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AFIT/DSP/ENP/04-01
Abstract

I present a numerical technique to solve the time independent Boltzmann
Transport Equation for the transport of neutrons and photons. The technique
efficiently solves the discrete ordinates equations with a new iteration scheme. I
call this new scheme the angle space distribution iteration method because it
combines a non-linear, high angular-resolution flux approximation within
individual spatial cells with a coarse angular-resolution flux approximation that
couples all cells in a spatial mesh. This is shown to be an efficient alternative to
source iteration.

The new method is implemented using the step characteristic and
exponential characteristic spatial quadrature schemes. The latter was introduced
in 1993 and has been shown to be accurate for both optically thin and optically
thick spatial meshes and to produce strictly positive angular fluxes.

The discrete ordinates equations can be solved using the conventional
source iteration method. However, it is well known that this method converges
prohibitively slowly for optically-thick problems with regions that are dominated
by scattering rather than absorption. The new scheme converges rapidly even for
such problems. Numerical results show that the new scheme is reliably accurate
for the problems intended, and that it is fast and efficient in use of memory.

The angle space distribution iteration method is demonstrated in slab
geometry, for a single energy group, using isotropic cross sections, with

exponential and step characteristic spatial quadratures.
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A RAPIDLY-CONVERGING ALTERNATIVE TO SOURCE
ITERATION FOR SOLVING THE DISCRETE ORDINATES
RADIATION TRANSPORT EQUATIONS IN SLAB GEOMETRY

I. Introduction

The conventional practice for evaluating the time independent discretized,
Boltzmann transport equation is the discrete ordinates angular quadrature
method with truncated Legendre expansions representing the cross sections. In
discrete-ordinates S,, approximations of large transport problems the underlying
linear Boltzmann problem is discretized in space and angle and the resulting
system of algebraic equations is solved iteratively using source iteration. If the
physical system contains regions that are diffusive and optically thick, source
iteration can be so slow to converge as to make the calculations impractical,
unless an effective convergence acceleration scheme can be found (7:36).
Accurate, nonnegative spatial quadrature schemes, in particular the exponential
characteristic (EC) method, are effective for optically thick absorbing regions but
with unaccelerated source iteration they are prohibitively slow to converge in
thick diffusive regions.

In the work presented here, I have developed new algorithms that invert the
scattering operator in each cell and directly solve the linear system of coupled
equations. This approach eliminates source iteration (SI), per se, but does
require iteration. The iteration converges cell coupling coefficients which depend
on the angular distribution of the flux and (for EC) the spatial distribution of the
source. I have implemented and benchmarked a code to execute one dimension
slab geometry particle transport. This transport is efficient in thick diffusive
problems for the two non-negative spatial quadrature schemes tested. The
method overcomes the inefficient dependence on numerous particle flights by SI

to estimate scattering source and the corresponding lack of robustness in the
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converged SI solution. The method is not designed as an accelerator for SI but
as a new transport method. Since the new method converges on a solution by
iteratively seeking improved angular and spatial distribution information I refer
to it as the angular and spatial distribution iteration (ASDI) method. The ASDI
method performs comparably with the SI method for those problems that don’t
require acceleration and rapidly converges in problems that conventionally
require SI acceleration. This is particularly important in the thermal neutron
energy range from about 0 to 1 eV (2:83).

In systems that are optically thick and scattering dominated, particles
undergo many collisions before being captured or leaking out of the problem.
Developing a practical efficient iterative method for these problems is of
significant practical importance.

Examination of the one group time independent Boltzmann Transport Equation
(BTE) illustrates the problem. A one group particle problem in planar geometry

can be expressed as:

0
ﬂ%ﬂf(xwmm =
1 (1)
[os(u— )y (xu) du' +Q (x, ) 0<x<X,
-1
'//(O,ﬂ)=‘//|i_nddem(ﬂ)+_[;dﬂ'0‘L(ﬂ'—>ﬂ)‘//(0,ﬂ') p>0 (2)
(X 2) =y B ()4 [ dartag (' p)yr (X ) (<0 (3)

where X is the position coordinate; u is the direction cosine of the angle of flight
relative to the positive X-axis; O'(X) is the total cross section; oy ( X,Q'-Q) is the
scattering cross section; Q(X, ) is the interior emission source, (X, ) is the
angular flux to be determined. Equations (2) and (3) are general covering all
but periodic boundary conditions on the left and right sides with appropriate

choice of boundary condition ¢ (,u' — ,u) or ar (,u' - ,u).
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By defining a streaming and collision operator as

L=+ (¥)),

and a scattering operator as

1
Szj‘dy'os(x,,us),
-1

with g the scattering angle, equation (1) is written

ext

Ly (X, )= Sy (X, 1)+ Q™" (X, 4).

Generally an analytic solution for w(x, ) is not possible. Conventional practice

is to approximate a solution iteratively using Source Iteration (SI). The SI

scheme is

Ly CD (6, )= Syl (% )+ Qb (%, 1) .

Operationally SI works as outlined in algorithm 1.

Initialize l//(o) (X,,u) with initial estimate

Do

Update Q([) (X,y) = Sg//([) (X,,u)+QeXt (X,y)

Apply Boundary Conditions
Solve Lw([ﬁ) (x, )= Q([) (x, 1) for W([H)
Iterate until espp (w([ﬂ),l//([)j 15 less than convergence tolerance

End do
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The symmetric relative difference function &grpy is introduced in Algorithm 1.

This function has all the properties required of a distance function (:23), as is
shown in appendix A. Thus, the real numbers, with this metric, form a metric
space. This metric is combined with the vector norm |, to measure the

maximum distance between two vectors, as is explained in appendix A.

The symmetric relative difference, egr, (&([H) (X, /,l),l/—/([) (X, ,u)), is used to

determine when two successive flux iterations, l/—/([ﬂ) (X, ,u) and l/—/([) (x, ,u), meet
convergence tolerance. The iteration estimate for angular flux is l/l(é) (x, ,u). It is
the angular flux due to particles that have scattered at most | —1 times. When
particles undergo few collisions, the SI scheme converges rapidly. However, for
problems that contain diffusive regions that are optically thick and scattering
dominated, SI schemes converge slowly and may converge falsely. If scattering
ratios are nearly one then the error in the final iterate can be much greater than
the difference (between it and the previous iterate) that satisfied the preassigned
convergence criterion.(4:10). This makes it difficult to determine when an
iteration scheme is suitably converged and renders an SI solution unreliable.
Slow and false convergences dictate the need to either accelerate SI or develop a

more efficient iterative scheme.

1-4



Motivation

Recently Adams and Larsen conducted a comprehensive review of 40 years
of methods that improve iterative transport convergence. This work outlines four

desirable properties for fast iterative schemes (4:139). An iterative method
should:

1. Converge effectively requiring few iterations. Convergence
effectiveness is typically characterized by spectral radius, or
equivalently iteration count. Often lower- order Sy schemes, or
coarser angular refinement are proposed to accelerate higher-order
Sy schemes. Typically these lower order or coarser schemes use
fewer unknowns per cell and require fewer transport calculations, or
require transport calculations that are computationally cheaper
than the higher-order transport scheme. However these lower-order
schemes may not reduce iteration count significantly in difficult

problems.

2. Be computationally efficient. Computational efficiency can be
measured by basic memory storage requirements, algebraic cost to

implement the method or overall computing time. If the equations
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used to accelerate a transport scheme carry the same number of
unknowns or use computationally expensive cell variables the
equations may yield satisfactory spectral radius yet be so time

consuming to solve that the low order scheme is unacceptable.

3. Be applicable to both heterogeneous and homogeneous problems.
Recently it was discovered that synthetic acceleration when
extended to multiple dimensions, can degrade or diverge.

Transport synthetic acceleration (TSA) diverges (5:15/16; 6:12/17)
and diffusion synthetic acceleration (DSA) degrades from a spectral
radius of 1/3 in a homogeneous material to a spectral radius of 0.88
(4: 139) in problems with periodic material interfaces. Other
acceleration methods are expected to show similar degradation.
The transport community needs a scheme that maintains a small
spectral radius and is cheap computationally in both slab geometry

and multiple dimensions.

4. Be portable to parallel systems of computers and not degrade in
parallel performance as the number of processors becomes large.

In addition to the four properties outlined by Adams and Larsen I add a fifth
property. An iterative method should
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5. Be robust. By this I mean that it should be usably accurate for the
full range of problems that we want to solve. This accuracy should
not be achieved by operator tuning, fix-ups, or expert system
hybridization but by aptness of the algorithm for the problem.

This property will be referred to as robustness.

Synthetic acceleration and quasidiffusion techniques have been applied to
particle transport in problems that are many mean free paths thick, with
scattering ratios close to unity with mixed results. In slab geometry the greatest
improvement in efficiency results from DSA provided that the diffusion equation
is consistently differenced and scattering is either isotropic or weakly anisotropic.
I sought to improve the iterative convergence rate of the exponential
characteristic (EC) method as developed by Mathews and Minor in 1993(7)
which is essentially the same as the non-linear characteristic (NC) method
introduced by Waring, Walters and Morel in 1996 (8: 24-37). Wareing and
Morel subsequently were able to develop an effective acceleration method in slab
geometry for their NC for both homogeneous and heterogeneous materials with
scattering ratios of one. They did not demonstrate application to periodic
material interfaces, and they did not report compute time leaving the
computational efficiency of their acceleration method in question. Their research
has not been extended to multiple dimensions (9:76). Recent research has
pointed toward the failure of DSA when used in multiple dimensions on problems
with periodic interfaces. Because of this I did not pursue Wareing and Morel’s
DSA accelerator for use with EC. Instead I sought to find an efficient slab
geometry scheme that would not suffer from DSA-like degradation in multiple
dimensions. My motivation for doing this is that no accelerated source iteration
technique to date is unconditionally stable, yields the same solution as the
unaccelerated source iteration, is rapidly convergent, is demonstrated to be
computationally efficient, is general with respect to geometry and can be applied

to the EC method. The research effort at the Air Force Institute of Technology
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requires efficient solution of the transport equation in all dimensions. Mathews
and his research team require an effective (low iteration count), computationally
efficient (fast run time), robust (reliably accurate without user intervention) EC
method applicable to homogeneous and heterogeneous materials of any
configuration or geometry in order use the EC spatial quadrature on a wide range
of transport problems of interest to the defense community. Further it is
desirable that such a method be readily adapted for use with parallel computing

environments.

Goal of the Research

My goal was to develop, implement, and evaluate an effective, computationally
efficient, robust method for solving the one group, slab geometry Boltzmann
transport equation (BTE) discretized in angle and space. I further sought to
develop a method that was general with respect to material properties, was
readily portable to parallel computing environments, and could be extended to
multiple dimensions. I designed the method primarily for use with EC and step
characteristic (SC) spatial quadratures but sought a method that could also be

used with other spatial quadratures.

Scope
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I derive a new transport method that explicitly solves for infinite particle flights
in a single iteration. The method couples across cells in space using a two
direction angular quadrature. This is referred to as the global space solution.
The method further solves particle transport within each spatial cell coupling the
N directions of a fine angular quadrature. This is called the fine angle solution.
The theory of both the global space solution and fine angle solution is introduced
as well as a technique to combine these methods in an iterative scheme that
converges flux distribution as opposed to scattering source in order to solve the
BTE iteratively.

The method is implemented and tested using discrete elements one group
isotropic average cross sections with EC and SC spatial quadratures. The
method is derived in a way that generalizes to include discrete ordinates
Legendre moment generated cross sections (o} ), multigroup anisotropic cross
sections, and other positive spatial quadratures such as linear discontinuous (LD)
and NC. The method was not tested with spatial quadratures that produce
negative fluxes such as diamond difference (DD). The method might be
expanded to include these spatial quadratures but would have to account for
negative flux values in calculation of flux weights. This was not derived or
tested. The new method for particle transport is validated by comparison with
unaccelerated conventional SI for EC and SC. The symmetric relative difference,
number of iterations and compute time for the two methods is the basis of
comparison.

The scope of the test problems examined is:

e Fixed source, sub-critical, time independent systems

e Slab geometry

e Single group isotropic cross sections

e Isotropic emission sources uniform in each cell
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e EC and SC spatial quadratures

Although the method was examined with the above scope it was derived in a
general way. The extension to multigroup problems is immediate. The emission
source can include down scatter, up scatter and fission contributions. Non-
positive spatial quadratures such as DD will require new algorithms to calculate

flux weights from negative angular fluxes.

Assumptions and Limitations

The method as designed and tested when using the EC spatial quadrature
and discrete elements angular quadrature inherits limitations of these
approximations. EC is not currently extendable to curvilinear geometry.
Discrete elements angular quadratures lead to numerical approximations that are

not the same as the diffusion approximation.

Approach

An explicit system of equations for the angular and spatially discretized BTE
using a general linear spatial quadrature is derived in N directions. This system,
although illustrative, is impractical to solve. A similar system using only two
directions is introduced. A closed form solution of this two direction fully
spatially coupled system is derived which is correct for transport with only two
directions. The concepts of transport coefficients and flux weights are

introduced. Transport coefficients define the relationships of incoming angular
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fluxes and source emissions to outgoing angular fluxes within a spatial cell. Flux
weights facilitate the projection of the system of equations between multiple
directions and two directions. Then they are used to calculate a closed form
solution using a coarse angle approximation which effectively solves for flux
across the entire problem space. The cell edge flux calculated in this way is
correct if the flux weights used to collapse the transport coefficients are correct.
The coupling of the exact N direction transport method (using approximate edge
flux values) with the equivalent 2 direction collapsed transport coefficient method
(also using approximate edge flux values) is then introduced. An iteration
scheme that produces progressively more accurate flux weights which are used to
compute progressively more accurate transport coefficients is then discussed.
This method effectively amounts to iteration on transport coefficients. The
method differs significantly in concept and execution from accelerated SI. For

instance, accelerated source iteration follows the logic of algorithm 2.

Intialize Q (t//(o) )
Do

Calculate Q(l/l([)j
Apply Boundary Conditions

Solve Ll//([H) (x, )= Q([) (X,4) for l/,([”)

Apply accelerator correction

EFnd Adn anhom o (n,([+1) (v 1\ :;([) (v 11\ < ranvarnancaTnlaranca
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The method proposed in this research follows the logic of Algorithm 3

Initialize cell coupling coefficients with coarse angle approximation
Use 2 direction SC' cell coupling coefficients to generate l//(o)
Do
Solve for fine angle flux within cells
Generate improved low-resolution cell coupling coefficients
Solve for fine angle flux within cells

Use low resolution edge flux to improve high resolution edge flux

[ s\ [\

Algorithm 3 is implemented in Fortran 95 and benchmarked against
unaccelerated source iteration which is also implemented in Fortran 95.

The ASDI method is then extended to the EC spatial quadrature by adding an
iteration loop to find the source distribution parameter, £, but otherwise retains
the same logic as algorithm 2. It is also written in Fortran 95 and is

benchmarked against an unaccelerated source iteration.
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IT. Solution of the Discrete Ordinates (S,) Transport Equations

Solution of the monoenergetic BTE introduced in Chapter 1 requires treatment of
the space and angular variables through a number of discretization techniques that yield
simultaneous equations. The discrete ordinates method is a widely used method for
obtaining numerical solutions to the integrodifferential form of the transport equation.

It is the method used in this research to discretize the Boltzmann transport equation in
space and angle. A brief discussion of space and angle discretization follows.
In one group, slab geometry the scattered source on the right hand side of equation (1)

may be replaced by a Legendre expansion (2:13,36,117):

ﬂWJrG(X)t//(X,ﬂ) =

X
o t (8)
z (2k+1)P(u) o, dhe +Q%(x, 1) 0<x<X,

where oy, are the Legendre moments of the scattering cross section and ¢ are the

Legendre moments of the angular flux:

b ()= [ 4R () (% 12"). (9)

The discrete ordinates approximation consists of requiring equation (8) to hold only for
a number (N) of discrete directions then applying a compatible quadrature
approximation to the flux moments in each of these directions. The weighted
quadrature used for the flux moments has the form

N

X)= 2 Wo B (0 ) (X 1) (10)

n'=1

Substituting the weighted quadrature, at N distinct angles, with a Legendre expansion

truncated at a finite number of polynomials (K) in equation (8) results in

2-1



,UWJFU(X)V/(X,%):
N (11)
> Wy (X, ) z (2k+1) o5, (X)Pe (2 ) P (n) + Q% (X, ). 0<x<X

n'=l1 k=0

The coupling of the system of equations occurs on the right hand side. The left hand

side represents a set of angularly independent first order differential equations. Defining

Os,., 1O be the ordinate to ordinate scattering cross section:
K
Os (X):Z(2k+1)0'5k(X)Pk(,un.)Pk(,un), (12)
k=0
facilitates writing equation (11) as
dy, (X
ﬂnL()"' ( wn(X) = z O-sn_,n W' ¥h ( )"'QEXt( ) (13)

dx

Equation (13) represents a system of N coupled differential equations.
The method I have developed is dependent on representing the discrete ordinates

equations in the form of equation (13) with the coupling of the system taking place on
N

the right hand side through the term Z Os1in (X)Wn| Wy (X) How the cross section

n'=l
data weights and ordinate direction cosines are arrived at is not important to my work.
Other methods, such as that introduced in 2003 by Gerts and Mathews, which calculate
cross sections using piecewise averages and discrete elements (10), may be used if the
discrete direction flux equations can be represented in a form analogous to equation (13)
A brief discussion of their work follows.

