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AFIT-ENP-MS-20-M-102 

Abstract 

Operational numerical weather prediction (NWP) simulates aerosol abundance 

using climatic emission inventories due to a lack of available real-time observation. An 

advocation to monitor aerosol number concentration with a standardized global sensor 

network is defended. A comparison between observations from the existing network 

“PurpleAir” and condensation particle counters (CPC) reveals the necessity of regulated 

instrumentation when measuring aerosol number concentration. NWP initialization by the 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) module is capable of 

augmentation by hourly aerosol observation. The disparity between observed in-situ 

particulate matter smaller than 2.5-μm in diameter (PM2.5) and Weather Research and 

Forecasting with Chemistry (WRF-Chem) output—with GOCART—can be reduced via 

this modification. Analysis is done on WRF-Chem output near Dayton, Ohio after CPC 

data is manually inserted as WRF-Chem input at the surface. Upon confirmation of PM2.5 

characterization improvement by point-observation initialization, a method of integrating 

PM2.5 abundance into the long-standing meteorological observation network is suggested: 

encoding of PM2.5 number concentration in the routine meteorological aerodrome report 

(METAR) as an estimate of horizontal visibility.  
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A METHOD FOR ROUTINE PM2.5 OBSERVATION 

AND INCORPORATION INTO NUMERICAL WEATHER PREDICTION 

 

 

I. Introduction 

 

General Issue 

 Atmospheric composition is innately linked to various meteorological 

phenomena. Aerosols that are suspended in the lower troposphere significantly impact 

local radiative transfer, cloud formation and precipitation, and visibility restriction.  

Observational methods that quantify the aerosol abundance are utilized by specially-

interested parties, but are not commonplace in observational meteorology. Although most 

of these organizations monitor aerosol mass per volume of air, an essential claim posited 

in this research is that knowing the number of particles smaller than 2.5-micrometers 

(PM2.5) is categorically more descriptive and relevant for weather forecasters and directed 

energy systems. If a meteorologist fails to characterize atmosphere composition, he or she 

loses the ability to better predict the aforementioned effects on radiation and 

condensation. Weather stations around the world maintain equipment that monitor 

temperature, dewpoint, pressure, and an assortment of other parameters in order to 

accurately monitor the meteorological state of the atmosphere. This network does not 

consider atmospheric composition, and lacks the ability to measure ambient aerosol 

number concentrations. By installing and integrating aerosol measurement sensors at 

every weather station into routine meteorological aerodrome reports (METAR), our grasp 

and understanding of the atmosphere could be dramatically enhanced.  

Numerical weather prediction (NWP), a foundational technology used in nearly 

every forecast today, is capable of simulating aerosol emission in most environments. A 
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leader in this field is the chemically-coupled version of the Weather Research and 

Forecasting (WRF) model, also known as the WRF-Chem (Grell et al., 2005). While this 

model has many customizable options to choose when simulating emissions and 

microphysics, there are no established aerosol networks to provide real-time observations 

to initialize or verify forecasts. Nearly every meteorological model relies on 

meteorological observations for initialization; it is logical to suppose that aerosol 

modeling should also rely on the same, time-relevant observation system. In order to 

accurately characterize the microphysical interactions of aerosols in our atmosphere, 

Kahn et al. (2017) suggested a 15-variable observational network to reduce uncertainty 

predicting “direct aerosol radiative forcing.”  To demonstrate how simulation of one of 

these variables—aerosol loading—could be improved with a network of observations, a 

coordinate corresponding to Dayton, Ohio is manually initialized in multiple WRF-Chem 

runs over the Central Continental United States (CONUS). The model’s forecast is 

compared to a condensation particle counter (CPC) located near Dayton and 

improvement is observed after input modification. 

Problem Statement 

 Comparatively, it is easier to accurately simulate synoptic-scale atmospheric 

dynamics than microscale atmospheric composition over the same domain. Most 

scientists in the field possess a basic knowledge of these microscale interactions, but 

NWP and observational meteorology have not yet fully incorporated aerosol 

measurements into their most-used products. Several research articles and textbooks 

claim that aerosols—primarily PM2.5—have non-negligible impacts on 

cloud/precipitation formation and light extinction (Liou 2002, Petty 2006, Rogers & Yau, 
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1996). The principal job of an observational meteorologist is to provide the best available 

forecast to the customer. If this product does not include at least a basic forcing by 

aerosol loading, it is ignoring a potential mechanism for weather phenomena of great 

clientele interest. It should be said that while particle counting sensors are costly and a 

somewhat newer practice, gravimetric sensors have been easily available for decades. To 

date, there has not been a successful campaign to integrate real-time aerosol measurement 

into the well-established meteorological network.  

 Secondly, the routine reporting system in use today—METAR—loses value when 

reporting horizontal visibilities greater than 10 statute miles (SM) (or 10 kilometers in 

countries that use the metric system). Most observations lie in this greater-than-ten range, 

and all are considered as the same magnitude – unrestricted—even though 10-SM is not 

equivalent to 10-km. These arbitrary distance thresholds appease the visual needs of 

pilots on approach for landing, so reports of greater visibility ranges do not particularly 

intrigue most customers. Aerosols can be present in significant quantities and have 

meaningful impacts on light extinction in the atmosphere above 10-SM restriction. In 

addition to visible perception, light extinction interferes with systems that utilize infrared 

(IR) sensors. This information is completely ignored and lost with the current METAR 

format.  

Hypotheses 

 Consistent assimilation of surface point measurements will improve the 

characterization accuracy of PM2.5 using NWP. Conditionally, model-forecasted 

concentrations will likely be improved most in the first 24 hours (Pagowski et al., 2010), 
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then gradually diminish to pre-modification levels before the end of the +48-hr model 

run. Since the model only works with PM2.5 mass densities, a conversion of CPC data is 

needed to translate before initialization. Tracking and measuring number concentration 

will reveal more relevant and useful information to meteorologists than mass density. If a 

shift in focus within the aerosol measurement community towards obtaining number 

concentration occurs, more research will reveal obvious links between aerosol abundance 

and changes to the Earth’s radiation budget. These changes are integral in long-term 

climate modeling and in short-term meteorological forecasts.  

Significant measurement discrepancies are expected between sensors that capture 

different portions of the aerosol size distribution. Differences will be small for mass 

measurements and greatly exaggerated for number measurements. Disagreement like this 

would introduce doubts toward the reliability of aerosol monitoring. Device 

standardization across a network would remove most of these causes for concern. 

Converting number concentration into a genuine horizontal visibility will seamlessly 

include ambient PM2.5 loading within the existing method of observation with minor 

adjustments. These adjustments are expected to be unnoticeable to most operators, and 

serve purely to better inform the meteorologist analyzing the observation.  

