser weapon.  The crux of this design challenge is that to achieve a high Mach number with an 

array of nozzles; unfortunately, each nozzle produces its own shock diamond pattern 

encouraging beam distortion.  Since these nozzles are in close proximity with each other, 

likewise so are the shock diamonds, the resultant flow field becomes a vastly complicated one.  

The big question that now arises is, “What does the shock pattern at the nozzle array exit look 

like, and how will it affect beam distortion?”   

Objectives       

 The objectives of this research are two fold.  First, design a nozzle array that will 

incorporate the same nozzle geometry as in the previous experiment and that can be used to 

observe the intricate interactions between individual nozzles.  This objective was met with the 

use of a flat, rather than curved nozzle array.  The new nozzle array would have a flat exit plane 

but would retain the original nozzle geometry; because of this change the total exit area would be 

reduced.  In fact, the original 1/5th scale nozzle array had an exit area of 11 cm2, the new nozzle 

array only has 6.842 cm2, a reduction of almost one half.  This area reduction is due to the fact 

that the new nozzle array is flat vice curved like the 1/5th scale model.  Furthermore this new 

nozzle array is able to rotate about its base 360O in 7.5O increments.  The second objective was to 

examine the flow field of the new nozzle array using time based pressure measurements and 

schlieren photographs.  This objective was accomplished through the use of a basic schlieren 
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setup and a rapid data acquisition system collecting static pressure measurements at the same 

locations as in previous experiments.   

Summary of Previous Work   

 Captain Scott Bergren initially, in 2002, conducted a study in which a 1/5th –scale model 

of the nozzle rings and exhaust manifold from the SBL IFX were tested in a blow-down/vacuum 

wind tunnel.  In this study it was found that the flow quality was very conducive to high beam 

quality.  However, due to equipment limitations, the duration of the high quality flow only lasted 

for approximately 0.2 seconds.  This short run time is only associated with the ground facilities 

and not indicative of space operations.  Unfortunately, this duration time is too short for a very 

detailed study of the flow field (Bergren, 2002: xi).  

 Captain Ian Bautista continued Captain Bergren’s work by investigating ways to increase 

the duration of the high quality flow field.  This research produced a new transition structure 

which when used in the previous setup increased the flow duration from 0.2 seconds to 

approximately 10 seconds.  Although the flow duration was increased the flow field quality did 

not decrease from what was previously attained (Bautista, 2003: xii).   

Experimental Method   

 To accommodate the first objective, a new nozzle array was designed.  With this new 

design came a few questions, they were: 

1.) How much throat area will be lost and will it be small enough to be ignored? 

2.) How much will the mass flow be affected? 

3.) How will the new nozzle have to be designed to be able to achieve good images? 

4.) How will the new nozzle array be mounted? 
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Once fabrication of the new nozzle was complete, the following general procedures were 

used to collect data and make conclusions about the flow field. 

1.) Run the experiment with the nozzle array in the vertical position for the sake of 

comparison. 

2.) Run the experiment with the nozzle array in the horizontal position, placing pressure 

transducers at key locations along the wind tunnel. 

3.) Obtain schlieren images inside the optical cavity. 

4.) Record wall static pressures at the transducer locations. 

5.) Calculate mach numbers based on pressure readings and schlieren images 

6.) Observe shock patterns via schlieren images. 

This thesis is organized in such a manor that allows the reader to understand why 

particular design choices were incorporated into the test facility for the SBL IFX; in addition to 

the procedures and equipment that were used throughout the experimentation.  The theory 

chapter will explain the fundamentals of compressible fluids and turbulent compressible jets, 

which is required to understand the flow field inside the lasing cavity.   

The Procedural Methods chapter will elaborate on the procedure and equipment used.  

Additionally this chapter will discuss how one could duplicate the experiment to achieve the 

same results.   

A Results chapter will present and discuss data collected.  For ease of understanding to 

the reader, the majority of the presented results will be in the pictorial or tabulated form. 
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Finally, a Conclusions and Recommendations chapter will close this thesis by summarily 

explaining the relevance and applications for the findings documented in this study.  

Additionally, this chapter will suggest paths to future endeavors in this work in an effort to 

achieve more in-depth results by offering a few lessons learned.  
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II. Theory 

Compressible Gas Dynamics 

 In the area of compressible gasses, the concept of quasi-one-dimensional flow is key, 

especially when considering supersonic nozzles.  What differentiates quasi-one-dimensional flow 

from one-dimensional flow is that one-dimensional flow is considered to have a constant area, 

whereas quasi-one-dimensional flow allows the cross-sectional area to change in the direction of 

the flow.  This can be graphically visualized as being the difference between flow through a 

straight pipe and flow through say a converging-diverging nozzle (Anderson, 1990: 147).  Quasi-

one-dimensional flow is the type of flow that was studied in the supersonic nozzle array.   

 The intrinsic properties of a thermally and calorically perfect gas, such as air, allow us to 

calculate the mass flow rate of that gas through a choked convergent nozzle.  The relationship; 

found in equation 1 below, gives mass flow rate as a function of total pressure, total temperature, 

and critical area when the Mach number at the throat is know to be unity (Anderson, 1990:184). 

                                                
•

m  =  
t

t

T
AP * 1

1

1
2 −

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

γ
γ

γ
γ
R

                                                           (1) 

 By assuming that mass is conserved and with the knowledge that 
•

m =ρAV, equation 2 

can be derived.  This is very useful because it can be used to find the Mach number anywhere 

along the flow where the static properties are known.   

pAa
RTmM

•

=                                                                        (2) 

It is important to note that the acoustic velocity a for a perfect gas is equal to RTγ .  Another 

interesting property of isentropic flow (adiabatic and reversible flow) is the total temperature and 

pressure ratios, which are found in equations 3 and 4 respectively.  With these relationships, 
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Mach number can be easily calculated if total pressure/temperature and local static 

pressure/temperature are known (Mattingly, 1996: 122).   

