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Abstract 

 

 

 I present a numerical technique to solve the time independent Boltzmann 

Transport Equation for the transport of neutrons and photons.  The technique 

efficiently solves the discrete ordinates equations with a new iteration scheme.  I 

call this new scheme the angle space distribution iteration method because it 

combines a non-linear, high angular-resolution flux approximation within 

individual spatial cells with a coarse angular-resolution flux approximation that 

couples all cells in a spatial mesh.  This is shown to be an efficient alternative to 

source iteration.   

 The new method is implemented using the step characteristic and 

exponential characteristic spatial quadrature schemes.  The latter was introduced 

in 1993 and has been shown to be accurate for both optically thin and optically 

thick spatial meshes and to produce strictly positive angular fluxes.  

 The discrete ordinates equations can be solved using the conventional 

source iteration method.  However, it is well known that this method converges 

prohibitively slowly for optically-thick problems with regions that are dominated 

by scattering rather than absorption.  The new scheme converges rapidly even for 

such problems.  Numerical results show that the new scheme is reliably accurate 

for the problems intended, and that it is fast and efficient in use of memory.  

 The angle space distribution iteration method is demonstrated in slab 

geometry, for a single energy group, using isotropic cross sections, with 

exponential and step characteristic spatial quadratures.  
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A RAPIDLY-CONVERGING ALTERNATIVE TO SOURCE 

ITERATION FOR SOLVING THE DISCRETE ORDINATES 

RADIATION TRANSPORT EQUATIONS IN SLAB GEOMETRY 

 

I. Introduction 

 

 The conventional practice for evaluating the time independent discretized, 

Boltzmann transport equation is the discrete ordinates angular quadrature 

method with truncated Legendre expansions representing the cross sections.  In 

discrete-ordinates  approximations of large transport problems the underlying 

linear Boltzmann problem is discretized in space and angle and the resulting 

system of algebraic equations is solved iteratively using source iteration.  If the 

physical system contains regions that are diffusive and optically thick, source 

iteration can be so slow to converge as to make the calculations impractical, 

unless an effective convergence acceleration scheme can be found (7:36).  

Accurate, nonnegative spatial quadrature schemes, in particular the exponential 

characteristic (EC) method, are effective for optically thick absorbing regions but 

with unaccelerated source iteration they are prohibitively slow to converge in 

thick diffusive regions.  

nS

 In the work presented here, I have developed new algorithms that invert the 

scattering operator in each cell and directly solve the linear system of coupled 

equations.  This approach eliminates source iteration (SI), per se, but does 

require iteration.  The iteration converges cell coupling coefficients which depend 

on the angular distribution of the flux and (for EC) the spatial distribution of the 

source.  I have implemented and benchmarked a code to execute one dimension 

slab geometry particle transport.  This transport is efficient in thick diffusive 

problems for the two non-negative spatial quadrature schemes tested.  The 

method overcomes the inefficient dependence on numerous particle flights by SI 

to estimate scattering source and the corresponding lack of robustness in the 
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converged SI solution.  The method is not designed as an accelerator for SI but 

as a new transport method.  Since the new method converges on a solution by 

iteratively seeking improved angular and spatial distribution information I refer 

to it as the angular and spatial distribution iteration (ASDI) method.  The ASDI 

method performs comparably with the SI method for those problems that don’t 

require acceleration and rapidly converges in problems that conventionally 

require SI acceleration.  This is particularly important in the thermal neutron 

energy range from about 0 to 1 eV (2:83). 

In systems that are optically thick and scattering dominated, particles 

undergo many collisions before being captured or leaking out of the problem.  

Developing a practical efficient iterative method for these problems is of 

significant practical importance.   

Examination of the one group time independent Boltzmann Transport Equation 

(BTE) illustrates the problem.  A one group particle problem in planar geometry 

can be expressed as: 

( )

( )
1

1

( , ) ( , )

, ' ( , ') ' ( , ) 0 ,ext
s

x x x
x

x x d Q x x X

ψ µµ σ ψ µ

σ µ µ ψ µ µ µ
−

∂
+ =

∂

→ + <∫ <

>

0<

 (1) 

( ) ( ) ( ) ( )1

0
0, ' ' 0, ' 0incident

L Ldψ µ ψ µ µ α µ µ ψ µ µ= + →∫  (2) 

( ) ( ) ( ) ( )0

1
, ' ' , 'incident

R RX d Xψ µ ψ µ µ α µ µ ψ µ µ
−

= + →∫  (3) 

where  is the position coordinate; x µ  is the direction cosine of the angle of flight 

relative to the positive -axis; x ( )xσ  is the total cross section; ( ), 's xσ Ω ⋅Ω is the 

scattering cross section; ( , )Q x µ  is the interior emission source, ( , )xψ µ  is the 

angular flux to be determined.  Equations (2) and (3)  are general covering all 

but periodic boundary conditions on the left and right sides with appropriate 

choice of boundary condition ( )'Lα µ µ→  or ( )'Rα µ µ→ .  
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By defining a streaming and collision operator as 

 ( )( ),L x
x

µ σ∂
= +

∂
 (4) 

 and a scattering operator as  

 ( )
1

1

' ,s sS d xµ σ µ ,
−

= ∫  (5) 

with sµ the scattering angle, equation (1) is written 

 ( , ) ( , ) ( , ).extL x S x Q xψ µ ψ µ µ= +  (6) 

Generally an analytic solution for ( , )xψ µ  is not possible.  Conventional practice 

is to approximate a solution iteratively using Source Iteration (SI).  The SI 

scheme is   

 ( 1) ( , ) ( , ) ( , )ext extL x S x Q xψ µ ψ µ µ+ = +l l l . (7) 

Operationally SI works as outlined in algorithm 1. 

 

Initialize ( ) (0 ,x )ψ µ with initial estimate 

Do 

Update ( ) ( ) ( ) ( ) ( ), , ext ,S x Q xQ x µ ψ µ µ= +l l  

Apply Boundary Conditions 

Solve ( ) ( ) ( ) (, ,L x Q x )ψ µ µ=l +1 l for ( )ψ l +1  

Iterate until ( ) ( )1 ,SRDε ψ ψ+⎛⎜
⎝

l l ⎞⎟
⎠
 is less than convergence tolerance 

End do 
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The symmetric relative difference function SRDε  is introduced in Algorithm 1.  

This function has all the properties required of a distance function (3:23), as is 

shown in appendix A.  Thus, the real numbers, with this metric, form a metric 

space.  This metric is combined with the vector norm ∞⋅  to measure the 

maximum distance between two vectors, as is explained in appendix A. 

 The symmetric relative difference, ( ) ( ) ( )SRD , , ,x xε ψ µ ψ⎛ ⎞
⎜ ⎟
⎝ ⎠

µ
uv uv(l +1) l , is used to 

determine when two successive flux iterations, ( ,x )ψ µ
uv(l +1) ( and ) ( ,x )ψ µ

uv l

)( )

, meet 

convergence tolerance.  The iteration estimate for angular flux is ( ,xψ µl .  It is 

the angular flux due to particles that have scattered at most 1−l  times.  When 

particles undergo few collisions, the SI scheme converges rapidly.  However, for 

problems that contain diffusive regions that are optically thick and scattering 

dominated, SI schemes converge slowly and may converge falsely.  If scattering 

ratios are nearly one then the error in the final iterate can be much greater than 

the difference (between it and the previous iterate) that satisfied the preassigned 

convergence criterion.(4:10).  This makes it difficult to determine when an 

iteration scheme is suitably converged and renders an SI solution unreliable.  

Slow and false convergences dictate the need to either accelerate SI or develop a 

more efficient iterative scheme.   
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Motivation 

 

 

Recently Adams and Larsen conducted a comprehensive review of 40 years 

of methods that improve iterative transport convergence.  This work outlines four 

desirable properties for fast iterative schemes (4:139).  An iterative method 

should: 

1. Converge effectively requiring few iterations. Convergence 

effectiveness is typically characterized by spectral radius, or 

equivalently iteration count.  Often lower- order NS  schemes, or 

coarser angular refinement are proposed to accelerate higher-order 

NS  schemes.  Typically these lower order or coarser schemes use 

fewer unknowns per cell and require fewer transport calculations, or 

require transport calculations that are computationally cheaper 

than the higher-order transport scheme.  However these lower-order 

schemes may not reduce iteration count significantly in difficult 

problems. 

2. Be computationally efficient. Computational efficiency can be 

measured by basic memory storage requirements, algebraic cost to 

implement the method or overall computing time.  If the equations 
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used to accelerate a transport scheme carry the same number of 

unknowns or use computationally expensive cell variables the 

equations may yield satisfactory spectral radius yet be so time 

consuming to solve that the low order scheme is unacceptable.   

3. Be applicable to both heterogeneous and homogeneous problems.  

Recently it was discovered that synthetic acceleration when 

extended to multiple dimensions, can degrade or diverge.  

Transport synthetic acceleration (TSA) diverges (5:15/16; 6:12/17) 

and diffusion synthetic acceleration (DSA) degrades from a spectral 

radius of 1/3 in a homogeneous material to a spectral radius of 0.88 

(4: 139) in problems with periodic material interfaces.  Other 

acceleration methods are expected to show similar degradation.  

The transport community needs a scheme that maintains a small 

spectral radius and is cheap computationally in both slab geometry 

and multiple dimensions. 

4.  Be portable to parallel systems of computers and not degrade in 

parallel performance as the number of processors becomes large. 

In addition to the four properties outlined by Adams and Larsen I add a fifth 

property.  An iterative method should   
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5. Be robust.  By this I mean that it should be usably accurate for the 

full range of problems that we want to solve. This accuracy should 

not be achieved by operator tuning, fix-ups, or expert system 

hybridization but by aptness of the algorithm for the problem.  

This property will be referred to as robustness.  

Synthetic acceleration and quasidiffusion techniques have been applied to 

particle transport in problems that are many mean free paths thick, with 

scattering ratios close to unity with mixed results.  In slab geometry the greatest 

improvement in efficiency results from DSA provided that the diffusion equation 

is consistently differenced and scattering is either isotropic or weakly anisotropic.  

I sought to improve the iterative convergence rate of the exponential 

characteristic (EC) method as developed by Mathews and Minor in 1993(7) 

which is essentially the same as the non-linear characteristic (NC) method 

introduced by Waring, Walters and Morel in 1996 (8: 24-37).  Wareing and 

Morel subsequently were able to develop an effective acceleration method in slab 

geometry for their NC for both homogeneous and heterogeneous materials with 

scattering ratios of one.  They did not demonstrate application to periodic 

material interfaces, and they did not report compute time leaving the 

computational efficiency of their acceleration method in question.  Their research 

has not been extended to multiple dimensions (9:76).  Recent research has 

pointed toward the failure of DSA when used in multiple dimensions on problems 

with periodic interfaces.  Because of this I did not pursue Wareing and Morel’s 

DSA accelerator for use with EC.  Instead I sought to find an efficient slab 

geometry scheme that would not suffer from DSA-like degradation in multiple 

dimensions.  My motivation for doing this is that no accelerated source iteration 

technique to date is unconditionally stable, yields the same solution as the 

unaccelerated source iteration, is rapidly convergent, is demonstrated to be 

computationally efficient, is general with respect to geometry and can be applied 

to the EC method.  The research effort at the Air Force Institute of Technology 
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requires efficient solution of the transport equation in all dimensions.  Mathews 

and his research team require an effective (low iteration count), computationally 

efficient (fast run time), robust (reliably accurate without user intervention) EC 

method applicable to homogeneous and heterogeneous materials of any 

configuration or geometry in order use the EC spatial quadrature on a wide range 

of transport problems of interest to the defense community.  Further it is 

desirable that such a method be readily adapted for use with parallel computing 

environments. 

 

 

 

Goal of the Research 

 

My goal was to develop, implement, and evaluate an effective, computationally 

efficient, robust method for solving the one group, slab geometry Boltzmann 

transport equation (BTE) discretized in angle and space.  I further sought to 

develop a method that was general with respect to material properties, was 

readily portable to parallel computing environments, and could be extended to 

multiple dimensions.  I designed the method primarily for use with EC and step 

characteristic (SC) spatial quadratures but sought a method that could also be 

used with other spatial quadratures. 

 

Scope 
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I derive a new transport method that explicitly solves for infinite particle flights 

in a single iteration.  The method couples across cells in space using a two 

direction angular quadrature.  This is referred to as the global space solution.  

The method further solves particle transport within each spatial cell coupling the 

N directions of a fine angular quadrature.  This is called the fine angle solution.  

The theory of both the global space solution and fine angle solution is introduced 

as well as a technique to combine these methods in an iterative scheme that 

converges flux distribution as opposed to scattering source in order to solve the 

BTE iteratively. 

The method is implemented and tested using discrete elements one group 

isotropic average cross sections with EC and SC spatial quadratures.  The 

method is derived in a way that generalizes to include discrete ordinates 

Legendre moment generated cross sections (σ l ), multigroup anisotropic cross 

sections, and other positive spatial quadratures such as linear discontinuous (LD) 

and NC.  The method was not tested with spatial quadratures that produce 

negative fluxes such as diamond difference (DD).  The method might be 

expanded to include these spatial quadratures but would have to account for 

negative flux values in calculation of flux weights.  This was not derived or 

tested.  The new method for particle transport is validated by comparison with 

unaccelerated conventional SI for EC and SC.  The symmetric relative difference, 

number of iterations and compute time for the two methods is the basis of 

comparison. 

 The scope of the test problems examined is:  

• Fixed source, sub-critical, time independent systems  

• Slab geometry  

• Single group isotropic cross sections  

• Isotropic emission sources uniform in each cell 
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• EC and SC spatial quadratures 

 Although the method was examined with the above scope it was derived in a 

general way.  The extension to multigroup problems is immediate.  The emission 

source can include down scatter, up scatter and fission contributions.  Non-

positive spatial quadratures such as DD will require new algorithms to calculate 

flux weights from negative angular fluxes. 

Assumptions and Limitations 

 

The method as designed and tested when using the EC spatial quadrature 

and discrete elements angular quadrature inherits limitations of these 

approximations.  EC is not currently extendable to curvilinear geometry.  

Discrete elements angular quadratures lead to numerical approximations that are 

not the same as the diffusion approximation.  

  

Approach 

 

 An explicit system of equations for the angular and spatially discretized BTE 

using a general linear spatial quadrature is derived in N directions.  This system, 

although illustrative, is impractical to solve.  A similar system using only two 

directions is introduced.  A closed form solution of this two direction fully 

spatially coupled system is derived which is correct for transport with only two 

directions.  The concepts of transport coefficients and flux weights are 

introduced.  Transport coefficients define the relationships of incoming angular 
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fluxes and source emissions to outgoing angular fluxes within a spatial cell.  Flux 

weights facilitate the projection of the system of equations between multiple 

directions and two directions.  Then they are used to calculate a closed form 

solution using a coarse angle approximation which effectively solves for flux 

across the entire problem space.  The cell edge flux calculated in this way is 

correct if the flux weights used to collapse the transport coefficients are correct.  

The coupling of the exact direction transport method (using approximate edge 

flux values) with the equivalent 2 direction collapsed transport coefficient method 

(also using approximate edge flux values) is then introduced.  An iteration 

scheme that produces progressively more accurate flux weights which are used to 

compute progressively more accurate transport coefficients is then discussed.  

This method effectively amounts to iteration on transport coefficients.  The 

method differs significantly in concept and execution from accelerated SI. For 

instance, accelerated source iteration follows the logic of algorithm 2. 

N

 

Intialize  ( )( )0Q  ψ

Do 

Calculate ( )Q ψ⎛ ⎞⎜ ⎟
⎝ ⎠

l  

Apply Boundary Conditions 

Solve ( ) ( ) ( ) (1 , ,L x Q x )ψ µ µ+ =l l  for ( )1ψ +l  

Apply accelerator correction 

End do  when ( ) ( ) ( ) ( )1
SRD ( )x x convergenceToleranceε ψ µ ψ µ+

≤
uv uvl l  
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 The method proposed in this research follows the logic of Algorithm 3  

 

Initialize cell coupling coefficients with coarse angle approximation 

Use 2 direction SC cell coupling coefficients to generate  ( )ψ 0

Do 

Solve for fine angle flux within cells  

Generate improved low-resolution cell coupling coefficients 

Solve for fine angle flux within cells  

Use low resolution edge flux to improve high resolution edge flux 

Algorithm 3 is implemented in Fortran 95 and benchmarked against 

unaccelerated source iteration which is also implemented in Fortran 95.  

( ) ( )1+l l

The ASDI method is then extended to the EC spatial quadrature by adding an 

iteration loop to find the source distribution parameter, β , but otherwise retains 

the same logic as algorithm 2.  It is also written in Fortran 95 and is 

benchmarked against an unaccelerated source iteration.
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II.  Solution of the Discrete Ordinates ( ) Transport Equations nS

 

Solution of the monoenergetic BTE introduced in Chapter 1 requires treatment of 

the space and angular variables through a number of discretization techniques that yield 

simultaneous equations.  The discrete ordinates method is a widely used method for 

obtaining numerical solutions to the integrodifferential form of the transport equation.  

It is the method used in this research to discretize the Boltzmann transport equation in 

space and angle.  A brief discussion of space and angle discretization follows. 

In one group, slab geometry the scattered source on the right hand side of equation (1) 

may be replaced by a Legendre expansion (2:13,36,117): 

( )

( ) ( )
0

( , ) ( , )

2 1 ( , ) 0
k

ext
s k

k

x x x
x

k P Q x x X ,

ψ µµ σ ψ µ

µ σ φ µ
∞

=

∂
+ =

∂

+ + <∑ <
 (8) 

where 
ksσ are the Legendre moments of the scattering cross section and kφ  are the 

Legendre moments of the angular flux: 

 ( ) ( ) ( )
1

'
2

1

' ,d
k kx P xµ 'φ µ ψ µ

−

= ∫ . (9) 

The discrete ordinates approximation consists of requiring equation (8) to hold only for 

a number (N) of discrete directions then applying a compatible quadrature 

approximation to the flux moments in each of these directions.  The weighted 

quadrature used for the flux moments has the form 

 ( ) ( ) (' '
' 1

,
N

k n k n
n

x w P x )'nφ µ ψ µ
=

= ∑ . (10) 

Substituting the weighted quadrature, at N distinct angles, with a Legendre expansion 

truncated at a finite number of polynomials (K) in equation (8) results in  
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( )

( ) ( ) ( ) ( ) ( )' ' '
' 1 0

( , ) ( , )

, 2 1 ( , ). 0
k

n
n

N K
ext

n n s k n k n n
n k

x x x
x

w x k x P P Q x x X

ψ µµ σ ψ µ

ψ µ σ µ µ µ
= =

∂
+ =

∂

+ +∑ ∑ < <
(11) 

The coupling of the system of equations occurs on the right hand side.  The left hand 

side represents a set of angularly independent first order differential equations.  Defining 

',n nsσ to be the ordinate to ordinate scattering cross section: 

 ( ) ( ) ( ) ( ) (' k k ' k
k 0

2 1
n n

K
)s s nx k x P P nσ σ µ

→
=

= +∑ µ , (12) 

facilitates writing equation (11) as   

 ( ) ( ) ( ) ( )' ' '
' 1

( ) ( )
n n

N
extn

n n s n n
n

d x
nx x x w x Q

dx
ψµ σ ψ σ ψ

→
=

+ = +∑ x . (13) 

Equation (13) represents a system of N coupled differential equations. 

The method I have developed is dependent on representing the discrete ordinates 

equations in the form of equation (13) with the coupling of the system taking place on 

the right hand side through the term ( ) ( )' ' '
' 1

n n

N

s n n
n

x wσ ψ
→

=
∑ x

)'

.  How the cross section 

data weights and ordinate direction cosines are arrived at is not important to my work.  

Other methods, such as that introduced in 2003 by Gerts and Mathews, which calculate 

cross sections using piecewise averages and discrete elements (10), may be used if the 

discrete direction flux equations can be represented in a form analogous to equation (13) 

A brief discussion of their work follows.   

