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Abstract

Advanced analysis and optimal design techniques that achieve peréermgrovement
for multiple model adaptive control (MMAC) and multiple model adapggémation

(MMAE) based control are developed and tested for this dissertedgmarch. An
adjunct area of research yielded modified linear quadratic GawdsPG) control design
techniques that also can be applied to nonadaptive control.

For the Modified LQG (MLQG) controller, the proposed designs rembee t
assumption that the Kalman filter as the observer and the congallematrix design
are necessarily based on the same model as the best systteh nThe filter and
controller gain matrices are both determined by models possibly thignerthe system
model. In order to achieve optimal performance, the interrel&ilprs the system
model to the filter and controller design models is establishedibinizing a position
correlation (mean square error on output) measure. Enhanced robusteadizad by
considering the performance over the range of values of specifiachgi@r(s) of the
system model.

The proposed modified MMAC (RAC) architectures use the MLQG controller
as the elemental controller in the MMAC. The performance orgments for the
MLQG controller carry over to the #C architectures as well as to the MMAE-based
control architecture. Further study has established that the MMAGagtesly a special
case of MMAE-based control. Both architectures are identickdrm at steady state,
which is critical to their design. Design approaches developetiddVfAC are applied

to the MMAE-based control with similar performance improvements.



Optimal design and analysis techniques for the MMAC and MNba&ed control
resulting from this research are applied to a two-statemsyistevhich a single parameter
is variable over a specified range of values. Though simple inenghe two-state
problem is representative of real-world applications. Analyseshef new design
implementations demonstrate the performance improvements of the guopos
architectures by comparing the results with those of the tyZddAC and LQG
implementations.

Though incidental to this research, the performance enhancemém BRLOQG
controller itself has proven to be significant. The possilslif@ application to non-
adaptive control transcend this research into multiple model adaptntel. However,
the techniques of the MLQG applied to the elemental controllderearMMAC and the
analogous MMAE-based control result in considerable performanceoverpents as

well.
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Notation

Scalars, Vectors, Matrices
Scalarsare denoted by upper or lower case letters in plain tygheascalars x or
J.

Vectorsare denoted by lower case letters in boldface type, as tha xemade
up of components;.

Matricesare denoted by upper case letters in boldface type, as the Aatade
up of elements; (i row,j" column).

Subscripts
o filter model
« © the output of th&™ filter model
¢ truth model
Superscripts
N estimated, computed, or measured value (not true value)

matrix inverse

vector or matrix transpose
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Acronym List

Abbreviation
AFIT
GMMAC
IRDF
LQG
MAP
MLQG
MMAC
MMAE
M3AE
RMS

USAF

Acronym

Air Force Institute of Technology
Generalized Multiple Model Adaptive Control
Inter-Residual Distance Feedback

Linear Quadratic Gaussian

Maximum a posteriori

Modified Linear Quadratic Gaussian

Multiple Model Adaptive Control

Multiple Model Adaptive Estimation

Modified Multiple Model Adaptive Estimation
Root-Mean-Square

United States Air Force
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Optimal Design of Generalized Multiple Model Adaptve
Controllers

Chapter 1 - Introduction

1.1 Overview

Adaptability and robustness are two of the desirable attribusseciated with
synthesizing an advanced controller. Each has been the focus éiextand broad
range of research and each has its own merits for considerahuitiple Model
Adaptive Control (MMAC) and Multiple Model Adaptive Estimation (MMEA based
control, both originating from stochastic control, are two simifgor@eaches to adaptive
control that have demonstrated success, and the performance improuvéestt is the
subject of this dissertation. MMAC adapts to specific pararadiy using a bank of
LQG controllers designed for a predetermined set of models,or.ea et of discrete
parameter values. Residual information from the Kalman filterssed to compute a
probability-based weighting on the controllers that yields an dveoakrol command
that is best matched for the current value of the uncertain pteean MMAE-based
control uses a bank of Kalman filters that can provide both stateatst and parameter
estimates. The state estimates are fed to a fullfstadback control gain matrix to yield
the control signal. The full-state feedback gain matrix iisedetermined based upon the
parameter estimate. Until this point, robustness enhancement of the MMAC and-MMAE
based control architectures has not specifically been addressed @amd additional

subject of this research.



The Kalman filter and controller components of the MMAC and MMAEeba
control are based on typical LQG synthesis methods. These techmigyeon the
separation principal that assumes the models for desige @iftdr and the controller are
equivalent to the system model and that each component is desigaeatedgp This
research has produced performance improvements of the MMAC and Midgdsl
control architectures by applying newly developed techniquesQ@ tesign. This new
design approach is based on using models for implementation of therKéltar and
gain matrix of the full-state feedback controller that areedeht from the system model.
These enhancements do not involve modifications to the MMAC or MMAEebas
control architectures, but only the change in component design. Fuebearch
discussed in this dissertation involves the modification of both artiméscas well, in
order to improve performance.

The second issue addressed in this dissertation is robustnessMifi&@ and
MMAE-based controllers. Robustness can be categorized as mthestness of the
adaptation, or robustness to those parameters to which the controlleotiagapt. This
research investigates the former. For robustness of an adaptiveecture, one could
argue that, if it adapts perfectly to the specific uncertaiamaters, then it is robust to
any variation of those parameters. For both multiple model comtioitectures, this is
possible only if there is a model that matches the value ofithertain parameter(s).
Obviously, over an uncertain parameter space, there would havetoibinite number
of models to match any variation exactly. Only a small, fintenber of models is
computationally possible. This research demonstrates that wheinMtMAC and

MMAE-based control architectures it is indeed possible to incogoodtustness to the



adapted parameters with the constrained number of models for tgaim@arameter
space.

Finally, this research is being conducted without a specifijetapplication, but
with a simple two-state problem upon which to verify theoretiealllts. The two-state
problem, much smaller than typical applications, should facilitate analyis oésults.

This chapter continues with a more in-depth discussion of the MMAZAEA
based control and related adaptive control architectures curremitly kesearched and
implemented. Next, the approach to this research and contributioh® tielid are

discussed. Finally, the last section outlines the rest of the dissertation.

1.2 Background

Adaptive control is an area that has generated an extensiweigelg varied number of
technigues. One way of classifying adaptation approaches is laynthent of assumed
information. A system identification approach might be as geasraetermining the
order of the plant, fixing a model, and then identifying the unknown p&easnie the
model. Of course, the performance of the implementation of sucipproach will
depend on the amount of data available and available computer time arbextensive
and general approach may be theoretically intractable and imgossiblccomplish in
real time. At the other end of the spectrum are direct adaptaintrol techniques based
on an assumed model or set of models with assumed but fixed pasrfoetehe
unknowns. Given some criterion, the models are then judged for their sutjngeness
to the current plant operating conditions. While some approachesimply use the
closest single model for the control, others may use a blending of the closest simariels

no one model may be an exact match. Adaptive control is a wideoaresearch and
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this section covers some of the most prevalent and promising techni@jbesssection
begins with a more in-depth description of MMAC and MMAE-based control, the control
architectures used in this research.

1.2.1 Multiple Model Adaptive Control and MMAE-Based Control

The basic structure of an MMAC [29,35] is shown in Figure 1.1. Taerdhree main
components: multiple model estimators (MME), hypothesis conditionabapility
computation, and control computation. The MME is typically a bank of &alfiters
running in parallel in which each filter is designed for an asdumedue of the
parameters within the model. For each model, the MME outputs tieeestamate and

the residual associated with each model. The control computates the state
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Figure 1.1 Generalized multiple model adaptive control structure



estimates, and the hypothesis conditional probability computationhesessiduals. The
hypothesis conditional probability computation determines a weight basethe
residuals of the parallel elemental filters. This weightwation essentially corresponds
to the apparent correctness for each model at the current tined, dbashe measurement
history seen up to the current time. The control computation is adbdr® full-state
feedback controllers in which each controller is designed for thesgmnding model in
the MME. Control output can be computed by one of two methods. Btenfathod is
the Bayesian form in which individual control components are blended lpydbability
weight computed in the previous block. The second method is the maximune®opos
(MAP) form in which a single Kalman filter and associated t@ntroller with the
highest probability is selected.

The multiple number of filters running in parallel gives the MMAGaptation
speed, but also forces design issues. The Kalman filtersbeanomputationally
intensive, which limits the practical number of models. Thus, al sraaiber of filters
can be used (unless truly parallel computation is available, sarthatumber of parallel
elements can be used with no impact on computation time). The designbecomes
designation of the assumed parameter values, i.e., where theedzures (used for the
basis of defining filters) should be placed in the parameter si&toeldon [56,57] solved
this problem with his work. As will be discussed, it has also lsbemwn [56,57] that
optimal discrete parameter point placement is also dependent ogod#hewhether
parameter estimation, state estimation or control. For thetegtive shown in Figure

1.1, state estimation, parameter estimation, and control output dyeobéained, but the



end goal for MMAC is best control. In fact, the MMAC never exicforms the
overall adaptive state estimate or parameter estimate.

The individual controllers that are blended with the probability tsicare
designed based on the assumed parameters for the underlying nfeatetee MMAC,
LQG has been used exclusively for the controller synthesis andaligity has been
demonstrated in many applications [1,16,17,19,20,39,52,53,58,59,60]. The design
concept also assumes separation between the estimator anli skegtd feedback control
elements of the controller [36]. Invoking this principle allows these components of
the controller's structure to be designed independently. Sheldon'saappf56] does
consider the full-state feedback controllers and estimators parae steps when
optimally placing the models (i.e. placing the discrete points in paranpeies)s

State and parameter estimation can be accomplished using muitquel
adaptive estimation (MMAE) techniques, which can be used for anotharok
technique known as MMAE-based control [62], shown in Figure 1.2. Theestateate
is derived from the individual state estimates output by the baKlalofan filters. The
overall adaptive state estimate is determined with a protyalmdighting equivalent to
that used in the MMAC'’s control computation. Parameter estinaaéesalculated using
the same probability weighting on the assumed model parameterdVIMXE-based
control approach uses these parameter estimates to identifjl-state feedback
controller gain to be used for the system; multiplying the mnegatf that gain by the
MMAE state estimate generates the control. Again, forced atgpais assumed which
allows independent implementation of the estimator and full-statdbéek controller.

Sheldon’s approach can identify how to place the models (discreteqiararalues) for
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best parameter estimation or for best state estimation, but mosibatltaneously [56].
The question remains, how to specify the independently designed costr@leould the
controller be designed on-line or should there be a look-up tableesf Gontrollers?
This question is similar for estimation, and that was answeredilgr [44]: a single
Kalman filter outside the MMAE structure, based upon the pararastenate from the
MMAE. However, in that case, a Kalman filter was desigoedine, whereas for
control, the answer may not be similar due to backward solutions oRitttati
difference equations which are required for control synthesis.
Work by Vasquez [63,64,65] used a Sheldon-like algorithm repeatedlgain r

time to place the models to enhance the estimation. This is enefdhe moving-bank

MMAE [37]. For the usual type of moving-bank approach, there igsem humberof
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filters in the bank that are designed based on specified pamsmabd which particular
parameter values can be dynamically redeclared in real #mehe system changes, the
initial bank may not represent the optimal placement of filtéFee bank can expand,
contract, or move in the parameter space in order to achieve tr*b@iut not
necessarily optimal) model placement. Vasquez has improvedgiwthm by not only
enhancing the move logic, but also by applying the Sheldon-like dligonit real time so
that the model placement is optimal. This algorithm could be ums#geiMMAE-based
control scheme to obtain the best parameter estimate in ordefetd er design the
applicable controller better than in other current moving-bank controller approaches
1.2.2 Related Work in Multiple Model Control
The two approaches to adaptive control to be discussed in this sedidraseed on
assumed knowledge of the plant to control, described in terms of modbkés, tlzan
based on system identification techniques to identify the system modek t€bbkaiques
are model reference adaptive control (MRAC) and multiple modéktlsng control
(MMSC). They are discussed with respect to how they relateetdMAC and MMAE-
based control approaches. MRAC is a method that essentialimessa model of the
controller as a reference and uses a form of system idemtifida make changes to the
controller according to deviations from the assumed parameteMSQvihas a set of
plant models from which is selected the single one for the basis of the onlineleantrol
Given a system in which parameters vary or are unknown, theigbjetimodel
reference adaptive control (MRAC) [10,14,25,43,61] is to obtain a systgonge based
on a given model of the desired performance of the system. Fac#nario, the input

and the reference model are known and the output response is meddwedthe exact



characteristics of the system do not have to be known at aaptingt is only required to
have the closed-loop performance characteristics match thosaexpatithe reference
model. Robotics is an excellent and common application of MRAC [10,25(82] the
loads for such systems are usually variable. Even if the laamhgtant, due to the nature
of the physical structure, the dynamics that describe themsystill change during
operation. The operating point is not constant, but may vary slowly enough
comparison to the desired response, that the system could adapt.

Most notably missing from the basic algorithm is the handlingheasurement
noise. In the robotics example, this exclusion may be allowablgokition sensing, but
velocity sensing can be very noisy. Some recent research Welspmhel techniques to
address measurement noise [14,43,51]. Another area for researcloisustaess of the
identification algorithm [61]. The identification algorithm istae heart of MRAC and
accordingly, the focal area of research.

The advantage to this approach is that the exact values of teengyarameters
do not have to be known. In addition, since the control algorithm is adaptveystem
can vary, though slowly relative to the adaptation algorithm andd#és@ed system
response. However, this is also the disadvantage of MRAC. Fapidlyr varying
system, the adaptation mechanism may not be fast enough. Thenenfdéon of the
algorithm can be computationally intensive, which can also be aepnoblFaster and
robust algorithms are necessary. Robustness could alleviateghieement for fast
adaptation.

The MRAC approach essentially uses one model and the algorttimputes a

control to compensate for deviations, rather than selecting a motdlatha controller



that produces the desired response, as is the case with MMAC.reAnof current
research is concerned with computational approaches to compensatidevi@ions
from the assumed model. For the MRAC, since the adaptation aigoaidjusts for
deviations from the assumed model where the resultant gain adjistane continuous,
it could be considered that the control is selected from an infinite number of models.

Another model-based approach to adaptive control is multiple modehsvgt
control (MMSC) [8,9,46,47,48,49,50]. For this architecture, the goal is to prosmuie
adaptation to parameter uncertainties in a given plant. However, uhkkenodel
reference control in the previous section, the approach of MMSQCuiset more than one
model to represent the plant in a closed loop system. It is adsbateone of the models
in the structure along with its corresponding controller will provitedesired response.
This requires coverage of the uncertain parameter space bffiGgest population of
models. The dispersion of the models and the algorithms for switd@tvgeen the
models in the uncertain parameter space is the focus of curseatrck [8,9,46,47,48].
As will be discussed in the sequel, this is directly reldtedhe MAP approach to
MMAC.

The general structure has three major component blocks: thelmutiodels,
identifiers, and controllers. The multiple models of the plantaarthe center of the
structure with a controller designed for each of the multiple tsod&he identifier
outputs for the models are compared to the actual output of the pldn& effor
difference is used in the switching portion of the algorithm to chacsiagle controller
to generate the control action. The controllers are designedréspond to the specific

models. Though all controllers operate in parallel and all mod®innation is available,
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only one model or hypothesis affects the actual control appliedetplant at any one
instant. The controller used will only change if the error gremeh that another model
becomes a better representation of the current operating point.

The basic approach assumes all models are fixed and they do nott@dapt
parameter change. Variations to this structure allow foorabmation of fixed and
adaptive models [48]. Thus, three combinations are possible: all mamtkls (as
discussed), N adaptive models and M fixed models, and all adaptivesmodkdarly,
since there is a finite number of models, it is unlikely thatsingle model will exactly
duplicate the current plant. In order to overcome model mismatchesf time models
may be adaptive such that its finely tuned parameters proviter lpetrformance. As
parameters slowly vary, the adaptive model will follow thosengha. When there are
large parameter changes, the adaptive model's initial vallibevithat of the newly
switched model. The aforementioned combinations, except for all adapinels, have
been proven to be stable [48].

This approach has been demonstrated with an application to robotics [8,9,47].
The three combinations of fixed and adaptive models were test&dhs found that, if
the transient response could be improved by a rapidly adaptive modeiwitiching
environment could be faster. This in turn means that the actusinsysmn change
parameter values more rapidly. This has the same drawbadke dMMRAC scheme
because the adaptive portion is dependent on the efficiency of dbettah and
computation speed. The adaptive portion has to be faster than tichirsyvior the

response will never reach steady state in order to perform switching.
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MMSC, when used with fixed models, has the advantage that onlysfiense of
the individual models has to be calculated and not an on-line optimizasas the case
of MRAC. However, if the actual system does not correspond toistingxmodel, the
transient response will be poor. Hence there is a need to addaptivadportion.
MMAC on the other hand has a blending of the control of the closest sndtlak
providing some approximation to the actual system parameters Wwhgratameters are
not consistent with the fixed models. In addition, placement ofntloeels (i.e.
placement of the discrete points in parameter space to be used for the esimadels)
is a major concern in the MMAC research [57]. This does not sedm the case with
MMSC, whereas it seems that it should be. Perhaps the inclusaamaafaptive portion
reduces the emphasis on model placement. Additionally, the reader sbocilade that
the MMAC and MMSC are very closely related.

The MMAC approach has the benefit of quick adaptation to compenwate f
variations in specific parameters within the system modelis Bssumed that these
uncertain parameters will vary over a given range. For pedgiroblems, there is some
knowledge of the plant and its possible variations in parameter vall@s. has been
demonstrated in many successful applications of the MMAC [1,16,17,19,20,39,52,53,58,
59,60,] and there has been much research in refining the theory [37,56,57]. yNarteonl|
multiple model techniques used for control, a similar approach can bedppbtate and
parameter estimation, as has been demonstrated in the researcapplication of
multiple model adaptive estimation (MMAE) [7,11,12,21,24,26,27,38,41,42]. In fact, as

discussed, MMAE-based control is a blending of MMAE state and ghearastimation
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with full-state feedback control (based on estimated parashdaterorder to yield an
MMAC-like structure.

As compared to the previous two approaches, adaptation is simplgtiteng of
the control output based on the correctness of the possible modele ti&nikalman
filters run in parallel, all information for the blending is imneddly available for the
control calculation through the residuals of the filters. The MR$s@Geme involves
constant identification of the system parameters in order tstethie controller. The key
is adaptation through reoptimization of the single controller. Rer NIMAC, it is
emphasized that thedividual controllers do not adapt, but the filters provide constant
information for adaptation through blending of the fixed controllers. WViSC
approach is very similar to the MMAC approach. In fact, theckiwig control approach
can be closely duplicated by the MMAC if only the controller with the highesigility
is used. This MMAC variation is referred to as the MAP apgrd@5] to controller
selection, as will be discussed subsequently.

Finally, despite claims from researchers in MMSC, theee stability proofs
available for the MMAC approach [15]. Proof of stability does gudrantee anything
about performance. Sheldon’s optimization of model placement wik pleecmodels to
yield the best performance with respect to one of the thregiariRMS state estimation

errors, RMS parameter estimation errors, or RMS control regulation errors.

1.3 Research Objectives and Contributions

The objective of this research is to demonstrate performanpeowvements and
robustness enhancement in adaptation of MMAC and MMAE-based controlusgis

through modifications of current design approaches and typical atcinégs. As stated,
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synthesis of multiple model control structures uses LQG techniguedesign of the
elemental components of the architecture. The first aresesdarch removes the
assumption, inherent in the LQG synthesis, that the design model fe@abman filter
portion is the same as the design model for the full-state fdedimatroller portion.
Further, either of these two models may be different fromrite tmodel of the real-
world system. The second research area removes the assumgtio@@aynthesis is
used for the design of the individual components of the multiple model cetrtrotures.
Lifting this assumption opens many possibilities to investigatetife basic filter and
control elements and their interdependencies in the multiple maodetuses. Finally,
the synthesis approaches developed in the previous two areas ofhresspice a
method to determine where the discrete points (used for the bak§irohg filtersand
controllers) should be placed in the parameter space. This development is anm®xtensi
the approach developed by Sheldon [56,57] in his work.

1.3.1 LQG Design Contributions

Inherent in the synthesis of the LQG controller is certaigtyvalence, or the separation
principle, which stipulates that though the Kalman filter and thlkestate feedback
controller modules are designed separately, the design nerdethe same as the truth
model for the real-world system. Removing the assumption that the filtgndasdel is
the same as the truth model leads to an investigation into a nlod@& controller

based upon the following hypothesis:

Hypothesis 1: An LQG controller that has the best performance for
minimized regulation error may have a filter that is designed based on a
model (parameter value) that is not necessarily the same as the model
(parameter value) for the full-state feedback controller synthesithe
“best” model of the real-world system.
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To test this hypothesis, the approach is to develop a performarasura that
incorporates the filter and full-state feedback controller ingngle evaluation. This
performance measure is then used in an optimization algorithmvilhaelect the best
filter, given an LQ full-state regulator controller designedtifi@r specified truth model of

the system. From this work comes the following contribution:

Contribution 1: A design algorithm that yields a modified LQG that
minimizes regulation error and at minimum, performs as well as the
typical LQG control for the same criterion.

Inherent in the first hypothesis is that thestreal-world system model is known
and it is assumed that it deviates minimally from the nominal truth modeheFut was
assumed that the model for the full-state feedback controller systivas the same as
the truth model. Under these assumptions, robustness to deviations cdfc spe
parameters in a system is not explicitly considered in théymdesgorithm. Any
differences between the assumed truth model and the actual systéeh will affect
performance. The approach to address the previous hypothesisatvtetfilter model
might be different from the system model. Now considerhibithe filter and full-state
feedback controller design models may be different from the nomutalrmodel of the
real-world system. Also, consider that specific parametertheofsystem model may

deviate over a given range. These considerations lead to the following hygothesi

Hypothesis 2: A modified LQG controller that is robust to deviatiores
nominal system model may have a filter designed for a model that is
different from the model for the full-state controller synthe3isese two
design models botmay be different from the nominal truth model of the
real-world system.
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The work to validate this second hypothesis follows directly foenfirst. The
performance measure does not change since the original performaasare includes
the filter, the controller and system models. For a modifieds L€pntroller with
robustness, the optimization algorithm changes. The criterion for apyinchanges
from being based on a single evaluation of the performance mdasar&ruth model to
an evaluation of performance over a (bounded) range of possible truth mddess.
bounded range of truth models contains the possible truth model of teorkEhsystem
at any point in time. The model for the LQ synthesis of the céatrolay be one of
these possible truth models, but not necessarily the same asnth@lntuth model.

This algorithm development yields the second contribution:

Contribution 2: A design algorithm that yields a modified LQG with
robustness to deviations to the nominal model of the real-world system
that minimizes regulation error. At a minimum, the modified LQ® wit
robustness performs as well as the typical nonadaptive LQG control for
the same criterion.

1.3.2 MMAC Analysis and Design Contributions

Since the fundamental elements of the MMAC are based on the bQit®lter, the work
from the first and second contributions leads to development of sevedsications to
the typical MMAC architecture. Consider the modified LQG cotdrdlrom the first
contribution. If the performance of an LQG controller can be enhatived,it seems
reasonable that replacing the elemental controllers in the MM#Ctihae modified LQG
controllers should enhance the performance of the MMAC. Repldbe typical LQG
controllers in the MMAC with the modified LQG controllers ispexssed in the

following hypothesis:
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Hypothesis 3: For an MMAC that has the best performance for minimized
regulation error, the filters in the MMAE substructure may have design
models that are different from their corresponding full-state feedback
control gain matrices.

In this architecture modification, the filters in the MME paontistill provide the
necessary residual information for the probability weighting orcéimérol output of the
individual full-state feedback controller elements. Howeverddsgn models on which
these filters are based are not necessarily the sarhe degign models for the full-state
feedback gain matrices. The optimal placement of the filtedel parameter values
(discretization) does not change from the original MMAC disza¢ibn algorithm except
to incorporate the procedures of the modified LQG controller. Thr& veads to the

following contribution:

Contribution 3: A design algorithm that yields a modified MMAC that
minimizes regulation error and at minimum, performs as well as the
typical MMAC.

Now consider the modified LQG controller with robustness from thersk
contribution to enhance robustness of the MMAC. One aspect of the MiB&QVill be
discussed in more detail in the following chapters is thateadgtstate, probability will
flow to essentially one filter. Thus, under this condition, essgntimle LQG control
element will be effective at steady-state and it is norajuaed to match the actual
system model. Another possible condition is that any deviations oédheorld system
from the assumed truth model might not trigger changes in the propatbdighting
once the MMAC has reached steady state. Under these two ooadifithe MMAC
reaches steady-state and does not further adapt, then perfoimesiated directly to the

robustness of the individual LQG controller elements. Thus, it isilpesthat the
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modified LQG controller with robustness can improve the performanteeoMMAC

architecture. This is expressed in the following hypothesis:

Hypothesis 4: An MMAC that uses modified LQG-with-robustness
controller elements will be robust to variations in the assumecdrsyst
model to which the MMAC does not adapt and mismatches between the
assumed system model and elemental LQG controller model sedcted
steady state.

To validate this hypothesis, the LQG elemental controllerdhiénMMAC are
replaced with the modified LQG controllers with robustness from @uion 2. The
architecture design requires a modification of the discretizatigorithm to account for
the robust LQG elements and the possible differences between dssystem model
and the filter models. Development of this new architecture yitlds following
contribution:

Contribution 4: A design procedure that yields a modified MMAC with

robustness to differences between the nominal system model and the
steady state filter model in the MME portion of the MMAC.

The previous two contributions do not modify the MMAC architecture, thest
design of the individual components. The previous discussions assume c¢hat ea
elemental controller in the MMAC is a full-state feedbaekngmatrix tied directly to a
single Kalman filter in the MME. The residuals from tHeefs are used to determine the
probability weighting for blending of the elemental controllers’ outpukthus, the
Kalman filters are used to compute the control as wetlescsdethe control to apply.
Implicit in discretization (model parameter placement) isade-off between controller
selection and control computation. A proposed solution to this trade-adf lift the

assumption that the control is determined by a simple gain nmauliplication and
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replace it with an LQG controller that receives measuremagiat dThis step allows the
LQG controllers to be designed separately from the MME porticheoMMAC.  Still,
the control output from the elemental LQG controllers are blendedrding to the
probability weighting computed from the MME residual information. Atkdly, this
architecture change makes the MMAC look like a MMAE-basmdroller, however, the
control is blended after elemental control computation versus blesthtgs and then
computing control. This proposed architecture modification is statedei following

hypothesis:

Hypothesis 5: In order to obtain complete separation between the filter
elements in the MME and full-state feedback control elements of the
MMAC, any state estimation in the control element must be independent
from the filter in the MME. This structure is a complete gaieation of
the MMAC and the typical MMAC can be obtained as a special case.

The structure that is implied in this hypothesis is more congifee it maintains
a second set of Kalman filters. The Kalman filters fordtmtrol portion do not have to
maintain all the information to compute the probability weights. Timescomplexity is
not necessarily doubled. The performance measure that is usthe typical MMAC
has to be augmented to include the LQG control elements. In addigoalgorithm to
minimize the performance measure must be modified to allow tdEMilter design

models to be different from the LQG controller design models.

Contribution 5: A design procedure that yields a generalized MMAC that
has LQG controllers for the control elements separate from the bank of
Kalman filters in the MME portion.
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1.3.3 MMAE-Based Control Analysis and Design Contributions

Three areas of research into MMAE-based control are addrested dissertation, each
of which yields a contribution to multiple model control. The firgtaais analysis of the
MMAE-based control in relation to MMAC. This analysis givasight into choosing
one implementation over the other. The second area of researcimethad for
discretization of the parameter space, similar to whatesady available for the MMAC.
When MMAE-based control (or any other multiple model architedtr¢hat matter) is
chosen for implementation, a discretization method is necessalydin the best design.
Finally, an architecture change to the typical MMAE-based coimgrproposed. This
architecture change overcomes certain implementation trasléeolfe discussed for the
typical MMAE-based control.

From the previous discussions, it should be evident that the MMAC andBAMA
based control architectures are closely related. Again, the diffeience between the
two architectures is that, for MMAC, control is computed by eletal controllers and
then blended using probability weighting, while for MMAE-based contiwé, state
estimates are blended and then control is computed. Since the Ndl&d-control and
MMAC architectures are similar, analysis reveals thatetlage certain conditions under
which they will perform similarly and also how they perforrffediently. This analysis
will give insight to the conditions under which one approach is pretetabihe other.

These findings come from the work that is motivated by from the following hypsthes
Hypothesis 6: Under certain assumptions and conditions, the MMAE-
based control architecture performs essentially the same as the MMAC

architecture. ldentifying these conditions will aid in making engineering
decisions for implementation.
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To validate this hypothesis, first, analytical expressions foh B&AC and
MMAE-based control are derived. Next, the expressions are adatgzeletermine
where approximations can be made or conditions imposed for making ghessrns
produce similar results. Further analysis of these conditionslisewban one approach
may produce better results or may be computationally advantagebis.wdrk yields

the following:

Contribution 6: A framework is developed for analyzing MMAC and
MMAE-based control in order to make engineering decisions to determine
which architecture to implement.

Inherent in the MMAE-based control are design trade-offsatein part due to
the implementation of the MMAE portion. As will be discusseduipsgequent chapters,
the MMAE can only be optimized to yield the best parametémate or the best state
estimate, but not both. The parameter discretization for the MNMABased on an
optimization of a control criterion. A similar discretizatioetimod for the MMAE-based

control, based on a control criterion, is proposed in the following hypothesis:

Hypothesis 7: There exists a parameter discretization method for the
MMAE-based control architecture that optimally places the modelsein th
MMAE portion for best control performance.

To validate this hypothesis, Sheldon’s approach for discretizatiorthef
parameter space for the MMAC was modified. Given that a cllosgdexpression for
the MMAE-based control performance can be developed, as was mgdesdhe last
contribution, then it is possible to optimize the placement of modeteeinMMAE

according to a control criterion. This work yields the following contribution:
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Contribution 7: A discretization method for MMAE-based control that
yields an optimal placement of the models in the MMAE with respect t
control performance criterion.

A second approach to eliminate the inherent problem of the MMAE izption
is to modify the architecture. It has been established tigaMtMAE portion can be
optimized for best parameter estimation. Thus, it seems appeofriase the parameter
estimate to design and implement the best LQG controller onlifd@s approach is

summarized in the following hypothesis:

Hypothesis 8: The MMAE portion of the MMAE-based controller can be
discretized for best parameter estimation. The parameter estiraatbe
used for an online implementation of an LQG controller. This
architecture, at a minimum, will perform as well as the MMAE-based
controller optimized for control.

To validate this hypothesis, the typical MMAE-based architecglrown in
Figure 1.2 was modified such that the full-state feedback contmolfgaiby the blended
state estimate is replaced with an LQG controller block jethé same measurements as
the MMAE portion. These changes are shown in Figure 1.3. The aldsign of the
LQG controller and its performance in the overall architectsithe focus of this phase
of the MMAE-based control research. This design approach is kh&@/analog of the
M?3AE architecture proposed by Miller [44]. The MMAE structureuged to get the
estimatea which is used to design or select a single (generalized) lap@otler instead
of a single Kalman filter, as in the ®E. Apparent from the previous contributions
yielding the modified MMAC, the online design is not necessanlyL®G controller

designed by the conventional method. This architecture is tridgparation of the
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Figure 1.3 Modified MMAE-based architecture

controller selection from the control computation unlike the typicaMA#-based

control. The results yield the following contribution:

Contribution 8: A modified MMAE-based control architecture that
performs at least as well as MMAE-based architecture and allows
versatility in the control scheduling for possible values of uncertain
parameters of the system as determined by parameter estimates.

1.4 Summary

This introductory chapter has given some of the preliminary backgraunte ensuing
discussion of MMAC and MMAE-based control research. The stepapproach for
research has been outlined by a discussion of hypotheses andpaulieg
contributions. The subsequent chapters elaborate the results. ntorst,detail of
MMAC and MMAE-based control is discussed in Chapter 2 to lay a megtensive
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groundwork for subsequent chapters. Chapter 3 discusses enhancentbatd @G
design approach. Next, Chapters 4 and 5 discuss the enhancements to MMAC
MMAE-based control, respectively, as previously proposed. In Chaptesipée two-
state system is used to demonstrate the contributions of Bearch to a specific,
insight-providing application. Finally, Chapter 7 summarizes the rmhter this

dissertation and proposed further potential related research areas.
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Chapter 2 - Multiple Model Adaptive Control Prelimi naries

The multiple model approach to stochastic estimation waspfiogtosed by Magill [29].
Not only can the states be estimated by an MMAE, but the antgrarameters of the
system can be estimated as well. The development of MMAG ®miltiple model
approach to stochastic control naturally follows, and so the discussMMAL builds
upon the MMAE. A logical variation to MMAC is the MMAE-basedntrol in which
the estimated plant parameters are used to determine ad@sgied controller on-line,
and then this controller operates on the MMAE-generated stateatstim There are
variations to multiple model control in order to make implementatimme practical.
Finally, regardless of whether the purpose of the multiple modetitdm is estimation
or control, the placement of the models in parameter space andirtimg tf the
individual elemental filters are vitally important and therefon@jor research issues to

be discussed in the sequel.

2.1 Kalman Filtering Basic Development

The Kalman filter is the basic component of both the MMAC and MMi&kelopment.
This discussion of the Kalman filter follows [34]. The linearctise-time Kalman filter
with sampled data measurements will be the standard form ushis iresearch. The
underlying assumption for the system is that it can be descrypedlinear stochastic
state model driven by white Gaussian noise, yielding Gauss-Markiev@bcesses with

Gaussian state (and noise) probability density functions.
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A physical system is usually continuous in time, but for the puspolseomputer
implementation, the equivalent discrete-time model [34] will bel.usehe system and

measurement equations are as follows:

X(6) =@, t_)x(t_,) + Byt Ju(ti_) +Gu(t_)w, (L) (2.1)
z(t) = H(t)x() +v(t) (2.2)
where
X = n-dimensional system state vector
0] = state transition matrix
B, = discrete equivalent of the system control input matrix
u = r-dimensional deterministic control input vector
Gy = discrete equivalent of the noise input matrix
W, = s-dimensional discrete-time zero-mean white Gaussian dgsami
driving noise vector with covarian€g,(t)
z = m-dimensional measurement vector
H = system output matrix
% = discrete-time zero-mean white Gaussian measurement notse ve

with covarianceR(t)

Nonlinear system requires an extended Kalman filter, which wndt be
specifically discussed here. Equations for the extended Kalmanddn be found in
[35]. Itis assumed that the system can be described by a sampledpdasamtation and
accordingly, the Kalman filter form is discrete-time. Tlyeaions for the Kalman filter
are the basic representation as found in e.g. [34] and given as follows:

() = ®(t, 4 _)R(4) + By (t_)u(t ) (2.3)
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P(t7) = ®(t; 1 )Pt ) DT (8 1) + Gy (t4)Qqu (t4)Gy ' (tiy) (2.4)
These equations propagate the state and covariiooe just after the previous
measurement update time to just before the cumeatsurement. Measurement updates

to the filter are accomplished with the followinguations:

A(t) =H()PE)HT () + R(t,) (2.5)
K () =Pt )HT(t)AT () (2.6)
XA =X(t) +K(t)[z, —H(E)X(t)] (2.7)
P(t") = P(t") - K (t)H(t)P() (2.8)
r(t) =z —H()X(t") (2.9)

where the valuek, A andr are the filter gain, the filter-computed residaal/ariance,
and filter residual, respectively. The measuremisnttaken at timet, and the
measurement is incorporated to give the state atisnd residual covariance just after

timet.

2.2 Multiple Model Adaptive Estimation Development

This section details the development of MMAE. Téluhe focus of the research is
MMAC, this MMAE development lays the foundation fidre following sections on
control. For MMAE and MMAC development, the origlrassumptions of the system
model remain in place. However, there are two tamthl assumptions that address the
uncertain parameters specifications. They are:

e Uncertain parameters in the system are constratoedhe parameters

describing the matrices in the state dynamics madebhsurement model, or
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the statistics of the measurement noises entenmgystem, i.e., the uncertain
parameter vectoa can affect®, B, H, Q, and/orR. Uncertainties in the
plantG, are treated equivalently as uncertaintieQjn Admissible ranges of
parameters are specified to predetermined values.

» Parameters take on discrete values. If the pammetre continuous, then
they can be quantized to some reasonable finitd #wesolution. Of course,
guantization affects the accuracy of the filtercsirthere will be a mismatch
between the actual parameters and the assumedsvalilibe appropriate
discretization of the parameter space is an impbrssue of this research.

The uncertain parameters are specified by a paemmectorakDI]P where

k 0{1...K} for each of the K given models and P is the dngsien of the parameter
vector. For each model, there will be a set otesyisequations, propagation equations,

and filter updates similar to Equations (2.3) tlglou(2.9) but dependent upon the

assumed value of the paramet&s, In accordance with the first assumption abowe, f
each model the system and measurement equatiodefared as:
X, (6) =@, (6, b))%, (t) + By (Ut ) + Gy, (6 )Wy, (tiy) (2.10)
z(t) =H, (t)x, () +v, (@) (2.11)
Based on the models, the corresponding Kalman agiagmpn equations are
specified as:
%, (1) = @, (4,8 )R (67,) + By (6 )u(t ) (2.12)
P.(t) =®, (t,t_)P (" )®, " (t,t_) + Gy (t)Qu ()G (tiy) (2.13)

The update equations corresponding to each moeeisafollows:
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Ak(ti):Hk(ti)Pk(ti_)HkT(ti)+Rk(ti) (2.14)

Ky () =P(t)H kT (t )Ak_l(ti) (2.15)
X (t7) =X () + K, (t)[z, —H, )X, ()] (2.16)
P.t") =P.(t) K (t)H, {t)P.() (2.17)

Before the measurement has been incorporated bypithate calculation, the difference
between the measurement and the best predictittbabineasurement before it arrives,
gives the residual. This residual is calculateddach model k1{1, 2, ..., K} and is
given by:
ret)=z —H, (t)X () (2.18)
Now the goal is to calculate the hypothesis camail probability associated with
each model. This probability for each of the medsl actually the probability that
assumes the valug, conditionedon the measurement history through titpeand is
given by:
p.(t)=Proja=a, |Z(t)=2Z,] (2.19)
The measurement histor¥(t) is composed of partitions which are actually the
measurement vectorft,)...z(t) available at the sample times,{..., t}. The realization
of the measurement vectdris composed of the vectors of measurement data, , z.

It has been shown [29,35] tha(t) is evaluated recursively by

b.(t)= faonzan (@[30 Zi1) P(tiy)
k\4/) — K

(2.20)
> o1 2oz (@185, Zi0) By (6)

wherep,(t.,) is the corresponding conditional probability ke tprevious sample time.

Notice that there is an inherent problem when abgodity p, goes to zero; the
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probability then goes to zero for all time. Théeere been ad hoc ways (through lower
bounding) of preventing this from occurring that véa been implemented
[35,37,38,39,56,59] as well as Markov models forapzeter propagation [35] that
similarly preclude suclockoutphenomena.

The conditional density function in the denomimagsm is given by:

foeaza) (@ 1 Zis) = B exp{l (2.21)
Bz (2.22)

C e
{B= {_%rkT (ti)Ak_l(ti)rk t )} (2.23)

where m is the dimension of(t). From Equation (2.23) it is evident that the misd
with the residuals that are most in consonance thiglr conditional covariance will have
conditional density functions evaluations that ¢iethe greatest probabilities in
Equation (2.20), whereas residuals that are lafger anticipated b, (t) yield smaller
probabilitiesp,(t,).