                                                       ⎟
⎠
⎞

⎜
⎝
⎛ −

+= 2

2
11 M

T
Tt γ                                                                (3) 
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2
11

−
⎟
⎠
⎞

⎜
⎝
⎛ −

+=
γ
γ

γ M
P
Pt                                                            (4) 

Oblique Shock Waves 

 Shock waves are the result of objects being placed in a supersonic flow.  A common 

cause for the manifestation of this phenomenon is due to wedges being placed in supersonic 

flow.  If the Mach number is high enough and the wedge is thin enough, the shock wave attaches 

to the wedge-shaped object to form an oblique shock wave.  An illustration of an oblique shock 

wave can be found in figure 1 below.  

 

 

Figure 1 Geometry of an Oblique Shock Wave (Bautista, 2003: 2-2) 

Shock 
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In this figure the upstream region is labeled 1 and downstream region is labeled 2.  Ultimately 

the purpose of the oblique shock wave is to turn the incoming flow parallel to the wedge-half 

angle θ.  In Figure 1 the velocity and corresponding Mach number in each region have been 

broken into components tangent and normal to the oblique shock wave and are denoted with 

subscripts t and n respectfully.  Of note here is that the tangential component of velocity is 

preserved across the oblique shock wave (Anderson, 1990:105) 

 It has long been known that the downstream Mach number can be attained provided that 

the upstream Mach number and wedge half angle are known.  The relationship between the 

upstream and downstream Mach numbers is known as the θ-β-M relations, seen in equations 5, 

6, 7, and 8 below. 

                                                ( ) ⎥
⎦
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⎣

⎡
++
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M

M                                             (5) 
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)sin(

2
2 θβ −

= nM
M                                                               (8) 

Because these relationships are so vital to the evaluation of oblique shock waves, results for the 

θ-β-M relations have been published for a wide range of upstream Mach numbers and wedge-

half angles (Anderson, 1990:106).  Additionally, it is important to note the following (Bautista, 

2003: 2-3,4): 
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1.) For a given M1, there is physical geometry such that θ is larger than the maximum 

wedge-half angel θmax.  The result is a shock wave curved and detached in front of the 

wedge, in which case the oblique shock relations no longer apply. 

2.) There are two values of β for any given θ that is less than θmax.  The larger of the two β 

values is known as the strong solution, while the smaller is called the weak solution.  The 

solution that occurs is purely dependent on downstream pressure.  It is this weak solution 

that is often favored in nature and therefore usually what occurs. 

3.) If  θ = 0, then β will either be 90o (for a normal shock wave) or µ (for a Mach wave µ = 

sin-1

M
1 ). 

4.) Lastly, for a fixed θ, there is a minimum Mach number where the flow is still attached; 

hence resulting in the largest wave angle (assuming a weak solution).  If the free stream 

Mach number falls below this minimum Mach number, the flow will become unattached.   

Reynolds Number 

 In aerodynamics there are myriad of nondimensional numbers that one could consider 

when trying to analyze a flow.  One of the most important of these is the ratio of inertial to 

viscous forces, more commonly known as the Reynolds Number Re.  The reason Reynolds 

number is so important is because it is used to determine if flow around two similar bodies are 

similar (Kuethe and Chow, 1998:364).   

 To derive Reynolds number, first consider a two dimensional incompressible flow with a 

boundary layer of thickness D.  By starting with the full Navier-Stokes equations, the governing 

equation can be reduced to equations 9 and 10 below (Bautista, 2003: 2-7). 

                                             ⎟⎟
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The inertial force terms, those on the left side of equations 9 and 10, 
y
uv

∂
∂ , and so forth, have the 

dimensional form  

δ
ρ 2V  

where V is the velocity outside the boundary layer and δ is the characteristic length (usually the 

chord when flow is over an airfoil).  The viscous force terms, those expressed by the group of 

terms on the right side of the equations, 2

2

x
u

∂
∂µ , have the dimensional form 

2

V
δ
µ  

therefore the ratio of the two becomes the equation for Reynolds number, which follows in 

equation 11 (Kuethe and Chow, 1998:364). 

ρ
µν =  

                                                               
ν
δ

µ
δρ V

==
V  Re                                                           (11) 

Compressible Turbulent Jets 

 Compressible jets are the basis for achievement of high-speed flow.  Development of that 

high-speed flow is quite complex.  Figure 2 is an illustration of initial turbulent jet development. 
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Figure 2 Initial Turbulent Jet Development (Bautista, 2003:2-8) 

 

In Figure 2 velocity profiles are shown as the darker lines across the flow.  As the jet issues a 

fully developed turbulent velocity Uexit, which is normally flat, a mixing or shear layer will form 

just at the edge of the nozzle exit.  This shear layer will grow from the ambient fluid until it 

reaches the potential core flow with velocity Uexit.  The shear layer will not grow for very long 

since the potential core dies out at about one nozzle diameter from the exit.  At this distance, the 

potential core no longer has its distinctive flat shape, but rather transitions to the typical 

Gaussian-type shape.  At approximately twenty diameters downstream of the exit, the velocity 

profile will reach a sustaining self-preserving shape (Bautista, 2003: 2-8).  

 With the knowledge of turbulent jet development, let us now focus on jet operating 

characteristics.  Key to the performance of nozzles is the designed nozzle exit pressure Pne.  

Ideally, one would like to operate a jet where Pne would be the same as the receiver 

pressure/ambient pressure Pa.  In this situation, there will be no pressure disturbances occurring 
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in the jet issuing form the nozzle; unfortunately, this rarely happens.  Usually Pne is lower or 

higher than Pa, in which case the following apply (Mattingly, 1996: 172). 