Dropping spatial dependence, the scattered source term on right hand side of 

equation (1) is written 

 ( ) (
4

ˆ ˆ ˆ ˆ' 's sQ d
π

σ ψ= Ω Ω⋅Ω Ω∫ , (14) 

where  is a unit vector: Ω̂
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 ( ) ( ) ( ) ( ) ( )ˆ { , ,Sin Cos Sin Sin Cos }θ ω θ ω θΩ = , (15) 

and 

 ( )Cosµ θ=  (16) 

The discrete elements method approximates scattered source within an element, 
nsQ , by 

 ( )ˆ ˆ
n

n

s sQ Q
∆Ω

d= Ω Ω∫ , (17) 

and angular flux within an element by 

 ( )'
ˆ ˆ'

n

n dψ ψ
∆Ω

'= Ω Ω∫ . (18) 

In the above equation  is the Cartesian product of the angular interval from n∆Ω [ )0,2π  

and the µ interval containing the ordinate nµ .  The union of the  intervals covers the 

range [  with no overlap.  An element of solid angle on the surface of the unit 

sphere in 1D slab geometry is: 

µ
]

d

1,1−

 
' '

2

0n n

d d
π

µ

µ ω
∆Ω ∆

Ω =∫ ∫ ∫ . (19) 

Equation (18) is: 

 (
'

2

'
0

,
n

n d d
π

µ
)ψ µ ω ψ µ ω

∆

= ∫ ∫ , (20) 

 

Equation (17) is: 

 (
2

0

,
n

n

sQ d d Q
π

µ
)sµ ω µ ω

∆

= ∫ ∫ , (21) 
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and equation (14) is 

 { } { }( ) (
'

2 2

'0 0

' ' ', ' . , ',
n

n n

s s
n

Q d d d d
π π

µ µ
)'µ ω µ ω σ µ ω µ ω ψ µ

∆ ∆

= ∑∫ ∫ ∫ ∫ ω

)'

 (22) 

The order of summation and integration in equation (22) may be rearranged resulting 

in:  

 { } { }( ) (
'

2 2

' 0 0

' ' ', ' . , ',
n

n n

s s
n

Q d d d d
π π

µ µ

µ ω µ ω σ µ ω µ ω ψ µ ω
∆ ∆

=∑ ∫ ∫ ∫ ∫ . (23) 

In slab geometry ( ', ')ψ µ ω  has no 'ω  dependence: 

 ( ) ( )'
2', ' .ψ µ
πψ µ ω =  (24) 

Substituting equation (24) into equation (20) results in: 

 (
'

' '
n

n d
µ

)'nψ µ ψ µ
∆

= ∫ . (25) 

Substituting equation (25) into equation (23) results in: 

 ( ) { } {(
'

2 2
'

2
' 0 0

' ' ', ' . ,
n

n n

d
s

n
Q d d d

π π
ω
π

µ µ
})sµ µ ψ µ ωσ µ ω µ ω

∆ ∆

=∑ ∫ ∫ ∫ ∫ . (26) 

Within each angular element, the flux is approximated as isotropic: 

 ( ) '

'
' n

n

ψψ µ
µ

=
∆

. (27) 

Substituting equation (27) into equation (26) and rearranging the order of integration 

results in 
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 { } {(
'

2 2

'
'' 0 0

' ' ', ' . ,
2n

n n

s n s
nn

d dQ d d
π π

µ µ

µ ω })ψ µ ω σ µ ω
µ π

∆ ∆

=
∆∑ ∫ ∫ ∫ ∫ µ ω . (28) 

The integral of equation (28) defines the element to element scattering cross section 

'n nsσ → : 

 { } {('

'

2 2

' 0 0

' ' ', ' . ,
2n n

n n

s s
n

d dd d
π π

µ µ

µ ω })σ µ ω σ µ ω
µ π→

∆ ∆

=
∆∫ ∫ ∫ ∫ µ ω . (29) 

Using this discrete elements angular quadrature,  

 ' '
'

n nn ss n
n

Q σ ψ→= ∑ . (30) 

The element-to-element scattering cross section 'n nsσ →  is analogous to the 

ordinate-to-ordinate scattering cross section in equation (13).  With discrete elements, 

there are no quadrature weights per se.  These are replaced by the sizes of the elements 

nµ∆ , and are treated implicitly through the calculation of 'n nsσ → .  Bothe angular 

quadratures have the same form if weights 1nw = are introduced in equation (30). Gerts 

and Mathews’ work has the advantage of representing cross sections with non-negative 

values in sharp contrast to certain cross sections arrived at through Legendre expansion.  

My derivation and implementation is done with discrete elements cross sections because 

they are non-negative.  I will use the term ordinate in my work since it is more common 

in the transport community but I intend for the term to refer to both ordinate in the 

discrete ordinates sense and element in the discrete elements sense.   The numerical 

results presented in chapter 3 and chapter 5 used discrete elements. 

Because the coupling of the system represented by (13) occurs on the right hand 

side, it is useful to combine the right hand side as a single term : ( )nQ x

 , (31) ( ) ( )( )n n nQ x S x E x= +

where 
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 . (32) ( )' ' '
' 1

( )
n n

N

n s n
n

S x w xσ ψ
→

=
= ∑ n

The source of scattered particles is ( )nS x  and the source of emitted particles is ( )nE x . 

Equation (13) is then 

( ) ( )( ) ( ) 1,n
n n n

x x x Q x n
x

ψµ σ ψ∂
+ = =

∂
KN . (33) 

This results in N coupled differential equations for N ordinates. 

The system represented by equation (33) is easily solved once spatially 

discretized using an iterative scheme like: 

( )
( ) ( ) ( ) ( )

+1
+1( ) ( ) 1,n

n n n
x x x Q x n

x
ψµ σ ψ∂

+ =
∂

K
l

l l N=  (34) 

where is an iteration index.  This is called source iteration.  If one starts with a guess 

of zero for scalar flux the first iteration yields the uncollided flux, the second iteration 

yields the uncollided plus first collided flux, the next iteration yields the uncollided plus 

first and second collided flux and so on.  In order to calculate a numerical solution for 

equation (34), it is first spatially discretized.  The indexing for spatial discretization is 

shown in Figure 1. 

l
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Figure 1  Spatial Index 

In the spatial discretization shown in Figure 1, cell edge quantities carry half-

integer indices and cell-average quantities carry integer indices.  The total number of 

mesh cells is denoted by I.  On the left and right sides are phantom cells, denoted with 

0 and I+1 respectively.  These phantom cells are a convenient accounting construct.  

They produce neither intrinsic nor scattered source.  They have no thickness so they 

produce no particle losses.  They do however contain edge flux information at the 

problem left and right boundaries. 

The first step in the spatial discretization of equation (34) is to spatially 

integrate it over a cell to obtain a balance equation for the spatial cell.  In the ithi th cell, 

as indicated by Figure 1, the left edge is at 1
2ix

−
 while the right edge is at 1

2ix
+

.  The 

thickness of cell i is 1
2 2

i i i 1x x x
+

∆ = −
−

.  We presume that material discontinuities are also 

cell edges so that (x)σ  is a constant iσ , within each cell.  Angular flux on the right and 

left cell edges are 1
2 2

, ,
,

n i n i 1ψ ψ
+ −

 respectively.  The subscript  denotes the ordinate and 

the subscript i  denotes the mesh cell.  Integration of the of the flux in the i  cell 

results in 

n

th
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 1 1
2 2

, ,, ,
( )n

i n i n in i n ii
Q

x
µ

ψ ψ σ ψ
+ −

− + =
∆

, (35) 

Where is the average source in cell i:   
,n i

Q

 ( )
1
2

1
2

,

i

i

x
dx

nxn i x
Q Q

+

−
∆= ∫ x

,

. (36) 

The average source in cell i consists of average scatters ( ) and average emissions 

( ): 
,An i

S

,An i
E

 . (37) 
, ,A An i n i n i

Q S E= +

Again the average scattered source in cell i, , is found by integrating the scattered 

source, , over the cell: 
,An i

S

( )nS x

 ( )
1
2

1
2

,

i

i

x
dx

A xn i x
S

+

−
∆= ∫ nS x . (38) 

The average intrinsic source in cell i,
,An i

E , is also found by integrating the intrinsic 

emission source, , over the cell: ( )nE x

 ( )
1
2

1
2

,

i

i

x
dx

A xn i x
E

+

−
∆= ∫ nE x . (39) 

In practice the average scattered source is not calculated from equation (38) but 

from scattering cross sections and average angular flux.  The average angular flux in cell 

i is: 

 ( )
1
2
1
2

,

i

i

x
dx

nxn i x
xψ ψ

+

−
∆= ∫ . (40) 

The scattering cross sections from ordinate  to ordinate n  are assumed to be constant 

for cell i (as was done for total cross section) and are denoted as 

'n

', ,n n isσ .  Hence, the 

average scattered source of  equation (38) can be written 
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', ,',

' 1
n n i

N

',A n s n in i
n

S w σ ψ
=

= ∑ . (41) 

Using equation (41) and equation (37) to substitute for the right hand side of equation 

(35) yields a system of equations that can be solved analytically if another equation is 

introduced and one of the fluxes (incoming, outgoing, or average) is known.  If the 

incoming flux is known for each direction in a cell, the average and outgoing fluxes are 

the system unknowns.  Two equations are needed for each direction but only the 

balance equation in each direction has yet been introduced.  To complete the system of 

equations an additional equation for each direction is needed.  This additional equation 

is known as the auxiliary equation.  Given the balance equation and an auxiliary 

equation for a cell with an N direction angular refinement, it is straightforward to solve 

for the exiting flux.  This can be done for every cell in a spatial approximation. 

The conventional scheme sweeps through the cells in the direction of motion of 

the particles.  Consider an example with quadrature points indexed in order of 

decreasing direction cosine but not necessarily symmetric about 0µ = .  Let 1µ  through 

RNµ be positive (rightward) and 
1RNµ +

 through Nµ  be negative (leftward).  The 

solution process for a multicell spatial discretization begins by solving for exiting edge 

flux 1
21,RN Iψ

+ −
 and average flux  1,RN Iψ + , where I denotes the total number of mesh cells 

and  denotes a leftward direction whose direction cosine is smallest in magnitude 

among the direction cosines of the quadrature set. The incoming edge flux at the right 

face is 

1RN +

1
21,RN Iψ

+ +
.  It is known from the boundary condition at the right edge.  With a 

vacuum or source boundary these values are explicitly known but with a reflective 

condition the incoming edge flux values are set to the appropriate outgoing edge flux 

values using the latest iteration estimate for these fluxes.  After solving for outgoing flux 

at edge 1
21,RN Iψ

+ −
 this value is used as the input for the adjacent cell then 3

21,RN Iψ
+ −

 and 

1, 1RN Iψ + −  are calculated.  The solution process commonly referred to as a sweep 

proceeds across each cell until the left boundary is reached.  The process is repeated for 

all remaining fluxes with nµ < 0 .  When the left face is reached for each ordinate the 

boundary condition is used to determine 1
2,RNψ .  This value is used as the incoming 
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edge flux for the far left cell.  Outgoing edge flux ( 3
2,RNψ ) and average angular flux 1,1ψ  

are calculated.  Outgoing edge flux from cell 1 ( 3
2,RNψ ) is used as input for the second 

cell.  This procedure continues through the mesh successively solving for the average 

and outgoing fluxes in each cell until the right boundary is reached.  The process is then 

repeated for all remaining ordinates.  An iteration is complete when fluxes for all 

ordinates are calculated in all cells.  Upon completion of an iteration, the source term is 

re-calculated from equation(37) and the sweep process begins again. 

An alternative to source iteration is to consider the entire spatial and angular 

mesh as a system of equations with outgoing cell edge fluxes and cell average fluxes as 

the unknown variables.  These variables are calculated by multiplying cell incoming 

fluxes, average intrinsic sources, and average scattered sources by coefficients that are 

determined by the spatial quadrature (spatial differencing) scheme.  These spatial 

quadrature coefficients are scalar quantities that are calculated from cell cross section 

iσ , particle direction nµ , and cell thickness ix∆ .  Certain spatial differencing schemes, 

such as EC, also use first moments to calculate them.  I will discuss EC in chapter 4. 

The discrete ordinates system of equations represented by equation (33) can be 

written as the contribution of cell incoming edge flux, scattered source and emission 

source multiplied by a transport coefficient to cell outgoing edge flux is 

( )
( )
( )

1 1, , ,
2 2

, , , ,

, , , ,

, ,
, , , ,

, , , ,

, , , , 0

n i n i n i

n i n i n i n i

n i n i n i n i

OI i n i A xn i n i

OS i n i A x A

OE i n i A x A n

K x S S

K x S S S

K x S S E

ψ σ µ ψ

σ µ

σ µ µ

+ −
= ∆

+ ∆

+ ∆ ,>

 (42) 

( )
( )
( )

1 1, , ,
2 2

, , , ,

, , , ,

, ,
, , , ,

, , , ,

, , , , 0

n i n i n i

n i n i n i n i

n i n i n i n i

OI i n i A xn i n i

OS i n i A x A

OE i n i A x A n

K x S S

K x S S S

K x S S E

ψ σ µ ψ

σ µ

σ µ µ

− +
= ∆

+ ∆

+ ∆ .<

 (43) 

The spatial quadrature also provides coefficients for determining the cell average fluxes: 
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( )
( )
( )

1, , ,
2

, , , ,

, , , ,

, ,
, , , ,

, , , ,

, , , , 0

n i n i n i

n i n i n i n i

n i n i n i n i

n i AI i n i A x n i

AS i n i A x A

AE i n i A x A n

K x S S

K x S S S

K x S S E

ψ σ µ ψ

σ µ

σ µ µ

−
= ∆

+ ∆

+ ∆ ,>

 (44) 

( )
( )
( )

1, , ,
2

, , , ,

, , , ,

, ,
, , , ,

, , , ,

, , , , 0

n i n i n i

n i n i n i n i

n i n i n i n i

n i AI i n i A x n i

AS i n i A x A

AE i n i A x A n

K x S S

K x S S S

K x S S E

ψ σ µ ψ

σ µ

σ µ µ

+
= ∆

+ ∆

+ ∆ .<

,

,

 (45) 

For compactness of notation the transport coefficients will be written without 

their arguments, unless these arguments are necessary for discussion or clarity.  The 

spatial quadrature coefficients will be written as , 

.  These spatial quadrature coefficients can be obtained from any 

spatial discretization (spatial quadrature). They are a convenient representation of the 

coupled differential equations of the discrete ordinates equations.  These coefficients are 

derived for an SC spatial quadrature in the next section.  SC is chosen in this research 

because it is a positive method, like EC, but is linear which simplifies implementation.  

Successful SC implementation does not guarantee extension to EC but was used to test 

method implementation before applying it to the more sophisticated EC spatial 

quadrature which uses first moments. 

, ,
, ,

n i n i n iOI OS OEK K K

, ,
, ,

n i n i n iAI AS AEK K K

 

SC Transport Coefficients 

 In this section, formulas for the step characteristic (SC) spatial quadrature 

coefficients are derived.  SC approximates the scattering and emission sources as being 
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uniformly distributed in a cell.  The flux in the cell is obtained as characteristic 

solutions along each direction of the angular quadrature.  This is evaluated at the 

outflow face and is averaged over the cell to obtain these coefficients.    

 Dividing equation (33) by nµ  results in: 

 ( ) ( )1( ) ( )
n n

xn
n

x
nx Q x

x
σ
µ µ

ψ
ψ

∂
+ =

∂
. (46) 

Let the optical thickness from a point %x  to a point x  along the direction of the 

ordinate be th %n ( ),n x xτ :  

 %( ) ( )
%

%1, ' '
n

x

n '
x

x x dx x x xµτ σ= ∫ x≤ ≤ , (47) 

If σ  is a constant between %x and x , then 

 
%( ) %( ),

nn x x xσ
µτ x= − . (48) 

Now introducing the integrating factor 
%( ),n x xeτ  into 

equation (46) and replacing 
( )n x

x
ψ∂
∂

 with 
( )nd x

dx
ψ

results in 

 
%( ) ( ) %( ) ( )

%( ), , 1( ) ( )n n

n n

,nx x x xxn
n n

d x e x e Q x
dx

τ τσ
µ µ

ψ
ψ+ =

x xeτ . (49) 

Noting that  

 
%( ),( ) n x xd

ndx x eτψ⎛ ⎞ =⎜ ⎟
⎝ ⎠

%( ) ( ) %( ),( ) ( )n

n

,nx x xn
n

x e x
x

τ σ
µ

ψ ψ∂
+

∂
x xeτ , (50) 
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and integrating equation (49) from %x  to x  produces 

 
%( ) %( ) % %( ) %( )

%

, , '( ) ( ' )n n x ',nx x x x
n n nx n

dxx e x e Q x eτ τ x xτ
ψ ψ

µ
− = ∫ . (51) 

Dividing equation (51) by the integrating factor and rearranging terms results in 

 %( ) % % %( ) %

%

( , ) ( , ) ( ', ) ( , )1 '( ) ( ' )n n n n
n

xx x x x %x x x x
n nxn n

dxx x e Q x eτ τ τ τ
µψ ψ

µ
− −= + ∫ , (52) 

where 
% %( ),n x xeτ is 1.  If 0nµ >  the flux is entering from the left cell edge and % Lx x= .  If 

0nµ <  the flux is entering from the right cell edge and % Rx x= .  This leads to 

 ( ) ( ), ( ', ) ( , )1 '( ) ( ' ) 0n L n L n L
n L

xx x x x x x
n L n nn x n

dxx x e Q x eτ τ τ
µψ ψ µ

µ
− −= + ∫ > , (53) 

 ( ) ( ), ( ', ) ( , )1 '( ) ( ' ) 0Rn R n R n R
n

xx x x x x x
n R n nn x n

dxx x e Q x eτ τ τ
µψ ψ µ

µ
− −= − ∫ < .(54) 

In the ith cell as indicated by Figure 1 Lx  corresponds to 1
2ix

−
 while Rx  corresponds to 

1
2ix

+
.  Further if 1

2 2i i 1x x x
+ −

∆ = −  is sufficiently small, ( )xσ  can be assumed to be a 

constant iσ , the average over the cell.  Equation (48) is then     

 %( ) %( ), i
nn x x x xσ

µτ = − . (55) 

This is readily expressed in terms of the optical thickness of cell  in direction , which 

I denote as 

i n

 ,
i i

n i
x

n

σ
ε

µ
∆

= . (56) 

Thus, 
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1
2

1
2

,,
i

i

x x

n n i xix xτ ε
−

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝
∆−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎠ , (57) 

and in a similar way  

 
1
2

1
2

,,
i

x x

n n i xix xτ ε
+

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝
∆+

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎠ . (58) 

Substituting equation (57), equation (58), and the source integral as given by equation 

(31) these cell flux equations are:  

( )

1
2

,
1
2

,

1
2

,

1
2

,

( ')
'

n

( ')
'

( )

( ')

0

i
n i

i

n i
i

ni

n i
i

ni

x x

x
n n i

x x
x xdx
x

x x
x xdx

n nx

x e

S x e

E x e

ε

ε

µ

ε

µ

ψ ψ

µ

−

−

−

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

−

−
−

∆

−
−

∆

=

+

+ >

∫

∫

 (59) 

( )

1
2

,
1
2

1 ,
2

,1
2

,

( ' )
'

( ' )
'

( )

( ')

' 0

i
n i

i

n ii
i

n

n i
i i

n

x x

x
n n i

x xx
xdx

nx

x x
x xdx

n nx

x e

S x e

E x e

ε

ε

µ

ε

µ

ψ ψ

µ

+

+

+

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

+

−
−

∆

−
−

∆

=

+

+ <

∫

∫

 (60) 

Physically these equations determine the flux ( )n ixψ  in a cell as the superposition of the 

flux entering at a cell edge and the flux due to source production from scatters and 

emissions.  In the above equations S ( ')n x is the source of scattered particle emissions 

and is the source of intrinsic particle emissions at position ( ')nE x 'x  into ordinate n.  A 
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characteristic scheme introduces approximation by assuming a convenient form for the 

scattered source distribution then computes the exact angular flux corresponding to this 

assumed source distribution.  A step characteristic spatial quadrature assumes that the 

source distribution is constant in cell i  in ordinate nµ .  This constant source 

distribution averaged over a spatial cell is 

 
1
2

, 1
2

 = ( )
i

n i
i

x

A x
dxS

x
+

− ∆∫ nS x . (61)  

In practice 
,n iAS  is not calculated from equation (61) but is obtained from available cell 

information using 

 ' ',, ' ,
' 1

 = .
N

A s n n in i n n i
n

S wσ ψ
=
∑  (62) 

Setting 1
2ix x

+
=  in equation (59) produces the flux exiting the right edge of spatial cell i  

given by 

 

,
1 1
2 2

1
21 ,

2
n,i 1

2

1
21 ,

2
, 1

2

, ,

'

A

'

'S

' . 0

n i

i
n ii

i

i

i
n ii

i
n i

i

n i n i

x x
x

x
x n

x x
x

x
A nx n

e

dx e

dxE e

ε

ε

ε

ψ ψ

µ

µ
µ

+

+

−

+

+

−

−

+ −

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

=

+

+ >

∫

∫ .

 (63)  

Similarly setting 1
2ix x

+
=  in equations and (60) produces flux exiting the left edge of 

spatial cell i given by 

Equation (60) solved for flux exiting the left edge of spatial cell i is:  
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,
1 1
2 2

1
21 ,

2
, 1

2

1
21 ,

2
, 1

2

, ,

'

'

'

' . 0

n i

i
n ii

i
n i

i

i
n ii

i
n i

i

n i n i

x x
x

x
A x n

x x
x

x
A nx n

e

dxS e

dxE e

ε

ε

ε

ψ ψ

µ

µ
µ

−

+

−

−

+

−

−

− +

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠−
∆

=

+

+ <

∫

∫ .