Dropping spatial dependence, the scattered source term on right hand side of

equation (1) is written
= I dQ' o (f)f)‘)t//(f)‘), (14)
4

where Q is a unit vector:
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Q = {Sin(9)Cos(w),Sin(8)Sin(@),Cos(9)}, (15)
and

1 =Cos(0) (16)
The discrete elements method approximates scattered source within an element, an , by

Q, = | Q(Q)dS, (17)
and angular flux within an element by

Wy = '[ t//(fl')df)'. (18)
AQ,
In the above equation AQ, is the Cartesian product of the angular interval from [0,27r)
and the g interval containing the ordinate z,. The union of the p intervals covers the
range [—1,1] with no overlap. An element of solid angle on the surface of the unit

sphere in 1D slab geometry is:

2z
[ do= [ dufdo. (19)
AQp Aptpy 0
Equation (18) is:
2z
Vo= | du|doy(uwo), (20)
App 0
Equation (17) is:
2z
Qs = I dﬂfdes(ﬂ,w), (21)
App 0
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and equation (14) is
2z 2z
%, = [ dufdod] [ du'[do'os({no){nol)y (u.0) (22)
v 0 " Aty 0

The order of summation and integration in equation (22) may be rearranged resulting

in:

Q. =, J. d,uzfda) ‘[ d,u'zfda)'as({u',a)'}.{y,a)})w(y',a)'). (23)

n' Aun 0 Aup 0

In slab geometry w( ,u',a)') has no o' dependence:

(w0 =22, (24)

Substituting equation (24) into equation (20) results in:

vo= | du'y (). (25)
Apy

Substituting equation (25) into equation (23) results in:

2 2w

Qs, => _[ du I dy'w(y')JdQ—“;I da)as({,u',a)'}.{,u,a)}). (26)

n' Aup A

Within each angular element, the flux is approximated as isotropic:

w(ﬂ')=ﬁ. (27)

Substituting equation (27) into equation (26) and rearranging the order of integration

results in
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d '27zd 2z
Qs =S [ dur [ L[5 T dorer (o)) 28)
n' At Aty n o 0

The integral of equation (28) defines the element to element scattering cross section

O-sn'—m :

o dy'hda)z”
Osyyy = | du — | do'oy({u"0"}.{uo}). (29)
o A,JL.ln A;J;nv Aty '([ 2z £ i

Using this discrete elements angular quadrature,

an = zgsn'—m Yn' - (30)
n'

The element-to-element scattering cross section gSn' _,n 1s analogous to the
ordinate-to-ordinate scattering cross section in equation (13). With discrete elements,
there are no quadrature weights per se. These are replaced by the sizes of the elements
Ap, , and are treated implicitly through the calculation of gSn' _n - Bothe angular
quadratures have the same form if weights w, =1are introduced in equation (30). Gerts
and Mathews’ work has the advantage of representing cross sections with non-negative
values in sharp contrast to certain cross sections arrived at through Legendre expansion.
My derivation and implementation is done with discrete elements cross sections because
they are non-negative. I will use the term ordinate in my work since it is more common
in the transport community but I intend for the term to refer to both ordinate in the
discrete ordinates sense and element in the discrete elements sense. The numerical
results presented in chapter 3 and chapter 5 used discrete elements.

Because the coupling of the system represented by (13) occurs on the right hand

side, it is useful to combine the right hand side as a single term Q, (X):

Qn(x) =S, (x)+Ey(X), (31)

where
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N
Sp(X) = Z Oy Wn' ¥n' (X) (32)

n'=1

The source of scattered particles is S, () and the source of emitted particles is E,(x).

Equation (13) is then

ﬂn%m(x)%(x) = Qu(x) n=L..N. (33)

This results in N coupled differential equations for N ordinates.
The system represented by equation (33) is easily solved once spatially

discretized using an iterative scheme like:

(£+1)

i o (!0 = ol () n=1...N 3

where / is an iteration index. This is called source iteration. If one starts with a guess
of zero for scalar flux the first iteration yields the uncollided flux, the second iteration
yields the uncollided plus first collided flux, the next iteration yields the uncollided plus
first and second collided flux and so on. In order to calculate a numerical solution for
equation (34), it is first spatially discretized. The indexing for spatial discretization is

shown in Figure 1.
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Figure 1 Spatial Index

In the spatial discretization shown in Figure 1, cell edge quantities carry half-
integer indices and cell-average quantities carry integer indices. The total number of
mesh cells is denoted by I. On the left and right sides are phantom cells, denoted with
0 and I+1 respectively. These phantom cells are a convenient accounting construct.
They produce neither intrinsic nor scattered source. They have no thickness so they
produce no particle losses. They do however contain edge flux information at the
problem left and right boundaries.

The first step in the spatial discretization of equation (34) is to spatially
integrate it over a cell to obtain a balance equation for the it spatial cell. In the i" cell,

as indicated by Figure 1, the left edge is at X 1 while the right edge is at X 1- The
2 2

thickness of cell i is Ax; =X ; =X ;. We presume that material discontinuities are also
2 2

cell edges so that o(x) is a constant o;, within each cell. Angular flux on the right and

left cell edges are w  ;,v . | respectively. The subscript n denotes the ordinate and
ni+= ' nji—
2 2
the subscript I denotes the mesh cell. Integration of the of the flux in the i cell

results in
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Hn _ o
AX, (Wn,iw% ‘//n’i_%)"' Oi Whn,i Qn,i ) (35)

Where Qn i is the average source in cell i:

X 1

Qi=l. 7% Qu(x). (36)

n,i :
=2

The average source in cell i consists of average scatters (S Ani ) and average emissions

(EAmi)

Q i = SAn,i + EAn,i . (37)

n’

Again the average scattered source in cell i, S Ani is found by integrating the scattered

source, S, (X) , over the cell:
1 dx
Sani =], 2 Sn(X)- (38)

The average intrinsic source in cell i, E Ao is also found by integrating the intrinsic

emission source, E, (X), over the cell:
_("2d
Eai =], 2% Ea(x). (39)

In practice the average scattered source is not calculated from equation (38) but
from scattering cross sections and average angular flux. The average angular flux in cell
11is:

Xi+l
l//n,i =Ix. j%l//n(x)' (40)

2

The scattering cross sections from ordinate n' to ordinate n are assumed to be constant

for cell i (as was done for total cross section) and are denoted as oy, .. Hence, the

average scattered source of equation (38) can be written
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N
SAn,i = Z:lwnv Gsn',n,i l//n',i . (41)
n'=

Using equation (41) and equation (37) to substitute for the right hand side of equation
(35) yields a system of equations that can be solved analytically if another equation is
introduced and one of the fluxes (incoming, outgoing, or average) is known. If the
incoming flux is known for each direction in a cell, the average and outgoing fluxes are
the system unknowns. Two equations are needed for each direction but only the
balance equation in each direction has yet been introduced. To complete the system of
equations an additional equation for each direction is needed. This additional equation
is known as the auxiliary equation. Given the balance equation and an auxiliary
equation for a cell with an N direction angular refinement, it is straightforward to solve
for the exiting flux. This can be done for every cell in a spatial approximation.

The conventional scheme sweeps through the cells in the direction of motion of
the particles. Consider an example with quadrature points indexed in order of
decreasing direction cosine but not necessarily symmetric about 4 =0. Let g through
Hng be positive (rightward) and gy,  through uy be negative (leftward). The
solution process for a multicell spatial discretization begins by solving for exiting edge

flux .., 1 and average flux ., where | denotes the total number of mesh cells
RHLI— .

and Ng +1 denotes a leftward direction whose direction cosine is smallest in magnitude
among the direction cosines of the quadrature set. The incoming edge flux at the right

face is l//NR It is known from the boundary condition at the right edge. With a

AR
vacuum or source boundary these values are explicitly known but with a reflective
condition the incoming edge flux values are set to the appropriate outgoing edge flux
values using the latest iteration estimate for these fluxes. After solving for outgoing flux

at edge N this value is used as the input for the adjacent cell then N and
R™L 7 RTLITS

Wng+1,1-1 are calculated. The solution process commonly referred to as a sweep

proceeds across each cell until the left boundary is reached. The process is repeated for
all remaining fluxes with g, <0. When the left face is reached for each ordinate the

boundary condition is used to determine NE This value is used as the incoming
R»y
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edge flux for the far left cell. Outgoing edge flux (l,//NR 3 ) and average angular flux vy,
2
are calculated. Outgoing edge flux from cell 1 (l//NR 3 ) is used as input for the second
2

cell. This procedure continues through the mesh successively solving for the average
and outgoing fluxes in each cell until the right boundary is reached. The process is then
repeated for all remaining ordinates. An iteration is complete when fluxes for all
ordinates are calculated in all cells. Upon completion of an iteration, the source term is
re-calculated from equation(37) and the sweep process begins again.

An alternative to source iteration is to consider the entire spatial and angular
mesh as a system of equations with outgoing cell edge fluxes and cell average fluxes as
the unknown variables. These variables are calculated by multiplying cell incoming
fluxes, average intrinsic sources, and average scattered sources by coefficients that are
determined by the spatial quadrature (spatial differencing) scheme. These spatial
quadrature coefficients are scalar quantities that are calculated from cell cross section
o;, particle direction g, and cell thickness AX;. Certain spatial differencing schemes,
such as EC, also use first moments to calculate them. I will discuss EC in chapter 4.

The discrete ordinates system of equations represented by equation (33) can be
written as the contribution of cell incoming edge flux, scattered source and emission

source multiplied by a transport coefficient to cell outgoing edge flux is

Vil = Kol,, (Gi’“”’AXi’SAn,i’SXn,i )Wn,i—l
2 2

+ KOSn’i (O-inunaAXi:SAn’i ’an,i SAﬂ,i (42)

+ KOEn,i (O'i ,,un,AXi ’SAn,i ’an,i )EAn,i Hn > 0,

14 ._12K0|n,i (O-i’ﬂnaAXi’SAn’i’an,i)‘// 1
2

n,i n,i+E
+Kos, (ai, 0 0%, S Sy )s A (43)
+ Ko, (ai, U %S S, ) Ea, 4y <0.

The spatial quadrature also provides coefficients for determining the cell average fluxes:



Wh,i :KA|n7i (O'isﬂnsAXhSAn,i’SXn,i )Wn -1
)

+ KASn,i (O'i ,yn,AXi , SAn,i 5 an,i )SAﬂ,i (44)

+ KAEn,i (O'i,ﬂn,AXi,SAn’i,SXn’i )EAT],i Hn >0,

Whii :KAInJ (O-iwun’AXi’SAn,i’an,i)W !

n,i+5
+ KASn,i (O'i ,yn,AXi , SAﬂ,i , an7i )SAn,i (45)
+ Kag, (ai, U %Sy S, )E o 4y <0,

For compactness of notation the transport coefficients will be written without
their arguments, unless these arguments are necessary for discussion or clarity. The
spatial quadrature coefficients will be written as K, NE Kos NE Koe i
Kal NE Kas NE Kae i These spatial quadrature coefficients can be obtained from any
spatial discretization (spatial quadrature). They are a convenient representation of the
coupled differential equations of the discrete ordinates equations. These coefficients are
derived for an SC spatial quadrature in the next section. SC is chosen in this research
because it is a positive method, like EC, but is linear which simplifies implementation.
Successful SC implementation does not guarantee extension to EC but was used to test
method implementation before applying it to the more sophisticated EC spatial

quadrature which uses first moments.

SC Transport Coefficients

In this section, formulas for the step characteristic (SC) spatial quadrature

coefficients are derived. SC approximates the scattering and emission sources as being
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uniformly distributed in a cell. The flux in the cell is obtained as characteristic

solutions along each direction of the angular quadrature. This is evaluated at the

outflow face and is averaged over the cell to obtain these coefficients.
Dividing equation (33) by u, results in:

oW, (X) o(x) _
T‘Fﬂ—nlﬂn(x) = ﬁnQn (x).

Let the optical thickness from a point X to a point X along the direction of the

n" ordinate be r, (X, X):

X

S — 1 ' ' > '

T”(X’X)_Eldx o(x") X<X'<X,
X

If & is a constant between X and X, then

Now introducing the integrating factor eT"(X’X) into

dy, (%)
X

with results in

X
equation (46) and replacing %

d o (x.x)  o(x 0 (X% 7 (%,

Noting that

7 (X,X oW, (X) m(xx) o(x) 7 (X,X
& vao0e )| 2000 2D, el

(50)



and integrating equation (49) from X to X produces

a0&" )y (7)) - 1O = 0,00)e (). (51)
Dividing equation (51) by the integrating factor and rearranging terms results in

l//n(X):l//(;)n e(rn(X,X)_Tn(X,X)) n Z Xdi Qn(x ) ern(x',i)—rn(x,;() ’ (52)

where eTn(X’X)is 1. If u, >0 the flux is entering from the left cell edge and x=x_ . If
Uy <0 the flux is entering from the right cell edge and X = Xg . This leads to

)=y (x), €0 4 [ D oy emtiamen S0, (53)
Hn XL ﬂn
0=y (xg)y & ) — L [T Q) e o) iy <0.(54)

,Un

In the i cell as indicated by Figure 1 X, corresponds to X. 1 while Xg corresponds to
2

X 1- Further if Ax= X 1 =X 1 is sufficiently small, O'(X) can be assumed to be a

2 2 2
constant oj, the average over the cell. Equation (48) is then

7, (x,i):Z—:\(x—i). (55)

This is readily expressed in terms of the optical thickness of cell i in direction n, which

I denote as

Thus,



T (x, xi;):‘gn,i‘m, (57)

and in a similar way

AX

o
rn(x,xi%):‘emi‘—. (58)

Substituting equation (57), equation (58), and the source integral as given by equation

(31) these cell flux equations are:

[X—Xi_lJ
_‘5n,i‘72

A.
Yn()=y . e %
2
_‘g , (x=x")
X' 5 (x")e A%
X oS, (x')
_‘gn i‘(X—X')
X de > AX
+ Tl = !
X|,l ‘ﬂn‘ n( )
2
[y
_‘gn’l‘ AX
Wn(x):‘//n il ®
(x'=x)
Xl _‘Sni‘
1+ ' > .
+f 2ESs (xne M
X ‘/Un‘ n( )
X1 d _‘gn’i‘(XA:X)
+J‘ ji+4 dx' E (x')e i
X 2‘ﬂn‘ n( )

Hn >0

Hn <0

Physically these equations determine the flux y,(X;) in a cell as the superposition of the

flux entering at a cell edge and the flux due to source production from scatters and

emissions. In the above equations S, (X") is the source of scattered particle emissions

and E,(x') is the source of intrinsic particle emissions at position X' into ordinate n. A
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characteristic scheme introduces approximation by assuming a convenient form for the
scattered source distribution then computes the exact angular flux corresponding to this
assumed source distribution. A step characteristic spatial quadrature assumes that the
source distribution is constant in cell i in ordinate 4,. This constant source

distribution averaged over a spatial cell is

%L dx
San; = J-Xi_lz (0. (61)
2

In practice Sy . is not calculated from equation (61) but is obtained from available cell

information using

N
SAn i = z O-sn'n,iwn' ‘/’n',i~ (62)

’ n'=l

Setting X=X ; in equation (59) produces the flux exiting the right edge of spatial cell i

given by

OX e MM (63)

Hp > 0.

Similarly setting x=X_, in equations and (60) produces flux exiting the left edge of
2

spatial cell igiven by

Equation (60) solved for flux exiting the left edge of spatial cell i is:



n,i— n,ijLl
2
x'—xil]
Xi+1 dX' ‘&‘nl‘ A'Z
Sanil, 2T | (64)
XL ]
oy
H% dx' ‘gn " AX; 2
+EAn,i jx_l m Hn < 0.
X'=X |
Introducing the following change of variables to u'= A)I( 2 in equations (63) and (64)
results in
l//n i) :l//n i— e_‘g”’i ‘
i+ :
AX el 1 iju'
+SAn,ime En’lj du’ e‘gm‘u (65)
AX _ . 1 it
+EAn,i me 8”"J-Od)u' e‘sn’,‘u >0
v o1 =Yoo e_‘gn’i‘
n,i— ni+-
AX —enjlu’
+Sa., P |j du' ¢ nil (66)
+EAI’]I|/U|J.d ! gnl /Jn<0.

Evaluation of the integrals in equations (65) and (66) yields a positive scalar quantity
for each transport coefficient. Practical evaluation of these integrals requires using
exponential moment functions as introduced by Mathews and Minor (11:169). The

exponential moment function of order zero with one argument is:

X

1
M, (X) :Idu eV Zle (67)
0



The exponential moment function of order n with one argument is:

My (x) = [, dt (1-1)"e - D009 (68)

X

Using equation (67) to evaluate the integrals of equation (65) results in

v, :Wn,i—% o leni]
Sy, ﬁ—me‘gm‘ ‘MO (~Jen.i]) (69)
“Ep, @_ﬂem &) o >0.
Noting that
e ¥ My (—x) = e * 1= = My (x), (70)

Voo =y e_‘gn’i‘

ni+— ni--

R (E) ()
+EAn,i |2_:|NO (“%,i‘) Hn > 0.