1.) When Pne > Pa the jet is said to be Underexpanded.  In this case a set of Prandlt-

Meyer (PM) expansion waves develop at the nozzle exit, forcing the jet to expand; 

and thereby causing the jet to decrease in pressure.  Following the PM expansion 

waves, oblique shock waves form starting at the jet boundary.  This process repeats 

itself until self-preserving flow is attained. 

2.) When Pne < Pa the jet is said to be Overexpanded.  Here oblique shock waves will 

propagate from the nozzle exit forcing the jet to increase in pressure.  Similar to the 

underexpanded case, a set of PM expansion waves will now emulate from the jet 

boundary.  As before, this process will repeat itself until self-preserving flow is 

attained. 

Below, in Figures 3 and 4, are illustrations of just such cases.  

 

Figure 3 Underexpanded Jet (Bergren, 2002: 2-7)  

expansion wa\es jet boundory 

j«t boundpry 

afmosphere 
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Figure 4 Overexpanded Jet (Bergren, 2002: 2-7) 

Nozzle clusters or arrays are a collection of nozzles arranged in close proximity with one 

another.  Because of their proximity these jets have a tendency to interact with each other 

creating “a complex flow field of interacting shear layer, compression and expansion waves and 

turbulent mixing.”  (Bergren, 2002: 2-9)  Moreover, since nozzles rarely operate at the on-design 

pressure, interaction between individual jets is an often occurrence.  An example of a nozzle 

array operation at off-design conditions (overexpanded and underexpanded) can be found in 

Figure 5.  From this figure, one can see that there is a flow void in the base region of the 

underexpanded nozzle array.  The pressure in this region is below nozzle exit pressure, thus 

causing the jet to be underexpanded.  If this pressure rises, it will cause the jets to separate as 

they will become overexpanded.   

ofmosph«re 

jet boundary 

compression waves 

Njet boundary 

atmosphere 
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Figure 5 Nozzle Array 
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III. Procedural Methods 

Test Section 

 The test section used here was a modified version of the test section that was specified by 

the United States Air Force SBL IFX program office and TRW, Inc.  The original design criteria 

are listed below and are followed by modified design criteria (Bergren, 2002: 3-4). 

1.) One quadrant or 90o arc of the nozzle stack and Exhaust Manifold Assembly (EMA) 

be modeled. 

2.) The flow at the nozzle exit plane be greater than Mach 1.2 

3.) The nozzle array consist of ten nozzles; nine full nozzles and two half nozzles on 

each end. 

4.) The nozzles have a half angle of approximately 15o.  

The modified design criteria are: 

1.) The nozzle array will be flat and oriented parallel to the ground vice the original 90o 

arc oriented perpendicular to the ground. 

2.) Model previous nozzle geometry while incorporating as many individual nozzles as 

possible.  

3.) Attach new nozzle array to existing Exhaust Manifold Assembly. 

4.)  The flow at the nozzle exit plane be greater than Mach 1.2 

The new test section is shown below in Figure 6 
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Figure 6 Cross-Sectional View of Modified Nozzle Array and EMA 

Nozzle Array 

 Besides geometric similarities, the modified nozzle array shares some of the same 

operating conditions as the original scaled array.  These conditions differ from the SBL IFX.  As 

in the case of the 1/5th scale nozzle array, the modified nozzle array does not have hydrogen 

injected into the exit flow during testing.  Likewise air was used as the working fluid rather than 

fluorine molecules.  Additionally, no lasing was to occur at the nozzle exit.  The key objective in 

both cases was to produce similar Mach numbers at the exit plane (Bautista, 2003: 3-3).   A 

cross-sectional view of the nozzle array can be found in Figure 7.  Additionally Table 1 lists the 

critical dimensions for the nozzle. 

Table 1 Nozzle Critical Dimensions (Bergren, 2003: 3-6) 

  Description Dimension 
a Base 4.6 mm 
b Exit Width 1.98 mm 
c Throat Width 1 mm 
d Half-Angle 15 deg 

Lasing Cavity 

Nozzle 
Array Center body 

Diffuser 



  

 18

 

Figure 7 Nozzle Array Cross-Section (Bergren, 2002: 3-6) 

This nozzle array arrangement works well to produce the higher Mach numbers; unfortunately, 

there are considerable losses with this setup.  These losses, which can be attributed to viscous 

forces on the walls of the nozzle array, could have been abated if the nozzle walls were 

contoured (Bautista, 2003: 3-3).  Regrettably, because the dimensions for this array were so 

small, fabricating contoured nozzles would be cost prohibitive.  A preliminary study on this type 

of nozzle geometry was conducted by Captain Bergren, in which he determined a loss of 

approximately 15% due to non-isentropic flow.  Figure 8 is a picture of the modified nozzle 

array in the vertical position.  In this figure air is moving from the right to the left.  Note that data 

collected with the nozzle in this position was used to compare with previous work.  The focus of 

the experiment described in this report was written on data collected when this same nozzle array 

was rotated 90o, so that the nozzles are parallel with the floor. 
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Figure 8 Experimental Nozzle Array 

Downstream Components 

 The remainder of the downstream components consisted of the centerbody, the Exhaust 

Manifold Assembly (EMA), and a transition structure that was remodeled by Captain Bautista in 

2003.  The centerbody, which was used by both Captain Bergren in 2002 and Captain Bautista in 

2003, was a symmetric airfoil designed to split the incoming flow into two channels, a top and a 

bottom.  The leading edge was a wedge with a half angle of 21o.  To ensure an airtight fit with 

the wind tunnel walls, gaskets secured by hex bolts were used.  A sketch of the centerbody is 

below in Figure 9 to illustrate centerbody geometry. 