 (64) 

Introducing the following change of variables to 
1
2

'
'

i
x x

xu
−

−

∆=  in equations (63) and (64) 

results in  

 

,
1 1
2 2

, ,
n,i

, ,
,

, ,

1 '
A 0

1 '
0

S '

' 0

n i

n i n i

n i n i
n i

n i n i

u

n

u
A n

n

e

x e du e

xE e d e

ε

ε ε

ε ε

ψ ψ

µ

µ µ
µ

−

+ −

−

−

=

∆
+

∆
+ >

∫

∫

 (65)  

 

,
1 1
2 2

,
,

,
,

, ,

1 '
0

1 '
0

'

' 0

n i

n i
n i

n i
n i

n i n i

u
A

n

u
A n

n

e

xS du e

xE du e

ε

ε

ε

ψ ψ

µ

µ
µ

−

− +

−

−

=

∆
+

∆
+ <

∫

∫ .

 (66) 

Evaluation of the integrals in equations (65) and (66) yields a positive scalar quantity 

for each transport coefficient.  Practical evaluation of these integrals requires using 

exponential moment functions as introduced by Mathews and Minor (11:169).  The 

exponential moment function of order zero with one argument is: 

 ( )
1

1
0

0

xxu e
xx du e
−− −= =∫M . (67) 
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The exponential moment function of order n with one argument is: 

 ( ) ( ) ( ) ( )11 1

0
1 nnn xt

n xx dt t e −−−= − =∫
MM x . (68) 

Using equation (67) to evaluate the integrals of equation (65) results in  

 ( )

( )

,
1 1
2 2

,
n,i

,
,

, ,

A ,

,

S

0.

n i

n i

n i
n i

n i n i

n i
n

A n i
n

e

x e

xE e

ε

ε

ε
n

ψ ψ

ε
µ

ε µ
µ

−

+ −

−

−

=

∆
+ −

∆
+ −

0

0

M

M >

 (69)  

Noting that   

 ( ) ( )1
0

xx x e
xe x e− − −

−− = =M 0 xM , (70) 

results in rewriting equation (69) as  

 ( )

( )

,
1 1
2 2

n,i

,

, ,

A 0 ,

0 ,

S

0.

n i

n i

n i n i

n i
n

A n i
n

e

x

xE

ε

n

ψ ψ

ε
µ

ε µ
µ

−

+ −
=

∆
+

∆
+ >

M

M

 (71)  

Using equation (67) to evaluate the integrals of equation (66) results in  

 ( )

( )

,
1 1
2 2

n,i

,

, ,

A 0 ,

0 ,

S

0.

n i

n i

n i n i

n i
n

A n i
n

e

x

xE

ε

n

ψ ψ

ε
µ

ε µ
µ

−

− +
=

∆
+

∆
+ <

M

M

 (72)  
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Equations (71)  and  (72) are in the form of equations (42) and (43).  The spatial 

quadrature coefficient for the outgoing flux due to the incoming flux, , is obtained 

from yhe first term on the right of equations (71)  and  (72): 
OIK

 ,
,

.n i
n iOIK e

ε−
=  (73) 

The second transport term on the right hand side relates the contribution of flux within 

cell scattering to the flux exiting an edge:  

 ( ), 0 ,nOS i n i
n

xK ε
µ
∆

= M  (74) 

The third term on the right hand side relates the contribution of cell intrinsic emissions 

to the flux exiting an edge:  

 (, 0 ,nOE i n i
n

xK ε
µ )∆

= M . (75) 

Note that for SC, .  
, ,n i n iOE OSK K=

The coefficients for the cell average fluxes are developed next.  Equations (59) 

and (60) averaged over a spatial cell are:  

 
( )

( )

1
21 ,2

1
1 22

1 ,2
, 1 1

2 2

1 ,2
, 1 1

2 2

, ,

'

'

'

' 0,

i
i n i

i

i n i

n i
i i

i n i

n i
i i

x x
x

x
n i x n i

x xx x x
A x x n

x xx x x
A nx x n

dx e
x

dx dxS e
x

dx dxE e
x

ε

ε

ε

ψ ψ

µ

µ
µ

−
+

−

+

− −

+

− −

−
−

∆
−

−
−

∆

−
−

∆

=
∆

+
∆

+ >
∆

∫

∫ ∫

∫ ∫

 (76) 
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( )

( )

1
21 ,2

1
1 22

1 1 ,2 2
, 1

2

1 1 ,2 2
1
2

, ,

'

'

'

' 0.

i
i n i

i

i i n i

n i
i

i i n i

n
i

x x
x

x
n i x n i

x xx x
x

A x x n

x xx x
x

A nx x n

dx e
x

dx dxS e
x

dx dxE e
x

ε

ε

ε

ψ ψ

µ

µ
µ

+
+

−

+ +

−

+ +

−

−
−

∆
+

−
−

∆

−
−

∆

=
∆

+
∆

+ <
∆

∫

∫ ∫

∫ ∫

 (77)  

Using the change of variables 
1
2i

x x

xu
−

−

∆= , and 
1
2

'
'

i
x x

xu
−

−

∆=  for equation (76) then 

rearranging terms results in   

 

,
1
2

, ,
,

, ,
,

1
, 0 ,

1 '
0 0

1 '
0 0

'

' 0

n i

n i n i
n i

n i n i
n i

u
n i n i

uu u
A

n

uu u
A n

n

du e

xS du e du e

xE du e du e

ε

ε ε

ε ε

ψ ψ

µ

µ
µ

−

−

−

−

=

∆
+

∆
+ >

∫

∫ ∫

∫ ∫ .

 (78) 

Using equation (67) to evaluate the first term of equation (78) and evaluating the right 

most integral of the second and third terms of equation (78) results in  

 

( )1
2

,
, ,

,
, ,

, 0 ,,

11
0

11
0

1

1 0

n i
n i n i

n i
n i n i

n i n in i

u
A

n

u
A n

n

xS du e

xE du e

ε

ε

ε

ε
.

ψ ψ ε

µ

µ
µ

−

−

−

=

∆ ⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∆ ⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∫

∫

M

>

 (79) 

Using equation (67) to evaluate the remaining integral in the second and third terms 

results in    
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( )
( )

( )

1
2

0 ,
, ,

0 ,
, ,

, 0 ,,

1

1
0.

n i
n i n i

n i
n i n i

n i n in i

A
n

A n
n

xS

xE

ε

ε

ε

ε

ψ ψ ε

µ

µ
µ

−

−

−

=

⎛ ⎞∆
+ ⎜ ⎟

⎝ ⎠
⎛ ⎞∆

+ >⎜ ⎟
⎝ ⎠

M

M

M

 (80) 

Substituting equation (68) where appropriate in equation (80) results in 

 

( )

( )

( )

1
2

,

,

, 0 ,,

1 ,

1 , 0.

n i

n i

n i n in i

A n i
n

A n i
n

xS

xE n

ψ ψ ε

ε
µ

ε µ
µ

−
=

∆
+

∆
+ >

M

M

M

 (81) 

Using the change of variables 
1
2i

x x

xu
−

−

∆= , and 
1
2

'
'

i
x x

xu
+

−

∆=  for equation (77) then 

rearranging terms results in   

 

( ),
1
2

, , ,
,

, , ,
,

1 1
, 0 ,

1 0 '
0 1

1 0 '
0 1

'

' 0

n i

n i n i n i
n i

n i n i n i
n i

u
n i n i

u u
A un

u u
A nu

du e

xS du e e du e

E du e e du e

ε

ε ε ε

ε ε ε

ψ ψ

µ

µ

− −

+

− −

−

− −

−

=

∆
+

+ <

∫

∫ ∫

∫ ∫ .

 (82)  

Using equation (67) to evaluate the first term of equation (82) and evaluating the inner 

integrals of equation (82) results in 

 

( )1
2

, ,
, ,

, ,

,

, 0 ,,

11
0

11
0

0.

n i n i
n i n i

n i n i
n n i

n i n in i

u
A

n

u
A n

n

xS du e e

xE du e e

ε ε

ε

ε ε

ε

ψ ψ ε

µ

µ
µ

+

− −

− −

=

∆ ⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∆ ⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∫

∫

M

<

 (83)  
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Using equation (67) and equation (70) to evaluate the remaining integral of equation 

(83) results in  

 

( )
( )

( )

1
2

0 ,
, ,

0 ,

,

, 0 ,,

1

1
0.

n i
n i n i

n i
n n i

n i n in i

A
n

A n
n

xS

xE

ε

ε

ε

ε

ψ ψ ε

µ

µ
µ

+

−

−

=

⎛ ⎞∆
+ ⎜ ⎟

⎝ ⎠
⎛ ⎞∆

+ <⎜ ⎟
⎝ ⎠

M

M

M

 (84)  

Substituting equation (68) where appropriate in equation (80) results in 

 

( )

( )

( )

1
2

,

,

, 0 ,,

1 ,

1 , 0.

n i

n i

n i n in i

A n i
n

A n i
n

xS

xE n

ψ ψ ε

ε
µ

ε µ
µ

+
=

∆
+

∆
+ <

M

M

M

 (85) 

Equation (81) and equation (85)  are again in the form of equation (44) and 

equation (45).  The fourth transport coefficient relates the contribution of cell entering 

edge flux to cell average flux it is 

  ( ), ,n iAIK ε= 0M n i . (86) 

The fifth transport coefficient relates the contribution of cell scattered flux to cell 

average flux.  It is 

  (, 1 ,n i )AS
n

xK ε
µ n i
∆

= M . (87)  

The sixth transport coefficient relates the contribution of cell intrinsic emissions to cell 

average flux.  It is 
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 (, 1 ,n i )AE
n

xK ε
µ n i
∆

= M . (88)  

Note that for SC . 
, ,n i n iAS AEK K=

The spatial quadrature coefficients in this section are derived for SC.  A similar 

procedure is followed with other spatial quadratures which result in different formulas 

for the spatial quadrature coefficients that also can be put in the form of equations (42) 

and (43).  The use of these coefficients in the ASDI method is general and applicable to 

coefficients derived from any spatial quadrature. 

 

Explicit Solution of Transport Equations for  Directions Coupled in Space N

 

The cell transport equations; (63), (64),(76), (77), written in vector notation are  

 AAOI OS OEout in ii ii ii i
Sψ ψ= + +K K K

uv uv uv u
E
v

, (89) 

 AAAI AS AE iiA in i iiii
Sψ ψ= + +K K K

uv uv uv u
E
v

, (90) 

 i iA AS si
ψ=

uv u
Σ

v
, (91) 

where bold type denotes a matrix, 
v
 denotes a vector, and i  denotes a cell number.  If 

the total number of ordinates is denoted by , the ordinate set is N

{ }11 2, , , , ,
R RN N Nµ µ µ µ µ

+
L L .  Denoting the rightward, 0nµ > , ordinates  as 
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{ }1 2, , ,
RNµ µ µL , RN  is the number of rightward directions.  The leftward, 0nµ < , 

ordinates are { }1
,

RN Nµ µ
+
L .  The number of leftward directions is 

 L RN N N= − . (92)  

The inward flux vector in cell i  ( ini
ψ
uv

) has N components 

 

1
2

1
2

1
2

1
2

1,

,

1,

,

R

R

i

N i
ini

N i

N i

ψ

ψ
ψ

ψ

ψ

−

−

+ +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

uv

M

. (93) 

The top set of angular fluxes in equation (93) represent the flux in at the left edge of 

cell i  streaming in the rightward direction,{ }1
2 21, ,Ri N iψ ψ 1− −
K , and the  bottom set 

represent flux in at the right streaming in the leftward direction in cell i  

{ }1 1
2 21, ,RN i N iψ ψ

+ + +
K . 

The outward flux vector in cell  (i outi
ψ
uv

) has N components 

 

1
2

1
2

1
2

1
2

1,

,

1,

,

R

R

i

N i
outi

N i

N i

ψ

ψ
ψ

ψ

ψ

+

+

+ −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

uv

M

. (94) 
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The top set of angular fluxes in equation (94) represent the flux out at the right edge of 

cell i  streaming in the rightward direction,{ }1
2 21, ,Ri N iψ ψ

+
K 1+

, and the  bottom set 

represent flux out at the left edge of cell i streaming in the leftward direction  

{ }1 1
2 21, ,RN i N iψ ψ

+ − −
K . 

Equation (93) can be written even more compactly as  

 
Ri

Li

in
ini

in

ψ
ψ

ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ur
uv

ur , (95) 

where  

 

11, 2

1, 2

i

Ri

N iR

in

ψ

ψ
ψ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ur
M , (96) 

and  

 

1
2

1
2

1,

,

R

Li

N i

in

N i

ψ

ψ
ψ

+ +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

ur
M . (97) 

Similarly equation (94) can be written  

 
Ri

Li

out
outi

out

ψ
ψ

ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ur
uv

ur , (98) 

where  
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11, 2

1, 2

i

Ri

N iR

out

ψ

ψ
ψ

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ur
M , (99) 

and  

 

1
2

1
2

1,

,

R

Li

N i

out

N i

ψ

ψ
ψ

+ −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

ur
M . (100) 

The average intrinsic emission vector in cell  (i AiE
uv

) has N components.  Written in 

compact notation it is 

 ,

,

AR i
Ai

AL i

E
E

E

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

ur
uv

ur , (101) 

where 

 
1,

,

Ri

R

A i

A

AN i

E

E
E

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

uv
M , (102) 

and  

 
1,

,

R

Li

AN i

A

AN i

E

E
E

+
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

uv
M . (103) 

The coefficient matrix denoting the contribution to the outgoing fluxes from the 

incoming fluxes in cell  is a diagonal matrix of size NxN:  i
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1,

2,

,

0 0 0

0 0
.

0 0 0
0 0 0

OI i

OI i
OIi

OI

0

N i

K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K
O

 (104) 

The other transport coefficient matrices , , , , ,AI OS AS AE OEi i i i
K K K K K

i
 have the same 

form as equation(104).  They are diagonal matrices of their corresponding spatial 

quadrature coefficients. 

The matrix 
isΣ contains the element-to-element scattering cross sections, or the 

ordinate-to-ordinate scattering cross sections and weights: 

 

1 21 1, 2 1, 1,

1 21 2, 2 2, 2,

1 21 , 2 , ,

i

s s si i N i N

s s si i N i N

s s sN i N i N N i

w w

w w
s

w w

σ σ σ

σ σ σ

σ σ σ

→ → →

→ → →

→ → →

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M L O M

L

Σ

N

w

w

w

. (105) 

The following matrices are useful for stripping the rightward or leftward components of 

the vectors introduced 

 R ,RN⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I 0
I

0 0
 (106) 

 ,
L

L
N

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 0
I 0 I  (107) 

where 
RNI and 

LNI are identity matrices of dimension RN  and LN  respectively, and  

represents a matrix of zeros of appropriate dimensions.  As an example of how these 

matrices are used I will rewrite equation (98) in terms of the outgoing flux from the two 

cells adjacent to cell i . Using equation (106) and equation (107) results in 

0
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 . (108) R Ri i

LL Li i

out out out

out out out

ψ ψ

ψ ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

RN

N

I 0 0 0
0 I0 0

uv uv uv

uv uv uv
Ri

Li

ψ

ψ
⎥
⎥

An explicit solution of the discrete ordinates equations, (89) and, (90) is possible.  First 

consider cells that are not on either the left or right exterior boundaries so that particles 

stream into the cell from the adjacent cell on each side and particles stream out of the 

cell into those cells. Substituting equation (91) into equation (89)  and (90) results in 

 ,AOI OS OE iout in Aii i ii i
Esψ ψ ψ= + +K K K

uv uv uv uv
Σ i  (109) 

 .AAI AS AE iA in Ai i ii i i
Esi

ψ ψ ψ= + +K K K
uv uv uv uv

Σ  (110) 

The formal solution of equation (110) for Ai
ψ
uv

 results in 

 1( ) ( ) 1 .AAS AI AS AE iA ini i i ii ii i
I Is sψ ψ−= − + −K K K K

uv uv uv
Σ Σ E−

.

 (111) 

Substituting equation (111) into equation (109) with some rearrangement results in  

 
( )
( )

1

1

( )

( )

OI OS AS AIout ini i i ii ii i

AOE OS AS AE ii i iii i

Is s

I Es s

ψ ψ−

−

= + −

+ + −

K K K K

K K K K

uv uv

uv

Σ Σ

Σ Σ
 (112) 

This may be written more compactly as  

 AOI OE iout inii i
Eψ ψ= +m m

uv uv uv

i

) ,

, (113) 

where 

 ( 1( )OI OI OS AS AIi i i i ii i
Is s

−= + −m K K K KΣ Σ  (114) 

and  
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  (115) ( )1( )OE OE OS AS AEi i i i ii i
Is s

−= + −m K K K KΣ Σ .

I will refer to the elements of the matrices and  as cell transport coefficients.   OIim OEim

The flux entering at the left of cell i moving rightward is ( ) ' R
ini n N

ψ
≤

uv
.  The flux exiting 

at the right of cell i moving rightward is ( )
R

outi n N
ψ

≤

uv
.  The fraction of flux entering at 

the left ( 0nµ > ) and leaving at right ( 0nµ > ) is ( ) , 'OIi n n
m  

Using equation (108), equation (113) can be written  

 ( ) ( )
1 1

. . AOI R OI L OE iout out outi ii i i
Eψ ψ ψ

− +
= + +m I m I m

uv uv uv uv

i . (116) 

Equation (113) expresses the outgoing edge flux for a mesh cell ( outi
ψ
uv

) in terms of cell 

emission ( AiE
uv

) and outgoing edge flux from the two adjacent cells.  The coefficient 

matrix  determines the contribution to cell outgoing flux from cell incoming flux.  

The coefficient matrix determines the contribution to cell outgoing flux from cell 

intrinsic emission.   

OIim

OEim

Next consider cells at the left or right boundaries.  If a cell is at an exterior 

boundary, particles stream into the cell from one adjacent cell and particles behave in 

accordance with a boundary condition on the other side.  The reflection condition for 

this boundary condition for any discrete ordinates set can be represented as a matrix.  

This matrix is denoted by Lα on the left boundary and Rα  on the right boundary.  

Each element of the matrix represents the fraction of flux from an outgoing ordinate 

that is reflected into an incoming ordinate.  Defining these boundary matrices as   
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  (117) 

1, 1 1,

, 1 ,

0 0

0 0
,

0 0 0 0

0 0 0 0

R

R R R R

L LN N

L LN N N NL

α α

α α

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L L

M O M M L M

L L

L L

M O M M O M

L L

α ⎥
⎥

0

0
⎥
⎥L  (118) 

1,1 1,

,1 ,

0 0 0

0 0 0
,0 0

0 0

R R R

R

R R RN N N

R RN N N

α α

α α

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L L

M O M M O M

L L

L

M O M M O M

L L

α

facilitates specification of all but periodic boundaries.  In block form these boundary 

matrices are: 

 L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0
0 0

lα
α , (119) 

where 

 
1, 1 1,

, 1 ,

N NR

N N N NR

L L

L L

α α

α α

+

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O

L
lα , (120) 

 

and 

 R
r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 0
0

α
α

, (121) 

where 
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1,1 1,

,1 ,

R

N NR R

N N

R R

R R

α α

α α

+ + N

N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O

L

α . (122) 

Consider a problem without incident flux, cell 1 which is at the left boundary has as an 

incident flux on the left side the flux resulting from the above boundary condition 

rather than the inward flux denoted in equation (93). Using the above boundary 

condition this inward flux at the left boundary (
1inψ

uv
) is written: 

 

1
2

1
21

3
2

3
2

',',1
' 1

',',
' 1

1,

,

.R

R

N

L nn
n NR

N

L nn Nin n NR

N

N

α ψ

α ψψ

ψ

ψ

= +

= +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

M

uv

M

 (123) 

Equation (123) can be rearranged as  

 

1
2

31
2 2

3
2

',',1
' 1

,1 ', 1,',
' 1

,

0

0

0

0

R

RR
R

N

L nn
n N

N
in L n Nn N

n N

N

α ψ

ψ ψα ψ

ψ

= +

+
= +

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

M
M

uv

M

M

 (124) 

Equation (124) represents the inward flux of the left boundary as the contribution to 

the cell flux from the left side boundary reflection and particles streaming in from the 

right adjacent cell.  In compact matrix notation this is 
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  (125) 
1 1

. .L Lin out inψ ψ ψ= + I
uv uv uv

α
1

.

2

In any spatial discretization scheme adjacent cells are coupled at the edge that is shared 

by the two cells.  This adjacent cell coupling for cells one and two for the leftward 

streaming flux is expressed as:  

 
1L Lin outψ ψ=I I

uv uv
. (126) 

With this expression (125) can be written  

 . (127) 
1 1L Lin out outψ ψ ψ= + I

uv uv uv
α

2

1

Substituting equations (127) into equation(113), and applying the left side boundary 

condition results in 

 
1 1 2 11 1 AOI L OI L OEout out out Eψ ψ ψ= + +m m I m

uv uv uv uv
α . (128) 

Rearranging terms in equation (128) results in  

 ( ) 1 2 11 1 .1 AOI L OI L OEout out Eψ ψ− = +I m m I m
uv uv

α
uv

 (129) 

The right most ( thI ) cell in the spatial domain is handled in the same way resulting in: 

 ( ) 1
.