The Bayesian minimum mean square error (MMSEqgiel
~ K ~
Xuwae () = E{X(ti MNZ() = Zi} = Zxk(ti+) Mo, (t) (2.24)
k=1

A variation to the MMSE approach is the maximumastpriori (MAP) method that
chooses the state estimate corresponding to theslntioat has the highest probability.

This estimate is given by:
Xumiae -wap () = )A(j (t*)for j= arg{mka>{ Py (t; )]} (2.25)

The MAP approach does not perform blending, as dbe MMSE approach.

Thus, there is a potential with MAP to switch alilpgrom one estimation model to
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another. Comparisons of the approaches have aorstrated in [20,39,53,54], with
minor differences in results. If the hypothesisdels are separated significantly, all
probability will flow to a single model, regardless. The differencesdrn MAP and

MMSE implementations are problem-dependent and rspeeifically, dependent on the

filter tuning

2.3 Multiple Model Adaptive Control Development

MMAC development builds upon the theory discussegrevious section on MMAE.
For each model of the plant based on a specifisevaf parameter vectey, a standard
linear-quadratic full-state feedback regulator oy ather appropriate controller can be
designed. Without consideration of the need toredé the parameters or the states, the
form of the elemental full-state feedback contmofler a given model, i.e. for a model
based oma,, is of the form:
u (t)=-G.(t,a)x,(t) (2.26)

Now usingassumed certainty equivalence dedigb], an adaptive controller can
be designed using an analog approach to the MMRAie MMAE of course provides the
adaptive estimate of the state by blending indizidiiiter state estimates using the
conditional hypothesis probabilities. The blendofgcontrol approach is similar to the
blending of the states by the MMAE. The blendifigantrol outputs of individual LQG
controllers replaces the blending of states astited in Figure 1.1 from Chapter 1.
Each elemental controller is designed based oashemed parameter vectrusing an

appropriate method. The general form of the rastklemental control is:

U () = =G (,a)% (t") (2.27)
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The perfectly known state vector in Equation (2.2@eplaced with a state estimate from

a Kalman filter designed for a model basedagn A Linear Quadratic Regulator (LQR)
design is used typically for G_(t,,*), but other implementations are possible. Stevens

[60] used a command generator tracker with propoadiplus-integral (CGT/PI) control
designed via LQ methods rather than a simple régufar the elemental controllers.
Now using the same conditional hypothesis proladslias were used for MMAE, the

control is calculated as:

Unmac (4) =Zuk(ti)pk(ti) (2.28)

2.4 Multiple Model Adaptive Estimation Based Control Development

MMAE-based control is a variation to MMAC and incfauses MMAE as part of its
structure, as shown in Figure 1.2 from Chapter Qonsider the case in which the
parameters of the plant in the system to be cdattatere known exactly; then it would
still be very easy task to design a controllerthd# parameters of the plant changed and
the parameters were known and there was enoughtairdesign a full-state feedback in
real time, then it would still be very easy to desia control algorithm. As Miller
showed that state estimation could be computeddo@sa parameter estimate fed into an
additional single state estimator baseoﬁc{|44], control can also be based on parameter
estimates rather than blending of controls, easledban a single hypothesized parameter
value. An MMAE could determine the best paramestimate and a controller look-up
table could be designed to provide the desired bl@gd control. This proposed
architecture is shown in Figure 1.3 in Chapter Eor MMAE-based control, the

parameters are estimated along with the statesselbarameter estimates are used in the
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controller computation block to generate the appatg controller, as shown in Figure
1.2.

One implementation of the MMAE-based control ailfpon uses only the state
estimate returned by the MMAE and a full-state Besk controller designed for a
nominal set of assumed plant parameters and usedl fome. This controller must be
robust to parameter variations in the system, smcehof the nominal parameters is
important. The controller is given by:

U(t) = =G, Brgm) Ruawine (1) (2.29)

For the typical implementation of MMAE-based cohthypothesis conditional
probability weighting is used to determine the paeter estimate as well as the state
estimate. The form of the state estimate is theesas the MMAE and is given by

Equation (2.24). The corresponding parameter eséins similar and is given by
K
Ayae (&) = E{a(ti MNZ(E) = Zi} = zak Mo, (t) (2.30)
k=1

However, Miller's approach could be used such that parameter estimate is used to
feed an additional single Kalman filter on-linegioe the best state estimates.
Now, consider the evaluation of the controllerdzth®n the parameter estimate

auuae - Conceptually, either this controller evaluaticould be a complete real-time

design of a full-state feedback controller by sodvibackward Riccati equations, or it
could be accomplished through some implementatfoa t@ble look-up (possibly with
interpolations) of prestored solutions. Whereasdh-line design will provide the best
control for the given parameter estimate, a tablakdup algorithm provides speed.

Regardless of the controller evaluation, the cdletrgain evaluation is multiplied by the
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state estimate to yield the output. Of course éssumes that the state estimate is valid.
The control output calculation is of the form:
u(t) = ~Ge[t;: Bue ()] Xuwe (¢ (2.31)

The benefits of the parameter estimation by MMAE a driving factor for this
adaptive control method and thus this discussiohs Miller [44] used parameter
estimates from an MMAE to improve state estimaiiorhis M°AE approach, there is
also the potential to improve control using the MEtAased approach. However, Miller
found that in order to obtain a performance bermfithe MPAE approach, a moving-
bank MPAE as done by Vasquez [63,64,65] is necessarydardo force blending. It is
conjectured that a similar YAE-base control approach would also require forced
blending to realize full performance benefits.

As will be discussed, there is a trade-off betweantiple model design for
parameter estimation, state estimation, and comtithl respect to optimal discretization
of parameter values, using the architecture in riéigu2. As initially conceived by
Sheldon [56,57] for MMAC, there is only one dis@zation of the parameter space to

yield the discrete values...a, upon which to base the elemental LQG controllehini

the MMAC structure. As opposed to an MMAC, MMAEsea control should not suffer
from that drawback since all components (filtetsl-$tate feedback controllers, etc.) can
be specified separately. However, the model placgenor discretization is still an
essential issue for these individual componentshik case, the placement of the models
for the parameter estimator and the potential phace of the controllers in a table look-
up scheme could be accomplished separately. ¥#inaing Miller's results [44], the

state estimator could be designed on-line withMIMAE parameter estimates. The state
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estimate is from a single filter based on the pasameter estimate from the MMAE and

hence, there is not a discretization problem fat tme state estimator.

2.5 Parameter Space Discretization

Parameter space discretization entails the detatrmmof the point values of parameters
for the models that best represent the possibleatipg conditions of the plant.
Determination of the placement of the possible patar point value is based on the
behavior of how the plant changes as its assumeaineders vary in the parameter space.
A linear placement of the models would coincidehwvatlinear variation of the uncertain
parameters. This is a possibility, but does nqilyapo every system and so such a
discretization is not always a viable option. Rlaent of the models based on assumed
behavior of the plant tended to be intuitive and addoc [13,16,
17,18,19,20,37,53,54,63,64,65]. Such ad hoc proesd though not optimal, were
effective.

Sheldon’s work brought a formal procedure to MMABd MMAC design.
Sheldon said it best himself [56]: “Although it seelike such an easy solution, one must
remember that before this research was accomplighete was great confusion as to
what parameters to choose for the design.” Basedamclusions by Matthes [32],
Sheldon directed his research to use the perforenahthe state or parameter estimator
as the criterion for optimization of the MMAE andrformance of the controller as the
criterion for the optimization of the MMAC. Thufhere is a different optimization
approach for state estimation, parameter estimatamd control. The different
optimizations yield different results, and so theda placement will be different for

state estimation, parameter estimation and control.
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Sheldon’s approach to optimal parameter placerf@nstate estimation is to
minimize a cost function composed of the averadgev@ver the parameter space) of the
mean squared estimation error. The average is t@ker the range of the actual possible

values of the parameters. This cost function gessed as:

, . jAE{[x -%]"W[x -]} da
25 = jAda

(2.32)

where
.[AdaE_[AP~--J'A2j‘A1da1 da, ...da, (2.33)
provides the necessary scaling far 0 A, | = {1,..., P} which specifies the P

dimensional parameter space, amdis the designer-specified weights for the states.
Similarly, the cost function for optimal model pégcent for parameter estimation is
defined as:

[ Efla-8]"W[a-&]}da

: jAda

For regulation, the cost function minimized is thetput squared over the range of

J

(2.34)

possible values of the parameters and is expressed

_[Ey'wy}da
J,. =
IAda

wherey=Cx is the output to be regulated, expressed as arlfoaction of the states.

(2.35)

Sheldon used a 5-step design procedure to appatximnd to minimize the

appropriate cost function numerically [56]. Thepst are summarized as follows:
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1) Describe in terms of the parameter veetothe truth model of the system and
the filter.

2) Choose the number of filteksin the MMAE or MMAC.

3) Choose a representative parameter set, &, ..., &} to begin the
minimization.

4) Use a numerical integration technique to evalugge(ar J,, or J,). This
evaluation depends on determining to which fillee MMAE/MMAC will
converge. Determination of the convergence isudised in Section 2.5.3.

5) Use a vector minimization technique with the fuoctl evaluation from Step
(4) to minimize J; (or J,or J, ).

2.5.1 Autocorrelation of the State Estimation Erro

In order to discretize the parameter space of tihvAR, it is necessary to evaluatg,,J
which in turn requires an evaluation of E{*]TW[X-&]}. The derivation of this
expression begins with the development of the auteation of the states of the true
system augmented with the filter states. Thisvaion follows [56].

Since the MMAE is a bank of Kalman filters, eadltle K filters in the bank is
based on a model of the system that is assumed totpect by that filter. The system
model on which the®possible filter (k = 1,..., K) is based is:

X (1) = @, (4, )X, (t) + Gy, (G )wy, (t_) (2.36)
with measurement:
z(t)=H, (t)x () +Vv,(t) (2.37)
The truth model is expressed as:
X (t) = @ ()X (t_) + Gy, (t_)wg, (t_) (2.38)
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with measurement
z(t) =H, (t)x (L) + Vv, (t) (2.39)
In subsequent discussions and development, it is assumed that theafitlethe
system are at steady state. Thus, the following assumptions apply:
t..,-t, = a constantl i
@, (t,,,t) =@, and®(t,, t) =® 0t t
H, (t)=H,andH, (t) =H, Ot
Gy (t) =Gy andGy(t) =G, t;
It is further assumed that the filters are constant-gain algorithms and so:
K, (t)=K, Ot
The development of the equations for the filter models follows thiecKalman
filter. For the K filter, the propagation equation of the state in the Kalman filter is:
X (th,) =@ X, () (2.40)
and the measurement update at tine
X () =X ) +K [z(t) —H X ()] (2.41)
The measurement is taken as:
z(t) =H X, (t) +v,(t) (2.42)
Now substitute Equation (2.42) into Equation (2.41) to yield the filt¢ée sstimate just

after the measurement update ‘at

X, () =%, () + K [Hx, (t) + v, () = H X (t7)]

o (2.43)
= (1 =K H )X (1) + K H X, () + K H v (6)
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In order to derive an expression for state estimaftethe K filter att7,, substitute the
measurement update into Equation (2.40) which gield

%, () = @, (%, (67) + K [H X, () + v (t) = H,%, ()]) (2.4
=@, (I -K,H)X, (t)+® K HX({t)+®K, V()
The state equation for the true system does na hameasurement update and is:
X (t,) =@ X () + G w, (L) (2.45)
Equation (2.44) and Equation (2.45) are combimefibtm the expression for the

augmented system and filter state equations:

Xt |_| @ 0 X, (%)
)A(k(ti_ﬂ) B oK H, (Dk(I_Kka) )A(k(ti_)

0 G (2.46)
dt
+[QKKJvt(ti)+[ A }wmai)
Now define
o, 0.0
Y= (2.47)
q)kKkHt (I)k(l _Kka)
and
G, {G‘“ 0 } (2.48)
0 oK,
Also, note that the statistics for the modeled @@ige given as:
Wdt(ti) T T _ Qo(ti) ti =tj
E{[ O }[wdt(tj) vi(t,) ]} _{ 0 1 st (2.49)
— th(ti) 0
Qo(t) —{ 0 R (ti)} (2.50)

The autocorrelation of the augmented state equeatian be expressed now as:
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E{[;t ((iijl))i|[xt (ti+l)T 5\(k (ti:-l)T]} - Ek (ti:'l) = YEk (ti_)YT + GoQoG oT (251)

Assuming thatY is a contractiong,(t) approaches a constant valuetaapproaches
infinity. This constant value is denoted &s. The lower right partition of, is

E{[S‘(][f(]T}. However, rather than the autocorrelation of 8tate estimation, the cost
function in Equation (2.32) requires the autocatieh of the difference between the
state estimate and the true state. Assuming hiedfilter design model may be different
from the true system model, the following transfation is required:

X, =X, = TX, (2.52)

T is a transformation matrix that allows the stastineates of the 'k filter to be of

different dimension from the true system dimensiorWVith the substitution of

Equation (2.52), the augmented system becomes:

X, (tu) | _ ®' 0 X, (t)
X ()| |TA®-® K AH @ (I-KH,)|X )

(2.53)
N S T B S,
(I)kKk t\5 _TGdt dt \Ni
where
TAD=®,T-TO, (2.54)
AH=H,T-H, (2.55)

A more in-depth derivation can be found in [56]. Now define

, @, 0
Y'= (2.56)
TA® -® K ,AH @, (I -K,H,)

and
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] Gdt 0
G = (2.57)
_TGdt (I)kKk

Also, note that the statistics for the modeled noise is given as in Equations (2.49).

The autocorrelation of the augmented state equations can be expressed now as:

E{[.ﬁtg@ﬂ[xt(tiﬂ)T ‘x'k(t;lf]}=rk(t;l)=Y'rk(tr)Y'T+G'0QOGZJ (259

Assuming thatY' is a contraction)'(t) approaches a constant valuetaapproaches

infinity. This constant value is denoted RS The lower right partition ofl’, is

E{x] [x]'} or E{[x-] [x-X]'} for the selected filter. Note that for Equation (2.32),

E{[x->“<]TW [x-X] } equals t{V E{[i] [i]T}]. Subsequent sections will discuss how the
selected filter is determined.

2.5.2 Autocorrelation of the Regulator Output

Essential to the discretization of the MMAC is the evaluatiokafation (2.35) for the
defined parameter space. To perform this evaluation, the equatioribef output
autocorrelation have to be developed. For the MMAC, the expectation mghiation

output autocorrelation (mean squared regulation error) given by:

E{y Wy} = E{tr(Wyy ")}
=tr(WE{Cx,x,'C"}) (2.59)
=tr(WC¥, C")

where ‘I’XI:E{[xt][xt]T}. Now it is a matter of finding the expression for the

autocorrelation of the true states. The following derivation folltves$ of [56,57] and

stresses the relevant details for this research.
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For the MMAE, note that in Equation (2.45), since there are no feledéans,
the filter does not affect the true states. Likewise, there are no féddbas in the filter
state equations as shown in Equation (2.40). However, for the MM&Gnodel based
ona, is given by:

X (tig) = @, (6,0,8)X, (&) + By, (t)u (1) + Gy, (8w, (4) (2.60)
Yi(t) = C (t)x, (t)
The true system is modeled by
X (ti,1) = @ (b, t)X (t) + By, (t)u (t) + Gy, (t)wy, () (2.61)

In subsequent discussions and development, it is assumed that thedtdesign

models are time-invariant. Thus, the following assumptions apply:
t,,- t = a constant! i

P (t,.t)=® andd(t, t) =D 0Ot ,t

i+10
H,(t)=H,andH, (t) =H, Ot
C,(t)=C Ot
G, ) =G, andG, (t) =G, Ot
By (t) =B andB, (t) =B, Ot
It is further assumed that the filters and controllers are aohghin steady-state
algorithms, and so:
K, t) =K, Ot
Gy () =G, Ot
For the K filter, the propagation equation of the state in the Kalman filter is:
X (t1) =@ X, (") + By u, () (2.62)
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and the measurement update at tinethe same as the MMAE:
X (") =%, (") +K [z(t) - HX, ()] (2.63)
The constant-gain state feedback controllers for each model plemented in the form
of:
u (t)=-G_ X (") (2.64)
Now it was assumed that the MMAC has converged to a singletsélfilter and that the
control is given by the gain corresponding to the selected fillemce, the control for
the truth model corresponds to the control of thefiker selected by convergence in
probability to 1. So we have
P =1 = u(t)=u,(t) (2.65)
and by substitution, the control is given by
u (t) =-G_ X (t") (2.66)
Now substitute the control into the Kalman filter propagation equation to yield:

X, (t,) =@ X, (ti+) - Bde::k)A(k (ti+)

Ve (2.67)
= (q)k - Bdeck)Xk(ti )
As done in the previous development of the MMAE, substitute the nesasaot update

given in Equation (2.43) for the Kalman filtertat This final substitution yields the state

estimate for the kfilter att?, and is given by:

X, (toy) = ((I)k =B Gu Ml ~KH R () + K Hox () + K v, )}
= (@, -B, G I K H )X (1) + (@, -B, G, K Hx () (2.68)
+ ((I)k -B4 G, )K Vi(t)
The true system is modeled by
X, (tag) = @ X (6) + Bgyu (t) + Gy Wy, (L) (2.69)
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Now substitute the control from Equation (2.66) and the measurementEgoiation
(2.44) to yield:

Xt(ti+1) = (I)txt (ti) _G*cdet{)A(k(ti_) +K k[H tXt(ti) + Vt(ti) —-H kf(k(ti_)]}
+ Gdtht(ti)

R X o (2.70)
:((I)t _GcdethHt)xt(ti)_Gcdet(l _Kka)Xk(ti )
_G;detK kvt(ti)+Gdtht(ti)
The augmented system’s description is given by
|:Xt(ti+1):|= (q)t_BdtG*ckKkHt) _BdtG::k(I —KHy) |:Xt(ti)i|
X, (t5) (D, —Bde;k)KkHt (D, —Bde*Ck)(I -K H) [ X ()
) (2.71)
-B G_K G
+ e M) A ()
((I)k—BdeCk)Kk 0 dt
Now define
_ (®,-B, G KH,) =B, G, (I -KH)) 2.72)
(@, _Bde::k)KkHt (@, _Bde*ck)(l —-KHy)
L=|Co TBaCuk 2.73)
0 (@, -B,G K,
and the statistics for the noise as:
w, (t) Q,t) =t
di ™ )7 )= R 2.74
E{[ i }[wdtaj) vi(t) ]} { 0 it (2.74)
where
Q,t) O
t)= dett 2.75
QO(I) |: 0 Rt(tl) ( )

The output autocorrelation of the augmented sysiemimet,, can be written

conveniently as:
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E{[gt((‘;f))][xt(tm)T ﬁk(t;l)T]}ﬂk(t;l)=Tak(tr)TT+LQ0LT (2.76)

The upper left quadrant of this expression is tingut autocorrelatiorfl’xt = E{[x{] [xt]T}

as required in Equation (2.59) for the cost evabmadf Equation (2.35). The lower right

quadrant is the autocorrelation of the state estimaf the K filter, ¥, . ¥, does not

factor directly into the cost evaluation, but daéfect the determination of which filter is
active at steady state. Filter selection at stesalte is discussed in the next section and
in Chapter 4.

2.5.3 Lower Bound on Control for Autocorrelation d the Regulator Output

It is evident from the recursive nature of Equati@?23) that, when one filter has
absorbed all the available probabilitghen the control becomes locked onto that one
controller element and away from all others. Ildlesrto negate the effects of this
controller lock-out, the MMAC can be designed waihh assumed artificial lower bound
on the probability hypothesis computation. To iempént this lower bound, assume all

the filters will have a probability of p, except for one filter. That filter will have a

probability expressed as:

Pset = 1 -Prin(K-1) (2.77)
wheresel refers to theselectedilter that has assumed all available probabilityow of
course this lower bound will affect the placemeintantroller-assumed parameter values
in parameter space and thus must be incorporatedne MMAC design. The derivation
of the autocorrelation equations for implementiogvér bounding follows the results

from Sheldon [56,57].
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The design for the MMAC, taking into account lowssunding, removes the
assumption that only one filter will lselectedat steady state. Each probability weight
computed by the conditional hypothesis may haveoazeéro value which must be
factored into the position autocorrelation equatiornrhus, to compute the control, the

probability is assigned to each controller elensent
U (t) ==PG X () = PG LR, (1) ... = PG X (t7) (2.78)
Since this control is input to the filters in thank of filters, the state equations will be
expressed as:
R () =@ X (1) =By, (PGLX () + P,GLZ, () .. + PGic X (1) (2.79)
and the filter update equation is given as:
X () =X ) +K [z(t) —H X ()] (2.80)
Now substitute Equation (2.80) into Equation (2.%&) not only the K possible filter,
but every other filter as well, to yield:

R, (t70) = @, (1 =K H )R, () +K Hx, (6) +K v, (1)
- plekG:;y ((I -K 1H1))A(1(ti_) +K 1H Xt (ti) +K 1V (ti ))

- pZBdecz((l _Ksz))A(z(ti_)"'K 2Htxt(ti)+K 2Vt(ti ))
~ DB G (1 =K H R () +K  H X, (8) +K (v, (t)

(2.81)

Further simplification yields:

)A(k(ti_+1) = (I)k(l -KH k))A(k (ti_) - plesz:l(I - K1H1))A(1(ti_)
= PB4 G, (| =K,H )X, () ... = peBy G (| =K H )X () (2.82)

K K
+((I)kK k _Bdkz ijCjKjJHtXt(ti) +(q)kK k _Bdkz ijCjKjJVt(ti)
=1 =1

The propagation equation for the true system giwerequation (2.69) with the

control from Equation (2.78) is expressed as:
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X (tisg) :(I)txt(ti)_Bdt(plezl)’Zl(tiJr) +P,G% () -+ PG Xk (ti+))

+G W (t) (289

Now substitute the filter update from Equation (}.Bito that result and expand to yield:
X, () = @ X, (t;)

- pleth:l((I - Kl*Hl*)s\(l(ti_) +KH X, (ti) +Kyv, (ti ))

- szdtG*cz((I -K 2H 2)5\(2(ti_) +K 2H txt(ti) +K 2Vt(ti )) (2-84)

~ B G (1 =K H R (1) + K (H X (1) + K (v, (t))
+Gdtht(ti)

Simplification yields:

K
X, (tiyg) = (@, _Bdtz PG K H)X ()~ pBy Gl —KH)X () ..

j=1
K
- pKBdtGCK (I1-K kM K*))A(K (ti_) - (Bdtz ijch j)vt (ti) (2.85)
j=1

+Gdtht(ti)

Now, the augmented state equations that form tieestep prediction model for

the MMAC with lower bounding use Equations (2.880142.85), and is expressed as:
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K
(mt_Bdtz ijchth) _Bdtpchl(I _KlHl)

1 .i+1 — ( 1K1 t dlzl j CjKj t) B pG* (l )
di1 M1~ c1 1

=

§(K (ti_+1) K

((I)KKKHt _BdKZ ij::jKth) _BdK plG::K(l _K1H1)
L =1
_BdtpKG::K(I_KKHK) X, (t)
-B,, PG, (I -K (H o
dlpK c1:( K K) Xl(ti)
|:(I)K(I_KKHK) } R :t_
* X .
B PG (I =K (Hy) ] <)
_ . .
~By 2 PG.K,
j=1 ) Gy,
— * 0
o PKTBZ PO ey Y e 0)
Tk 0 (2.86)
(@K —By > PG, K))
L = i
As usual, this is can be expressed in the form:
X, (ti1) X, (t)
5\(1(1:i_+1) 5\(l (ti_) Wdt (tl )
. =T ) +L 2.87
: LB : LB Vt(ti) ( )
5\(K (t|_+1) 5\(K (ti_)

whereT g andL ; are expressed as:
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K
((Dt_Bdtz ijchth) _Bdtplecl(l _KlHl)
=1

|:(I)1(I _K1H1) }

K
Tl_B - ( e dlz pJ ! . t) - Bd]_plGCl(I - KlHl)

=1

T K
(@K H, =By D PG K HY) "B PGec (1 -KiHY) 5 gg)
L =
~By PGy (| =K (Hy) ]
_BdlpKG*cl(l _KKHK)
{(I)K(I -K H,) }
_BdK pKG*cK(l _KKHK) ]
and
~ ‘ * -
Gdt _Bdtz iGCjKJ
j=1
K
L, = 0 ((I)lKl_BdljZ:;, iGeKy) (2.89)
: b *
0 ((I)kKk_Bdkz ijCJKJ')
i j=1 i
with the statistics for the noise as:
Wy, (t) T T Qo(t) & =t
E de \%i ) . = ! 2.
{[ Vt(ti)}[Wdt (t) v, (tj)]} { 0 t#t (2.90)
and where
Qu) O
Q (ti)=[ ‘ (2.91)
0 0 R, ()

The output autocorrelation of the augmented systetimet,,, is written as:
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Xt (ti+1)

Xy (t) Tt X (t] =, (L,
E 1; ' XtT(ti+1) XlT(ti+1) XKT(ti+l) ::k(tiﬂ) (292)

Xy (the)
=T Ek(ti_)TIB +L LBQOLTLB

As in the previous section, the upper the uppdrdehdrant of this expression is the

output autocorrelation}l’xt: E{[xt][xt]T} as required in Equation (2.59) for the cost

evaluation of Equation (2.35). This ability to the cost function when there is a
lower bound will be important in the sequel foreatetining performance when steady-
state has not yet been reached and the maximunhalaieaprobability has not been
assumed by a single filter.
2.5.4 The Baram Distance Measure
The previous discussions centered on the assumsptioat a single filter can be
determined as the filter that would assume allgrabability when all the filters run to
steady state. Sheldon [56] used the work by Baramrder to develop a method of
choosing the filter and that work is summarizeceher

Recall that the hypothesis conditional probabitifyeach of the individual filters
is determined by a recursive evaluation of the aatafpn as given in Equation (2.20).
Baram [3,4,5] developed a proximity measure ofdleseness of a given filter based on
the conditional density that appears in the nuroerat Equation (2.20) and defined in
Equation (2.21). The filter that is assumed toehthe maximum probability at steady
state is the filter with the minimum of the proxtgnmeasure given by:

¢=mint, k=1,.K (2.93)

where
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/. =log|A, |+tr[AIN,] (2.94)
This equation is derived from taking the expectatd the logarithm of the conditional

density function as shown:

£ = E{|09(( Ftoezen (@ |ak’zi—l))} (2.95)
= E{log(8, exp{®)} = E{log(s,)} + E{H} |
where
fh=-1r. A O)r) 2.96)
=-1tfAzen 6O )] |
and
1 (2.97)

A e
The measure of the steady state prediction error covariartbe oésidual computed in
the K" filter is given by:
A, =[H]IPIH,] +R, (2.98)
P, is the prediction error covariance of tH fiiter andH, is the K" filter measurement

matrix. At steady-state, the residuals in Equation (2.96)edlected by the steady state

prediction error covariance. Thubl, in Equation (2.94) is the actual steady state
prediction error autocorrelation of th8 filter and is given by:
N,=[H, -HE.[H, -HJI (2.99)
whereZ,  is the state prediction autocorrelation given in Equations (2.76 aaddH,
are the measurement matrices of tHe fidker and true system, respectively. Now
Equation (2.99) is used in Equation (2.96) to yield:
{h=-1t|ArN,] (2.100)
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Now substitute Equation (2.100) into Equation (2.95) to yield the proximigsure.
Constant multipliers that do not change the results of the measunetancluded in the

final form as given in Equation (2.94).

2.6 Summary

The presentation of the MMAC basics in this chapter sets the foondéor the
discussions and development in subsequent chapters. The three rngcr aneas are:
Kalman filtering, MMAE/MMAC structures, and filter, controlland system models in
the uncertain parameter space. Each area will be addresdeficss of research in
subsequent chapters.

Key to the development is the Kalman filter which is elenmetataall control
schemes developed in this research. The subsequent discussioMMAlkeportion is
based on a bank of Kalman filters, as is the development of the MMACMMAE-
based control. Inherent in the discussions are the system equattbnstation that will
be used throughout the remainder of this dissertation.

Both the MMAE and MMAC depend on a set of models associatédpwints in
an appropriate parameter space. This chapter reviews theidaaatof the parameter
space for optimal placement of those models. For the MMAC, thmusdi®n and
equation development was based on the standard assumption that tldedijermodel
is the same as the controller design model. This reviewpdtse next chapter that lifts
the filter-controller model equivalence assumption, where the equdgiggiopment will
follow the same approach. The final aspect of MMAC coveredhe analytic
determination of the closest model to the actual system asseeped as a point in

parameter space. In reality, without bounding the lower probabilityMiAC will
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converge to one filter as the closest in parameter space. pidmsrty is crucial to the
discretization algorithms since the evaluation of performancendspen the selected
filter-controller pair at steady state. Discretizatiall lae vital in the development of the

enhanced MMAC structures discussed in the following chapters.
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Chapter 3 - A Generalized LQG Design Approach

The standard design approach for the LQG controller is based opritiaple of
certainty equivalence [36] in which the filter is designed seéglgrdrom the full-state
feedback controller. The two modules operate in tandem to yield ti& d¢d@ptrol
algorithm. It is assumed that the filter is designed based omutiremodel in order to
minimize a mean squared estimation error criterion. Likewrs® full-state feedback
controller is designed based on the truth model to minimize a nugemesregulation
error criterion. Intuitively, it seems to make sense thatishike best approach for the
control algorithm design. However, when one considers the designLoér@berger
observer [23] rather than a Kalman filter as the state estimae find that the goal is
actually to speed up the dynamics of the observer relative touthemodel. This is done
by choosing the observer gains to place poles of the resultaainitys. This is not
intrinsically incorporated into the solution to the Riccati equgolution to minimize
the cost function when designing the corresponding Kalman filtBnus, it seems
plausible and optimal with respect to some criterion on performanite afverall LQG
controller to design the Kalman filter for a model that isualty “faster” than the
dynamics of the truth model.

The discussion in the following sections first develops a perforenamEasure
that incorporates the full-state feedback controller and the Kalifber into a single cost
evaluation. Minimization of this cost function will yield the optlinc@ntroller-filter
combination. The minimization occurs over the space of possible dergrahd filters,
each based on a model possibly different from the truth model. Theewton expands

on the optimization algorithms. The first proposed minimizatioordalgn determines
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the best performance through the selection of parameter valthesfdfer and controller
models in the neighborhood of the truth model parameter values. Faedberch, a
neighborhood is defined to be composed of the parameter points that are bgnynded
specified distance) around the nominal values of the parametdie tluth model. In
addition, it is assumed that the design models are not necessérillge same
dimensionality as the truth model but are based on the same ungmtameters.
Finally, with a slight modification to the minimization criterioa,second algorithm
proposes to improve robustness to possible parameter variations ®fsteen model.

The perturbation about the truth model is used to specify the required robustness region.

3.1 Derivation of LQG Design Performance Measure

The discovery of improved LQG performance by using models for ehératler and
filter designs that are possibly different from each other affdreint from the truth
model originated from work in studying ways to enhance the MMACMNIE-based
control structures. The goal in that part of the researcWillalse discussed in Chapters
4 and 5) is to improve performance through the selection of thecbetsbller, given a
parameter estimate. It followed naturally that the “best” rafiet might be different
from the LQ full-state feedback controller based on the truth meuhele the parameter
estimate might not match exactly to the truth model. Likewtise best filter for the
given parameter estimate might also be different fromkihlenan filter based on the
truth model.

Derivation of the generalized LQG performance measure ancsthdéunction to
minimize parallels the derivation for the MMAC structure [35,56Jow, that MMAC

performance evaluation derivation, of course, follows the typical peaioce evaluation
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of the standard LQG stochastic regulator [35]. The first componghtafost function
to minimize for the LQG design as it follows the MMAC is tegpectation of the

regulation output autocorrelation (mean squared regulation error) given by:

E{y "Wy} = E{tr(Wyy ")}
= tr(WE{Cxx"C"}) (3.1)
= tr(WC¥,C")

where'¥, =E{xx'}. The regulation error autocorrelation is a function of the patar
vector triple f, &, a} where the superscripts specifies the truth model, Kalman filter
model, and control model, respectively. It is assumed that thesevidcors have the
same dimension, but not necessarily the same values. Though the arededsed on
the same uncertain parameters, it is possible that the dit@¢rcontrol models have a
reduced number of states compared to that of the truth modelcoReenience in the
derivation, the parameter vectarrepresents the parameters that differ in value in the
respective models (taking on valugsa,, anda, in the truth model, filter design model,
and full-state feedback control design model, respectively).

The filter design model for the system at steady skaseribed in terms of state

for the parameter vectay, measuremer#, and controlled variablgis given as:

Xp (t) = @ X (t) + By u(t) +Ggwy (t) (3.2)
z(t) =H X (t) + v, (t) (3.3)
y(t) =Cix (t;) (3.4)

with

Qu ) =1

e{w,, (t,) wdf(tJ)T}={ ) (3.5)
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R:(t) t =t
E{Vf t) v, (tj)T} ={ 0 t# t: (3.6)
w,(t) andv(t) are assumed pair-wise independent. The comvold given by
u(t;) = -G X (t") (3.7)

where G, is the optimal control gain matrix from the sotutito the deterministic LQ
regulator portion of the control problem. Néyis the output of the Kalman filter given
by

X (t1) = @ X (t+)_BdiGc):(f (t") (3.8)

= ((I)f - Bdch)Xf (ti )

and is propagated between samples, with a sampledateasurement update given by
R, (1) =%, (6) + K [2(t) —H &, ()] (3.9)

where K; is the observer gain matrix as found for the saashdKalman filter. The
matrices of the Kalman filter in Equations (3.8)9)3are those from the system matrices
in (3.2) and (3.3). For the conventional desigims then a matter of determinig and

G, via Riccati equations.

Consider the conventional LQG controller with alrdan filter specified in

Equations (3.8)-(3.9) based on the maalalf the system dynamics in Equations (3.2)-
(3.3). Now denote the controller ga asG__ to indicate it is based on a controller

model based oa,, separate from the parameter vectors associatbdiveé filter and truth

models. So the equation for true control becomes
u(t)=-G cc)A(f (ti+) (3.10)

Now substitute the control into the Kalman filtéopagation equation to yield:
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X; (t) = @ X; (ti+) —By Gcc)’zf (ti+)

. (3.12)
= ((Df _Bdchc)Xf )
As done in the previous development of the MMAC Section 2.3, substitute the

measurement update given in Equation (3.9) for Kaéman filter att”. This final

substitution yields the state estimate for thefititt;, and is given by:

%, (t7) = (@, =By G N1 =K H, )% (1) + K H X, (6) + K, v, t)]
= (@, -B,,G, ) ~KH, )% ) +(®, -B, G, K,Hx(t) (3.12)
+((I) -B4G, )Kth(ti)

The true system is modeled by

X () =@ X (t;) +Byu () +G w, () (3.13)
Now substitute the control from Equation (3.10) ahd measurement from Equation
(3.9) to yield:

X, () = @ X, (6) = By Gof¥, () + K [H X, (t) + v, (t) = H, %, )]}
+ Gdtwdt (t|)
= ((I)t - BdthcK f Ht)xt(ti) - BdtGCC(l —-KH; ))A(f (ti_)
- BdthcK th(ti) + Gdtht(ti)

(3.14)

Now after making all substitutions and simplificats, the augmented system description

is given by

|:Xt(ti+l)j| - |:((I)t - BdthchHt) - Bdthc(I -K f Hf) }{ Xt(ti):|

X (t,) (@, -B,G_)KH, (®; -B4G. ) —-KH{) [ X (t) (3.15)
By G..K
[@ B } 0+ S o)
Now define
Wy, (t) . Qlt) t=t,
E{|: Vt(ti) :|[Wdt(tj) \ (t ) ]} { ti ¢tj (316)
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where

th(ti) 0
t) = 3.17
Qut) [ 0 RO (3.17)

and further define
T,= ((I)t_BdthchHt) _Bdthc(l_Kfo) (3 18)
((Df _Bdchc)Kth (q)f _Bdchc)(l _Kfo)

Gd —BdG Kf

L'=| e (3.19)
[ 0 (@ _Bdchc)Kfi|

then the output autocorrelation of the augmentstesy expressed in Equation (3.15) can

be written conveniently as:

Xt(ti) T & =\T = = al ! m
E{[)A(f (ti_)}[xt(ti) %, (") ]}=n(ti+1)= =(t)T'T +L'Q L (3.20)

Now the upper left partition of the resultant exjpdion expression is the regulation

z:mtocorrelation‘l’xt in Equation (3.1) for the true system. As stapegdviously, this

development for the single filter/controller follsvthat of the MMAC in Chapter 2, and
thus Equation (3.20) is similar to Equation (2.76).

Using only the output correlation (mean squareduleion error) as the
performance measure for the design of the bestatert would be consistent with a
cheap controlversion of LQG control, i.e. one in which the qrattt cost on states

strongly dominates the quadratic on control. Tvas defined in Chapter 2 as:

_ | Ely"wy}da
7 [ da

(3.21)

More generally, the design of the best controlerbased on the sum of the output
correlation with a quadratic on control consistefith the cost used to define the LQG
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controller in the first place. Thus, the more gahérm of cost function expressed in

Equation (3.21) is:

J.E{yTWy+uTUu}da
J, =-a (3.22)

T e

whereu is the control andl is the weight used to allow different emphasisrahvidual

control components.
The quadratic on the control is derived simildadythe quadratic on the states and

is denoted as

E{u"Uu} = E{tr(Uuu")}
= tr(UE{G XX'G,,'}) (3.23)
=tr(UG_ ¥;G.,')

Here ¥, is the lower right partition output autocorrelatiof the augmented system

expressed in Equation (3.20). Now put togethepthstion correlation and the quadratic

on control to yield the resultant cost function:

E{y"Wy} + E{u"Uu} = tr(WC¥,C") +tr(UG_ ¥,G ") (3.24)
The form of this cost function is the same as t& €unction used to design the control
gain matrixG_. However, the minimization of this cost functimndependent on both

the designed Kalman filter and the control gainrmatThus, the cost is minimized by

searching over the available models that yielcdctraponent®¥, and¥,

3.2 Modified LQG Design Algorithm

The previous section developed the position caicglaquation for the case in which the

controller, filter and truth models are possiblyfetient. In Equations (3.9) and (3.10),
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and thus also in Equations (3.15) and (3.20), tmroller and filter gains denotéd and
G, are selected, based on solutions to two Riccatatans which are based on assumed

models not necessarily equivalent to the truth rhod@ke object is to determine the gains

K; andG_, which minimize the position correlation (mean sgagavalues of regulation

errors) when the resulting modified LQG (MLQG) cwtier is used in a real-world
environment described by a particular truth modehgain, the conventional LQG

approach assumes thatandG_ are determined based on models equivalent tattie t
model (or reduced-order version thereof, but balted on the same parameter valjie

The approaches for the MLQG discussed in the foligwsubsections remove the
assumptions that the controller and filter designdets must match the assumed truth
model.
3.2.1 Modified LQG With Optimally Selected Filter Parameter g
Consider the assumption that the actual systenesstate completely and perfectly
measurable. The problem of controller design theromes the classical LQR approach.
Now of course, théestfilter would need to be added if the states wenk perfectly
measurable. As previously noted in the discussionthe Luenberger observer, the
indicated solution to the filter/controller gainaseh is to determine the full-state
feedback controller and then find the optimal filbg selecting the parametarfrom the
range of the parameter space. Based on this assessthe following is the
filter/controller selection algorithm for the moigifl LQG control algorithm:

1. For the given system truth model, design a comtrolising typical LQR

techniques to obtain the gat®_ (i.e., assume, = a; further note thab, =a,
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implies, for an online adaptive system to be cargd in the subsequent
chapters, thad_ is equal tcg).