 

 

Figure 9 Centerbody (Bautista, 2003: 3-5) 
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The EMA, like the centerbody, was used in previous studies conducted by Captains 

Bergren and Bautista.  The EMA houses both the nozzle array and the centerbody.  Initially, the 

viewing area extended only 30.5 cm downstream of the nozzle exit.  It was modified by Captain 

Bautista by replacing the first 76 cm of the walls with optical grade Plexiglas™ for improved 

viewing.  TRW Inc. designed and provided the contour for the top and bottom of the diffuser.  

These parts were designed to redirect the radial flow from the original 1/5th scale model nozzle 

array while minimizing losses (Bautista, 2003: 3-6).  Although the same diffuser was used, the 

top and bottom contours can be changed to investigate future designs for redirecting flow.  In 

total, the EMA was 1.41 meters long and ranged in height from 33.3 cm at the nozzle exit plane 

to 47 cm at the transition structure.   A picture of the EMA is shown in Figure 10. 

 

Figure 10 Exhaust Manifold Assembly 

The last section of the downstream components was the transition structure.  For this 

study the remodeled transition structure, designed by Captain Bautista, was used.  Since it had  a 
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large enough exit area to enable sustained supersonic flow at the nozzle exit for a longer period 

of time.  The original transition structure had a 108.6 cm2 rectangular exit area, while remodeled 

transition structure has a 285 cm2 circular exit which was identical to vacuum line entrance, thus 

allowing for only one choke point, the nozzle throat.  A photograph of the transition structure 

and vacuum line entrance are found below. 

 
Transition Structure 

Vacuum Line Entrance 

 

Figure 11 Transition Structure and Vacuum Line 

Wind Tunnel System 

The wind tunnel used in this study was comprised of three major subsystems: a 

compressed air system, a pressure regulation system, and a vacuum system.  A schematic of the 

wind tunnel is shown in Figure 12.  In addition to this schematic, Table 2 lists the manufacturer 

and model number for the components of the subsystems used in this wind tunnel.  This 

particular system is a blow-down/vacuum system, and when used in conjunction with the nozzle 
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array described previously, could produce a maximum steady state mass flow rate of 

approximately 0.25 kg/s.      

 

Figure 12 Wind Tunnel Schematic (Bautista, 2003: 3-9) 

Table 2 Wind Tunnel Components 

Item Manufacturer/Description Model number (If available)
Air Compressor Ingersoll-Rand SSR HXP 50 SE 

Air Dryers Ingersoll-Rand N/A 
Compressed Air Tank 6000 Gallon compressed air tank N/A 
Pressure Regulator diaphragm-type pressure regulator N/A 

Pressure reducing valve 2 in air loaded pressure reducing valve N/A 
Stilling Chamber 12 in Stilling Chamber N/A 
Shut-off Valve Manual shut-off valve N/A 
Vacuum Tank 6000 Gallon vacuum tank N/A 
Vacuum Pump Stokes two stage pumping unit 412-11 
Butterfly Valve Pneumatically operated butterfly valve N/A 
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 The compressed air subsystem starts with the Ingersoll-Rand compressors.  Set to an 

output pressure of 140 psi, these compressors feed the high-pressure air into the air dryers.  Here, 

compressed air is dried and filtered to prevent particle and moisture damage to the rest of the 

system.  The dried and filtered air is then passed through to the compressed air tank where it is 

stored at the compressor output pressure until the control valve is opened.  

The pressure regulation subsystem is used to control the flow of air and to reduce tank 

pressure to a usable level.  This is accomplished through the means of a diaphragm-type pressure 

regulator that reduces air pressure to 90 psi.  To reduce the inflowing air pressure to a usable 

level, a 2 inch, air loaded, pressure-reducing valve was used.  This valve is operator controlled 

via a digital gauge.  With the valve, the operator could accurately set the stilling chamber 

pressure.  The stilling chamber, in conjunction with a flow straightener, provided conditioned air 

to the test section.  A shut-off valve was used to start and stop the flow into the test section. 

To provide a vacuum for the wind tunnel, a Stokes two-stage vacuum pump was used to 

evacuate the vacuum tank.  This subsystem supplies the wind tunnel with a 6000 gallon vacuum 

at a pressure of 0.03 psi.  When the butterfly valve was opened and compressed air was flowing, 

the wind tunnel could run for roughly 45 seconds before the vacuum tank would fill up and the 

Mach number at the nozzle exit would fall below the minimum Mach number desired for this 

experiment.   

Data Collection 

 Two types of data were collected in this study; one type was schlieren images of the 

viewing area.  The second type was static pressure measured at various points along the walls of 

the wind tunnel with pressure transducers (PTs).  The pressure transducers were positioned in 

places where pressure data could easily be correlated with the schlieren images.  Because of the 
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high-speed nature of the fluid in this study, rapid data acquisition was a necessity.  A list of test 

equipment used is given in Table 3.   