I I I AOI R OI R OE Iout outI Eψ ψ
−

− = +I m m I m I

uv uv
α

uv
 (130) 

The system represented by equation (116) has  equations in 2 unknowns 

corresponding with interior cells.  Equations (129) and (130) each represent  

equations and N unknowns corresponding to the two cells on the boundaries.  There 

appears to be more unknowns than equations until one considers the connectivity of the 

mesh cells.  This connectivity results from the edges shared by adjacent cells.  For an 

2 N N I

N
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interior cell the incoming edge flux is the outgoing edge flux from the adjacent cell.  

This leads to N connectivity equations for the (I-2) interior cells    

 { }1
. . 2, ,

i iR Rin out iψ ψ
−

=I I
uv uv

K ,I=  (131) 

 { }1
. . 1, ,

i iL Lin out i Iψ ψ
+

=I I
uv uv

K 1= − . (132) 

Note that the incoming edge fluxes on any cell edge can be written as the sum of the 

outgoing edge fluxes from two adjacent cells.   

On the left boundary in cell 1, flux enters from edge 1/ 2i =   and from edge 

.  The incoming flux in cell 1 at edge  3/ 2i = 1/ 2i =  is the outgoing flux at this same 

edge reflected back in the incoming direction.  The incoming flux in cell 1 at edge i = 

3/2 is the outgoing edge flux from cell 2.  In cell 1 there are N/2 connectivity equations 

and N/2 boundary equations.  Likewise the right edge incoming flux is the outgoing flux 

reflected at the boundary at edge 1/ 2i I= +  and from the adjacent upstream cell i =  I-

1/2.  In cell I there are N/2 connectivity equations and N/2 boundary equations.  The 

boundary cells contribute  connectivity equations and N boundary equations to the 

spatially coupled system.  Collectively there are  unknowns and equations.   

N

2NI 2NI

A particle transport system of equations that connects all the interior cells with 

the boundary cells and couples all directions represents fully coupled discrete ordinates 

transport.  This angular and spatially coupled system of transport equations can be 

written in the following way.  Let inΨ
uuv

 represent incoming flux vectors for the cells in a 

spatial mesh of I cells with a phantom cell on the left side and a phantom cell on the 

right side. This vector has 2 N (I+1) components and is written  

 

0

1

1

I

I

in

in

in

in

in

ψ

ψ

ψ

ψ
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ur

ur

uuv
M

ur

ur

. (133) 
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Let  represent outgoing flux vectors for the same mesh: outΨ
uuv

 

0

1

1

I

I

out

out

out

out

out

ψ

ψ

ψ

ψ
+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ur

ur

uuv
M

ur

ur

. (134) 

Let AE
uv

 represent average intrinsic emission vectors for the same mesh, it is written:  

 
1

0

0
I

A

A

A

E
E

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

ur

uv
M

ur
. (135) 

The zeros at the top and bottom of the emission vector of equation (135) represent left 

and right phantom cells which do not emit.  In equation (133) 
0inψ

uv ur
, represent the 

flux entering or exiting a phantom cell at the left boundary, 
0outψ

1Iinψ
+

ur
, 

1Ioutψ
+

ur
represent the 

flux entering, or exiting a phantom cell at the right boundary.  Flux enters and leaves 

these phantom cells through a single edge.  Using equations (93) through (100) these 

arrays can be written 

 
0

1out
in

L
ψ ψ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

uv
ur

0
, (136) 

 1
0

inR
out

ψ
ψ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

ur
uv

0
, (137) 
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1

outI
I

R
in

ψ
ψ

+

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

ur
uv

0
, (138) 

 
1

1
I

outI
out

L
ψ ψ+

+

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

uv
ur

0
, (139) 

where  is a vector of zeros of length 0 RN  or LN .  Because the incoming edge flux for 

interior mesh cells is the outgoing edge flux from an adjacent cell, 
iinψ can be expressed 

as a combination 
1
,

iout out 1i
ψ ψ

− +
.  Using the matrices specified by equation (106) and 

equation (107) 
iinψ  is written 

 1

1

outi
i

outi

RR
in

L L

ψ
ψ

ψ
−

+

⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I 0
0 I

uv
uv

uv . (140) 

The phantom cell incoming flux at the left edge is written  

 
0

1out
in

L
ψ ψ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦LN

00 0
0 I

uv
uv . (141) 

The phantom cell incoming flux at the right edge is written  

 
1

R outI
I

R
in

ψ
ψ

+

⎡ ⎤⎡ ⎤
= ⎢⎢ ⎥ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

NI 0

0 0 0

uv
uv

. (142) 

and  is written 
ioutψ

uv

 1

1

.ini
i

ini

RR
out

L L

ψ
ψ

ψ
+

−

⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I 0
0 I

uv
uv

uv  (143) 

The phantom cell outgoing flux at the left edge is written 
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 1
0

R inR
out

ψ
ψ

⎡ ⎤⎡ ⎤
= ⎢⎢ ⎥ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

NI 0

0 0 0

uv
uv

. (144) 

The phantom cell outgoing flux at the right edge is written 

 
1I

inL I
out

L
ψ ψ+

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦N

00 0
0 I

uv
uv . (145) 

Using equations (140) through (145) the global spatial vector inΨ
uuv

 can be written in 

terms of the global spatial vector outΨ
uuv

:   

0

1

1

2

2

1

1

1

in

in

in

in

in

inI

inI

inI

inI

inI

L

NR

N
L

N
R

N

L

R

L

R

L

R

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

−

−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

R

L

R

0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0

0 0 I 0 0

0

ur
L

ur
L

ur L

Lur

ur

ur

ur

ur

ur

ur

0

1

1

2

out

out

out

out

ou

R

R

L

R

L

N

N

N

ψ

ψ

ψ

ψ

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

R

L

R

L

R

N

N

N

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

ur

ur

ur

ur

L
ur

L

O

O

L

L

L

L

L

L

2

1

1

1

t

outI

outI

outI

outI

outI

R

L

R

L

L

ψ

ψ

ψ

ψ

ψ

−

−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0

ur

ur

ur

ur

ur

 (146) 

Two of the equations leading to the system denoted by equation (146) carry no 

information.  These correspond to the phantom cell edge flux corresponding to the edges 
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that are not shared with cell 1 or cell I.  Noting that the first and last rows and the 

second and next to last column are zero in the matrix of equation (146) we can remove 

these equations from the system since they carry no information.  Doing this results in  

 

0

1

1

2

2

1

1

1

in

in

in

in

in

inI

inI

inI

inI

inI

L

NR

N
L

N
R

N

L

R

L

R

L

R

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

−

−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

R

L

R

LN

0 0 I 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0
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ur
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O
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2
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R
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L

R

L

R

N

N

0 0 0 0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0 I 0 0

ur

ur

ur

ur

ur

M

ur

ur

ur

ur

ur

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎣ ⎦

⎥ .(147) 

Defining as the matrix of equation (147)  IOP
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N

N

N

IO

N

N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

R

L

R

L

R

L

R

L

R

N

N

N

0 0 I 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0

P

0 0 0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 I 0 0

L

L

L

L

L

O

O

L

L

L

L

L

, (148) 

 

equation (147) can be written more compactly as 

  (149) .in outIOΨ = ΨP
uuv uvu

Note that  is a permutation matrix that reorders IOP outΨ
uuv

to become .  As such, its 

inverse is its transpose. 
inΨ

uuv

Global spatially coupled coefficient matrices, denoted as  and , are 

assembled from the cell coefficient matrices of equations (114) and (115).  These 

matrices are ordered so that their first and last rows correspond with phantom cells and 

their other rows correspond with interior cells  

OEM OIM
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, ,1 , ,1

, ,1 , ,1

, ,2 , ,2

, ,2 , ,2

, , , ,

, , , ,

,

N N N NR R R L

N N N NL R L L

N N N NR R R L

N N N NL R L L

N N I N N IR R R L

N N I N N IL R L L

oi oi

oi oi

oi oi

O I oi oi

oi oi

oi oi
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

m m

m m

m m

M m m

m m

m m

O

l

r

α

α
 (150) 

 

 (151) 

, ,1 , ,1

, ,1 , ,1

, ,2 , ,2

, ,2 , ,2

, , , ,

, , , ,

.

N N N NR R R L

N N N NL R L L

N N N NR R R L

N N N NL R L L

N N I N N IR R R L

N N I N N IL R L L

o o

o o

o o

O E o o

o o

o o

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0
m m

m m

m m

M m m

m m

m m

0

E E

E E

E E

E E

E E

E E

O

Using equations (114), (135), (150), and (151),  the spatially coupled system becomes: 

 .out in AEΨ = Ψ +OI OEM M
uuv uuv uv

 (152) 
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Equation (152) represents the transport equations explicitly.  It accounts for all particle 

penetration and scattering.  Using equation (149) and combining outΨ
uuv

coefficients results 

in 

 ( ) out AIO E− Ψ =OI OEI M P M
uuv uv

)

. (153) 

The matrix is reordered to result in a banded diagonal matrix of minimum 

bandwidth.  The reordering matrix which achieves this minimum bandwidth structure is  

( − OII M P

 . (154) 

N

N

N

N

B

N

N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R

L

R

L

R

L

R

L

R

L

N

N

N

I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0

P

0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 0 0 I

O

O

Applying BP to equation (153) and solving for outΨ
uuv

yields the explicit solution of the 

fully coupled, in both angle and space, system of transport equations  

 ( )( ) 1
out AB OI IO B OE E

−
Ψ = −P I M P P M
uuv uv

. (155) 

Edge flux computed from equation (155) yields an explicit solution for the discrete 

ordinates equations without iteration.  It accounts for particle transport within a cell 

and particle transport across cells.  Unfortunately, the 2 system which results 

from directions and 

N I

N I  cells is impractical to invert or solve, particularly if the spatial 
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and angular discretization are fine.  This is why source iteration (SI) does not attempt 

to solve this system.  Instead SI approximates the solution by iteration on the scattering 

source. 

 

Angular and Spatial Distribution Iteration 

 

I did not attempt to solve the system of equations represented by equation (155)in this 

research.  Rather, I investigated an efficient iteration scheme that was different from 

source iteration.  I solved equation (113) with a refined angular quadrature locally 

within each individual spatial cell using an estimate for incoming edge flux and its cell 

transport coefficients.  I then estimated particle transport among cells across the 

problem space using equation (155) with a coarse angular quadrature and transport 

coefficients that are correct for the approximate edge flux used.  I developed and 

examined a method that couples local within cell scattering using a refined angular 

quadrature with across cell particle transport using transport coefficients obtained from 

a coarse angular quadrature in a unique way that retains angular resolution.  The 

concept is similar to 2 direction synthetic acceleration but differs from it in two 

important ways: 

1. The proposed method does not use transport sweeps.  The proposed 

method does not approximate the error in the flux iterate to correct a 

transport sweep. 

2. The method estimates the solution directly with a coarse angular 

quadrature and a fine angular quadrature linked with transport 

coefficients. 
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The method uses the coarse angular quadrature to directly solve equation (155).  This 

provides edge fluxes ( ) that are approximate.  These edge flux values are used in 

equation (113) to gain a better estimate of transport coefficients ( , 

), in a way not yet discussed, in order to obtain a better estimate of 

for a two direction spatially coupled angular quadrature.  In my method 

inΨ
uuv

, ,
, ,

n i n i n iOS AS OIK K K
,

,, ,
, ,

n i n i n iAI OE AEK K K

inΨ
uuv

4 I equations are solved in the spatially coupled coarse angle routine or  equations 

are solved in the fine angle within cell routine as compared with the  equations of 

the fully coupled system,.  By de-coupling space and direction the system of equations is 

reduced to either four times the number of ordinates in the angular quadrature or four 

times the spatial cells.  This is far less than the number of ordinates times the number 

of spatial cells required for the fully coupled system. 

4 N

2 N I

Unique aspects of this research are the use of the flux distribution along cell 

edges to yield progressively better edge flux transport coefficients and of iteration on 

angular and spatial flux distributions.  The method effectively amounts to improvement 

of transport coefficients and iteration on angle and spatial flux distributions.  The 

method eliminates the need for modeling neutron flights by transport sweeps as is done 

with SI.  The method significantly reduces transport iterations, even when scattering 

ratios are nearly 1.  The method produces reliably accurate answers even when neutron 

flights are nearly infinite.  Discussion of the fine angle and coarse angle solution 

methods and their coupling follows. 

 

Explicit Solution of a Two Direction Transport Problem Coupled in Space 

 

Although it was not practical to solve the discrete ordinates system of equations 

with many directions coupled across space, it is practical if there are only two directions 

to couple across space.  Consider a slab geometry transport problem with two 
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directions.  Following the vector notation of the previous section the cell transport 

equation is given by  

 ( ) .
m out AB E− Ψ =OI OEP I M P M ,

uuv uv
 (156) 

where  is OIM

 (157) 

2,1

1,1,1 1,2,1

2,1,1 2,2,1

1,1,2 1,2,2

2,1,2 2,2,2

1,1,I 1,2,I

2,1,I 2,2,I

1,2

L

OI OI

OI OI

OI OI

OI OI

OI OI

OI OI

L

m m

m m

m m

,m m

m m

m m

α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

OIM

O

and  is OEM

  (158) 

1,1,1 1,2,1

2,1,1 2,2,1

1,1,2 1,2,2

2,1,2 2,2,2

1,1,I 1,2,I

2,1,I 2,2,I

OE OE

OE OE

OE OE

OE OE

OE OE

OE OE

0
m m

m m

m m

.m m

m m

m m

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

OEM

O

P is given by equation (148) and by equation (154) with 
mBP
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1 0
0 0RN
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I , (159) 

 
0 0
0 1LN
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I . (160) 

The components of the spatially coupled coefficient matrix ( ) are given by 

equations (114) and (115).  The diagonal coefficient matrices used in these equations are 

OIM

 1,

2,

0
,

0

OI i
OIi

OI i

K

K

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

K  (161) 

 1,

2,

0

0

OS i
OSi

OS i

K

K

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

K , (162) 

 1,

2,

0

0

AI i
AIi

AI i

K

K

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

K , (163) 

 1,

2,

0

0

AS i
ASi

AS i

K

K

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

K . (164) 

The scattering cross section matrix is a dense matrix 

 1,1, 2,1,

2,1, 2,2,

i

i
i i

s s
S s s

σ σ

σ σ
i⎡ ⎤

⎢ ⎥=
⎢ ⎥⎣ ⎦

Σ . (165) 

If there are I cells in a spatial partition the arrays of incoming fluxes, outgoing fluxes 

and intrinsic emissions are 
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1 11, 2,2 2

3 11,1, 22

312, 2,2 2

5 31, 1,2 2
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I
I

I

I
I

1I+
2

1I+
2

uv M

MM

. (166) 

Substituting equations (157), (158), and (166) into equation (156) results in  
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i

. (167) 

The transport coefficient entries of the left hand side matrix of equation (167) 

( ) describe the fraction of entering flux in a direction (left 

or right) that leaves the cell, having scattered any number of times within the cell.   A 

particle enters a cell from one of two possible directions.  Having entered a cell in an 

ordinate, a particle then either transmits to the other side in that ordinate or is 

reflected backward into the opposite ordinate.  Because of this it is useful to think of 

the transport coefficient entries as reflection or transmission coefficients.  The 

transmission coefficient describes the fraction of particles that enter a cell, scatter any 

number of times, then exit that cell in the original direction of its flow while a reflection 

coefficient describes the fraction of particles that enter a cell scatter any number of 

1,1, 1,2, 1,2, 2,2,
, , ,

i i iOI OI OI OIm m m m
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times then exit that cell in the opposite direction to its original flow.  Defining reflection 

coefficients as: 

 1, 1,1 ,i OI i
t m=  (168) 

 2, 2,2 ,i OI i
t m=  (169) 

and transmission coefficients as  

 1,i 1,2OI i
r m= , (170) 

 2,i 2,1 ,OI i
r m=  (171) 

equation (167) is written 
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. (172) 

If the spatial quadrature conserves particles and 1c ≤ ,  then  ,0 1m ir≤ ≤ , , and 

. If  then .  If the boundary conditions of the system are 

vacuum, grey or albedo, then the system is diagonally dominant when  and weakly 

diagonally dominant if .  Because of this, any 1D transport problem with a unique 

non-trivial steady state solution results in at least a weakly diagonally dominant system 

with positive values on the diagonal and negative values off the diagonal.  Therefore the 

1D slab geometry system with two ordinates is readily solved.  If an angular quadrature  

with two ordinates adequately described the angular flux distribution of a problem we 

would be able to calculate by inverting the matrix of equation (172) and solve the 

problem directly.   

,0 1m it≤ ≤

, , 1m i m ir t+ ≤ 1c = , , 1m i m ir t+ =

1c ≤

1c =

Unfortunately, a two ordinate angular approximation is most often inadequate.  

For example, particles that enter a mesh cell parallel to the x+ -axis are more likely to 

exit a mesh cell in the x+  direction then particles that enter a mesh cell nearly 

perpendicular to the x+  axis.  The  angular quadrature does a poor job of modeling 2S
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directional dependence for this type of particle transport.  Because of this, an  

angular quadrature is often an inadequate approximation for angular flux.  I sought to 

overcome the weakness of this coarse approximation in angular distribution yet take 

advantage of its ability to fully couple cells in space without numerous particle flights.  I 

speculated that because the coarse angular quadrature estimated flux correctly in 

magnitude these flux values could be used as reasonable estimates for cell entering flux.  

This required development of a projection scheme between coarse and fine angular 

quadratures.  I also speculated that the approximate edge flux values obtained from the 

spatially coupled coarse solution could be angularly coupled to the flux locally within a 

spatial cell in order to approximate angular flux distribution on cell edges.  Further, I 

speculated that the approximate angular flux distribution obtained this way could be 

used to improve the two ordinate transport coefficients.  I expected the improved two 

ordinate coefficients to in turn improve the approximation for cell incoming flux.  I 

sought to use the computational efficiency of the coarse angle spatially coupled system 

and the fine angle local space systems with an iteration scheme that effectively coupled 

the two schemes through transport coefficients.  

2S

 

Solution of an  direction Transport Problem with Approximate Edge Flux. N

 

Explicit solution of equations (113) through (115) is possible, even for very fine angular 

quadratures, if entering flux ( ini
ψ
uv

) is known.  Equation (113) may be used to solve for 

exiting flux for any resolution angular quadrature without creating a system that is 

impractical to solve since it is done for only a single cell.  The inverse matrix of 

equations (114) and (115), 1( ASi i
I S )−−K Σ , models scattering within a cell effectively 
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because it effectively accounts for an infinite number of neutron flights.  This can be 

seen by expanding the matrix in a geometric series: 

 ( )
( )

1

2
2

( )

....

AS AS ASi i ii i

ASi i
k

ASi i

I IS S

S

S

−− = + +

+ +

+

K K K

K

K

L

Σ Σ Σ

Σ

Σ

1
iS <

 (173) 

The term ( )kASi iSK Σ  in this geometric series produces the flux of neutrons that have 

scattered k times within the cell (without leaving the cell). The first term ,I, accounts 

for the flux of neutrons that have not scattered since entering the cell.  Thus, the series 

accounts for all numbers of scattering events within the cell for each particle entering 

the cell or emitted within the cell.  If the incoming flux is correct the outgoing flux can 

be explicitly calculated.  In application inψ
ur

 is not a known quantity. It is an estimate.  

This estimate can be improved by using equation (113).  Given estimated incoming fine 

angle flux, equation (113) is used to calculate fine angle outgoing flux.  This is done for 

each spatial cell.  After each cell outgoing flux is calculated boundary conditions are 

applied.  Outgoing fluxes calculated in this way are incoming fluxes for adjacent cells 

with fine angle resolution.  This leads to an improved incoming flux estimate.  I 

examined whether edge flux produced with a two-ordinate angular quadrature from 

equation (172) could be used as input for a fine angle flux solution produced by 

equation (113) which in turn could produce adjusted transport coefficients.  I then 

examined whether the adjusted transport coefficients then improved the approximate 

flux of the coarse angle estimate.  This provided an iteration scheme.  I further 

examined the convergence properties of this scheme.  The combination of the fine angle, 

and coarse angle methods is discussed next. 
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Combining High Angular Resolution Within-Cell Transport with Low Angular 

Resolution Spatially-Coupled transport  

 

The previous sections described a method for obtaining exact within cell solutions for 

edge flux.  Continuing the notation developed in these sections, ini
ψ
uv

is given by equation 

(93), is given by equation (94), outi
ψ
uv

iAE  is given by equation (101).  The scattering 

cross section matrix is given by equation (105).  The coefficient matrices 

,, ,OI AI OSi i i
K K K , , ,AS AE OEi i i

KK K are diagonal matrices of the form given by equation 

(104).  The array of cell average flux is written 

 

1,

,

1,

,

R

R

i

N i
Ai N i

N i

ψ

ψ
ψ

ψ

ψ

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

uv

M

. (174) 

With this notation the transport system is  

 ,AOI OS OE iout in Aii i ii i
ESψ ψ ψ= + +K K K

uv uv uv uv
Σ i  (175) 

 .AAI AS AE iA in Ai i ii i ii
ESψ ψ ψ= + +K K K

uv uv uv uv
Σ  (176) 

The flux of particles is transported through the cells of a spatial mesh as though 

the particles were moving in representative directions.  In discrete ordinates each 

component of the flux vector describes the flow of particles, through a surface patch of 

solid angle on the unit sphere.  Figure 2 shows the flux exiting a cell edge in the left 

( 0µ < ) and right ( 0µ > ) hemispheres for both coarse and fine angular refinements.  A 
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Cell Edge 

1 400ψ =  

3 100ψ =  2 200ψ =  

4 Directions 

Cell Edge 

2 Directions 

1 600ψ =)  2 400ψ =)  

4 300ψ =  

 

coarse angular quadrature of two directions is depicted in the top set of hemispheres 

and a finer angular quadrature of four directions is depicted in the bottom set of  

Figure 2:  Angular Flux Exiting a Cell Edge through 2 Ordinates and 4 Ordinates 

hemispheres.  The notation 
)
ψ  denotes a flux associated with a coarse angular 

quadrature.  The symbol ψ denotes a flux from a finer quadrature.  Elements one and 

four are the caps of the hemispheres and elements two and three are the bands closes to 

the cell edge denoting that these fluxes are in fact inclined at a steeper angle to the x 

axis which passes through the tip of the polar cap.  