_|:MO(‘€n,i‘) #n <0.
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Equations (71) and (72) are in the form of equations (42) and (43). The spatial
quadrature coefficient for the outgoing flux due to the incoming flux, K, , is obtained

from yhe first term on the right of equations (71) and (72):

Kot _eTlnil, (73)

The second transport term on the right hand side relates the contribution of flux within

cell scattering to the flux exiting an edge:

A—ﬂ%(\en,i\) (74)

Kos, i =
’ |,Un
The third term on the right hand side relates the contribution of cell intrinsic emissions

to the flux exiting an edge:

A—ﬂ%(\en,i\). (75)

OE i =|
n

Note that for SC, Kog . =Kgg .-
The coefficients for the cell average fluxes are developed next. Equations (59)

and (60) averaged over a spatial cell are:

X_Xi_,
%l dx ‘ nl‘
Wn.i =IX. Vil ® A
i 2
: o (Oex)
SA _J‘XH—%%IX d_Xe ‘gn’l‘ AX (76)
e %1 AX %1 ||
ldx ex dxt el U
An,i.[ ’ e’ & #n >0,

%-1 Ax Xi—ém
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i+L dx Jeni| —2—
[ 22 1 Ax
l//n=' J.Xi—l AX l//n,i-t-%e
2
S J‘Xi‘*;% Xi“'%ﬂe_é‘n’i(xA_XX) (77)
An,i Xif% AX Y X |lun|
X'=X
vE, [rrox e ox o 4 <0

A X1 AXX |:Un| "

2

X=X 1 x‘—xi_l
Using the change of variables u :Tz, and U'=—¢ 2 for equation (76) then
rearranging terms results in
(g enlu
Whnii _J‘O UV/n i_le
T2
AX ¢l ~lén.i ilu

+S, —J‘ due ‘g”"‘ujudu' glenil (78)

n,i |/J | 0 0

n
AX ¢l —‘En’i‘u u , ‘Sn’i‘u'

+ EAn,i Iodue IO du'e Uy > 0.

leo|

Using equation (67) to evaluate the first term of equation (78) and evaluating the right

most integral of the second and third terms of equation (78) results in

Yni =¥ ._ljw() (‘gn,i ‘)
2

n,i
AX 1 —‘g -uj
+S, ——L | duj1-e '™ 79
ro o ()
AX 1 —‘g -‘u
+E, — -1 du(l—e ”"j > 0.
Ao ] Tl to

Using equation (67) to evaluate the remaining integral in the second and third terms

results in
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Whi =V ._l‘CMO (‘gn,i‘)
2

n,i

" e
AX l—jwo(‘gn,i‘)
E, 0.
M Iunl( . ale

Substituting equation (68) where appropriate in equation (80) results in

n,i

Yni =¥ ._ljvl() (‘gn,i ‘)
2

AX
+ SAn,i mml (‘8n’i‘) (81)
AX
+ EAn,i mml (‘gn’i ‘) Hy > 0.
n
X_Xi,l X'—Xi+l
Using the change of variables u :Tz, and U'=—¢ 2 for equation (77) then
rearranging terms results in
1 e (1=
Vi =j0du y/n’i%e ndl(1-w)
+S ﬂjldue‘gn"‘ue_‘g“’i‘ " gure il (82)
Anii 0 u-1
[tan|
4 EAn,i J‘;duesn,iue—sn’i lj)_ldu' e—‘sn,i‘u' 41, <0,

Using equation (67) to evaluate the first term of equation (82) and evaluating the inner

integrals of equation (82) results in

Yni =V .+1M0 (“9n,i‘)
2

n,i

AX 1 —‘5 -‘u —‘Eni‘ )
+S, ——1_( du (e nIE eI 83
An,| |ﬂn| 5ni‘|.0 ( )
AX 1 —‘5 -‘u —‘5 j
+Ey — | du|e ™I g M <0.
A Ll b"nijo ( Hn
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Using equation (67) and equation (70) to evaluate the remaining integral of equation

(83) results in

n,i

Vni =¥ .+11MO (‘gn,i‘)
2

+ SA _ AX 1_%(“%)‘) (84)
4 Tl s
" EA AX 1_—7\/’0(‘5n,i‘) #n < 0.
n |/un| ‘gnai‘
Substituting equation (68) where appropriate in equation (80) results in
Vi =V, i+l.7\/10 (“%,i‘)
T2
A
£ Sy M, (i) (85)
]
En X M
+Ea; P 1(‘8n,i‘) Hn <0.

Equation (81) and equation (85) are again in the form of equation (44) and
equation (45). The fourth transport coefficient relates the contribution of cell entering

edge flux to cell average flux it is

Kat oy = Mo (‘5n,i D : (86)

The fifth transport coefficient relates the contribution of cell scattered flux to cell

average flux. It is

Kasoy = Tr M oni) 57)

The sixth transport coefficient relates the contribution of cell intrinsic emissions to cell

average flux. It is
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Kae,, =|fl—:|ml (leni])- (88)

Note that for SC Kpg . =Kpg .-

The spatial quadrature coefficients in this section are derived for SC. A similar
procedure is followed with other spatial quadratures which result in different formulas
for the spatial quadrature coefficients that also can be put in the form of equations (42)
and (43). The use of these coefficients in the ASDI method is general and applicable to

coefficients derived from any spatial quadrature.

Explicit Solution of Transport Equations for N Directions Coupled in Space

The cell transport equations; (63), (64),(76), (77), written in vector notation are

Vou, =Kon, Win, +Kos; Sa +Kog Ea (89)
l/—/pi =K1, Vin +Kas; SA +Kag; A, (90)

where bold type denotes a matrix, ~ denotes a vector, and i denotes a cell number. If

the total number of ordinates is denoted by N , the ordinate set is

{,ul,yz,- s HNg > MNg, " HN } . Denoting the rightward, 1, >0, ordinates as
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{,ul,,uz,---,,uNR} , Nr is the number of rightward directions. The leftward, u, <0,

ordinates are { HNg, > ,uN} . The number of leftward directions is

The inward flux vector in cell i (aini ) has N components

l//ini = ’ : (93)

The top set of angular fluxes in equation (93) represent the flux in at the left edge of
cell i streaming in the rightward direction,{l//li LW 1}, and the bottom set

5 _5 R> _E
represent flux in at the right streaming in the leftward direction in cell i

74 e W1
NR+1,|+2 N,|+2

The outward flux vector in cell i (aouti ) has N components

Vil
1,|+2

l//N vl
R>|+2
Yout; = . (94)
l//NR-ﬁ-l,i—%

Vil
| N.i 7]
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The top set of angular fluxes in equation (94) represent the flux out at the right edge of

cell | streaming in the rightward directiom,{t,//1 LW }, and the bottom set
’ 5 R> 5

represent flux out at the left edge of cell i streaming in the leftward direction
WNR+1,i—%“'WN,i—% ‘

Equation (93) can be written even more compactly as

. l//ln RI
l//ini = - 9
In Li
where
l/jl,i—l
l//inR = )
NR,F%
and
YNg il
l//inLl =
l//N,iw%
Similarly equation (94) can be written
. l//OUt Rj
l//OUti — ’
out L

where
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and

The average intrinsic emission vector in cell i (E # ) has N components.

compact notation it is

where

and

Youtg. = : ’

En = Eag;
& EAl_,i ’
EAl,i
EARi = : ,
EANRI
EANR+1I
EALi = :
EAN,I

(99)

(100)

Written in

(101)

(102)

(103)

The coefficient matrix denoting the contribution to the outgoing fluxes from the

incoming fluxes in cell 1 is a diagonal matrix of size NxN:
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Koy, 0 0 0
0 Ko.. 0 0
Koi, = o2 . (104)
0 0 " 0
0 0 0 Koy, |

The other transport coefficient matrices K Al -Kos; - Kas, - Kag, »Kog, » have the same

form as equation(104). They are diagonal matrices of their corresponding spatial
quadrature coefficients.

The matrix X contains the element-to-element scattering cross sections, or the

ordinate-to-ordinate scattering cross sections and weights:

i W W Wy |
Os51i M1 Ty 2 OsN1i N
o5, .. W O W, o Wy
ES — 1—)2,| 2—)2,| N—>.2,| (105)
I
o W, o W o W,
| TSIsNi L TSN 2 SN>N,i N |

The following matrices are useful for stripping the rightward or leftward components of

the vectors introduced

Sy

I, =| R , 106

* g o (106)
0 01

IL: > (107)
0 Iy,

where Iy and Iy are identity matrices of dimension Ng and N respectively, and 0

represents a matrix of zeros of appropriate dimensions. As an example of how these
matrices are used I will rewrite equation (98) in terms of the outgoing flux from the two

cells adjacent to cell i. Using equation (106) and equation (107) results in
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WoutRi _ {l Ng 0} '//outRi N [0 0 :| WoutRi . (108)
V/OUtL. 0 0 WOUIL. I NL lf//OUtL-
1 1 1

An explicit solution of the discrete ordinates equations, (89) and, (90) is possible. First
consider cells that are not on either the left or right exterior boundaries so that particles
stream into the cell from the adjacent cell on each side and particles stream out of the

cell into those cells. Substituting equation (91) into equation (89) and (90) results in

Vouy =Ko, Vin +Kos; Xs v 5 +Kog En (109)
W =Kay Vi +Kas; X, W a +Kag EA- (110)

The formal solution of equation (110) for a Tesults in

Wa =(1 =K zsi)_lKAn Wi, (1=K, zsi)_lKAEi Ea. (111)

Substituting equation (111) into equation (109) with some rearrangement results in

_ » _
Y ou :(Kon +Kog; Xg (1 =Kag; X ) K, )‘//ini

(112)
-1 —
+(K0Ei +Kog; Xg (1=Kag; Xg ) Kag )EAi'
This may be written more compactly as
Wouy =Mor; Win, +Mok; EA - (113)
where
-1
Mor; =Koy +Kog; g (1 -Kag; 2g ) Ky, ), (114)
and
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-1
Mog; =(Kog; +Kos; Zg (1 =Kag; Tg)  Kag ) (115)

I will refer to the elements of the matrices Mg, and Mg, as cell transport coefficients.
The flux entering at the left of cell i moving rightward is (aini ) N The flux exiting
n'<Ngr

at the right of cell i moving rightward is (V—/outi ) o The fraction of flux entering at
n=Ng

the left (g, >0) and leaving at right (g, >0) is <m0|i )

n,n'

Using equation (108), equation (113) can be written
aouti =Moy; (IR)'I/—/outi_l +Mgy; (IL)"/—/outM +Mog; EAi . (116)

Equation (113) expresses the outgoing edge flux for a mesh cell (1,/—/Outi ) in terms of cell

emission (EAi ) and outgoing edge flux from the two adjacent cells. The coefficient
matrix Mg, determines the contribution to cell outgoing flux from cell incoming flux.
The coefficient matrix Mog; determines the contribution to cell outgoing flux from cell
intrinsic emission.

Next consider cells at the left or right boundaries. If a cell is at an exterior
boundary, particles stream into the cell from one adjacent cell and particles behave in
accordance with a boundary condition on the other side. The reflection condition for
this boundary condition for any discrete ordinates set can be represented as a matrix.
This matrix is denoted by o on the left boundary and oy on the right boundary.
Each element of the matrix represents the fraction of flux from an outgoing ordinate

that is reflected into an incoming ordinate. Defining these boundary matrices as
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0 - 0 Ao T Ay
0 - 0
Q= “LNg.Ng+ “Lng.Ng , (117)
0 0 0 0
0 - 0 0 0 |
0 0 0 - 0]
0 0 0o - 0
Qg = , 118
R aRNR+1,1 aRNR+1,NR O O ( )
i PRy, T TRy, 0 - 0_

facilitates specification of all but periodic boundaries. In block form these boundary

matrices are:

0 o
oo %) o
where
Pyngn T U
o = : , (120)
Pnng+r T L
and
0 O
ol ) o
o 0
where

2-29



QR

a
RNR+1,1

RNy T PRy

RN +1N

(122)

Consider a problem without incident flux, cell 1 which is at the left boundary has as an

incident flux on the left side the flux resulting from the above boundary condition
rather than the inward flux denoted in equation (93). Using the above boundary

condition this inward flux at the left boundary (l/—/in1 ) is written:

Vi

Equation (123) can be rearranged as

Vingl =

N
a
Z Ln',l V/ﬂ',%
n'=NR+1
N
Z aL ‘// v 1
= n',N n',= |.
N7 | n'=NR+1 R 2
'//NR+1,%
vy 3
L N’2
_ \ _
a _
2 Ly Ve
n':NR+1
N
Z aL vl |tV 3
n',N n',~ Np+1,2
n':NR+1 R 2 R 2
0
0

(123)

(124)

Equation (124) represents the inward flux of the left boundary as the contribution to

the cell flux from the left side boundary reflection and particles streaming in from the

right adjacent cell. In compact matrix notation this is
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Win, =LY outy + 1L Win, - (125)

In any spatial discretization scheme adjacent cells are coupled at the edge that is shared
by the two cells. This adjacent cell coupling for cells one and two for the leftward

streaming flux is expressed as:

ILl/—/inl = ILaoutz . (126)

With this expression (125) can be written

&inl =Q &outl +1 aoutz : (127)

Substituting equations (127) into equation(113), and applying the left side boundary

condition results in

Wout, =Moi LW ouy, + Moiy 1L Wour, + Mok, EA - (128)
Rearranging terms in equation (128) results in

(' —monaL) Wou, =Mor, 1LWout, + Mok, EA - (129)

The right most ( Ith) cell in the spatial domain is handled in the same way resulting in:
(' —Mgy, OLR) Vout, =Mort, 1¥out,_, + Mo, EA - (130)

The system represented by equation (116) has 2N equations in 2N | unknowns
corresponding with interior cells. Equations (129) and (130) each represent N
equations and N unknowns corresponding to the two cells on the boundaries. There
appears to be more unknowns than equations until one considers the connectivity of the

mesh cells. This connectivity results from the edges shared by adjacent cells. For an
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interior cell the incoming edge flux is the outgoing edge flux from the adjacent cell.

This leads to N connectivity equations for the (I-2) interior cells

IR Win = 1R Vous,, i={2,....1}, (131)
Wi = LW o, i={L...,1-1}. (132)

Note that the incoming edge fluxes on any cell edge can be written as the sum of the

outgoing edge fluxes from two adjacent cells.

On the left boundary in cell 1, flux enters from edge i=1/2 and from edge
i=3/2. The incoming flux in cell 1 at edge 1=1/2 is the outgoing flux at this same
edge reflected back in the incoming direction. The incoming flux in cell 1 at edge i =
3/2 is the outgoing edge flux from cell 2. In cell 1 there are N/2 connectivity equations
and N/2 boundary equations. Likewise the right edge incoming flux is the outgoing flux
reflected at the boundary at edge i=1+1/2 and from the adjacent upstream cell i = I-
1/2. In cell I there are N/2 connectivity equations and N/2 boundary equations. The
boundary cells contribute N connectivity equations and N boundary equations to the

spatially coupled system. Collectively there are 2Nl unknowns and 2NI equations.

A particle transport system of equations that connects all the interior cells with
the boundary cells and couples all directions represents fully coupled discrete ordinates
transport. This angular and spatially coupled system of transport equations can be
written in the following way. Let Win represent incoming flux vectors for the cells in a
spatial mesh of I cells with a phantom cell on the left side and a phantom cell on the

right side. This vector has 2 N (I4+1) components and is written

l//ino

a/>i|']1
Yin = . (133)
l//in|

_Winl+1 i
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Let Wout represent outgoing flux vectors for the same mesh:

—_—

l//OUtO
WOUtl
You=| : | (134)

l//OUt|

_l//OUtIH i

Let Ea represent average intrinsic emission vectors for the same mesh, it is written:

Ea=|  |. (135)

The zeros at the top and bottom of the emission vector of equation (135) represent left
and right phantom cells which do not emit. In equation (133) '/—/ino , &outo represent the
flux entering or exiting a phantom cell at the left boundary, &inm , Joutm represent the
flux entering, or exiting a phantom cell at the right boundary. Flux enters and leaves
these phantom cells through a single edge. Using equations (93) through (100) these

arrays can be written

_ 0 ]

7 IR} (136)
o [V/Loutl

A

¥out, _[ 0'”1 ) (137)

2-33



_ 0
Vout, ;y = J/’Lot ’
uty +1

(138)

(139)

where 0 is a vector of zeros of length Ny or N| . Because the incoming edge flux for

interior mesh cells is the outgoing edge flux from an adjacent cell, Win, can be expressed

as a combination Wouty_»Wout;,; - Using the matrices specified by equation (106) and

equation (107) wj, is written

- I 0 l//ROUtH
Vin=l oo ||y

Loutj,

The phantom cell incoming flux at the left edge is written

— 0 0 0
l//inO_ 0 INL y/Loutl '

The phantom cell incoming flux at the right edge is written
a_ _ | NR 0 l//Rouq
N +1 0 0 0 )

and You is written

The phantom cell outgoing flux at the left edge is written
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_ Ino Ol wr.
Vouy =| o (144)
0 O 0
The phantom cell outgoing flux at the right edge is written

_ 0 0 0
Vout, . = — ) (145)
outi.1 |0 INL l//|_mI

Using equations (140) through (145) the global spatial vector ¥in can be written in

terms of the global spatial vector out :

0

_ WROUtO
Vi | O 0 0 0 0 0 0 0 0 0 0 0]

= O 0 0 Iy, 0 0 0 0 o 0 0 0|y
l//Rinl NL WROutl
~ ly, 0 0 0 0 0 0 0 0 0 0 0| —
WLinl V/Loutl
" 0 0 0 01y 0 O 0o 0 0 0| _

Y Rina 0 0ly, 0 0 0 0 0 0 0 0 0 | YR
Vi, 0 0 0 0 0 0 0 Iy 0 0 0 0 | Vi,
" 0 0 0 O | O 0 0 0 0 0 0|y
wRim 1 Nr I//ROUtI 1
- 0 0 0 O 0 0 0 0 0 Iy 0 0 |-
V/Linll WLout|_1
= 0 0 0 O 0 0 Iy, 0 0 0 0 0| _

Y Riny 0 0 0 O 0 0 0 0 0 0 0 Iy | /Rm
Vi, 0 0 0 O 0 0 0 01y, 0 0 0|V,
Ve 0 0 0 O 0o 0 0 0 0 0 0 0

np+1 - -
0| |V Louy |

(146)

Two of the equations leading to the system denoted by equation (146) carry no

information. These correspond to the phantom cell edge flux corresponding to the edges
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that are not shared with cell 1 or cell I. Noting that the first and last rows and the
second and next to last column are zero in the matrix of equation (146) we can remove

these equations from the system since they carry no information. Doing this results in

l//l-ino l//RoutO
” 0 0 Iy, 0 0 0 0 ©0 0 0 o0 0]y
V/Rinl NL l//Routl
_ l\, 0 0 0 0 0 0 0 0 0 0 0| -
l//Lin] I’I/Loutl
" 0o 0 0 01y, 0 0O O0 0 0 0 0| _
Y Rina 0 Iy, 0 0 0 0 0 0 0 0 0 0| " Ru
Vi, 0 0 0 0 0 0 Iy 0 0 0 0 0| ¥,
v 0 0 0 0 0 I 0o 0 0 0 0 0|y
Y Rini NR Y Rouy
- 0 0 0 0 0 0 0 0 0 0 Iy 0 |-
WLin| 1 WLOUtlfl
~ 0 0 0 0 0 0 0 I, 0 0 0 0| _
V'Rin 0 0 0 0 0 0 0 0 0 0 0 Iy | YR
Vi, | [0 0 0 0 0 0 0 0 0 Iy 0 0| Vg,
" = (147
_WRi“IH _ _l//l-out|+1 ] ( )

Defining Pjgas the matrix of equation (147)
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0 0 INL 0 0 0 0
INR 0 0 0 0 0 0
0 0 0 0 INL 0 0
0 Iy, 0 0 0 0 0
0 0 0 0 0 0 Iy
Pio = N
0 0 0 0 INR 0 0
0 0 0 0 0 0 0
o 0 0 0 0 0 Iy,
0 0 0O O 0 0 0
0 0 0 O 0 0 0

equation (147) can be written more compactly as

Qin = PIO Wout.

o O O o o

o O O o o

o O o o o

o O o o

o O o o o

o O O o o

(148)

(149)

Note that P, is a permutation matrix that reorders Wout to become Win. As such, its

inverse is its transpose.