Table 3 Test Equipment 

Item Quantity Manufacturer Description Model Number (If available)
Pressure Transducers 

(PT) 3 Endevco 
piezoresistive PT's for absolute 

pressure 8530C - 15 
Pressure Transducers 

(PT) 2 Endevco 
piezoresistive PT's for absolute 

pressure 8530C - 50 
Pressure Transducers 

(PT) 1 Endevco 
piezoresistive PT's for absolute 

pressure 8350Z -100 
Signal Conditioner 6 Endevco signal conditioner for Endevco PTs 4428A 
Data Acquisition 
System (DAS) 1 Nicolet 

mulit-channel data acquisition 
software and A/D board Nicolet MultiPro 120 

Personal Computer 
(PC) 1 Gateway 2000 386 pc running windows 3.1 N/A 

Schlieren Lamp 1 Aerolab cylindrical filament schlieren lamp N/A 

Mirror 2 N/A 
80 in focal length high quality 

mirror N/A 
Knife Edge 1 N/A vertical knife edge N/A 

Digital Camera 1 Photron 
Photron FASTCAM-X digital 

camera 1280PCI 
Personal Computer 

(PC) 1 Dell 
Pentium III pc running Windows 

XP N/A 

Digital Image Capturer 1 Photron 
PFV Photron FASTCAM viewer 

software N/A 
 

Pressure Data  

 Figure 13 depicts the location of five pressure transducers used in this experiment.  A 

sixth transducer, not shown in Figure 13, was located in the settling chamber. 
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Figure 13 Pressure Transducer Location 

Using the Nicolet computer program and the pressure transducers, pressure data were collected 

at a sampling rate of 1 kHz for fifteen seconds thus yield 15000 points of time stamped pressure 

readings.  A fifteen second sampling time was chosen based on initial runs with the new nozzle 

array; which showed that the flow remained attached for approximately eleven seconds.  A 

fifteen second sampling time would be able to capture the entire run while the flow was attached.  

These particular pressure transducers recorded absolute pressure; however, PTs 1, 2, and 3 had a 

range of 0-15psi.  PT 4 and 5 had a range of 0-50 psi and PT 6 (settling chamber) had a range of 

0-100 psi.  The reason various ranged pressure transducers were used is because they were the 

only available pressure transducers that all read absolute pressure.   

 The Nicolet Data Acquisition System (DAS) was capable of collecting 16 simultaneous 

data channels on 4 separate MP 120 channel cards.  Each card had 4 channels labeled A, B, C, 

and D.  The pressure transducers were arranged as such: PT1 channel 1A, PT2 channel 1B, PT3 

channel 1C, PT 4 channel 3A, PT5 channel 3B, Stilling Chamber channel 3C.  Channel two was 

skipped because the board was bad.  Overall the data signals were evenly divided between 

channels 1 and 3 to minimize the workload of each channel.  Each PT signal was conditioned 

and amplified by the Endevco signal conditioners, after which the DAS would digitize the data, 

which could then be stored on digital media. 

1; Centerbody 
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Schlieren Data 

 Due to the high density gradients associated with supersonic flow and resulting shock 

activity, pictures of the shock structure were taken using the schlieren photographic technique.  

A diagram of the particular schlieren setup used in this study can be found below in figure 14. 

 

Figure 14 Schlieren Photography Setup (Bergren, 2002: 3-11) 

The lamp for this study was oriented such that the cylindrical filament was vertical.  Although an 

ideal light source would be a point source for best quality pictures, the cylindrical filament did 

yield images that were quite good (Bautista, 2003: 3-14).   To acquire these high quality pictures 

the knife edge needed to be oriented the same as the filament, hence the knife edge was placed in 

the vertical position.  Possibly due to light source orientation, the best images were produced 

when the knife edge cut the right half of the image rather than the left.  The angle between the 

light source and the mirrors are critical to image clarity.  By keeping the angle between the light 

Camera/ 'fc \\ 
Video Recorder        " 

Concave Mirror 

Spark Lamp 

Optical 
Window 

Test Section 

\> Knife Edge 

Concave Mirror 
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source and the mirrors small, image distortion was kept to a minimum.  These conditions were 

also used in the two previous studies conducted by Captains Bergren and Bautista; however, 

three significant changes were made from those studies to this.  The first was that the images 

were directly captured from the light source, as opposed to being captured from a viewing 

screen.  This increased the light intensity of the images.  Secondly, the digital camera software 

frame rate used in this study was increased significantly from 60 frames per second in the two 

previous studies to 1000 frames per second.  Lastly, the shutter speed was increased in the digital 

camera software from 1 Hz to 128 kHz.  These three improvements gave a vast improvement in 

image quality and resolution.  Like before, still shots were taken from the digital video stream 

and will be showcased later. 

Experimental Procedure  

 The second objective of this study was accomplished via one set of procedures repeated 

eight separate times.  During each of the eight runs, a pressure transducer was position on the 

stilling chamber to measure stagnation/total pressure in the system.   

 Calibration and Uncertainty 

 Prior to testing, all six pressure transducers were calibrated using a portable pneumatic 

pressure tester.  Each transducer was tested at two different pressure levels, one above and one 

below atmospheric pressure.  Because testing only took two days, the transducers needed 

calibration only once.  Capt Bergren performed a detailed uncertainty analysis of pressure 

readings during his research, it is included in this report and found in Appendix A.  The 

uncertainty associated with bias in the pressure transducer and precision error in the signal 

conditioner was mitigated to ± 0.3 psia.  Because pressure was used to calculate mass flow rate 
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and Mach number, the error associated with the pressure readings will propagate into those 

calculations. 

 Wind Tunnel Operation 

 There were three main categories of wind tunnel operation that were followed for this 

study.  Two involved instrumentation while the third was the actual operation of the wind tunnel 

itself.  It is important here to note that prior to each run, the vacuum system and the compressed 

air system were turned on and allowed to reach a steady state.  Additionally, all valves in the 

system were initially closed. 

 Before any runs, the DAS and schlieren systems were adjusted to the appropriate settings.  

These settings can be found in Table 4.   