 

 

The subscript m  denotes an ordinate in a two direction angular quadrature whose 

surface elements are the two hemispheres in Figure 2.  The total flux exiting a 
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hemisphere, 
)

1
2,m iψ + , is calculated by summing all the finer angular quadrature fluxes 

exiting the same hemisphere.   

 
)

1 1
2 2

1, ,
1

{1,2, I}
RN

i n i
n

iψ ψ± ±
=

=∑ L= , (177)  

 
)

1 1
2 2

2, ,
1

{1, , I}.
L

R

N

i n i
n N

iψ ψ± ±
= +

= ∑ L=  (178) 

In a similar way the average flux in a spatial cell in a hemisphere denoted as, 
)

,m iψ , is   

 , (179) 
)

,1,
1

{1, , I}
RN

n ii
n

iψ ψ
=

=∑ L=

=

and  

  (180) 
)

,2,
1

{1, , I}.
R

N

n ii
n N

iψ ψ
= +

= ∑ L

Further the average particles scattered per volume in the solid angle whose average 

particle direction is in one of the hemispheres of Figure 2 is denoted 
)

,m iAS .  It is 

calculated by summing the particles per solid angle exiting the associated hemisphere  

 , (181) 
)

1, ', , ',
1 ' 1

{1, , I}
R

i n n i n i

N N
A s

n n
S σ ψ

= =
=∑∑ Li =

i =

and  

  (182) 
)

2, ', , ',
1 ' 1

{1, , I}.i n n i n i
R

N N
A s

n N n
S σ ψ

= + =
= ∑ ∑ L
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The average particles per volume emitted in the solid angle whose average particle 

direction is in one of the hemispheres of Figure 2 is denoted 
)

,m iAE .  It is calculated by 

summing the particles per solid angle exiting the associated hemisphere  

 , (183)  
)

1, ,
1

{1, , I}
R

i

N
A An i

n
E E i

=
=∑ L=

=  (184) 
)

2, , {1, , I}.
L

i
R

N
A An i

n N
E E i

=
= ∑ L

As in the previous sections RN  denotes the number of rightward flux ordinates 

and LN  the number leftward 

 R LN N N= + . (185).  

Defining 
)

ini
ψ
uv

,
)

outi
ψ
uv

,
)

iAψ
uv

as the coarse angular quadrature inbound, outbound, and cell 

average angular flux arrays in cell i, they are written as   

 
)

)

)

1
2

1
2

1,

2,

i
ini

i

ψ
ψ

ψ

−

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

uv
, (186) 

 
)

)

)

1
2

1
2

1,

2,

i
outi

i

ψ
ψ

ψ

+

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

uv
, (187) 

 
)

)

)
1,

2,

i
Ai

i

ψ
ψ

ψ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

uv
, (188) 

 
)

)

)
1,

2,

i

i

A
Ai

A

E
E

E

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

uv
. (189) 
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Defining the array 

 2,
1 1 0 0
0 0 1 1N
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I
L L

L L
, (190) 

where the rows of 2,NI  have N elements consisting of RN or  ones or zeros.  This 

matrix facilitates writing coarse quantities as the sum of fine quantities.  These coarse 

fluxes in compact form are 

LN

 
)

2,Nin ini i
ψ ψ= I
uv uuv

, (191) 

 
)

2,Nout outi
ψ = I

i
ψ

uv uv
, (192) 

 
)

2,NA Ai i
ψ ψ= I
uv uv

, (193) 

 
)

2,A ANiE = I iE
uv uv

. (194) 

The transport equations for these two directions are given by equations (109) and (110).  

Operating on these equations with 2,NI  results in: 

 
)

2, 2, 2, ,AN OI N OS N OE iout in Aii i ii i
ESψ ψ ψ= + +I K I K I K

uv

i

uv uv
Σ

uv
 (195) 

 
) ( ) ( ) ( )2, 2, 2, .AN AI N AS N AE iA in Ai ii i ii

ESψ ψ ψ= + +I K I K I K
uv uv uv uv

Σ i  (196) 

Equations (195) and (196) result in vectors of length 2 that are obtained from the 

matrix multiplication of the 2xN matrix of equation (190) with the vectors of length N 

from equations (109) and (110). The first term of the two component array resulting 

from equation (195) is 
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R

n i n n i n i

R

n i n i

N

OIi n in
N N

OS s
n n

N

OE A
n

K

K

K

,

ψ ψ

σ ψ

+ −
=

= =

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+ ⎜⎜

⎝ ⎠

⎡ ⎤+ ⎣ ⎦

∑

∑ ∑

∑

⎟⎟  (197)  

This term is the flux exiting the right hand side of a spatial cell in a single direction.  It 

is calculated by adding the contributions from fine angular quadrature fluxes entering 

the left hand side of the spatial cell, scattered within the cell, or emitted within the cell 

multiplied by their respective spatial quadrature coefficients.  Similarly the second term 

of equation (195) is the flux exiting the left edge 
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1
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 (198) 

 The first term of equation (196) is cell average flux streaming rightward 
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It is calculated by adding the contributions from fine quadrature fluxes entering the left 

hand side of the spatial cell, scattered within the cell, or emitted within the cell 

multiplied by their respective transport coefficients.   Similarly the second term 

resulting from equation (196) is the cell average flux streaming leftward 
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, ', , ',

, ,
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1 ' 1

1
.

n i
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⎡ ⎤
+ ⎢
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∑

∑ ∑
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⎥  (200) 

The goal is to transform the transport equations, (175) and (176), which have N 

directions and are not practical to solve into equivalent equations with only two 

directions that are practical to solve.  This transformation can be done by multiplying 

equations (197) through (200) by an appropriately chosen factor, one , obtained from 

equations  (177) through (184).  As an example, equation (197) and (198) can be 

written as  

 2-56



 

 

) )

)

)

1
21 1

,2 2
1

, 2

', , ',

1,,

', , ',

,
1,,

,

,
1, 1,

1

1

' 1

1

1 ' 1

1

1

E
,

R

n i R

n i

n n i n iR

in i R

n n i n i

R
n i

in i R

n i

N n i
OIi iN

n

n

N

sN
n AOS N N

n
s

n n

N A
AOE N

n
A

n

K

K

K E
E

ψ
ψ ψ

ψ

σ ψ

σ ψ

−

+ −
=

−
=

=

=

= =

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜+ ⎜
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

∑
∑

∑∑

∑
∑

S⎟⎟  (201)  

 

) )

)

)

1
21 1

,2 2
1

, 2

', , ',

2,,

', , ',

,
2,,

2,

,
2, 2,

1

1

' 1

1

1 ' 1

1

1

.

n i
R

n i
R

n n i n i

in i
R

n n i n i
R

n i
in i

R
i

R

N n i
OIi iN

n N

n N

N

sN
n AOS N N

n N
s

n N n

N A
AOE N

n N
A

n N

K

K

E
K E

E

ψ
ψ ψ

ψ

σ ψ

σ ψ

+

− +
= +

+
= +

=

= +

= + =

= +

= +

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎡ ⎤
⎢ ⎥
⎢+ ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥+ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

∑
∑

∑ ∑

∑
∑

S⎥⎥  (202) 

Note that these two equations are in the form of equations (42) and (43) for two 

directions.  However, the transport coefficients are not calculated from the coarse 

angular quadrature.  They are calculated from the fine angular quadrature transport 

coefficients and fluxes.   The two direction transport effective spatial quadrature 

coefficients are 
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Each of these effective transport coefficients can be thought of as a weighted sum of N-

direction spatial quadrature coefficients.  The weights are the terms in each of the 

brackets of the above equations that multiply the fine angle transport coefficients.  Note 

that the sum of each of these terms over its respective summation index is one.  For 

instance the sum of the weights of equation (203) are    
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For this reason the array of weights for the positive direction fluxes denoted by   
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represents a distribution of flux over the positive direction hemisphere.  The array of 

edge flux weights for the positive direction for cell  will be denoted by the more 

convenient notation  

i
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Additionally, the array of edge flux weights for the negative direction for cell  will be 

denoted by  

i
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The flux weight array for the cell average scattered source in the positive direction for 

cell i  is 
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The flux weight array for the cell average scattered source in the negative direction for 

cell i  is 
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M M . (214) 

The array of flux weights for the cell emission source in the positive direction for cell i  

is 
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The array of flux weights for the cell emission source in the negative direction for cell i 

is 
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If equations (199) and  (200) are multiplied by the appropriate identity formed by 

rearranging equations (177) through (184), as was done for the edge flux the two 

components of the cell average flux are   
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and  
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The resulting two-direction effective spatial quadrature coefficients for the contributions 

of edge flux scattered source and emission source to cell average source are 
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The weights used to collapse the fine angle average flux spatial quadrature coefficients 

are the same as the flux weights used to collapse the edge flux transport coefficients. 

Equations (203) through (224)  provide a mechanism to collapse an  direction angular 

quadrature into an equivalent two direction angular quadrature then calculate edge flux 

and average flux values across the entire spatial domain.  If the edge and average fluxes 

were, known these ratios could be correctly calculated and the number of particles 

exiting a cell edge can be calculated directly. Once this is done, the particles crossing a 

cell edge in the direction of either hemisphere of Figure 2 can be calculated.  It remains 

to apportion this flux into each of the ordinates of the fine angle quadrature.    

N

The flux and source weights already discussed provide the mechanism to apportion the 

coarse quadrature flux found from solution of the spatially coupled transport system 

into fine directions.  A is used to denote identify fine-angle fluxes calculated by 

apportioning a spatially-coupled coarse-angle flux.  For instance, 

%

1
2,n iψ − , represents the 

apportioned flux in ordinate n at edge 1
2i − .  This flux is calculated by multiplying the 

corresponding coarse angle flux with its appropriate flux weight 
)

1 1
2 2

, ,m i n ifψ − −
.   The 

array of positive direction flux is calculated by multiplying the positive direction coarse 

flux by the array of positive direction flux weights  

 
)

1 1
22

1, ,Liin i ifψ ψ − + −=
uv uv

, (225) 
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An angle space distribution iteration is shown schematically in Figure 3.  The iteration  

begins with approximate fine angle edge flux. 

3 100ψ =%

1 400ψ =%  

2 200ψ =%   

4 300ψ =%  

1 600ψ =)  

Cell Edge 

 

2 400ψ =)  

 

Cell Edge 

1 4ψ =  

 2 2ψ =3 1ψ =  

4 3ψ =  
Cell Edge 

Figure 3:  Apportioning two elements into N elements using Iteration Flux Weights 

In Figure 3 there are four initial fine fluxes exiting the lower left hemispheres 

1 2 3 44, 2, 1, 3ψ ψ ψ ψ= = = = .  These fluxes have corresponding weights of 
34 2 1

1 2 3 46 6 4, , ,f f f f= = = = 4 .  These weights are used to collapse the fine angle transport 

coefficients to two directions for the center hemispheres.  These two direction 

coefficients are then used in a spatially coupled system to calculate new fluxes that have 

accounted for particle scatter across the problem space.  In this example this results in 

two flux values exiting the top hemispheres.  This flux is then apportioned into the 
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original four directions using flux weights as shown in the right hemispheres.  This 

results in four fluxes of  in the example given.  

These flux solutions may not be correct, but they are of the right order of magnitude 

because they account for infinite particle scatters within spatial cells and across the 

spatial domain. 

1 2 3 4400, 200, 100, 300ψ ψ ψ ψ= = = =

The use of approximate fine angle fluxes to collapse their respective spatial 

quadrature coefficients into effective spatial quadrature coefficients, followed by 

computation of transport coefficients, which are then used to compute spatially coupled 

two direction fluxes, which are apportioned back into improved estimates of fine angle 

flux, leads to an iterative scheme.  

The vector of incoming cell edge fluxes for I spatial cells is estimated.  Equation 

(112) is used to calculate cell outgoing edge fluxes and equation (111) is used to 

calculate cell average fluxes.  These calculated fluxes are used to calculate flux weights 

with equations (211) through (216).  A flux solution is then found using collapsed the 

effective transport coefficients for the flux exiting a hemisphere in the µ+  direction and 

the flux exiting a hemisphere in the µ−  direction.  This two direction flux is then 

apportioned into the original N directions for a flux solution. 

The flux solution arrived at with estimated flux, calculating approximate flux 

weights and approximate transport coefficients is an estimate that fully accounts for 

particle scatters across the spatial domain and within each spatial cell.  The flux 

solution is not dependent on numerous source iterations to account for the scatters to 

estimate the scattering source.  It fully accounts for particle scatters without iteration.  

This straightforward numerical method using an estimated edge flux to collapse 

cell quadrature coefficients, use these to convert them to cell transport coefficients, 

calculate a two-direction spatially-coupled flux, then apportion that flux back into the 

fine ordinates to obtain an improved estimate of edge fluxes was the basis of the 

iteration scheme developed and investigated.  This transport scheme had significant 

computational efficiency when compared with SI.  Operationally this iteration works in 

the following way: 

- calculate fluxes using two-direction effective transport coefficients, 

- apportion this flux into fine ordinates as an initial estimate for edge fluxes, 
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- calculate updated fine angle edge fluxes, 

- use these updated edge fluxes to calculate weights  

- use the weights to collapse the spatial quadrature coefficients into effective two-

ordinate spatial quadrature coefficients 

- use these to form the effective two-ordinate transport coefficients 

- apportion the flux calculated in this way into fine ordinates, 

- calculate a better estimate of edge flux, weights and transport coefficients, 

- proceed until convergence tolerance is met. 

The entire scheme amounts to iteration on flux distribution and collapsed transport 

coefficients.  The algorithm for the Angular-Spatial Distribution Iteration (ASDI) 

method using a step characteristic spatial quadrature is shown in Algorithm 4.  

 

Initialize  

 Obtain an initial guess for cell edge, and zeroth moment angular flux 

 Use 2 direction quadrature to estimate cell coupling coefficients 

 Calculate 2 Direction angular flux 

 Apportion flux into to N directions  

Repeat 

update cell edge flux 

solve fine angle resolution fluxes within spatial cells 

use flux weights to generate improved coarse angle  cell coupling 

coefficients 

calculate spatially coupled coarse angle edge flux  

The results of implementation of this algorithm in Fortran 95 code and 

comparison with SI are presented and discussed in the next chapter. 
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III.  SC Experimental Results 

 

I set out to design a transport method that is:  robust, efficient (requires few iterations 

to converge), computationally effective (converges rapidly as measured by compute 

time), remains so when confronted with material discontinuities and is readily 

parallelizable.  After deriving the method, developing the algorithms and implementing 

these algorithms in FORTRAN code I designed experiments to test 4 of the 5 desirable 

characteristics.    I designed experiments to test the methods accuracy, effectiveness and 

computationally efficiency first without material discontinuities then with material 

discontinuities.  I did not test parallelizability leaving this for future research.   

I first experimented with an optically thick homogeneous material.  I varied this 

homogeneous material from absorber (low scattering ratio) to scatterer (scattering ratio 

nearly one) in order to test ASDI against SI for two types of problems:  one in which SI 

converged readily and one for which it converged slowly. 

In the second experiment I investigated the effect of periodic material 

discontinuity on the comparative performance of ASDI.  To do this I chose two 

materials of the same dimension.  I placed an emission source in one material and no 

source in the other material.  Both materials were 1 MFP wide.  The emitter had a 

scattering ratio of one.  The non-emitter’s scattering ratio varied from 0.0 to 1.0 as in 

the homogeneous material.  This two material pattern was repeated 10 times creating a 

periodic material discontinuity. 

In addition to scattering ratio I further investigated the effect of spatial 

refinement, angular refinement and convergence criterion on robustness, effectiveness, 

and efficiency for both the homogeneous and periodic problems.  I did this by setting 

the scattering ratio to 0.98 in the homogeneous material of problem 1 and the non-

emitter of problem 2 instead of allowing this parameter to vary.  The parameters I then 

varied in turn were spatial refinement, angular refinement and convergence tolerance. 

I tested ASDI’s accuracy by checking its solution against a benchmark to ensure 

it met the convergence tolerance required.  The first benchmark I used was an 
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unaccelerated SI allowed to converge to the same convergence tolerance as ASDI.  This 

provided a straightforward and reliable benchmark but only for test problems that were 

absorptive in which SI did not falsely converge.  For those problems in which SI did 

falsely converge I took advantage of SI’s ability to recognize a correct answer instead of 

its ability to calculate a correct answer.  First an initial guess of zero was used and a 

conventional SI solution was found.  This solution could be off by as much as four 

orders of magnitude because of false convergence.  In this case the flux solution was 

discarded but the iterations required to obtain the solution were recorded.  I then input 

ASDI solution to SI as an initial guess and allowed SI to iterate the same number of 

times it used to obtain its falsely converged solution.  My assumption was that SI would 

recognize a fixed point.  I allowed SI to iterate the same number of times it took to 

obtain its falsely converged solution to ensure that it had enough iteration to drift away 

from the ASDI solution if the initial value (i.e. the ASDI solution) was not a fixed 

point.  For instance if SI required 100000 iterations to converge on an answer I recorded 

this but discarded its flux solution.  I then passed SI the ASDI solution and allowed it 

to iterate 100000 times without checking it for convergence.  After completing these 

100000 iterations the new SI (SI_ASDI) solution was compared with the ASDI solution 

using .  This symmetric relative difference was then compared with 

the desired convergence tolerance.  If it was tighter than this desired convergence 

tolerance it demonstrated reliable accuracy.  After ensuring accuracy effectiveness was 

tested, I examined computational efficiency.  I tested this by comparing ASDI and SI 

compute times. 

(SRD ASDI,SI_ASDIε )

 

Problem 1 Optically Thick Homogeneous Material 

 

The first test problem studied is a 100 cm thick homogeneous slab with a vacuum 

boundary on the right, a symmetry boundary on the left, a uniform isotropic source, 
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source, and a total cross section of .  A diagram of this problem is shown in 

Figure 4. 

-11.0 cm

 

0.0=Rα  0.1=Lα  

100 cm 

 
Figure 4  Problem 1 

In the study of this problem and other problems the terms refinement factor and 

scattering ratio fraction are introduced.  Refinement factor is an integer that describes 

the number of partitions chosen for the spatial domain in a mesh.  For instance the 

spatial domain of problem 1 was 100 cm.  Refinement factors used were {1, 2, 4, 8, 10, 

16, 32, 64, 100,128} designating the number of cell partitions.  These refinement factors 

correspond with cell widths of 100 100
16 64

100 100{ 100,50,25,12.5,10, , , ,1, }
32 128

cm for problem 1.  

Scattering ratio fraction is a real number used as a coefficient that multiplies a base 

scattering ratio defined by the user.  Scattering ratio fraction is used order to vary 

problem scattering ratio over a range of interest for the numerical experiment.  For 

instance, in problem 1 the base scattering ratio was 1.0.  The scattering ratio fraction 

varied from 0.0 through 1.0.  These factors were used to vary the parameters under 

study across a full range of interest. 

The ASDI method provides a useful transport tool only if it provides reliable and 

usably accurate numerical solutions.  The first experiment tested the ASDI solution 

robustness as scattering ratio varied.  Figure 5 displays two plots.  These are the 

symmetric relative difference versus scattering ratio of the ASDI solution and the SI 

solution (ASDI_SI) and of the ASDI solution and the SI solution after being given the 

ASDI solution (ASDI_SI-ASDI).  The convergence tolerance chosen was  for both 610−
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SI and ASDI.  At a scattering ratio of 0.6 the ASDI and SI solutions differ by more 

than the chosen convergence tolerance.  This difference increases as the scattering ratio 

increases.  Both methods agree within the convergence tolerance for scattering ratios 

below 0.6.  These plots show that SI produces unreliable answers at scattering ratios as 

low as 0.6 but ASDI continues to provide the accurate answers are validated by SI’s 

fixed point recognition for all scattering ratios. 