Objectives 

Finding a method that successfully improves WRF-Chem PM2.5 characterization 

is the primary goal. Since this method involves using time-sensitive observations to 

remain relevant for operational forecasters, a reliable source of real-time data as the basis 

for this improvement is needed. Then, after a source is decided, experimentation with 
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different modifications to the model reveals an effective method. If an NWP model that 

uses climatic emission data is more accurate after ingesting real-time observations, an 

argument can be set forth to implement a widespread aerosol measurement network (or 

leverage an existing one) to sustain this improvement. 

The secondary objective is to create a convenient technique of reporting aerosol 

information while ensuring that it remains familiar and recognizable to the entire 

community. The visibility (VIS) category in the METAR communicates a possible 

visible range for the average human eye, and the category is reported in units of meters or 

SM. Instead of relying solely on transmissometers to measure visibility, we propose that 

the light-extinction properties of aerosols can be encoded as a visibility. The goal is to 

develop a process of conversion and a final result that is as simple to implement and read 

as the current VIS category. Doing so would build the case to introduce aerosol 

measurement to the well-established observational meteorology network. 

Preview 

 Rudimentary examinations of the characteristics/effects of PM2.5, capabilities of 

aerosol monitoring organizations, fundamentals of the WRF-Chem, descriptions of 

aerosol schemes and emission databases, and regulations of reporting visibility in 

METAR format are provided. Plans of action for generating unmodified WRF-Chem 

output, collecting aerosol and other relevant input data, modifying and regenerating new 

WRF-Chem output, and encoding PM2.5 abundances in METAR format are described. 

The initial WRF-Chem output is tested for meteorological accuracy to ensure reliability. 

Next, the available number concentration and weather data is organized and prepared for 
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use. After repeating WRF-Chem runs with new input, the results are tested against the 

original runs and a CPC. Finally, a sample of number concentration observations are 

transformed into horizontal visibilities compatible with METAR format.  
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II. Background and Literature Review 

 

Overview 

 First, while evidencing the relevancy of aerosols in meteorological processes, we 

aim to place special emphasis on PM2.5. After describing the benefits of monitoring PM2.5 

for meteorologists and others, the capabilities and methodologies of three established 

aerosol-monitoring organizations are explored. Then, an appraisal of their candidatures as 

reliable sources of data for initializing the WRF-Chem. Continuing, a description of the 

WRF-Chem model, its aerosol schemes, and the climatic emission databases the model 

uses to forecast aerosol loading are summarized. The final step of laying the foundation 

for this research was to study the International Civil Aviation Organization’s (ICAO) 

standards of reporting visibility in METAR format. Since aerosols cause the extinction of 

light, it would be possible to encapsulate aerosol data in the existing VIS category, 

thereby eliminating the need to add an entirely new category to a decades-old product. 

Atmospheric Composition 

Aerosols are usually divided into two major categories: coarse and fine (Petty 

2006, Liou 2002, Hinds 1999). Coarse particles are typically larger than 2.5-micrometers 

(µm), particles smaller than 2.5-µm are considered fine, and the smallest of particles (less 

than 0.1-µm) are referred to as cloud condensation nuclei (CCN), Aitken nuclei, or 

ultrafine (Petty 2006, Liou 2002, Hinds 1999). Fine and ultrafine particles smaller than 

2.5- µm are considered PM2.5. While coarse particles impair visibility and human health, 

they usually only grow to significant quantity during severe events like fires, volcanic 

eruptions or winds that whip-up earth/debris/sea salt (Rogers & Yau, 1996). This is 
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because coarse particles are mostly composed of “primary” particles, or those released 

directly into the atmosphere (EPA, 2015). “Secondary” particles are the results of 

photochemical reactions involving primary particles like black carbon, sulfur/nitrogen 

oxides, and ammonia; nearly all secondary particles are considered PM2.5 (EPA, 2015). A 

majority of anthropogenic emissions are considered PM2.5 and dominate urban areas, but 

naturally-occurring PM2.5 like smaller dusts/salts are found nearly everywhere (Masiri et 

al., 2015). In addition to its meteorological relevance (which is discussed later), PM2.5 is 

exceptionally harmful for humans over long exposures because of its size relative to that 

of the alveoli—the smallest and most important building block of the lungs where oxygen 

is absorbed into the blood. Coarse particles are deposited in larger hollows of the 

lungs/airway and are not capable of pervading these crucial regions like fine particles 

(Xing et al., 2016). 

 

Figure 1. Constituent pollutants that make up PM2.5 high-lighted in box (EPA, 2016) 
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The widely practiced standard for aerosol measurement is mass density, which is 

normally reported in micrograms per cubic meter (µg m-3)(Alfarra, 2004). Number 

concentration—reported in number per cubic centimeter (cm-3)—is used less frequently 

due to its potential of varied results from different sensors. These disagreements between 

number concentration measurements arise from instrument sensitivities to particle size 

detection (Amaral et al., 2015). Sensors normally claim certain “detection efficiencies,” 

or the diameter at which only 50% of particles can be detected. For example, a sensor that 

can detect particles as small as 10-nanometers (nm) counts hundreds, if not thousands, 

more particles than a sensor that can only measure down to 500-nm. However, since “a 

10-µm diameter particle is equivalent to the mass of one billion 10-nm particles” of the 

same density, mass measurements don’t differ that much among sensors that capture 

large particles (Alfarra, 2004). For this reason, mass densities favor detection of coarse 

particles. 

Lognormal distributions are commonly found in nature, and can be generally 

assumed for aerosol size distributions. Peak numbers are found among particle diameters 

between 10-nm and 100-nm, as seen in Figure 2. The peak of this distribution changes 

slightly as different amounts and types of aerosols are emitted during the course of the 

day, but the overall lognormal shape is retained (Amaral et al., 2015). Equation 1 

(Koepke et al., 1997) describes number as a function of particle radius (N(r)) :  

𝑑𝑁(𝑟)

𝑑(log 𝑟)
=

𝑁𝑑

√2𝜋log𝜎
exp [−

(𝑙𝑜𝑔𝑟−𝑙𝑜𝑔𝑟𝑀)2

2(𝑙𝑜𝑔𝜎)2 ]                         (Equation 1) 

where   

Nd = total particle density per unit volume (normalized to 1) 

r = radius (m) 

rM = median radius (m) 

𝜎 = standard deviation  
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Equation 1 can be integrated to calculate the total number concentration. Figure 2 

reveals that the majority of a number concentration value is composed by particles less 

than 100-nm. CCN and other particles smaller than 100-nm are the most susceptible to 

grow into the accumulation mode due to condensation and coagulation. Homogeneous 

nucleation, the process of pure condensation without CCN, requires supersaturation of 

several percent (Rogers & Yau, 1996). However, the presence of CCN increases the 

likelihood of cloud and eventual precipitation formation even at values of humidity much 

lower than 100% (Alfarra, 2004; WMO, 2016; Malm, 1999). Constant observation of 

PM2.5 number concentrations would warn meteorologists when these CCN are abundant. 

Additionally, CCN produce Rayleigh scattering that interferes with near-IR and IR light 

due to their size relative to the incident light (Petty, 2006). 