2. Select a representative filter parametein the neighborhood of the true system
parametera, and design a Kalman filter based upmnusing the typical LQE
techniques but based aprather tharg, (i.e., assume, # a, generally).

3. Compute the position correlation usig and the Kalman Filter from steps (1)

and (2), respectively.
4. Choose a vector minimization procedure to find dipgimal filter parameteg,
that minimizes the position correlation from st8p (

The minimization as described in step (4) finds thi@imal position correlation as a
function of the filter model parameter vector. Hmer, since this could involve many
applications of solving Riccati equations to accbshp step (2), it might be
computationally more feasible to check discreten{miacross the defined parameter
space for the filter model. This brute force methweould only yield an approximate
solution, or it could be used to define a bettartstg point for a minimization algorithm.

In the previous discussion of Luenberger observievgas assumed that the model
that corresponds to the Kalman filter would faster than the actual system model.
Fasteris used to convey that the model corresponds fitiea that has shortened the
response time of the system. Hence, following lims of reasoning, the result of the
minimization in step (4) should yield a filter theither matches the actual system model

or it isfaster.
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3.2.2 Modified LQG with Optimally Selected Controler Parameter g,

Rather than designing the controller to match tttead system as done in the previous
subsection, this section proposes to design ther fib match the system model (i.e.,
a =a,) and then find théestcontroller. Thisbestcontroller is designed using a model
based on the parametar optimally selected from the range of the paramsetsace.
Designing the filter to match the actual system msagm contrary to the previous
assumptions based on Luenberger observers. Howdvtdre controller gain were
increased, this has a similar effect as speedinpeaifilter in relation to the actual system
model.

Based on the assumption that the filter paramstéixed, the following is the
filter/controller design algorithm for the modifi@d)G controller with optimally selected
controller parameter:

1. For the given system truth model, design a Kalm#arf(i.e., similar to the
previous section, but for the filter, assume a,; further note tha, = a, implies,
for an online adaptive system to be consideretiénsubsequent chapters, that
is equal taAa).

2. Select a representative controller model parameéstor a. that is in the
neighborhood of the system truth model paramatend design the controller

using the typical LQR techniques to find. ®ased on tha, (i.e. assume, # a,

generally).

3. Compute the position correlation using &alman filter andG_ from steps (1)

and (2).
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4. Choose a vector minimization procedure to find dp&mal controller parameter

a. that minimizes the position correlation from s(8jp

In the previous section it was assumed that thdeithat corresponds to the
Kalman filter will be faster than the actual systeradel. For the control, the dynamics
of the system are sped up by a larger controllar. gA larger gain will correspond to a
controller design model that is slower than thesalcsystem model. This is logical: if
large excursions from the desired state or outplites are assumed persistlonger in
time, it is beneficial to use larger gains to dritiem more strongly towards the desired
values. Hence, an application of this design dlgor should demonstrate that, with the
filter designed for the actual system model, thetrmdler model should either match the
actual system model or it should blewer. In other words, the controller model will
have a larger gain than what would be ordinarigoagted with the actual system model.
3.2.3 Generalized Approach to the Modified LQG
The approach in this subsection combines the coenad#phe previous two subsections
and allows the filter model and the controller moketh to differ from the assumed
system truth model. Rather than fixing the cotgranodel or the filter model to match
the actual system model, the optimization algoriirall determine both of these models
which will yield the best performance.

The optimization algorithm that implements the @mafized modified LQG
controller is specified as follows:

1. Select a representative filter model parameter#( a, generally, but in the

neighborhood o&,) and design the corresponding Kalman filter.
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2. Select a representative controller model param@ier a, generally, but in the
neighborhood of,) and design a full-state feedback controller ushmg typical
LQOR techniques to find G

3. Compute the position correlation using Kalman fia@d G, from steps (1) and

2).
4. Choose a vector minimization procedure to find fiter parametera, and the

controller parametea, that minimizes the position correlation from s(8p

In the previous two subsections, the effects effiter and the controller were
considered individually. First, it was assumedt tthee model that corresponds to the
Kalman filter would befaster than the actual system model or the controlleligtes
model. For the control, the dynamics of the sysiemmade faster by a larger gain. A
larger gain will correspond to a controller modedttis slower than the actual system
model. For the generalized MLQG, the effects @& fiiter and controllers must be
considered together. Hence, it is not really dgmesio predict how each model will be
selected in relationship to the system model. éxample, the gain for the control could
be selected so large, that the dynamics of ther filb not have to be faster than, or even
as fast as, the system model. However, it is ipatied that the filter based on the

parameter, will always correspond to a faster model than kuier model based on the
parameten,.

3.2.4 Tradeoff among Modified LQG Approaches
It is assumed that the three approaches discusséhisi section will yield different

performances that most likely will be dependenttmn system parameters. The tradeoff
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will be the performance in terms of output cornelatversus the amount of control that is

required to implement the controller scheme, wiaigh be predicted by:

E{u'Wu} = tr(WE{uuT})
. (3.25)
:tr(WGCC‘I’iGCC )
whereW is an appropriately chosen weighting matrix &fds the lower right partition
output autocorrelation of the augmented systemesgad in Equation (3.20). For the
design of a real world system, it is often the s&tan of the controller that will limit the

amount of control. It will then be up to the desgto determine the outcome of the

tradeoff.

3.3 LQG Selection Algorithm Modification for Robust Controller

The design methods for the modified LQG controtlescussed in the previous section
assumed that the truth model was based on a paawesttora, that does not vary. In
addition, the truth model is assumed accurate, (i@t a, is known perfectly). Now

consider the case (most likely to occur in an dagystem) that the assumed truth model
may not be exactly the same as the actual systedelm&-or simplification, assume that

the difference between the actual system modelthaddefined truth model can be

captured in the specification of the parameteroregt In terms of statistics, assume that
the variation of a scalar parameter is some saaidtiple of the standard deviation given

as:

a‘t EI [anominal - ka ’ anominal + ka] (326)

for some chosen scalar k, wheseis the standard deviation. Correspondingly for a

vector parameter, assun& is within the ellipsoid centered af ..., and defined by the
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eigenvectors and scalar k times the square rootach of the eigenvalues of the
covarianceP,, of a values. As k is made larger, as going from O to 2, etc., larger and
larger sets of possibla, values are allowed, and thus greater and greateumts of
robustness is provided if the controller is desthne perform acceptably against this
entire set of possible, values. This variation over the possible paramspace is
illustrated in Figure 3.1.

The goal for the selection algorithm is to detemnithe controller/filter
combination for the given value of a.,ando (ora,,,...,andP_, in the vector case) that
can be considered robust across the whole rangeosdiblea. The algorithm to
accomplish this is:

1. Select a value for the controller model parameteation in the range of possible

a, values.

2. For the controller selected in (1), determine thterf model that yields the
minimum position correlation over the range.

3. The filter selected is determined by first compgtithe maximum position
correlation over the admissible rangeapfvalues for each possible filter. Of

those maximum position correlation values, chobssfitter corresponding to the

| Set of Possible, ®alues I

inar Ko
Bnominar S ominal anominal+k6

Figure 3.1 Range over whichaan occur, given a particulgf, g, ando
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minimum of those computed maxima. These first 3 steps arealiedtin Figure

3.2a and given as:
F=F whichyields min(max¥ ()
A second approach could use the RMS¥obver the possible range af
values for each possible filter:
F=F whichyields min(RMSY_ ;)
4) Filter selection process is repeated for each controller ipdremeter space
bounded by Equation (3.26)

5) Similar to the filter selection, the controller is determinegd using the

position correlation over the admissible range,dbr the controller and filter

combination from step (4). Of those maximum position correlation values,

i (C,, F) Position Correlation Computaties I

F
Cl
| | |
| 1 |
anominal'kc aﬁominal anominal+k6
(a)
I (G, F) Position Correlation Computatief |
F
S
| | |
I 1 |
anominal'kc anominal amminal-'-kG

(b)

Figure 3.2(a) Filter search given a controller in the paransptece (b) Controller search
and filter found for each possible controller
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choose the controller and filter corresponding to the minimum of those
computed maxima. These two steps (4) and (5) are illustratéigure 3.2b
and given as:

C =C, whichyields min (max‘I’CJ F)

As done with the filter selection, a second approach could use tisedkW
over the possible range ef values for the controller and filter combination
from step (4)

C =C, whichyields min(RMS‘I’Cj £)
6) Steps (1) through (5) are repeated for each pessiblue ofa, in the

parameter space.

3.4 Summary

This chapter develops several modifications totyipécal LQG design approach. The
primary change removes the standard assumptiortibdfalman filter design model is
the same as that used for the controller. As thightypical methods and under assumed
certainty equivalence, the Kalman filter is desyreend combined with a controller
developed with LQR methods, both based on an asbsgstem model. To evaluate the
effectiveness of the filter/controller combinatiam,performance measure based on the
output error autocorrelation is developed. Thidggrenance measure is a generalization
of the MMAC evaluation equations with just onedifcontroller combination rather than
bank of multiple LQG controllers. Also, the filteind the controller models for that
single combination are specified independently eatthan as an LQG-like controller.

Now, the optimization for best performance in terofsminimized regulation error
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becomes a search over the possible filters andaitens. Hence, this development sets
the stage for application of the modified LQG destp the MMAC. The second
modification to the typical LQG design builds upthve first and addresses robustness to
variation of the possible true system. Rather thesuming a constant system model in
the performance evaluation, it is now assumed thatsystem can exist in a known
range. Either the RMS value or maximum value efplrformance evaluation over the
possible system values can be used to determingptivaal filter controller combination
for the end LQG design. This generalized LQG desigproach also has application to
MMAC.

The two design approaches and the work underlyiam actually came from the
initial investigation of this research into impravBIMAC design. Hence, the application

to MMAC will be investigated in the next chapter.
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Chapter 4 - MMAC Development

This chapter discusses the research accomplisheti/tnce the design and evaluation of
the MMAC architecture. In his dissertation resbai$heldon [56,57] made significant
contributions to MMAC design through optimizatiohtbe discretization of filter models
in the space of uncertain parameters. Sheldonneasoncerned so much with the
performance characteristics of the individual comgras of the MMAC, but with, given
their characteristics, how should the assumed peteanvalues of these components be
placed in parameter space. The original intentibthe current research was to develop
and demonstrate improvements to the MMAE-basedrabby improving the properties
of the single full-state feedback controller in ttrachitecture. However, it became
obvious that any improvements to a single contrallighin MMAE-based control should
also apply to the blended controller elements & MMMAC architecture. Thus, the
insights that came from the modified LQG design @sed in the controller elements of
the MMAC architecture to improve the overall penfiance characteristics.

The enhancements to the elemental controllersltr@sunodifications to the
MMAC design algorithms. This chapter first presemnprovements to the MMAC
design synthesis developed by Sheldon through igioavto the evaluation step in the
discretization algorithm. Next, this chapter deypsl the replacement of the typical LQG
controllers in the MMAC with the modified LQG coatiers of the previous chapter.
This discussion includes the modified LQG contmoidth enhanced robustness in the
MMAC architecture. The next section develops apraach that replaces the control
gain matrix in the conventional MMAC architecturettwa full-state feedback control

element to produce a generalized MMAC (GMMAC). Timal section presents an
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evaluation tool that determines the variance ofsiiection of the filter in the MMAC at
steady state. Though this tool is not directlydusethe optimal placement of the filters

in parameter space, it can be used to predict medace of the MMAC.

4.1 Modification to the MMAC Evaluation and Discretization

As reviewed in Chapter 2, the evaluation of the MMA a two-step process in which
the MMAE equations are evaluated, followed by aal@ation of the MMAC equations.
The MMAE equations evaluation determines whichefilis closest in probability at
steady state and the MMAC equations determine th&tipn error autocorrelation.
However, review of the derivation of the positianoe autocorrelation gives insight into
a necessary modification of the MMAC evaluation aaslsociated discretization
algorithm that has proven useful for all MMACs, amdrticularly for enhanced
performance of the modified MMAC and GMMAC algonts in the subsequent
sections.

The minimization of the cost function for the MMA@quires evaluations of a
weighted position autocorrelation as the truth nhodeies over the parameter space of
concern. The cost function evaluation uses wedjbtate autocorrelations, as is shown

in the following:

E{y"Wy}da
‘]20 = JA (41)
Ida
A
wherey = Cx and
T T
E{y wy}=tr(wc, ¥, C,) (4.2)
T
lI’Xt = E{ X, X, } (4.3)
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andW is the weighting matrix used for emphasizing tih@ortance of individual outputs
relative to the other outputs, a@dis the system output matrix. Though Equation)(4.1

uses only the output, the true states to compuatedtitput are dependent on the states of
the selected filter denoted sslfrom k = 1...K filter/controllers. The autocorratat of

the true statesy, as well as the filter state estimatés, or more generallyk,, are

determined by solving the Lyponuv equation for MMAC denoted in Chapter 2 as:

E{|:Xt (ti+1):|[XtT (ti+1) f(kT (ti:-l)]} = E‘k (ti:-l) =T Ek (ti_) T + LQ oLT (44)

X, (t12)
where
T:{((IJt—BdtGEkKkHt) —Bdtegkfl ~K H,) } (4.5)
(®, -B, G, )KH, (@, -B,G.)I-KH,)
and
L :{G‘“ ~BaGalk, } (4.6)
0 (@, -B,G.)K,
Also, note that the statistics for the modeled @@ise given as:
E{[Vi‘j‘(f‘))}[wdt(t,-f vt(tJ-)T]} ={Q°§‘) \ :: (4.7)
Qu(t) :[Q”;)(ti) Rtiti)} (4.9

‘th is the upper left partition of the resultant steathte values,  for the selected filter

sel These equations reflect that the MMAC is a filite feedback closed loop system.

Observe that the input control matBy (B, andB,,) and control gairGZ appear in terms

for both the true and thdlor selected filter state autocorrelation.
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Now consider the MMAE equations that are usedhia determination of the
closest filters in the sense that it is the fikath the maximum probability. For each

possible filter in the bank {kfilter for k = 1...K), the autocorrelation of theutr states,
as well as the filter state estimat§§,are determined by solving the Lyponuv equation

for the MMAE denoted in Chapter 2 as:

E{|:Xt (ti+1):|[XtT (t..) )“(kT (ti:l)]} =E, (t,,) =YE, (ti_)YT +G Q.G oT (4.9)

5\(k (tl:-l)
where
D, 0
(I)kKkHt (Dk(l_Kka)
and
0 G
G, = at (4.11)
oK, O

Note that the noise statistics are the same aquations (4.7)-(4.8).

The MMAE Equations (4.9)-(4.11) lack the contnoput termsB, (B,, andBy)

and the control gain matri@i, since these equations are based on an open-ystgns
with no feedback of the control input to the MMEnkaof filters. An actual
implementation of the MMAC uses the feedback ofabetrol input to the MME bank of
filters. Hence, the lower right partition &, is the actual solution for the state
autocorrelation in the'kfilter. The state estimate autocorrelation of klidilter as given
by the MMAE equations do not have the control femtibterms. Remember that the
MMAE equations determine which filter is selectadsteady state in the original MMAC

performance evaluation algorithm developed by SireldNow it has to be determined if
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=, but more specifically, if the steady-state autoglation of the filters (the appropriate
partition of E,) computed from the MMAC equations can be usedeterthine the filter
in the MME portion of the MMAC with the maximum grability (which may not be one
if there is lower bounding placed on the filterss&eady state.

Because of the feedback control's effect on théeststimation, the control input
affects the computation of the probability weiglgtior each filter/controller combination
in an actual implementation of an MMAC. The préidic tool also must take into
account the effect of the feedback control, whicé proximity measure developed by
Baram [3,4,5] does. This measure is used to daterthe filter model closest to the true
system model in the sense that the corresponditey probability is maximized. As
reviewed in Section 2.5.3, the filter that is asedno have the maximum probability at
steady state is the filter with the minimum of greximity measure given by:

=min/, k=1,..K (4.12)
where

¢, =log|A, |[+tr[AN,] (4.13)
A, is the covariance of the steady state residualkari” filter, i.e., [H, P,_ H, +R,].
This error covariance is different from the acts&ady state autocorrelation of the
estimation errors in thé'Kilter given by:

N, =[-H, H,]E.[-H, H.JI (4.14)

where Z,  is the state prediction autocorrelation computgceiher Equation (4.4) or

Equation (4.9), andd, and H, are the output matrix of the"kfilter and truth model

respectively. Thus, the MMAC evaluation reducesmdy computing the closed loop

75



steady-state prediction autocorrelation using théAZ equations, which is a
simplification of the previous evaluation process.

Since the method for choosing a filter/controlfesteady state is the only change,
the majority of Sheldon’s MMAC design procedure aéms the same. This is a change
to step 4 of the 5-step design procedure to apprate and to minimize the appropriate
cost function numerically [56,57]. The changeumsarized as follows:

4) Use a numerical integration technique to evaluapgsion (4.1).

a) ComputeZE, using Equation (4.4) at discrete points in theapeter
space (foml, value)for each filter: k = 1,...K.
b) At each discrete point evaluate the proximity measising=,  for k =

1,...K to determine the convergence to a single ehahe
filter/controller with the maximum probability atemdy state. Denote
that selected filter/controller ael

c) For the selected filter/controller, determilg _ from the lower right

partition of £, saved from the previous evaluation &f for k =

1,...K and use in the evaluation of the cost function
Like the original MMAC discretization optimizatioalgorithm, the five-step
procedure is accomplished off-line, and the parametlues corresponding to the
optimally placed models are stored for use in teaé. The major difference of this

algorithm is that onh\E is computed once using the MMAC Equations (4.46)4

selwo

rather than also evaluating the MMAE equationsfifter selection. This computational
advantage should speed up the optimization by ynédylpercent. More importantly,
using the MMAC equations for the filter selectiona closely represents the real world
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implementation of the MMAC. For an actual impleraion, the computed control is

fed back to the filters.

4.2 The Modified MMAC

As was discussed in Chapter 3, the developmertieofitodified LQG designs followed
from the MMAE-based control structure research.thima MMAC control structure, the
MMAE portion serves not only to determine the piabty weighting on the control, but
the state estimation as well. The elemental ciaetras exactly an LQG controller
designed at a specific point in parameter spade filter in the MMAE and the control
gain matrix define the LQG controller. Since th€@@& controller is an inherent
component of the MMAC, any enhancements can bepocated into the MMAC.

The previous chapter presents an approach to waptiee design of the LQG
point controllers in which the design model for fiiieer is possibly different than the
controller design model. This section incorporales modified LQG design approach to
improve point designs in the MMAC. As will be dissed, this modification will have a
minor effect on the discretization algorithms. @lsince the modified MMAC only
affects the procedures for the design of the comaptsnof the MMAC, the actual
architecture of the MMAC will not change. The dewmnent begins with the
performance evaluation equations used in the digat®n algorithms.

4.2.1 Modified MMAC Performance Equations Developrant

The development of the performance equations fmtlbdified MMAC follows that of
the typical MMAC. As such, it is required to demelan expression for the output
autocorrelation that will be used in the evaluatioh the cost function given in

Equation (4.1). What will be slightly different this development is that the equations
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will have to take into account the fact that thedels upon which the filters and
controllers are designed will not necessarily b ¢hme. This is the significant aspect
developed in Chapter 3.

For the MMAC, it is necessary to presume thaffilker-assumed parameter value
is fixed in parameter space and that the contrallem be selected from a set of
controllers. Thus, of the three modified LQG cotlér designs discussed in Section 3.2,
the modified LQG with a selected controller gain sinde used as the elemental
controller. This is required since the discret@atfor the MMAC places the filters in
parameter space as opposed to the controllerds the case for the filter, it is assumed
that the controllers are designed based on modelha neighborhood of the actual
system model. Thus, the performance evaluatiotisbeiin terms of fixed filters and
controllers that are selected.

The development begins with the specificationh&f model for the filter in the

MMAE. I[f the filter is based on a model with tharpmeter,, then the state is given by:
Xy (ti) = @, (t,,8)X, (8) + By, (t)u (4) + Gy, ()W, (L) (4.15)

However, as discussed, the corresponding contrgien is designed based on a

controller model separate from the filter and trotbdels. This controller gain vector is

specified byGZk. where the k™ denotes this difference in models.n&@w the equation for
control becomes:
U (t) =-G X, (t") (4.16)
Now it is assumed that the MMAC has converged tsingle filter/controller

combination and that the control is given by thengarresponding to the selected filter.
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Hence, the control for the truth model correspaiadihe control of the kfilter selected
by convergence in probability to 1. So now thetoarfor the true system is given by:

P =1 = u.(t)=u,(t) (4.17)
and by substitution, the expression is given by

U (t) ==G_ X, (t") (4.18)

This form of control is identical to the controller the development of the MMAC
reviewed in Chapter 2. The modification simply mpes the terms corresponding to the
controller gain. Thus, the development will follalwe MMAC and, without further

derivation, the state equations are given as (rEcalation (2.67)):

|:Xt(ti+1)]_|:(®t _BdtG::k'KkHt) _BdtG::k'(l —KHy) :||:Xt(ti)]

)A(k(ti-ﬂ) ((I)k -Bdelk')K kHt ((I)k _Bde::k')(l -K kH k) f(k(ti-)
) - (4.19)
-B,G_ K
+|: dt Ck* k :|Vt(t|)+|: dt:|Wdt(ti)
((I)k _Bdeck')K k 0
As in Chapter 2, define
_ (q)t_BdtG::k’KkHt) _BdtG::k'(l _Kka)
Mod = ; ) (4.20)
(q)k_Bdeck')KkHt ((I)k_Bdeck')(l _Kka)
and
G -B, G K
LMod :|: & at Ck* \ :| (421)
0 ((I)k _Bdeck’)K k

The output autocorrelation of the augmented systgpress in Equation (4.19) now is

written conveniently as:

S N | T
E{|:§(k(t;l)i|[xt (ti+1) Xy (ti+1)]}_“k(ti+1)_TMod'-‘k(ti )TMod+LM0dQ0L Mod (422)
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Define the upper left quadrant &, as ¥, = E{xt xtT} which is the expression

necessary for Equation (4.2) to be used in the uewiah the cost function in

Equation (4.1). Of course, in Equation (4.22) will be used in the expression

Equation (4.14), which is part of the Baram measaleulation to determine the filter
that has absorbed all the probability at steady st@hat determination will be necessary
for the discretization algorithm discussed in te&trsection.

4.2.2 Modified MMAC Discretization

The discretization algorithm for the modified MMA@Illows the general form as
discussed in Section 4.1. What is implicit in gm@nventional MMAC discretization
algorithm is that the control gain matrix and Kammfdter of the inherent LQG control
structure are available for the evaluation of thgat autocorrelation. This assumes that

the LQG controller designs for each parametgr.(a,) have been accomplished. Of

course, the typical MMAC will use the conventioddDG design in specifying the
Kalman filter and the controller gain. This stepthe discretization will change for the
modified MMAC. Hence, rather than using the staddbQG design approach, the
modfied LQG design from Chapter 3 is used. As #igelcin this section, the filter is
fixed to the parameter and the best controller gaitbetermined from a model-assumed

parameter value in parameter space.

4.3 The Modified MMAC with Enhanced Robustness

The modified MMAC with enhanced robustness is apragch to add robustness to the
MMAC through design of the LQG controller element®©ne may argue that, if the

MMAC is adaptable, then the there is not a needdbustness. However, the MMAC is
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adaptable for the specified parameters, but notogieted parameters. Thus, there is a
potential advantage for the elemental LQG contrdtibe robust to parameters not in the
parameter space specified for the MMAC. A secomidtdo consider and the subject of
this section, is that at steady state, the addjjais limited to the number of LQG
controllers that form the MMAC. Thus, though theMMC is adaptable, there is the
potential for enhanced robustness to the limitatioihadaptability.

Consider that at steady state, there is in effety one LQG controller. That
controller is of course selected because it is ameg@ of the filter with the highest
probability, which is closest (in the Baram distanmeasure sense; see the next
subsection) in the specified parameter space tdrtizesystem. In all instances except
those in which the filter model happens to matehtthth model, the LQG controller will
not be the best design for the true system. Aalthlily, if the true system parameter
changes, that will not affect the selected filtesieady state until the parameters have
changed significantly enough such that anothegrfils closer in probability. Thus, the
LQG has to be robust enough to account for the gmimn the system, even for the
parameters for which it is meant to adapt.

The development of the modified MMAC with enhangetlustness will follow
the development in the previous section. Sincedthdition of the robustness is an
extension of the modified MMAC, much of the devetagnt will be presented without
further derivation. Before the design approactiegeloped, the next section defines the

region in the parameter space over which the cthatrshould be robust.
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4.3.1 Robustness Defined by the Baram Boundary

The amount of robustness necessary for the LQGatertelement can be addressed in
part by the amount of change in the system paranf@éned over the parameter space)
until a different filter absorbs all probabilityAt steady state, the filter that will attain the
available probability is determined by the Bararstalice measure [3,4,5,56] computed
for each filter as expressed in Equation (4.12)he Tomputation of the individual
distance measures in Equation (4.13) is, in fafipation of the assumed true parameter,
a. Of course, as the true parameter varies ovempdnameter space, there is a point
where the filter with the minimum Baram distanceaswge transitions to the next filter.
Figure 4.1 is an example of the transition pointtiie one-dimensional case. This
transition between the two filters is defined asBlram boundary When at steady state
and a specific LQG controller has been selecteel,ctheange in the system parameter
basically has to cross the Baram boundary beforadgactent LQG controller is selected.
Thus, a certain degree of robustness of control twe region defined by the Baram
boundary has the potential to improve performarves that region.

Evaluation of the Baram boundary is a matter ohgoting the Baram distance
measures over the parameter space and notingatigtion of minimums between filters.
This of course requires enough evaluations of Eooa(4.13) for each parameter
dimension in order to obtain a refined mappingr the one-dimensional case shown in
Figure 4.1, the Baram boundary can be easily fduynd search over the parameter space
using the bisection method. The one-dimensionalke calso yields easily defined

boundaries that can serve as the region to defieerdbustness of the controller.
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Figure 4.1 Baram boundary between two filters irapeeter space

However, multi-dimensional parameter spaces willsmiikely yield more complex
boundaries than does the one-dimensional case.

There is of course a tradeoff for the robustnd3sfine a measure of robustness
as the RMS value of the performance evaluations avgiven region of possible true
system parameters. Performance at some pointssuififlér in order to improve the
overall RMS performance across the designated qgouif the parameter space. For
application of the robust LQG techniques, the qaadb be solved in the sequel is how
to determine how robust the controller should be.

4.3.2 Performance Evaluation of the Modified MMACwith Enhanced Robustness

As noted in the introduction, the modified MMAC tvienhanced robustness is a simple
extension to the modified MMAC discussed in thevmes section. The modification
only involves the specification of the controllazig matrix. Filters in the MME portion
of the MMAC still provide the state estimates. iAghe previous section, it is assumed
that the controller is designed using a model thay not be the same as the filter model
or the truth model. Thus, the development begssnathe previous section with the

controller gain specified b@ik. where the k” denotes this difference in modelhie T
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control is specified as in Equation (4.18). lidels that Equations (4.19) through (4.22)
are the same for the modified MMAC with enhancedalsiness.

In the previous chapter, to design a LQG controllgh enhanced robustness, it
was assumed that the filter model was also difteirem the true system model as well
as the controller model. That detail is also cegutun Equations (4.19) through (4.22).
This is different from saying the filters that detene the probabilities for blending are
different from the filters that form the state esites. An approach that uses models for
the filters that determine the controllers that @s® different from the filter models that
form the state estimates for control is the subpé&ection 4.4.

4.3.3 Discretization of Modified MMAC with Enhanced Robustness

Discretization for the conventional MMAC placespesified number of LQG controllers
designed for a single point such that the cost tfancgiven by Equation (4.1) is
minimized. Adding robustness to the control eletheneans that the LQG controllers
are not designed for a single point, but for a aegabout the point. In the design
approach to LQG with enhanced robustness from @hdhtthe goal was to create a
radius of robustnesabout a point in parameter space. To apply ththé MMAC, the
regions of robustness are placed in parameter $paeéurn the minimal cost. Now, it is
a matter of how to determine the regions.

Recall that, in Chapter 3, the design of the LQ@toller with robustness was
for an assumed truth model specified by single tp@m parameter space. The
modification to the LQG design incorporated a sedor both a filter and a controller
that would minimize the output correlation evalabtwer a region of deviation from the

assumed truth model (defined by the radius of rvmss). Similarly, for the
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conventional MMAC discretization scheme, the fdtare placed to minimize the output
correlation over the entire assumed parameter spadéne result is that each
filter/controller combination provides the best fpemance for the portion of the
parameter space specified by the Baram boundarpweker, those controllers are
designed for a singlpoint in parameter space, whereas the robust LQG @tatroller
combinations will be designed for a specifredion
For the application of robust LQG, as shown inuFgg4.2, the filter/controller

combination has a designed amount of robustnessce $She hypothesis’ conditional

probability is computed based on the filters inK&E, the discretization must use as

the filter-assumed value to place in parameterespddius, the design of the robust LQG

controller will use the filter specified bg, and find the best controller gain matrix
specified bya,, for the region defined by the robustness radibsuta,. In this

approach, the design point is the same as thelfitation rather than finding a filter that
might be different from the design point. Thisaislight modification to the original

LQG description with enhanced robustness, as @atlin Chapter 3. Only the full-state

Radius of Robustness

_________ \/ I I A \/ e __
AN AN
afk ack
Baram Boundarylower) \ ) Baram Boundaryupper)

Filter/Controller
model separation

Figure 4.2 Placement of filter/controller for robusss

85



feedback controller must be determined for therddsiadius of robustness rather than
designing both the filter and the full-state feedbeontroller.

Discretization for the modified MMAC with enhancedbustness requires two
actions to occur simultaneously, the placemenheffilters and the design of the control
gain matrices associated with the filters. Thetmbdrassociated with the filters will affect
their placement and, of course, the associatednBa@ndary. However, if the goal is
to provide robustness over the entire region ddfimg the Baram boundaries, then the
Baram boundaries have to be determined prior talésgyn of the control. But, coverage
over the entire region defined by the Baram bouedamay not provide the minimal
cost. Thus, the approach taken in this researth specify the filter locations and the
associated region of robustness. The cost fundhoi&quation (4.1) now becomes
dependent on not only the filter location but alse region of robustness about the filter

location and is now expressed as:

E{y"Wy}da
jda
A

wherer is the radius of robustness. Equation (4.23) takes into account the radius of

Joe(r) = IA

(4.23)

robustness that is inherent in the modified LQGigfeshat is not expressed in cost
function in Equation (4.1).

Incorporating the changes to account for the changhe evaluation of the cost
function of Equation (4.23) and the design of tlbust LQG controllers slightly
modifies the discretization algorithm from Sectidrl. This modified algorithm for

MMAC with enhanced robustness is given as:
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1) Describe in terms of the parameter veeothe truth model of the system, the

2)

3)

4)

5)

fiter and the controller, and the radius of rolessr, for each filter

controller combination

Choose the number of filters, K, in the MMAE.

Choose a representative parameter £et {a,, a,, ..., & and an initial set

of radii of robustnesR = {r,, r,, ..., r,}, to begin the minimization.

Use a numerical integration technique to evaluate Equatigr).J

a)

b)

d)

Design the controller for the parameter st and the corresponding

robustness of radiuR.

ComputeZ,  using Equation (4.22) at discrete points in the parameter
space (fom, value)for each filter: k = 1,...K.

At each discrete point evaluate the proximity measure U@Bjndor k =

1,...K to determine the convergence to a single elemental fdteradler
with the maximum probability at steady state. Denote thagctes
filter/controller assel

For the selected filter/controller, determifg _ from the upper left

partition of =,  saved from the previous evaluationz)f for k=1,...K

el

and use in the evaluation of the cost function.

Use a vector minimization technique with the functional evaluation from

Step (4) to minimizd, (r).
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4.4 A Generalized MMAC Approach

In the previous sections, the modified MMAC design approach remogedtiventional
restriction that the controller models for the regulator designthe same as the
corresponding filter models. As a further extension to the mddiRBMAC, the
approach outlined in this section proposes to replace the regulmdrcéaassumed to
multiply an inputX) with a modified LQG controller (assumed to have a measurement
input, z) based on the design method from Chapter 3. This proposed architecture
illustrated in Figure 4.3 separates the design of the componemts Rarallel Filter Bank
(PFB) design and control element design. Thus, for this implenmntétere are three
design models: PFB design models, controller Kalman filter desigdels, and the

controller gain design models. As in the typical MMAC struetuhe conditional

Parallel Filter

Bank Control
Computation
S ————— 7 e 7
! u
| I LQc 1 ] |
I Kalman : r T Control /I_l |
| Filter 1 1 1 |
: Based ora, T I I
]
| 1 |
| I e | U I
Kalman !
| Filter 2 b | L_Control !
| Based ora, T —> : :
I
£ . L cl T u
Lot | | | Pl [ |
| | Lo | |
I u
I ! | LQG K ] !
I Kalman | Mg : Control I—H |
: Filter K I | I
I Based orgy : | :
L_________________l ee———————— —_ e —_——— e
Hypothesis zl
Conditional |
Probability I
Computation P

Figure 4.3 Modified MMAC structure using LQG as the control elements
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probability computation is used to assign the relative weightingjseoélemental control
components. Thus, the elemental control components are tied to the yPHE b
probability weighting.

Some of the main characteristics of the MMAC algorithm sgdply to the
generalized MMAC approach. First, control is derived from a blenafinge individual
LQG components. This blending occurs until the PFB has settled pmititeat which a
single filter has assumed all the probability, which is theorsgcsimilarity. The
Hypothesis Conditional Probability Computation converges to a sinigg fvith a
probability of one (or some defined upper bound, as covered in Section 4.hdly, F
though there are now three models for the design, the two modéhe foortrol element
are directly tied to a corresponding model in the PFB by the pildpaweighting.
Though the three models are different, they form a model triplestimgsof the Kalman
filter gains of the PFB and the Kalman filter gain within tiG@G controllers and the gain
matrix of the controllers, respectively, and designatedyK.., G;)

The advantage of the GMMAC is that it can mitigate the ttideetween
discretization for optimal control and for optimal parametemnegion performance. The
disadvantage of the typical MMAC is that the filters are usethe elemental LQG
controllers and must be discretized for optimal control. As redaweChapter 2, this
discretization is not the same as is used for optimized panaestimation. Similarly for
the GMMAC, since the individual LQG controllers are logicalBdtito the filters in the
PFB, there will be one discretization of those filters thatwilke provide the optimal
control. However, the elemental LQG controllers are only logi¢edd to the filters in

the PFB and do not rely on the state estimates from the REB fib form the control.
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Thus, though the filters in the PFB are discretized for some atiterion such as
optimal parameter estimation, the individual LQG controllers sti# designed for
optimal control.

As discussed in the previous section, at steady state a flteglen the PFB will
have the maximum available probability for the region of paransgace as determined
by the Baram bounds. The corresponding LQG controller is desigrieeloptimal over
that region of parameter space. Further, the aggregation of omantabl over the
ranges associated with the filters does not necessarily gmimal control over the
entire range of the parameters. To illustrate the effeCtBFB filter placement in

parameter space, Figure 4.4 shows the performance for two difféiseretizations of

0.16
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Figure 4.4 Comparison of two different PFB discretizations for the geretdMAC
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the PFB. Indicated on the plots is the performance of the sectadfier the range of
parameter space for each implementation. The difference nariges is a result of the
discretization. Though each controller is optimal over the correspgpnuarameter
space, the performance is clearly different over the commoonseg The optimization
also has to take into account the regions that are not in common. thbdusadeoff
between optimal control and optimal parameter estimation sistsgXut the versatility
of the GMMAC at least allows for optimal control over the subeéthie ranges of the
parameter space. In comparison to the MMAC, it is expectedibet will be some
points where the GMMAC is not lowest curve when performancengpared point-for-
point, but the integral cost of the performance over the entiesrgder space will be the
smallest.

4.4.1 Generalized MMAC Performance Evaluation Equation Development

As with the previous developments, the first step in design of theajeed MMAC is
to develop the performance evaluation equation. The goal is to detdimeisteady state
output autocorrelation that will be used in Equation (4.1). Unlike theique
developments, there will be additional states from the full-$estdback controller that
will be a part of the evaluation. Thus, the state equations to corsaléne PFB filter
models, the truth model and the models used in the state estimators of the controllers.

First consider the state equations associated with thesfitethe PFB of the

GMMAC. The propagation equation of the Kalman filter in the bank is based on the

model given by the parameter vec&and is given by:
X () =(Dk§(k(ti+)+8dkuk* (t) (4.24)

The constant-gain full-state feedback controllers are implemented iorthef:
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Ue () = -G X (&) (4.25)
where the propagation equation of the Kalman filter for the conts#doan the model
given by the parameter vecty is given by:

X (t71) = @ X (1) + By U (1) (4.26)
The update equation for the Kalman filter in the FPB is given by:
X () =%, () +K [z, -H, ()X, ()] (4.27)
and the update for the Kalman filter in the control element is:
X (t7) =X (7)) +K (o [Z, —H X, (£7)] (4.28)
For both Kalman filters, the measurement is given by:

z, =H x,(t)+v, () (4.29)

Now substitute Equation (4.29) into Equation (4.27) to yield:
X () =01 -K H)X () +K HX () +K, v, () (4.30)
Likewise substitute Equation (4.29) into Equation (4.28) to yield:
X (@)= =K H )X () +K H X (6) +K v () (4.31)
Equations (4.30) and (4.31) are the expressions for the update equatitins RIFB
filters and the state estimates in the controller that avessary for the final form of the
state equation developed next.
First, for the filter propagation equations, substitute Equation (4.25) into
Equation (4.24) to yield:
Xi (1) =@, X, (t7) =By G X (1) (4.32)

Now substitute Equations (4.30) and (4.31) into Equation (4.32) to yield:
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R (t70) = @ ((1 =K H )R, () +K H X, (6) +K v, (1))

. L (4.33)
By G ((I —K e H )Xo (7)) +K o Hx () +K v, (ti))
Combining terms and further simplification yields:
2 (1) =@, (1 =K H O )+ (@K, By GleK e Hx, (1) .30

“By G (| =K o Hy R (1) + (@, K, =B, GheK o V(1)
Equation (4.34) demonstrates that, since the controller output is fieel RF-B, the filters
are dependent on the true system and the control state estimates.
Next, the truth model equations are derived in a similar procaduras done for
the MMAC in Chapter 2. The propagation equation for the true systdmnthe control

from Equation (4.25) substituted into the expression is given by:
X, (tiy) = @ X, () =By G oK (1) + Gy W, (t;) (4.35)
Now substitute Equation (4.31) into Equation (4.35) to yield

X, (tig) =@ X, () = BdtG::k* ((I -KH k*))A(k* (t7) +K o H X () +K v (8 ))

(4.36)
+Gdtht(ti)
Combining like terms and further simplification gs:
Xt(ti+1) = (q)t - BdtG;k*K k*Ht)Xt(ti )~ BdtG::k* (I “KHy ))A(k* (ti_) (4.37)

B, G KV, (1) +G Wy, (t)
Clearly, since the control is fed to the true systthe state equations from the controller
appear in Equation (4.37). However, what is nafbtg missing are the state equations
from the filter. This, of course, is because thatwl is not explicitly derived from the
filter in the PFB.
Now, since the controller elements are separatm fthe PFB elements in the

GMMAC, the state description for the Kalman filtafsthe controller must be included
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in the evaluation. The state estimation propagagiquation for the controller, with the

control from Equation (4.25) substituted into tix@ression, is given by

X (L) = P Xy (ti+) - Bdk*G*ck*)A(k* (ti+)
=(@, -B,.Clp R (1)

Now substitute Equation (4.31) into Equation (4.@8Yield

(4.38)

R (05) = (@ =B Gl (1 =K wH )X (67) +K W H X () +K oV, (1)) (4.39)
Grouping like terms yields:

R, (67) = (@, B Gl K H X, () + (@, ~Be Gl JI =K H R, ()

* (4.40)
+(®, By Go Ko v. 1)

Now the state equations can be written convenjiemtihe augmented form as:

X, (t,) (©,-B,G. .K.H,) 0
)A(k(ti_ﬂ) = ((I)kKk_Bde::k*K )H (Dk(l_Kka)
%, (t2) ((I)k*—Bdk*G’;k*)KkHt 0
~B4Gy (I - H) X, ()
-B, Gk( He) | % @) | (4.42)
(@ ~ByGi I ~K oH ) | R ()
Gdt _BdtG;k*Kk*
o (kak—Bdke;k*Kk*)H"f;’}
0 ([®.-B, G K. 1V
From Equation (4.41) define:
((Dt_BdtG*ck*Kk*Ht) 0 _BdtG*c ( ka)
Tew=| (@K, -B, G K. H, ®(-K,H,) -B,G.(l-K.H.) |[(4.42)
(@, -B,.G.. K .H, 0 (@, -B,.G.. NIl ~K o H,.)
and
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Gdt _BdtG::k*Kk*
=l 0 (®K,-B,G..Ky) (4.43)
0 (®.-B,.G\ K,

L

Gen

The state autocorrelation can now be written as:

Xt(ti+1)
Eq| X (t) [XtT(ti+1) )A(kT(ti:ul) )A(k*T(ti:q)]

Xpe () (4.4

= Ek (t|:-l) = TGen Ek (ti-) TT + L GenQOL-r

Gen Gen

T T
The output autocorrelation is given by {\EWy} Etr(WC‘I'XtC ), where

‘I’Xt: E{[xt][xt]T} is the upper left partition oE, .. Finally, the cost to be minimized is

given by Equation (4.1).