 

Figure 5:  Symmetric Relative Difference  between the ASDI solution and the SI 

solution as scattering ratio varies. Angular quadrature is DE-8, refinement is 50  

( ), convergence tolerance is .  

εSRD

2MFPsσ∆ =x 610−

 

Figure 6 shows iteration count versus scattering ratio (c) with an angular 

refinement of 8, a mesh width of 2 MFPs and a convergence tolerance of .  SI 

iteration count increases with c, climbing steeply as c approaches unity.  This 

demonstrates the classic weakness of SI for diffusive problems.  The ASDI solution 

converges in two or three iterations regardless of scattering ratio demonstrating its 

usefulness especially for diffusive problems. 

610−
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Figure 6  Plot of iteration count versus scattering ratio. Angular quadrature is DE-8, 

refinement is 50 ( ), convergence tolerance is . 2x MFP∆ = s 610−

 

The low iteration count of the ASDI method displayed in Figure 6 is 

encouraging.  It is not a practical improvement over SI unless computational cost is also 

reduced.  Figure 7 displays compute time versus scattering ratio.  The amount of 

compute time needed by the ASDI method is insensitive to the scattering ratio and 

compares favorably to SI even when SI converges rapidly.  This demonstrates that we 

have not paid excessive computational efficiency costs to obtain the method’s desirable 

robustness and effectiveness.   
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Figure 7   Plot of compute time (seconds) versus scattering ratio. Angular quadrature 

is DE-8, refinement is 50 ( ), convergence tolerance is .  2σ∆ =x MFPs 610−

 

The results shown in Figure 5 through Figure 7 demonstrate the effect of scattering 

ratio on the ASDI and SI methods.  These results were obtained with a fixed refinement 

of 50 mesh cells ( ), convergence tolerance fixed at , and angular 

quadrature fixed at .  Spatial refinement, angular refinement, and convergence 

tolerance are also parameters that are expected to have an impact on robustness, 

effectiveness, and efficiency of a method.  The next series of plots investigates the effect 

of changing these parameters.  These three parameters were studied with a scattering 

ratio of 0.98 making the homogeneous material a good scatterer.  This scattering ratio 

was chosen to test the performance of ADSI in a diffusive problem.  

2.0 cm∆ =x 610−

8n =

Figure 8 shows the relative difference between SI and ASDI solutions as the 

spatial mesh is refined.  The difference between the answers is greater than the 

convergence tolerance because with a scattering ratio of 0.98 SI suffers from false 

convergence.  If SI is fed the ASDI solution it again recognizes this solution as a fixed 

point for all spatial refinements. 
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Figure 8  Plot of Symmetric Relative Difference  between ASDI solution and SI 

solutions for as cell mesh is refined. Angular quadrature is DE-8, scattering ratio is 1.0, 

convergence tolerance is .  

SRDε

610−

 

SI recognition of the ASDI solution as a fixed point for all spatial refinements 

provides convincing evidence of the accuracy of its solution.  I was able to further test 

this accuracy because by computing and comparing the ASDI convergence rate with the 

known convergence rate of SC.  An analytic solution was available for problem 1.  This 

was done for a DE-4 angular quadrature and a scattering ratio of 1.0 with spatial 

refinement varying from 1000 (cell width = ) through 10 (cell 

width=10 ).  ASDI solutions are not expected to be the same as the analytic solution 

because ASDI is a numerical approximation of the analytic solution dependent on mesh 

refinement.  However, because SC is known to be second order convergent in space the 

method can be checked against the analytic solution to determine if the order of 

convergence is 2.  Figure 9 shows symmetric relative difference (ε ) between the 

ASDI solution and an exact solution plotted against the spatial mesh refinement factor 

( ) on a Log-Log graph for a scattering ratio of 1.0.  Figure 10 shows this for a 

scattering ratio of 0.9.   appears as a straight line on both plots whose slope is two.  

21.25x10 cm−

cm

SRD

FR

εSRD
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A line with a slope of two, which is the convergence order of SC, has been overlaid on 

the data plot.  This agreement of ASDI’s convergence rate with the known SC 

convergence rate for a scattering ratio of 1.0 and 0.9 combined with SI recognition of 

ASDI solutions as fixed points demonstrate the method’s robustness. 

 

 
Figure 9:  Plot of Symmetric Relative Difference  between the ASDI solution and 

an analytic solution as cell mesh is refined between 10 MFPs and 0.1 MFPs.  Angular 

quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is .  

SRDε

610−
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Figure 10:  Plot of Symmetric Relative Difference  between the ASDI solution and 

an analytic solution 1 as cell mesh is refined between 10 MFPs and 0.1 MFPs.  Angular 

quadrature is DE-8, scattering ratio is 0.9, convergence tolerance is 10 .  

SRDε

6−

Figure 11 shows the iteration count of the ASDI and SI methods as the mesh is 

refined.  SI iteration remains flat, at 500 iterations, as the mesh is refined and ASDI 

iteration count increases from 4 iterations for a coarse mesh to 17 iterations for a fine 

mesh indicating ASDI is an effective method.  SI appears insensitive to the cell 

refinement.  I drew no conclusions about this SI characteristic from this because of its 

false convergence. 
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Figure 11  Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratio is 1.0, convergence tolerance is .  610−

Figure 12 shows the compute times required for the SI and ASDI solutions as the 

spatial mesh is refined.  The spatial refinement increases compute time for both 

methods.  ASDI requires less compute time than SI for the scattering ratio chosen.  This 

indicates that ASDI will not require disproportionately more time than SI regardless of 

mesh size.  The true value of ASDI is that it converges to the correct solution without 

requiring large compute time, something that SI can not do. 
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Figure 12  Plot of compute time required for the ASDI and SI solutions as cell mesh is 

refined. Angular quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is 

. 610−

The convergence tolerance used to test previous problems was  on angular 

flux.  This is a fairly tight convergence tolerance and it is suitable for most engineering 

applications.  However some applications may require tighter tolerances.  The effect of 

tightening convergence tolerance from to  on symmetric relative difference, 

iteration count, and compute time is shown next.  Figure 13 shows that the accuracy of 

the converged SI solution does not meet the accuracy required by the specified 

convergence tolerance regardless of how tight that tolerance is, whereas the ASDI 

method continues to provide reliably accurate solutions for any tolerance without round 

off error or instability.  Examination of Figure 14 and Figure 15 reveals that this 

accuracy is achieved with modest increase in iterations required or compute time. 

610−

610− 1110−
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Figure 13  Plot of symmetric relative difference versus convergence tolerance. Angular 

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.  

 
Figure 14  Plot of iterations versus convergence tolerance for ASDI and SI. Angular 

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.   
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Figure 15  Plot of compute time versus convergence tolerance for ASDI and SI. 

Angular quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.  

The effect of increasing angular refinement is shown in Figure 16 through Figure 

18 shows that SI remains inaccurate and has increased computational cost as the 

angular quadrature is refined.  ASDI continues to provide reliably accurate solutions 

without an increase in iteration count or compute time beyond an angular quadrature of 

2.  ASDI achieves a quick solution for an angular quadrature of 2 because its global 

spatial solution was designed with this angular quadrature.  Such a coarse angular 

quadrature is not likely to meet most engineering needs.  However ASDI’s rapid 

convergence for even fine angular quadratures indicates usefulness for engineering 

problems requiring higher angular refinement. 
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Figure 16  Plot of symmetric relative difference versus angular quadrature. 

Convergence tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−

 

 
Figure 17  Plot of iterations versus angular quadrature for ASDI and SI. Convergence 

tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−
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Figure 18  Plot of compute time versus angular quadrature for ASDI and SI. 

Convergence tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−

This section demonstrated the strength of the ASDI method for a homogeneous 

material.  The most important characteristic examined was accuracy for each of the 

parameters studied.  Each experiment showed that ASDI was reliably accurate within 

the convergence tolerance required whereas SI was not.  This reliable accuracy across all 

parameters studied demonstrates that the method is robust for this homogeneous 

problem.  The next section examines the method’s performance when applied to a 

heterogeneous material. 

 

Periodic: Two Regions Repeated 10 Times 

 

The second test problem investigated was slab with a symmetry boundary on the left 

side and a vacuum boundary on the right side.  Two materials of 1 cm cell width are 
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placed side by side.  This two material pattern is repeated 10 times for a total length of 

20 cm.  Material I had a total cross section of , a scattering ratio of 1.0, and a 

uniform source of .  Its material properties remain fixed for all experiments.  

Material II has a total cross section of , a baseline scattering ratio of 1.0, and no 

source.  Material II’s parameters were varied during the experiments. A diagram of 

these two materials is shown in Figure 19. 

-11.0 cm
-31.0 cm

-11.0 cm
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1.0Lα = 0.0Rα =

1.0S =

1.0cm 1.0cm

σ =1.0

0S = .0

1.0C =

Pattern Repeated 10 Times

20.0cm

Material I Material II

1.0C =

σ =1.0

 
Figure 19 Problem 2 

In the next set of experiments I tested the method for accuracy, effectiveness, and 

efficiency for varying scattering ratio fraction, refinement factor, convergence tolerance 

and angular refinement as was done in problem 1. 

The first set of experiments for problem 2 tested the ASDI method’s accuracy, 

effectiveness and efficiency versus scattering ratio fraction in Material II.  Scattering 

ratio fraction was varied from 0.0 to 1.0.  Angular refinement for this experiment was 8, 

refinement factor was 1 and convergence tolerance was . 610−

Accuracy is the first parameter presented.  Figure 20 displays the symmetric 

relative difference between ASDI and SI ( ( )SRD ASDI,SI_ASDIε ) and between ASDI and 

SI given the ASDI solution ( ( )SRD ASDI,SI_ASDIε ).  The plots show that ASDI provides 

reliably accurate solutions for all scattering ratios while SI provides reliably accurate 

solutions only through scattering ratios of 0.6.   
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Figure 20:  Symmetric Relative Difference  between the ASDI solution and the SI 

solution as scattering ratios vary.  Angular quadrature is DE-8, convergence tolerance 

is , refinement is 50.   

SRDε

610−

The effectiveness of the method is tested next.  Figure 21 shows the method 

iteration count versus scattering ratio fraction for material II.  This plot shows that 

ASDI converges in four or five iterations regardless of scattering ratio demonstrating its 

effectiveness for diffusive heterogeneous materials.  Iteration count for SI increases with 

scattering ratio.  This count climbs steeply as scattering ratio approaches 1.0. 
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Figure 21:  Plot of iteration count versus scattering ratio fraction. Angular quadrature 

is DE-8, convergence tolerance is , refinement is 50.  610−

 

Efficiency of the method is tested next.  Figure 22 shows compute time versus 

scattering ratio fraction for material II.  This figure shows that ASDI compute time is 

less than 0.1 seconds for all scattering ratios tested.  Comparison of the ASDI and SI 

compute times demonstrate that ASDI is more computationally efficient than SI even 

when material II is a strong absorber and SI converges rapidly.  The figure also shows 

that in materials that are strong scatterers SI compute time climbs rapidly.  
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Figure 22:  Plot of compute time (seconds) versus scattering ratio. Angular quadrature 

is DE-8, convergence tolerance is , refinement is 50.     610−

The next set of experiments demonstrate method accuracy, effectiveness and 

efficiency while refinement factor varies for material II.  Scattering ratio for material II 

was fixed at 1.0.  This tested ASDI in a highly diffusive material.  A material 

discontinuity occurs even though cross sections and scattering ratios are the same 

because intrinsic sources are emitted only in material I.   The refinement factor for 

material II was varied between 1 and 66.  

Accuracy was tested first.  Figure 23 displays the symmetric relative difference 

between ASDI and SI ( ) and between ASDI and SI given the ASDI 

solution ( ).  The plots show that ASDI provides reliably accurate 

solutions for all refinement factors but SI does not.  

(SRD ASDI,SI_ASDIε )
)(SRD ASDI,SI_ASDIε
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Figure 23:  Plot of Symmetric Relative Difference  between ASDI solution and SI 

solutions as cell mesh is refined. Angular quadrature is DE-8, scattering ratios are 

baseline values, convergence tolerance is .   

SRDε

610−

 

Effectiveness was next tested.  Figure 24 shows that ASDI converges on a solution in 

less than 8 iterations for a refinement factor of 1 growing slightly as refinement factor is 

increased then remaining constant for refinement factors above 16. SI requires many 

more iterations than ASDI and provides unreliable solutions for these refinement factors 

since this is a diffusive problem. 
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Figure 24  Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratios are baseline values, convergence tolerance is .  610−

Computational efficiency was next tested.  Figure 25 demonstrates that ASDI 

requires less compute time than SI regardless of mesh size for the baseline scattering 

ratios selected.  However, as spatial mesh is refined the compute time of ASDI is nearly 

the same as the compute time of SI.  The relatively comparable compute times of SI 

and ASDI do not indicate that SI is just as efficient as ASDI for these fine spatial 

meshes because SI does not provide reliably accurate answers.  ASDI does not require 

excessive compute time at all refinement factors. 
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Figure 25:  Plot of compute time as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratios are baseline values, convergence tolerance is .   610−

 

Accuracy, effectiveness and computational efficiency were further tested with 

fixed scattering ratio and refinement factor for varying convergence tolerance and 

angular refinement.  These results are not shown here.  As in problem 1 these results 

indicate that ASDI remains reliably accurate, effective and efficient as these parameters 

vary. 

These experiments demonstrate the strength of the ASDI method for a 2 region 

periodic material.  The experiments demonstrate that ASDI was always reliably 

accurate and that the parameters with the greatest impact on iteration count and 

compute time were scattering ratio and refinement factor.  The experiments presented 

kept cross sections constant but varied spatial refinement.  In order to fully stress 

material discontinuity in this periodic material I next examined the impact of varying 

both scattering ratio and cross section simultaneously in material II.  I varied scattering 

ratio fraction from 0.0 to 1.0 and cross section from 710 cm 1− −  to 710 cm 1+ − .  I examined 

the impact of varying these two parameters on accuracy, effectiveness and efficiency at 

a refinement factor of 1. 

A 3D plot of ASDI the symmetric relative difference between ASDI and SI 

( ) and between ASDI and SI given the ASDI solution (SRD ASDI,SI_ASDIε )
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( )is shown in Figure 26.  This plot shows that ASDI is reliably 

accurate across the wide range of material properties tested   

(SRD ASDI,SI_ASDIε )
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Figure 26:  3D Plot of ASDI symmetric relative difference between ASDI and SI 

( ) and between ASDI and SI given the ASDI solution 

( ) as scattering ratio and cross section vary . Angular quadrature 

is DE-8, convergence tolerance is 10 , refinement factor is 1.  

(SRD ASDI,SI_ASDIε )

)

6−

(SRD ASDI,SI_ASDIε

 

A 3D plot of ASDI iteration count versus cross section and scattering ratio is 

shown in Figure 27. 
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Figure 27:  3D Plot of ASDI iteration count as scattering ratio and cross section vary . 

Angular quadrature is DE-8, convergence tolerance is 10 , refinement factor is 1.  6−

This figure demonstrates that ASDI is not sensitive to either scattering ratio or cross 

section taking at most 7 iterations to converge regardless of the sharpness of material 

discontinuity.  Again, a low iteration count is not useful if computational cost is 

prohibitive.  A comparison of the time required for ASDI and SI to solve the problem is 

shown in Figure 28.  The ratio of the ASDI compute time to SI compute time is shown 

in the figure, if this ratio is less than 1.0 then ASDI takes less time than SI.  This is the 

case for almost all combinations of scattering ratio and cross section.  SI takes less 

compute time than ASDI when scattering ratios that are not diffusive.  Even in these 

problems where SI is computationally efficient ASDI compute times is of the same order 
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of magnitude but more importantly provides reliably accurate answers across a broader 

range of parameters.  SI provides unreliable answers because it converges falsely even 

when material II is a strong absorber.  The false convergence of SI occurs because 

material I is diffusive. 
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Figure 28:  3D Plot of the ratio ASDI compute time to SI Compute time as scattering 

ratio and cross section vary . Angular quadrature is DE-8, convergence tolerance is 

, refinement factor is 1.  6−10
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These experiments demonstrate that ASDI is reliably accurate for all the 

parameters studied and therefore robust.  The method dramatically reduces iteration 

count and required computing time for diffusive problems compared with SI.   
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IV  Solution of the Discrete Ordinates ( ) Transport Equations with 

EC 
nS

 

This chapter introduces cell transport coefficients for the EC spatial 

quadrature.  The derivation of this spatial quadrature was done by Mathews, 

Minor, and Sjoden in 1993.  I adopt their notation for limits of integration and 

leftward or rightward directed fluxes and flux moments.  With this notation the 

cell average source is 

 ( ), 0
,i

i

x dx
nxn i

Q Q
∆

∆= ∫ x

,

 (227) 

 
, ,A An i n i n i

Q S E= + , (228) 

where ix∆ is the width of a spatial cell whose left edge is 1
2ix

−
 and whose right 

edge is the 1
2

i
x
+

.  The average scattered source in cell i  is  

 ( ), 0
i

i

x dx
A xn i

S
∆

∆= ∫ nS x . (229) 

The average intrinsic particle emission in cell  is i

 ( ), 0
i

i

x dx
A xn i

E
∆

∆= ∫ nE x . (230) 

 The SC spatial quadrature assumed that the both source distributions were 

constant.  However, the EC spatial quadrature assumes that the distribution of 

scattered source is exponential.  The distribution of emission source is assumed to 

be constant for this discussion.  An alternative to a constant emission source is to 

assume it has the same exponential distribution as the scattered particle source 
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distribution.  If this is done the averaging of the emission source is handled in the 

same way as the scattered source.  Extension for an exponentially distributed 

emission source is obvious. 

 

EC Transport coefficients 

 

The scattered source distribution for EC is exponential 

 
n,i

, ,S ( ) = i

x
x

n i n ix a e
β−

∆ . (231) 

The parameters  and ,n ia ,n iβ  are chosen to match available information about 

the source, typically its average, equation (38) and first spatial moment 

 
, 1 ,0

= 3P ( ) ( )i
n i

x
x

i

dxS
x

∆

∆∫ n ix S x , (232) 

where 1P ( )x  is a shifted Legendre polynomial: 

 1P ( ) 2 1
i

xx
x

= −
∆

, (233) 

defined in the interval 2
ix∆−  to 2

ix∆ .  In practice
,n iAS ,

,n ixS  are not calculated 

from equations (38) and (232) but are accumulated from angular flux moments 

  (234) 
, ', ,

' 1
 = 

n i n n i n i

N

A s
n

S σ ψ
=
∑ ',A

 4-2

 



 

 4-3

',
 

, ', ,
' 1

 = 
n i n n i n i

N

x s x
n

S σ ψ
=
∑ . (235) 

EC transport equations for cell edge flux are  

 ( ),, ,
1 1
2 2

, ,, , , 0n i in i n i
n

a x
o n i n i nn i n i e eε β

µψ ψ ε β µ
∆− −

+ −
= + −M >  (236) 

 ( ),, ,
1 1
2 2

, ,, , . 0n i in i n i
n

a x
o n i n i nn i n i e eε β

µψ ψ ε β µ
∆− −

− +
= + −M <  (237) 

See page 31 of the Mathews, Sjoden and Minor work (reference 7) where these 

equations are clearly derived.  Optical path length, ,n iε , was given previously as 

equation (56).  The transport equations for cell average flux are  

 ( ) ( ),
1, 2

, , ,, ,n i i
n i n

a x
A o n i o n i n in i µψ ψ ε ε β µ

∆
−

= +M M 0n >  (238) 

 ( ) ( ),
1, 2

, , ,, ,n i i
n i n

a x
A o n i o n i n in i µψ ψ ε ε β µ

∆
+

= +M M 0n <  (239) 

The transport equations for cell first spatial flux moments are  

 
( ) ( )
( ) ( )

1, 2

,

, 1 ,,

, , 1 , ,

3 2

3 , 2 , ,

n i

n i i

n

x o n i n in i

a x
o n i n i n i n i nµ

ψ ψ ε ε

ε β ε β µ

−

∆

⎡ ⎤= − +⎣ ⎦

⎡ ⎤ 0− >⎣ ⎦

M M

M M
 (240) 

 
( ) ( )
( ) ( )

1, 2

,

, 1 ,,

, , 1 , ,

3 2

3 , 2 , .

n i

n i i

n

x o n i n in i

a x
o n i n i n i n i nµ

ψ ψ ε ε

ε β ε β µ

+

∆

⎡ ⎤= − +⎣ ⎦

⎡ ⎤ 0− <⎣ ⎦

M M

M M
 (241) 

Examination of these equations reveals they are in the form of equations (42) 

through (45).  The transport coefficients are obvious.  The first transport 

coefficient from the first term of equation (236) or (237) relates outgoing flux to 

incoming flux.  It is  

  (242) ,
,

.n i
n iOIK e ε−

=

 



 

The second transport coefficient from the second term of equation (236) or (237) 

describes the contribution of within cell scattering to the cell outgoing flux.  It is  

 ( ),
, , ,

n ii
n n

x
OS i o n i n iK e β

µ ε β−∆= M − . (243) 

The third transport coefficient from the first term of equations (238) or (239)

describes contribution of flux entering a cell edge to cell average flux.  It is  

  ( ), ,n iAI o nK ε=M i . (244) 

The fourth transport coefficient from the second term of equations (238) or (239)

describes contribution of cell scattering to cell average flux.  It is   

 ( ),
, , ,,n ii

n i n

x
AS o n i n iK e β

µ ε β−∆= M . (245) 

The fifth and sixth transport coefficients depend on whether a particle enters a 

cell right or left edge.  These coefficients capture flux spatial first moment 

information the negative sign on equation (241) reflect that a flux gradient 

appears different to particles streaming in ordinates that have equal direction 

cosines but in opposing directions.  The fifth transport coefficient, from the first 

term of equations (240) or (241), describes contribution of flux entering an edge 

to cell first moment flux.  It is 

  ( ) ( )
, , 1 ,3 2

I n iX o n i n iK ε ε⎡ ⎤= −⎣ ⎦M M , (246) 

The sixth transport coefficient, from the second term of equations (240) or (241),  

describes contribution of cell scattering to cell first moment flux.  It is 

 ( ) ( )
, , , 1 , ,3 , 2 ,i

S n i n

x
X o n i n i n i n iK µ ε β ε β∆ ⎡= −⎣M M ⎤

⎦ , (247) 

Comparison of equations (242) through equation (245) shows that the difference 

between SC transport coefficients and EC transport coefficients is that  for 

SC because its spatial first moment is defined to be zero.   
n,i 0β =

The cell EC transport equations may be written in vector notation as  
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 ( )i AAOI OS OEiout in ii iii i
Sψ ψ= + +K K K E

ruv uv uv u
β

v
, (248) 

 ( )i AAAI AS AEi iiA in iiii
Sψ ψ= + +K K K E

ruv uv uv u
β

v
, (249) 

 AI S ix in iiii
Sψ ψ= +x xK K

uv uv uv
, (250) 

 iA AiS sψ=
uv u

Σ
v

, (251) 

 i ix xS sψ=
uv u

Σ
v

, (252) 

where 

 
1

R

R

i

N i
i

N i

N i

β

β

β

β

1,

,

+ ,

,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

r

M

β = . (253) 

where each of the coefficient matrices is dependent on the associated element of 

.  For the same reason that assembly of a fully spatially and directionally 

coupled system of equations was impractical to solve for SC it is even more 

impractical for EC.  This is because of the additional first moment equations 

(250) and the inherent nonlinearity in 

i
r
β

i
r
β . (7:29,30 ). 