Table 4 Initial Instrument Settings 

Nicolet DAS   
 Procedure No. Procedures 
 1 Open Nicolet (Nic Win) 
 2 File - open channel Setups - dave1.chs 
 3 File - open display setups - dave1.dss 
 4 check for channels 1 (A-C) and 3 (A-C) 
   

Schlieren System Procedure No. Procedures 

 1 
Turn on schlieren Lamp (Be sure to 

wear UV protection glasses) 
 2 Open Mirror covers 

 3 
Check to make sure light beam 

completely covers the test section 
 4 Open PFV software 
 5 Check live as camera source 
 6 Set frame rate to 1000fps 
 7 Set shutter speed to 1/128000 sec 

 8 
Using a warm object like hot water, 

check quality of schlieren image 
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Once the initial setup was complete, the tests could then begin.  Operations done out of order 

could possibly destroy the Plexiglas™ walls of the test section; therefore, it was critical that the 

procedures were followed exactly.  

 First, the vacuum butterfly valve is opened and the tunnel subjected to a vacuum.  

Second, the shut-off valve is opened to allow compressed air to flow.  Next, use the live images 

from the digital camera to verify that air is flowing and is supersonic.  Verify supersonic airflow, 

check the OneShot button on the DAS system and choose OK.  Acquire pressure data by 

pressing Ctrl-T.  Once that pressure data collection has started, collect schlieren images by 

choosing the save option on the PFV software.  After fifteen seconds the DAS system would stop 

collecting data automatically at which time the schlieren data collection can be stopped.  Next, 

shut off the compressed air system by closing the appropriate valve.  Lastly, wait approximately 

two to three seconds then shut off the vacuum system valve.  As a side note, it is very helpful to 

have a second person run the schlieren system so that the maximum amount of usable data could 

be taken before the vacuum tanks fill up.  This process was repeated for pressure-reducing valve 

settings (PRVS) from 30 psia to 15 psia in increments 5 psia.  Each pressure-reducing valve 

setting was tested when the flow was attached and unattached to the centerbody.  Pressures 

denoting the attached cases will have a subscript a, those denoting unattached cases will have a 

subscript u.  
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  Data Conversion 

 Because the DAS is such an old system, the data it collects must be converted into a form 

readable by other computers and programs.  Data is converted taking the saved pressure data and 

passing it through the WaveCon program.  This program will convert the pressure data to a tab 

delimited form that can then be read by programs like MatLab or Microsoft Excel.  Once 

converted the data can be processed.
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IV. Results 

Pressure Data  

The one adjustable variable that has the largest effect on nozzle exit Mach number is the 

stilling chamber pressure.  This is because exit Mach number is directly proportional to mass 

flow rate, which in turn is directly proportional to total pressure (stilling chamber pressure).  

Below in Figure 15 is a time-based graph of typical total pressure, which was taken for a 

pressure-reducing valve setting of 30 psia.  Although, the valve setting for this graph was 30 

psia, all other runs were similar in shape to the one pictured here. 
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Figure 15 Typical Stilling Chamber Pressure 

  In the first seconds of any given run, as in this one, there were some transient pressure readings.  

These were due to the mechanical feedback loop of the pressure reducing valve and usually died 

out by two seconds (Bergren, 2002: 4-2).  After the initial transient readings the pressure would 
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reach a steady state.  As stated before, there is a ± 0.3 psia (2kPa) uncertainty with these 

readings.  Please note that the Mach number was assumed to be unity at the throat for all runs. 

 From equation 1 it can be seen that mass flow rate is directly proportional to total 

pressure.  Therefore the same sort of transient followed by steady state behavior is expected.  

Figure 16 is a typical mass flow rate graph.  The values used to create this graph were those for 

values at the throat and the same pressure-reducing valve setting as for Figure 15.   
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Figure 16 Typical Mass Flow Rate  

The temperature used to calculate the mass flow rate for these experiments was the outdoor 

ambient air temperature (approximately 271 K).  Capt Bergren determined the maximum error 

for the mass flow rate calculations to be ± 4.7 g/s.  These calculations are listed in this report in 

Appendix A. One may notice that around 11 seconds into the run the pressure and mass flow 

exhibit a sharp jump followed by a steady decrease.  This sharp jump is the point in time where 
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the flow becomes unattached.  Consequently, the tunnel is shut down causing the steady 

decrease.    

 Pressure readings from the pressure transducers were used to determine a local Mach 

number at the various locations along the wind tunnel.  Because of the various flow regimes 

throughout the wind tunnel, the Mach number at each transducer location was calculated with 

different equations.  Equation 4 was used to calculate the Mach number at transducers locations 

1 and 4 because they were in the core flow. These values were reduced by twenty percent for 

non-isentropic flow losses, which were discussed in chapter 3.  Equations 5 through 8 were used 

to calculate the Mach number a location 3 because it was just behind an oblique shock wave.  

Lastly, the Mach number at location 5 was calculated with equation 2.  The local cross-sectional 

area at location 5 was 0.015 m2.    These Mach numbers could then be graphed as functions of 

time.  Figure 17 is a graph of local Mach number as a function of time; where, the location of 

each transducer has been identified in Figure 13.  The Mach number for transducer 2 was not 

graphed.  This is because transducer 2 was located in the shear layer of the jet and no suitable 

method was found to calculate the Mach number in this region. 
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Mach No. Vs. Time (PRVS of 30psi)
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Figure 17 Local Mach Number 

It can be seen from this figure that the Mach number at location 1 was highest.  This was 

expected since that location was immediately downstream of the nozzle array exit.  The initial 

spike in Mach number here can be attributed to the mechanical feed back of the pressure-

reducing valve, much in the same way that stilling chamber pressure or mass flow rate spike at 

the beginning of a run.  The reason this phenomenon is not seen in any other transducer location 

is because of their proximity to the nozzle exit.  Transducer 1 is right at the nozzle array exit, 

whereas all others are farther downstream. After this initial spike, the Mach number reaches a 

steady state of approximately 2.65 until the compressed-air system is shut off.  Mach numbers at 

locations 3 and 4 are also what would be expected.  Mach numbers at location 4 are lower than at 

location 1 because by the time the compressed air has moved to location 4 some of its energy has 

been dissipated to the surrounding fluid.  Mach numbers at location 3 are lower than those at 4 

because they are behind the oblique shock wave that forms on the leading edge of the 
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centerbody.  Lastly, Mach numbers at location 5 are well below the sonic condition because the 

cross-sectional area at location 5 is over two orders of magnitude larger than the nozzle throat 

area. 