4.4.2 Baram Distance Measure for the Generalized MMAC

In order to evaluate the performance measure in Equation (4.13eldeed controller

has to be chosen, which of course is determined by the hypothesisawigitobability
computation based on the residuals from the PFB portion of the GMMAC. As is done for
the typical MMAC [56,57], the filter that is assumed to have th&mum probability at
steady state is the filter with the minimum of the proxynmeasure given by Equation
(4.12) and Equation (4.13). For the generalized MMAC, a modificasiorecessary in
order to disregard the portion of the autocorrelation associatedthtfilters in the

controller. This change vyields:
N, =[H, -H, 0g_[H, -H, O (4.45)
whereE, _ is the state prediction autocorrelation computgcEquation (4.44) andH,

andH, are the output matrix of thd'Kilter of the PFB and truth model, respectively.
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4.4.3 Generalized MMAC Discretization

Discretization is defined as the determination loé bptimal placement of filters in

parameter space. For the conventional MMAC, tharotler gain is designed based on
the parameter locations. For the GMMAC, not ohly tontroller gain, but also the state
estimator for the control element is designed based different point in the parameter
space from that assumed by the filter in the PPHBowever, the architecture for the
GMMAC is defined such that the control element ssaxiated with a corresponding
filter in the GMMAC. Hence, when one filter hassasied the maximum available
probability, there is a corresponding control elatrtbat is active.

Since there is a one-to-one correspondence betthesiilter in the PFB and the
control, the discretization still involves placitige filter of the PFB in parameter space,
similar to the process used for the conventional MM At the parameter location for
the filter, a generalized LQG controller is designerhus, the discretization algorithm
follows similar steps as the conventional MMAC fr@hapter 2 with the modification
from Section 4.2, and is summarized as follows:

1) Describe in terms of the parameter veeothe truth model of the system, the

filter in the PFB and the controller element.

2) Choose the number of filters K in the PFB.

3) Choose a representative parameter set, &, ..., &} to begin the

minimization.

4) For each parameter in the representative parasetda , a,, ..., a,}, design

a generalized LQG elemental controller.
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5) Use a numerical integration technique to evalulagecost function given by
Equation (4.1).
a) ComputeZ, using Equation (4.44) at discrete points in theapeater
space (fora, value) for each filter: k = 1,...K and the corresponding

generalized LQG controller element.
b) At each discrete point, evaluate the proximity measusing Equation
(4.12) and Equation (4.13) with the modificatiolrfr Equation (4.45),

andg, _for k =1,...K, to determine the convergence tonalsi filter.

c) For the selected elemental filter, determil‘l{gzt from the previous

evaluation ofg, for k = 1,...K and use in the evaluation of thetcos

function.
6) Use a vector minimization technique with the fuoktl evaluation from
Step (5) to minimize,]).

This discretization algorithm can be slightly miaeti in order to use the PFB to
provide the best parameter estimate. Rather tiyargtto place the filters in the PFB for
best control, the filters in step two are set aditwy to the discretization for optimal
parameter estimation as reviewed in Chapter 2. rétmaining steps for determining the
optimal LQG controller remain the same.

4.4.4 Lower Bounding of the Probability for the Gaeralized MMAC

As is the case with the typical MMAC, it is necayst place a lower bound on the
probability weight that is assigned to each coidroklement in order to prevent
probability lock-out. In order to account for tlsever bound on the probability assigned

to the controller, the performance equations neemdlude the probability assigned to
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each controller element. To implement this loweund, assume all the controllers will
have a probability weight of p except for one controller. That controller wikve a
probability expressed as:
Peer= 1 -Prin(K-1) (4.46)
For the GMMAC, the probability assigned to eachtoaller element is derived
from the filters in the PFB. To yield the contrtile probability is then assigned to each
controller element as:
Ue (6) ==PG g X () = P,G e Ko (1) oo = PG X (1) (4.47)
Since this control is input to the filters in thEB the state equations will be expressed
as:
R, (t72) =@, %, () =By, (PG LR (1) + P,C oy Rou (1) ... + PGl R (1)) (4.48)
Now substitute the filter update equation and egarderive:

%, (t) = @, ((1 =K H )% 0+ K H X, () +K v, (1)
~ DB G (1 =Ko Hy )% (6) + K H X, (1) +Kov (1))
~ DBy G (1 =K e Hp )% (67) + K e H X, (1) +K v (1) ..
~ DBy G (1 =K o H )R (7) +K o H X, (1) +K v, (t))

(4.49)

To develop the equations for the Kalman filterhe tontroller element, the control from
Equation (4.48) is substituted into the propagasignations to yield:

R (tn) = DX (1) =B (G K (6) + P,G 1y Ron (8) .. + PGl R (7)) (4.50)
Now incorporate the filter update equation and exipa yield:

Rie (t) =@y (1 =K o H )R (7) +K W H X, (1) +K v, (1)
— PBu G (1 =K Hy )R (67) + K H (1) + Koy, (1)
~ B G (1 =Ky H )R (67) +K e HL X, () + K v, (1)) ..
— PeBu G (1 =K Hy )R (1) + K H X (1) +K v, (1))

(4.51)
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Finally, the propagation equation for the true eystwith the control from Equation

(4.48) substituted into the expression is given by:

Xt (ti+1) = (I)txt (ti ) - Bd; (plG::l*),Zl* (ti+) + sz::z*)A(z* (ti+) .ot pKG’::K*),ZK* (ti+)) (4 52)
+ Gdtht (ti)
Now substitute the filter update equation into tiestult and expand to yield:

X, (i) = @ X, (t;)
— By Gy (1 m K HL )R (7)) + K H X, () + Koy, (1)
— B G (1 =K e Hp )% () + K H X () #K v, (1) .. (4.53)
— B G (1 =K o H )R (1) + K H X (1) +K v, (1)
+G Wy, ()

Simplification yields:

K
X, (t,,) = (P, - Bdtz PG K HOX (t) = PB¢ Gl —KLH )X () ...

=1
K
= PeB oG (I =K H )R (67) = (B4, D p,Go i K )V, (&) (4.54)
j=1
+Gdtht(ti)
Now, the augmented state equations that form tieestep prediction model for

the GMMAC use Equations (4.49), (4.51), and (4&4] is expressed as:
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I K
D, —Bdtz p,G. K H,
_ _ j=1
X (ti+) K *
o ®K,H, -B,,> pG..KH,
Xl(ti+1) j=1
~ : . K *
X (o) |=] @K H, —BdKz p,G. K H,
~ _ j=1
Xl*(ti+1) L .
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Now from Equation (4.55) define:

K
D, —Bdtz PG, K H,
j=1

K
@K H -By,> pG. K H,
j=1

"k
TGenLB = (I)KK KHt _BdKz ijCi*KJHt
j=1

K
®.K,H, ~By. > pG..KH,

=

K
®.KH -Bg.> pG; K H,

L =
0 0
@ (I -KHy) - 0
0 o @ (1=K Hy)
0 0
0 0
-pB. G (1-K.H) - —pBuGi.(l-KH) ]
- plelG;l*(l _Kl*Hl*) - DKBdKGZK*(l -K K*HK*)
- pleKG;l*(I -KL.H.) - pKBdKG;K*(I -KHy) (4.56)
((I)l* - plele*cl*)(l _Kl*Hl*) - pKBdKG::K* (l -K K*H K*)
- plelG;l*(l _Kl*Hl*) ((I)K* - pKBdKG::K*)(l -K K*H K*)_

and also define:
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Gdt _BdtG::nomz ijj

=

K
0 (q)lKl_BdlZ ijcj*Kj)
=1

Tk

Lgens =| O (@K _BdKZ ij*Cj*Kj) (4.57)

=
K

0 (®.K.-Byu) pG,.K.)

.J:1
: : < *
0 (@K =By pGK)

=

By substitutingT ..,z andL .., 5 for T, andL .., respectively, Equation (4.44)

Gen Gen

computes the state autocorrelati®@),.. The output autocorrelation used in the cost
. . T T T ..
evaluation is given by & Wy} Etr(WC‘I'xtC ), and'¥, = E{[x][x] } is given by the

upper left partition of=, = as before. Additionally, the discretization process for the

parameter space will not change from the previous section. Itysioggls the cost
evaluation as just described.

4.4.5 LQG Controller with Enhanced Robustness Control Element

A variation to the GMMAC is the addition of enhanced robustness trotfteol element.
Recall that, for the modified MMAC with robustness from the previsestion, the
robustness region was centered about the point that specifiedténefdi the state
estimate. The gain control matrix had to be designed for theedasibustness around
this point and using the filter from the MME. However, for the medifLQG control
with robustness from Chapter 3, the assumed true system waderedghe center point
around which the designer specifies the radius of robustness. q0endg, the design

method finds the best filter and controller to provide the besbimeaince according to
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the performance measure for robustness. The assumed truth nmleetemdidel, and
controller model may all be different. Although this is not posdititethe modified
MMAC with enhanced robustness, it is possible to have different maodéis the
GMMAC with a robust control element approach.

The derivation of the GMMAC with a robust LQG control element ienta
combination of the previous MMAC enhancements. Similar to the MMAG w
enhanced robustness approach from Section 4.3, Equation (4.23) that descrdoss$ the
function to be minimized is the same for the GMMAC with a robuSGLcontrol
element. This cost function captures the region of robustness ésdaeitn the control
elements and the assumed placement of the filters in paraspat®. The evaluation of
the performance can be taken directly from the GMMAC derivatidaquations (4.41)
through (4.44) and Equations (4.55) through (4.57) for implementation of lower
bounding. The filter state equations for the PFB reflect the rcpatet about which the
designer specifies the radius of robustness. The LQG stataoaguedflect the LQG

control design portion. Specificallig,. andsz* specify the'J Kalman filter gain for the

state estimation and the full-state feedback controller gain, respectively

Figure 4.5 illustrates the possible separation of the LQG &alititer model and

Radius of Robustness
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<
|
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Baram Boundarylower) \ J Baram Boundaryupper)

Filter/Controller
model separation

Figure 4.5 Robustness region covered by controller and filter with diffei@ohlm
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controller model from the assumed PFB filter model. The digetein algorithm will
determine the PFB filters’ parameter value locations and thasr@f robustness. The
radius of robustness will determine the Filter/Controller locatibthe enhanced LQG
controller element. The Baram boundary does not necessarily thaitradius of
robustness. As determined by the optimization, a more conservatreeage of the
parameter space might extend the radius of robustness beyond thel®anadary. On
the other hand, complete coverage of the Baram boundaries may not phevideimal
cost and the radius of robustness might be less than the boundaryedistanasual, an
average performance over a region will require some points ter snfperformance in
return for improvements elsewhere.

The optimization process guarantees stability. The costeilininimized and
any design that yields an unstable performance will be disteda The design is for the
closed-loop control in which the MMAE portion is integrated into the cetegliMAC
design. Such is the case in the conventional MMAC for which the @ption places
the LQG controllers (without enhanced robustness) so that the coshimized. A
successful optimization would not allow for designs that are unstalblthe MMAE
portion of the GMMAC were designed without regard for the contsjli¢hen to
guarantee stability, the controllers would have to be designed sucthé¢heobustness
region covers the whole Baram boundary set by the MMAE.

The discretization algorithm for the GMMAC with robust contrééngent
requires only one modification to the one used for the Modified MM enhanced

robustness equation given in Section 4.3.3. The change involves speciiviodjfeed

104



LQG controller with enhanced robustness to be used in the cost emalgaten in
Equation (4.23). This modification is:
4 a) Design the modified LQG controller with enhanced robustnesshéor
parameter set and the corresponding robustness of radius
As before, the discretization algorithm using Equation (4.23) doesequire that the
radius of robustness be specified prior to the discretization. driteotter’s robustness
will affect the filter locations in the PFB and vice versaie Dptimization will produce
the optimal filter locations for the PFB and enhanced robustness ofottteoller

element.

4.5 Variance of the Proximity Measure

Since models in the bank of filters may not match the true sysitenproximity measure
developed by Baram and discussed in Chapter 2 is used to detémmiriesest filter in
probability for computing predicted performance. As discussediqusy, the
performance prediction algorithm assumes that the MME bariRKB) selects one filter
and does not consider any blending that may occur before the sgsieimes steady state
conditions. The amount of blending depends on “how fast” the filter temukes steady
state such that one filter has assumed all the probability.coOfse, blending also
depends on lower bounds on probability placed on the filters in the bank ahdouse
prevent probability lockout. The factors contributehtow fastthe filter bank reaches
steady state is yet to be determined. This section attemplow that performance can
be related to the variance of the proximity measure.

The Baram measure uses the covariance of the residual® tisene is apread

in the residuals, at points in parameter space around the Baram tyouheaame filter
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will not be selected from one simulation to the next, given thae taee different noise
histories. This variation in selection of the filter will eff performance. Thus, it is
desirable to predict this variation and include it in the performance predictimnitiaigs.
The spread of the distribution of the predicted filter models chogethdo
proximity measure about the true system model is essentiaflyvariance of the
proximity measure. The variance of the proximity measure, whkiderived from the
covariance of the residuals, essentially equates to the fourth moment clidalse
4.5.1 Computation

To compute the variance of the proximity measure is to compute the variano® of, .

With substitution, the variance is expressed as:
Poam, = E{(rkT A;lrk)z} - E{(rkT AElrk)}z (4.58)

From Baram’s work and as used in Sheldon’s, the predicted meanofalyéA'r,

(directly related to the second moment of the residual vectan thek™ filter is given

by:
E{rkT A;lrk} = trace(M N k) (4.59)
where
N, =[-H, H.]&.[-H. H]J (4.60)
and
M,=HPH, +R, (4.61)

For the case of scalar measurements, Equation)(#e8Aces to :

efrray =N/ 4.62
{k K k} M, (4.62)
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To compute the autocorrelation Qf A;'r, directly use the result from Maybeck [33] to
obtain the following:
Ta-l Y ) 2 ) )
el A, F = [racdwn, JF + 2tracdm N M N, ) (4.63)

For the case of scalar measurements, this redoces t

E{(rkTAglrk)2}= 3('\' %A j (4.64)

Now substitute Equations (4.59) and (4.63) into &quns (4.58) to obtain the final form

of the variance:
O = [racdm N, ) + 2 tracdm 2N, M N, )

~[racdm N, )f (4.65)
=2 tracdM 2N, M 7N, )

For the scalar-measurement case, this reduces sirtiple form

a? =2(N/ )2 (4.66)
rkTA;]'rk M K

Continuing with the scalar-measurement case, thgatation of the predicted spread of

the proximity measure for a one-sigma bound becomes

0, E(Iog|Mk|+N%/lk)i\/§(N%/lk) (4.67)

4.5.2 Analysis

The effects of the variation of filter selection tme proximity measure will be most
notable when the true system approaches the Bapamdhry. This boundary is defined
as the set of points in parameter space where rtlee dystem exists such that the
proximity measures for two adjacent filters are ieglent. As an example, for two

adjacent filters k and k+1, this condition is exgz@d as
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Uy =l (4.68)
Without consideration of the variance of the praxynmeasure, the boundary has been
previously considered a transition point from oileerf to another. It is clear from
Equation (4.67), that the transition from one fili@ the next occurs over a region.

For example, consider two adjacent filters as showFigure 4.6. The proximity
measure and one-sigma bounds are computed aceopaitimeter space for each filter.
The filter selected for an MMAE or MMAC is determaith by min(fk,€k+1) over the
whole parameter space. The typical MMAE and MMAfdiction algorithms only

consider the boundary to be whetg=/,,,. In the region designatet="/,, it is clear

Figure 4.6 Proximity measure of two adjacent filters with one-sigma bounds.
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that 7, </,,, and it follows that/, </,,,+o0, and/, -0, </(,,. However, this

example shows the possibility that, near the boundary, there are masshich

tyto, >, andl, +o, >{,,+0, . Now consider the region designatéd/,.,.

There is the possibility that,,, +o, >/,. These cases demonstrate the potential

ambiguity in selecting a filter. Given that there is a agri@ the possible selection of the
filter, the boundary/, =¢,,, may not be conservative enough for the prediction
algorithm that is used in parameter placement.

A more conservative optimization algorithm can protect ag#esambiguity in
the Baram boundary due to the sigma bounds on the proximity measu@del to
make the optimization algorithm more conservative, a larger boudééeymined by the
sigma bound for each proximity can be used. The example showssigoree bound
where some of the boundaries do not cross to form a potential crogsmrer The
proximity measure and sigma boundaries are system-dependent aitdatiiuse up to

the designer on how conservative to make the boundary determination.

4.6 Summary

In this chapter the MMAC architecture is developed further avd aygproaches to
design are presented. The investigation is based on the discoveredeandiats for the
LQG controllers considered in Chapter 3. Since the MMAC is aafigrdomprised of
LQG controllers, the work is easily extended and adapted. Theektshsion is the
enhancement to the point designs for the LQG. Improved performative ioidividual

LQG components is applied to improve the performance of the MMA&db#son those

components. The second application of the modifications to the L@ isnhanced
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robustness. In this case, the goal is to be robust to the iongaif the MMAC, namely,
the limited number of LQG controllers in the MMAC. Finally, the GMMAC
architecture, a separate LQG controller fed by the sensasurements replaces the
single controller gain matrix. This is an actual change taittigitecture, rather than just
a design change to the LQG components. This approach allows foretidinigl of
computed control independent of the filters that are used to deterheneontrol
weights. For all three modifications to the MMAC, the perforneaaealuations and
optimal discretization algorithms are developed.

Two additional areas of research have been presented. Hmsipachange to
the Sheldon discretization algorithm is discussed. The changéyrtaek advantage of
the fact that the proximity measure can be calculated ftioen closed-loop state
autocorrelation computation and the output autocorrelation can be obtainedhigom
same calculation. This approach is more accurate than that sshbgsESheldon and
saves computation time during discretization. The second aregpofviement was the
computation of the variance of the Baram distance measure. rdrstion from one
filter that covers a portion of the parameter space to the sextboundary that has a
variation. The mean together with the variance of the Baratandes measure predicts
the portion of parameter space over which the transition from aee fd the next
occurs.

Clearly, the MMAC approach blends the output of the LQG controlt=rsrding
to the computed conditional hypothesis weighting. The next chaptertigates
MMAE-based control, in which the state estimate is blended and thdéiplrad by a

gain to form the control. The research for the MMAE-based cootmaiributed to the
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MMAC approaches developed in this chapter. It should seem lothatlthe two
approaches, though having the aforementioned basic differenceloaety related in

some respects. This will be seen more clearly in the next chapter.
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Chapter 5 - MMAE Based Control Development

This chapter discusses the research accomplished to advancsigineathel evaluation of
the MMAE-based control architecture. As stated in Chapter Jrigmal intention of

the current research was to develop and demonstrate improvements A&-bdded

control by modifying the single full-state feedback controllertlat architecture.
Therefore, the design and performance improvements for the tys@@l controller

discovered along the way and demonstrated in Chapter 3 will betusetrove the
MMAE-based control. However, the full-state feedback control elenseist one

aspect of the MMAE-based control development.

Another area to be investigated is the analysis of varioush®ssinfigurations
of the MMAE-based architecture. Two general forms otisecture with several
variations are considered. The first form investigated istypecal implementation
characterized as using state estimates from an MMAE to feedralt®mgain. A second
configuration, alluded to in Chapter 2, is structured as an LQG cantiekigned on the
fly based on parameter estimates from an MMAE. The analydessef architectures are
developed and comparisons with the MMAC are discussed.

As with the MMAC design, each of the stated approaches to Midged
control requires a method of discretization of the parameterespdcurrently, an
optimization-based method of discretization does not exist for attyeohpproaches to
MMAE-based control. As will be discussed, discretization for Is¢éste estimate or
parameter estimate in the MMAE portion alone does not providesiasoéution for

MMAE-based control. This final area of research presents tizatien approaches for
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each of the proposed architectures that are derived from tin@gaes developed for the

MMAC.

5.1 MMAE-Based Control Architecture Development

This section establishes the MMAE-based control architecturesvilhdde examined in
subsequent sections. Novel architectures and modification of typpabaches are
considered. Typical of MMAE-based control is that each desigroapp is based on an
MMAE used as a state and/or parameter estimator in tanddmavabntrol element of
some form. However, unique aspects for the proposed approaches arentie ima
which the information from the MMAE portion is used and the formhaf ¢ontrol
portion.

Consider the MMAE-based control elements as presented in Chapt@he@
MMAE portion takes measurement inputs and produces state and parasigtates.
These state and parameter estimates are formed using théilgsolactor of weights
associated with the elemental filters. This vector is not nbrmsed other than to form
the estimates. Now consider the control element component of the Bviddsed
control. The typical control element takes a state estinta® the MMAE and
multiplies by a gain to obtain the control. The control elementoisventionally
determined by the parameter estimate. Modifications to theatydesign or selection of
the control element and the form of the control element itselfastticted to a full-state
feedback gain matrix, are subjects of investigation in the sequel.

5.1.1 Control Element Selection
The concept ofelectinga controller refers to using some table look-up type scheme to

determine the control to apply. THesign on the flapproach actually performs a design
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of the controller element in real time. Each of these two appesahas its advantages
and disadvantages.

The advantages and disadvantagedesign on the flare related to performance
and implementation, respectively. Clearly, a controller impleetenith any synthesis
technigue using actual design parameters will outperform any appation of the
controller using the same design techniques or any synthesid ba approximations of
design parameters. Of course, the obvious disadvantage is the coonptitaé and
resources required to perform the synthesis online. The syntheside accomplished
faster than any changes in system parameters upon which tige desiased. For a
sampled data system, the control should be updated before the subsequent sample.

The advantages and disadvantages for the table look-up approach to secify
control are diametrically opposite to those for design on the flgpproach. Therefore,
time and computational resource conservation are the main berletigkes very little
time and computational resources to select the control from ad dfaloée. Clearly,
approximation of control is the main disadvantage. There is oniyigd number of
discrete models that represent the system on which to pedontrol synthesis. The
more controllers that populate the look-up table, the closer the apptaxinaall be to
the true system. Another aspect to selecting the control caatbgorized according to
what information is used and how is it used to obtain the approximatdtbller from
the look-up table. Typically, estimates of the system patars are used as indices in
the table. As previously mentioned, the probability vector thatad us forming the

parameter estimate is additional information that may be deresi as an alternative or
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an augmentation to the parameter estimate itself (i.e., teadsprf the density function
for parameters may be useful, as well as the density’s center of mass)

This dissertation investigates the table look-up approach for teetise of a
control element. In practicality, the implementation of MMAE-loasentrol will be
driven to this approach because of computation time and resources.dédgn on the
fly will be the limiting best case for any approximations basegarameter estimates.
Thus, of course, architectures based on table look-up using a dismetinhtthe
parameter space and being fed by an explicit parameter esignane of the possible
architectures for further study and development. Two other artimés for study are
based on the additional information given by the vector of probabilities for the.filte

Consider the potential advantage of using the vector of probabilgsexiated
with the filters in the control selection scheme. Clearlystage estimate and parameter
estimate are both based on the probability weighting of thelp@d$sier models. Using
the parameter estimate to select the control can be problenfait considering that a
single estimate can be derived from more than one probabilightvdistribution. For

example, given three filters placed at arbitrary values,pA4 and A and the parameter
estimate is A. Then the parameter estimate is determined by
A= P,ATPALTPA, (5.1)

Eliminating one of the probabilities and rewriting in terms of the other twdsyie

A= (LP,PIA, + PAADA, (5.2)

P = (A+PA; PAYALA,) (5.3)
This coupled with the fact that = 1p,-p,, yields the result that @onuniqueprobability
vector can be associated with any specified parameﬁenadast,&, given an arbitrary
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location of filters A, A,, and A. For example, if A10, A=20, and A=30 and the

returned parameter estimateAs= 25, then Table 5.1 gives some possible probability
values. It is clear from the entries in the table that one alolatw for a parameter

estimate may not be adequate, since different control strategiés be optimal for the

various possibilities in Table 5.1, yet they correspond to the Aame

Py P, P;
0.15 0.20 0.65

0.10 0.30 0.60
0.05 0.40 0.55
0.00 0.50 0.50
0.05 0.60 0.45

Table 5.1 Possible probabilities for parameter estimate example

Consider two methods for using the unique information provided by the
probability vector. The first such method is not exactly a tid@k-up approach, but
rather uses the probabilities as weights. The second method usslentents of the
probability vector as an index into a table of predesigned controllers.

Using the probabilities as weights on a set of predesignerbtterd requires one
controller design for each element of the probability vector. Simeeslements in the
probability vector are associated with a filter, the contradletesigned to correspond to

that filter. The control is determined by:

G.(p) =D PG.(ay) (5.4)
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A controller is designed for the parameter valyefor k = 1...N, where N is the number

of filters. The parameter value corresponds to a filter, but it is not ndbedsasame as
the filter parameter and is thus denoted.as

Note that in Equation (5.4), the controllers at each discrete peirfikad. Thus,
the control that is applied to the state estimate from the MNBAR function of the
probabilities. In Equation (5.4) the probabilities are used to blend #eeggned
controllers. Clearly, this is different from using the paramestimate derived from the

probabilities to select the control from a table. This appraagkry similar to that used
for the MMAC, but for generating versusG_ andX separately. Blending preserves the

uniqueness of the information from the probabilities rather than iglmoacured in it in
the parameter estimate.

The second approach that uses the probability information is adaklep using
the elements of the probability vector as indices. The number oésdradimensions of
the table is equivalent to the number of filters. Each index nhapsassible range of the
probability for the filter, i.e., in the range of 0 to 1. The nundfeelements for each
index determines the discrete values of the probability. Accdyditige size of the table
will be the number elements for each index times the number oesmdichich is the
number of filters). The controller in the look-up table is optimifmadthe probability
vector values that correspond to the indices. The probability vector fosethe
optimization is also the same probability vector that forms thte sstimate. This
approach provides a unique mapping from the probability used to derive atiee st
estimate to the corresponding control. This mapping is not unique fqratheneter-

estimate-based table look-up approach. As demonstrated previousigleapsErameter
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estimate can be derived from more than one probability vectothasdthe mapping is
not unique. Both of these approaches will be further developed in Section 5.3.
5.1.2 Type of Control Element

The second major attribute in the MMAE-based control architectureonsider for
modification is the controller element. There are three diffeapproaches to control
considered in this research. Subsequent sections present the optiesigedfor each of
these proposed architecture implementations.

The first approach to control is to use an MMAE to obtain te gistimate that is
fed to a full-state feedback controller gain matrix. The contrgién is non-adaptive
and typically designed for some nominal plant. The only adaptiveeatlem this
architecture is the state estimator. Thus, as will beuslsgd and demonstrated, this
control approach is only as effective as the robustness of the feedback conthatlierisw
specified by its gain matrix.

A second approach alluded to in the previous section and the one thastis
typical, also uses adaptive state estimation, and in addition, nsadagtive selection
scheme to determine a full-state feedback controller gainelis Whe typical approach
assumes that the parameter estimate accurately destibpknt to be controlled, and
that passing such a parameter estimate to the feedback ayaputation process is
sufficient for adaptation purposes. Thus, there is adaptation of theslcgaheration
process as well as the state estimation process. Howewdiscassed in Chapter 2, there
is an inherent trade-off between obtaining accurate state and parastebates. As will
be discussed in the sequel, this trade-off does not exist for optini@ble look-up

schemes.
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A third and novel approach to MMAE-based control is to use an MMAE torobt
a parameter estimate, which is then used to select a diQgke controller. This is
different from the previous two approaches since the MMAE-gesgestite estimate is
not used and the control element is a single full-state feedioattoller. This approach
does not suffer from the trade-off between parameter and stteagon since the
MMAE portion needs only to be designed for parameter estimation. As with theysevi
control approaches, the LQG determination can be accomplished witleetion
scheme. Obviously, more information has to be stored in the look-up haiplguist a
gain matrix.

The three proposed control element implementations along with kbetice
schemes are all similar to the MMAC in some respectshduld be apparent from the
subsequent MMAC and MMAE-based control comparison discussions thdulthe
benefits of any of the proposed approaches may only be obtained by donfoncad
blending, perhaps by a moving-bank type method [37,44, 63,64,65]. This is dee to th
fact that the proposed architectures are all dependent on the MM piBvide the state
and parameter estimates that will reach a steady whie corresponding to the filter

locations.

5.2 MMAE-Based Control In Comparison to MMAC

Relevant work in MMAE-based control was reviewed in Chapter 2 ssparate but
similar approach as MMAC to adaptive control. The resemblanceebptihe two
implementations is worth investigating in order to lay the founddborthe MMAE-

based controller design discussion. This section utilizes theatyipiplementation of
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MMAE-based control: Control element selected based on paramtteatesinformation
fed by the state estimate from the MMAE.

Though extensively developed in Chapter 4, for comparison with MMAEdbase
control, first reconsider the MMAC approach to adaptive control. Eésmmeatal
controller output is calculated from the state estimate outpuheffitter and the
controller based on the paramedgr

U, =G (3%, (5.5)

The control is computed as the probability-weighted average of ‘the

N
u :Z P Uy (5.6)
k=1

Thus, in terms of the probabilities, state estimates and camtigdlins, the controller
output is given by:
u=-pG (@)% ~ PG ()%, -~ PG (@y)Xy (5.7)
Now consider MMAE-based control in which the controller is evalliftased on

the parameter estimage This gain is multiplied by the state estimate to yik& dutput.

Thus, the control output is calculated as:
u=-G (&)X (5.8)

With the state estimate calculation expanded by:
~ N ~
X=> P (5.9)
k=1

the control output becomes:

u= _GZ(é-)(pl)A(l + PX, e PuXy)

(5.10)
=-pG (@)X, = P,G ()X, = PG ()X
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The controller gain is evaluated according to:

G.(8) =wG,(a,) +W,G (a,,) - +W,G.(a,,) (5.11)
where G (a,,) is the point controller designed basedagn the K" discrete point in the
discretized uncertain parameter space. The weightiis determined by the controller
evaluation algorithm or table look-up. Now, sutgion of the controller evaluation

Equation (5.11) into Equation (5.10) vyields thel fe@xpression for the control

computation:

u=-p, (WG (a,) * WG (@) +++ Wy G (A )%

P (Wlez(acl) +W2.G;(acz) MR VICHCRY )))A(Z (5.12)

- Py (WG (@) + WG; () +++ W, G (3, )R,

Note that the control table can have a larger remnab entries than parameter
estimators and the weighting of entries does nwé lt@ be probability based, as was the
case for MMAC. In fact, the weighting between m#rcould be some nearest neighbor
based weighting which would allow zero weighting foost entries in the table. In
addition, by allowing a finer discretization on tb@ntrol gain table, the interpolated gain
value based on a derivex] will approach the controller gain value desigred that
givena. Thedesignon-the-flyor controller look-up function as part of the MMAfased
controller will be covered in more details in Sens 5.3.3.

With the two expressions for the MMAC and the MMABRsed control derived in
Equations (5.7) and (5.12), direct similaritiesvizetn the two methods can be discerned.
In order to bring the form of the MMAE-based colhtstructure closer to that of the
MMAC, certain conditions are required. First, & assumed that the MMAE-based
control is implemented with a table look-up appfoacSecond, it is assumed that the
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controllers in the gain look-up table are desigried on the same parameter locations
as the controller gains for the MMAC. This obvilyusequires the number of gains in
the table look-up and number of elemental filteos the MMAC to be the same. In
addition, the discretization of the parameter sgacehe MMAC is the same as for the
parameter space for the MMAE portion of the MMAEsed controller. Finally, the
interpolation between the entries in the controfjain table has to be equivalent to the
estimation calculation based on probability weighti This condition is equivalent to
setting

w, =p, Ok
in Equation (5.12). Thus, the gain table look-spiobability-based and the controller

calculation is expressed as:
* ~ N *
Gc(a) :zkaC(aCk) (513)
k=1

The evaluation of the controller becomes a functanthis expanded parameter
estimation and the controller output is accordirgtpressed as:

U="pG.(a,)+ PGc(@,)  PGe(@n)I(PXy + P&, pyky)  (5.14)
This expression can be expanded to yield a speasa of the equation for MMAE-based

control:

u=- p1(plG*c(ac1) + sz*c(acz) teoeet pNGZ(acN))s\(l
- PG @)+ P, @)+ PG (), 5.15)

~ Py (plG::(acl) + pZG’;(acz) oot pNG::(aCN ))RN
Clearly, the MMAC and the MMAE-based controllerg aot equivalent. The

controller gains for the MMAC correspond to the @fie state estimates. For the
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MMAE-based controller, each state estimate is mligtl by a gain based on probability-
based blending of all possible point designs indbmtroller table. The differences are
illustrated more clearly by rewriting the controllequation in terms of vector matrix

notation. The MMAC is expressed as

A

Xl
u=-[Gi(a) Gi(a,)...G.(@ay)][diag(p,l, pl, -+ pyl)] X2 (5.16)
Xy
and the equation for MMAE-based control is
U Y L B
u=-[61@a,) G.@,)..G.(a)] "™ P! P2 Pul 2 )
Pyl PuRl o PRI Xy

The inner matrix in Equation (5.16) and in Equat{bri?), is based on the probabilities
which clearly show that there are cross termsHerNIMAE-based control not present in
MMAC. These cross terms cannot be considered giblgi Take the case in which
there is a group of probabilities that are closd abviously not near one; the off-
diagonal terms will be nearly equivalent to thegdiaal term. Also, consider that the
diagonal terms are the square of the diagonal terintee MMAC. Obviously, since
probabilities are always less than one, the p teith the largest probability will be
reduced by the squaring operation. In fact, indfigm (5.17), adding thé"jcolumn of
blocks in the second matrix on the right-hand siéerly yieldsp|, as would adding the
j™ row of blocks.

As presented in Chapter 4, the optimization of MMAC only considers the

steady state point to evaluate the controlled systAt steady state, it is assumed that the
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single filter has a probability of one. As illusted in Figure 5.1, the MMAC architecture
reduces to single filter that feeds a control gamtrix and the probability multiplier is
one. All other filters and associated gains ardamger part of the MMAC at steady

state. In this case, the output in Equation (5ta6)say the'] filter, becomes:

Xl
5\(2
u=-[Gi(a) G.(a,)...Gi(a)...G.(ay)][diag00, - 1+-0)] X (5.18)
j
_RN_
which reduces to
u=-G,(a)X; (5.19)

Now consider the MMAE-based control and take allamapproach to evaluate
the performance at steady state. As with the MM&W filter in the MMAE portion of
the controller will assume all the probability &¢ady state. As shown in Figure 5.2, as

was just discussed to be the case with the MMAE,althitecture reduces to a single

Multiple Model Estimator Control
| (MME) Computation
! ! i
z—> | g s
] X; i nBt ;
i+ |  Kalman Ly -G! > — U
: Filter | " c !
1 Based org, :: :
i ¥ p=1 !

Figure 5.1 MMAC control computation at steadyestat
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i Kalman ) —>-G = Uu
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H Based org, :: i
i p=1 ! i

Figure 5.2 MMAE-based control at steady state.

filter that feeds a control gain matrix. Againneier that the"j filter has assumed all

the probability at steady state and Equation (ShEtpmes:

00 -0 - 0|[%

00 -~ 0 - 0Of%,
u=-G.(a,) G.@.,)..G.@.)...G.@ )]E C 0 O o0

(o3 Ccl C c2 (o4 CJ C CN 0 0 0 | o s‘(J

B

00 0 0 - 0%

which reduces to

u=-Gi(a, )%, (5.21)

Clearly from Equations (5.19) and (5.21), it isdewt the control for MMAC and
MMAE-based control are identical at steady sté&eecifically, the two different control
architectures produce the same output when a sfitiglein the respective architectures
has assumed a probability of one. Further, regasdbf the type of feedback gain look-
up scheme implemented for the MMAE-based controllentrol at steady state reduces

to a state estimate that feeds a control gainrefbee, any performance improvements of
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the MMAE-based control over the MMAC must only kealized in the transient since
steady state control will be identical.

Now consider the output for the two control apgtess during the transient
phase. From Equation (5.16), it is evident thatMMAC performs a linear blending of
the control according to the probabilities untéasly state is reached. For the MMAE-
based control as proposed in this section, theraloigt non-linear in the probabilities
assigned to the filters and really should not besatered a table look-up selection of the
controller. Of course, the MMAC approach is ndahble look-up of full-state feedback
control gains either. However, Section 5.3.3 valesent a different approach for

determining the feedback gain thétl be based on a table look-up scheme.

5.3 MMAE-Based Control Evaluation and Design

This section develops design procedures for thkitature modifications proposed in
the previous sections. These procedures are vikasto the methods for the MMAC
as discussed in Chapter 4, but adapted for MMAEta®ntrol. As was the case for
MMAC, it is first necessary to develop a performaravaluation measure. In order to
maintain consistency for comparisons with the MMAI@& performance criterion will be
the steady state position autocorrelation. Theipus section established the fact that
the form of the evaluation equations will be vergitar to the equations for the MMAC.
With the performance evaluation equations estaddis subsequent discussions
define the procedures for designing the componaitse architecture. MMAC design is
concerned with discretization of the parameter spathe newly developed techniques
for discretization in Chapter 4 utilize a given at of predesigned filters and

corresponding controllers. Again, from the disowss in the previous section, it should
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be apparent that an approach similar to that usetthé¢ MMAC will determine where the
filters reside in parameter space for the MMAE-blasentrol. Thus, the remaining
design element is the controller portion of thepmsed architectures. Controllers must
be designed for each possible point in parametacesphat may be indicated by the
controller selection algorithm.