 

 

 

 

Figure 2. Sample number-size distribution of Dayton air collected by the Center for 

Directed Energy (Left) that reveals particle abundance in both Aitken and 

accumulation modes (Right) (Alfarra, 2004) 
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Aerosol Measurement Networks 

 While multiple respected organizations are interested in the characterization of 

atmospheric composition, none of them are recognized as the singular standard source for 

aerosol data. The United States Environmental Protection Agency (EPA), the Global 

Atmosphere Watch (GAW), and PurpleAir are three unique parties that maintain equally 

unique aerosol measurement networks. The EPA holds a diverse number of 

responsibilities but retains its status as the leading government-led assessor of 

atmospheric emissions. Every three years the organization releases a National Emissions 

Inventory (NEI), a detailed report of emission amounts denoted by location, chemical 

species, and source that includes PM2.5 (EPA, 2015). However, emissions are recorded as 

annual mass amounts (Gt yr-1), and are not suitable for up-to-date model initialization. 

While the network of sensors the EPA possesses/tracks is extensive, they do not provide 

real-time PM2.5 observations (EPA, 1998). Email inquiry of the EPA in December 2019 

regarding a standardized detection efficiency limit for their sensors was a met with a 

reply from their Ambient Air Monitoring Group. A list of their approved instruments 

contained only optical particle counters (OPC) instead of CPCs, and they had various 

efficiencies ranging from 300-nm to 500-nm (EPA, 2016). Since the EPA is most 

concerned with mass measurements instead of number, detection efficiencies do not 

affect their results that much, so the decision to employ OPCs rather than CPCs is 

understandable. 

 In 1989, the World Meteorological Organization (WMO) created the GAW, a 

“coordinated global network of observing stations” (GAW, 2020). In 2016, the 

WMO/GAW published the 2nd Edition of its Aerosol Measurement Procedures, 
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Guidelines and Recommendations (WMO/GAW, 2016). This document is far and away 

the best foundational material now available for the regulation of a future observational 

aerosol network. Three of its recommendations for continuous measurement include 

“particle number concentration (size-integrated), particle number size distribution ... and 

cloud condensation nuclei number concentration,” and the ideal detection efficiency is set 

as 10-nm (WMO/GAW, 2016). Unfortunately, while the data webpage in Figure 4 

showcases the extent of the GAW’s network, it does not possess data newer than 1 Jan 

2019, and could not be used during this thesis for experimentation with the WRF-Chem. 

The “Near Real-Time data” hyperlink featured in the bottom left of Figure 3 directs the 

user to a more limited map of available sensors (none of which are located in the United 

States) that are recommended for future research. 

 

Figure 3. The GAW’s archive of data listed by location, instrument, chemical 

component, and measurement type. (GAW, 2020) 
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PurpleAir is a limited liability company that markets itself as an “air-quality 

monitoring solution for home enthusiasts and ... professionals” (PurpleAir, 2020). It is the 

only organization found during this research that provides real-time PM2.5 observations in 

the domain of interest (central CONUS). Its indoor/outdoor OPCs are available for $259 

with internal memory and $229 without, while most CPCs normally cost thousands of 

dollars. Both PurpleAir OPCs have identical detection efficiencies of 300-nm and provide 

decent coverage across the globe (PurpleAir, 2020). While this detection efficiency is 

undesirably high and does not include CCN detection, the network is standardized and 

states whether a sensor is indoors or outdoors—indicative of its usefulness for 

meteorologists. Although their mission statement reveals the network’s focus on air 

quality, and their OPCs are unable to measure smaller nanoparticles of interest, 

PurpleAir’s service of providing real-time data to the public is matchless. 

 

Figure 4. PurpleAir’s webpage has a map that can be navigated to regions of interest 

and view different real-time measurement reports. (PurpleAir, 2020) 
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Weather Research and Forecasting with Chemistry (WRF-Chem) 

 NWP was first suggested as a possible forecasting method nearly a century ago, 

but wasn’t a truly worthwhile effort until the advancement of the computer in the 1950’s 

and creation of stable numerical techniques (Lynch 2006, Courant et al. 1928, Klemp & 

Wilhelmson 1978). The WRF was designed in the 1990’s as a collaborative effort 

between the National Center for Atmospheric Research (NCAR), the Air Force Weather 

Agency (AFWA), and several other prestigious scientific communities (WRF, 2020). We 

utilized the Advanced Research WRF (ARW) dynamical solver and its thoroughly-

documented webpage dedicated to serving its over 48,000 registered users (WRF, 2020).  

 Highly customizable and user-friendly, the WRF is now one of the most widely 

used mesoscale meteorological models in academic research around the world. While the 

WRF is updateable to Version 4.1 and newer, Version 3.8 was encouraged as a more 

reliable version for use with the Department of Defense computers used in this study. 

Both are written in the Fortran and C programming languages. It should be recognized 

that this advice was quickly accepted from Dr. Peckham—the lead author of the WRF-

Chem Version 3.8.1 User’s Guide (2017) and the coauthor of the WRF-Chem model.  

The WRF-Chem is unique due to its coupling within the WRF. The simulated 

aerosols in the model interact with the simulated radiative transfer from the WRF. The 

namelist of chemical variable options in the WRF-Chem model is extensive, but the most 

important one for this thesis is titled “chem_opt.” Setting chem_opt to select integer 

options greater than zero signifies use of the WRF-Chem rather than the basic WRF. A 

model run is divided into four principal phases of execution: 1) auxiliary background 
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input, 2) meteorological pre-processing, 3) chemical pre-processing, and 4) the 

dynamical core. Anthropogenic, biogenic, and fire emissions are all capable of simulation 

in the WRF-Chem, but since the city of Dayton is the point of interest in this study, 

biogenic and fire emissions were not included (since anthropogenic sources are day-to-

day the largest contributors to PM2.5). Final output can be produced in netCDF format 

and visualized in Python.  

 

Figure 5. The flow of information in the ARW WRF simulation is identical to that of 

the WRF-Chem, but the full WRF-Chem includes the gridded elements high-lighted 

above; this study included only anthropogenic emissions, and visualization with 

Python was sufficient (Peckham et al., 2017) 
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Goddard Chemistry Aerosol and Radiation Transport (GOCART) 

 Aerosol schemes normally fall into three categories: modal, bin and bulk 

assumption (Kazil, 2009). Modal methods calculate aerosol evolution pertaining to the 

three mean sizes of the Aitken, accumulation, and coarse modes (Figure 2). Binning 

methods calculate varying levels of emissions based on specified size ranges/bins. Bulk 

assumption schemes, like the Goddard Chemistry Aerosol and Radiation Transport 

(GOCART), only track the masses of individual chemical species, thereby saving time 

computationally (Chin et al., 2002). This time-per-simulation saved when using 

GOCART is beneficial for meteorologists that utilize new model data every six hours. 

The GOCART then assumes an overall lognormal-shape size distribution (described in 

Equation 1) based on the total mass summation of all chemical species. It calculates a 

PM2.5 variable through summation of sulfates, black carbon, organic carbon, and small 

dusts/salts, each provided by the emission inventory of choice.  