Global spatially coupled coefficient matrices, denoted as Mgg and Mg, , are

assembled from the cell coefficient matrices of equations (114) and (115). These

matrices are ordered so that their first and last rows correspond with phantom cells and

their other rows correspond with interior cells
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o

Mo, =

m .
OINR,NR.I

m .
OIN|,NR.I

mOENR,NR,l

mOENL,NR,l

m .
OINR,N| .1
m .
OIN| N1
m .
OINR,NR.2
OiN| \NR.2
mOENR,NL,l
mOENL,NL,l
m
OENR,NR.2
m
OEN| NR.2
(151)

m .
OINR,NL,2
OiN| Np .2
m .
OINR,NR,I
m .
OIN| ,NR,I
m
OENR,NL .2
m
OEN| N2
m
OENR.NR.I
m
OEN| NR.I

m .
OINR,N|,I

m .
OIN| NI

(150)

m
OENR,N| I

m
OEN| N| I

Using equations (114), (135), (150), and (151), the spatially coupled system becomes:

?out :MO| @m +MOE EA
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Equation (152) represents the transport equations explicitly. It accounts for all particle
penetration and scattering. Using equation (149) and combining Wout coefficients results

n

(1-Mo; Pio)Pout = Mg Ea . (153)

The matrix (l -Mg, P) is reordered to result in a banded diagonal matrix of minimum

bandwidth. The reordering matrix which achieves this minimum bandwidth structure is

y, 0 0 0 0 0 0 0 0 0 0 0
0o 0 Iy 0O 0 0 0 0 0 0 0 ©
0 Iy, 0 0 0 0 0 0 0 0 0 ©
o 0o 0 0 Iy 0 0O 0 0 0 0 0
0 0 0 Iy, 0 0 0 0 0 0 0 ©
Pg = co . (154)
0o 0 0 0 0 0 0 Iy, 0 0 0 ©
0o 0 0 0 0 0l 0 0 0 0 O
0o 0 0 0 0 0 0 0 0 0 Iy O
0o 0 0 0 0 0 0 0 0l 0 0
0 0 0 0 0 0 0 0 0 0 0 Iy

Applying Pgto equation (153) and solving for Wout yields the explicit solution of the

fully coupled, in both angle and space, system of transport equations

Pout :(PB(I—MO, P,O))_l Ps Mog Ea . (155)

Edge flux computed from equation (155) yields an explicit solution for the discrete
ordinates equations without iteration. It accounts for particle transport within a cell
and particle transport across cells. Unfortunately, the 2N | system which results

from N directions and | cells is impractical to invert or solve, particularly if the spatial
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and angular discretization are fine. This is why source iteration (SI) does not attempt
to solve this system. Instead SI approximates the solution by iteration on the scattering

source.

Angular and Spatial Distribution Iteration

I did not attempt to solve the system of equations represented by equation (155)in this
research. Rather, I investigated an efficient iteration scheme that was different from
source iteration. I solved equation (113) with a refined angular quadrature locally
within each individual spatial cell using an estimate for incoming edge flux and its cell
transport coefficients. I then estimated particle transport among cells across the
problem space using equation (155) with a coarse angular quadrature and transport
coefficients that are correct for the approximate edge flux used. I developed and
examined a method that couples local within cell scattering using a refined angular
quadrature with across cell particle transport using transport coefficients obtained from
a coarse angular quadrature in a unique way that retains angular resolution. The
concept is similar to 2 direction synthetic acceleration but differs from it in two

important ways:

1. The proposed method does not use transport sweeps. The proposed
method does not approximate the error in the flux iterate to correct a

transport sweep.

2. The method estimates the solution directly with a coarse angular
quadrature and a fine angular quadrature linked with transport

coefficients.
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The method uses the coarse angular quadrature to directly solve equation (155). This
provides edge fluxes (@in ) that are approximate. These edge flux values are used in
equation (113) to gain a better estimate of transport coefficients (Kog .. Kas .»Koy .

Kal NE Kok NE Kae o ), in a way not yet discussed, in order to obtain a better estimate of

Win for a two direction spatially coupled angular quadrature. In my method

41 equations are solved in the spatially coupled coarse angle routine or 4 N equations
are solved in the fine angle within cell routine as compared with the 2N | equations of
the fully coupled system,. By de-coupling space and direction the system of equations is
reduced to either four times the number of ordinates in the angular quadrature or four
times the spatial cells. This is far less than the number of ordinates times the number
of spatial cells required for the fully coupled system.

Unique aspects of this research are the use of the flux distribution along cell
edges to yield progressively better edge flux transport coefficients and of iteration on
angular and spatial flux distributions. The method effectively amounts to improvement
of transport coefficients and iteration on angle and spatial flux distributions. The
method eliminates the need for modeling neutron flights by transport sweeps as is done
with SI. The method significantly reduces transport iterations, even when scattering
ratios are nearly 1. The method produces reliably accurate answers even when neutron
flights are nearly infinite. Discussion of the fine angle and coarse angle solution

methods and their coupling follows.

Explicit Solution of a Two Direction Transport Problem Coupled in Space

Although it was not practical to solve the discrete ordinates system of equations
with many directions coupled across space, it is practical if there are only two directions

to couple across space. Consider a slab geometry transport problem with two
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directions. Following the vector notation of the previous section the cell transport

equation is given by

where Mg, is

_aLZ,l
MOI =
and MOE iS
0
Mog =

Pg_(1-Moy P)¥our =Mog.En ,

Mop,; Mo,
Mor,,; Moy,
Moy, ,
mOlz,l,z
MoE, |, mOEl,z,l
Mog, | 4 mOEz,z,l
MoE, ; »
MoE, , ,

m011,2,2

Mor,,,

9%

m0E1,2,2

mOEz,z,z

mOIl,l,I

mOIZ,l,I

m0E1,1,1

MoE,

Pis given by equation (148) and Pg_ by equation (154) with
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Moy, 21

mOIz,z,I

mOEl,Z,I

MoE, ,;

(156)

. (157)

. (158)



1 0
Iy, = , 159
NR _0 0_ ( )
_O O_
Iy = . 160
wlo o (160)

The components of the spatially coupled coefficient matrix (Mg, ) are given by

equations (114) and (115). The diagonal coefficient matrices used in these equations are

K Ko 0 161
O|i - O KOIz’i b ( )

_Kosl,i 0

. : (162)
! 0 KOSQ’l

I 0 KA'z,i

Kas. O
’ (164)

Kpy; O
Kari, = ’ ], (163)

i
0 Kasy,
The scattering cross section matrix is a dense matrix

US . O'S .
1Li 2,11

S = . (165)
"% 98

If there are | cells in a spatial partition the arrays of incoming fluxes, outgoing fluxes

and intrinsic emissions are
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‘//outl

74
out,

N [—

I\S\w

Yout =

2

Substituting equations (157), (158), and (166) into equation (156) results in

Win =
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1 0 - 0 2
—Mm.: -m.. V/li
Moy 1, I 0 Moy 5., 2
—M.; —M.. 1
Moiyy, 01 Moiy,, 0 l/lz’z
0 Moy | 1 0 ~Moiy l//l,l+%
0 —M; 0 1 —m;
0y 1,1 02,1 ‘//2,|_%
0 —aR 0 1 W
B - 1
i 2,|+2_
0 o I 0
Mogy 1y Mogy,, 0 o EA1,1
Moey 1 Mogy,, 0 o EA2,1
0 mOEz,l,I mOEz,l,I EA1,|
0 mOEl,l,l mOEl,Z,I EA2,| . (167)
|0 0 || 0 |

The transport coefficient entries of the left hand side matrix of equation (167)

(mom,i »Mot, 5 i>Moty 5 ;:Mol, 5 ) describe the fraction of entering flux in a direction (left
or right) that leaves the cell, having scattered any number of times within the cell. A
particle enters a cell from one of two possible directions. Having entered a cell in an
ordinate, a particle then either transmits to the other side in that ordinate or is
reflected backward into the opposite ordinate. Because of this it is useful to think of
the transport coefficient entries as reflection or transmission coefficients. The
transmission coefficient describes the fraction of particles that enter a cell, scatter any
number of times, then exit that cell in the original direction of its flow while a reflection

coefficient describes the fraction of particles that enter a cell scatter any number of
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times then exit that cell in the opposite direction to its original flow. Defining reflection

coefficients as:

bi=Moy,. - (168)

bi=Moi,,. - (169)
and transmission coefficients as

i =Moy 5 (170)

Di=Mory . » (171)

equation (167) is written
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0 0 IFn°|51,1,1 mOEl,z,l EA2,| : (172)
0 0 0 || 0 |

If the spatial quadrature conserves particles and ¢ <1, then 0<r,;<1, 0<t,; <1, and
Mmi+tmi <1.If c=1 then ry;+t,; =1. If the boundary conditions of the system are
vacuum, grey or albedo, then the system is diagonally dominant when ¢ <1 and weakly
diagonally dominant if c=1. Because of this, any 1D transport problem with a unique
non-trivial steady state solution results in at least a weakly diagonally dominant system
with positive values on the diagonal and negative values off the diagonal. Therefore the
1D slab geometry system with two ordinates is readily solved. If an angular quadrature
with two ordinates adequately described the angular flux distribution of a problem we

would be able to calculate by inverting the matrix of equation (172) and solve the

problem directly.

Unfortunately, a two ordinate angular approximation is most often inadequate.
For example, particles that enter a mesh cell parallel to the + X-axis are more likely to
exit a mesh cell in the +X direction then particles that enter a mesh cell nearly

perpendicular to the +x axis. The S, angular quadrature does a poor job of modeling
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directional dependence for this type of particle transport. Because of this, an S,
angular quadrature is often an inadequate approximation for angular flux. I sought to
overcome the weakness of this coarse approximation in angular distribution yet take
advantage of its ability to fully couple cells in space without numerous particle flights. I
speculated that because the coarse angular quadrature estimated flux correctly in
magnitude these flux values could be used as reasonable estimates for cell entering flux.
This required development of a projection scheme between coarse and fine angular
quadratures. I also speculated that the approximate edge flux values obtained from the
spatially coupled coarse solution could be angularly coupled to the flux locally within a
spatial cell in order to approximate angular flux distribution on cell edges. Further, I
speculated that the approximate angular flux distribution obtained this way could be
used to improve the two ordinate transport coefficients. I expected the improved two
ordinate coefficients to in turn improve the approximation for cell incoming flux. I
sought to use the computational efficiency of the coarse angle spatially coupled system
and the fine angle local space systems with an iteration scheme that effectively coupled

the two schemes through transport coefficients.

Solution of an N direction Transport Problem with Approximate Edge Flux.

Explicit solution of equations (113) through (115) is possible, even for very fine angular

quadratures, if entering flux (ai”i ) is known. Equation (113) may be used to solve for

exiting flux for any resolution angular quadrature without creating a system that is
impractical to solve since it is done for only a single cell. The inverse matrix of

equations (114) and (115), (1 -K g, ZS_)_I, models scattering within a cell effectively
|
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because it effectively accounts for an infinite number of neutron flights. This can be

seen by expanding the matrix in a geometric series:

(1=K, z:si)‘1=|+ Kas T + HKASi D 2<1
2
(KASi 23.) +et (173)
1
k
(KASi Zsi) +..

k
The term (K AS; 2. ) in this geometric series produces the flux of neutrons that have
|

scattered k times within the cell (without leaving the cell). The first term ,I, accounts
for the flux of neutrons that have not scattered since entering the cell. Thus, the series
accounts for all numbers of scattering events within the cell for each particle entering
the cell or emitted within the cell. If the incoming flux is correct the outgoing flux can
be explicitly calculated. In application l,T/in is not a known quantity. It is an estimate.
This estimate can be improved by using equation (113). Given estimated incoming fine
angle flux, equation (113) is used to calculate fine angle outgoing flux. This is done for
each spatial cell. After each cell outgoing flux is calculated boundary conditions are
applied. Outgoing fluxes calculated in this way are incoming fluxes for adjacent cells
with fine angle resolution. This leads to an improved incoming flux estimate. I
examined whether edge flux produced with a two-ordinate angular quadrature from
equation (172) could be used as input for a fine angle flux solution produced by
equation (113) which in turn could produce adjusted transport coefficients. I then
examined whether the adjusted transport coefficients then improved the approximate
flux of the coarse angle estimate. This provided an iteration scheme. I further
examined the convergence properties of this scheme. The combination of the fine angle,

and coarse angle methods is discussed next.
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Combining High Angular Resolution Within-Cell Transport with Low Angular

Resolution Spatially-Coupled transport

The previous sections described a method for obtaining exact within cell solutions for
edge flux. Continuing the notation developed in these sections, ai”i is given by equation
(93), aouti is given by equation (94), En is given by equation (101). The scattering
cross section matrix is given by equation (105). The coefficient matrices

Ko'i ,K Al > KOSi K AS; - K AE; » KOEi ,are diagonal matrices of the form given by equation

(104). The array of cell average flux is written

I Y1 |
_ YNg.i (174)
Ya = .
A‘ WNR-‘rl,i
L YN,
With this notation the transport system is
Vouy, =Ko, Vin +Kos; Xg, v +Kog EA, (175)
Wa =K Vi Ko, s, W a +Kag En. (176)

The flux of particles is transported through the cells of a spatial mesh as though
the particles were moving in representative directions. In discrete ordinates each
component of the flux vector describes the flow of particles, through a surface patch of
solid angle on the unit sphere. Figure 2 shows the flux exiting a cell edge in the left

(¢ <0) and right (x> 0) hemispheres for both coarse and fine angular refinements. A
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2 Directions

Cell Edge
e
v, =400 500
4 Directions
l//3 =100 Wz =200

Wy =300

Cell Edge

coarse angular quadrature of two directions is depicted in the top set of hemispheres
and a finer angular quadrature of four directions is depicted in the bottom set of

Figure 2: Angular Flux Exiting a Cell Edge through 2 Ordinates and 4 Ordinates

hemispheres. The notation 1/7 denotes a flux associated with a coarse angular
quadrature. The symbol y denotes a flux from a finer quadrature. Elements one and
four are the caps of the hemispheres and elements two and three are the bands closes to
the cell edge denoting that these fluxes are in fact inclined at a steeper angle to the x

axis which passes through the tip of the polar cap.

The subscript m denotes an ordinate in a two direction angular quadrature whose

surface elements are the two hemispheres in Figure 2. The total flux exiting a
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hemisphere, t;m i+l , is calculated by summing all the finer angular quadrature fluxes
.

exiting the same hemisphere.

~ NR

Viiel =2 Vnjst i={1,2,1}, (177)
n=l1

Vil = Z Vil i= {110 (178)

In a similar way the average flux in a spatial cell in a hemisphere denoted as, l/?m i, 18

_ Ng
Vii=D Vhi i= {1}, (179)
n=1
and
Vai= D, Vi = {1 (180)
n:NR+1

Further the average particles scattered per volume in the solid angle whose average
particle direction is in one of the hemispheres of Figure 2 is denoted S Api- Itis

calculated by summing the particles per solid angle exiting the associated hemisphere

_ NR N
SAlyi :Z Z O-Sn"n,i l//n"i = {15’1} ) (181)

n=ln'=l

and

Sy = Z Z Tsponi ¥V i= {1}, (182)

n=NRg+1n'=l
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The average particles per volume emitted in the solid angle whose average particle

direction is in one of the hemispheres of Figure 2 is denoted EAm,i . It is calculated by

summing the particles per solid angle exiting the associated hemisphere

_ NR _

Ea;; = Eani i= {0, (183)
n=1

_ N

EA2,i = Z EAn,i I={1,---,1}. (184)
n:NR

As in the previous sections Ny denotes the number of rightward flux ordinates

and N the number leftward

Defining 'T’ini ’;outi ,17/ A 8S the coarse angular quadrature inbound, outbound, and cell

average angular flux arrays in cell i, they are written as

- l//l,i—%
2,|+§

= |:W1,|+;

Youy =| —~ ) (187)
Voyi-l

Va —[Y“], (188)

Ea {EA“ ] (189)
A
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Defining the array

| 110 0 (190)
N1 o001 - 1

where the rows of |, y have N elements consisting of Ngor N ones or zeros. This
matrix facilitates writing coarse quantities as the sum of fine quantities. These coarse

fluxes in compact form are

;ini =l ?ini ; (191)
;outi = I2,N &outi ) (192)
Vi =loan Ve (193)
En=loyEx-. (194)

The transport equations for these two directions are given by equations (109) and (110).