Each discussion of the proposed MMAE-based couatrchitecture will conclude
with analysis of projected advantages and disadgast of each scheme and
implementation issues. Of course, any advantagelisadvantage may be viewed
differently when one implementation is compare@nother. So, where appropriate, the
proposed architecture is compared to both the MM#h@ other MMAE-based control
implementations. The analysis provides a genasgssment of results for the example
problem discussed in Chapter 6.

5.3.1 MMAE-Based Control with Nominal Controller Element

This basic MMAE-based control architecture has aninal controller as the only
possible control element. Hence, there is not rarober selection scheme. 1t is the
simplest architecture to implement in terms of catapon requirements. Note that this
structure is a special case of the MMAE-based obrdrchitecture introduced in
Chapter 2. As shown Figure 5.3, rather than udirgparameter estimate to select a full-
state feedback controller gain, the state estimsét to asinglecontroller gain based on

somenominalcontroller design.

5.3.1.1 Performance Evaluation Equations
As with the previous architectures, performancduaten development begins with the

derivation of the steady-state output correlatiqnations. Since this architecture builds
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Figure 5.3 MMAE-based control with a nominal cofigo

upon the MMAE similarly to the MMAC, the derivatiomill follow the same procedure.
Likewise, the equations will be similar to thosedhapter 2 for the MMAC.

The derivation begins with the basic equationtfa control. With a controller
gain matrix that is designed based on a nominait ptathe space of possible parameters

that describes the possible plants, the contrekjsessed as:
u(ti) = _G’::(tl ’anom)s\(MMAE (ti+) (522)
The state estimate from the MMAE can be expandstktd:

u(ti) = _G::(ti ’anom){ pl)A(l(ti+) + pzf(z(ti+)"'+ pN)A(N (ti+ )}

) . : o X - .. (523
= _pch(ti ’anom)xl(ti ) - pZGc(ti ’anom)xz(ti ) - pNGc(ti 1anom)XN (ti )

Now denote the gain matrix as:

G,  =G.(t,a

cnom

(5.24)

nom)

which simplifies Equation (5.23) as:
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u(t) ==p.G,, . Xi(t") = PG Ko () = PyGrorXn () (5.25)
Now, as was the case for MMAC [56,57], assume #lhateady state, one of the filters,
say the K, will have a probability of one. Equation (5.28w reduces to:
u(t) =-G,, . X (t") (5.26)
Except for the controller gain matrix, the controEquation (5.26) is identical in
form to the MMAC. Thus, the performance equati@nivhtion will follow that for the
MMAC. Thus, without repeating the derivation fro@hapter 2 and now using the

notation for the nominal controller gain matrixetstate equations are:

Xt(ti+l) ((D BdthnokaHt) Bdthnom(l_Kka) Xt(ti)
()] [(®@ ~ByGron)K H, (@, =By Gro )1 =K (H,) [ %, (&)

L(D BdBtGgomK)K} () + [ }wdt(t)

cnom

(5.27)

Again, this assumes that one filter has assumed all the probability at stetdy

Now define

. {(q, “ByGlrorKiH)  =BuGinn(l =K (L) } (5.28)
(@ Bde )KkHt ((I) Bdecnom)(l_Kka)

cnom

G -B,G. K,
Loom =] & ¢t cnom (5.29)
0 (@ -B,G. )K

cnom

and the statistics for the noise as:

W, (t) T Qo) t =t
E{[ vt }[wdt (tj) (t )} { {2t (5.30)
where
_ th(ti) 0
Qo (t) —[ 0 Rt(ti)} (5.31)
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The output autocorrelation of the augmented systmtime t,, can be written

conveniently as:

E{[;t ((ii_ﬂ))}[xt-r (tie) )A(kT (ti_+1)]} =5, (1) = Toom B () Trom +L nomQOL-lr-mm (5.32)

This equation is identical to the expression foe tMIMAC. However, the main

difference is that the controller gain now is nellated directly to any particular filter.
Thus, the controller may not correspond to tfiefiker as specified in Equation (5.27),
but to some other point in the parameter spacecolingly, the evaluation of Equation
(5.32) will differ from its MMAC counterpart. Thevaluation is not just a function of the
filter locations, but also the parameters that descthe controller. Hence, the
discretization algorithm will be slightly differeftom the MMAC and it is expected that

the resultant discretization of the parameter spalt@ot be the same.

5.3.1.2 Discretization Algorithm
Although the MMAE-based control with a nominal aafler is the simplest architecture,
it is a little more complex to design than the MMAQ\Now, not only is the optimal
placement of filters to be determined, the optiplacement of the controller has to be
specified as well. This is only a slightly morevatved procedure than simply
determining which is the optimal controller foriagie filter location because there is not
a one-to-one correspondence.

To determine the optimal placement of the filles, with the MMAC, the cost
function minimized is the output squared over thege of possible values of the

parameters and is expressed as:
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(5.33)

_ jA E{y Wy}da
J, =
¢ IAda

where EyTWy} Etr(WC‘I’XtCT) and ¥, = E{[xt][xt]T}. Though Equation (5.33) is

identical to the cost function from Chapter 2 for the MMAC discussiothis case the

cost is a function of the filter locations and nominal controller design point.

The discretization algorithm is very similar to the MMAG@dathe steps are

summarized as follows:

1)

2)

3)

4)

5)

Describe in terms of the parameter veetothe truth model of the system,
the filter and nominal controller.

Choose the number of filters K in the MMAE.

Choose a representative parameter $g% {a,, a,, ..., 8, a,,,; t0 begin

the minimizationa,,, specifies the parameter for the controller.
Use a numerical integration technique to evaluate Jhis evaluation

depends on determining to which filter the MMAE-based control will
converge and determining the nominal controller. Determination of the
convergence is discussed in Section 2.5.3.

Use a vector minimization technique with the functional evaluation from

Step (4) to minimize,].

5.3.1.3 Probability Lower Bounding and Transient Response Evaluation

As noted in Chapter 2, in order to negate the effects of filterdatkthe filters can be

designed with an assumed artificial lower bound. To implemest Itwer bound,
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assume all the filters will have a probability gf pexcept for one filter. That filter will
have a probability expressed as:

Peer = 1 -Prin(K-1) (5.34)
This of course can be incorporated into the design of the MMAE-conittolawnominal
controller. However, important to the MMAE-based control developmeheiability to
assess the performance in the transient phase.

Given that the steady state responses will be similar ifdeotical to MMAC, a
measure of the performance of the transient phase will giessessment the benefits of
the MMAE-based control approach. Previous development in this sesBamas that
the system has reach steady state when one of the filethdanaximum probability.
Developing a performance measure for implementing lower bouridmtpe MMAE-
based control with a nominal controller provides the capability faxssessment of the
transient phase, or in other words, before one of the filterasmsned the maximum
probability.

The derivation of the autocorrelation equations for implementing Ibanding
borrows the results from the MMAC development. The control expresséduation
(5.25) is of the same form as the MMAC. However, the main difteras that the
controller gainG;, _is applied to each state estimate rather than a diffgeemtfor each
state estimate. Thus, the performance measure equations withiter to the MMAC.
Each controller gain in the MMAC expression is simply replacil the single nominal
controller gain. The state equations with lower bounding are givemowtitfurther

development and are expressed as:
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*

K
((I)t _BdthnomZ ij th) _Bdt pchnom(l _KlH 1)
j=1

Xt(ti+l) K (I) (I —K H )
%) || (@K H, =ByGond PK H,) [ ' o }
= _Bdl plGCnom(I _KlHl)
X (t) L& .
((DKK KHt _BdKGcnomz ij th) _BdK pchnom(I _KlHl)
L =
_BdtpKanom(I _KKHK) Xt(ti)
_BdlpKGcnolgn(I -KHy) ,(t7)
®, (I -KHy) R ;t')
* X .
_BdeKGCnom(l_KKHK) ] KA
_ o -
_BdtGCnomZ ijj
i=1 ) Gy,
- * 0
+ (q)lKl Bd16Cn0mJZ=1: pJKJ') Vt(ti)+ : Wdt(ti)
) . K 0 (535)
((I)KKK _BdKGcnomz ijJ)
L = i
As usual, this is can be expressed in the form:
X (tisr) X, (t)
X, (t X, (t~ w,, (t
1(-|+1) = Thomis 1(-| ) +Ln0mLB|: dt( I):| (5.36)
: : v, (t)
Xy (t1) X (t7)
whereT, . zandL . ;are expressed as:
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nom-LB

dl plG cnom (

_Bdt pKG::nom(I -KH K)
_Bdl pKG;nom(I -KH K)

|:(I)K(I_KKHK) :|
_BdK pKG::nom(l _KKHK) i

and
_ * ‘ -
Gy, - BdtGCnomZ PiK
=1
K
L B = 0 ((I)lK 1 - Bd]_G Cnomz p]K ])
nom- =1

: : ‘
0 ((I)kKk _Bdecnomz ijJ)
j=1 i

with the statistics for the noise as:

w,, (t) Qot) t =t
E{|: Vt(ti):|[ & (t) Vi (t )]} { ti ¢tj

where

Qo(ti)=|:th(ti) 0 i|

0 R(t)

The output autocorrelation of the augmented systetimet,,, is written as:
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((I)KKKHt_BdKGcnomz ijth) _BdK plecnom(l _KlH
j=1

K
((I)t _Bdthnomz ijth) dtplGCnom( KlHl)
=

R q>1(|— HY)
T = (q)lKlHt_BdlecmmzijJHt)
= —KH))

) (5.37)
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X' (t4y)
5\( (tl:- ) Y - < - — -
E ' ' [XtT (ti+1) X1T (ti+1) XKT(ti+1)] ==y (ti+1) (5.40)
X (t20)
= TnomLB Ek (ti-) T-r:omLB + L nomLBQOL-:\omLB

Equation (5.40) is now used to give a performaassessment when there is a

possible distribution of probabilities. Of courise the discretization of the parameter

T T
space, the cost function expressed in EquatiorB(5u3es Ey Wy} Etr(WC‘I'XtC )
where ‘I’Xt: E{[xt][xt]T} from Equation (5.40). For evaluating the transient phase,

T
E{y Wy} can be evaluated over the range of the possible probabilities. Gfecour

Equation (5.40) can be determined for a finite horizon, which is a Ipeddictor of the
transient phase. The point when steady state has been reaktitedenmine that finite

horizon.

5.3.1.4 Discussion
Implementation of MMAE-based control with a single controller gaia special case of
the MMAC and MMAE-based control with selected feedback contrak dimilar to the
latter but with only one selected control, and it is similarthte former under the
condition that each elemental controller gain is identical. In faethematically, the
MMAC with a single nominal controller gain for each elemefittdr is the same as the
MMAE-based controller with a single controller gain.

The single advantage of the nominal controller MMAE-based control agprea
the simplicity of its form. An algorithm to select the cong&plls not necessary and

storing one controller gain matrix is minimal compared to otip@raaches for which
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there are multiple choices of controllers. However, the computeumee savings for
implementation is not significant in comparison to other MMAE-basedrollers. The
number of operations to compute the control once the controller is sdesifi be the
same for any other MMAE-based implementation.

Clearly, the disadvantage of the nominal controller approach ighbtasingle
gain must be robust enough to meet performance requirements foritbgamge of the
uncertain parameter space. One cannot hope to attain theesanef lperformance as is
achievable by a full-scale MMAE-based controller. As pointed ofdgréethe single
controller gain is a reduced form of the MMAC. Thus, it offers lebustness than the
MMAC.

The difference in computation and computer resource usage for the singl
controller gain and the MMAE-based control or MMAC control is nohificant for
most cases. Therefore, the single gain MMAE-based controlnoiathe ideal approach
for most control systems.

5.3.2 MMAE-Based Control with a Blended Controller Element

This section further develops the MMAE-based control with blendettaler approach
that was used as the basis of comparison with the MMAC indBest2. The MMAE-
based control from the previous section employed a single nominal ¢em&md thus
did not require a selection scheme for the controller. The bleratddblter approach
uses several predesigned controllers but also does not usetansedeheme based on
optimization of a cost function. As illustrated in Figure 5.4,ghabability vector from
the MMAE is used as a weighting on the controllers. The raguifain matrix is then

applied to the state estimate from the MMAE to obtain the contédain, as was
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Figure 5.4 MMAE-based control with blended gain rncat

reviewed, this is similar to the MMAC, except in that cadee gain matrices
corresponding to the filters are applied to the individual stainasts and then the
probability weights are applied to yield the control. It followattthe design for the

MMAE-based control with blended control will be very similar to the MMAC.

5.3.2.1 Performance Evaluation Equations

The development in this section follows the approach in the previotisrsgtderiving
the performance equations. This is an implementation of the bleodédlcelement
used in the MMAE-based control comparison to the MMAC from Section Fi2e

expression for the control is a probability weighting applied to theilpeskill-state
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feedback controller gain matrices that are assedtiaiith the filters in the MMAE. The

controller equation is expressed as:

N
G e blena = z PG, (@) (5.41)

k=1

The resultant control also developed in the MMA@parison section is expressed as:

u= _Gt:blend( pl)A(l(ti+) + pz)A(z(ti+)"' pN)A(N (ti+))

. . . . . . (5.42)
_[ plec(acl) + pZGc(acz)"' pNGc(acN)]( plxl(ti+) + pzxz(ti+)"' pNXN (ti+))

Note that, in Equation (5.41), the predesigned retlets G, (*) are fixed. Thus, the
control is actually a function of the probabiliths has been assumed previously, one of
the filters will have a probability of one at stgaxtate (if lower bounds are not imposed
on the computed probabilities). In this scheme, fther probability vector is used not
only as the weight for the state estimate in the ABYIbut for the controller gain as well.
Thus, if say the R filter has assumed all the probability at steatdyes the control is

expressed as:
u(t;) =_G;(ack)§(k(ti+) (5.43)
Under these conditions, the control is identical MMAC. Hence, as was the case for

the nominal control, the performance evaluatiorl b the same as the MMAC. Thus

*

the state equations are given by Equation (5.2%) G (a,) substituted foiG and

Cnom’

the output correlation is given by Equation (5.32)Vith the controller substitution

G.(a,), Equation (5.32) can now be used in the expressdidheocost function that will
be evaluated during the discretization. The exqukwtlue of the autocorrelation of the

states for the true system‘]st vene— EALX [xt]T}.
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5.3.2.2 Discretization Algorithm
The fact that the steady state autocorrelatioth®@MMAE-based control with a blended
controller element is identical to the MMAC is amdication that the discretization
method will be identical. For the previous nomimaintroller case, the form of the
performance measure was the same but the contvadiemot linked to the filter. The
important aspect for the blended controller apgndadhat the controller is designed for
the filter location, as is the case for the MMACThus, in the discretization process, the
controller is known and iknkedto the filter.

Discretization is a matter of determining the oyati locations in parameter space
for the possible filter/controller combinations thaill minimize the cost based on the
performance measure. The cost function minimizethé output squared over the range

of possible values of the parameters and is expuess.

I E{y'Wy}da
‘]2 c-blend = (544)
J' da
A
T T T .
where §y Wy}=tr(WC ¥, ,  C) and'¥, , =E{[x][x] }. The cost expressed in

Equation (5.44) is, of course, identical to that used for the MMAC. Atise,
discretization algorithm is the same as the MMAC and the stepsepeated here as
follows:
1) Describe in terms of the parameter veetothe truth model of the system,
and the filter/controller.
2) Choose the number of filters K in the MMAE.
3) Choose a representative parameter st {a,, a,, ..., &} to begin the
minimization.
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4) Use a numerical integration technique to evaluate ,Qr_J  This

evaluation depends on determining to which filter the MMAE-based
control will converge. Determination of the convergence is disdusse
Section 2.5.3.

5) Use a vector minimization technique with the functional evaluation from

Step (4) to minimizeZ‘g-blend

5.3.2.3 Probability Lower Bounding and Transient Response Evaluation
Bounding the lower possible probability on the filters addressedliffeent issues for
this MMAE-based control approach: the design for preventing probaloitkput and an
assessment of the transient response. By deriving a performaaseire assuming that
there is a lower bound on the probability assigned for each filtenenMMAE, the
optimal discretization can be performed with the same algoritom the previous
section. As discussed previously in Chapter 4, implementing lower bounding on the filter
probabilities prevents filter lock-out at steady state. As thascase in the previous
applications, to implement this lower bound, assume all the filtéirbave a probability
of pun, €xcept for one filter. That filter will have a probabilitkpeessed as
P = 1 -p,,(K-1). However, for this research, the lower bounding also provides the
ability to assess the performance of the architecture in the transient phase

From the previous discussion, it appears that the MMAC and the Mih&&SEd
control with a blended controller element will have the saemdststate performance or,
in other words, performance when one of the filters has assumedeafirobability
(assuming no lower bound on the computed probabilities). Since, mathematically the two

approaches are different, as demonstrated in Section 5.2, the ddéferamec apparent

140



when more than one filter has non-zero probability. To assess tloenpente of the
architecture with various possible probability values across ftkersfi the output
autocorrelation equations with lower bounding from the MMAC are used.

The derivation of the autocorrelation equations for implementing Ibanding

again borrows the results from the MMAC development. From Equation (%4%2),

clear that the contrcﬂa*

wieng 1S @Pplied to each state estimate, whereas for the Mih&C

control gain matrix associated with the individual filter is duse Thus, the only
modification to the MMAC approach is that the same contBéllrend, is applied to the

state vectors. The state equations with lower bounding are giviéquagion (5.35) with

*

G, Substituted fos,, .

Cblend

*

Equation (5.40) withG substituted forGZnom is used to give a performance

Cblend
assessment when there is a possible distribution of probabilkm@sany given value of
the probability vector, there is an associated parameteradstioh the system. For the
evaluation of Equation (5.40), it will be assumed that the parameitmats reflects the
current system and will be used in the true system modelieqgsia Finally, a finite
horizon will be used in the evaluation. Since the goal is to deterp@rformance in the
transient phase, solving the Lyapunov equation to steady state woulld antaccurate
assessment of the possible transient conditions. It will be up tethgner to determine
when steady state is essentially reached and then choosetatdength of period the
transient response assessment is to occur.

Equation (5.40) evaluates the performance of the MMAE-based contitol wi
blended controller and can be used in the discretization algorithim the previous
section, if an assumed lower bounding is to be implemented. Howeiy,Euation
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(5.40) for improvement of the transient response is not possible forctmtroller
architecture. This is because the controller gain matrieefx&d designs and the filter
discretization is set during the initial design process for tikedy state response. There
are no other variables to change in architecture. The MMAE-lzs#l| architecture

in the following sections addresses improvements to the transient response.

5.3.2.4 Discussion

Clearly, the MMAE-based control with a blended controller elermsettie next level of
refinement over the nominal controller approach in the previous subrsedtiowever,
this architecture does not offer much beyond the typical MMAC. cdmrol still is
determined by a blending of the control gains by a probabilitgebaseighting scheme.
The number of possible probability weights corresponds to the number obllsont
gains, which of course in turn is the number of filters. The onlgmdifice between this
approach and the MMAC is that, for this approach, the stateassnare formed and
then multiplied by a blended controller gain rather than multiplihegstate estimates by
the controller gains and then blended the results (blended LQG conkfod.difference
was discussed fully in Section 5.2.

As with the MMAC, it is not possible to predict the transieatesperformance.
However, by using the lower bounding equations, it is possible to cerapwnvelop of
performance. This technique can also be applied to the MMAC tondeeeif the
bounds on transient performance are comparable to those of similarEMid#ed
control architectures. As was also discussed in Section 5.2, #uly state performance

will be the same as that of the MMAC.
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Mathematically, the MMAE-based control with a blended gain hasrfenatrix
multiplies than the MMAC. For larger scale problems, this difference maigh#icant.
However, if it is a matter of performance, unless either tMAK-based control with a
blended control element or the MMAC vyields a better transierioqpeance, there is
really not a significant reason to choose one architecture over the other.

5.3.3 MMAE-Based Control with Selected Controller Element

In this approach, the MMAE-derived state estimation feeds astaté feedback
controller gain that iglesigned on the flyoy invoking the separation principle of adaptive
control [36]. Rather than performing the design of a full-degeback controller gain, a
table look-up scheme is developed. As previously discussed, theveaapgroaches to
implementing a controller selection scheme: the first usegatrameter estimate, and the
second incorporates the probability vector. State and paranstberaton from an
MMAE are established approaches, as reviewed in Chapter 2. Botpathmeter
estimate and the probability vector that is used to form themasts are available from
the MMAE. Figure 5.5 illustrates the MMAE-based control archite that uses the
probability vector inherent in the estimation computations for the dtamtrgain
selection. Revisiting the previous section, the implementation urd-i5.4 is a special
case of the implementation in Figure 5.5. In both representationg;abability vector
is used to determine the control gain matrix. Figure 5.5 is aa@eadion that conveys
that the determination of the filter may use an algorithm-basésttion scheme rather
than multiplication of probabilities and gains. Use of the probghikttor toselectthe

control is a novel approach proposed herein.
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Figure 5.5 MMAE-based control with probability based controller selection

In the previous design approaches, it was assumed the performaasearen
corresponded to steady state conditions. Also the controllersxageaind do not adjust
depending on the state of the system. Change in the applied contegiulated by
external factors such as using the probability as a weight.a Edsle look-up approach,
there is more flexibility for the control to be designed foecsfic assumed operating
points. This flexibility of the table look-up approach has the poletdiamprove

performance.

5.3.3.1 Performance Evaluation Equations
As was the case for the MMAC and MMAE-based controller withominal control

element, output autocorrelation performance is evaluated at stedely é\s is typical,
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one filter will assume all the probability at steady sthtewer bounds are not imposed
on the computed probabilities. Thus the control at steady state is expressed as:

u(t,) = =G (t, SeDZyye (t) (5.45)
The control gain is defined by a table look-up scheme driven by adie dfvo proposed
methods. As shown in Equation (5.45), the controller gain is denotediastiah ofset
selis (an abuse of) notation to indicate the algorithm that is wssdléct the controller
gain. As will be discussed, there is more that one potentiattiselealgorithm to
investigate and s@el is meant to be generic. The actual selection scheme is not
important at this point, but just the fact that a single contra@lselected. Now denote

the gainG’_(ti,se) asG*Cse The form of the control expressed in Equation (5.45) is the

;
same as developed for the nominal controller. It follows thafotine of the steady state

autocorrelation will be the same. Thus, the state equationsvare lyy Equation (5.27)
with ste, substituted forGinom and the output correlation is given by Equation (5.32).

With the controller substitutiof,quation (5.32) can now be used in the expression of the

cost function that will be evaluated during the discretization. eXpected value of the

. . T
autocorrelation of the states for the true syste\i’lAtls E{[xJ[x] }-

Given that the controller gain in Equation (5.48) can be selected dty,thiee
guestion becomes how to design the feedback controller gain matioria For a fixed
uncertain parameter space, i.e., one that is not set up as a mavinghieae are a fixed
number of controllers based on a discretization of that space. Hovesvéas been
found in previous work [56,57], the best discretization for control is idénteca
discretization of the uncertain space for state estimatesveter, the MMAE will not

provide the best parameter estimate and the best statetestimaltaneously. For the
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table look-up selection approach, the best parameter estimaterexjnwed. As long as
the parameter estimate from the MMAE is consistent, then tlaengder estimate can be
a pointer into the table and the controller at the table entryligctnay not be based on
the parameter estimate, but a gain matrix that corresponds to the stadteestim

Since the steady state result for the MMAE-based contrédessame as the
MMAC, the discretization for the filters is essentially tbame as the MMAC
implementation. But the versatility of the MMAE-based conalddbws an arbitrarily
finite number of controller gains to be in the controller gaiec®&n table. The size of
the look-up table is constrained only by physical implementationatests. The points
in the table that correspond to the filter locations will obviouslthkeecontrollers used in
the evaluation of the steady state performance used for thetdigion. Since the table
contains more points than the number of filters in the MMAE, otheresnih the table
need to be determined for when the MMAE has not reached stestdy @ in other

words, for the transient response.

5.3.3.2 Probability Lower Bounding and Transient Response

Like the MMAE-based control structure that employs probakiaged blending for the
control element, probability lower bounding can be used to preventlfitterout, and
the performance equations can be used to evaluate the transponse However,
unlike the previous implementation of MMAE-based control, selectiagcontroller has
the potential of improving the transient response, since the coaird gre not limited
are not fixed corresponding to filter parameter locations. Aldrprevious case, before
the MMAE reaches steady state, there will be a distributioprababilities across the

elemental filters. Of course, those probabilities are usedt¢ondi@e the parameter and
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state estimates for the current operating point. The péeae&imate can be used in the
controller selection or the probability vector can be used as an inte& gain look-up
table. In either case, the performance can be assessed dutiram$ent response when
there is a distribution of probabilities.

The derivation of the autocorrelation equations for implementing |Ibawnding

follows the previous derivation and again borrows the results from MNAC

development. Thus, rather th@i applied to each state estimate as in Equation (5.42),
the performance evaluation uﬁ%sel as in Equation (5.45). The state equations with
lower bounding are given by Equation (5.35) V\G*pse, substituted fOIGZnom. Equation
(5.40) with GZS ; substituted forGZnom is used to give a performance assessment when

there is a possible distribution of probabilities.

5.3.3.3 Discretization Algorithms
The discretization algorithm is the point in the development wihereselection scheme
for the controller gain implementation becomes important. The peafar@nevaluation
for both steady-state and the transient response are independentafttoler selection
scheme. For the MMAE-based control with a selected contrdéenent, there are
actually two separate discretizations. The first disagtm is for the MMAE portion, as
is typically done. The second discretization populates the look-up bentyain table.
It is the definition of this table and the indexing methods intodhketthat is dependent
on the selection scheme.

The discretization for the MMAE is also independent of the timlolke-up scheme
implementation. Of course it is assumed that the controller us#ueidiscretization

provides the best performance using the same criterion used fesstiod the controllers
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in the gain look-up table. Once the parameter space has beextizisl; the entries in
the table corresponding to the filter information are incorporatad the table. The
mapping of the decision information (such as parameter essijratthe gain in the table
is the selection scheme.

As with the two previous MMAE-based control approaches, the MMAE portion is
discretized using the same approach as was used for the MMAE .objective is still
the same: discretize the parameter space such that thiy-state performance is

optimized. Again, this is accomplished by minimizing the cost function:

_J,Ely"wy}da .46
2 css T J‘da '
A

where E{yTWy} =tr(WC ‘I’XICT) and'¥, = E{[x] [xt]T}. The algorithm to discretize the

parameter space is similar to the Modified MMAC and is given as:
1) Describe in terms of the parameter veeahe truth model of the system, and the

filter. Describe the corresponding full-state feedback contrghén in terms of
a.

2) Choose the number of filters K in the MMAE.

3) Choose a representative parameter sdt= {a, a, ..., a8} to begin the
minimization and design a full state feedback controller gain gooreding to the
filter, but based on the design poagt

4) Use a numerical integration technique to evaluate Equation (5.46).

a. ComputeE, using Equation (5.32) at discrete points in the parameter

space (fom, value)for each filter: k = 1,...K.
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b. At each discrete point, evaluate the proximity measure &jndor k =

1,...K to determine the convergence to a single elemental fdteradler
with the maximum probability at steady state. Denote thagctes
filter/controller assel

c. For the selected filter/controller, determitig  from the upper right

partition of 2, saved from the previous evaluation®)f for k = 1,...K

and use in the evaluation of the cost function.
5) Use a vector minimization technique with the functional evaludtaom Step (4)
to minimize J__.
It is assumed that the controllers for this implementation ithgoryield the best
control at steady state for each filter location in paramsgtace. The best control is
obtained by using the techniques discussed in Chapter 3. The cordedign is not
necessarily dependent on the parameters used to define theofiltarch the controller
corresponds. Now, of course, this result has to be incorporated intdokadotak-up
scheme implementation. After the steady-state discrefigatnly the entries mapped to
the MMAE filters are defined in the gain look-up table. The ramgientries, which
correspond to the transient phase, are determined by an implemesfsmiic to the

table look-up approach. The following sub-sections discuss the diatimt for the

probability-based and parameter estimation approaches to table look-up.

5.3.3.4 Controller Selection by Probability-Based Table Look-up
Controller selection using a probability based table look-up approapk tha current
state of the probability vector to the index in the table of tallesfeedback gains. To

implement this selection scheme, the table indexing method mudéfioed and the
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population of the table must be accomplished. The previous section idetbrthe

discretization of the MMAE portion of the architecture, and thoseesponding

controller gains are used in the table. With those entries deegitnthe final step to
complete the gain table is to populate all remaining entrieallf@oints not considered
steady state.

The probability based look-up table is organized according to the mumhbe
filters and the number of elements per dimension of the table. Trhbenwf filters
determines the dimension of the table. For example, an MMAE-basgblter with
three filters will have a three-dimensional look-up table. The nuwitbelements in each
dimension will determine theesolution of the probability which is 1/(number of
elements —1). Thus, continuing the example, if there are 11 elefoeet&ch index, the
table size will have Flentries and each index corresponds to an increment in probability
of 1/10 (e.g. 0, 1/10, 2/10...1). Though the number of dimensions of the talge is s
according to the size of the probability vector, its sizenmtdid only by physical design
constraints on the implementation.

The first step to populate the look-up table is to map the steaidy-s
discretization points to the entries in the look-up table. The maxinmgdex value
corresponds to the maximum available probability. Continuing the previamspée,
assume that at steady state the possible probabilities fi€0,0) (0,1,0) (0,0,1)}.
Assuming that there are eleven elements for each dimension andrtheybitrarily
numbered 0...10, the corresponding table indices will be (10,0,0), (0,10, 0), and (0,0,10)

pointing to controller gain&’,(a), G.(a,), andG’,(a,), respectively. The filter locations
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&, &, and g are determined by discretization a@{d(*) is the controller gain designed
for those locations.

Since the filter locations are set, the look-up table controliesgarresponding
to the probabilities,, p,, ... py) are determined by finding the gain that minimizes the
performance measure based on the state equations for the lowmdingp of the

probabilities. In this case the cost function is simply:

o= ElY Wy} =W C ¥, C') (5.47)

C-Transient
T, . . . .
where ¥, = E{[x][x] } is the autocorrelation evaluated using Equation (5.50). The

subscript for the cost function expressed in Equation (5.47) denotes tbe pkthe
transient response, during which it is assumed that the filtgesdraassociated nonzero
probability (and not equivalent to an arbitrarily defined lower bound)calRéhat, at
steady state, all filters except for one will have zero prdbalbor an arbitrary set lower
bound).

Since the cost function in Equation (5.47) is an evaluation of theign&ns
response, a finite horizon should be considered for determining theastat®rrelation.
Solving the Lyapunov equation determines the steady state respomsevdt, the state
autocorrelation can be evaluated over a finite period to determine an avefagagere
over that period. This will give a better assessment of tHierpeance up to a point that
is to be considered steady state, rather than just evaluatiatp#itly state response (with
the assumption of nonzero probabilities on the filters). Again, excepsefting an
arbitrary lower bounding, nonzero probabilities on the filters will ootur at steady
state, except for the one that has absorbed all the probability cAfgributing to the

decision to use a shorter period over which to evaluate the cost facththat the
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probability weights across the filter will change valueshim process of reaching steady
state. Thus, it will be up to the designer to determine tiite fnorizon for evaluation, of
which a major factor is the point that is to be considered steady state.

Now, to fill in the gain table, it is simple a matter ofatetining the gains that
optimize Equation (5.47) corresponding to the indices for the table thdielkasset up
according to its dimensions. This can be summarized with the following algorithm:

1) Describe in terms of the probability vector and controller paranagtehe truth

model of the system and the filter/controller to be used in Equation (5.40).

2) Determine the number of control look-up table entries from the sizéheof
probability vector and the number of elements for each index.

3) Determine the controller that minimizes the cost functiop. J . Apply the

search across controller modetschnique described in Chapter 3 or any other
applicable approach.
4) Repeat step 3 for each valid index into the control table.
This four-step algorithm completes the look-up gain table for thgrdes the MMAE-
based control using the probability vector as the selection method.

Note that step four of the population algorithm implies that only valid entriels nee
to be considered. The fact is that a significant number of &aiees willnot be valid.
Consider the previous illustrative example that has a tableMitentries. The steady
state discretization only fills three of them and the populaticorigthgn must fill the rest.
Recall that the probabilites must add to one. For example0,(72110, 1/10)
corresponding to the index (7,2,1) is valid, whereas the probabilitprvébtlO, 1/10,

1/10) is not possible and the table entry (1,1,1) need not be considered.
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5.3.3.5 Controller Selection by Parameter Estimate Table Look-up

Whereas the previous section uses the probability vector as a taeadsx into a table
of full-state feedback control gains, the approach outlined irsdugon simply uses the
parameter estimate. This selection scheme maps the parasgteate to the table
index. Now, though there is only one mapping from the parameteraéstimthe table,
as will be described, the determination of the full state feédpain in the table can be
done in two different ways. One approach uses the parameteatesaisrthe assumed
design parameter, and the second approach incorporates the pasdblalipy vectors
that form the parameter estimate, so it uses the compftgdvalues rather than the

resultinga (t) to perform the design.

The map from the parameter estimate to the index in a sihglension is a

scaling operation and is expressed as:

Paramete¥alue- ParameteMin
ParameteRange

index= Rounr{ J* Sizeof Index (5.48)

Equation (5.48) is applied for each parameter that defines theécbiéroller models.
The number of dimensions of the table is equal to the number of differeameters. It
is assumed that the parameter values placed during the ingitaetization are in the
defined parameter value range and will correspond to entribs italble. Of course, this
only takes care of the number of entries in the look-up tablespameling to the number
of filters. The remaining entries must map the parameter estimate ta@lleont
Actually, to populate the table of controller gains, it is bestei@rmine the map
from the index to the parameter estimate. This function igoafse, the inverse of

Equation (5.48) and is expressed as:
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ParameteVaIue=( index )ParameteRange ParameteMin (5.49)

Sizeof Index
Equation (5.49) is used for each dimension or in other words, each aliftbeent
parameters that describes the filter/controller models. Tledhapopulating the gain
table now becomes a matter of determining the parameter valeadh element of the
index and performing a design for those values.

The first method to design the full-state feedback controllier gieply uses the
parameter value as the design parameter and specifies a leoritrat yields the best
control. The parameter value is, of course, the parameteragstinom the MMAE
portion of the architecture. It is assumed that this paramestenate reflects the true
system and is used in the performance evaluation. The secondassjonption is the
parameter value for the filter. Since steady state habaw®st reached, a single filter of
the MMAE filters does not form the state estimate, ratheretis a blending of the state
estimates from all the filters. Therefore, it will be wssd that the filter model to be
used in the performance evaluation is derived from the paramstierate. It is
acknowledged that the discretization for the MMAE was for the dm#trol and not the
best parameter estimate. With these assumptions, the follagagthm is proposed to
populate the gain table:

1) Describe in terms of the parameter ve@dderived from the index value), the
truth model of the system and the filter and the controller in seomthe
parameteg,.

2) Choose a representative paramatdp begin the minimization.

3) Use LQG design techniques to design controller to minimjze J

4) Repeat 3 for each table entry.
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Populating the table using the parameter estimate as theemsswa parameter
and the basis for the filter model is not an exact representitistnat may physically
occur. In fact, the parameter estimate may be formed by ona oémber of
combinations of the probabilities and parameter values of the MMAE filters.

The second method of determining the table entries compensates fact that,
for a singled, there corresponds a set of possible probability vectors that could have
yielded thata. Now, since the probability vector also forms the state ejrttaen there
also could be entire set of state estimétebat correspond to that sindle The control
that is determined by the parameter estimate may be notgshfob#he actual instance of
the state estimate. Thus, for each possible table entrystivedaxed by the parameter
estimate, a design procedure that averages the performandb®yassible probability
vectors is proposed.

To determine the best control for each parameter estifnatethe parameter

space, the following cost function is proposed:

Ja =~ (5.50)

T T
where §y Wy} =t((WC ¥,C ) and'¥, = E{[xt][xt]T} is the autocorrelation evaluated

using lower bounding of the probability expressed in Equation (5.40). The $paver

which the cost is evaluated is all the possible probabilityovesuch thah = pla where
a has been determined previously by the discretization of the MMARopoof the
architecture. Assuming that discrete values of the probalwéttor will be used,

Equation (5.50) can be evaluated as:
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XE) = > Ely Wy}, TR 0_z13= pa (550

where N is the number of probability vectors from the space aildegprobably vectors

2, that compute the specifiéd

For each possible parameter estimate that will be indetedhie controller gain
table, the gain matrix that minimizes the cost function espes Equation (5.51) will
be determined. This is accomplished by the following algorithm:

1) Describe in terms of the probability vecand the parametex, the truth model
of the system and the filter, and the parama&téor the controller.

2) Choose a representative parameje¢o begin the minimization.

3) Determine the possible probability vectors for the assume paaepstimate and

evaluate H).

4) Use a vector minimization technique with the functional evaludtmm Step (3)
to minimize Jg).
5) Repeat steps (1)-(4) for each possible parameter estimatevithandex the
controller look-up gain table.
The design of the controller gain using the above algorithm is sienjfar to the
enhanced robustness approach. Given only the parameter estimatandt be
ascertained which probabilities form the estimate. The numemssble probability
weightings also mean that there are various possible stateates, which may require
different control. Thus, using the proposed approach, performancesestially

averaged over the possible probability vector values.
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5.3.3.6 Discussion

The MMAE-based control with selected controller element is tikelaeel of refinement
over the previous two architectures. In fact, both the nominal clentedément and the
blended controller element are special cases of the skleatéroller element approach.
Clearly, if all entries in the look-up table that is used lher $election scheme contain the
same (nominal) controller element, then that would be equivalent tondhenal
controller architecture. Now, if the look-up table is sized and edidxased on the
probability vector and the gains are derived from blending gains accotdlirige
probabilities, then that would be equivalent to the MMAE-based contral bignded
control. As is typical with most control architecture designs, the gecesalarchitecture
should provide more versatility and performance at least equivaleitnbt better than,
the special cases.

Of the two approaches for selection schemes presented, using #meefgar
estimate as an index is a special case of using the propabititor. This is a corollary
to the fact that the parameter estimate is derived fromrtt®bility vector. Thus, using
the probability vector as the selection scheme is the genembods as such, is more
versatile and performance is at least equivalent to, and ibekbér than, using the
parameter estimate as the selection scheme.

The disadvantage of using the probability vector as the lofdise selection
scheme is that the size of the table most likely will bgeathan for the parameter
estimate approach. Of course, the relative size of the implatientf the two tables
depends on how fine the increments for the parameter estimatadatbe probabilities.

The size of the table is a physical constraint that must bédeoed for implementation.
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If table size is not an implementation constraint, then the menergl case of the
probability look-up table would be the best choice simply because of its veysatilit

Finally, since it was shown that the MMAE-based controhéssame as MMAC
at steady-state, it is only the performance during the igainghat may show any
improvements of one form versus the other. It is not possible tomedation of the
performance other than at steady-state because of the pétime stochastic control.
Thus, in order to assess if there is any performance improxemthe transient phase, a
sufficient number of Monte Carlo simulations will be have to be dumill be up to the
designer to determine the transient period and over which the parfoenof the Monte
Carlo simulations will be assessed.
5.3.4 MMAE-Based Control with an LQG Controller Element
As was pointed out in Chapter 2, an MMAE cannot be designed to providéeshstate
estimate and the best parameter estimate simultaneouslyABMidsed control with a
selected LQG controller element as shown in Figure 5.6 pgradidiresses this issue.
For all the previously discussed MMAE-based control architecgttinesstate estimates
are derived from blending the individual estimates from the elexh&itérs within the
MMAE structure. The residuals from individual filters are useddrive the probability
weighting for the blending of the state estimate and the cartredllection. For those
architectures, the intent is not to provide the best parametmagst but to provide the
best control.