 

 

 

 

 

 

 

 

 

 

Species 
Species 

Abbreviation 

Density 

(g cm-3) 

Effective 

Radius (µm) 

Real Index 

Vis/NIR 

Imaginary 

Index 

Vis/NIR 

Sulfate Sulf 1.80 0.399 1.52 0 

Black Carbon 

(Hydrophobic) 
BC1 1.80 0.039 1.85 0.71 

Black Carbon 

(Hydrophilic) 
BC2 1.80 0.039 1.85 0.71 

Organic Carbon 

(Hydrophobic) 
OC1 1.40 0.087 1.45 0 

Organic Carbon 

(Hydrophilic) 
OC2 1.40 0.087 1.45 0 

Other PM25 P25 2.65 1.4 1.5 0 

Other PM10 P10 2.65 4.5 1.55 0.002 

Dust 1 Dust1 2.50 0.73 1.55 0.002 

Dust 2 Dust2 2.65 1.4 1.55 0.002 

Dust 3 Dust3 2.65 2.4 1.55 0.002 

Dust 4 Dust4 2.65 4.5 1.55 0.002 

Dust 5 Dust4 2.65 8.0 1.55 0.002 

Sea Salt 1 Seas1 2.20 0.3 1.45 0 

Sea Salt 2 Seas2 2.20 1.0 1.45 0 

Sea Salt 3 Seas3 2.20 3.25 1.45 0 

Sea Salt 4 Seas4 2.20 7.50 1.45 0 

Table 1. GOCART chemical species and physical properties. High-lighted 

species are included in the PM2.5 summation. 
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“Emission Inventories” are datasets of climatic estimates for various chemical 

species (greenhouse gases, sulfates, nitrates, etc.) developed from years of research and 

observation. The prescribed amounts of emissions for each species are simulated using 

GOCART as fluxes at the surface in units of µg m-2 s-1. Three commonly used 

inventories include: the EPA’s 4-km grid NEI, the 0.5-degree mesh Reanalysis of the 

Troposphere (RETRO), and the 10-degree Emission Database for Global Atmospheric 

Research (EDGAR). The temporal resolution of the NEI is hourly, the RETRO and 

EDGAR are monthly (Peckham et al., 2017). In a 2019 study, all of these databases were 

tested in the WRF-Chem and significantly underforecasted number concentration values 

for Dayton, OH (Fiorino et al., 2019). The inventory that performed the best compared to 

observed PM2.5 data in this study turned out to be the Hemispheric Transport of Air 

Pollution (HTAPv2)(Janssens-Maenhout et al., 2015). The HTAPv2 is regridded for use 

in the WRF-Chem with spacing of 0.1 by 0.1-degrees, with monthly estimates for several 

chemical species of interest (PM, black and organic carbon, etc.) that vary by emission 

sector (source, i.e. transport, industry, residential)(Janssens-Maenhout et al., 2015). 

While emission inventories in the WRF-Chem model do an overall adequate job of 

mimicking actual aerosol loading, running the model day-to-day with meteorological 

climate-data input instead of real analysis likely would not outperform a persistence 

forecast. 

Horizontal Visibility 

Horizontal visibility is reported in METAR format according to the Federal 

Meteorological Handbook No. 1 (FMH-1) in the United States (NOAA, 2017). The 

METAR is the standard for routine observation practiced by the WMO and ICAO. It is 
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satisfactory when relating the general meteorological phenomena (i.e. wind, cloud levels, 

present weather categories) and characterizing physical features (i.e. temperature, 

pressure, humidity), but falls short when describing atmospheric composition (visibility). 

At any given moment, it is most likely that a METAR (regardless of location) reads 10 

SM or 9999, the thresholds for automated observations (NOAA, 2017). This limit set in 

FMH-1 conveys an overall dismissal of value for visibilities greater than 10-SM. 

 

 

Particulate matter suspended in the air can dramatically impact the extinction of 

incident light, affecting radiative transfer. This occurs whether the particles are visible as 

a haze or not. The effects caused by ambient PM2.5 are more intense due to their size 

relative to the visible spectrum, creating a suitable opportunity for both Rayleigh and Mie 

scattering to occur. Aerosol-related light extinction at a designated wavelength  𝛽𝑒,𝑠,𝑎(𝜆)  

can be calculated using Equation 2, and then converted into a horizontal visibility with 

Equation 3 (Petty, 2006): 

Figure 6. Prevalence of “unrestricted” VIS use (AWS, 2020) 
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𝛽𝑒,𝑠,𝑎(𝜆) = ∫ 𝑄𝑒,𝑠,𝑎(𝑛, 𝜆, 𝑟)𝜋𝑟2 𝑑𝑁(𝑟)

𝑟𝑙𝑛10∗𝑑(𝑙𝑜𝑔𝑟)
𝑑𝑟

𝑟2

𝑟1
                         (Equation 2) 

Where  

𝑄𝑒,𝑠,𝑎(𝑛, 𝜆, 𝑟) = aerosol-constituent specific extinction, scattering, absorption 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑉𝑖𝑠0.55𝜇𝑚 =
3.0

𝛽𝑒,𝑎(0)+𝛽𝑒,𝑚(0)
=

3.0

𝛽𝑒,𝑎(0)+0.012
                      (Equation 3) 

Where 3.0 is calculated using the visual contrast at 5% for human perception (0.05) and 

0.012-km-1 as the average constant of molecular extinction (𝛽e,m) following 

Koshmeider’s formula (Koshmeider, 1926). SurfaceVis is reported in units of km and 𝛽e,a 

in inverse kilometers (km-1). It is clear that visibilities much greater than 10-SM or 10-km 

exist by scattering and absorption. In a clean, aerosol-free atmosphere, the maximum 

possible visibility (by Equation 3 with molecular extinction remaining) is 250-km. 

 

 

 

 

 

 

 

Figure 7. Light extinction and horizontal visibility 

 



 

20 
 

III. Methodology 

 

Overview 

 The ultimate objective of this research is to encourage the integration of PM2.5 

observation into the existing meteorological observation network. A baseline test is 

conducted to assess the performance of current aerosol modeling. Next, since initializing 

the WRF-Chem with real-time aerosol data for Dayton, OH should enhance its accuracy 

at that point, the capabilities of three different organizations and their respective abilities 

to provide up-to-date PM2.5 data for the model are explored. In doing so, their precisions 

and reliability for utilization as initialization data in future research efforts are 

considered. After settling on a benchmark supplier of aerosol data for the WRF-Chem, a 

method of augmenting the model with new information needed to be designed. Finally, 

having shown a possible method by which to update an NWP model, a network of 

aerosol sensors that monitor ambient PM2.5 number concentrations must be proposed. 

These sensors would work alongside the standard instruments already in place at every 

weather station, working to report METARs to the public. Because aerosols are so 

closely tied to light extinction, their abundance can serve as a new, more objective basis 

for measuring horizontal visibility restriction.  