Operating on these equations with I, \ results in:

Wouy = lan Kor Win +1an Ko, s, v +1on Kog EA» (195)

l;Ai =l N (KAIi Vin )+ AN (KASi X, W )+ AN ( K ag; E ) (196)

Equations (195) and (196) result in vectors of length 2 that are obtained from the
matrix multiplication of the 2xN matrix of equation (190) with the vectors of length N
from equations (109) and (110). The first term of the two component array resulting

from equation (195) is
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o)

N
‘//1,i+%: (KOIn’i Wn,i—lJ

n 2

N
[ KOSn,i 21 O-Sn',n,i l//n',i j (197)
n'=

Il
—

_l_

M=

1

>
Il

NR
+ E[KOEn,i En; J

This term is the flux exiting the right hand side of a spatial cell in a single direction. It
is calculated by adding the contributions from fine angular quadrature fluxes entering

the left hand side of the spatial cell, scattered within the cell, or emitted within the cell
multiplied by their respective spatial quadrature coefficients. Similarly the second term

of equation (195) is the flux exiting the left edge

N
l//2 |—l = z KO'n,i l//n i+1j
n=Npg +1 T2
N i N
+ Z KOSn,i Z O-sn',n,i Wn',i (198)
n=Ng+1_ n'=1

+ i [KOEHJ Ea,, }
n=Ng +1

The first term of equation (196) is cell average flux streaming rightward

_ NRr
WLi:Z{KAan '//n i_lJ
T2

n=l1

NR N
+Z|:KASn,i z O-Sn‘,n,i Wn',i j| (199)
n=1

n'=l

NR
WLZ‘;[KAEH’i Ep, }
n=
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It is calculated by adding the contributions from fine quadrature fluxes entering the left
hand side of the spatial cell, scattered within the cell, or emitted within the cell
multiplied by their respective transport coefficients. Similarly the second term

resulting from equation (196) is the cell average flux streaming leftward

N
Vai= Z [KAIM l//ni+1J
)

n:NR+1
N
+ Z KASmZ Sn'n,i l'//n',i (200)
n=Ng+1 n'=1
+ z |:KAEI’1I AT‘II:|

n= NR+1

The goal is to transform the transport equations, (175) and (176), which have N
directions and are not practical to solve into equivalent equations with only two
directions that are practical to solve. This transformation can be done by multiplying
equations (197) through (200) by an appropriately chosen factor, one , obtained from
equations (177) through (184). As an example, equation (197) and (198) can be

written as
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coefficients and fluxes.

coefficients are

NR

Wl,i+§zz Koty g —

n=l

N O
R n'=l c
+Z‘i OSnj Ng N SA
n=
Z O-Sn',n i l//n'l
n=ln'=1l
Ng E
A g
+Z KOEn,i Nn Eas
n=l1
> En,;
L n=l1
— N Wn,i+% —
Wyl = Z KOIn’, N Woirl
n:NR+1 z
|
n=Ng+1 "'
~ \ _
N Zlo-sn n,i l’yn',i _
n'=
+ Z KOSnl N N SAZJ
n=Ngr+1
Z ZO_Sn',n,i Wn'
L n=Ng+ln'=l i
N E
Ani =
+ z OEni — N Ea,j.
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Note that these two equations are in the form of equations (42) and (43) for two

directions. However, the transport coefficients are not calculated from the coarse

The two direction transport effective spatial quadrature

(202)

angular quadrature. They are calculated from the fine angular quadrature transport



n,i—
_ 2
ROlll _Z KOlmi NR ’
n=l1
2V
n=1 NI—
N
Ng Z:lasn n,i l//n',i
- n'=
P(051,i —Z OSni Ng N ’
n=l1
z O-Sn 'n,i l//n',i
n=ln'=l
NR E
Ani
ROEH :z KOEn,i NR )
n=1 ZEAT“
n=l1
o N Wn,i+%
Ol = Z KOIn,i N ’
n=Np+1
R Z Wn,i+l
n=Ng+l 2
N
N Z:lo-sn "n,i l//n',i
_ n'=
P(Osz,i = Z KOSn,i N N
n=Np+l1
R Z O-Sn "n,i l'//n',i
n=Ng+ln'=l
N E
Ani
ROEz,i = Z KOEn,i N
n=NRr+l Z E
A
n:NR+l
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Each of these effective transport coefficients can be thought of as a weighted sum of N-
direction spatial quadrature coefficients. The weights are the terms in each of the
brackets of the above equations that multiply the fine angle transport coefficients. Note
that the sum of each of these terms over its respective summation index is one. For

instance the sum of the weights of equation (203) are

NR l//n,i—l

=1

n l// -
n=1 M=

Vil
2
NR
2V
n=1 M=
: (210)
A
NRJ_E
NR
v
n=l M=

represents a distribution of flux over the positive direction hemisphere. The array of
edge flux weights for the positive direction for cell i will be denoted by the more

convenient notation
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(211)

Additionally, the array of edge flux weights for the negative direction for cell i will be

denoted by

cell i is

2-60
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The flux weight array for the cell average scattered source in the positive direction for



N
z O-sn',l,i 4

n'=l

NRN

ZZ% ni ¥

n=ln'=l

N
z O NRI

'=1

n
NR N
z Snn|

| n=In'=l

(213)

The flux weight array for the cell average scattered source in the negative direction for

cell i is

N

n'=lL

Z O-Sn',NR+1,i l//n',i

n=Ng+1n'=l

N
Z SnN|

n'=1

N N
Z Z O-Sn',n,i 4

O

Mz

>

Sn'n,i

I
—_

| n=Ng+n'

n

(214)

The array of flux weights for the cell emission source in the positive direction for cell i

is
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(215)

The array of flux weights for the cell emission source in the negative direction for cell i

is

If equations (199) and (200) are multiplied by the appropriate identity formed by
rearranging equations (177) through (184), as was done for the edge flux the two

components of the cell average flux are
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n=1 2
_ . B}
Ng Zo-sn-,n’I Vi R
+2 | Kas, . N;:II\I Say; (217)
n=1 z z O-sn',nl l//n,l
L n=ln'=l i
NR

L n=l1
and
N 8|
— n,i+= —
_ 2
Vai= Z KAIn,i B E— '//2,i+%
n:NR+1
z l//ni+l
n:NR+1 2
_ \ _
N Z:lo-sn "n,i l//n',i N
n'=
+ 2 Kaspi =N W Vai (218)
n:NR+1
2 Zo-sn',n,i l'//n',i
i n=Ng+In'=l ]
N E
Ani =
+ z KAEn,i N EAz,i'
n:NR+1
z EAn,i
L n:NR+1

The resulting two-direction effective spatial quadrature coefficients for the contributions

of edge flux scattered source and emission source to cell average source are
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RAIl,i :z KAln’i NR )
n=l1
Zl//n,i—f
n=l1
N
NR Z_:lo-sn',nl Vi
RAS“ :z ASnl N:{_N
n=1
Sn'n,i l'//n','
n=ln'=l
NR E
Aﬂ,'
RAEl,i :Z KAEn’i Ng — |,
n=l1
:Z:EAmi
L n=l1
N
N n,i+—
RA'z. = Z KAIn, N 2
n=NR+1 Z l//n .
n:NR+1 ’
N Zo-sn n|
RASZJ = Z KASnI N N
n=NgR+1 z z Sn n|
N '—1
N E
Aﬂ,'
RAEz’i = Z KAEn,i N :
n=NR+1 Z EAn-
L n:NR+1 ! |
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The weights used to collapse the fine angle average flux spatial quadrature coefficients
are the same as the flux weights used to collapse the edge flux transport coefficients.
Equations (203) through (224) provide a mechanism to collapse an N direction angular
quadrature into an equivalent two direction angular quadrature then calculate edge flux
and average flux values across the entire spatial domain. If the edge and average fluxes
were, known these ratios could be correctly calculated and the number of particles
exiting a cell edge can be calculated directly. Once this is done, the particles crossing a
cell edge in the direction of either hemisphere of Figure 2 can be calculated. It remains
to apportion this flux into each of the ordinates of the fine angle quadrature.

The flux and source weights already discussed provide the mechanism to apportion the
coarse quadrature flux found from solution of the spatially coupled transport system
into fine directions. A is used to denote identify fine-angle fluxes calculated by

apportioning a spatially-coupled coarse-angle flux. For instance, Qn i_1, represents the
)

apportioned flux in ordinate n at edge i—%. This flux is calculated by multiplying the

corresponding coarse angle flux with its appropriate flux weight l/?m il fni .- The
A= Tni-1

array of positive direction flux is calculated by multiplying the positive direction coarse

flux by the array of positive direction flux weights

Win, = Wil T, (225)
L 5

QinR. =il i, (226)
i 2
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An angle space distribution iteration is shown schematically in Figure 3. The iteration

begins with approximate fine angle edge flux.

Cell Edge
vl

7, =400 W, =600

V4 =300 ¥ =400

Cell Edge

\

Cell Edge

Figure 3: Apportioning two elements into N elements using Iteration Flux Weights

In Figure 3 there are four initial fine fluxes exiting the lower left hemispheres

vi=4,v, =2, 3 =1,y =3. These fluxes have corresponding weights of

f, :%, f, :%, fs :%, f4 :%. These weights are used to collapse the fine angle transport

coefficients to two directions for the center hemispheres. These two direction
coefficients are then used in a spatially coupled system to calculate new fluxes that have
accounted for particle scatter across the problem space. In this example this results in

two flux values exiting the top hemispheres. This flux is then apportioned into the
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original four directions using flux weights as shown in the right hemispheres. This

results in four fluxes of 91 =400, 92 =200, 93 =100, 94 =300 in the example given.

These flux solutions may not be correct, but they are of the right order of magnitude
because they account for infinite particle scatters within spatial cells and across the
spatial domain.

The use of approximate fine angle fluxes to collapse their respective spatial
quadrature coefficients into effective spatial quadrature coefficients, followed by
computation of transport coefficients, which are then used to compute spatially coupled
two direction fluxes, which are apportioned back into improved estimates of fine angle
flux, leads to an iterative scheme.

The vector of incoming cell edge fluxes for I spatial cells is estimated. Equation
(112) is used to calculate cell outgoing edge fluxes and equation (111) is used to
calculate cell average fluxes. These calculated fluxes are used to calculate flux weights
with equations (211) through (216). A flux solution is then found using collapsed the
effective transport coefficients for the flux exiting a hemisphere in the +u direction and
the flux exiting a hemisphere in the —u direction. This two direction flux is then
apportioned into the original N directions for a flux solution.

The flux solution arrived at with estimated flux, calculating approximate flux
weights and approximate transport coefficients is an estimate that fully accounts for
particle scatters across the spatial domain and within each spatial cell. The flux
solution is not dependent on numerous source iterations to account for the scatters to
estimate the scattering source. It fully accounts for particle scatters without iteration.

This straightforward numerical method using an estimated edge flux to collapse
cell quadrature coefficients, use these to convert them to cell transport coefficients,
calculate a two-direction spatially-coupled flux, then apportion that flux back into the
fine ordinates to obtain an improved estimate of edge fluxes was the basis of the
iteration scheme developed and investigated. This transport scheme had significant
computational efficiency when compared with SI. Operationally this iteration works in
the following way:

- calculate fluxes using two-direction effective transport coefficients,

- apportion this flux into fine ordinates as an initial estimate for edge fluxes,
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- calculate updated fine angle edge fluxes,
- use these updated edge fluxes to calculate weights
- use the weights to collapse the spatial quadrature coefficients into effective two-

ordinate spatial quadrature coefficients

use these to form the effective two-ordinate transport coefficients

apportion the flux calculated in this way into fine ordinates,

calculate a better estimate of edge flux, weights and transport coefficients,

proceed until convergence tolerance is met.
The entire scheme amounts to iteration on flux distribution and collapsed transport
coefficients. The algorithm for the Angular-Spatial Distribution Iteration (ASDI)

method using a step characteristic spatial quadrature is shown in Algorithm 4.

Initialize
Obtain an initial guess for cell edge, and zeroth moment angular flux
Use 2 direction quadrature to estimate cell coupling coefficients
Calculate 2 Direction angular fluzx
Apportion flux into to N directions
Repeat
update cell edge flux
solve fine angle resolution fluxes within spatial cells

use flux weights to generate improved coarse angle cell coupling

coefficients

calculate spatially coupled coarse angle edge flux

The results of implementation of this algorithm in Fortran 95 code and

comparison with SI are presented and discussed in the next chapter.
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III. SC Experimental Results

I set out to design a transport method that is: robust, efficient (requires few iterations
to converge), computationally effective (converges rapidly as measured by compute
time), remains so when confronted with material discontinuities and is readily
parallelizable. After deriving the method, developing the algorithms and implementing
these algorithms in FORTRAN code I designed experiments to test 4 of the 5 desirable
characteristics. I designed experiments to test the methods accuracy, effectiveness and
computationally efficiency first without material discontinuities then with material
discontinuities. I did not test parallelizability leaving this for future research.

I first experimented with an optically thick homogeneous material. I varied this
homogeneous material from absorber (low scattering ratio) to scatterer (scattering ratio
nearly one) in order to test ASDI against SI for two types of problems: one in which SI
converged readily and one for which it converged slowly.

In the second experiment I investigated the effect of periodic material
discontinuity on the comparative performance of ASDI. To do this I chose two
materials of the same dimension. I placed an emission source in one material and no
source in the other material. Both materials were 1 MFP wide. The emitter had a
scattering ratio of one. The non-emitter’s scattering ratio varied from 0.0 to 1.0 as in
the homogeneous material. This two material pattern was repeated 10 times creating a
periodic material discontinuity.

In addition to scattering ratio I further investigated the effect of spatial
refinement, angular refinement and convergence criterion on robustness, effectiveness,
and efficiency for both the homogeneous and periodic problems. I did this by setting
the scattering ratio to 0.98 in the homogeneous material of problem 1 and the non-
emitter of problem 2 instead of allowing this parameter to vary. The parameters I then
varied in turn were spatial refinement, angular refinement and convergence tolerance.

I tested ASDI’s accuracy by checking its solution against a benchmark to ensure

it met the convergence tolerance required. The first benchmark I used was an
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unaccelerated SI allowed to converge to the same convergence tolerance as ASDI. This
provided a straightforward and reliable benchmark but only for test problems that were
absorptive in which SI did not falsely converge. For those problems in which SI did
falsely converge I took advantage of SI’s ability to recognize a correct answer instead of
its ability to calculate a correct answer. First an initial guess of zero was used and a
conventional SI solution was found. This solution could be off by as much as four
orders of magnitude because of false convergence. In this case the flux solution was
discarded but the iterations required to obtain the solution were recorded. I then input
ASDI solution to SI as an initial guess and allowed SI to iterate the same number of
times it used to obtain its falsely converged solution. My assumption was that SI would
recognize a fixed point. I allowed SI to iterate the same number of times it took to
obtain its falsely converged solution to ensure that it had enough iteration to drift away
from the ASDI solution if the initial value (i.e. the ASDI solution) was not a fixed
point. For instance if SI required 100000 iterations to converge on an answer I recorded
this but discarded its flux solution. I then passed SI the ASDI solution and allowed it
to iterate 100000 times without checking it for convergence. After completing these
100000 iterations the new SI (SI_ASDI) solution was compared with the ASDI solution
using &grp (ASDLSI_ASDI). This symmetric relative difference was then compared with
the desired convergence tolerance. If it was tighter than this desired convergence
tolerance it demonstrated reliable accuracy. After ensuring accuracy effectiveness was
tested, I examined computational efficiency. I tested this by comparing ASDI and SI

compute times.

Problem 1 Optically Thick Homogeneous Material

The first test problem studied is a 100 cm thick homogeneous slab with a vacuum

boundary on the right, a symmetry boundary on the left, a uniform isotropic source,
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source, and a total cross section of 1.0cm™. A diagram of this problem is shown in

Figure 4.

1.0 ag =0.0

<
Il

10N
10U CIIT

A
v

Figure 4 Problem 1

In the study of this problem and other problems the terms refinement factor and
scattering ratio fraction are introduced. Refinement factor is an integer that describes
the number of partitions chosen for the spatial domain in a mesh. For instance the
spatial domain of problem 1 was 100 cm. Refinement factors used were {1, 2, 4, 8, 10,

16, 32, 64, 100,128} designating the number of cell partitions. These refinement factors

correspond with cell widths of { 100,50,25,12.5,10,1% 100 100 1 lﬂ}cm for problem 1.

116732 764777128
Scattering ratio fraction is a real number used as a coefficient that multiplies a base
scattering ratio defined by the user. Scattering ratio fraction is used order to vary
problem scattering ratio over a range of interest for the numerical experiment. For
instance, in problem 1 the base scattering ratio was 1.0. The scattering ratio fraction
varied from 0.0 through 1.0. These factors were used to vary the parameters under
study across a full range of interest.

The ASDI method provides a useful transport tool only if it provides reliable and
usably accurate numerical solutions. The first experiment tested the ASDI solution
robustness as scattering ratio varied. Figure 5 displays two plots. These are the
symmetric relative difference versus scattering ratio of the ASDI solution and the SI
solution (ASDI SI) and of the ASDI solution and the SI solution after being given the
ASDI solution (ASDI_SI-ASDI). The convergence tolerance chosen was 10° for both
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SI and ASDI. At a scattering ratio of 0.6 the ASDI and SI solutions differ by more
than the chosen convergence tolerance. This difference increases as the scattering ratio
increases. Both methods agree within the convergence tolerance for scattering ratios
below 0.6. These plots show that SI produces unreliable answers at scattering ratios as
low as 0.6 but ASDI continues to provide the accurate answers are validated by SI’s

fixed point recognition for all scattering ratios.

100x10°
10x10% -
1x10‘5;- T DG g ASD

100x10° +

€srp

10x10° F

1x10° }
] DSvs SI_ASDI

100x10"2+

10x1012 T T T
06 0.7 038 0.9 1.0

C fraction
Figure 5: Symmetric Relative Difference ¢y, between the ASDI solution and the SI
solution as scattering ratio varies. Angular quadrature is DE-8, refinement is 50

(cAz = 2MFPs), convergence tolerance is 10~ °.

Figure 6 shows iteration count versus scattering ratio (¢) with an angular
refinement of 8, a mesh width of 2 MFPs and a convergence tolerance of 1075, SI
iteration count increases with c, climbing steeply as ¢ approaches unity. This
demonstrates the classic weakness of SI for diffusive problems. The ASDI solution
converges in two or three iterations regardless of scattering ratio demonstrating its

usefulness especially for diffusive problems.
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Figure 6 Plot of iteration count versus scattering ratio. Angular quadrature is DE-8,

refinement is 50 (Az = 2 MFPs), convergence tolerance is 107°.