Schlieren Images  

 A schlieren optical system was used to capture images and video of the flow field in the 

optical cavity during wind tunnel operation.  Initially digital video of the flow field was captured, 

after which the Photron FASTCAM Viewer (PFV) software allowed the user to pull off 

individual still images from the video.   

Vertical and Horizontal Nozzle Array 

 In previous studies faint radial lines were seen just aft of the nozzle array.  It was 

suspected by Captain Bergren that these were intersecting shock waves and expansion fans, 

Captain Bautista on the other hand hypothesized that they were simply radial expansion waves 

(Bergren, 2002: 4-11 and Bautista, 2003: 4-21).  Neither of which could be proven or disproven 

due to the fact that schlieren images could not be taken in the correct place to see the nozzle 

interactions.  Because the nozzle array designed for this study could be rotated about a vector 

normal to the nozzle array exit plane, this could be investigated.  This nozzle array, while in the 

vertical position, resembles what would be seen from the 1/5th scale model.  In the horizontal 

position, interactions between the nozzles can be seen.  Nozzles in the horizontal position do not 

resemble any previous configuration.  This configuration was purely used for observations.  As is 

turns out, Captain Bergren’s suspicion was correct.  The Figures 26 and 27 show the nozzle array 

used in this study in two configurations.  In Figure 26, where the nozzles are aligned vertically, 

the same faint lines that were observed in previous studies are seen here.  Figure 27 shows the 

complex flow field of the nozzle array in the horizontal position.  The intersections of shock and 
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expansion waves can be seen at roughly the same intervals as the faint lines.  Leading to the 

conclusion the faint lines are the result of intersecting shock and expansion waves.    

 

 

 

 

 

Figure 18 Nozzle Array in Vertical Position 
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Figure 19 Nozzle Array in Horizontal Position 

Oblique Shock Waves 

The oblique shock wave attached to the leading edge of the centerbody could be used to 

verify Mach number calculations.  Figures 18 through 21 are images captured for four different 

pressure-reducing valve settings; 30a, 25a, 20a, and 15a psia respectively.  In each of these cases 

the flow is attached to the centerbody. 
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Figure 20 Schlieren Photograph for PRVS of 30a (M4 = 2.18) 

 

Figure 21 Schlieren Photograph for PRVS of 25a (M4 = 2.11) 
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Figure 22 Schlieren Photograph for PRVS of 20a (M4 = 1.97) 

 

Figure 23 Schlieren Photograph for PRVS of 15a (M4 = 1.91) 
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These images, taken while flow is at a steady state, illustrate the subsiding of the shock diamond 

as the pressure-reducing valve setting was reduced.  Moreover, they also illustrate the intricate 

interactions of the individual nozzles within the array.  A third important fact that can be 

deduced from these photographs is the fluid Mach number at the leading edge of the centerbody.  

By measuring the wave angle and the wedge-half angle an iterative process can be used to 

determine the Mach number of that flow.  Additionally, the Mach numbers determined via these 

images correspond well with those calculated using pressure data.  This fact further justifies 

Mach numbers calculated via the use of pressure measurements. 

Unattached Flow 

 Eventually, the vacuum tanks will fill up to the point where the vacuum pumps can only 

evacuate the incoming air.  At this point a large pressure ratio will no longer be attainable; 

therefore, the flow inside the test section will become unattached.  Schlieren images were also 

taken during this scenario and can be seen in Figures 22 through 25.   

 

 

 

 



  

 41

 

Figure 24 Schlieren Photograph for PRVS of 30u 

 

Figure 25 Schlieren Photograph for PRVS of 25u 
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Figure 26 Schlieren Photograph for PRVS of 20u 

 

Figure 27 Schlieren Photograph for PRVS of 15u 
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These images show that while the flow isn’t attached it is still supersonic because of the 

formation of the normal shock wave on one side of the centerbody.  Another interesting 

phenomenon is observed in these images.  The flow does not move symmetrically around the 

centerbody, instead it shifts to one side.  What is even more peculiar is that the flow shifts from 

bottom to top as the PRVS is lowered.  Since the only thing changed between runs was the 

PRVS, the shifting of flow has to be a function of pressure.  This flow shifting is most likely due 

to some nonsymmetry in the nozzle array.  This nonsymmetry problem is exacerbated since 

silicone was used to seal any leaks that couldn’t be sealed with gaskets.     
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V. Conclusions and Recommendations 

 

Conclusions 

 The first objective to design and fabricate a nozzle array that incorporated the same 

nozzle geometry as in previous studies, but had a flat exit plane so that interactions between 

nozzles can be observed.  This objective was met by a nozzle array that was flat and could be 

rotated about its mounting base 360O in 7.5O increments.  With this type of apparatus, the nozzle 

array could be oriented in a way that resembles the previous nozzle array configuration (vertical) 

and could be rotated to a horizontal position.  Thus allowing the user to observe nozzle 

interactions.  The idea for this rotating design was maximizing versatility while minimizing 

equipment.   