The intent of the MMAE-based control with an LQG controller @eimis to
provide the best parameter estimate that corresponds to theiest. cThe fact that the

optimal discretizations for the best parameter estimation aneftecontrol are not the
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Figure 5.6 MMAE-based control with an LQG controller element

same [56,57] is an indication that the best elemental controltet igenerally based on
the design for the actual value of the system parameter. hWdNIAE-based control
with an LQG controller element requires a method of discresizaif the MMAE and
design of the controller that is not necessarily derived dirdotipn the parameter
estimate. The generalized MMAC proposed in Chapter 4 is #nengt point for the
development of this MMAE-based control approach. For the MMAC approheh, t
full-state feedback elemental controllers associated withetemental filters in the
MMAC are placed in parameter space, but are not necessaslgndd using the
parameter location of the elemental filter. As with the preveqpsoaches, the design
begins with formulation of the performance equations used in theretimtion

algorithms.
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5.3.4.1 Performance Evaluation Equations
The structure of the MMAE-based control with an LQG controllemela follows a
similar development to that of the generalized MMAC presentedhaptér 4. However,
rather than blending elemental LQG controller outputs, the MMAE-bagpgdoach
developed for this architecture will select one controller. The pilifyainformation
from the MMAE portion will be used to perform the table look-up. Thumsike the
previous MMAE-based control scheme, the controller gaithe Kalman filter will be
selectedo implement the control element.

Development of the performance evaluation begins with the statecegafthe
MMAE and then incorporates the elemental LQG. The stateieqgufat the K filter in
the MMAE is given by:

X, (thy) =@, X () +Bgu (5.52)

sel
The control in Equation (5.52) is given by the output of the elemewitatratler
expressed as:

Upai(t) = =G Xea(t)) (5.53)
where superscripgel denotes the selected control element.

To derive the equations for the filters in the MMAE, substitutectiv@rol from
Equation (5.53) into the expression for the filter propagation, Equation (5.5@at
substitution results in the expression for tfleelemental filter of the MMAE:

%, (thn) = @, X, () = By, GlrpeXa(t) (5.54)
The update equation for th& klemental filter of the MMAE is given by:
X () =%, ) +K [z, - H, ()X, ()] (5.55)
and the update for the Kalman filter in the control element is
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Xee(t) = Xeai(t) + K (o[ Z) =H X (t7)] (5.56)
where
z, =H X, (&) + Vv, (t) (5.57)
Now substitute Equations (5.55) and (5.56) into Equation (5.54) to obtain:

R (t) =@, (R (67 + K [H X, () + v, &) —H &, ()

. B ~ B (5.58)
- Bdecsel(XseI(ti )+K seI[H X () + Vi (t) = H o Xeo )])
Simplification of Equation (5.58) yields:
)A(k (ti_+1) = (I)k (l -K kH k)s\(k (ti_) + ((I)kK k Bde*ch seI)H Xt (ti) (5 59)
- Bde::sel(I - K selH sel)s\(sel(ti_) + ((I)kK ' Bde::selK sel)vt (tl)

The truth model equations are derived in a similar approach ahrdoMMAC in

Chapter 4. The truth model propagation with the control substitution is given by:
Xt (ti+1) = (I)txt (t| ) - BdtG;seé\(sel(tiJr) + G dtht (t| ) (560)
Now substitute Equation (5.56) into Equation (5.60) to yield:

X, (1) = @ X, (1) =By Goea(Reart7) + K o H X, () + v, () = Hooeu )])

(5.61)
+ Gdtht (ti)
which simplifies as:
Xt (ti+1) = ((I)t - BdthselK seIH t)xt (tl) - Bdthsel(I - K seIH sel))zsel(ti_) (562)

- BdtG::selK selvt (t| ) + Gdtht (t|)
Now, since the controller element is completelpasate from the MMAE, the
Kalman filter state description of the LQG conteolkelement must be included in the

evaluation. The state estimate is given by:

f(sel(tijrl) = (Dsels\(sel(tr) + Bdselu sel (563)
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With the control from Equation (5.53), the staténeate for the LQG controller element

becomes:
),Zsel(tijrl) = (I)sels\(sel(tr) - BdselG ::sels\(sel(tiJr) (564)
Now substitute the Kalman filter update from cohiro Equation (5.56) into Equation

(5.64), which yields:
5\(sel(ti_ﬂ) = ((I)sel - BdseIG ::sel)(s\(sel(ti_) + K sell_H tXt (t| ) + Vt (t| ) - H sels\(sel(ti_)J) (565)
Grouping like terms yields:

5\(sel(ti_ﬂ) = ((I)sel - Bdse|G*cse|)K sell_| tXt (tl) + ((I)sel - Bdse|G*cse|)(| - K sell_| sel)s\(sel(ti_)

. (5.66)
+ ((I)sel - BdselG CseI)K Selvt (ti )

Now combining all the state equations for the tmibdel, MMAE, and control yields:

f(k(tijrl) ‘Dk(l_Kka) ((I)kKk—Bde* K )Ht

csel - sel
Xt (ti+1) = O ((I)t - BdtG::selK sel|_| t
f(sel(tijrl) O (q)sel - BdselG csel)K sel|_| t
_Bde::seI(I _Ksel|_| sel ),Zk (ti_)

_BdtG* (I_Kseleel) Xt(ti) (567)
| -K

Csel
((D -B G* )(_ seIHseI) 5\(sel(ti_)

sel dsel— csel
0 ((DkKk _Bde::selK sel)
. w, (t)
+ Gdt _BdthseIK sel Vv (t)
0 ((I)SE| - BdselG CseI)K sel o

From Equation (5.67) define:

(I)k(l _Kka) ((I)kKk _Bde::selK seI)Ht _Bde::seI(I _KseIHseI)
TSeIC = O ((I)t - BdtG::se|K selH t) - BdtG::seI(I - K selH sel) (568)
O ((I)sel - Bdse|G ::se|)K sell_| t ((I)sel - Bdse|G ::sel)(l - K sell_| sel)

and
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0 (q)kK kK Bde*cSaK sel)

*

LSeIC = Gdt _BdthselK sel (569)
0 ((Dsel - BdseIG csel K sel
The state autocorrelation can now be written as:
X (t)
A Typ- T & T-
E Xt(ti+l) Xk (ti+1) Xt (ti+1) Xsel (ti+1)] (5 70)
5\(sel(ti_ﬂ) .

=E, (th1) = Teee B (1) Toee + L sacQol serc
T T
The output autocorrelation is given b{\EW y} =tr(W C ¥,C ) and¥, = E{[xt][x,]T}.

It is clear from Equation (5.67) that the MMAE portion of the deddture does
not directly affect the performance. However, Equation (5.67) does not show how the
selection of the controller is dependent on the parameter estifnateshe MMAE.
Since the MMAE is dependent on the elemental controller, thatffétt the placement
of the filters in parameter space.

The only way to tie the design of the selected LQG contralleghe MMAE is
through the parameter estimate. As discussed for the previousBMiged control
approaches, more than one set of probabilities can define thepsmameter estimate.
Thus, the probabilities are used as the table look-up index sinceatbeestimation for
the control was derived using those probabilities. The probabiétydilg to derive the
state estimate allows the performance measure to be egréssterms of the
probabilities. As discussed in the next section, since the stieagon for the LQG
control element is formed separately from that of the MMAE piiirdormance measure

cannot be written in terms of the probabilities.
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5.3.4.2 Probability Lower Bounding

For the MMAE-based control with the LQG controller elemeng tmpact of a
probability lower bound is different from that of the previous MMAE-blagpproaches.
The difference comes from the observation that no portion of the castbtectly
derived from the MMAE. In the previous cases, the probabilities foenstate estimates
as well as serve as the means to select the controller, @itbetly or indirectly. Thus,
there was a direct link between the probabilities or the paearastimate of the MMAE
portion and the controller performance.

Lower bounding for this architecture does not prevent controller lockout
insomuch as it prevents the lockout in the MMAE that chooses the centrélence, it
is still desirable to discretize the parameter space wéhrtent on implementing lower
bounding. The maodifications to the performance measure will béngostate and
parameter estimation for the MMAE portion. Thus, rather than asguthat one
controller will be selected with a probability of one at stestdye and the rest zero (as
with no lower bound imposed on computed probabilities), all the filters have a
probability ofp_,,, except for one filter. That filter will have a probability expressed as:

Per = 1 -Prin(K-1) (5.71)

So, in terms of the probabilities from the MMAE portion, the state estimate will be

K
5\( = (1_ pminK)s\(k +Z pmin),zj (572)

=

and the corresponding parameter estimate is similar

K
é: (1_ pminK)ék +z pminéj (573)

=L
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To determine the parameter estimate at steady #tatewill be used to select the
controller, the state equations need to refledt duasteady state, the probability will be
assigned according to Equation (5.71) and the ds&on preceding it. The parameter
estimate used to select the controller is evaluatedrding to Equation (5.73).

The state estimate outputs from the MMAE elemeinitalr$ are not used in the
control computation and thus Equation (5.72) woudtd need to be computed for the
performance measure. The elemental LQG controtiércourse, has its own state
estimate. The filters in the MMAE can be evaluatedoading to Equation (5.67).

However, the key is that the controllef Gthat is used in the evaluation of Equation

(5.67) is selected using Equation (5.73). Henre arbitrary lower bound is reflected in
the performance evaluation through the parametéma® and the corresponding
controller gain. The gain selection will inevitgbhaffect the discretization of the

parameter space.

5.3.4.3 Discretization Algorithm

There are two requirements for the discretizatigoréhm for the MMAE-based control
with an LQG controller element. The first is thgtimal placement of the filters in the
assigned parameter space for the MMAE portion ofatfohitecture. The second is the
specification of the look-up table for the eleméh@G controllers.

In order to evaluate the performance measureséhected controller has to be
determined, which of course is determined by the MMAXS in the MMAC [56,57], the
filter that is assumed to have the maximum proligtat steady state is the filter with the
minimum of the proximity measure given by:

/=min/, k=1,..K (5.74)
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where

¢, =log|A, |+t[A, N,] (5.75)
A, is the covariance of the steady state residualsark” filter, i.e., [H, P H, +R,].

N, is the actual steady state autocorrelation ofstenation errors in the'kilter and is
given by:

N, =[-H, H, Og_[-H, H, 0 (5.76)
whereE, is the state prediction autocorrelation computedgyation (5.70) andi, and
H, are the output matrix of thd'Kilter of the MMAE and truth model, respectively.

As evident in Equation (5.67), the control must deailable for the state
prediction autocorrelation for the MMAE, which imrb will be used to select the
controller according to Equation (5.74). Thusjsitnecessary to determine the best
controller for any point in parameter space. Thasigh of the generalized controller will
use the LQG techniques covered in Chapter 3.

Determination of the filter at steady state in MMAE and design of the best
controller for the assumed steady state paramstenate are two components necessary
for the discretization algorithm for the MMAE. Wg these two techniques, the
discretization algorithm can be specified. It das similar steps as the generalized
MMAC from Chapter 4 which are summarized as follows

1. Describe in terms of the parameter veetothe truth model of the system, the
filter in the MMAE and the LQG controller element.

2. Choose the number of filters K in the MMAE.

166



Choose a representative parameter saf, &, ..., &} to begin the
minimization.
For each parameter in the representative pararsetéa,, a,, ..., &}, design

a generalized LQG elemental controller.

Use a numerical integration technique to evaluatecbst function given by:

_[,Ely"wy}da
Jy ces =
css J‘Ada

(5.77)

where E{yTW y}=tr(wcC ‘I’XtCT) and'¥, = E{[xt][xt]T}.

a. ComputeE, using Equation (5.70) at discrete points in the parameter

space (fora, value)for each filter: k = 1,...K and the corresponding

generalized LQG controller element.
b. At each discrete point, evaluate Equation (5.74), the proximity

measure, using, for k = 1,...K to determine the convergence to a

single filter.

c. For the selected elemental filter, determi'ﬂg from the previous

evaluation ofg, for k =1,...K and use in the evaluation of the cost

function.

2) Use a vector minimization technique with the functional evaluatiom f

Step (5) to minimize,]

As is discussed for the previous MMAE-based control look-up approdtiges,

steady state discretization only provides K (the number ofiltethe MMAE) entries in

the controller look-up table. However, the size of the look-up tableydionted by the
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resource constraints of the physical implementation. For this apprdahas been
discussed that the parameter estimate from the MMAE portidrsamve as the index
into the table of LQG controllers. Thus, discrete points in paramptee are used to
design generalized LQG controllers as the entries in the taliles of course assumes

that MMAE provides accurate parameter estimates.

5.3.4.4 Discussion

The MMAE-Based Control with an LQG Controller Element is thealfilevel of
refinement for the MMAE-based control. In fact, this architectan be considered the
most general case of MMAE-based control. At steady stateprievious architectures
can be expressed in terms of the MMAE-based control with an Ldp@otler element.
For this architecture to be the same as the previous archite@uieady state, the
former must have the Kalman filter in the LQG portion mateh filter in the MMAE
portion (the filter selected at steady state). Additiondlg, LQG control gain matrix
also has to match those in the previous architectures. For examplatch the MMAE-
based control with a nominal controller, all the gain matricesarLQG controller look-
up table have to be equivalent to the nominal controller gain matuaxinddthe transient
phase, the MMAE-based control with an LQG controller element cammoéduced to
the same form as the previous MMAE-based architectures. Imath&ent phase of the
control response, the previous MMAE-based architectures blend raudtade estimates
using the probability vector as weights. This cannot be dupliextsctly with the single
Kalman filter in the LQG controller. Hence, a direct comparisbhe architectures

cannot be made for the time during the transient response.
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Since the MMAE-based control with an LQG controller elementljgds the
implementation for the GMMAC, the steady state performandleb@ithe same. The
transient performance generally will be different. Desigradfingle LQG controller
based on a single design point will not be equivalent to the controldiemding several
controllers based on different design points as is done in the MMA&Ritecture.
Comparisons of the transient performance will have to be acctmagligsing Monte
Carlo simulations.

The MMAE-based control with an LQG controller element reguireore
resources than a conventional MMAE-based control system. Hgimfan the table
look-up approach, rather than just storing a gain matrix to be indé»ee&atman filter
must be stored as well. There is also the issue of computirexttee Kalman filter as
well. For the MMAC, the MMAE substructure and the LQG contradiement, if the
steady state Kalman filter gain is used (as will be tlee dar the implementation in
Chapter 6), the complexity is reduced to the state propagation ance Lgaflations.
However, determining the probability for the MMAC and MMAE estioratoutputs
requires the additional conditional probability density function computatioRisis is
considerably greater than the computations strictly required éofilters. Hence, the
complexity versus performance issue is not the same as addiridtem® the MMAE

substructure or the MMAC to try to improve performance.

5.4 Summary

This chapter advances the MMAE-based architecture beyond its ntdimpdorm of a
state estimate from an MMAE multiplied by a gain fag®raluated adaptively or not).

In some instances, the proposed architectures build upon concepts from the enhancements
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proposed for the MMAC. The development begins with discussion of the Mb&SEd
control with a nominal controller and goes on to propose more versatilegeneral
forms of MMAE-based control. Regardless of the architectunesgdal was to present
procedures for an optimal implementation. This advances the desitye MIMAE-
based control beyond ad hoc design procedures.

Of primary importance in this chapter was the analysis of cthreventional
MMAE-based structure, especially in comparison to the MMAChitecture. The
analysis demonstrated that the two architectures are ideaticsteady state. This
enabled similar design approaches developed for the MMAC to be appli¢de
MMAE-based control architecture. The steady state performavedeation determines
how to place the filters in the MMAE and of course the corresporadintyoller element.
For the table look-up and LQG controller element approaches, additionedtidigtion

was developed to determine the controllers that are referencethebyMMAE.
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Chapter 6 - Application Evaluation

This chapter applies the design approaches developed in the previous sectiongpte a sam
problem. Rather than attempt to use a complex or perhaps wam@dlapplication, a
two-state system in which a single parameter is allowedriowas chosen. Though this

is a simple problem, it is representative of real-world apjpdicatsuch as first order
bending mode control, which has been the subject of previous multiple nesdalch
[16,17,18,19,20,52,53,54]. This two state problem is the same as what Sheldon studied
[56], as was also done by Hentz [22]. Since this work builds upon andd=xpa
Sheldon’s approach to MMAC design, it is reasonable to use the saangle to
compare results. In addition, since this work also investigates EHvlsed control, this
example will provide a means to compare the different multippelentechniques as
perhaps never previously accomplished. Finally, a simple sysi#nawingle uncertain
parameter reduces the complexity of analysis. Thus, conclusions drahis analysis

are free from potential interdependency of multiple parameatsaffects the results

rather than the veracity of the technique.

6.1 System Description

The ideal mechanical translational system as shown in Figurs @& Xontinuous-time
system second order system of the form

%(t) = F()x() + Bt)u(t) (6.1)

X, (t)|_| O 1| x,(t) 0
e I b SR ©2)
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u(t) X4(t)

Figure 6.1 Ideal mechanical translational system

wherex; is the position and, is the velocity. The constants k, m, and b are thegp
constant, mass, and damping coefficient, respectivelyis ffitne system model can be
simplified into the more general form by assigning the unmimatural frequency as
w, E\/% and letting the damping ratio bg¢= Zﬁ. Adding dynamic driving noise

ki

yields the stochastic truth model:

o) o) lafolae e
with w(t) being zero-mean white Gaussian noise of strength Q:
Ewt)w(t + 1)} = Qa(7)
For the purpose of computer simulation and control sifsgem model given in
Equation (6.1) is converted to an equivalent discrete hvial¢34]:
X(ti.g) = @t )X ) + By (t)ult) +w, () (6.4)
where the sample peridg,-t; = 0.01 sec®(t,,, ) is the state transition matrix equal to

™" sinceF is constant for this model, and
ti+1
B,(t,) = [ "®(t..,0)B(r)dr . (6.5)
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The discrete-time white Gausian noise tevgt) has zero mean and covariance kernel:

LW, ()W ()"} = {Q"éti) Lot 66
where
Qu(t) = [ (1,0, NGNADG (NP (0, 7)dT (6.7)
Measurements are taken at each sample time and dedayibed
z(t) = H(t )x(t) + v(t,) (6.8)

whereH is the output measurement matrix.t)vis a zero-mean white Gaussian noise
process with covariance kernel

R(t) t =t

0 t#t (6.9)

E{v(t)v(t;)} = {

R is the variance of the measurement noise. Finallyptiygut to be controlled is given
by
y(t) = C(t)x(t) (6.10)

whereC is the output matrix.

6.2 Evaluation Detalls

This section defines the scope of the general systenigtest of the previous section
and outlines the details of the problem analysis. Limitingutileown factors allows a
framework so that clear and meaningful conclusions ofoqeance can be made. The
sample problem will be used to compare LQG design appesaas well as the proposed

multiple model structures.
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6.2.1 Problem Assumptions
It is apparent from the system description in the prevemction that there are potentially
four unknowns: the undamped natural frequeagythe damping ratid, the dynamic
driving noise strengtl®, and the variance of the measurement noise R. Kasme
will make the same simplification as Sheldon did and keeplatter three components
constant and assign them the following values:

Q=0.01

(=0.01

R(t) =0.010i
As illustrated earlier, this simple two state problem haswedld application. Here, the
light damping is representative of bending modes in flexitle®ires as found in many
space vehicles.
For this application, the undamped natural frequencyrnisidered the uncertain

parameter. This parameter is restricted to the followange:

rad rad
Znsec<(q“< 20r[Sec (6.11)

Restricting the range of the uncertain parameter spacguivaéent to bounding a
problem to realistic operating ranges in a real-world implertienta Any deviations
outside the given acceptable range could be considesgdtam failure, and failure
detection is not in the scope of this work.

The system state propagation makjxhe control input matri®, and input noise
matrix G are determined by the undamped natural frequencyessis Equation (6.3).
The remaining measurement matrix and output matrix dneedieas:

H=[1 0]
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C=[1 0]
In other words, for this experiment, only the positioil & measured, and that position
will be considered the controlled variable for the synthefsgontrollers.
6.2.2 Evaluation Approach
There are three categories of design approaches sindieel previous chapters that will
be evaluated: LQG design, MMAC and MMAE-based contiebr the first, LQG, the
typical design approach will be evaluated and will besctered the baseline case. The
proposed advances to LQG design will be evaluatedcangpared with that baseline
case. For the MMAC, Sheldon’s results, duplicate@ heill be considered the baseline
case. Therefore, the proposed advances to MMACgulesill be compared with
Sheldon’s baseline results as well as with the nonadap@ design results. Finally,
the MMAE-based control design approach really doeshagt an approach that could
truly be considered a baseline. The MMAC design willcbasidered the benchmark
which to compare the MMAE-based control.

Though the primary purpose of performing the evaluatadnthe design
approaches is to demonstrate improvements to LQG and hauttipdel designs, the
secondary purpose is to show the effectiveness of tlierpeance prediction tools that
were developed in Chapter 3 through Chapter 5. Thagerformance will be evaluated
with the prediction tools and those results will be comparedMithte Carlo evaluation.
Both the prediction evaluation and the Monte Carlo evalnatidi be used to compare
design techniques and implementation approaches.

The evaluation of performance of each controller implatation will be over the

parameter space given in Equation (6.11). In rediitis is a continuous parameter
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space. For simulation and computer evaluation, this gresrspace is discretized into
200 evenly sampled points, where each point correspinithe possible true system. At
each parameter point, the predicted output (mean squalge) and mean (of the output
squared) and standard deviation of a 20-run MonteoGamhulation will be computed
and plotted. This data also will be used to compare therpences of the design
approaches over the defined parameter space. &ordee relative performance of each
design, the average (averaged over the parameter sgate) predicted mean squared
output and the average of the squared output of the Moati® simulations over the
200-point parameter space are computed and compared.

An evaluation of performance is determined similarly eoglrformance measure
used for discretization of the parameter space. A meahisgalar measure of the

performance can be written as:
PredictedPerformaneMeasure= E{y,"Wy, +u"Uu} (6.12)

Further, it is useful to consider the performantesach, the output and the control,
individually. Consider first the scalar value tlygtes an evaluation of performance of

the output and is expressed as:

PredictedDutput T
. =Ey, Wy} (6.13)
RegulatiorErrorMeasure

This scalar evaluation can be derived from the wiutprrelation as:

E{y Wy} =tr(WE{y,y,'}) (6.14)
Now, substitute the expression for the outgut Cx, and the predicted output regulation
error in terms of the predicted true state aut@tation becomes:

Ely, Wy} =tr(WC, E{xx,'} C,") (6.15)

176



Note that Equation (6.15) uses the autocorrelaifdhe augmented state vector from:

E{[foiﬂ[xt(tif i(ti')T]}

which can be evaluated either analytically or by ni#o Carlo methods. This
autocorrelation is the basis for all performancasoees used in this chapter.

Equation (6.15) is evaluated at each point inghemeter space and thus the
average (over the parameter space) of the regulatitput error is given as:

AveragePredicted 1
OutputRegulation :mZtr(WCt E{x,, (t.)% (t.)"IC.") (6.16)
ErrorMeasure k=

which is the most general form. For this exampie, analytically derived predicted
measures are being evaluated at steady-state, tieneces taken at,. It is also possible

to use a time-averaged value of state over someevaltof interest such as a transient
period, rather than a value at what is assumee gidady state.

Now since the output matrix is defined @s= [1 O ] for the example being

considered, only the position correlation is coesed. In addition, to be consistent with
. N . 10
the design process, the weighting matrix is setkatd\V = o ol Thus, the average of

the position regulation error becomes:

AveragePredicted L
PositionRegulation = 200) D Efx,, ()X (t)} (6.17)
Error k=

The predicted value for the quadratic on controif Equation (6.12) is derived

in a similar manner as the output. The predictedrol quadratic is expressed as:
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PredictedControl T
. =Hu Uu} (6.18)
Quadratic

This scalar evaluation can be derived from therobautocorrelation as:
Eu'Uu} =tr(UE{uu'}) (6.19)
Now, substitute the expression for the contiol= -G, % and the predicted control
guadratic in terms of the state estimation aut@tation becomes:
E{u"Uu} =tr(UG, E{xX"} G.") (6.20)
Recall that E{ %'} comes from the autocorrelation of the augmentedesvector as
previously discussed. Equation (6.20) is evaluatedach point in the parameter space

and thus the average (over the parameter spatie® obntrol quadratic is given as:

A ePredicted _ 200
veragerredicted 1 09 2 UG ER (LK ()G; B (6.21)
ControIQuadratlc (200) 4=

which is the most general form.

The approach to computing the mean squared outputhe Monte Carlo
evaluation is very similar to Equation (6.16). Thaegth of run for each the simulations
is 10 seconds and it is assumed that steady stat@ched within 2 seconds. The output
is averaged over the subsequent 8 seconds or &3 pwyield the time-averaged steady
state regulation output error. Thus, for each p(khin the parameter space, the mean

squared steady-state regulation output is commaged

20 1000
MeanSquaredutputMeasurgk) = 1 — = Zyrun(t) Yot (6.22)
20 run=1 800| =201

wherey,(t) = Cx(t). Now the average mean squared output over ttzrgder space for

the problem is defined as:
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AverageMeanSquared 20
9 q =1 MeanSquaredutput(k) (6.23)
OutputMeasure 200i=

where k is the index into the parameter space sporaling to the mean squared output

computed at that point. Again, since the outputrimas defined a<C, = [1 0], only the

mean squared position regulation error is constjehe spatially averaged mean squared

steady-state position is defined as:

1000

> I @)F } (6.24)

AverageMeanSquaredPosition 20 1 {
run—l 800| =201

RegulatiorErrorMeasure 200Z

The final performance measure defined is the nexprared measure for the
control for the Monte Carlo simulations. It is gouted in a very similar manner as the
average mean squared output regulation error.e&adn point (k) in the parameter space,

the mean squared steady-state control is compsted a

1000
MeanSquaredControlMeasurgk) N Z L D U () U, (&) (6.25)
20 run=1 800| =201

whereu(t) = -G (t). Now the average mean squared control over dn@npeter space

for the problem is defined as:

200

AverageMeanSquared
verag qu :%Z MeanSquaredControl(k) (6.26)

ControlMeasure

6.3 LQG Evaluation

This section investigates the application and etahki the performance of the LQG
controller optimization algorithms developed in @tea 3 to the ideal mechanical-
translational system defined in Section 6.1. Tirst tep in the evaluation process is to
establish a baseline of performance using the &yiQG controller design approach.

The next step tests the modified LQG (MLQG) deslgueloped in Section 3.2 under the
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same conditions as the baseline case and compgewe®gults. The final evaluation
defines and tests the robustness of the LQG cémtralesigns. The subsequent
discussion compares the performance of the tydi€(G controller and the MLQG
controller with enhanced robustness developed @ti@e3.3.

Rather than apply the design algorithms at a sipgtameter point or assumed set
of system parameters, the tests for the LQG evaluaise the same parameter space as
for the multiple model controller testing and ewaian. The number of discrete points in
the parameter space was selected arbitrarily ta80fe but it was found that additional
models did not significantly impact the computedrage over the parameter space of the
mean squared position error. To state the LQGuatiah in terms of multiple model
control, it is artificially assumed that a parametstimator returns a perfect estimate of
the uncertain parameter of the system, in this,ctme undamped natural frequency.
Now, using one of the proposed design technique&,GG controller is designed using
the system model, with that assumed value for Hrampeter. The position correlation
(mean squared regulation error) can be calculatethét design and system model, from
which a meaningful scalar is computed to be useevduate performance. Now this
process is repeated for each discrete point ipdng@meter space. Thus, the performance
of LQG controller designs can be compared agairatdf the multiple model controller
designs and will be the benchmark for all perforoganomparisons. Prediction of the
performance of the multiple model controllers versie typical LQG controllers over
the same parameter space will be made in the sudsegections that discuss the

multiple model controller tests.
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6.3.1 LQG Baseline Case

Use of the conventional LQG design approach apmiedach point in the parameter
space defines the baseline case for the LQG asalyisis assumed that, at each point in
parameter space, the system is known completetynvé&htional design techniques are
assumed to be the best approach for design of &k ¢@pitroller. For the conventional
approach, the system model for the design useashiemed parameter at each point in
parameter space. The analysis will evaluate tleeligted position correlation (mean
squared position) at each point in parameter spacgell as calculate the cost. Monte

Carlo analysis will be used to verify the predietanalysis.

6.3.1.1 Baseline Case Controller Design
As used throughout this application evaluation, dbsign method used for the baseline
case is the full-state feedback LQG controller inick the state estimates are from a

Kalman filter and the gains are designed to mingmizquadratic functional of the form:
J= I [X" ()W, x(t) +u’ (t)W,,u(t)]dt (6.27)
0

The weightsW,, andW , are of course design parameters to allow the esipha be

placed on the desired vector element quantities.efmphasis on position without regard

to the amount of control (i.e., the so calwapcontrol case), the following weights are

10
WXX =
o o

W, = [0.0001]

assigned:
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The very small non-zero weight on control (rathbant zero explicitly) prevents
computation errors due to the limitations of the MAB implementation.

Besides minimizing the quadratic cost functiomalEquation (6.27), the typical
LQG design technique assumes that the states inastefunctional are defined by the
same model as that for the system. Thus, for #selme case, the system model and
filter and controller design models are equivaleiifigure 6.2 illustrates that the filter
models and controller models are specified by drapeter that also corresponds to the
point at which the system is based. Since, forlbteeline case, the controller and filter

models are the same as the system model, thegotoincident with a slope of one.
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Figure 6.2 System, filter, and controller models used in LQG design
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6.3.1.2 Baseline Case Controller Results

For the baseline case, analysis uses the results of botrethetgd mean squared output
regulation error computation and a 20-run Monte Carlo simulation. hEdvibnte Carlo
simulation, as indicated in the introduction, the duration of the r@d seconds with the
last 8 seconds assumed to be steady state. Figure 6.3 is tbkthosimulation results
overlaid with the predicted output. Clearly, the predicted output is atigdec of
simulation results. As Table 6.1 indicates, there is a negligibls difference between
predicted performance and the Monte Carlo simulation for the meanedgpasition

measure averaged over the parameter space. Clearly, theipeedieasure is a good

representation of the performance over the parameter space.
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Figure 6.3 Performance of the LQG controller for the parameter space.
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Predictive Measure Monte Carlo Simulation
Average Mean Squared Position Average Mean Squared Position
(Meters) (Meters)

LQG Controller .0503 .0506
Table 6.1 Results for the LQG controller analysis

6.3.2 Modified LQG Controller
This section applies the techniques for the MLQG controller dediggibed in Section
3.2 to the ideal mechanical-translational system defined ino8e&tl. There were three
different approaches proposed for the filter and controller seletdi@complish the
MLQG design. In summary, these techniques attempt to improve ocotiventional
design by allowing the optimization algorithmftod the value of the parameter for the
model that represents the optimal filter, the optimal controtlerpptimal filter and
controller for the best control performance in terms of the agatied mean square
position regulation error averaged over the parameter space. Ageesa the first
section, the design model parameter is the natural frequepcy,

As stated in Chapter 3, if the insight from Luenberger [23pislied, then it is
expected that any improvements would come from a filter design that is based orl a mode
that isfaster than the system model. Thus, for this example problem, it isizated

that, for the design in whicl, for the controller model is the same as for the actual
system model, the filter will be based uponcgrthat is greater than the, in both the
controller and the system. Further, whenfor the filter is fixed to be same as for the

system model, the controller model also will be the santkeasystem model or a model
equivalent to a larger controller gain. A larger gain will espond to a controller model

with a smaller,. A similar prediction is extended to the generalized MLQG. filtee
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model will correspond to a larges, than thew, in the controller model but the

relationship to the system model is not as clear, as will be demonstrated.

6.3.2.1 Modified LQG Controller Design

This section presents the results of the three MLQG design appsoas applied to the
ideal mechanical-translational system from Section 6.1. Therpahce of these three
designs will be analyzed in the follow section.

The first design is the MLQG with optimally selectedefil parameter. The
controller model matches the system model, andothfer the filter model is optimally
selected to minimize the position autocorrelation error. Theratert gain matrix is
determined with conventional linear quadratic regulator (LQR) techsiqiibe Kalman
filter that completes the MLQG design is chosen using the @aiion algorithm
described in Section 3.2. The design algorithm implementation was kept simpléisFor
implementation, the optimization algorithm selects the Kalmaer firom the possible
filters corresponding to the designs based on discrete parametes poitlite space.
Finally, the standard MATLAB minimization algorithiminsearch[31] is used to find
the exact solution.

The results for the filter/controller selection processtierexample problem are

shown in Figure 6.4. Note that there is an apparent separation between the eglected

the filter and for the designated controller. This separation ateficthat the filter

parameter, the undamped natural frequangys greater than that of the system model.

This corresponds to a filter model with faster dynamics, as predicted.
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Figure 6.4 Filter and controller parameter selection for MLQG with ofitireelected
filter parameter

The second design is the MLQG with optimally selected contrpdesmeter. In
this case, the filter model matches the system model, angl, floe the controller model
is selected optimally to minimize the position correlation rerrdhe Kalman filter is
designed using conventional techniques and the linear quadratic oeglédtcompletes
the MLQG design is chosen using the optimization algorithm destin Section 3.2.
Similar to the previous case, the optimization algorithm selbetd ®R controller from
the possible controllers corresponding to the designs based on theéedsmameter
points in the space. Again, a standard MATLAB minimization algorithmsearch31]

is used to find the exact solution.
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The results for the filter/controller selection processtierexample problem are
shown in Figure 6.5. Again, note that there is an apparent separatweebethe
selectedo, for the filter and for the designated controller. As predictdmn the filter is
fixed to the system model, the resultant controller has an undampedl rfedquency

that is less than that for the system and filter models. Simaller value foro,
corresponds to a controller with a larger gain than a controléedbano , matched to the

system and filter model. Similar to the previous design, the amouseparation
increases as the assumed system undamped natural frequeaagascr This separation

for the two designs appears to be the same; though it is close, it is not theastyne.
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Figure 6.5 Filter and controller parameter selection for MLQG with ofifireelected
controller parameter
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The final design is the generalized MLQG in which the nattredquency is
selected optimally for the controller model and for the fitewdel. Each parameter
value for the natural frequency may differ from the correspondingevialr the system
model. Similar to the previous two cases, the optimization aigorgelects the LQR
controller and the Kalman filters from the possible designs basedhe discrete
parameter points in the space. Again, a standard minimizationtlig is used to find
the exact solution.

Figure 6.6 shows the result for the filter/controller sebectprocess for the
example problem. Note that, as in the previous designs, therepsiatson between the

filter and the controller undamped natural frequency. Also consistent ib¢hdegree of
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Figure 6.6 Filter and controller parameter selection for generaliz€GV
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separation increases as the frequency increases. This dégegga@tion between the
filter and controller looks the same as in the previous caseglthbis not precisely the
same. However, what is obviously different for this desighas neither the filter model
nor the controller model matches the system model. In fact, nmstef the previous
discussions, the filter model for the design is slower than ttersymodel. Clearly, the
corresponding controller model has a gain that is significantjetathan either of the
two previous cases in which the filter had a faster dynansiporese than the actual
system model. The larger gain is necessary to increas#ytianic response since the

filter has slower dynamics.

6.3.2.2 Modified LQG Controller Evaluation

This section presents the results for the predictive analysidante Carlo simulations
for each of the three designs presented in the previous section. rHseds are
compared to the baseline case from Section 6.3.1. Finally, thesré&sult all three
designs are compared against each other.

For the first design, the MLQG with optimally selected filfmrameter, the
results are shown in Figure 6.7 and Table 6.2. This MLQG outpertbertypical LQG
design and this performance improvement becomes greater amttiral frequency
increases. In fact, at the lower frequency, the performanteratdite is insignificant.
The overall average performance across the entire paranpetee das about a six
percent decrease in the regulation error from that of the tylpi@@l design. The results
also indicate that the predicted performance almost exactighesmthe Monte Carlo
simulations, to the point where the plots are almost indistinguislaable¢he predicted

and computed performance averaged over the entire parameter space ialsasiet
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Controller Predictive Measure Monte Carlo Simulation
Average Mean Squared PositignAverage Mean Squared Positig
(Meters) (Meters)
Baseline LQG 0.0503 0.0506
MLQG-Filter Selected 0.0475 0.0478
MLQG-Controller Selected 0.0445 0.0448
MLQG-Generalized 0.0439 0.0443

Table 6.2 Results for the modified LQG controller compared to the baseline LQG
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The results for the MLQG with optimally selected controllerapzeter are
presented in Figure 6.8 and Table 6.2. As in the previous case, this modified LQG desig
yields an improvement over the conventional LQG. The improvement becuoores
significant as the natural frequency of the system increbsésigain, the differences are
negligible at the smaller parameter values. Here, the irepremt at the higher
frequencies is such that the performance of the typical LQ@aler extends beyond
the bounds of the mean £ one standard deviation region of the Monte Galgleis of
the modified design. Overall, there is about a twelve percenbiaprent in the average

regulation error across the parameter space in comparison typite LQG controller.
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Figure 6.8 Performance of the modified LQG with optimally sekkctontroller
parameter compared to typical LQG design
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Figure 6.8 shows considerably more improvement relative to the typicalreQ@s than
does Figure 6.7. A comparison of the results in Table 6.2 with theopeeMLQG-with-
filter-selected approach demonstrates about a six percent impmaveAlso, Figure 6.8
and Table 6.2 indicate that the Monte Carlo analysis matches clesely to the
predictive results.

The results for the final design, the generalized modified L&& presented in
Figure 6.9 and Table 6.2. As in the previous cases, the modified L@@nde
outperforms the typical LQG controller. In fact, these redatk very similar to those
in Figure 6.8 for the previous design. The performance of thealyp@G controller is

close to the mean plus one standard deviation of the Monte Carlo anallisere is
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Figure 6.9 Comparison of the generalized MLQG results with the baseline LQG
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about an eleven percent improvement over the typical LQG approach ragtation
error averaged across the parameter space. Also, FiguradcPable 6.2 indicate that
the predictive analysis is almost coincident with the Monte Carlo simulasatige

A direct comparison of all three MLQG techniques along withliaseline LQG
controller is presented in Table 6.2 and in Figure 6.10, which showsdtletpd means
from the previous figures for each LQG design method. From thmhiged data, it is
clear that all three modified designs outperformed the typi€D Lcontroller. The
MLQG with an optimally selected filter yields the least camt of performance
enhancement. In contrast, the other two modified designs are ahd@singuishable,

with the generalized LQG design having a slightly greater performarmrevement.
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Figure 6.10 Comparison of baseline LQG and all three MLQG techniques
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6.3.3 Modified LQG with Enhanced Robustness

This section discusses the implementation and evaluation of tligGWkith enhanced
robustness as described in Section 3.3 for the ideal mechanicdhticanad system
described in Section 6.1. Up to this point, the evaluation of the MLQ@otlen designs
has been for a single point that is the assumed true paramkier The MLQG with
enhanced robustness provides a design approach for the condition subk treti¢ of
the system parameter may deviate from the assumed true Vidaah design approach
will be assessed for its performance for a mismatch betie® assumed true system
operating point and a specified deviation from that point.