The low iteration count of the ASDI method displayed in Figure 6 is
encouraging. It is not a practical improvement over SI unless computational cost is also
reduced. Figure 7 displays compute time versus scattering ratio. The amount of
compute time needed by the ASDI method is insensitive to the scattering ratio and
compares favorably to SI even when SI converges rapidly. This demonstrates that we

have not paid excessive computational efficiency costs to obtain the method’s desirable

robustness and effectiveness.
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Figure 7 Plot of compute time (seconds) versus scattering ratio. Angular quadrature

is DE-8, refinement is 50 (cAz = 2 MFPs), convergence tolerance is 107°.

The results shown in Figure 5 through Figure 7 demonstrate the effect of scattering
ratio on the ASDI and SI methods. These results were obtained with a fixed refinement

of 50 mesh cells (Az = 2.0cm ), convergence tolerance fixed at107%, and angular

quadrature fixed at n = 8. Spatial refinement, angular refinement, and convergence
tolerance are also parameters that are expected to have an impact on robustness,
effectiveness, and efficiency of a method. The next series of plots investigates the effect
of changing these parameters. These three parameters were studied with a scattering
ratio of 0.98 making the homogeneous material a good scatterer. This scattering ratio
was chosen to test the performance of ADSI in a diffusive problem.

Figure 8 shows the relative difference between SI and ASDI solutions as the
spatial mesh is refined. The difference between the answers is greater than the
convergence tolerance because with a scattering ratio of 0.98 SI suffers from false
convergence. If SI is fed the ASDI solution it again recognizes this solution as a fixed

point for all spatial refinements.
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Figure 8 Plot of Symmetric Relative Difference cqr,, between ASDI solution and SI
solutions for as cell mesh is refined. Angular quadrature is DE-8, scattering ratio is 1.0,

convergence tolerance is 1079,

SI recognition of the ASDI solution as a fixed point for all spatial refinements
provides convincing evidence of the accuracy of its solution. I was able to further test
this accuracy because by computing and comparing the ASDI convergence rate with the
known convergence rate of SC. An analytic solution was available for problem 1. This
was done for a DE-4 angular quadrature and a scattering ratio of 1.0 with spatial
refinement varying from 1000 (cell width = 1.25x10 ?cm ) through 10 (cell

width=10cm ). ASDI solutions are not expected to be the same as the analytic solution

because ASDI is a numerical approximation of the analytic solution dependent on mesh
refinement. However, because SC is known to be second order convergent in space the
method can be checked against the analytic solution to determine if the order of
convergence is 2. Figure 9 shows symmetric relative difference (egpp ) between the
ASDI solution and an exact solution plotted against the spatial mesh refinement factor
(Rp) on a Log-Log graph for a scattering ratio of 1.0. Figure 10 shows this for a

scattering ratio of 0.9. egpp appears as a straight line on both plots whose slope is two.
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A line with a slope of two, which is the convergence order of SC, has been overlaid on
the data plot. This agreement of ASDI’s convergence rate with the known SC
convergence rate for a scattering ratio of 1.0 and 0.9 combined with SI recognition of

ASDI solutions as fixed points demonstrate the method’s robustness.
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Figure 9: Plot of Symmetric Relative Difference cqp,, between the ASDI solution and
an analytic solution as cell mesh is refined between 10 MFPs and 0.1 MFPs. Angular

quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is 1079.
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Figure 10: Plot of Symmetric Relative Difference ¢4, between the ASDI solution and
an analytic solution 1 as cell mesh is refined between 10 MFPs and 0.1 MFPs. Angular
quadrature is DE-8, scattering ratio is 0.9, convergence tolerance is 1075,

Figure 11 shows the iteration count of the ASDI and SI methods as the mesh is
refined. SI iteration remains flat, at 500 iterations, as the mesh is refined and ASDI
iteration count increases from 4 iterations for a coarse mesh to 17 iterations for a fine
mesh indicating ASDI is an effective method. SI appears insensitive to the cell
refinement. I drew no conclusions about this SI characteristic from this because of its

false convergence.
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Figure 11 Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8,
scattering ratio is 1.0, convergence tolerance is 107°.

Figure 12 shows the compute times required for the SI and ASDI solutions as the
spatial mesh is refined. The spatial refinement increases compute time for both
methods. ASDI requires less compute time than SI for the scattering ratio chosen. This
indicates that ASDI will not require disproportionately more time than SI regardless of
mesh size. The true value of ASDI is that it converges to the correct solution without

requiring large compute time, something that SI can not do.
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Figure 12 Plot of compute time required for the ASDI and SI solutions as cell mesh is
refined. Angular quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is
1076,

The convergence tolerance used to test previous problems was 1075 on angular
flux. This is a fairly tight convergence tolerance and it is suitable for most engineering
applications. However some applications may require tighter tolerances. The effect of
tightening convergence tolerance from 107 %t0 107! on symmetric relative difference,
iteration count, and compute time is shown next. Figure 13 shows that the accuracy of
the converged SI solution does not meet the accuracy required by the specified
convergence tolerance regardless of how tight that tolerance is, whereas the ASDI
method continues to provide reliably accurate solutions for any tolerance without round
off error or instability. Examination of Figure 14 and Figure 15 reveals that this

accuracy is achieved with modest increase in iterations required or compute time.
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Figure 13 Plot of symmetric relative difference versus convergence tolerance. Angular

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 14 Plot of iterations versus convergence tolerance for ASDI and SI. Angular

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 15 Plot of compute time versus convergence tolerance for ASDI and SI.
Angular quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.

The effect of increasing angular refinement is shown in Figure 16 through Figure
18 shows that SI remains inaccurate and has increased computational cost as the
angular quadrature is refined. ASDI continues to provide reliably accurate solutions
without an increase in iteration count or compute time beyond an angular quadrature of
2. ASDI achieves a quick solution for an angular quadrature of 2 because its global
spatial solution was designed with this angular quadrature. Such a coarse angular
quadrature is not likely to meet most engineering needs. However ASDI’s rapid
convergence for even fine angular quadratures indicates usefulness for engineering

problems requiring higher angular refinement.
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Figure 16 Plot of symmetric relative difference versus angular quadrature.

Convergence tolerance is 10~ scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 17 Plot of iterations versus angular quadrature for ASDI and SI. Convergence

tolerance is 1070 scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 18 Plot of compute time versus angular quadrature for ASDI and SI.
Convergence tolerance is 10~ ° scattering ratio is 1.0, cell size is 2 MFPs.

This section demonstrated the strength of the ASDI method for a homogeneous
material. The most important characteristic examined was accuracy for each of the
parameters studied. Each experiment showed that ASDI was reliably accurate within
the convergence tolerance required whereas SI was not. This reliable accuracy across all
parameters studied demonstrates that the method is robust for this homogeneous
problem. The next section examines the method’s performance when applied to a

heterogeneous material.

Periodic: Two Regions Repeated 10 Times

The second test problem investigated was slab with a symmetry boundary on the left

side and a vacuum boundary on the right side. Two materials of 1 cm cell width are
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placed side by side. This two material pattern is repeated 10 times for a total length of

20 cm. Material I had a total cross section of 1.0 Cm'l, a scattering ratio of 1.0, and a

uniform source of 1.0cm™

. Its material properties remain fixed for all experiments.
Material II has a total cross section of 1.0 cm'l, a baseline scattering ratio of 1.0, and no

source. Material II’s parameters were varied during the experiments. A diagram of

these two materials is shown in Figure 19.
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Figure 19 Problem 2

In the next set of experiments I tested the method for accuracy, effectiveness, and
efficiency for varying scattering ratio fraction, refinement factor, convergence tolerance
and angular refinement as was done in problem 1.

The first set of experiments for problem 2 tested the ASDI method’s accuracy,
effectiveness and efficiency versus scattering ratio fraction in Material II. Scattering
ratio fraction was varied from 0.0 to 1.0. Angular refinement for this experiment was 8§,
refinement factor was 1 and convergence tolerance was 1079,

Accuracy is the first parameter presented. Figure 20 displays the symmetric
relative difference between ASDI and SI (é&ggp (ASDLSI_ASDI)) and between ASDI and
ST given the ASDI solution (&ggp (ASDLSI_ASDI)). The plots show that ASDI provides
reliably accurate solutions for all scattering ratios while SI provides reliably accurate

solutions only through scattering ratios of 0.6.
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Figure 20: Symmetric Relative Difference c¢;,, between the ASDI solution and the SI
solution as scattering ratios vary. Angular quadrature is DE-8, convergence tolerance
is 10_6, refinement is 50.

The effectiveness of the method is tested next. Figure 21 shows the method
iteration count versus scattering ratio fraction for material II. This plot shows that
ASDI converges in four or five iterations regardless of scattering ratio demonstrating its
effectiveness for diffusive heterogeneous materials. Iteration count for SI increases with

scattering ratio. This count climbs steeply as scattering ratio approaches 1.0.
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Figure 21: Plot of iteration count versus scattering ratio fraction. Angular quadrature

is DE-8, convergence tolerance is 10 °, refinement is 50.

Efficiency of the method is tested next. Figure 22 shows compute time versus
scattering ratio fraction for material II. This figure shows that ASDI compute time is
less than 0.1 seconds for all scattering ratios tested. Comparison of the ASDI and SI
compute times demonstrate that ASDI is more computationally efficient than SI even
when material II is a strong absorber and SI converges rapidly. The figure also shows

that in materials that are strong scatterers SI compute time climbs rapidly.
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Figure 22: Plot of compute time (seconds) versus scattering ratio. Angular quadrature
is DE-8, convergence tolerance is 10™°, refinement is 50.

The next set of experiments demonstrate method accuracy, effectiveness and
efficiency while refinement factor varies for material II. Scattering ratio for material II
was fixed at 1.0. This tested ASDI in a highly diffusive material. A material
discontinuity occurs even though cross sections and scattering ratios are the same
because intrinsic sources are emitted only in material I. The refinement factor for
material II was varied between 1 and 66.

Accuracy was tested first. Figure 23 displays the symmetric relative difference
between ASDI and SI (&ggp (ASDLSI_ASDI)) and between ASDI and SI given the ASDI
solution (é&ggp (ASDLSI_ASDI)). The plots show that ASDI provides reliably accurate

solutions for all refinement factors but SI does not.
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Figure 23: Plot of Symmetric Relative Difference ¢z, between ASDI solution and SI
solutions as cell mesh is refined. Angular quadrature is DE-8, scattering ratios are

baseline values, convergence tolerance is 1076,

Effectiveness was next tested. Figure 24 shows that ASDI converges on a solution in
less than 8 iterations for a refinement factor of 1 growing slightly as refinement factor is
increased then remaining constant for refinement factors above 16. SI requires many
more iterations than ASDI and provides unreliable solutions for these refinement factors

since this is a diffusive problem.
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Figure 24 Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8,
scattering ratios are baseline values, convergence tolerance is 107°.

Computational efficiency was next tested. Figure 25 demonstrates that ASDI
requires less compute time than SI regardless of mesh size for the baseline scattering
ratios selected. However, as spatial mesh is refined the compute time of ASDI is nearly
the same as the compute time of SI. The relatively comparable compute times of SI
and ASDI do not indicate that SI is just as efficient as ASDI for these fine spatial
meshes because SI does not provide reliably accurate answers. ASDI does not require

excessive compute time at all refinement factors.
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Figure 25: Plot of compute time as cell mesh is refined. Angular quadrature is DE-8,

scattering ratios are baseline values, convergence tolerance is 107°.

Accuracy, effectiveness and computational efficiency were further tested with
fixed scattering ratio and refinement factor for varying convergence tolerance and
angular refinement. These results are not shown here. As in problem 1 these results
indicate that ASDI remains reliably accurate, effective and efficient as these parameters
vary.

These experiments demonstrate the strength of the ASDI method for a 2 region
periodic material. The experiments demonstrate that ASDI was always reliably
accurate and that the parameters with the greatest impact on iteration count and
compute time were scattering ratio and refinement factor. The experiments presented
kept cross sections constant but varied spatial refinement. In order to fully stress
material discontinuity in this periodic material I next examined the impact of varying
both scattering ratio and cross section simultaneously in material II. I varied scattering

ratio fraction from 0.0 to 1.0 and cross section from 10~ ecm™! to 10" cm™".

I examined
the impact of varying these two parameters on accuracy, effectiveness and efficiency at
a refinement factor of 1.

A 3D plot of ASDI the symmetric relative difference between ASDI and SI

(&srp (ASDLSI_ASDI)) and between ASDI and SI given the ASDI solution
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(&srp (ASDLSI_ASDI) )is shown in Figure 26. This plot shows that ASDI is reliably

accurate across the wide range of material properties tested
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Figure 26: 3D Plot of ASDI symmetric relative difference between ASDI and SI
(&srp (ASDLSI_ASDI)) and between ASDI and SI given the ASDI solution
(&srp (ASDLSI_ASDI)) as scattering ratio and cross section vary . Angular quadrature

is DE-8, convergence tolerance is 1076 , refinement factor is 1.

A 3D plot of ASDI iteration count versus cross section and scattering ratio is
shown in Figure 27.
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Figure 27: 3D Plot of ASDI iteration count as scattering ratio and cross section vary .
Angular quadrature is DE-8, convergence tolerance is 10~ °, refinement factor is 1.

This figure demonstrates that ASDI is not sensitive to either scattering ratio or cross
section taking at most 7 iterations to converge regardless of the sharpness of material
discontinuity. Again, a low iteration count is not useful if computational cost is
prohibitive. A comparison of the time required for ASDI and SI to solve the problem is
shown in Figure 28. The ratio of the ASDI compute time to SI compute time is shown
in the figure, if this ratio is less than 1.0 then ASDI takes less time than SI. This is the
case for almost all combinations of scattering ratio and cross section. SI takes less
compute time than ASDI when scattering ratios that are not diffusive. Even in these

problems where SI is computationally efficient ASDI compute times is of the same order
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of magnitude but more importantly provides reliably accurate answers across a broader
range of parameters. SI provides unreliable answers because it converges falsely even

when material II is a strong absorber. The false convergence of SI occurs because
material I is diffusive.
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Figure 28: 3D Plot of the ratio ASDI compute time to SI Compute time as scattering

ratio and cross section vary . Angular quadrature is DE-8, convergence tolerance is

1076 , refinement factor is 1.

3-27



These experiments demonstrate that ASDI is reliably accurate for all the
parameters studied and therefore robust. The method dramatically reduces iteration

count and required computing time for diffusive problems compared with SI.
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IV Solution of the Discrete Ordinates (S,) Transport Equations with
EC

This chapter introduces cell transport coefficients for the EC spatial
quadrature. The derivation of this spatial quadrature was done by Mathews,
Minor, and Sjoden in 1993. I adopt their notation for limits of integration and
leftward or rightward directed fluxes and flux moments. With this notation the
cell average source is

Q _:JAXif_))((iQn(X)a

n,i 0

Q -:SA

+Ea .
n,i n,i Anji?

where AX;is the width of a spatial cell whose left edge is X 1 and whose right
2

edge is the x ;. The average scattered source in cell i is
i+—

AXj
SAn,i :J.O Ig—))((i Sn (X)

The average intrinsic particle emission in cell i is

AX
Eai =], A Eqn(x).

The SC spatial quadrature assumed that the both source distributions were
constant. However, the EC spatial quadrature assumes that the distribution of
scattered source is exponential. The distribution of emission source is assumed to
be constant for this discussion. An alternative to a constant emission source is to

assume it has the same exponential distribution as the scattered particle source
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distribution. If this is done the averaging of the emission source is handled in the
same way as the scattered source. Extension for an exponentially distributed

emission source is obvious.

EC Transport coefficients

The scattered source distribution for EC is exponential

5 X
Spi)=ay;e . (231)

The parameters a,; and f; are chosen to match available information about

the source, typically its average, equation (38) and first spatial moment

[ 3 08450, (232

SXn’i - 0 AXi

where P|(X) is a shifted Legendre polynomial:

X
P (x)=2—_1, 233
1 (X) A (233)

defined in the interval —% to A4

5-. In practiceS Ani ,an’i are not calculated

from equations (38) and (232) but are accumulated from angular flux moments

N
SAn,i - Z an',n,i l//An‘,i (234)

n'=l
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Sy =D, :
Xn,i O-Sn "n,i l/lxn i

n'=l

EC transport equations for cell edge flux are

Jenil  aniAg -
Vil =Vni1® il % i M, (“9“ " 'B”') Hn >0
_ —‘5 ‘ aniAx -p
l//n,i—%_v/n,n%e ek r\],tltn\l nlﬂ{(‘gn" ’8”') Hn <0

See page 31 of the Mathews, Sjoden and Minor work (reference 7) where these

equations are clearly derived. Optical path length, &,;, was given previously as

equation (56). The transport equations for cell average flux are

an,i

Vs =iy Mol[enil)+ it o (ens]

) Hn >0

an,i

Vi = l//n,i+% My (‘gn,i ‘) Tl - M (‘gn i

) Hn <0

The transport equations for cell first spatial flux moments are

s = s [Plln)- 224 ] +

3 aTIAXI [ (“9n i ) 2M, (“9n,i > Pnii ) }a iy >0
vy =30 [l 220 ] -
3 amAXI [ (‘5n i ) 2.M, (‘gn,i > Pn,i ) } Hn <0

Examination of these equations reveals they are in the form of equations (42)

through (45). The transport coefficients are obvious. The first transport

coefficient from the first term of equation (236) or (237) relates outgoing flux to

incoming flux. It is

_ a7 ¢6n,i
KOI n7| _e .
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The second transport coefficient from the second term of equation (236) or (237)

describes the contribution of within cell scattering to the cell outgoing flux. It is

Kos,,.i Zf,—:ie_ﬂn’i My (‘gn,i‘—ﬂn,i ) (243)

The third transport coefficient from the first term of equations (238) or (239)

describes contribution of flux entering a cell edge to cell average flux. It is
Kar,, =ﬂ/o(\8n,i\)- (244)

The fourth transport coefficient from the second term of equations (238) or (239)

describes contribution of cell scattering to cell average flux. It is

_ % |/ |
Kas ni | € M, (‘gn,l

B (245)

The fifth and sixth transport coefficients depend on whether a particle enters a
cell right or left edge. These coefficients capture flux spatial first moment
information the negative sign on equation (241) reflect that a flux gradient
appears different to particles streaming in ordinates that have equal direction
cosines but in opposing directions. The fifth transport coefficient, from the first
term of equations (240) or (241), describes contribution of flux entering an edge

to cell first moment flux. It is

Kxy 1 =3 Mo (lonil) = 274 (Jen]) | , (246)

The sixth transport coefficient, from the second term of equations (240) or (241),

describes contribution of cell scattering to cell first moment flux. It is

s P ) -2 (‘gn,i

] |
Kxs g =3 [ 7o s

P )] : (247)

Comparison of equations (242) through equation (245) shows that the difference
between SC transport coefficients and EC transport coefficients is that g,;=0 for
SC because its spatial first moment is defined to be zero.