Generating WRF-CHEM Output with GOCART Input 

 We installed a local copy of the WRF-Chem model and its auxiliary data, 

developed an order of operation in order to run the model, and began producing output. 

Each simulation/run started at 00Z and produced a forecast of 48-hrs. The first run began 

00Z on 1 March 2019 and the last run began 00Z 30 Apr 2019. The numerical mesh for 
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the simulations used a Lambert-Conformal projection with 134 columns (longitudinal) 

and 140 rows (latitudinal). Horizontal grid spacing was 0.12-degrees longitudinally and 

0.1-degrees latitudinally. The domain of each run (pictured in Figure 8) was centered 

near Nashville, TN. The northeastern corner is near Toronto, Canada, and the 

southwestern corner cuts off just north of Houston, TX. The vertical grid (maximum 

altitude of 10-km) has 12 vertical levels which are vertically stretched to permit higher 

resolution at the surface in order to capture diurnal variation of the boundary layer and 

transport of emissions at the surface to the overlying free troposphere. The EDGAR-

HTAP emissions inventory was used for all runs (Janssens-Maenhout et al., 2015). 

EDGAR-HTAP is a version of the HTAPv2 inventory that is augmented by the EDGAR 

when missing location-specific data. 

All WRF-Chem modeling was done on the High-Performance Computer (HPC) 

“THUNDER.” This system resides at the Air Force Research Laboratory (AFRL) on 

WPAFB, but is scheduled to be decommissioned in March 2020 (AFRL, 2019). This 

computer was accessible via remote login and could be operated with Linux commands. 

The scripts used to run the WRF-Chem were submitted in the following order, and are 

encapsulated in Figure 10: 1) WRF Pre-Processing System (WPS), 2) “Real,” 3) Convert, 

4) “Real” Part 2, and finally, 5) ARW. Each script was capable of alteration by text editor 

and ran successively. The WPS script ingests gridded meteorological analysis data every 

six hours from the Global Forecast System (GFS) as well as static terrain data. The GFS 

numerical mesh is a 0.25 by 0.25-degree grid with available 00Z, 06Z, 12Z, and 18Z 

daily analysis from a wide variety of observational data. The first “Real” script 

submission interpolates this GFS data onto our 0.145 by 0.1-degree WRF grid to form the 
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initial and lateral boundary conditions, which then merges with the EDGAR-HTAP 

emission data using “Convert.” Full initialization is completed for the WRF-Chem 

simulation before execution of the ARW script. This process takes between one hour and 

three hours to complete each run. Some of the notable variable options (and descriptions) 

chosen for this study include:

chem_opt = 300  (simple GOCART; no ozone since PM2.5 is focus) 

chemdt = 60  (chemistry timestep in minutes) 

kemit = 1  (emissions only at surface; no need for aviation emissions) 

emiss_opt = 5  (for use with RETRO/EDGAR) 

chem_in_opt = 1  (builds on prior simulation) 

bio_emiss_opt = 0 (no biogenic emissions; focus on location in urban area) 

dust_opt = 3  (GOCART dust with AFWA; low amounts of dust in Spring) 

mp_physics = 6  (WRF Single-Moment 6-Class) 

bl_pbl_scheme = 2 (Mellor-Yamada-Janjic scheme) 

chem_adv_opt = 2 (monotonic chemical transport) 

cu_physics = 1  (Kain-Fritsch scheme) 

 

 

 

 

 

 

 

 

Figure 8. Simulation domain of the WRF-Chem runs from this thesis; state outlines, 

boundary coordinates for each corner, and the location of AFIT (Dayton, OH) 

44.82N, 98.73W 44.82N, 79.28W 

30.38N, 96.72W 30.38N, 77.27W 
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Point-Measurement of PM2.5 

Courtesy of the Center for Directed Energy, this research included a fair amount 

of hands-on experience with a number of CPCs. In the end, the most recent, accessible 

data when starting this project was measured by a TSI 3788 water-based CPC. The 

stream and archive of data from this instrument and other CPCs has grown larger and 

more consistent over the past year, and is highly recommended for future research. The 

PurpleAir network allows public download of data from any of its sensors, and a decent 

number of the ones located in southwestern Ohio had been installed prior to March 2019. 

Unfortunately, the nearest sensor that shares this longevity is 15 miles away and located 

in a rural area. WPAFB is not in the immediate vicinity of Dayton, but rather in an urban 

sprawl slightly east-southeast of the city, so PurpleAir sensors installed in similar locales 

would be most similar.  Seven suitable locations in the suburbs of Columbus, OH, 

Cincinnati, OH, and Indianapolis, IN were identified (PurpleAir, 2020).  

 

  

Figure 9. A PurpleAir sensor can be discreetly installed (PurpleAir, 2020) (Left),  

the TSI 3788 is capable of 2.5-nm particle detection (TSI, 2018) (Right) 
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Since PurpleAir currently sells instruments with a detection efficiency of 300-nm, 

the number concentrations they report are much lower than that of our CPC, which 

counts particles as small as 2.5-nm. To account for this disparity and simulate a more 

reasonable comparison between the two sensors, the mass densities reported by a 

PurpleAir sensor in northwestern Columbus were converted to number concentration 

estimates using Equation 4 (similar to that of Fiorino et al. 2019, but using a median size 

assumption rather than integrating over the lognormal distribution shown in Equation 1): 

𝑁 =
𝑀

𝜌𝑀∗
4

3
𝜋𝑟𝑀

3
                                                       (Equation 4) 

Where  

N = number concentration (cm-3) 

M = mass density (µg m-3) 

𝜌𝑀 = median density (g cm-3) 

rM = median radius (µm) 

 

Because the ultrafine particles smaller than PurpleAir’s detection limit don’t possess 

substantial mass, the mass densities from their sensors should be convertible to number 

concentrations within reasonable error of our CPC.  

Modifying WRF-CHEM Input 

In order to start each WRF-Chem run at 00Z with the right amount of PM2.5, a list 

of the 00Z observations from our CPC needed to be collected. These observation values 

were manually inserted into the “wrf_chem_input” file to initialize each 24-hr run, and 

HTAP-produced values at all other locations and heights remain unmodified. The 00Z 

input file is not produced until after gridded background, meteorological, HTAP and 

GOCART data have been initialized and formatted for use in the ARW. In order to access 

and alter it before being run in the ARW script, the WRF-Chem scripts were edited to 
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pause after “Real” Part 2. The netCDF wrf_chem_input file was then converted to an 

indexed text file and downloaded. Then, locating the specific surface location-coordinate 

value in the indexed arrays and changing it to the CPC observation value (which was 

converted to mass density with Equation 4) would initialize the point for Dayton, OH. 

Emission rates governed by HTAP remain unmodified at the Dayton coordinate for the 

duration of the +48-hr simulation; the only change made in this step is the initial (00Z) 

PM2.5 value at the surface.  After conversion back to netCDF format and replacement of 

the original wrf_chem_input, the final script (ARW) of the model was initiated.  