 The second objective was to investigate the flow field of the new nozzle array using 

timed based pressure measurements and schlieren photography.  This objective was chosen 

based on the fact that not much was known about the interaction between the shock structure of 

individual nozzles in this type of nozzle array geometry.  Previous studies focused on nozzle 

geometries that were either a 1/5th scale model nozzle rings or a flat array of four nozzles.  The 

first was particularly good at modeling the full scale SBL IFX nozzle array, however shock 

interactions could not be observed.  The later array was only used for loss calculations and rough 

estimations of shock structure.  This objective was accomplished with the use of a basic schlieren 

set up and a high-speed data acquisition system.   

 Pressure data collected with the DAS along with the schlieren images gave a clear flow 

field regime of the optical cavity.  With this data, Mach numbers were mapped all throughout the 

test section.  Additionally the schlieren images and pressure data complimented each other, 
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particularly when determining the Mach number at each pressure transducer location.  Flow near 

the nozzle array exit was found to have a steady state Mach number greater than 2.5 while flow 

at the exit of the diffuser remained subsonic.  These results match those in previous studies very 

closely.   

 The schlieren images of the horizontal nozzle array unveiled a vastly complex flow field 

downstream of the nozzle exit.  These images showed that for these tests the nozzles were 

underexpanded since the jet plumes of each individual nozzle expanded to interact with other 

expanding jet plumes.  Additionally, these images showed that when the vacuum system became 

saturated by the compressed air system and could only remove incoming air.  The oblique shock 

wave would become unattached from the leading edge of the centerbody but flow would remain 

supersonic.  This supersonic flow would shift up or down based on the PRVS;  a phenomenon 

attributed to nonsymmetry in the nozzle array.  Lastly, they showed that the faint radial waves 

seen in Captain Bergren and Bautista’s studies were indeed the intersection of shock and 

expansion waves.   

 On a final note, the schlieren images showed the complexity of the jet plume exiting the 

nozzle array.  Unfortunately, the non-uniformity of this flow is not conducive to the lasing 

process.  However, the nozzle array used in this experiment was simply used for viewing shock 

structure, not for lasing.  Because of this, the nozzle array used here was an off-design case; 

which accounts for the slightly higher shock activity. 
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Recommendations 

  The following is a list of recommendations for future studies on this topic.  They 

are listed in order of decreasing precedence.   

1. Replace the Plexiglas™ walls of the optical cavity with optical grade quartz glass.  

This will help schlieren image quality by eliminating distortions due to scratches in 

the optical cavity. 

2. Secondly have a professional drill and place the taps for the pressure transducers.  

The previous section had holes drilled too big, so silicone was used to fill them up.  

This led to a severe hindrance in observation into the optical cavity.      

3.  Install the new DAS.  The current Data Acquisition System is very old and slow, in 

addition to not being connected to the internet.  This made getting the pressure data 

from one computer to another very difficult.  The new DAS is based on a LabView 

program, which can be easily programmed to automatically trigger data collection.   

4. It is recommended that this nozzle array be run in positions that are not vertical or 

horizontal.  It may be possible to see other aspects of the nozzle array plume that are 

not visible in the two positions tested in this study.   

 

 

 

 

 

 

 



  

 47

Appendix A: Uncertainty Analysis (Bergren, 2002: C-1) 

 

 In a previous study, Capt Bergren performed an uncertainty analysis for the 

instrumentation used to determine the accuracy of a single pressure reading.  Originally, this 

analysis was provided by Wheeler and Ganji (178-182).  The calibration list below is broken 

down by instrumentation component.  The Full Scale (FS) for one particular transducer was 50 

psia. 

Pressure Transducer: 

Nonlinearity and hysteresis = ± 0.1% FS 

Repeatability = ± 0.1% FS 

Thermal sensitivity shift = ±  0.015% FS/OF 

Pressure Signal Conditioner: 

The calibration errors were categorized into bias ad precision uncertainties.  The only bias error 

in the system due to the pressure transducer was the nonlinearity and hysteresis uncertainties and 

found to be: 

 B1 = 0.1/100 *(50 psia) = ± 0.05 psia 

The precision error due to the pressure transducer was from the repeatability and thermal 

sensitivity shift.  To ensure the uncertainty was with a 95% confidence level, the degrees of 

freedom were assumed to be 30.  When referencing a tabulated form of the Student’s t-

distribution, t = 2.  The precision indices could be estimated: 

Srepeatibility = S1 = (0.1%)(FS)/(100t) = 0.025psia 

SThermal = S2 = (0.015)(Tshift)(FS)/(100t) = 0.0075psia where Tshift = ± 2OF.  

The single uncertainty of the signal conditioner was a bias uncertainty.  The error as calculated:  
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Bgain = B2 = (±0.5%)(FS)/100 = 0.25psia 

By combining all the bias and precision errors of the system, a total bias and precision error was 

calculated: 

BT = (B1
2 + B2

2)0.5 = 0.255psia 

ST = (S1
2 + S2

2)0.5 = 0.0261psia 

Finally, the estimated uncertainty for a single pressure reading could be found: 

wT = (BT
2 + t ST

2)0.5 = 0.261psia = 1793Pa 

Therefore, the uncertainty in a pressure reading was ± 0.3psia (2kPa) with a 95% confidence 

level considering significant figures. 

Calculated Results: 

The maximum error in the calculations performed for mass flow and Mach number was 

investigated considering the uncertainty in pressure.  Recall the mass flow equation from 

equation 1:  
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The Mach number equation is: 

  
pAa

RTmM
•

=  

The sources of error in this equation are due to the mass flow calculation, uncertainty in pressure 

reading, and temperature fluctuations.  The temperature within the test section was assumed to 

range ± 10OK during the run.   

wT  = 10OK 

 wp =  1793 Pa 

•
m

w =4.68E-3kg/s                        

•

∂

∂

m

M =2.97 
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M

∂
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∂
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To find the maximum error in Mach number:  
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