The cell EC transport equations may be written in vector notation as
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Vou, =Kon, Vin, +Kos, (B.) Sa +Kog Ea
&A,- =K, aini +Kps; (BI) Sk + K ag; Ex,
Vs =K Vin, +Kss; Sa
§Ai :23 aAi’

Sx =g ‘/—/Xi ’

where

B

. Bg.i

ﬁNR-i-l,i

P

where each of the coefficient matrices is dependent on the associated element of
Bi. For the same reason that assembly of a fully spatially and directionally
coupled system of equations was impractical to solve for SC it is even more
impractical for EC. This is because of the additional first moment equations
(250) and the inherent nonlinearity in {;. (7:29,30 ).

However, if the incoming edge flux is known Bi can be found by iteration. The

logic of this iteration is shown in Algorithm 5.

(248)

(249)

(250)

(251)

(252)

(253)



Initialize

estimate edge flux \T/in
. . (£ +1)
calculate cell coupling coefficients for K| B

Do

caleulate §) (g(/{ ) 5l )j
caleulate K(B([ *Uj

calculate J&[ﬂ) (\T’in )

calculate y7([+1) (‘T’in )

X

()

calculate S’

calculate §£<[+1)

calculate new B([ﬂ) (g/\- ,§xi )

End do when &qgp (Bgfﬂ),ﬁg[)j converged

Equations (89) through (252) are used in the beta iteration algorithm.

Fi is known, edge flux is also found by iteration. Outgoing edge flux is
calculated from equation (89) and a s calculated from (90). This is done for
each cell and then boundary conditions are applied. The outgoing edge flux

calculated for a cell is used as the incoming edge flux for an adjacent cell. The

logic of this iteration is shown in Algorithm 6.
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initialize flux

p= Bconverged

ARl

Do all cells
calculate V—/gﬂt) (afn[)’K(B)j for all cells

apply boundary conditions

(£+1)

update t,/—/in from adjacent cell outflow

End do when espp (ﬂnfﬂ),l/jfr{)) for current B

3. A

Analysis of Algorithm 5 and Algorithm 6 reveals that these two algorithms
are linked through Bi and edge flux \|—lin. Changing E leads to new transport
coefficients which lead to new flux Vjini . Updated Jini leads to new estimates for
B . The interdependence of these two algorithms suggests the following iteration

scheme to couple outgoing edge flux iteration with beta iteration.
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Initialize S —(0) —(b)
initialize flux Vin' = Vin

(0)

estimate initial flux \|dlin Do all cells

calculate

y?f)ft) (:7/5{ ) K(B)) for all cells

estimate B

calculate cell coupling coefficients for

=(0
K (B( )) apply boundary conditions
—(/+1) ,
Do update Yin from adjacent
Do cell outflow
—(/+1) —(
cucanre §)(84).5)) st nsen o vy )

for current B

calculate K (B([ﬂ))

A (&)

calculate Y p VYin

(&)

calculate Y/ VYin

=(/+1)

caleulate S A

=(/+1)

caleulate S

calculate new B([ﬂ) (§A. 5 §Xi \

2.

Algorithm 6 solves for refined edge flux. It accounts for all within cell
scattering through inversion of the scattering source as was done for SC. The
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beta iteration loop defines source distribution and facilitates calculation of cell
transport coefficients. The coupled beta edge flux iteration loop solves for within
cell scattering and accounts source distribution, it does not explicitly couple cells
across the spatial domain. However, if beta is held fixed at a current iteration
estimate edge flux can be calculated from equations (89) and (90) just as was
done for SC. These equations can be collapsed with flux weights, as was done for
SC, using equations (197) through (202). The spatially coupled transport
equations are then readily solved as in chapter 2 using equation (172). This
suggests the following iteration scheme, Algorithm 8 that accounts for refined
angle within cell transport, the exponential source distribution, and particle

transport across cells in the spatial domain.
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Algorithm 8 couples the angular and spatially explicit edge flux solutions

in a scheme that accounts for infinite scatters from cell to cell and within a cell
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as was done for SC but adds the inner loop to solve for Bi then iterates the edge
flux and beta iteration schemes to get a best value for edge flux distribution.
This estimate is used to update collapsed transport coefficients which are used to
calculate spatially coupled coarse edge flux and to apportion this coarse edge flux
back into fine flux components. The apportioned edge flux updates the cell
incoming edge flux and the iteration scheme proceeds again. The iteration
scheme of Algorithm 8 effectively accounts for infinite particle flights in a single
iteration. Results of this algorithm implemented as Fortran 95 code are

discussed in the next chapter.
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V. EC Experimental Results

After showing that the ASDI method met my evaluation criteria: robust (reliably
accurate for the problems intended), efficient (requires few iterations to converge),
effective (converges rapidly as measured by compute time) with SC, I implemented the
method using EC. I used the same suite of experiments to test the methods accuracy,
effectiveness and computationally efficiency for the EC experiments as I did for SC.

To review, the first experiment had an optically thick homogeneous material. 1
varied this homogeneous material from absorber (low scattering ratio) to scatterer
(scattering ratio nearly one) in order to test ASDI against SI for problems which
converged readily and one for problems which converged slowly.

The second experiment investigated the effect of periodic material discontinuity
on the comparative performance of ASDI by using two materials of the same dimension.
There was an emission source in one material and no source in the other material. Both
materials were 1 MFP wide. The emitter had a scattering ratio of one. The non-
emitter’s scattering ratio varied from 0.0 to 1.0 as in the homogeneous material. This
two material pattern was repeated 10 times creating a periodic discontinuity in the
materials.

I again investigated the effect of scattering ratio, spatial refinement, angular
refinement and convergence criterion on robustness, effectiveness, and efficiency for both
the homogeneous and periodic problems. The parameters I varied in turn were:
scattering ratio, spatial refinement, angular refinement and convergence tolerance. 1
examined these parameters for a homogeneous then a two material problem. Further, I
evaluated ASDI with EC over a complete range of scattering ratios and cross sections,
just as was done for ASDI with SC and displayed in figures 26, 27, and 28.

As I did with SC, I tested ASDI’s accuracy by checking its solution against a
benchmark to ensure it met the convergence tolerance required. The benchmarks were

the same as those used for SC.
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Problem 1 Optically Thick Homogeneous Material

The first test problem studied is a 100 ¢cm thick homogeneous slab with a vacuum
boundary on the right, a symmetry boundary on the left, a uniform isotropic source,

and a total cross section of 1.0cm™ . Figure 4, although shown in chapter 3 is

redisplayed in this chapter for the reader’s convenience.

10N
100U UCIII

A
v

Figure 4 Problem 1

The first experiment tested the EC ASDI solution robustness as scattering ratio
varied. Figure 29 displays two plots. These are the symmetric relative difference versus
scattering ratio of the ASDI solution and the SI solution (ASDI SI) and of the ASDI
solution and the SI solution after being given the ASDI solution (ASDI SI-ASDI). The
convergence tolerance chosen was 1079 for both SI and ASDI. The SI Solution after
having been given the ASDI solution was allowed to iterate the same number of times
that it took to arrive at its converged solution without the ASDI start point. For this
problem this is between 30 and 500 iterations. The plot shows that the ASDI solution
never deviates from this solution by more than the convergence tolerance required. This
demonstrates ASDI’s reliable accuracy at all scattering ratios. At a scattering of 0.6
and above the SI solution differs by more than the chosen convergence tolerance
demonstrating SI’s unreliable solutions. This difference increases as the scattering ratio
increases. These plots show that SI produces unreliable answers at scattering ratios as

low as 0.6 but ASDI provides reliably accurate answers validated by SI’s fixed point
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recognition. In figure 6 &qgp (ASDI ,31 _ASDI )increases from a low value of 107 and a

high value of 5.0 * 107®. This range of values is within the required convergence
tolerance.

10 1

10»5 4
Sero(ASDLSI) e

10»5 4

107 -
SRE <" (ASDI ,SI_ASDI)

108 4

10»9 ~t

10710 T T T T
0.6 0.7 0.8 0.9 1.0

C fraction

Figure 29: Symmetric Relative Difference c¢,, between the ASDI solution and the SI
solution as scattering ratio varies. Angular quadrature is DE-8, refinement is 50

(cAz = 2MFPs), convergence tolerance is 1075,

Figure 30 shows iteration count versus scattering ratio (c¢) with an angular
refinement of 8, a mesh width of 2 MFPs and a convergence tolerance of107%. Asin
SC, iteration count increases with scattering ratio, climbing steeply as ¢ approaches
unity. This again demonstrates the classic weakness of SI for problems with little or no
absorption. With exponential characteristic spatial quadrature each of these iterations
requires the non-linear root finding of the source distribution parameter ( £, ;) for every
direction in every cell. This root finding can be computationally expensive. The ASDI
solution converges in six or less iterations regardless of scattering ratio, demonstrating

its effectiveness even for problems with little or no absorption.
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Figure 30 Plot of iteration count versus scattering ratio. Angular quadrature is DE-8,

refinement is 50 (Az = 2 MFPs ), convergence tolerance is 1079,

As pointed out previously the low iteration count of the ASDI method with EC
displayed in Figure 30 is not a practical improvement over SI unless computational cost
is also reduced. Figure 31 displays compute time versus scattering ratio. The amount
of compute time needed by the ASDI method is less than 0.3 seconds regardless of the
scattering ratio. Even when SI converges more rapidly than ASDI and provides reliably
accurate solutions, i.e. at scattering ratios below 0.6, ASDI compute time is the same
order of magnitude as SI. The plot confirms that the beta feedback mechanisms of the
ASDI method with EC do not converge slowly as the scattering ratio goes to one. This
demonstrates that the method does not require excessive compute time with the EC

spatial quadrature at least for the homogeneous material.
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Figure 31 Plot of compute time (seconds) versus scattering ratio. Angular

quadrature is DE-8, refinement is 50 (c Az = 2 MFPs), convergence tolerance is 1079,

The results shown in Figure 30 were obtained with a fixed refinement of 50 mesh cells

(Az =2.0cm), convergence tolerance fixed at107°, and an angular quadrature fixed at

n = 8. Spatial refinement, angular refinement, and convergence tolerance are also
parameters that are expected to have an impact on robustness, effectiveness, and
efficiency of the ASDI method used with the EC spatial quadrature. The next series of
plots investigates the effect changing these parameters have on ASDI performance with
the EC spatial quadrature. These three parameters were studied with a scattering ratio
of 0.98 making the homogeneous material a good scatterer.

Figure 32 shows the relative difference between SI, ASDI and an estimated best
solution which is SI after being given the ASDI solution and allowed to iterate enough
times to confirm a fixed point. The difference between the ASDI solution and the SI-
ASDI solution is less than the convergence tolerance for all refinements whereas the
difference between SI and the SI-ASDI answers is greater than the convergence
tolerance. This is because SI converges falsely in this optically thick problem with little

or no absorption.
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Figure 32 Plot of Symmetric Relative Difference ¢4, between ASDI solution and SI
solutions for as cell mesh is refined. Angular quadrature is DE-8, scattering ratio is 1.0,

convergence tolerance is 1079.

SI recognition of the ASDI solution as a fixed point for all spatial refinements
provides convincing evidence of the accuracy of its solution. I was able to further test
this accuracy because an analytic solution was available for problem 1. I computed and
compared the ASDI convergence rate with the known convergence rate of EC. This was
done for a DE-4 angular quadrature and a scattering ratio of 1.0 with spatial refinement

varying from 10 (cell width=10cm ) through 1000 (cell width = 1.25x10 %cm). I did

not expect the ASDI solutions be the same as the analytic solution for coarse spatial
meshes because the spatial quadrature is a numerical approximation. However, because
EC is known to be fourth order convergent in space, the method can be checked against
the analytic solution to determine if the order of spatial convergence is four. Figure 33
shows symmetric relative difference (egpp ) between the ASDI solution and an exact
solution plotted against the spatial mesh refinement factor ( Ry ) for a scattering ratio of
1.0. egpp appears as a straight line on both plots whose slope is 3.86. A line with a

slope of four, the convergence order of EC, has been overlaid on the data plot. This
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agreement of ASDI’s convergence rate with the known EC convergence rate for a
scattering ratio of 1.0 combined with SI recognition of ASDI solutions as fixed points
demonstrate the method’s robustness. The preservation of EC fourth order convergence
with spatial refinement provides strong evidence that the ASDI method is not changing

the spatial convergence properties of the EC spatial quadrature.
1x10°

100x103 A
10x103 A
1x10- 4

e
=RR EC-ASD
100x10% -

10x10°% 4 slope =4
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100x109 : ——
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Figure 33: Plot of Symmetric Relative Difference ¢4, between the ASDI solution and
an analytic solution as cell mesh is refined between 10 MFPs and 0.1 MFPs. Angular

quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is 1079,

Figure 34 shows the iteration count of the ASDI and SI methods as the mesh is
refined. SI iteration remains flat, at 500 iterations, ASDI iteration count is seven or less
iterations through mesh refinements of 64. This indicates that the number of iterations
required for convergence is not dependent on the mesh refinement for ASDI even when

applied to the non-linear EC spatial quadrature.
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Figure 34 Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8,

scattering ratio is 1.0, convergence tolerance is 107°.

Figure 35 shows the compute times required for the SI and ASDI solutions as the
spatial mesh is refined. The spatial refinement increases compute time for both
methods. ASDI requires less compute time than SI through a refinement of 32.
Although the ASDI method requires more compute time than SI for refinements above
32. This behavior was also observed for ASDI applied to SC in figure 12. The plots
indicate that for a fine enough mesh source iteration will converge faster than ASDI.
However, SI will not converge to reliable and accurate solutions. The additional time
used to compute ASDI approximations results accurate solutions. The plot indicates
that ASDI will not require disproportionately more time than SI for refined spatial
meshes and will converge to the correct solution. The results observed for EC are

similar to those obtained for SC indicating the beta subroutine is working as intended.
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Figure 35 Plot of compute time required for the ASDI and SI solutions as cell mesh is
refined. Angular quadrature is DE-8, scattering ratio is 1.0, convergence tolerance is

1076,

The convergence tolerance used to test previous problems was 1075 on angular
flux. This is a fairly tight convergence tolerance and it is suitable for most engineering
applications. However, some applications may require tighter tolerances. The effect of
tightening convergence tolerance from 10 %t0 107! on symmetric relative difference,
iteration count, and compute time is shown next. Figure 36 shows that the accuracy of
the converged SI solution does not meet the accuracy required by the specified
convergence tolerance regardless of how tight that tolerance is, whereas the ASDI
method continues to provide reliably accurate solutions for any tolerance without round
off error or instability. Examination of Figure 36 and Figure 37 reveals that this
accuracy is achieved with modest increase in iterations required and compute time for
the ASDI method applied to EC. These results are similar to those obtained for SC and
displayed in Figures 13, 14, and 15.
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Figure 36 Plot of symmetric relative difference versus convergence tolerance. Angular

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 37 Plot of iterations versus convergence tolerance for ASDI and SI. Angular

quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 38 Plot of compute time versus convergence tolerance for ASDI and SI.

Angular quadrature is DE-8, scattering ratio is 1.0, cell size is 2 MFPs.

The effect of increasing angular refinement for ASDI applied to EC is shown in
Figure 39 through Figure 41. These plots demonstrate that ASDI continues to provide
reliably accurate solutions without significantly increasing iteration count and with
practical compute times as the number of ordinates in the angular quadrature is
increased. SI, as expected, remains inaccurate and increases computational cost as the
angular quadrature is refined. As with ASDI applied to SC, ASDI applied to EC
converges with the least iteration and most rapid compute times when the angular
quadrature has only two directions. ASDI achieves a quick solution for this coarse
angular quadrature because the global spatial routine solves the same problem on the
first iteration as the fine angle routine. After the first iteration both edge flux and beta

are nearly correct and converge rapidly with successive iteration. Unfortunately such a
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coarse angular quadrature is not likely to meet most engineering needs. Figure 39 and
Figure 40 display the same convergence reliability characteristics and iteration count
versus number of directions for EC as was observed with SC in Figure 16 and Figure 17.
This is encouraging because the increased angular refinement requires increasing the
number of calls to the beta root finding algorithm. The increased number of beta root
finding problems does not affect reliability or significantly increase compute times.
However, comparison of Figure 41, which shows ASDI-EC compute time versus angular
refinement, and Figure 18, which shows ASDI-SC, compute time versus angular
refinement, demonstrates that compute time increases more steeply for ASDI-EC than it
does for ASDI-SC. The steeper increase in compute time for EC occurs because beta

must be found for every direction is every cell..
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Figure 39 Plot of symmetric relative difference versus angular quadrature.

Convergence tolerance is 1076 scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 40 Plot of iterations versus angular quadrature for ASDI and SI. Convergence

tolerance is 1070 scattering ratio is 1.0, cell size is 2 MFPs.
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Figure 41 Plot of compute time versus angular quadrature for ASDI and SI.