 

 

After all modified runs were completed, changes to the original WRF-Chem’s 

meteorology (i.e. temperature, precipitation, winds) were monitored to see if the new 

PM2.5 concentrations impacted the weather characterization. The hypothesis that the 

effects of adjusted initialization would mainly disappear within the first 24 hours of each 

run were also tested. This would be proven if the model returned to original predicted 

levels near the +24-hr mark. PM2.5 output was then converted to number concentration 

with Equation 4 and compared to the CPC observations in both amount and trend. Other 

methods than the one developed here for WRF-Chem initialization exist, and could be 

used to alter emissions or aerosols throughout the entire column of air rather than only 

ambient PM2.5 levels at the surface (Werner et al., 2019). If so, CPC observation down to 

at least 10-nm or converted PurpleAir data are recommended for use as input.  

Figure 10. Input is modified right before the ARW core is run 
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Encoding PM2.5 in METAR 

One monumental introduction to observational meteorology would be to include 

the aerosol-based visibility range in METAR format. The magnitude of these visibilities 

would, most often-times, remain non-integral to the daily operations of the pilots 

dependent on these values. This is because more often than not, observations at stations 

carry the tagline of an “unrestricted” 10 SM or 9999 (shown in Figure 6), each of which 

are used to mean the same thing despite being two different distances. These values are 

defined as the thresholds for automated observations in the FMH-1. Any visibility greater 

than 10-SM or 10-km is reported as 10 SM or 9999 for convenience since no perceived 

value is attributed to these measurements. While not pertinent to pilots during 

takeoff/landing, the detection of minor visibility restrictions greater than these thresholds 

(caused by aerosol light extinction) can be very helpful for meteorologists or directed 

energy research to indicate varying amounts of aerosol loading. 

 Simply considering ways to change the most commonly-used product in 

observational meteorology is daunting. The METAR has remained largely unchanged for 

more than 50 years, so it is more advantageous to propose an update that fits the existing 

framework (rather than add something entirely new). The ultimate aim is to include PM2.5 

number concentration with the rest of the parameters that the meteorological field has 

deemed important enough to routinely report at least once an hour. This can be done by 

exploiting the innate tie to light extinction that PM2.5 possesses. Through the use of the 

Laser Environment Effects Definition and Reference (LEEDR) code, it is possible to 

calculate the amount of light extinction associated with several aerosol number 

concentration observations, then manually convert these extinctions into horizontal 
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visibilities using Equation 3 (Center for Directed Energy, 2018). The reverse of this 

process is also possible: back out an extinction from a horizontal visibility, and from that 

value, estimate a corresponding number concentration. An example of this two-step 

process is presented in the results of this thesis, but other plausible conversion methods 

are left for future research. 

 LEEDR calculates light extinction using four primary input parameters: number 

concentration, temperature, dewpoint temperature, and surface pressure. It is important to 

note that those last three input parameters are already routinely measured for use in the 

METAR. The data used in this thesis for the months of March and April 2019, as well as 

a construct to calculate total aerosol and molecular light extinction (previewed in Figure 

11) was provided by committee member Dr. Kevin Keefer and sourced by the Center for 

Directed Energy. He also marked sections of LEEDR code that could be manually 

adjusted to define the aerosol haze’s complex index of refraction, size distribution, and 

incident wavelength of light. In agreement with NOAA (2019) practices, the entire bulk 

aerosol is assumed/approximated to have complex refractive index n = 1.530 – 0.010i  , 

the same as ammonium sulfate. LEEDR uses this n in the Mie calculations of Equation 2. 

Lastly, 550-nm was chosen as the appropriate wavelength to monitor for extinction in the 

visible spectrum (WMO, 2008).  

The LEEDR code also assumes a lognormal size distribution of particles in the 

haze. For this research, the entire bulk aerosol was assumed to be composed of water-

soluble aerosols. In order to take chemical species, particle shape and abundance into 

account, LEEDR has latitude, longitude, and time inputs to use location-specific and 
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season-specific climate data from the Global Aerosol Data Set (GADS)(Koepke et al., 

1997). The number concentration input parameter is scaled to the GADS total during 

processing, which is shown in Figure 11.  

 

By assuming a constant refractive index, a specific incident wavelength, and a 

100% water-soluble composition for GADS (example in Table 2), calculating light 

extinction can be standardized across locations. Otherwise, since the amounts of 

individual chemical species present in the atmosphere fluctuates constantly (across 

locations and time), in-situ measurements of each species would need to be taken 

constantly to assign optical properties to a haze when performing this calculation. 

Because of these assumptions, the conversion function derived in this thesis that links 

PM2.5 number concentration to horizontal visibility can be used at any location around the 

world. 

 

SEASON INSOLUBLE (cm-3) SOOT (cm-3) 
WATER-

SOLUBLE (cm-3) 

TOTAL NUMBER 

CONCENTRATION (cm-3) 

Default 

Winter 
0.5 15,000 11,000 26,000.5 

Default 

Summer 
0.5 15,000 13,200 28,000.5 

Custom 0.0 0 26,000.5 26,000.5 

Figure 11. Total aerosol and molecular extinction in LEEDR with adjustable GADS 

distribution boxed in red (Center for Directed Energy, 2018; Koepke et al., 1997) 

Table 2. GADS number concentrations for Dayton, Ohio (Koepke et al., 1997). 
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Converted visibility estimates can be measured and reported using a CPC instead 

of a transmissometer. The particle counter would not replace the transmissometer 

entirely, but rather augment the instrument when visibility restrictions are due solely to 

aerosol effects. Hydrometeor (fog, rain, snow, etc.), dust, smoke, and volcanic events 

produce visibility restrictions that far outweigh those of ambient aerosol concentrations. 

During these events, manual observation and transmissometers should still be utilized, 

and the METAR should show a present weather remark next to the prevailing visibility. 

The analyzing meteorologist would recognize that a PM2.5 number concentration cannot 

be obtained from this visibility observation.  

 When present weather is not occurring, the VIS category would read slightly 

different than usual. In metric format, where the VIS is reported in meters as four digits 

(VVVV), the first digit is always a “9” if a CPC is reporting the visibility estimate. This 

serves to benefit non-meteorological customers that, while reading, immediately notice 

with the first digit that they do not need to be concerned with restricted visibility. From 

their perspective, this first “9” functions exactly the same as a 9999 reading. For 

interpreting meteorologists though, the focus becomes shifted to the last three digits 

(9VVV). Instead of meters of visibility, the remaining digits of a 9VVV report are in 

hundreds of meters. For example, if a particular number concentration is converted into a 

15.5-km visibility, the category would read “9155,” a 20-km visibility is “9200,” and 

27.5-km is “9275.” Converted visibilities are always rounded to the nearest half-

kilometer, so the middle two digits represent visibility in kilometers, and the last digit of 

the category is always be a 0 or 5 to represent whole or plus one-half kilometers. 

METARs that use imperial units report as normal—in whole SM.  
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IV. Results and Analysis 

 

Overview 

 The numerous examinations of WRF-Chem simulations, aerosol data, and 

converted visibility estimate data in this research produced overall satisfying results. 