However, if the incoming edge flux is known i
r
β  can be found by iteration. The 

logic of this iteration is shown in Algorithm 5. 
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Initialize  

estimate edge flux ψin
uv

 

calculate cell coupling coefficients for ( )+1β⎛ ⎞
⎜ ⎟
⎝ ⎠

K
v l  

Do 

calculate ( ) ( ) ( )β ,A xS S⎛ ⎞
⎜ ⎟
⎝ ⎠

v uv uvl l l  

calculate ( )+1β⎛ ⎞
⎜ ⎟
⎝ ⎠

K
v l  

calculate ( ) ( )+1 ψA inψ
uv uvl  

calculate  ( ) ( )+1 ψinxψ
uv uvl  

calculate ( )+1
AS

uv l  

calculate  ( )+1
xS

uv l  

calculate new ( ) ( )+1β ,i iA xS S
v uv uvl  

End do when ( ) ( )+1β ,βSRD i iε ⎛
⎜
⎝ ⎠

⎞
⎟

v vl l  converged 

 
Equations (89)  through (252) are used in the beta iteration algorithm. 

 Once 

 iβ
uur

 is known, edge flux is also found by iteration.  Outgoing edge flux is 

calculated from equation (89) and 
iAψ

ur
 is calculated from (90).  This is done for 

each cell and then boundary conditions are applied.  The outgoing edge flux 

calculated for a cell is used as the incoming edge flux for an adjacent cell. The 

logic of this iteration is shown in Algorithm 6. 
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initialize flux   

β βconverged=
v v

 

( ) ( )0 ψ b
in inψ =

uv uv
 

Do all cells  

calculate ( ) ( ) ( )βout inψ ψ⎛⎜
⎝ ⎠

,K ⎞
⎟

uv uv vl l  for all cells 

apply boundary conditions 

update ( )+1
inψ

uv l from adjacent cell outflow 

End do when ( ) ( )+1 ,SRD in inε ψ ψ⎛
⎜
⎝

⎞
⎟
⎠

uv uvl l  for current β
v

 

3. A
Analysis of Algorithm 5 and Algorithm 6 reveals that these two algorithms 

are linked through β and edge flux i
v

ψin
uv

.  Changing β
r
 leads to new transport 

coefficients which lead to new flux ini
ψ
ur

.  Updated ini
ψ
ur

leads to new estimates for 

.  The interdependence of these two algorithms suggests the following iteration 

scheme to couple outgoing edge flux iteration with beta iteration. 

β
r
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Algorithm 6 solves for refined edge flux. It accounts for all within cell 

scattering through inversion of the scattering source as was done for SC.  The 

 

Initialize  

estimate initial flux  ψ  
( )0
in

uv

v

( )0v

estimate β  
( )0

calculate cell coupling coefficients for 

 ( )βK

Do 

    Do 

       calculate   
( ) ( ) ( )β  ,A xS S⎛ ⎞

⎜ ⎟
⎝ ⎠

v uv uvl l l

initialize flux  
( ) (0 ψ b
in inψ = )uv uv

 

Do all cells  

calculate 

( ) ( ) ( )βout inψ ψ⎛ ⎞
⎜ ⎟
⎝ ⎠

,K
uv uv vl l

 for all cells 

apply boundary conditions 

update 
( )+1
inψ

uv l
from adjacent 

cell outflow 

End do when 
( ) ( )+1 ,SRD in inε ψ ψ⎛ ⎞

⎜ ⎟
⎝ ⎠

uv uvl l
 

for current β
v

 

       calculate 
( )+1β⎛ ⎞

⎜ ⎟
⎝ ⎠

K  
v l

 

       calculate 
( ) ( )( )+1 ψ b
A inψ

uv uvl
 

       calculate  
( ) ( )( )+1 ψ b

inxψ
uv uvl

 

       calculate 
( )+1
AS

uv l
 

       calculate   
( )+1
xS

uv l

       calculate new 
( ) ( )+1β ,i iA xS S
v uv uvl

 

2. 

l ith 7 C l d B t Ed Fl It ti
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beta it l 

in 

ls 

or 

ed 

eration loop defines source distribution and facilitates calculation of cel

transport coefficients.  The coupled beta edge flux iteration loop solves for with

cell scattering and accounts source distribution, it does not explicitly couple cel

across the spatial domain.  However, if beta is held fixed at a current iteration 

estimate edge flux can be calculated from equations (89)  and (90)  just as was 

done for SC.  These equations can be collapsed with flux weights, as was done f

SC, using equations (197) through (202).  The spatially coupled transport 

equations are then readily solved as in chapter 2 using equation (172).  This 

suggests the following iteration scheme, Algorithm 8 that accounts for refin

angle within cell transport, the exponential source distribution, and particle 

transport across cells in the spatial domain. 
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! obtain an initial guess for ini
ψ
ur

 

! obtain an initial guess for β  i
r

! calculate cell coupling coefficients for ( )K β  

Do 

estimate initial flux   
( )0ψin

uv

Algorithm 8 couples the angular and spatially explicit edge flux solutions 

in a scheme that accounts for infinite scatters from cell to cell and within a cell 

estimate β  
( )0v

calculate cell coupling coefficients for 

 
( )( )0βK
v

Do 

    Do 

       calculate   
( ) ( ) ( )β ,A xS S⎛ ⎞

⎜ ⎟
⎝ ⎠

v uv uvl l l
 

 

       calculate 
( )+1β⎛ ⎞

⎜ ⎟
⎝ ⎠

K
v l

 

       calculate 
( ) ( )( )+1 ψ b
A inψ

uv uvl
 

       calculate  
( ) ( )( )+1 ψ b

inxψ
uv uvl

 

       calculate 
( )+1
AS

uv l
 

       calculate  
( )+1
xS

uv l
 

       calculate new 
( ) ( )+1β ,i iA xS S
v uv uvl

 

    End do ( ) ( )+1β ,βSRD i iε ⎛ ⎞
⎜ ⎟
⎝ ⎠

v vl l converged 

use refined angular edge flux to collapse transport coefficients 

calculate 
)

ini
ψ
ur

 

apportion coarse 
)

ini
ψ
ur

 to obtain new fine ini
ψ
ur

 

End Do  when  less than convergence tolerance 
( )(ψ ,b

SRD in inε
uvuv )ψ

 

1. 

lgorithm 8:  ECAngular and Spatially Coupled Flux Iteration

 



 

as was done for SC but adds the inner loop to solve for iβ
uv

then iterates the edge 

flux and beta iteration schemes to get a best value for edge flux distribution.  

This estimate is used to update collapsed transport coefficients which are used to 

calculate spatially coupled coarse edge flux and to apportion this coarse edge flux 

back into fine flux components.  The apportioned edge flux updates the cell 

incoming edge flux and the iteration scheme proceeds again.  The iteration 

scheme of Algorithm 8 effectively accounts for infinite particle flights in a single 

iteration.  Results of this algorithm implemented as Fortran 95 code are 

discussed in the next chapter. 
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V.  EC Experimental Results 

 

After showing that the ASDI method met my evaluation criteria:  robust (reliably 

accurate for the problems intended), efficient (requires few iterations to converge), 

effective (converges rapidly as measured by compute time) with SC, I implemented the 

method using EC.  I used the same suite of experiments to test the methods accuracy, 

effectiveness and computationally efficiency for the EC experiments as I did for SC.   

To review, the first experiment had an optically thick homogeneous material.  I 

varied this homogeneous material from absorber (low scattering ratio) to scatterer 

(scattering ratio nearly one) in order to test ASDI against SI for problems which 

converged readily and one for problems which converged slowly. 

The second experiment investigated the effect of periodic material discontinuity 

on the comparative performance of ASDI by using two materials of the same dimension.  

There was an emission source in one material and no source in the other material.  Both 

materials were 1 MFP wide.  The emitter had a scattering ratio of one.  The non-

emitter’s scattering ratio varied from 0.0 to 1.0 as in the homogeneous material.  This 

two material pattern was repeated 10 times creating a periodic discontinuity in the 

materials. 

I again investigated the effect of scattering ratio, spatial refinement, angular 

refinement and convergence criterion on robustness, effectiveness, and efficiency for both 

the homogeneous and periodic problems.  The parameters I varied in turn were: 

scattering ratio, spatial refinement, angular refinement and convergence tolerance.  I 

examined these parameters for a homogeneous then a two material problem.  Further, I 

evaluated ASDI with EC over a complete range of scattering ratios and cross sections, 

just as was done for ASDI with SC and displayed in figures 26, 27, and 28.   

As I did with SC, I tested ASDI’s accuracy by checking its solution against a 

benchmark to ensure it met the convergence tolerance required.  The benchmarks were 

the same as those used for SC.   
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Problem 1 Optically Thick Homogeneous Material 

  The first test problem studied is a 100 cm thick homogeneous slab with a vacuum 

boundary on the right, a symmetry boundary on the left, a uniform isotropic source, 

and a total cross section of .  Figure 4, although shown in chapter 3 is 

redisplayed in this chapter for the reader’s convenience.  

-11.0 cm

 

0.1
0.1

=
=

S
σ

 

0.0=Rα  0.1=Lα  

100 cm 

 
Figure 4  Problem 1 

The first experiment tested the EC ASDI solution robustness as scattering ratio 

varied.  Figure 29 displays two plots.  These are the symmetric relative difference versus 

scattering ratio of the ASDI solution and the SI solution (ASDI_SI) and of the ASDI 

solution and the SI solution after being given the ASDI solution (ASDI_SI-ASDI).  The 

convergence tolerance chosen was  for both SI and ASDI.  The SI Solution after 

having been given the ASDI solution was allowed to iterate the same number of times 

that it took to arrive at its converged solution without the ASDI start point.  For this 

problem this is between 30 and 500 iterations.  The plot shows that the ASDI solution 

never deviates from this solution by more than the convergence tolerance required.  This 

demonstrates ASDI’s reliable accuracy at all scattering ratios.  At a scattering of 0.6 

and above the SI solution differs by more than the chosen convergence tolerance 

demonstrating SI’s unreliable solutions.  This difference increases as the scattering ratio 

increases.  These plots show that SI produces unreliable answers at scattering ratios as 

low as 0.6 but ASDI provides reliably accurate answers validated by SI’s fixed point 

610−
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recognition.  In figure 6 ( , _SRD )ASDI SI ASDIε increases from a low value of  and a 

high value of 

610−

65.0 * 10− .  This range of values is within the required convergence 

tolerance. 

 

Figure 29:  Symmetric Relative Difference  between the ASDI solution and the SI 

solution as scattering ratio varies. Angular quadrature is DE-8, refinement is 50  

( ), convergence tolerance is .  

εSRD

2MFPsσ∆ =x 610−

 

Figure 30 shows iteration count versus scattering ratio (c) with an angular 

refinement of 8, a mesh width of 2 MFPs and a convergence tolerance of .  As in 

SC, iteration count increases with scattering ratio, climbing steeply as c approaches 

unity.  This again demonstrates the classic weakness of SI for problems with little or no 

absorption.  With exponential characteristic spatial quadrature each of these iterations 

requires the non-linear root finding of the source distribution parameter (

610−

,n iβ ) for every 

direction in every cell.  This root finding can be computationally expensive.  The ASDI 

solution converges in six or less iterations regardless of scattering ratio, demonstrating 

its effectiveness even for problems with little or no absorption. 
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Figure 30  Plot of iteration count versus scattering ratio. Angular quadrature is DE-8, 

refinement is 50 ( ), convergence tolerance is .  2x MFP∆ = s 610−

 

As pointed out previously the low iteration count of the ASDI method with EC 

displayed in Figure 30 is not a practical improvement over SI unless computational cost 

is also reduced.  Figure 31 displays compute time versus scattering ratio.  The amount 

of compute time needed by the ASDI method is less than 0.3 seconds regardless of the 

scattering ratio.  Even when SI converges more rapidly than ASDI and provides reliably 

accurate solutions, i.e. at scattering ratios below 0.6, ASDI compute time is the same 

order of magnitude as SI.  The plot confirms that the beta feedback mechanisms of the 

ASDI method with EC do not converge slowly as the scattering ratio goes to one.  This 

demonstrates that the method does not require excessive compute time with the EC 

spatial quadrature at least for the homogeneous material.   

5-4 



 

 

Figure 31   Plot of compute time  (seconds) versus scattering ratio. Angular 

quadrature is DE-8, refinement is 50 ( ), convergence tolerance is .  2σ∆ =x MFPs 610−

 

The results shown in Figure 30 were obtained with a fixed refinement of 50 mesh cells 

( ), convergence tolerance fixed at , and an angular quadrature fixed at 

.  Spatial refinement, angular refinement, and convergence tolerance are also 

parameters that are expected to have an impact on robustness, effectiveness, and 

efficiency of the ASDI method used with the EC spatial quadrature.  The next series of 

plots investigates the effect changing these parameters have on ASDI performance with 

the EC spatial quadrature.  These three parameters were studied with a scattering ratio 

of 0.98 making the homogeneous material a good scatterer.   

2.0 cm∆ =x 610−

8n =

Figure 32 shows the relative difference between SI, ASDI and an estimated best 

solution which is SI after being given the ASDI solution and allowed to iterate enough 

times to confirm a fixed point.  The difference between the ASDI solution and the SI-

ASDI solution is less than the convergence tolerance for all refinements whereas the 

difference between SI and the SI-ASDI answers is greater than the convergence 

tolerance.  This is because SI converges falsely in this optically thick problem with little 

or no absorption. 
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Figure 32  Plot of Symmetric Relative Difference  between ASDI solution and SI 

solutions for as cell mesh is refined. Angular quadrature is DE-8, scattering ratio is 1.0, 

convergence tolerance is .  

SRDε

610−

 

SI recognition of the ASDI solution as a fixed point for all spatial refinements 

provides convincing evidence of the accuracy of its solution.  I was able to further test 

this accuracy because an analytic solution was available for problem 1.  I computed and 

compared the ASDI convergence rate with the known convergence rate of EC.  This was 

done for a DE-4 angular quadrature and a scattering ratio of 1.0 with spatial refinement 

varying from 10 (cell width=10 ) through 1000 (cell width = ).  I did 

not expect the ASDI solutions be the same as the analytic solution for coarse spatial 

meshes because the spatial quadrature is a numerical approximation.  However, because 

EC is known to be fourth order convergent in space, the method can be checked against 

the analytic solution to determine if the order of spatial convergence is four.  Figure 33 

shows symmetric relative difference ( ) between the ASDI solution and an exact 

solution plotted against the spatial mesh refinement factor ( ) for a scattering ratio of 

1.0.   appears as a straight line on both plots whose slope is 3.86.  A line with a 

slope of four, the convergence order of EC, has been overlaid on the data plot.  This 

cm 21.25x10 cm−

εSRD

FR

εSRD
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agreement of ASDI’s convergence rate with the known EC convergence rate for a 

scattering ratio of 1.0 combined with SI recognition of ASDI solutions as fixed points 

demonstrate the method’s robustness.  The preservation of EC fourth order convergence 

with spatial refinement provides strong evidence that the ASDI method is not changing 

the spatial convergence properties of the EC spatial quadrature. 

 
Figure 33:  Plot of Symmetric Relative Difference  between the ASDI solution and 

an analytic solution as cell mesh is refined between 10 MFPs and 0.1 MFPs.  Angular 

quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is .  

SRDε

610−

 

Figure 34 shows the iteration count of the ASDI and SI methods as the mesh is 

refined.  SI iteration remains flat, at 500 iterations, ASDI iteration count is seven or less 

iterations through mesh refinements of 64.  This indicates that the number of iterations 

required for convergence is not dependent on the mesh refinement for ASDI even when 

applied to the non-linear EC spatial quadrature. 
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Figure 34  Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratio is 1.0, convergence tolerance is .  610−

 

Figure 35 shows the compute times required for the SI and ASDI solutions as the 

spatial mesh is refined.  The spatial refinement increases compute time for both 

methods.  ASDI requires less compute time than SI through a refinement of 32.  

Although the ASDI method requires more compute time than SI for refinements above 

32.  This behavior was also observed for ASDI applied to SC in figure 12.  The plots 

indicate that for a fine enough mesh source iteration will converge faster than ASDI. 

However, SI will not converge to reliable and accurate solutions.  The additional time 

used to compute ASDI approximations results accurate solutions.  The plot indicates 

that ASDI will not require disproportionately more time than SI for refined spatial 

meshes and will converge to the correct solution.  The results observed for EC are 

similar to those obtained for SC indicating the beta subroutine is working as intended.  
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Figure 35  Plot of compute time required for the ASDI and SI solutions as cell mesh is 

refined. Angular quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is 

. 610−

 

The convergence tolerance used to test previous problems was  on angular 

flux.  This is a fairly tight convergence tolerance and it is suitable for most engineering 

applications.  However, some applications may require tighter tolerances.  The effect of 

tightening convergence tolerance from to  on symmetric relative difference, 

iteration count, and compute time is shown next.  Figure 36 shows that the accuracy of 

the converged SI solution does not meet the accuracy required by the specified 

convergence tolerance regardless of how tight that tolerance is, whereas the ASDI 

method continues to provide reliably accurate solutions for any tolerance without round 

off error or instability.  Examination of Figure 36 and Figure 37 reveals that this 

accuracy is achieved with modest increase in iterations required and compute time for 

the ASDI method applied to EC.  These results are similar to those obtained for SC and 

displayed in Figures 13, 14, and 15. 

610−

610− 1110−
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Figure 36  Plot of symmetric relative difference versus convergence tolerance. Angular 

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.  

 

 

Figure 37  Plot of iterations versus convergence tolerance for ASDI and SI. Angular 

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.   
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Figure 38  Plot of compute time versus convergence tolerance for ASDI and SI. 

Angular quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.  

 

The effect of increasing angular refinement for ASDI applied to EC is shown in 

Figure 39 through Figure 41.  These plots demonstrate that ASDI continues to provide 

reliably accurate solutions without significantly increasing iteration count and with 

practical compute times as the number of ordinates in the angular quadrature is 

increased.  SI, as expected, remains inaccurate and increases computational cost as the 

angular quadrature is refined.  As with ASDI applied to SC, ASDI applied to EC 

converges with the least iteration and most rapid compute times when the angular 

quadrature has only two directions.  ASDI achieves a quick solution for this coarse 

angular quadrature because the global spatial routine solves the same problem on the 

first iteration as the fine angle routine.  After the first iteration both edge flux and beta 

are nearly correct and converge rapidly with successive iteration.  Unfortunately such a 
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coarse angular quadrature is not likely to meet most engineering needs.  Figure 39 and 

Figure 40 display the same convergence reliability characteristics and iteration count 

versus number of directions for EC as was observed with SC in Figure 16 and Figure 17.  