As in Chapter 3 and for the purposes of this discussion, robustnessiexi ciesf
the performance adequacy over a region of parameter valuesrefdsed to as a
robustness ball. A center point in parameter space and a ramushit point describes
the robustness ball. For the particular example in this chapgemyndamped natural
frequency is the parameter space and it is one-dimensional. €ftter goint is a
specified value of the natural frequency and the radius withbemaximum that the
natural frequency deviates from the center point.

As evaluated in the previous section, the steady state rieguéstor determines
the performance. However, unlike the previous section, the regulation ie not
measured at a single assumed value of the natural frequanaygier, but over the
robustness ball. To evaluate the performance over the robustnesthdyallare two
measures that will be used. The first measure is the maxmagutation error over the
entire region. The maximum regulation error gives a meastrthe worst case

performance when the true system deviates from the assumed ofathe natural
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frequency. This maximum is determined by computing the performahgmoints
sampled over the robustness ball. The second performance mesatheeRMS of the
output autocorrelation computed over the region. The sample points ¢hased to
determine the maximum regulation error are used also to confueMS error. The
RMS error in a sense gives the average performance over the region and is more
representative of the anticipated performance of the controllertioaeregion. As will
be covered in the next subsection, the maximum and RMS regulatmmage two

measures of performance that are used in the design process.

6.3.3.1 Modified LQG with Enhanced Robustness Design

Whereas the previous modified designs assumed that an evaluatiaspetifzed true
value determines the performance, now the performance over me egion will
determine the optimal robust design. As previously discussed, thenpanime over the
robustness ball is characterized by the computed RMS or the oraxiegulation error.
Either one of these measures can be minimized to determine tinealopbntroller
design, but not both. The tradeoff between these two measures eapréssed in the

related cost function given as:

3= 0 3+ (140) Joys (6.28)
where 0< a < 1. Clearly, ifa equals zero, the design algorithm tries to find the best
RMS performance. On the other handy iéquals one, then the worst case performance
is minimized over the region. It would be up to the designer to detetime besti that

would give the desired combination of average performance withcfiosteagainst the

maximum. Stability is not an issue since an unstable point irothestness region will
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cause the evaluation of Equation (6.28) to become indeterminate and theighierc
design algorithm or optimization method to move to a stable controller.

Implementation of the MLQG with enhanced robustness allowsMorseparate
design variables, the size of the robustness ball and the vatue B6r the robustness
ball, a radius of 20 discrete sample points was selected ahpitr&ince the number of
samples in the region of the parameter space ranging frofm 20T has been specified
arbitrarily at 200 points, the radius of robustness covers 20 percehé admissible
space. Each design will be evaluated for the 20-point-radius lassva zero-point-
radius ball. The latter case will allow a direct comparit the MLQG designs from the
previous section. It should be noted that for the O radius cadegs not affect the
design since the region is only one point. For the 20-point-radiusccaspial to zero
and one will be considered. These cases will demonstrate theftriagsveen design for
best RMS performance and least maximum regulation error.

Chapter 3 discusses the MLQG with robustness that basically pls the
generalized MLQG design. As an additional experiment, the rolasstiesign also was
applied to the modified LQG with selected controller or sebkdilter. Each of the
designs was for the robustness ball of 20 points avigélgual to 0 and 1. For the modified
LQG with a selected filter, the design for both valuest @nd the 20-point robustness
ball produced the same design as the previous non-robust desigatéldish Figure 6.4.
It would seem logical that, since the region extends beyond thealrigsign point, a
filter with even faster dynamics would be desired. Howewéaster filter will cause the
original design at the center point (the original design poingptanstable and thus not

be adequate for the entire robustness ball. Recall that thelmnodel is fixed to the
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system model which is the robustness ball center. Likevitsethe MLQG with a
selected controller, the design for both valuesanoénd the 20-point robustness ball
produced the same design as the previous non-robust design as showneir® Bigu-or
this case, a larger gain is not required for the region thah heger natural frequency
than the center of the robustness ball. On the other hand, for e tieaf has a smaller
natural frequency, a larger gain would perhaps improve the performatmeever, a
larger gain would cause the performance at the design point to gblansRecall that
the filter model is fixed to be the same as the system mwtladh is the center point of
the robustness ball.

The design for the generalized MLQG with enhanced robustness yielded
significantly different designs for each of the design gadh®n compared with the
generalized MLQG without robustness from the previous sectionco@®e the main
difference for the generalized approach is that both the comtapitfilter can be placed
differently from the assumed true value in parameter space., ataster filter may be
selected since the controller gain is not necessarily deklggmed on the system model.
Likewise with the filter model not fixed to the design point, géarcontroller gain could
be selected. One common characteristic of the generaliz€gGVis that there is a
separation between the filter and controller model parameterhainthe filter moded,,
parameter is larger than the controller model parameter.

First, consider the case for which equals one, with robustness radius of 20
samples. The resultant design is shown in Figure 6.11 plotted wiMLiQ& without
robustness. Note the separation between the filter and the @mém@lsimilar, but not

exactly the same for each design. A second observation ithéhlihes describing the
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Figure 6.11 Filter and controller selections for the Generalized MLQIGamid without
robustness and equal to one

filter design models are nearly parallel. Likewise is talso of the controller design
models. Clearly, the design for robustness with best protectionsaghe maximum
regulation error over the region has selected faster fitteas the nonrobust designs
rather than larger controller gains. Unlike the MLQG with lacted filter, in which the
controller model is fixed to the system model, the controller ingdgelected such that
the gain decreases in accordance with a faster selected filter design model

Next, consider the case for the robustness ball of 20 pointsavatfual to zero,
as shown in Figure 6.12 plotted with the nonrobust generalized MLQGe again there

is a separation between the filter and the controller sinoldheé design foo equal to
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one as well as a separation from the generalized MLQG witlobutstness. The main
observation for this design is that the filter is once agaierfdst the robust design than
for the nonrobust case. Likewise, the corresponding controller modaldraaller gain.
However, what is different is that the separations between thetrabhdsnonrobust
designs are not as great as in Figure 6.11. This is not unexpeutedttee design
objective is to obtain the best RMS performance over the regobsathe filter does not

have to be as fast as it would have to be to protect against the worst-case pegorman
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Figure 6.12 Filter and controller selections for the Generalized MLQIGamid without
robustness and equal to O
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6.3.3.2 Modified LQG with Enhanced Robustness Results

Two different variables in the design specification are considareelvaluating the
performance of the MLQG with enhanced robustness designs. The first desadpheviar
the size of the robustness ball. The second variable is the tpeef@fmance, either the
best RMS or smallest maximum regulation error, which will basiered for each
specified robustness ball. The intent is to show how well the rdegigrform for their
designated purposes as well as under other conditions. This anallydeswonstrate the
interplay between the design specifications. The MLQG with exdthrobustness from
the previous section will be evaluated. Also, the generalized Mia@@ut enhanced
robustness will be used as the measure of any improvement.

First consider the evaluation of the controllers at a single pathér than over
the entire the robustness region. For the MLQG with robustnessssbened true value
is the center point of the robustness region that was used asdisefdr the design.
Results for the predicted performance for the three diffearttaler designs are shown
in Figure 6.13. Clearly, the MLQG and the MLQG with enhanced rabastdesigned
for the best average performance over the region have veryrspaifarmance results.
The design for robustness did not require a sacrifice in perfornadrtbe assumed true
value of the system. What is interesting is that the previatt®sedemonstrates that
these two designs are very different. In contrast, the MLQ®G @nhanced robustness
designed for the least maximum position error over the region didemfairm as well as
the other two designs. This implies that the maximum position error at the peinteof
the robustness region, which is also the design point, is not repraserdhtthe

maximum position error for the robustness region. Thus, if robusgass needed and
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Figure 6.13 Comparison of the predicted performance for the generalized MEQG w
and without enhanced robustness at only the design point

the assumed true value is close to the actual true value, thersitpe teprotect against
the maximum error would sacrifice performance.

Now it has to be determined how the designs perform for tlsegroeed
robustness region of the parameter space. Consider the perforevaheation for the
MLQ with enhanced robustness designed for the best maximum positar and the
MLQG without robustness shown in Figure 6.14. Both the maximum anéN®e
position error are evaluated over the parameter space for thdesigns. As expected,
the enhanced robustness design does better at protecting againsixifmeirm position
error than the MLQ without robustness. However, the MLQG without rolssstne
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Figure 6.14 Comparison of the generalized MLQG with and without enhanced robustness
(designed for best maximum position error) over the robustness ball.

enhancement performs the best for the RMS position error proteciibis is only a
slight performance improvement over the enhanced robustness design. tHsom
empirical evaluation, the identifiable tradeoff is a slightrié@e in RMS position error
with the benefit of protection against the maximum position error.

Now consider the evaluation of the MLQG with enhanced robustness designed for
best RMS performance as shown in Figure 6.15. Not surprisinigdy,ebhanced
robustness design has the best performance for the RMS evaluatiomevet, the
performance improvement is not significant. This is an indicabiahthe performance at

the center of the robustness region is representative of theg@M&mance across the
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Figure 6.15 Comparison of the generalized MLQG with and without enhanced robustness
(designed for best RMS position error) over the robustness ball.

entire region. Thus, there is only a slight improvement in the uneasf the RMS
position error performance. What is not expected is that tigera significant
improvement in the maximum performance for the enhanced robustrsegs deer the
nonrobust design. Thus, in terms of performance, the tradeoff doesstdoeihe RMS
error robustness design as it does for the maximum error robude®gas. The RMS
error robustness design outperforms the MLQG design.

Table 6.3 gives the average of the predicted position correlation areorthe
parameter space for the previously discussed controller evaluatidmes typical LQG

represented as the baseline case is included in this predicsilyesia. It is of note that,
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Controller 0 Pt Ball 20 Pt Ball

(Meterg) (Meterg)
Ave Max
Baseline LQG 0.0503 0.0529| 0.0701
MLQG 0.0439 | 0.0472| 0.0673

MLQG w/Robustness, 20 Ri=0 0.0443 | 0.0465| 0.0617
MLQG w/Robustness, 20 Ri=1 0.0474 | 0.0485| 0.0582

Table 6.3 Predictive analysis for the Modified LQG controller compared to Hedira
LQG

in spite of the additional quality of robustness for all of the nwedlidesigns, they
outperformed the baseline case. In terms of non-adaptive singi®lEyntesign, this
could impact future design approaches. The algorithms evalumatbd section allow
the designer to specify the amount of robustness for given parésheded can
determine how the robustness affects the position correlation (sggeeane regulation
error as an indicator of performance). Obviously, if robustness mara requirement,
the previous algorithm would be employed.

The entries in Table 6.3 clearly indicate that the controllefsnpeed well for the
conditions for which they were designed. In the graphical analyajgpeared that the
MLQG with enhanced robustness designed for best RMS performasweeaiformed
well at protecting against the maximum position error. Though d¢aistroller
outperformed the MLQ without robustness, it did not outperform the MLQG wi
enhanced robustness designed for least maximum position error. MAdligsi|a
demonstrates that there is still a tradeoff between desiggbles in order to obtain the
desired results. The techniques for enhanced robustness provide addisigak to
consider. Table 6.4 shows the Monte Carlo analysis corresponding fwetthetive

analysis from Table 6.3. A comparison of the two tables indidhtasthe predictive
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Controller 0 Pt Ball 20 Pt Ball

(Meterg) (Meterg)
Ave Max
Baseline LQG 0.0506 0.0523 | 0.0716
MLQG 0.0443 0.0466 | 0.0691

MLQG w/Robustness, 20 Ri=0 0.0447 0.0462 | 0.0629
MLQG w/Robustness, 20 Ri=1 0.0478 0.0485 | 0.0594

Table 6.4 Monte Carlo analysis for the Modified LQG controller caegao the
baseline LQG

analysis is a good assessment of the simulated performanceamanoecused as an

engineering design tool.

6.4 MMAC Evaluation

This section investigates the application of the MMAC technigegsldped in Chapter

4 to the ideal mechanical-translational system described tro8&cl. The first step for
this investigation is to establish the baseline case for the ®IM&rformance by
comparing the original optimal discretization algorithm by Shel&®h and the slightly
modified version from Section 4.1. Next, the control implementation theeslodified
MMAC (M3AC) approach proposed in Section 4.2. This approach is based on the
Modified LQG from Section 3.2 and evaluated in the previous section. ndtuzal
extension to the RAC is the application of robustness enhancements to the Modified
LQG from Section 3.3, which is evaluated next. The final MMAC glesechnique for
evaluation is the Generalized MMAC discussed in Section 4.4. As part of thatevs

of MMAC techniques, the variance of the proximity measure asloged in Section 4.5

will be computed and analyzed.
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6.4.1 Baseline MMAC
In this section, implementations of the MMAC for the ideal meda@translational
problem compare the original optimal discretization algorithnShgldon [56] and the
proposed modification from Section 4.1. The results from the analylsisevwe as the
baseline case for comparison of the subsequent evaluation of the MMAC techniques.
Recall that Sheldon’s algorithm to discretize the paramptaresbasically uses a
three-step process. First, filters are designed based upon rspdeiied by arbitrary
values of the design parameter, in this case For the second step, the open loop
MMAE equations are used to select the filter that is clasgstobability to the assumed
true system. Finally, thelosed loopMMAC equations are used to evaluate the output
position correlation for the assumed true system, given thetetlelemental filter and
controller. The process is repeated for discrete values graom®eter space in order to
compute the cost to be minimized. The modification uses the statgates from the
closed loopposition correlation computation to determine the closest filtprabability
to the true system. From an impact on design computation, theicatdii obviously
cuts out a step. Since the MMAC is a feedback controllerclibged loopMMAC
equations should provide an MMAC design and evaluation that more acguedketts

the architecture.

6.4.1.1 Baseline MMAC Design

The design for the MMAC structure places elemental controitergarameter space
according to the discretization scheme discussed in Section 4.lwafspecified in
Sheldon’s example, the MMAC has three elemental controllers te pha parameter

space. The optimal placement minimizes position regulation eoroelation over the
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parameter space given by the cost function developed in Chapter 4Sh€loion’s
algorithm, the elemental controllers are placed in parameter space at:

A.=[25.78 41.49 55.10] (6.29)

For the modified discretization of Section 4.1, the elemental controllers aegl @iac

A, =[23.91 42.13 55.21] (6.30)
For this implementation of the MMAC, the design parametevalues specified by the
members of the sets,Aand A, above designate the design models for the filter and

controller. Notice that there is only a slight differencetf@r second and third parameter
models. This should not affect the performance at the larger vialubgs parameter
space. However, the modified discretization decreased the valthe dirst filter’s

parameter. Normally in this application, underestimating the parametéthin a single

elemental controller will degrade the control performance diealigt as compared to
overestimating it. Thus, in the case of the first filter, thproved performance must be

greater than the sacrifice in performance elsewhere caused by moviitigthe

6.4.1.2 Baseline MMAC Results

Analysis not only compares the two design approaches, but alsoeateB the
effectiveness of the prediction of performance. These resaltsompared to the LQG
analysis of the previous section. Evaluation of the MMAC with thange to the
discretization scheme will serve as the baseline casedimparison with proposed
MMAC and MMAE-based controller design approaches.

Clearly, the modification to the original Sheldon algorithm only hachior

improvement on the performance when comparing the results of tloerpanice for the

two design approaches, as indicated in Table 6.5. The intent for the gmopos
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Predictive Measure Monte Carlo Simulation
Controller Average Mean Squared Position Average Mean Squared Position
(Meters) (Meters)
Baseline LQG 0.0503 0.0506
MMAC (Sheldon) 0.0540 0.0539
MMAC 0.0533 0.0538

Table 6.5 Results for the MMAC analysis

modification was not necessarily to show improved performance, butrtondérate that

the closed loop equations for the predictive analysis could be ubed tlaan the open

loop as proposed by Sheldon and determine if there is any advantagenpArison of

the predicted performances as shown in Figure 6.16 indibatethé main differences
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Figure 6.16 Predicted MMAC performance using the Sheldon algorithmhamdddified
approach overlaid with the baseline LQG controller performance
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are at the transition points as well as the low and high end oparemeter space.
Otherwise, the predicted performances are essentially the. skhese points are where
the filter and controller mismatches are the greatest. I¥;irzd expected, both designs
are bounded below by the LQG evaluations at each point in parampater sThe LQG
evaluations assume an elemental LQG controller at every pointrampter space,
whereas the MMAC was limited to three.
Figure 6.17 shows the predicted performance of the modified MM¥&laid

with the Monte Carlo simulation results (mean and mednstandard deviation, plotted

as a function ofo,). The Monte Carlo simulation performance at both of the transitio
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Figure 6.17 Monte Carlo simulation of the modified Sheldon designed MMAC overlaid
with the predicted performance
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points and the high end of the parameter space are the regionstiMhg@erformance
degrades the most. However, except at the transition points,dtietpd mean stays
within the bounds of the simulated mean + one standard deviation. Theepetiction

is slightly greater than the mean plus one standard deviation v&decourse, it is

always better to have improved performance over the predicted.alDvee predictive

analysis using the MMAC with the modified discretization approdasety matched the
simulated performance.

The fact that the predictive analysis for the MMAC with migdiion may
perform well at the transition points, especially at the pommtparameter space with
larger gains, is particularly important to the follow-on techniquesréig on controller
models that have greater associated gains. For this problemrgéedantroller gains
correspond to models that have smaller values of the parasptefn order to make a
fair comparison of the evaluations, a predictive performance emaluzting the closed
loop equations was applied to the MMAC parameter locations found ubking
discretization with the open loop equations as specified in Equ&i28)( Figure 6.18
shows this predictive analysis as compared to the Sheldon preditdiysia, along with
the simulation mean. This comparison shows that, at the lowertitvanpbint, the
predicted mean using the closed loop performance equations doey flegtet than the
predicted mean as computed by Sheldon’s original performance equatkarsthe
remaining parameter space, the predicted mean is veryasifoll both performance
evaluations. It is important for the discretization that the ptiwei analysis is accurate,
especially when larger controller gains may be used, as isage with models with

smaller values ab..
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Figure 6.18 Predictive analysis and Monte Carlo Simulation for the MMAC with
modification overlaid with the predicted mean of the original MMAC discretinat

6.4.2 Modified MMAC

In this section, an implementation of the MMAC for the ideal medadmianslational
problem uses the !#AC design proposed in Section 4.3. Similar to the MLQG approach,
the filter and the controller, which form the elemental LQG adletrin the conventional
MMAC architecture, are based on different models. Of the hwesible MLQG design
approaches discussed in Section 4.3, the MLQG with a selected @nindlbe used to
design the elemental controller. This design approach matobgshysical architecture

of the MMAC. As is the case for the typical MMAC, thediltis placed in parameter

space and along with the associated controller and then the perferroaec the
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parameter space is evaluated. Thus, the filter is fixed arabttimller must be designed
based on the predetermined filter location and corresponding desigviouBranalysis
indicates that the MLQG with a selected controller outperfothes typical LQG

controller, and it is predicted that the benefits of the MLQG will carry over to &M

6.4.2.1 Modified MMAC Design
For the MAC, the design process uses the MLQG with a selected contatiher than
the typical LQG controller. The design process places the ifiltparameter space and
then finds the corresponding controller using the same optimizatiaras used for the
MLQG with a selected controller from Section 6.3.2.1. Next, thduatian of the
position error correlation uses the designed filter and controfestandard MATLAB
minimization algorithm fminsearch [31] was used to determine the optimal filter
locations to achieve the minimum position correlation over the parameter space.

For the MAC discretization, the filters for the elemental controllersebdaon the

parameter, were placed at:

Am3aciiter = [24.47 43.46 56.28] (6.31)
The corresponding controllers are designed for the models based oreteara, were
placed in parameter space at:
Am3ac-controler = [22.70  40.37 52.18] (6.32)
As expected, the optimization routine placement of the controllassofiset to
lower parameter values than those for the corresponding filters isThonsistent with
the MLQG design from Section 6.3. The placement of the fileerot exactly as was

found for the MMAC with modified discretization. They are offgetarger values ab,,
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which indicates that these faster filters with the largerrotlat gains can provide better

compensation for the lower frequency systems.

6.4.2.2 Modified MMAC Results
The intent of the analysis of the>MC results is not only to show improvements over the
conventional MMAC from the last section, but also to demonstrateet&igonship to the
MLQG elemental controllers. Since the MLQG elemental comtralemonstrates an
improvement over the typical LQG designs, then it is predictedhba’AC will have
similar improvements over the typical MMAC. Additionally, the G controller
evaluated at each point in parameter space should be the linasegfar the MAC.
Obviously, the three elemental controllers in thgAR will not perform better than the
MLQG evaluated at numerous discrete points across the paraspats. Finally, this
analysis also will show the effectiveness of the prediction wberpared to the Monte
Carlo simulations.

The summary of the compared performances in Table 6.6 indibaté a ten
percent improvement for the position correlation averaged over paraspace for the
proposed MAC compared to the typical MMAC. Figure 6.19 clearly indicdteg the

most significant performance improvements are at the highersvafute parametes,.

Also, as predicted, the MLQG controllers evaluated over the pteaspmace serve as the

N

Controller Predictive Measure Monte Carlo Simulation
Average Mean Squared Position Average Mean Squared Positiof
(Meters) (Meters)
Baseline MMAC 0.0533 0.0538
Modified LQG 0.0445 0.0448
M3AC 0.0472 0.0476

Table 6.6 Results for the ¥C controller compared to the baseline LQG
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Figure 6.19 M3AC, Baseline MMAC, and MLQG controllers evaluated dher
parameter space

lower bound on performance. However, the major differences arews$e at the
transition points, but also at the very smallest values,0fAs is the case with the typical
MMAC, as the operating point is further from the elemental cdatrgoint, the
performance degrades, with the peak degradation at the transition point.

Figure 6.20 demonstrates that the predictive analysis matcHegitivehe Monte
Carlo simulations, even at the transition points. Clearly, the gqteglimean is

completely contained by the simulated meamme standard deviation. Table 6.6 verifies

the accuracy of the predictive analysis. The predictive meanaged over the parameter
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Figure 6.20 Monte Carlo simulation and predictive evaluation for theov

space is less than one percent different from the Monte Gandasion mean averaged
over the same parameter space.

6.4.3 Modified MMAC with Enhanced Robustness

This section analyzes the implementation of tH&® with enhanced robustness design
from Section 4.3 for the ideal mechanical-translational problemdigesissed in Section
4.3, enhanced robustness is an extension of the robustness techniquestappked
MLQG controller. The intent is to find the specific improvementalfustness around
the region of the elemental controller location that also minsriize position error over

the entire parameter space. As reviewed in Chapter 4, ay sttzdd a single filter is
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selected according to the proximity measure. The selectetertal controller must
compensate for mismatches with, and for deviations of, the truersysience, the goal
of the individual elemental controller design is to provide enhancedtrobogol when
there are mismatches between the true system and the elementalerontroll

As established in Chapter 4, the MMAC with enhanced robustnessthse
MLQG with a selected controller gain as the elemental coetrollThe results from
Section 6.3.3 demonstrate that the designs for the MLQG with eexleontroller gain
for enhanced robustness (for either the best RMS performance orsthen&wamum
performance over the designated robustness ball) were notediffelom the non-
enhanced robustness design. The robustness ball for those designs seengl2Qooints

or equivalentlyAw, = 1.8t Therefore, it is most likely that the design for th&AKa with

enhanced robustness will be the same as the design of € Mithout enhanced

robustness.

6.4.3.1 Modified MMAC with Enhanced Robustness Design

For the design of the MLQG with enhanced robustness, the engpeatiies the type of
desired robustness and the design algorithm determines the diieement, the
controller design and the region of robustness. As computed foML@G with
enhanced robustness, the cost function to achieve the desired type dfigsbusin be

expressed as:

3= 0y + (10) Joys (6.33)

This robustness design factarjs determined by the design objectives and thus specified

by the designer. However, for the robustness ball, the discratizatocess will

determine its size. The region of robustness is dependent onatineerplacement of the
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elemental controllers. The transition point between the elemeélollers is a gauge
for the size of the robustness region. Of course, the locations wtis#ion points are
determined by the elemental controller design and discretization.

The optimal design of the AC with enhanced robustness followed the design
process outlined in Chapter 4. For this implementation, three filters designed for
three different points in the parameter space. For each, filte corresponding
controllers were designed according to the design process forli@&NMvith enhanced
robustness given a specified robustness ball. Recall that tign defsthe MLQG
involves a minimization of Equation (6.33) (using MATLABI®insearchroutine [31])
across the region of robustness. Finally, given the three reselemental MLQG
controllers with enhanced robustness, the average of the positionsecamputed for
the parameter space. A MATLAB minimization routine was engdoyp minimize this
cost. The resultant optimization returns the filter models, coatratiodels, and the
radius of robustness.

For the design of the MMAC, two values ofwere considered; zero and one.

For the case whee equals zero, the resultant design was:

AM3AC—robustness, filter [2206 41.23 5586] (634)
AM3AC—robustness, controlle? [2046 3828 5180] (635)
Radius of Robustness =[10.12 9.80 7.19] (6.36)

For the case whee equals one, the resultant design was:
Asacrobustness, fite— 122-11  41.25 55.85] (6.37)
A = [20.50 38.30 51.79] (6.38)

M3AC-robustness, controlleT”

Radius of Robustness = [3.47 9.11 3.60] (6.39)
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The two different designs are nearly the same as fdnea$lter and controller
parameter locations are concerned, but not the radii of robustnesslar Silter and
controller model locations for the two different designs should r@swdimilar control
performances. However, the significant difference in the gizbe robustness regions
will not affect the resulting performance. The radii of robustiiesthelower andupper
filters given in Equations (6.36) and (6.39) are greater for the RMiBagposrror than
that for the maximum position error. Since the system is secaiet, the resultant
control function will be parabolic. Thus, the difference betwé&enrobustness radii is

due to the filter model not being located at the minimum of theesponding

performance curve.

6.4.3.2 Modified MMAC with Enhanced Robustness Results

The results of testing the Modified MMAC with enhanced robustnesswanmarized in
Table 6.7. Consistent with the performance evaluation of the previousnegpts, the
average mean squared and average maximum squared positionrercomauted over

the entire range of the parameter space. Neither the desigrnimizing the RMS error

Predictive Measure Monte Carlo Monte Carlo
Average Mean Squared Simulation Simulation
Controller Position Average Mean Average Maximum
(Meters) Squared Position Squared Position
(Meterg) (Meterg)
Modified LQG 0.0445 0.0448 N/A
Baseline MMAC 0.0533 0.0538 0.0594
M>AC 0.0472 0.0476 0.0524
M3AC
W/3RObustneSS(1:1 0.0471 0.0476 0.0522
M°AC
w/Robustnesm=0 .00471 0.0476 0.0522

Table 6.7 Results for the C with robustness compared to the baseline LQG
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nor the design for minimizing the maximum error significantlypliaved performance
over the MAC design. It did not seem to matter that the filters and céensdior both
designs are significantly different from those of th8AK specified in Equations (6.31)
and (6.32). The parameter for both the filters and controller gainlsnade shifted to
lower frequencies for all three elemental controllers.

The reason for the difference in design as compared to W& Ns how the
optimal controller gain is found. The *C only finds the controller gain that
corresponds to the filter location as the assumed true value. dleesental controllers
(consisting of the filters and the selected controller gainsjham evaluated across the
range of parameters. Now the controller gain selected foerthanced robustness for
either RMS or maximum position error is for the range sgeclly the radius. Hence, a
different controller was selected than was for tHA® which will in turn affect the filter
placement.

The robustness factar did not affect the performance results as seen in Table
6.7. However, the radii of robustness for the filters for the designs were not the
same. The overriding factor in the design is that the filergment has to minimize the
average position correlation over the parameter space. The desigizajn found the
corresponding controller gain that minimizes the RMS or maximurntigro®rror over
the robustness radius. For this experiment, the type robustnessheverdividual
regions surrounding the elemental controllers does not matter.

6.4.4 Generalized MMAC
This section analyzes the implementation of the generalize®{GMMAC) for the

ideal mechanical-translational problem established in the &ctos. For the GMMAC
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architecture, the design adapts the design strategy foretherajized Modified LQG
(MLQG) controller. Recall from Chapter 3 that, for the generalized MLtQe filter and
controller models both may be different from the assumed truth modéus, to

implement the generalized MLQG in the typical MMAC architeet the controller gain
is replaced with an MLQG controller gain. Rather than statsats information being
fed to the elemental controller gain, measurement informatioedsthHrough to the
MLQG controller elements to compute the control. In the genedaWdAC, the filters

in the MMAE bank provide the residual information for the computationthef

probability that will be used to weight the elemental MLQG controller output.

Recall that from the previous evaluations of the MLQG with sedecontroller
and the generalized MLQG, the performance improvement over thagtaraspace was
not that significant. However, the filters and controllers€ach design approach were
significantly different. Thus, for the two-state problem, theas wnly marginal benefit
of the generalized MLQG controller. It is assumed for the AMapplication of the
generalized MLQG controller, any improvement will be similar the MLQG

enhancement and will not be significant.

6.4.4.1 Generalized MMAC Design

The design of the GMMAC required two sets of optimizations. fireeis for the filter
locations for the MMAE filters that provide the residual inforrmatand the second is for
the elemental MLQG controllers. The overall design begins spétifying the values of
the parametewn, for each filter in the MMAE portion. For each filter, an MGQs
designed using the optimization procedures from Section 6.3. The tegxtissto

compute the average position correlation evaluated across the pmarapace. A
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MATLAB routine was used to determine the filter locations and dbeesponding
MLQG that minimizes the average position correlation. The opétiin resulted in the
following parameter specification for the filter models, and theegalized MLQG filter

and controller models:

Ag = [24.39 4361 58.08] (6.40)
Aot = [22.66 41.39 55.90] (6.41)
Avtoseomone™= [21.01  38.42 51.83] (6.42)

As was demonstrated for the MLQG from Section 6.3, the valueshtor
parameters of the controller gain models are less than thesponding filter models.

Both filter and controller,, values for the MLQG are less than theof the assumed

system model. The assumed system models in this caste dietdilter locations of the
MMAE portion. In fact, the MLQG results were used as theahiuessin the
optimization. The minimization merely refined the generalized)@Lcontroller results

to match the filter locations more precisely.

6.4.4.2 Generalized MMAC Results

Since the GMMAC is based on the work from the generalize@®llcontroller, it is
expected that the results for the generalized MLQG evauater the parameter space
will serve as the lower bound on performance. As shown in Figure tB& predicted
performance of the GMMAC does not outperform the predicted MLQ&atpoint in
parameter space. As is typical of the MMAC, the greatéfgrence in performance
occurs at the points at which the probability flows from one filtethe next and at the
ends of the parameter space. These of course are the refjihiesgreatest parameter

mismatch between the filter locations and the system. Ribedlthe evaluation of the
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Figure 6.21 Predicted performance of the GMMAC overlaid gezedliMLQG
performance

MLQG assumes an elemental controller at every point in pararaptee, which is
impractical to implement. Table 6.8 shows that the differengeerformance between
the MPAC implementation and the MLQG evaluations is about 7 percent. Heece is
a relatively small sacrifice in performance for the prattimplementation, which used
only three elemental controllers.

Figure 6.22 shows the overlay of the Monte Carlo analysis and tdectpwe
analysis of the GMMAC. The Monte Carlo analysis follows thedjzted performance

very closely even at the transition points as well as the uppeloaed bounds of the
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Controller Predictive Measure Monte Carlo Simulation
Average Mean Squared Position Average Mean Squared Position
(Meters) (Meters)
Baseline MMAC 0.0533 0.0538
MLQG-generalized 0.0439 0.0443
M°AC 0.0472 0.0476
GMMAC 0.0472 0.0477

Table 6.8 Results for the GMMAC compared to the baseline MMAC

parameter space. The predicted analysis clearly fattinmhe bounds of the mean +

one standard deviation.
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Figure 6.22 Predicted and Monte Carlo simulated mean of GMMAC
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Though the generalized MMAC outperforms the typical MMAC, as atdit in
Table 6.8 it produces almost the exact same results as’#&@. M hus, for this example,
the additional overhead of maintaining three extra filters did noéae any performance
benefits. This is not unexpected since the MLQG with seledtecsfand controllers did
not outperform the MLQG with a selected controller. Though liteigond the scope of
this current research to test this architecture fully, it @dag beneficial to test higher
order MLQG controllers as the control elements with reduced oilters fthat provide
the control weighting information. This scenario would save much cotigputéor

implementation of large scale models.

6.4.4.3 Generalized MMAC with Optimized Parameter Estimation
This section investigates the design and performance of the GMM#D the PFB has
been optimized for parameter estimation rather than for contrabm Fhne previous
evaluation, the GMMAC does not present a substantial advantage forolcontr
performance as compared to theA@. However, as presented in Chapter 4, the
advantage of the GMMAC is that the discretization of the PFBgoocan be optimized
for parameter estimation and the component MLQG controllers cawptimized for
control for their regions of the parameter space (as determyntbe I’FB discretization).
The control performance is expected to be superior to that ¢ypieal MMAC but not
the GMMAC optimized for control.

For this implementation, the design algorithm is very simitarthat for the
GMMAC in which the filter locations are optimized for control peniance. The first
step selects the PFB filter locations and then designs the aptithQG controller

corresponding to each filter location and the associated range phtameter values
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spaced for that filter. For the second step, rather than deterntn@inmgpsition error, the
parameter estimation error is integrated over the paramsptme. The MATLAB
optimization algorithmfminsearch [31] is then used to minimize this parameter
estimation cost.

In order to evaluate the GMMAC optimized for parameter egion, the results
will be compared to those for the MMAE, the MMAC, the MMAC optiadzfor
parameter estimation and the GMMAC optimized for control. Thegdder the typical
MMAE, which for this experiment is optimized for parameter reation, followed
Sheldon’s approach [56] and yielded filter locations:

Avaciter = [18.12 34.33 52.29] (6.43)
The filter locations for the MMAC are the same as those foun&action 6.4 and
repeated here for reference:

Avac.conrol = [23.91 42.13 55.21] (6.44)
Clearly, the filter locations for the MMAC are different frahrose for the MMAE. For
discretization for parameter estimation, the filters areagpeeross a greater range of the
parameter space. The MMAE requires coverage of the paramatsx ® generate the
estimates at the lower and upper ranges. The MMAC is natalipievaluated for
parameter estimation performance and the lack of coverage patameter space will
clearly degrade estimation performance. In this application, wstdeetion of the
parameter will severely degrade the control performance versrestimation of the
parameter. Hence, the “low end” value of Equation (6.44) is mudhmehithan the

corresponding value in Equation (6.43).
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Normally, the MMAC is not designed for optimal parameter nesiion.
However, it is a simple matter to replace the control perforsmaneasure with a
parameter estimation measure for the optimization. The paae&imation measure
uses the position autocorrelation equations which are based on the miodifica
Sheldon’s MMAC discretization approach discussed in Chapter 4. optisization
approach yields filter locations:

Avacrpaam= [17.57 34.92 52.88] (6.45)
It is not surprising that Equation (6.43) is very similar to Equato#5), since the nature
of parameter estimation requires a greater coverage over tfeeohthe parameter space
(and can afford to use lower discrete parameter values thanaithafgoptimized for
control could). It is expected that the parameter estimatidorpgnce should be very
similar to that of the MMAE.

For comparison to the typical MMAC, the design results for tihMMAC

optimized for control found in Section 6.4.4.1 are restated:

Agumac = [24.39 43.61 58.08] (6.46)
Acumvacirer = 122.66  41.39 55.90] (6.47)
AGMMAC—controller: [2101 3842 5183] (648)

As expected, this design is closest to the MMAC optimized forralband not either of
the previous designs for estimation. However, it is intereshiag the high end filter
extends to a greater frequency than in the cases of the parameteli@sti@signs.

The GMMAC optimized for parameter estimation was designedrdicg the
state approach and yielded the following parameter locations:

Acvvacrparam= 117.89 35.71 52.14] (6.49)
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Acumac.rier = [16.50 32.91 55.06] (6.50)

Acumac.conro = [15.24  30.55 51.06] (6.51)
Clearly, these filter locations are significantly differérdm those in Equations (6.46)
through (6.48), which were optimally placed for best control performaNoge that the
lowest value for each of Equations (6.49) to (6.51) is substantially |theer the
corresponding lowest values in Equations (6.46) to (6.48), as discussed ddowever,
the PFB filters in the design are very close to those foMMAC and the MMAC
optimized for parameter estimation. The MLQG controller inféeelback loop did not
have a significant effect on the filter locations.

The results of the performance analysis demonstrate theoffrdsktween the
optimization for control and the optimization for parameter estonati Figure 6.23
shows the control performance for the MMAC optimized for contnol eptimized for
parameter estimation. Since the filter parameter locatiotvseba the two different
MMAC's are different, there will be regions in parametercgpm which one controller
will outperform the other and vice versa. Though the plots show thaetfermances
appear close, as expected, Table 6.9 does verify that the MMAC ogdirfor control
has the best control performance, according to the performanaeatmaltool (to be
corroborated through Monte Carlo simulation). However, the MMAC opédhitor
parameter estimation performs the best for parameter agtm but it was not
anticipated that it would outperform the MMAE. The improvement inapater

estimation performance is only marginal.
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Figure 6.23 Predictive regulation error performance of the MMAC optimized forotont
and the MMAC optimized for parameter estimation

Parameter Estimation Control
Controller Predictive Measure Predictive Measure
Average Mean Squared Frequen¢) Average Mean Squared Position

(Rad/Sed) (Meters)

Typical MMAE 36.65 N/A
MMAC-Control 50.13 0.0533
MMAC-Param. Est. 34.30 0.0551
GMMAC - Control 54.87 0.0472
GMMAC — Param. Est 34.95 0.0483

Table 6.9 Predictive analysis for the parameter estimation and contrgliéatien
performances

Figure 6.24 shows the performance of the MMAC in comparison thg two

implementations of the GMMAC. First, since the filter locas for the MMAC and the
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Figure 6.24 Predictive regulation error performance for the MMAC and two GMMAC
implementations
GMMAC optimized for control are close, the transition points betwiéms occur at
similar points in parameter space. However, the GMMAC cleadiperforms the
MMAC for position regulation. Also, the GMMAC optimized for paramedstimation
outperforms the MMAC. However, it has filters at significartifferent locations, and
thus it performs slightly worse at the filter transition pointdie control performance of
the two GMMAC:s is very close, but Table 6.9 indicates thaGGBVMAC optimized for
control will outperform the GMMAC optimized for parameter estimation as ¢xgec
The main goal of this section was to demonstrate the pararmstienation

capabilities of the GMMAC. Table 6.9 shows that the predictivamater estimation
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performance of the GMMAC optimized for parameter estimation oiagipes the
MMAE and performs comparably to the MMAC optimized for paramestmmation.
For the predicted control performance, the GMMAC discretized famaptparameter
estimation performs superior to the typical MMAC. Overall, thedmtive analysis for
the GMMAC discretized for parameter estimation indicatesithperforms well forboth

parameter estimation and control.

Table 6.10 verifies that the predictive analysis for control ge@d indicator of
actual performance (as assessed via Monte Carlo simulations)théuparameter
estimation actually performs significantly better than ptedic This is true for all the
controllers. Figure 6.25 gives a good understanding of the predictd/&ante Carlo
analysis results. At the transition points (the peaks of the gheeddperformance in
Figure 6.25) where the predictive analysis gives precise tiitasitions, the Monte Carlo
analysis tends not to select one filter consistently acrossuimerous runs. Also, the
transition point between filters is not necessarily the avelmeeen two adjacent
parameter locations (valleys of the predicted performance gard-i6.25). Thus,
selecting the filter not closest in probability, but closet in nusakrdifference,

contributes to reducing the average squared error as shown in Figure 6.25.