Prior to modification, the WRF-Chem output was subjected to meteorological-accuracy 

tests and proved relevant and dependable for emission forecasts. It performed well within 

an acceptable range of actual observations. PM2.5 measurements from both a CPC and a 

PurpleAir sensor were shown as interchangeable, proving PurpleAir as a possible source 

of data for future model initialization. The CPC number concentrations that were used to 

initialize new WRF-Chem runs improved the model’s PM2.5 characterization. The same 

CPC data was used as input for LEEDR and was successfully converted to horizontal 

visibilities capable of usage in METAR format. Introducing routine aerosol measurement 

into observational meteorology in this fashion should encourage future enhancement of 

NWP and provide standardized sources of data for directed energy research.  

 

WRF-Chem Output with GOCART Input (Unmodified) 

 After producing WRF-CHEM output for the months of March and April 2019, the 

weather results were tested for accuracy. If the model were proven wildly inaccurate 

meteorologically, the reliability of the emission output would be dubious at best. This 

turned out not to be the case. Temperature, wind speed, and wind direction were 

compared to observations taken at eight civilian and military airfields: 1) Dayton 

(KDAY), 2) WPAFB (KFFO), 3) Detroit (KDTW), 4) Selfridge (KMTC), 5) Fort Knox 
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(KFTK), 6) Louisville (KSDF), 7) Omaha (KOMA), and 8) Offutt (KOFF). The WRF-

Chem consistently performed better than the manually-written terminal aerodrome 

forecast (TAF) at these locations, and the difference ( observation – forecast value ) is 

visible in Figure 12. 

 

 

With regard to aerosols, the model produced realistic diurnal fluctuations of PM2.5 

mass with varying amounts of hourly aerosol abundance. All quantities were represented 

in units of mass over the domain (pictured in Figure 13) with similar magnitudes to those 

of real observations (between 0-µg m-3 and 500-µg m-3). Peak PM2.5 levels normally 

occurred overnight, between 01Z and 11Z (9pm – 7am local time for Ohio). While this 

coincides with observable trends of aerosol mass in urban areas, it is not the same for 

trend for particle number (Backman et al., 2012). Number concentrations are at their 

highest during the afternoon, when peak solar activity maximizes the rate of secondary 

particle formation and anthropogenic emissions are still strong, and near sunset, when the 

Figure 12. The WRF-Chem’s hourly wind speed error compared to TAF error (Left),  

WRF-Chem outperformed at all locations for wind direction (Right)  
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boundary layer lowers. This diurnal cycle is discernible in Figure 16 where WRF-Chem 

simulation values peak earlier than the CPC.  

Because the model only calculates PM2.5 mass and not the total number, its output 

needed to be converted using Equation 4 to compare to that of a CPC. Experimentation 

with different values of rM for different times of day (since size distributions naturally 

undergo diurnal variation) proved that setting  rM=0.075 during daytime hours (12Z-00Z 

in Ohio) and  rM=0.09 at night produced the closest fit between the two sensors. This 

assumption worked well for Spring but may not necessarily represent the size distribution 

during other seasons. Judging from GOCART chemical speciation in Table 1 and proven 

during error-testing,  𝜌𝑀=1.8  fit best. These values and times were also used to convert 

data from the modified WRF-Chem output and PurpleAir mass measurements.  

 

Figure 13. A plot of surface PM2.5 mass densities from the WRF-Chem simulations 

using HTAP emissions reveals anthropogenic sources (mainly urban centers) 
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Hourly PM2.5 Number Concentrations 

Along with the CPC located on-site at WPAFB, a litany of other atmospheric 

parametric data (plotted in Figure 14) was collected by a co-located sensor array. These 

parameters were paired with the observed number concentration to attempt identification 

of meteorologically-based trends. While nearly 100% of observations that consisted of 

high temperature, high RH, high winds, and low pressure were associated with number 

concentrations between 2000-cm-3 and 9000-cm-3, no other major connections were 

found in the data from March and April 2019. If additional weather/aerosol relationships 

could be identified from larger sample sizes, observation trends could be leveraged when 

forecasting PM2.5. 

 

Figure 14. Atmospheric parameters available for comparison 
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The observed PM2.5 number concentration trends of sensors partially downwind 

of major cities in the Ohio River Basin were examined, and found each of their trends 

resembled the CPC at AFIT well. Comparisons were done after converting from mass 

density to number concentration with Equation 4 and the median radius/density values set 

in the previous section. Because the Purple Air sensor represented in Figure 15 is in 

northwestern Columbus, OH, it was not expected to reveal identical amounts of PM2.5. 

More importantly, the two sensors revealed similar timing of the aerosol diurnal cycle. 

Peak emissions were identified in both sets most often near solar noon (00Z) and sunset 

(18Z). For this reason, PurpleAir shows potential to serve as a source of real-time aerosol 

data for WRF-Chem initialization in the future. In addition, its mass measurements can 

be ingested directly without conversion since the model also operates in units of µg m-3. 

 

 

 

 

Figure 15. A comparison of converted PurpleAir number concentration values in 

Columbus, OH and a CPC at WPAFB  
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WRF-Chem Output with Modified Input 

 There were no observable changes to the meteorology of the WRF-Chem after 

modification. Meteorology in the WRF-Chem may be affected if different/multiple points 

are modified, or if the model is run over longer periods of time. Even though the model 

doesn’t incorporate number concentrations into its calculations for cloud/precipitation 

formation or temperature, it doesn’t mean that the PM2.5 values produced by the model 

cannot be manually interpreted by forecasters and taken into account during analysis. 

Additionally, climate studies that incorporate the cumulative effects of aerosols on the 

radiative balance over long periods of time would benefit from knowing the abundances 

of those aerosols.  

 Hourly number concentrations of the modified WRF-Chem simulations and the 

CPC are shown in Figure 16. It should be noted that error comparisons are made after 

pre-processing WRF-Chem mass densities to resemble number concentration using 

Equation 4 with the same median time-of-day radius/density used for PurpleAir values. 

This pre-processing provides a handicap for the model’s true forecast performance. After 

placing each hourly number concentration error into a bin of particular magnitude, the 

frequencies of occurrence for each bin were recorded in the form of a histogram. Figure 

17 shows “amount errors” in terms of cm-3 where  amount error = forecast – actual . 

More often than not, the WRF-Chem simulation underforecasted number concentrations. 

The average amount error (absolute value) was 6222 cm-3 prior to modification, and was 

slightly increased to 6245 cm-3 afterwards. However, the number of severe underforecasts 

(more than -20000 cm-3 difference) was reduced by 17%, and the number of smallest 

errors (within 1500 cm-3 from true) was increased by 9%. 
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Amount errors are generally useful when making quick judgements about the 

accuracy of a system, but don’t reveal the context of the error. Using two examples, 1) a 

forecasted value of 2000 and an observed value of 1500, as well as 2) a forecast of 10000 

and an observation of 9500, both produce amount errors of 500. It is immediately 

noticeable that the second amount error is more desirable than the first even though the 

two are equal. In order to account for instances like this, the hourly measurements for 

“percent error” were tested—where  % error = (forecast – actual) ÷ actual * 100  –and a 

negative percent error represents an underforecast. Using a percent error, we can  

see that Example 1 was 33% greater than actual, and Example 2 was only 5.3% over the 

observed value. The average percent error (absolute value) before modification was 

125%, and after modification, this shrank to 114%. The distribution of percent errors is 

also presented in Figure 17.  