This is encouraging because the increased angular refinement requires increasing the 

number of calls to the beta root finding algorithm.  The increased number of beta root 

finding problems does not affect reliability or significantly increase compute times.  

However, comparison of Figure 41, which shows ASDI-EC compute time versus angular 

refinement, and Figure 18, which shows ASDI-SC, compute time versus angular 

refinement, demonstrates that compute time increases more steeply for ASDI-EC than it 

does for ASDI-SC.  The steeper increase in compute time for EC occurs because beta 

must be found for every direction is every cell.. 

 

Figure 39  Plot of symmetric relative difference versus angular quadrature. 

Convergence tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−
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Figure 40  Plot of iterations versus angular quadrature for ASDI and SI. Convergence 

tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−

 

Figure 41  Plot of compute time versus angular quadrature for ASDI and SI. 

Convergence tolerance is scattering ratio is 1.0, cell size is 2 MFPs.  610−
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This section demonstrated the strength of the ASDI method with the EC spatial 

quadrature for a homogeneous material.  The most important characteristic examined 

was accuracy for each of the parameters studied.  Each experiment showed that ASDI 

applied to EC was reliably accurate within the convergence tolerance required whereas 

SI was not.  The application of ASDI to the non-linear EC method demonstrated very 

similar results to the method’s application to SC.  This confirmed the hypothesis that 

beta could be found and fixed for each iteration resulting in an algorithm that was 

similar to that which obtained outstanding result with SC.  The EC algorithm 

essentially adds a root finding subroutine.  This result shows that the ASDI method is 

not limited to a linear spatial quadrature.  It indicates a more general application.  The 

method’s reliable accuracy, low iteration count, and fast compute times across all 

parameters studied demonstrate that the method is robust, effective and efficient with 

EC for this homogeneous problem.  The next section examines the method’s 

performance when applied to a heterogeneous material. 

Periodic: Two Regions Repeated 10 Times 

The second test problem investigated is the same problem investigated second with SC.  

It is a slab with a symmetry boundary on the left side and a vacuum boundary on the 

right side.  Two materials of 1 cm cell width are placed side by side.  This two material 

pattern is repeated 10 times for a total length of 20 cm.  Material I had a total cross 

section of , a scattering ratio of 1.0, and a uniform source of .  Its 

material properties remain fixed for all experiments.  Material II had a total cross 

section of , a baseline scattering ratio of 1.0, and no source.  Material II’s 

parameters were varied during the experiments. A diagram of these two materials was 

first shown in chapter three with Figure 19.  It is redisplayed here for the reader’s 

convenience. 

-11.0 cm -31.0 cm

-11.0 cm
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Figure 19 Problem 2 

As with SC the first set of experiments for problem two tested the ASDI 

method’s accuracy, effectiveness and efficiency versus scattering ratio fraction in 

Material II.  Scattering ratio fraction was varied from 0.0 to 1.0.  Angular refinement for 

this experiment was 8, refinement factor was 1 and convergence tolerance was . 610−

Accuracy is the first parameter presented.  Figure 42 displays the symmetric 

relative difference between ASDI and SI ( ( )SRD ASDI,SI_ASDIε ) and between ASDI and 

SI given the ASDI solution ( ( )SRD ASDI,SI_ASDIε ).  The plots show that ASDI applied 

to EC provides reliably accurate solutions for all scattering ratios while SI provides 

reliably accurate solutions only through scattering ratios of 0.6.  The reliably accuracy 

of Figure 42 for EC is similar to the reliable accuracy of Figure 20 for SC.  This shows 

that the beta convergence does not effect reliable accuracy of the method, even in 

problems that are not homogeneous. 
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Figure 42:  Symmetric Relative Difference  between the ASDI solution and the SI 

solution as scattering ratios vary.  Angular quadrature is DE-8, convergence tolerance 

is , refinement is 50.   

SRDε

610−

 

The effectiveness of the method was tested next.  Figure 43 shows the method 

iteration count versus scattering ratio fraction for material II.  This plot shows that 

ASDI converges in less than six iterations regardless of scattering ratio demonstrating 

its effectiveness, even when applied to EC, for heterogeneous materials with little or no 

absorption.  These results are similar to those obtained from SC and demonstrate that 

beta convergence did not degrade effectiveness.   
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Figure 43:  Plot of iteration count versus scattering ratio fraction. Angular quadrature 

is DE-8, convergence tolerance is , refinement is 50.  610−

 

Efficiency of the method is tested next.  Figure 44 shows compute time versus 

scattering ratio fraction for material II.  This figure shows that ASDI compute time is 

less than 0.1 seconds for all scattering ratios tested.  Comparison of the ASDI and SI 

compute times demonstrate that ASDI is more computationally efficient than SI even 

when material II is a strong absorber and SI converges rapidly.  The figure also shows 

that as scattering ratio approaches one in material II SI compute time climbs steeply 

but ASDI compute times do not.  These results are similar to the compute times 

displayed in Figure 22 for SC.  The results demonstrate that, although the beta 

convergence loop was added to the ASDI algorithm for EC, the algorithm does not 

require excessive compute time.   
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Figure 44:  Plot of compute time (seconds) versus scattering ratio. Angular quadrature 

is DE-8, convergence tolerance is , refinement is 50.     610−

 

The next set of experiments for problem two demonstrate method accuracy, 

effectiveness and efficiency while refinement factor varies for material II.  Scattering 

ratio for material II was fixed at 1.0.  This tested ASDI in materials with little or no 

absorption.  A material discontinuity exists even though cross sections and scattering 

ratios are the same because intrinsic sources are emitted only in material I.   The 

refinement factor for material II was varied between 1 and 66.  

Accuracy was tested first.  Figure 45 displays the symmetric relative difference 

between ASDI and SI ( ) and between ASDI and SI given the ASDI 

solution ( ).  The plots show that ASDI provides reliably accurate 

solutions for all refinement factors but SI does not.  

(SRD ASDI,SI_ASDIε )
)(SRD ASDI,SI_ASDIε
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Figure 45:  Plot of Symmetric Relative Difference  between ASDI solution and SI 

solutions as cell mesh is refined. Angular quadrature is DE-8, scattering ratios are 

baseline values, convergence tolerance is .   

SRDε

610−

 

Effectiveness was next tested.  Figure 46 shows that ASDI converges on a solution in 

less than 8 iterations for a refinement factor of 1 growing slightly as refinement factor is 

increased then remaining constant for refinement factors above 16. SI requires many 

more iterations than ASDI and provides unreliable solutions for these refinement 

factors. 
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Figure 46  Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratios are baseline values, convergence tolerance is .  610−

 

Computational efficiency was next tested.  Figure 47 demonstrates that ASDI 

requires less compute time than SI regardless of mesh size for the baseline scattering 

ratios selected.  However, as spatial mesh is refined the compute time of ASDI is nearly 

the same as the compute time of SI.  The relatively comparable compute times of SI 

and ASDI do not indicate that SI is just as efficient as ASDI for these fine spatial 

meshes because SI does not provide reliably accurate answers.  ASDI does not require 

excessive compute time regardless of refinement factors. 
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Figure 47:  Plot of compute time as cell mesh is refined. Angular quadrature is DE-8, 

scattering ratios are baseline values, convergence tolerance is .   610−

 

Accuracy, effectiveness and computational efficiency were further tested with 

fixed scattering ratio and refinement factor for varying convergence tolerance and 

angular refinement with similar results.  As in problem 1 these results indicate that 

ASDI remains reliably accurate, effective and efficient as these parameters vary.  This is 

the same conclusion drawn for SC and provides strong confirmation that the non-

linearity of the EC spatial quadrature algorithm does not prevent applying the ASDI 

algorithm to EC which is what I set out to do. 

These experiments demonstrate the strength of the ASDI method for a two 

region periodic material.  The experiments show that ASDI was always reliably accurate 

and that the parameters with the greatest impact on iteration count and compute time 

were scattering ratio and refinement factor.  The experiments presented kept cross 

sections constant but varied spatial refinement.  In order to fully stress material 

discontinuity in this periodic problem I next examined the impact of varying both 

scattering ratio and cross section simultaneously in material II, just as I did with SC.  I 

varied scattering ratio fraction from 0.0 to 1.0 and cross section from  to 710 cm− −1
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110cm− .  This range of cross sections is not the same as the range of cross sections used 

for SC (i.e.  to ).  That is because the exponential characteristic 

method as currently implemented can be used for optical thicknesses (

7 110 cm− − 710 cm−1

xσ
µ
∆ ) of about 80.  

The limitation in cross section results from numerically poor conditioning in the 

calculation of EC transport coefficients.  It is not a limitation of the ASDI method.  I 

examined the impact of varying these two parameters on accuracy, effectiveness and 

efficiency at a refinement factor of 1. 

A 3D plot of symmetric relative difference between ASDI and SI 

( ) and between ASDI and SI given the ASDI solution 

( ) is shown in Figure 48.  This plot shows that ASDI is reliably 

accurate across the range of material properties tested.  The plot shows a spike in 

at cross sections of approximately

(SRD ASDI,SIε )
)

)

(SRD ASDI,SI_ASDIε

( , _SRD ASDI SI ASDIε 110cm− .  Since this spike is in 

the region that is below the convergence tolerance that was required ( ) I draw no 

conclusions.  The spike indicates that cross section values greater than  might be 

unreliable. 

610−

110cm−
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Figure 48:  3D Plot of ASDI symmetric relative difference between ASDI and SI 

( ) and between ASDI and SI given the ASDI solution 

( ) as scattering ratio and cross section vary . Angular quadrature 

is DE-8, convergence tolerance is 10 , refinement factor is 1.  

(SRD ASDI,SI_ASDIε )

)

6−

(SRD ASDI,SI_ASDIε

 

A 3D plot of ASDI iteration count versus cross section and scattering ratio is 

shown in Figure 49.   
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Figure 49:  3D Plot of ASDI iteration count as scattering ratio and cross section vary . 

Angular quadrature is DE-8, convergence tolerance is 10 , refinement factor is 1.  6−

 

This figure demonstrates that ASDI is not sensitive to scattering ratio for cross sections 

less than .  For cross sections less than 11cm− 11cm−   ASDI takes 7 iterations or less to 

converge.  Iteration count increases sharply near scattering ratios of one and cross 

sections of .  Further investigation is needed to determine the reason for this 

increase in iteration count.  It was not present with ASDI applied to SC as displayed in 

Figure 27. 

110cm−

As with SC a low iteration count is not useful if computational cost is 

prohibitive.  A comparison of the time required for ASDI and SI to solve the problem is 

shown in Figure 50. The ratio of the ASDI compute time to SI compute time is shown 

in the figure, if this ratio is less than 1.0 then ASDI takes less time than SI.  This is the 

case for cross sections less than 210 cm 1− − .  The figure shows that SI takes one tenth the 

compute time of ASDI for cross sections greater than 210 cm 1− −  with scattering ratios of 
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0.1.  In this region SI converges in 9/100 second and ASDI converges in 60/100 second.  

SI converges very rapidly because the problem is absorptive in more than half problem 

material.  However, SI converges falsely.  This false convergence occurs because half the 

problem (material one) has little or no absorption even when the scattering ratio of 

material two is nearly zero.  In general, SI takes less compute time than ASDI when 

scattering ratios are less than 0.6 and cross sections are greater than .  In this 

domain SI converges in nearly no time at all.  Even in these problems ASDI compute 

times are practical and competitive with SI compute times.  More importantly, ASDI 

provides reliably accurate answers across the full range of cross section and scattering 

ratio parameters just as it did with SC.  Further research is required to determine if the 

greater compute times required for cross sections greater than 

210 cm− −1

1210 cm− −  result from the 

calculation of EC transport coefficients. 
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Figure 50:  3D Plot of the ratio ASDI compute time to SI Compute time as scattering 

ratio and cross section vary . Angular quadrature is DE-8, convergence tolerance is 

, refinement factor is 1.  6−10

These experiments demonstrate that ASDI is reliably accurate for all the 

parameters studied and therefore robust.  The method dramatically reduces iteration 

count and required compute time for diffusive problems.  The experimental results show 

that ASDI is a useful and practical iteration scheme for any material properties.  The 

method now allows researchers to examine the computation of EC transport coefficients 

in problems that are optically thick with little or no absorption.  
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VI.  Summary and Conclusions 

 

Accurate, and robust positive spatial quadrature schemes used in discrete ordinates 

methods, such as EC, provide physically meaningful, non-negative fluxes given non-

negative incident fluxes, non-negative emission sources, and non-negative scattering 

cross sections.  In 1969 K.D.  Lathrop eloquently stated why positive spatial 

quadratures are needed.  He said that in addition to numerical difficulties there are 

“psychological problems” with negative fluxes.  The user who understands the transport 

equation and not just the numerical solution procedure knows that there is no such 

thing as a negative angle integrated flux, and rapidly becomes cynical about the 

effectiveness of a program which produces negative numbers (12 :476)”.  Mathews et all 

have been developing the EC spatial quadrature since the early 1990’s which is positive 

and approaches fourth order in its spatial convergence.  To date this method has been 

difficult to implement in problems where scattering ratios were nearly one (7:36, 

11:165).  EC and other more conventional spatial quadratures based on source iteration 

are impractical for highly diffusive, optically thick problems.   The objective of this 

effort was to develop an accurate and efficient scheme to rapidly converge EC.  This has 

been done for slab geometry.  This contribution makes it possible to use the exponential 

characteristic method, and similar methods, for real materials, even for notoriously slow 

transport computations involving one or a few groups describing the thermal neutron 

energy range from about 0 to 1 eV. (2:83).  I originally explored synthetic acceleration 

as the method to rapidly converge these quadratures.  Although successful for most 

problems this technique diverged for problems with sharp material discontinuities.  By 

taking advantage of the lessons learned from synthetic acceleration, I found it possible 

to formulate a new transport method that more directly solves for fine angular 

resolution flux and spatially coupled coarse angular resolution flux.  The fine angular 

quadrature accounts for the contribution of infinite number of particle flights to 

scattered source within a single cell.  The coarse angular quadrature accounts for the 
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contribution of an infinite number of particle flights to scattered source across the 

spatial domain.   

The introduction of two transport techniques, one producing full angle coupling 

for a fine quadrature and one producing full spatial coupling without iteration are both 

major contributions of this research.  The ability to couple these methods and iterate on 

transport coefficients for both EC and SC instead of source iteration removes the need 

to accelerate optically diffuse problems per se.  The transport method provides the 

estimate of infinite particle flights.  The ASDI method provides an alternative to 

conventional source iteration at the expense of a larger linear algebra problem.  It has 

the demonstrated advantage robustness (reliably accurate for the problems it is designed 

for) effective (requires few iterations) and efficient (requires practical compute times).   

The coupling of the two transport methods worked surprisingly well.  The 

discovery that EC converges rapidly with this method and can now be applied to 

diffusive problems should lead to renewed interest in the EC spatial quadrature within 

the transport community. 

The use of flux weights to project between coarse and fine angular quadratures is 

general with respect to the spatial quadrature chosen.  Extension to other positive 

spatial quadratures is immediate.  This should further generate interest within the 

community for the method developed.  Spatial quadratures that do not preserve positive 

flux require further research regarding flux weighting.  I did not derive a method to 

calculate flux weights when faced with negative currents.  Flux weights as employed in 

the method approximate flux distributions at cell edges.  These flux weights conserve 

angular information while collapsing to a coarse quadrature that readily captures 

diffusive behavior.  The concept of flux weights, and cell edge flux distribution should 

find application in a wider set of transport applications.   

The method has been implemented in FORTRAN-95 on a PC, demonstrating the 

computational practicality of the approach in slab geometry with isotropic cross 

sections.  The method as derived is immediately extendable to anisotropic scattering 

cross sections.  Its extension to multiple dimensions will entail flux weighting on four 

cell edges vice two and an efficient solver for the spatially coupled coarse angular 

quadrature.  The minimum bandwidth of the coefficient matrix which readily inverts in 

1D will require research to develop an efficient 2D solver.  However, the demonstrated 
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ability to cast a fine angle problem into an equivalent coarse angle problem should make 

the effort in 2D tractable. 

The fine angle routine algorithm 6 is readily parallelizable.  The routine uses 

iteration edge flux as an estimate for each spatial cell.  Substantial improvement in 

performance can be obtained by parallelizing this subroutine.  Further, profiling reveals 

that 60% of computational effort (time) is spent with this routine.  Hence significant 

reduction in the ASDI method’s overall computational efficiency would result from this 

parallelization.   The method as developed lends itself to adoptive spatial and angular 

meshing.  There is good reason to believe that a problem, such as the periodic horizontal 

interface tested, could use a coarse angular and spatial mesh in regions without material 

discontinuity and a finer mesh in regions that needed to capture angular or steaming 

behavior.  Research in this area is straightforward.    

The code written for this research is not a production code.  A graphical user 

interface to obtain user input defining a flexible range of problem parameters is needed.  

This user interface should also interface with available cross section computational tools 

such as the NJOY suite of algorithms and Gerts’ PAX cross sections. Nevertheless, the 

practicality of my method has been demonstrated successfully for EC which is what I 

set out to do. 
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Appendix A 

This appendix demonstrates that ( ),SRD x yε  meets the requirements for a 

distance function and that it can readily be applied to vectors in FORTRAN 90. 

A1. ( , )SRD y xε as a distance function  

  A non-empty ,X,  set together with a ‘distance function’ ( ,SRD )x yε  is 

said to form a metric space provided that: 

 ( , ) 0 iffSRD y x x yε = =  (1) 

 ( , ) ( , ) 0 ,SRD SRDy x x y x y Xε ε= ≥ ∀ ∈  (2) 

 ( , ) ( , ) ( , ) , ,SRD SRD SRDy x x z y z x y z Xε ε ε= + ∀ ∈  (3) 

The distance function ( , )SRD y xε is  

  

 ( ) 2, x y
SRD x yx yε −

+=  (4) 

The numerator in equation (4)  

 2 x y 0− =  (5) 

is zero if and only if and only if  

 0x y− =  (6) 
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This occurs only if x = y.  The denominator in equation (4) is only zero if x and 

y are zero in which case the distance between them is zero. Equation (4) is then 

zero only if equation (6) is zero.  This occurs if only when x=y meeting 

requirement one.   

If x is not equal to y, and x >0, and y>0 then 

  

 ( ) ( )
( )

( )
( )

max max

min minmax
2 2 2x y x yx y

x y x y x y

− + −−
+ + +

2= = = , (7) 

and 

 ( ) ( )
( )

( )
( )

min min

max maxmin
2 2 2x y x yx y

x y x y x y

− + −−
+ + +

0= = = , (8) 

which meets requirement two.   

If 0 x z y< < <  then 

 x y z x
z xx z

− −
++ =  (9) 

and 

 y z y z
z yy z

− −
++ = . (10) 

Adding equation  (10) to equation (9) results in 
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 y z y xz x
z x z y x y

− −−
+ + ++ ≥ . (11) 

Multiplying each of the terms by the appropriate denominator results in 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z x z y x y y z z x x y y x z x z y− + + + − + + ≥ − + + . (12) 

Subtracting the right side from the left side of equation (12) and simplifying 

results in 

 ( ) ( ) ( ) 0x y x z y z− − − ≥  (13) 

which is always true based on the initial condition 0 x z y< < < .  The same result 

can be shown if x, y or z are swapped. This demonstrates that the distance 

function meets the condition three. 
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A.2. Application of ( ,SRD )x yε  to Vectors  ( ),SRD x yε
v uv

. 

 The distance function ( ),SRD x yε  defined by equation (4) can be applied to 

vectors ,x y
v uv

 resulting in a vector of distances ( ),SRD x yε
v v uv

.  An element of this 

distance vector is    

 ( ) ( ), ,
iSRD SRD i ix y xε ε= y
v uv

. (14) 

 

In my algorithm I am interested in ensuring that no element of the 

distance vector ( ,SRD )x yε
v v uv

 is greater than a convergence tolerance.  Therefore, I 

define the maximum of  the distance vector 

 

 ( ) ( )
1,

, Max ,SRD SRD i i i N
x y x yε ε

=∞
= ⎡⎣

v v uv
⎤⎦ , (15) 

which is readily implemented in FORTRAN 90 using an elemental function. 

SRD=Max(SymRelDif((x,y)) 

Where the SymRelDif function is 

Elemental Function SymRelDif(x,y) 

Real::Intent(in):: x,y 

Real::SymRelDif 

If (x=y) then  

     SymRelDif=0 

Else 

     SymRelDif =Abs(x-y)/((abs(x)+abs(y))/2) 

End if 

End Function 

Implementing the SymRelDif Function in Fortran 
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