Parameter Estimation Control Performance from|
Performance from Monte Monte Carlo Simulation
Controller Carlo Simulation Average Mean Squared Positiop
Average Mean Squared Frequeng) (Meters)
(Rad/Sed)

Typical MMAE 34.56 N/A
MMAC-Control 43.70 0.0538
MMAC-Param. Est. 26.07 0.0551
GMMAC - Control 46.19 0.0477
GMMAC - Param. Est 27.20 0.0486

Table 6.10 Monte Carlo analysis for the parameter estimation and controllaticagul
performances
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Figure 6.25 Parameter estimation performance of the GMMAC optimized Eomptar
estimatiol

This implementation of the GMMAC designed for optimized paramete
estimation for the example problem demonstrates that thergmslasacrifice in control
performance in comparison to the GMMAC optimized for control. Howetlez
GMMAC can be used to satisfy the requirements for paramstienation and control
simultaneously. To satisfy these same requirements otherwmdd require
implementation of both an MMAE and an®*AC. However, it must be considered that
the resources to implement the GMMAC are less than those reédoirthe MMAE and
the MPAC combined. The engineer has the tools to decide if the perfoenatnihe

GMMAC is sufficient in comparison to the resource savings.
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6.5 MMAE-Based Control

This section investigates the application of the MMAE-based coradhniques
developed in Chapter 5 to the ideal mechanical-translational sgsteenbed in Section
6.1. It was established in Chapter 5 that the MMAE-based controhandKMAC have
equivalent structures at steady state (assuming no lower boundinge cglemental
controller, though not true in practical implementations). Thus, thigrd@rocedures for
the proposed architectures are very similar to the MMAC tgclesi Results for the
predictive analysis and Monte Carlo simulations will be comparéu thve previously
assessed MMAC and LQG approaches where appropriate. WhereaM&€ Msults
concentrated on the steady state analysis, MMAE-based conttadlsd include the
transient response. There lies any potential improvement of thABvidAsed control
over the MMAC.

The different MMAE-based control architectures discussed in Qh&piell be
evaluated. Each offers a slightly different method of obtaininglés&red performance
and degree of complexity. For example, the simplest of thetectures is the MMAE-
based control with a nominal gain. Although most likely not the desfigimoice, it is
worth investigating to determine a baseline for the more con\)MRE-based designs.
At the other end of the spectrum, the most complex architectuegisetite LQG
controller replacing the controller element.

6.5.1 MMAE-Based Control with a Nominal Control Element
The basic form of the MMAE-based control involves the state attifeeding a nominal
controller. This would be equivalent to an MMAC architecture in whhehgains in the

elemental LQG controller gains are exactly the same. S$i&e is only one controller
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gain, the parameter estimate typically used to select theolentis unnecessary. This
section evaluates the implementation of this approach and coniipagemst the typical

MMAC design.

6.5.1.1 MMAE-Based Control with a Nominal Control Element Design

As in the previous examples, there are three elemental fitatshave to be placed in
parameter space, but there is only one controller gain to be detdrmThus, there are
four variables that specify the design, which can be determinsilly agsing an
optimization routine. A basic MATLAB optimization routim@insearch[31], was used
to determine the optimal filter placement of the filters andsthgle controller gain that
minimizes the average position correlation across the parasmdee. The resultant
filter and controller parameters are given by:

A =[21.01 43.25 51.64] (6.52)

nom-filter

[47.91] (6.53)

alom—controller_

The average position correlation of this filters/controller comhinas 0.0669 rh A
comparison with the performance results in Table 6.8 from the prewatisrs clearly
demonstrates that the single controller element approach does fawtnpas well the

MMAC approaches.

6.5.1.2 MMAE-Based Control with a Nominal Control Element Results

The results for the MMAE-based control with a nominal controhel® demonstrate the
effects of the filter placement in the parameter space anttatieoffs in performance.
Also, it is clear that the MMAE-based controller with a sengbminal controller gain

does not offer performance as good as the typical MMAC.
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To illustrate the effects of the filter placement, Figb/26 presents an overlay of
the predicted performance for two different placements of ttediin parameter space
with the corresponding controller gains. The first MMAE-based cdetris specified in
the previous section and the second is given by:

A, e = [20.85 29.27 51.53] (6.54)
Bom-conrolier = [47-82] (6.55)

This second design was a local minimum during the minimizatiothef position

correlation. The average position correlation with this secondrsfitntroller
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Figure 6.26 Performance of two different nominal controllers with simitarerag
position correlation over the parameter space
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combination is 0.0673 mwhich is clearly not significantly different from the previous
design. However, the plots of the resultant performance evaluation are veigndiffe

For both nominal controllers, the plots of the predicted performanmessa
parameter space indicate where the MMAC switches from one filtee toetxt. Not only
are the plots discontinuous, but the plot of the cost function indicatgsstastial step
reduction in position error at the switch points. Clearly, theleiagntroller limits a
smooth transition from one filter to the next. As the performmant¢he two controllers
demonstrate, the amount of the jump is affected by the relativeopgsof the filters in
parameter space. There is a tradeoff between a larger relativetjomgteansition point
versus a smaller jump at a different transition point. It isipesghat two rather small
jumps at the transitions can yield the same overall average mparfoe over the
parameter space as the case of a larger and a smaller jump.

Both nominal MMAE-based controller implementations also demonghatehe
overall cost curve is greater than that for the typical MM#om the previous section.
Clearly, this is a result of the limitation of a single comémogain. The model on which
the controller gain is based is closer to the filter model thighlargero, than the other
two models. The larger gains associated with the models bagbd emaller values of
o, would drive the response unstable for larger system values,.of Hence, the
controller model parameter value is determined by the requirements of thetiightee
parameter space.

The Monte Carlo simulation of the first controller implementatsghrown in

Figure 6.27 indicates that there is a problem with the predictioheafilter crossover
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Figure 6.27 Monte Carlo simulation overlaid predictedgrenance for the first nomin
controller

point. Clearly, the correct filter is not selected consisteunttil the value oto,, for the
system parameter is considerably greater than the predicted trapsitnt.

Ironically, the Monte Carlo simulation of the second controller, showFigure
6.28, was significantly closer to the predicted performance thavast for the first
controller. As indicated in Table 6.11, the second implementation whitthbaslightly
higher predicted cost, actually has better performance as edlibgtthe Monte Carlo
analysis. However, both implementations perform more poorly thanbaseline

MMAC. For the second implementation, the predicted performanckeatransition
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Controller Predictive Measure Monte Carlo Simulation
Average Mean Squared Position Average Mean Squared Position
(Meters) (Meters)
Baseline MMAC 0.0533 0.0538
Nominal Controller 1 0.0669 0.0785
Nominal Controller 2 0.0673 0.0731

Table 6.11 Results for the Nominal MMAE-based Control
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Figure 6.28 Monte Carlo simulation overlaid predicted performance for the second

nominal controller

points is still not very accurate. The main difference for geoisd implementation is

that the poor selection of the filter does not have as significant an increhseosition
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error at the second transition point as the first implementatiorathte first transition
point. For the first design, there is a large region around ri$tetrfansition point where
the incorrect filter selection causes poor performance.

The effects of the transitions can be demonstrated by theiaos@rproximity
measure used in the filter selection developed in Chapter 4. ®kiengly measure and
filter standard deviations for the three different filters foz first design are plotted in
Figure 6.29. As discussed in Chapter 4, the minimum of the threemisoxeasures
will be the one associated with the filter that is select&tie one standard deviation
envelopes indicate that that minimum of the proximity measuremoape an absolute
transition when the variance of the measure is considered. The lpuoeal on each

mean plus one standard deviation plot goes to infinity while the lbaward on the mean
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Figure 6.29 Predicted proximity measures and their standard deviations of th@ualdivi
filters for the first nominal controller design
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minus one standard deviation goes to minus infinity. The bold vertical line ireFegR®
indicates the asymptotic bounds of the first filter. Observethis bold line is located
past the crossover point of the proximity measures for the first and se¢endTihus, as
demonstrated with the Monte Carlo simulation, the transition bettheemvo filters does
not always occur at precisely the samjevalues. The variance in the transition point
further demonstrates that the incorrect filter may be s#leeind thus the degradation in
performance.

6.5.2 MMAE-Based Control with a Blended Controller Element

This MMAE-based control approach blends controller gains accordingotmalmiity
weighting on the filters in the filter bank into a single g&iattis then multiplied by the
state estimate from the MMAE portion to produce the final contr8ls stated in
Chapter 5, this is a refinement over the MMAE-based control withnainal controller,
but it does not offer any significant improvement over the typMMAC. This
implementation is simply a probability weighting of the possiblengavith a post-
multiplication of the state estimate, whereas the MMAC involvesultiplication of the
state estimate by the controller gain with a probability hang applied to each

individual control.

6.5.2.1 MMAE-Based Control with a Blended Controller Element Design

The design steps for this architecture are exactly the santleat for the NAC. The
number of filters determines the number of controllers that wilbleaded together to
produce the final controller gain. The steady-state responsaletdrmine the filter

locations. As for the design of elemental controllers, tfa®lapproach which uses the
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MLQG controllers yields the best architecture in termseafgymance over the typical
MMAC.

Since the design steps are the same as f#%Mhe resultant design from that
implementation is repeated here. The parameters for thendafsige filters are given
by:

Ablend-fiter = [24.47 43.46 56.28] (6.56)
The corresponding controllers are designed for the models based oretearggiven
by:
Ablend-controller= [22.70 40.37 52.18] (6.57)

Again, the design approach assumes that one filter and contrillbeselected
at steady state. It does not take into account any differdrete®en the probability
weighting of the possible gains with a post-multiplication ofdfate estimate versus the
multiplication of the individual filters’ state estimate byetltontroller gain with a
probability weighting applied to each individual control. The impa¢ho$e effects will

be exposed in the Monte Carlo simulations of the next section.

6.5.2.2 MMAE-Based Control with a Blended Controller Element Results

The Monte Carlo simulation plotted in Figure 6.30 shows empiricaly the MMAE-

based control with a blended controller element is not equivalent to**h&. MHowever,

the differences in performance are only at the transition poiitet only does the
blended control have greater position error compared to the resultefdfAC shown

in Figure 6.20, the standard deviation bound is significantly gresterelh. The results
for the MMAC and MMAE-based controller with blended control shown ibl§®.12

indeed indicate that the predictive measures are the same, buviahte Carlo
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simulations differ by about one percent. Again, this insignificaiférénce comes from

the performance at the transition points between the filters.

MMAE-based Control
Simulated Mean

0.18 - MMAE-based Control
' F Simulated Mear:1 Std Dev

—+— — Predicted Mean of RAC

o2~ | e

0.16

0.14

0.12

0.08

0.06

Position Error Autocorrelation (#
o
H

0.04 -

0.02 -

0 10 20 30 40 50 60 70
Undamped Natural Frequenay,

Figure 6.30 Monte Carlo Simulation for the MMAE-based control witbnébéd
controller gain and the fAC

Controller Predictive Measure Monte Carlo Simulation
Average Mean Squared Position Average Mean Squared Position
(Meters) (Meters)
M°AC 0.0472 0.0476
MMAE with
Blended Control 0.0472 0.0482

Table 6.12 Results for the MMAE-based controller with blended cootrlpared with
M3AC results
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6.5.3 MMAE-Based Control with a Selected Controller Element

This section evaluates the MMAE-based control architectuae ubes the parameter
estimate to select the controller gain that will be usetthéncontrol computation. The
MMAE substructure provides not only the state estimate, but alquatheneter estimate.
The parameter estimate is then used as index for a look-up tatdatajller gain values.
Recall that, in the review of MMAE-based control in Chapter B, @stablished that the
MMAE can not be designed simultaneously for best parameteragstims well as best
state estimate. Of course, the best state estimateatemsgito the best control. Thus,
locations in parameter space for the filter design are séek&ircontrol and can be taken
directly from the MAC. Now in order to compensate for the fact that the parameter
estimate may not be thHeest the controller gains are designed based on the individual
probabilities that make up the parameter estimate as disdnsSedtion 5.2. As is the
case of the previous multiple model analysis designs, the corigrabgrability will be
limited by the performance of the MLQG controllers evaluateghants across the

parameter space as given in the results of Section 6.3.

6.5.3.1 MMAE-Based Control with a Selected Controller Element Design

As discussed in Chapter 5, the design of the MMAE-based control wiblegted
controller element is essentially a two-step process. Eiestilemental filter placement
for the MMAE portion of the architecture is accomplished byrdiszing the parameter
space for best control. Clearly, this will yield the samerdtization as the RAC

design. The results of the®MC discretization from Section 6.4 yield:

Awm3acHiter = [24.47 43.46 56.28] (6.58)
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The second step in the design process is to determine thelleorgains for the
look-up table with which the parameter estimate is used as the imilethe possible
controller gain values. Of course, for this example that has fittkers in the MMAE
portion of the architecture, the parameter estimate is given by:

a=pa +pa +pa (6.59)
where p,p,, and g are the probability weights for each filter and &, and g are the
parameter values for the filter designs. For the implementahendiscrete values of
probabilities were evaluated in the possible range of zero tevibhean interval of .01.
Of the possible 1,000,000 probability vectors, only 3,468 were allowable bebayse
also had to meet the requirement that

pptpt+tp=1 (6.60)
as well as the logical condition
NOT (p1>p2 and p3>p2) (6.61)
Equation (6.61) simply addresses the physical condition that the garasgmate must
exist between the parameters that specify the adjacent filters.

Of those combinations that were viable, the probabilities weppeuaback to the
possible discrete values Ofthat make up the look-up table. Clearly at the extreme
values of the parameter space, only one probability vector makesalp parameter
estimate, e.g. [1 0 0] and [0 O 1]. However, the interior pararestanate is not only
generated by the parameter estimate [0 1 0], but also otimebimations satisfying
Equation (6.60) and Equation (6.61).

Now the possible probability vector combinations are used to deterthe

controller gain values for each aFor a specified controller gain and each possible
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probability vector, the performance was computed with the probability lower bound using
equations from Section 5.3.3.2 and the system model parameters assurbed
equivalent td'a The next step is to compute the RMS error of the resultant perices.

The MATLAB optimization routindminsearch31] was used to determine the controller
gain that would minimize the computed RMS error value.

The resultant controllers are shown in Figure 6.31, overlaid with MLQG
controllers that are designed for each point in parameter spawte. tidt the controller
gains are constant before the first and after the last fpemameter locations,
respectively. Those controller values are set to the contrédletise MPAC for the cases
in which ‘ais less than the first filter location and greater than ase filter location,
respectively. However, a value fortlaat is less than the first and greater than last filter

locations is not a physically possible condition in a multiple mottektsire (since

K
é:Zak [p, ), but the controllers are included for completeness. Also notehbat t
k=1

controllers around the center of the parameter space are basedgogater than the
frequencies used for the corresponding MLQG designs. This iedicdiat the
controllers for the MMAE-based control design are much more conservattithose
middle points of the parameter space. Rather than assuming @ pstimate fof athe
design accounts for possible probability weights that could forr. tHehis will include
the effects of all the filters outputs rather than just an ifikat at the value of as is

used for the MLQG controllers in Figure 6.31.
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Figure 6.31 Controller gains for the three different look-up controller gain tables

The second design simply takes the results from the previousnstefpraa small
region (or notch) around the filter locations, sets the controll&etequivalent to the
M3AC filter value. The resultant controllers are plotted in Fg6r31 along with the
previous design. The controller value across the entire notch is lequitathe value at
the center of the notch which is equivalent to th#® filter location. The controllers
for the MPAC are equivalent to the MLQ controller at the specifie@filbcation. As
previously discussed in Chapter 5, the MMAE-based controller willes&t a single
filter at steady state. Since the each elemental camtrddisigned for NAC has been

optimized for the best performance, it is assumed that the MbBS&Ed controller will
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duplicate this performance at steady state. The trangsmbmse will be affected by the
controllers that are designed for the parameter estintfadgesare not close to the filter
locations. These parameter estimates are outside the notch shbigare 6.31. It will
be the controllers corresponding to these parameter estimateslitllaive the system to

steady state.

6.5.3.2 MMAE-Based Control with a Selected Controller Element Result

The designs from the previous section yield three different implemens of the
MMAE-based control with a parameter estimate look-up table tedted and compared.
The three implementations use the parameter estimate asokiad table index to find
the controller gain. The three controller gain design approachestiaeMLQG-based
designs, the probability vector derived controllers, andribieh design. The only
difference among the designs is the contents of the look-up tablemwbler gains.
Each table of gain values has the same number of elements araimjhetation of the
parameter estimate that points into the table is also the feartesting all the designs.
Each design will be compared to théAC Monte Carlo Analysis.

Figure 6.32 shows the predicted performance for the two diffeoetriotier look-
up tables’ designs overlaid with the predicted performance of the®@ALThe predicted
performance of the MLQG across the parameter space is emuival the predicted
results of the third look-up table design. The controller gainsequévalent to those
designed for the MLQG controller at each assumed point in paansgace.
Interestingly, in a small region above the third filter paetan value, the parameter
estimation design approach found a controller gain that gave gatlglibetter

performance. The controller gain was forced to a lower model value pandkag to the
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Figure 6.32 Predicted performance of the three controller look-up table designs

last filter model. The small difference in controller gains tuehe resolution of the
MLQG controller optimization for the few subsequent assumed paraesieates is
the reason for the slight improvement.

The first controller design based on an assumed parametentestaiso takes
into account the possible probability vectors that form the paramegemate.
Compensating for all possible probability vectors where more @dharparameter vector
forms the assumed value of the system, yields a more consemasigm. As shown in
Figure 6.32 for the parameter placement in Equation (6.58), the prepifedmance in
the region around the middle filter does not have the same perfornaandethe

controller were designed only for the perfect parametemasti However, at either of
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the two end filter locations, only one probability vector forms tharpater estimate, and
thus the predicted performance is the same as that for MLQG controller.

The resultant performance of the second design, referredhe astthed design,
is a mix of the first design and the MLQG controllers. As shawhigure 6.32, in the
regions around the filters’ locations in parameter space whereotiisoller gains were
set to the MLQG controller gains, the performance is equivalenthe MLQG
controllers. At all other locations, the performance is equivalent to the firghdes

The predicted performances shown in Figure 6.32 assume that the Nisl\E
perfectly predicted the parameter estimate at steath. sthis gives only an idea how
the filter would perform before it reaches steady state.stéddy state, only one filter
with the corresponding parameter location will be selected amil ot necessarily be
equivalent to the true system. Hence, the Monte Carlo analysseisl to reveal how
each design actually behaves at the filter selection t@m$bints and regions of the
parameter space where there is the greatest mismatcbelpetine filters and the assumed
true system.

Table 6.13 shows the Monte Carlo analysis of the design based onL®& M
controllers with look-up gain table, overlaid with the simulated mefthe MAC.
Although this MMAE-based implementation matches tH#\® performance very well,
it does not offer an improvement. In fact, at the filter tramsipoints, there is a slight
degradation in performance. As far as improvement to the transgpunse, results for
the average of the mean position correlation over the initial érainsegion shown in
Table 6.13 indicates that 3C outperforms the MMAE-based control with MLQG

controllers.
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Figure 6.33 Monte Carlo analysis of parameter estimatetedleontrollers based on
MLQG models overlaid with predicted mean of th2A@

Monte Carlo Simulation Monte Carlo Simulation
(Steady State) (Transient)
Controller Average of Mean Squared  Average of Mean Squared
Position Position
(Meters2) (Meters2)
M3AC 0.0476 0.0483
MMAE-based,
MLQG controllers 0.0479 0.0494
MMAE-based, 0.0493 0.0498
using probabilities
MMAE-based, 0.0479 0.0489
notch

Table 6.13 Results for the C with robustness compared to the MMAE-based

controllers with controller gains selected via parameter estimation methods
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Using the possible probability vectors that contribute to the paesarmastimate
clearly does not enhance the MMAE-based controller performasdadicated in Figure
6.34. Over most of the parameter space, the controllers that wemazed for all
possible probability combinations for the parameter estimate did rotmpeas well as
the MPAC or the previous design approach. As the predicted analysisreedfidesign
for all the possible probability vectors that form parametemmest degrades the
performance even at the middle filter where the filter modatches the parameter

estimate. This indicates that the controller really does not teave designed to protect
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Figure 6.34 Monte Carlo analysis of the MMAfsed controller designed for poss
prgbabilities that form the parameter estimate overlaid witlptéctive analysis for tr
M°AC
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against all possible probability vectors that form the paranmestigmate. That is too
conservative. Further, Table 6.13 indicates that the controller d#isigiot improve the
transient performance either. This result, along with the ststady response results,
indicates that for this example problem, the effects of amneeffects of the probability
vectors that form the parameter estimates are minimal.

The final design tested is tim@tch design, which is a composite of the previous
two tested designs. The Monte Carlo analysis shown in Figure 6.8ateslthe results

are very similar to those for the MLQG controllers of thestfidesign tested. This
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Figure 6.35 Monte Carlo analysis of notched probability look-up controller table averlai
with M3AC predictive analysis
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indicates that the parameter estimate quickly settles tdiltee closest in parameter
space and that this transient does not have a great effect @rethd performance. The
results summarized in Table 6.13 indicate a slight improvement tbxeemprevious
designs, but not of great significance. This further confirmstheparameter estimate
quickly settle to the closest filter according to the Bamoximity measure. Transient
effects of the parameter estimate are minor.

Overall, for the three designs, analysis indicates that for this exgngtliem, the
effects of probability vector variations that occur before statate has been reached are
minimal. The simple design of selecting the MLQG controlleygesponding to the
possible parameter estimates outperformed the more complex prybabdior based
design. However, not one of the three designs outperformed A€ Mesign. The
blending of the control performed in the’AC better reflects the control required at any
given operating point of the system.

6.5.4 MMAE-Based Control with Probability-Based Table Look-up

The MMAE-based control with probability-based table look-up is tmeige case of the
previous controller in which the controller gain is selected basedhe computed
parameter estimate. Since more than one parameter veayorepresent the parameter
estimate, information provided by the parameter vector is loirining the parameter
estimate. However, where the amount of information may be an adeafdn the
probability vector look-up table approach, the size of the taldke#ly a disadvantage.
In the previous example, 3,468 valid probability vectors were reduced to 26iblpos
parameter estimates. For each valid probability vector, a dentgalin matrix must be

designed.
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6.5.4.1 MMAE-Based Control with Probability-Based Table Look-up Design

The MMAE-based control with a probability-based table look-up is argérsase of the
parameter estimate table look-up approach and the design proc@sgple. The same
set of admissible probability vectors from the previous casseed to build the look-up
table. For each probability vector, the associated parameteratstas computed in
Equation (6.59) is considered the parameter of the true system. fdtdive probability
vector and the assumed true system, MATLAB"snsearch[31] optimization routine is
used to find the controller that minimizes the position correlatiahis computed using
the probability lower bound equations from Section 5.3.3.2. This process asect per
every admissible probability vector.

As was the case for the previous designs, the probability vdttor9], [0 1 0],
and [0 0 1] will have controllers that correspond to tH&® designs. This of course
assumes that a lower bound is not placed on the filters in th&Bpbrtion of the
architecture, though in practice a small lower bound is used t@rirdilter lockout.
Hence, the same parameter locations as tfQvare used as the filter locations in the
MMAE portion of the architecture and are given as:

Ayvaciier = [24.47 43.46 56.28] (6.62)

Since there is not a one-to-one correspondence between the cssieng/stem
models and the controller models, it is not easy to compare this with previous apgroache
Assuming that each probability vector can form a parametenastof the assumed true
system, then the controller models for the assumed true system can be plistiaaram
Figure 6.36. The solid region delineates the 3,486 controller modelsotihhespond to

the design for the possible parameter vectors. The probabititgrnis used to compute
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Figure 6.36 MLQG controller and table look-up controllers for assumed val(es of a

the parameter estimate that corresponds to the controller. pexted, the region of
probability based controllers touches the plot of the MLQG contrddiethe points in
parameter space that correspond to the filter locations. Those poiréspond to the
probability vectors [1 0 0], [0 1 0] and [0 O 1]. This is an indicati@i the performance
should at least duplicate that of the MMAE-based control using MQ&a@rollers as

analyzed in the last section.

6.5.4.2 MMAE-Based Control with Probability-Based Table Look-up Results
The predictive analysis and Monte Carlo simulation results agsepted in similar

manner as for the controllers in the previous section. For the pvedéstalysis, the
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performance of the controller is computed for each probabilicyoveonly at the point
given by the associated parameter estimate. It is agstiraethe associated parameter
estimate found by the MMAE accurately matches the true raygt@rameter. The
resultant performance of the 3,468 controllers is presented ineFog8i7 and appears as
an envelope of performance as discussed in Section 5.3.2.4. This envelepe abv
possible conditions during the controller operation and thus describes thetgute
performance.

Similar to the controller plots of the last section, the MLE@trollers evaluated

across the parameter space touch the region of predictedrpanice at the three filter
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Figure 6.37 Predictive and Monte Carlo analysis of the probabgisged MMAEbase!
controller overlaid with the predictive analysis of the MLQG
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locations. Again, this is where the probability vector pointsuskegly to those filters.

The third plot is the simulated mean of the MMAE-based contrdl avipprobability table

look-up. Except for the area around the transition from the secondrdofittar, the

simulated performance is totally consumed by the predicted performaime reg

The Monte Carlo analysis of the MMAE-based control and tfeQvis presented

in Figure 6.38 without the predicted region of performance overlailearly, the

MMAE-based control duplicates the performance of tfd® The blending of control

that is accomplished by the*¥MC is duplicated by this MMAE-based control approach

because it uses a gain table that has all the possible probabitityinations that may
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Figure 6.38 Monte Carlo analysis for the’AC and the MMAEbased control wi
probability based table look-up
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occur during operation of the controller. Unlike the designs in the presexisn in

which the probability information was mapped to the assumed paraesieate and
information was lost during mapping, all probability vector infororais captured in the
look-up table.

This MMAE-based control structure duplicates the performandeeoMMAC,
but does not improve upon it. The steady state and transient respdosegreces are
identical. Since the MMAE-based control structure is moreptexnin implementation,
it would not necessarily be the architecture of choice for mostatgmioblems. The
storage requirements for the control gains could be considerable. velpwe MMAE-
based control does provide some online computational savings since thernoin

matrix multiplications is reduced.

6.6 Summary

This chapter has presented the optimal designs for the LQG ¢tenttdMAC and
MMAE-based controller developed in the previous chapters applied aaweopsoblem.

The results show the cases for which the optimal designs f@rdpesed architectures
had improved performance over the corresponding conventional controller arcbgectur

The foundation of the improved MMAC design techniques is the development of

the MLQG controller. The results of implementing the MLQG acall@r for the example
problem demonstrate its superior performance over the typical t@@oller. The
generalized MLQG has the best control performance followedmeste MLQG with
optimally selected controller parameter, and then the MLQG witbpaimally selected
filter. It is the first two design approaches that form the fotioddor the modifications

to the MMAC and MMAE-based control designs. Further tests of th@® controllers
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with enhanced robustness demonstrate improved performance capaibifitiese not
available with the typical LQG controllers.

The next set of experiments demonstrates the improvements MMIE by
using the MLQG controller as the elemental controller. ThetersuMPAC significantly
outperforms the control performance of the typical MMAC. The GMMAC only provide
control performance enhancements similar to those of %M However, a subsequent
experiment demonstrates that the GMMAC can be optimized for pssamstimation
while maintaining control performance superior to that of the typical MMAC.

The final set of experiments demonstrates the techniques fgnomgsioptimal
MMAE-based controllers, for which several different architectuere developed.
Designs for the optimal MMAE-based controllers are based ostéaely state analysis
that shows the MMAC and MMAE-based control have the same forrencey the
primary revelation is that the MMAE portion must be discretimadoptimal control
rather than optimal parameter estimation, in order to achieve the fulleft bemsontrol
performance.

The experiments demonstrate the differences between theollmnsgelection
schemes. Clearly, the MMAE-based control using a nominal comtioiésy be the
simplest to implement, but does not perform particularly wBtle MMAE-based control
with blended controller gains is architecturally the most smtdathe MMAC. It also
performs comparably, except at the transition points where theeMgasrio simulation
reveals poor performance. The next group of experimentshestdMAE-based control
using the parameter estimate to select the controller Jdia.control performance does

not quite match that of the 3C, but comes close.
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A modification to the parameter lookup design is tested. Shmegarameter
estimate can be derived from more than one parameter combinhifoapproach uses
the probabilities that form the parameter estimate to designcdh&ol gain. As
expected, this approach is conservative since it protects aghitist possible sets of
probabilities that form the parameter estimate. The contidles not perform as well as
one based on the simple parameter look-up approach.

The final MMAE-base controller scheme uses a probability-bésiele lookup
approach. This requires an extensively large table sized aagdalithe number of
dimensions in the probability vector (i.e., equivalent to the numberltefsj. The
performance of this implementation only duplicates the performahdee MAC, but
does not improve upon it.

Overall, for this example problem, the blending of the individuametdal
controllers that is the foundation of the MMAC provides for the bestraont
performance. The MMAE-based control is only able to duplicate thdA®!
performance and not outperform it. For théA@, there is a slight overhead for the
additional controller gain matrix multiplies, but that is all.s&lthe GMMAC allows for
optimal discretization for parameter estimat@md improved control performance. It
was originally postulated that the MMAE-based control was the dgsoach, but the
GMMAC is able to provide more predictable performance.

Finally, this chapter has demonstrated all the tools that anéaldeato the
engineer for the design of optimal MLQG controllers’A@ and MMAE-based
controllers, and it points to the design choices that should be considEnedexample

problem implementation gives a strong argument for using the Mt@p@oller in place

259



of a typical LQG controller. For the multiple model adaptive @ntrsing the MAC in
place of the typical MMAC is fully warranted. In general, M@AC performs as well as
the MMAE-based controller. Finally, for optimal parameter estiom with adaptive

control, the GMMAC provides the best solution.
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Chapter 7 - Conclusions and Recommendations

7.1 Conclusions

This research has yielded new optimal design methods for muitiptiel adaptive
controllers (MMAC) and multiple model adaptive estimator (MMA®&sed controllers
as well as nonadaptive LQG controllers. The application of thesgndeethods is valid
for any cases that would be appropriate for the aforementionedoléenstr The
demonstrated potential for improved performance and enhanced robustnéiss mer
consideration for any possible LQG, MMAC or MMAE-based contradlpplications.
Thus, the impact of the new discoveries is extensive.

The intent of the dissertation research has been to discover hove ttheus
adaptive qualities of the MMAE more effectively to selecbatroller for applications in
which the controller may be a simple gain or a full-state fegdloantroller. Since a
portion of this research demonstrated that the MMAE-based coniralebe assumed to
be a generalization of the MMAC, improvements to the latter caappéied to the
former. The first step that led to the most significant disgowas the development of
an optimal design for the controller gains based on differengyesodels from those
used for the Kalman filters in the multiple model estimator @)Mf the MMAC. The
resultant elemental controllers (i.e., Kalman filters and sepoeding gains)
outperformed their conventionally designed LQG counterparts. nelxé step was to
develop optimal design for the filter and controller based on moddééseatit from the
system model and potentially different from each other. These desigraugierformed

their conventional counterparts. Now that the filter and controllegmiesodels are not
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necessarily the same as the system model, the optimal dasidre accomplished for a
closed set of possible system models. Hence, this area afctepeaduced a procedure
for the optimal design for enhanced robustness to possible deviatitthressassumed true
system.

New discoveries for optimal designs for the classical LQGrabbegan as an
adjunct area of research into multiple model adaptive control, butmieecantral to
performance improvements for both LQG and multiple model contraltdritactures.
The anticipated results of these discoveries were addressedlyam@hapter 1 as eight
hypotheses and corresponding projected contributions to multiple naagsiee control
and nonadaptive LQG control. This section continues with the validatiahese
contributions stated in the first chapter.

The first and perhaps the most significant contribution of thisareh is in the
aforementioned adjunct area of the modified LQG (MLQG) controlgdesiSince the
LQG controller is the most basic element of the MMAC contrak itentral to further
discovery. The enhancement to this basic controller element maimecontributor to
the overall improvement of the MMAC architectures and has thedésbgossible
application to control problems. The research yielded three posslifEsMontroller
designs that all perform at least as well as the typi@db lcontroller. The first design
procedure is the controller-selected MLQG controller in which Kladman filter is
designed using conventional methods (based upon a model equivalent to ¢me syst
design model) and the controller design model is possibly different the system
model (in which the control design model is selected via optiroizati The second

method is very similar to the first except that the controlferdesigned using
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conventional LQG methods and the Kalman filter design model is ppssitdrent from

the system model. Hence, this design approach is referredhe fter-selected MLQG
controller. Finally, the generalized MLQG has the optimal design forhwthe filter and
the controller design models are both possibly different from theraysodel. For the
example two-state problem, the generalized MLQG outperformed thelemselected
MLQG, which in turn outperformed the filter-selected MLQG controller.

The second contribution of this research is the MLQG with enhaotestness.
This extension to the generalized MLQG yields enhanced robustndsstfioRMS and
maximum error. The typical LQG design is only for a singiesm model, whereas the
enhanced robustness design allows deviations of selected parani¢terdeviations of
the parameters actually form a closed set of system mogelswhich the RMS or
maximum error is minimized. This enhanced robustness of the Lép@olier has
potential application to any control problem in which there may uentifiable and
bounded deviations to system parameters.

The third contribution results from utilizing the MLQG designgheselemental
controllers for the MMAC, resulting in the modified MMAC @C). Since, for the
comparison of individual controllers, the MLQG controller outperformed the
conventional LQG controller, there is good basis for reasoning thatdadé¢ied MMAC
should outperform the conventional MMAC (based on typical LQG contrallers)
However, the proper discretization of the parameter space lisietibssary to assure
optimal performance over the range of the expected parametes.vallee resultant
optimal M°AC architecture outperformed the typical MMAC for the exantple-state

problem. The example problem also demonstrated that the optimizatios iotlividual
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MLQG controllers will ensure that the 3C will perform at least as well as the
conventional MMAC. Hence, the ¥C should be considered in place of the
conventional MMAC.

The fourth contribution attains a design procedure for aAQvWwith robustness
to differences between the nominal system model and the stizaefiser model in the
MME portion. This design procedure, like the previous, builds from the wibkthe
LQG controllers and uses the MLQG with enhanced robustness aslethentl
controller form. Though the implementation for the sample problem didsmoiy
significant improvements to overall performance, the design prozeochaty prove
beneficial in other applications. Most notable might be the acaseltich the resultant
minimization of the maximum error is significantly differéndbm minimization of the
RMS error.

The fifth contribution is a generalization of the MMAC in whidie tLQG
controllers for the control elements are separate from the bakklwfan filters in the
MME portion. This is an extension of the work associated with thergézed MLQG.
The generalized MLQG for the example two-state problem did chdegperform the
conventional LQG, but it was only slightly better than the contrgiidected MLQG
design. This minor improvement at the elemental controller keaeklated to almost
identical performance between théAC and the generalized version. However, what is
significant is that the placement of the filters in the MMEtiparmay be discretized for
another performance criterion such as best parameter estwmdie the full-state
feedback control portion is designed for best control. The best paragsétnate could

then be used for some other purpose such as performance monitoring defiection.
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The resultant enhanced control still performs comparably to the mioral MMAC,
which is only optimized for the regulation error. Finally, an addél consideration for
the generalized RAC is that the filters in the MME portion may be of reduced qrder
compared to the order of the elemental full-state feedback controllers.

The sixth contribution of this research establishes commonalityebat the
MMAC and MMAE-based control architectures. This is necessaoyder to apply the
newly discovered improvements for the MMAC to the MMAE-basedrobat, as well
as establish the design procedures for the optimal MMAE-basedkenitself. It was
shown that, at steady-state conditions, finen of the MMAE-based control will be
identical to the MMAC. However, this is not true during the tramsperiod or before
one of the filters has assumed the maximum probability. Therdedi the optimal
controller is for steady-state conditions. For the case of rldveainding on the
probability of the filters, the MMAC can only be considered a chgggoximation to the
MMAE-based control.

The seventh contribution provides a discretization method for MMAEdbase
control that yields an optimal placement of the models in theAEMith respect to a
control performance criterion. Establishing the commonality beiwbe MMAC and
the MMAE-based controllers demonstrated that MMAE-based contrelswaject to the
same trade-off between discretization for best parameieragéstand best control. The
design of the optimal MMAE-based controller requires not only dizeteon of the
MMAE, but also the design of the controller gains that the MMAIE®&s. This portion
of the research proposed several controller schemes rangingsfropty using the

parameter estimate to select the controller gain to using the probalighits associated
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with the MMAE filters to accomplish that purpose. For each cdatrsklection method,
design algorithms for the optimal controller gains with therdiszation of the MMAE

were presented. The example two-state problem clearly déeuess that the
probability-based controller selection outperforms the other methodghibuechnique

is more complex to implement. From these results, an engingd¢ndn¢ools to evaluate
the trade-off between the complexity of MMAE-based controleplémentations and
the corresponding performances.

Finally, this research provides a modified MMAE-based contrdlitecture that
performs at least as well as the conventional MMAE-based coatoblitecture and
allows versatility in the control scheduling for possible values oértaim parameters of
the system as determined by parameter estimates. Tdws dhe engineer to discretize
the filters in MMAE portion for a criterion other than optimal gohtand still use the
parameter estimate (or probability associated with the at)nfor selecting the control.
The most likely choice of performance criterion for the MMAE wvdolle optimal
parameter estimation. An optimal parameter estimate then beultsed for purposes
other than control, such as monitoring operating conditions to detect pamnicem
degradation or failures. The performance enhancement of this encféteomes from
the benefits of the MLQG controllers over the conventional LQG cdeitsol However,
it must be emphasized that the modified MMAE-based control actingein which the
MMAE and controller gains are optimized for the control criterion provides bt

performance.
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7.2 Recommendations

This research has yielded several key discoveries that roushelyld be applied to
typical LQG control problems as well as to those involving multipledel adaptive
control. However, there are additional areas of refinement tlgitt provide ease of
implementation and additional framework for applications.

The approach for selecting the design models in the implementapenraents
in Chapter 6 was very basic. In general, the MATL#yBnsearchminimization routine
[31] was used to find the optimal value of the parameter ofgheifsied design model.
When both the filter and controller models were different from ffstesn model, an
application of the minimization had to occur within a minimization. ther example
implementation of Chapter 6, many of the minimizations settleddal Iminima. This
was especially problematic for the*MC and modified MMAE-based controllers. The
example problem was only a two-state system with one uncelésign parameter. In
order to make the design methods developed in this researchaadily usable, a better
approach to selecting the filter, controller or both within thenéaork of the MLQG
would be beneficial.

As stated, the example problem was a two-state system omghuncertain
parameter. The position error performance curves were onbnademrder with what
turned out to be large ranges of flat response before going asimalptoto the
maximum. This effect potentially limited the effectivenetshe robustness techniques.
The average maximum error over any given intervals was not difigrent. To

demonstrate the benefits of the enhanced robustness for the Mit@rfurfAC and
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modified MMAE-based controllers, higher order example problerhsuld be
investigated.

Another potentially productive area of additional research is reduced order models
between those in the MME and those for the elemental controllethdogeneralized
MMAC and the MMAE-based control approaches. A significantly redwsder model
for the filters used to compute the probability weighting maydequate to select the
higher order controller.  This has the potential to reduce the cornyplefi
implementation for large problems.

Of these three additional areas for further research, bettthods for
determining the filter and controller models would have the grteiateact. The MLQG
and MPAC should have truly widespread application. However, they will oaip g

acceptance with successful application of the techniques.
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