Convergence tolerance is 10~ ° scattering ratio is 1.0, cell size is 2 MFPs.
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This section demonstrated the strength of the ASDI method with the EC spatial
quadrature for a homogeneous material. The most important characteristic examined
was accuracy for each of the parameters studied. Each experiment showed that ASDI
applied to EC was reliably accurate within the convergence tolerance required whereas
SI was not. The application of ASDI to the non-linear EC method demonstrated very
similar results to the method’s application to SC. This confirmed the hypothesis that
beta could be found and fixed for each iteration resulting in an algorithm that was
similar to that which obtained outstanding result with SC. The EC algorithm
essentially adds a root finding subroutine. This result shows that the ASDI method is
not limited to a linear spatial quadrature. It indicates a more general application. The
method’s reliable accuracy, low iteration count, and fast compute times across all
parameters studied demonstrate that the method is robust, effective and efficient with
EC for this homogeneous problem. The next section examines the method’s

performance when applied to a heterogeneous material.

Periodic: Two Regions Repeated 10 Times

The second test problem investigated is the same problem investigated second with SC.
It is a slab with a symmetry boundary on the left side and a vacuum boundary on the
right side. Two materials of 1 cm cell width are placed side by side. This two material
pattern is repeated 10 times for a total length of 20 cm. Material I had a total cross

section of 1.0cm™, a scattering ratio of 1.0, and a uniform source of 1.0 em™®. Its

material properties remain fixed for all experiments. Material II had a total cross
section of 1.0 cm'l, a baseline scattering ratio of 1.0, and no source. Material II’s
parameters were varied during the experiments. A diagram of these two materials was
first shown in chapter three with Figure 19. It is redisplayed here for the reader’s

convenience.
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Figure 19 Problem 2

As with SC the first set of experiments for problem two tested the ASDI
method’s accuracy, effectiveness and efficiency versus scattering ratio fraction in
Material II. Scattering ratio fraction was varied from 0.0 to 1.0. Angular refinement for
this experiment was 8, refinement factor was 1 and convergence tolerance was 1075,

Accuracy is the first parameter presented. Figure 42 displays the symmetric
relative difference between ASDI and ST (&ggp (ASDLSI_ASDI)) and between ASDI and
SI given the ASDI solution ( &ggp (ASDI,SI_ASDI)). The plots show that ASDI applied
to EC provides reliably accurate solutions for all scattering ratios while SI provides
reliably accurate solutions only through scattering ratios of 0.6. The reliably accuracy
of Figure 42 for EC is similar to the reliable accuracy of Figure 20 for SC. This shows
that the beta convergence does not effect reliable accuracy of the method, even in

problems that are not homogeneous.
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Figure 42: Symmetric Relative Difference ¢, between the ASDI solution and the SI
solution as scattering ratios vary. Angular quadrature is DE-8, convergence tolerance

is 1076, refinement is 50.

The effectiveness of the method was tested next. Figure 43 shows the method
iteration count versus scattering ratio fraction for material II. This plot shows that
ASDI converges in less than six iterations regardless of scattering ratio demonstrating
its effectiveness, even when applied to EC, for heterogeneous materials with little or no
absorption. These results are similar to those obtained from SC and demonstrate that

beta convergence did not degrade effectiveness.
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Figure 43: Plot of iteration count versus scattering ratio fraction. Angular quadrature

is DE-8, convergence tolerance is 1076, refinement is 50.

Efficiency of the method is tested next. Figure 44 shows compute time versus
scattering ratio fraction for material II. This figure shows that ASDI compute time is
less than 0.1 seconds for all scattering ratios tested. Comparison of the ASDI and SI
compute times demonstrate that ASDI is more computationally efficient than SI even
when material II is a strong absorber and SI converges rapidly. The figure also shows
that as scattering ratio approaches one in material II SI compute time climbs steeply
but ASDI compute times do not. These results are similar to the compute times
displayed in Figure 22 for SC. The results demonstrate that, although the beta
convergence loop was added to the ASDI algorithm for EC, the algorithm does not

require excessive compute time.
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Figure 44: Plot of compute time (seconds) versus scattering ratio. Angular quadrature

is DE-8, convergence tolerance is 10_6, refinement is 50.

The next set of experiments for problem two demonstrate method accuracy,
effectiveness and efficiency while refinement factor varies for material II. Scattering
ratio for material II was fixed at 1.0. This tested ASDI in materials with little or no
absorption. A material discontinuity exists even though cross sections and scattering
ratios are the same because intrinsic sources are emitted only in material I. The
refinement factor for material II was varied between 1 and 66.

Accuracy was tested first. Figure 45 displays the symmetric relative difference
between ASDI and SI (&ggp (ASDLSI_ASDI)) and between ASDI and SI given the ASDI
solution (&ggrp (ASDLSI_ASDI)). The plots show that ASDI provides reliably accurate

solutions for all refinement factors but SI does not.

5-18



103

£eno(ASDI,SI)
10

10% 4

EsrD

10% 4

107 A egpp(ASDI SI_ASDI)

108 T T
10 16 32

Refinement
Figure 45: Plot of Symmetric Relative Difference ¢4, between ASDI solution and SI
solutions as cell mesh is refined. Angular quadrature is DE-8, scattering ratios are

baseline values, convergence tolerance is 1075,

Effectiveness was next tested. Figure 46 shows that ASDI converges on a solution in
less than 8 iterations for a refinement factor of 1 growing slightly as refinement factor is
increased then remaining constant for refinement factors above 16. SI requires many
more iterations than ASDI and provides unreliable solutions for these refinement

factors.
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Figure 46 Plot of iteration count as cell mesh is refined. Angular quadrature is DE-8,

scattering ratios are baseline values, convergence tolerance is 1075,

Computational efficiency was next tested. Figure 47 demonstrates that ASDI
requires less compute time than SI regardless of mesh size for the baseline scattering
ratios selected. However, as spatial mesh is refined the compute time of ASDI is nearly
the same as the compute time of SI. The relatively comparable compute times of SI
and ASDI do not indicate that SI is just as efficient as ASDI for these fine spatial
meshes because SI does not provide reliably accurate answers. ASDI does not require

excessive compute time regardless of refinement factors.
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Figure 47: Plot of compute time as cell mesh is refined. Angular quadrature is DE-8,

scattering ratios are baseline values, convergence tolerance is 107°.

Accuracy, effectiveness and computational efficiency were further tested with
fixed scattering ratio and refinement factor for varying convergence tolerance and
angular refinement with similar results. As in problem 1 these results indicate that
ASDI remains reliably accurate, effective and efficient as these parameters vary. This is
the same conclusion drawn for SC and provides strong confirmation that the non-
linearity of the EC spatial quadrature algorithm does not prevent applying the ASDI
algorithm to EC which is what I set out to do.

These experiments demonstrate the strength of the ASDI method for a two
region periodic material. The experiments show that ASDI was always reliably accurate
and that the parameters with the greatest impact on iteration count and compute time
were scattering ratio and refinement factor. The experiments presented kept cross
sections constant but varied spatial refinement. In order to fully stress material
discontinuity in this periodic problem I next examined the impact of varying both
scattering ratio and cross section simultaneously in material II, just as I did with SC. 1

1

varied scattering ratio fraction from 0.0 to 1.0 and cross section from 107em™ to
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10cm™". This range of cross sections is not the same as the range of cross sections used
for SC (i.e. 107ecm™ to 107 em™). That is because the exponential characteristic
method as currently implemented can be used for optical thicknesses (UTAX) of about 80.
The limitation in cross section results from numerically poor conditioning in the
calculation of EC transport coefficients. It is not a limitation of the ASDI method. I
examined the impact of varying these two parameters on accuracy, effectiveness and
efficiency at a refinement factor of 1.

A 3D plot of symmetric relative difference between ASDI and SI
(&srp (ASDLSI)) and between ASDI and SI given the ASDI solution
(&srp (ASDLSI_ASDI)) is shown in Figure 48. This plot shows that ASDI is reliably
accurate across the range of material properties tested. The plot shows a spike in
ésrp (ASDI,SI _ASDI)at cross sections of approximately10cm™' . Since this spike is in
the region that is below the convergence tolerance that was required (107°) I draw no
conclusions. The spike indicates that cross section values greater than 10cm™! might be

unreliable.
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Figure 48: 3D Plot of ASDI symmetric relative difference between ASDI and SI
(&srp (ASDLSI_ASDI)) and between ASDI and SI given the ASDI solution
(&srp (ASDI,SI_ASDI)) as scattering ratio and cross section vary . Angular quadrature

is DE-8, convergence tolerance is 1076 , refinement factor is 1.

A 3D plot of ASDI iteration count versus cross section and scattering ratio is
shown in Figure 49.
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Figure 49: 3D Plot of ASDI iteration count as scattering ratio and cross section vary .

Angular quadrature is DE-8, convergence tolerance is 1079, refinement factor is 1.

This figure demonstrates that ASDI is not sensitive to scattering ratio for cross sections

less than 1cm™'. For cross sections less than 1cm™' ASDI takes 7 iterations or less to

converge. Iteration count increases sharply near scattering ratios of one and cross

sections of 10cm™!

. Further investigation is needed to determine the reason for this
increase in iteration count. It was not present with ASDI applied to SC as displayed in
Figure 27.

As with SC a low iteration count is not useful if computational cost is
prohibitive. A comparison of the time required for ASDI and SI to solve the problem is
shown in Figure 50. The ratio of the ASDI compute time to SI compute time is shown

in the figure, if this ratio is less than 1.0 then ASDI takes less time than SI. This is the

case for cross sections less than 102 cm™. The figure shows that SI takes one tenth the

compute time of ASDI for cross sections greater than 102 ecm™! with scattering ratios of
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0.1. In this region SI converges in 9/100 second and ASDI converges in 60/100 second.
SI converges very rapidly because the problem is absorptive in more than half problem
material. However, SI converges falsely. This false convergence occurs because half the
problem (material one) has little or no absorption even when the scattering ratio of
material two is nearly zero. In general, SI takes less compute time than ASDI when

scattering ratios are less than 0.6 and cross sections are greater than 102 cem™!.

In this
domain SI converges in nearly no time at all. Even in these problems ASDI compute
times are practical and competitive with SI compute times. More importantly, ASDI
provides reliably accurate answers across the full range of cross section and scattering
ratio parameters just as it did with SC. Further research is required to determine if the

1

greater compute times required for cross sections greater than 102 ecm™! result from the

calculation of EC transport coefficients.
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Figure 50: 3D Plot of the ratio ASDI compute time to SI Compute time as scattering
ratio and cross section vary . Angular quadrature is DE-8, convergence tolerance is
1076 , refinement factor is 1.

These experiments demonstrate that ASDI is reliably accurate for all the
parameters studied and therefore robust. The method dramatically reduces iteration
count and required compute time for diffusive problems. The experimental results show
that ASDI is a useful and practical iteration scheme for any material properties. The
method now allows researchers to examine the computation of EC transport coefficients

in problems that are optically thick with little or no absorption.
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VI. Summary and Conclusions

Accurate, and robust positive spatial quadrature schemes used in discrete ordinates
methods, such as EC, provide physically meaningful, non-negative fluxes given non-
negative incident fluxes, non-negative emission sources, and non-negative scattering
cross sections. In 1969 K.D. Lathrop eloquently stated why positive spatial
quadratures are needed. He said that in addition to numerical difficulties there are
“psychological problems” with negative fluxes. The user who understands the transport
equation and not just the numerical solution procedure knows that there is no such
thing as a negative angle integrated flux, and rapidly becomes cynical about the
effectiveness of a program which produces negative numbers (12 :476)”. Mathews et all
have been developing the EC spatial quadrature since the early 1990’s which is positive
and approaches fourth order in its spatial convergence. To date this method has been
difficult to implement in problems where scattering ratios were nearly one (7:36,
11:165). EC and other more conventional spatial quadratures based on source iteration
are impractical for highly diffusive, optically thick problems. The objective of this
effort was to develop an accurate and efficient scheme to rapidly converge EC. This has
been done for slab geometry. This contribution makes it possible to use the exponential
characteristic method, and similar methods, for real materials, even for notoriously slow
transport computations involving one or a few groups describing the thermal neutron
energy range from about 0 to 1 eV. (2:83). I originally explored synthetic acceleration
as the method to rapidly converge these quadratures. Although successful for most
problems this technique diverged for problems with sharp material discontinuities. By
taking advantage of the lessons learned from synthetic acceleration, I found it possible
to formulate a new transport method that more directly solves for fine angular
resolution flux and spatially coupled coarse angular resolution flux. The fine angular
quadrature accounts for the contribution of infinite number of particle flights to

scattered source within a single cell. The coarse angular quadrature accounts for the
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contribution of an infinite number of particle flights to scattered source across the
spatial domain.

The introduction of two transport techniques, one producing full angle coupling
for a fine quadrature and one producing full spatial coupling without iteration are both
major contributions of this research. The ability to couple these methods and iterate on
transport coefficients for both EC and SC instead of source iteration removes the need
to accelerate optically diffuse problems per se. The transport method provides the
estimate of infinite particle flights. The ASDI method provides an alternative to
conventional source iteration at the expense of a larger linear algebra problem. It has
the demonstrated advantage robustness (reliably accurate for the problems it is designed
for) effective (requires few iterations) and efficient (requires practical compute times).

The coupling of the two transport methods worked surprisingly well. The
discovery that EC converges rapidly with this method and can now be applied to
diffusive problems should lead to renewed interest in the EC spatial quadrature within
the transport community.

The use of flux weights to project between coarse and fine angular quadratures is
general with respect to the spatial quadrature chosen. Extension to other positive
spatial quadratures is immediate. This should further generate interest within the
community for the method developed. Spatial quadratures that do not preserve positive
flux require further research regarding flux weighting. I did not derive a method to
calculate flux weights when faced with negative currents. Flux weights as employed in
the method approximate flux distributions at cell edges. These flux weights conserve
angular information while collapsing to a coarse quadrature that readily captures
diffusive behavior. The concept of flux weights, and cell edge flux distribution should
find application in a wider set of transport applications.

The method has been implemented in FORTRAN-95 on a PC, demonstrating the
computational practicality of the approach in slab geometry with isotropic cross
sections. The method as derived is immediately extendable to anisotropic scattering
cross sections. Its extension to multiple dimensions will entail flux weighting on four
cell edges vice two and an efficient solver for the spatially coupled coarse angular
quadrature. The minimum bandwidth of the coefficient matrix which readily inverts in

1D will require research to develop an efficient 2D solver. However, the demonstrated
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ability to cast a fine angle problem into an equivalent coarse angle problem should make
the effort in 2D tractable.

The fine angle routine algorithm 6 is readily parallelizable. The routine uses
iteration edge flux as an estimate for each spatial cell. Substantial improvement in
performance can be obtained by parallelizing this subroutine. Further, profiling reveals
that 60% of computational effort (time) is spent with this routine. Hence significant
reduction in the ASDI method’s overall computational efficiency would result from this
parallelization. The method as developed lends itself to adoptive spatial and angular
meshing. There is good reason to believe that a problem, such as the periodic horizontal
interface tested, could use a coarse angular and spatial mesh in regions without material
discontinuity and a finer mesh in regions that needed to capture angular or steaming
behavior. Research in this area is straightforward.

The code written for this research is not a production code. A graphical user
interface to obtain user input defining a flexible range of problem parameters is needed.
This user interface should also interface with available cross section computational tools
such as the NJOY suite of algorithms and Gerts’ PAX cross sections. Nevertheless, the
practicality of my method has been demonstrated successfully for EC which is what I

set out to do.
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Appendix A
This appendix demonstrates that gy, (X,y) meets the requirements for a

distance function and that it can readily be applied to vectors in FORTRAN 90.

Al. &4,(Y,X) as a distance function

A non-empty ,X, set together with a ‘distance function’ &g (X, y) is

said to form a metric space provided that:

Esrp (Y, X) =0 iff X=Yy
Esrp (Y5> X) = Egrp (X, ¥) 20 VX, yeX

Esrp (V> X) = Egrp (X, Z) + Erp (Y, 2) VX Y,z2eX

The distance function &g (Y, X) is

The numerator in equation (4)
2[x—y|=0
is zero if and only if and only if

[x=y]=0



This occurs only if x = y. The denominator in equation (4) is only zero if x and
y are zero in which case the distance between them is zero. Equation (4) is then
zero only if equation (6) is zero. This occurs if only when x=y meeting

requirement one.

If x is not equal to y, and x >0, and y>0 then

IR W O ) e o 5 ) M
(25) =2 T = 2 e = 2

and

o Gl o (A
(20m0)... = 25 =2 Gl = 0

which meets requirement two.

If 0<x<z<y then

Xyl ozx

X+ T z+x
and

vy _ yz

ly|+z| +y *

Adding equation (10) to equation (9) results in

(10)



[><
<

X 4

Z+

+

>
N

Ly X (11)

<

Multiplying each of the terms by the appropriate denominator results in

(z=x)(z+y)(x+y)+(y—2)(z+x)(x+Yy)2(y—=x)(z+x)(z+Y). (12)

Subtracting the right side from the left side of equation (12) and simplifying

results in

(x—y)(x=2)(y-2)=0 (13)

which is always true based on the initial condition 0 < X<z <y. The same result
can be shown if x, y or z are swapped. This demonstrates that the distance

function meets the condition three.



A.2. Application of g, (X,y) to Vectors &gy, (;(,y) .

The distance function &g (X, y) defined by equation (4) can be applied to
vectors X,y resulting in a vector of distances &sro (;(,y) An element of this

distance vector is

Esr, (?,9) = &0 (X5 Y1) - (14)

In my algorithm I am interested in ensuring that no element of the

distance vector &sro (;(,9) is greater than a convergence tolerance. Therefore, I

define the maximum of the distance vector

£ o (?,9) L= Max [gSRD (%Y, )]i:hN ’ (15)

which is readily implemented in FORTRAN 90 using an elemental function.

SRD=Max(SymRelDif((x,y))
Where the SymRelDif function is
Elemental Function SymRelDif(x,y)
Real::Intent(in):: x,y
Real::SymRelDif
If (x=y) then

SymRelDif=0
Else

SymRelDif =Abs(x-y)/((abs(x)+abs(y))/2)
End if
End Function

Implementing the SymRelDif Function in Fortran
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