Figure 17. Comparison of WRF-Chem PM2.5 characterization pre/post modification.  
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There are clear reductions in the number of underforecasts by the WRF-Chem, a 

small rise in more desirable errors (within 25% of true), but a marked increase in the 

number of overforecasts. This undesirable side-effect (overforecasting) is most likely 

caused by the diurnal function (r(t)) set in the “prep_chem_src” program in the WRF-

Chem that artificially releases peak emission rates during dusk and sunrise “rush hour in 

cities” (Freitas et al. 2011). This leads to peak surface PM2.5 overnight (trapped by a 

lowered boundary layer), and is visible in most of the days plotted in Figure 16. While 

peak values of observed PM2.5 mass follow this trend, PM2.5 number does not. Therefore, 

after bumping up the WRF-Chem run value sat 00Z (initialization) to match the 

observation, the artificial peak set by r(t) that follows shortly after 00Z overshoots the 

observed number concentration trend. If emission rates are manipulated in future work, 

they could be used to maximize the release of smaller particles during the times that 

number concentrations have been observed to peak. 

 

Suggestions for Updated METAR 

 To introduce aerosol measurement into observational meteorology, a method that 

represents number concentrations as horizontal visibility estimates was demonstrated. 

These visibilities are suited for use in the METAR as a two-digit (imperial) or four-digit 

(metric) code. Using continuous data from 1 Apr to 13 Apr 2019, the author performed 

the LEEDR-visibility conversion on 46 sample number concentrations. This conversion 

requires the time-correspondent pressure, temperature and dewpoint. Thankfully, the 

array of weather sensors that took these measurements—to include a transmissometer 
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capable of testing our LEEDR-visibilities against for accuracy—was available during this 

time span within 25 meters of our CPC (CDE, 2019). 

With the initial values gathered and plugged into the extinction construct detailed 

in Figure 11, 46 different values for total aerosol atmospheric extinction were calculated 

(Keefer, 2019). The results were then run through the conversion shown in Equation 3 to 

produce 46 horizontal visibilities. When compared to the transmissometer values 

observed at the same time (plotted in Figure 18), a linear regression produces a best-fit 

line with slope 0.62 (good, since slope=1.0 is a perfect 1:1 conversion) and a bias of 

+19.9 (positive y-intercept). This bias is artificially created because the transmissometer 

can only report visibility values up to 50-km, whereas LEEDR does not have this 

limitation. Nearly 70% of the time the transmissometer reported 50-km, the LEEDR-

calculated visibility was greater than or equal to 50-km. The delayed prediction of a drop 

in visibility by LEEDR on 5 Apr and the early prediction on 7 Apr in Figure 18 remain 

unexplained. 

  

Figure 18. Linear regression between LEEDR and transmissometer visibilities (Left) 

Aerosol-based LEEDR predictions vs transmissometer-observed values (Right) 

(Center for Directed Energy, 2018) 
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The curve created in Figure 7—aerosol-related light extinction vs visibility—

generally resembles an inverse relationship (where  visibility ∝ 1/extinction  ). In order to 

gain some insight as to how exactly each variable in the LEEDR process affected the end 

result, input parameters and the corresponding visibility result were compared (Figure 

19).  Since this calculation involved Mie theory, number-size distributions, refractive 

indices and ambient weather conditions, there was uncertainty regarding the correlation 

between PM2.5 and the corresponding βe,a (and eventually visibility). This dependency 

turned out to be undeniable. The shape of the number concentration versus visibility 

distribution in Figure 20 shares the same trend of an inverse relationship. This means that 

βe,a is largely dependent on number concentration. The plots of pressure and humidity 

(dewpoint temperature divided by temperature) reveal very little correlation with the 

corresponding result on their own. 

 

 

Figure 19. Observed pressure and corresponding visibilities (Left), humidity and 

visibility (Right) 
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Although similar in appearance to the βe,a curve in Figure 7, the shape of the 

number concentration scatter in Figure 20 is dispersed and not exactly a one-to-one 

function. This represents some fluctuations that arise under different weather conditions. 

By using colors in Figure 20 to identify pressure and humidity impacts on visibility, it 

becomes clear that humidity plays a more significant role in visibility restriction 

(hygroscopic growth of particles) than pressure. The lowest visibilities recorded had the 

highest humidity values. Since hydrometeor-related restrictions are included in our list of 

events that classify as not completely aerosol-based, a transmissometer remains the most 

accurate sensor to report visibility during these instances. A CPC-based visibility cutoff 

point of 95% humidity eliminates a great majority of outliers that deviate from a potential 

continuous function. This function is the key that serves to convert observed number 

concentration to a horizontal visibility estimate, and can be used at any location to encode 

PM2.5 in the METAR. 

 

Figure 20. Number Concentrations and corresponding pressure observation (Left), 

outliers due to high humidities (Right) 
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After removing observations where the humidity was 95% or higher (reflected in 

Figure 21), two potential fit functions resembling the data using “polyfit” from Numpy 

were created (Rossum & Drake, 2010). Both fitted functions in Figure 21 are subject to 

change when more data is tested using LEEDR. An inverse function fit approaches 

infinity (different than the 250-km limit from Equation 3) as number concentration 

decreases to zero, and produces a minimum visibility of 24.4-km as number 

concentration increases to infinity. The polynomial has an upper limit of 99-km visibility 

at zero PM2.5, but produces negative visibility values above number concentrations of 

47,500-cm-3. This visibility characterization limit extends when greater values of ambient 

PM2.5 are added to the sample and fitted. Each observed point’s distance (error) from the 

curve are represented as errorbars in Figure 22. Instead of using a root mean-square error, 

the curves’ vertical (visibility) and horizontal (number concentration) errors are shown 

separately since the function is used with an observation.  

  

Figure 21. Two sample “conversion functions” for number concentrations with 

humidities less than 95%  
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Since the polynomial function fit the data with smaller error than the simple 

inverse function, it is used as the basis for conversion. Higher-order polynomials become 

more useful as fitted functions when tested against larger sample sizes produced through 

LEEDR. The Converted Visibility function (Equation 5) is used to estimate horizontal 

visibility when given an observed number concentration. An interpreting meteorologist 

Figure 22. Equation 5 produces a visibility within 3.9km of the real visibility (Top); 

Equation 6 produces a number concentration within 1866 particles of observed (Bottom) 
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that wants to extract the PM2.5 number concentration from a METAR would use the 

inverse of Equation 5—a Converted Number Concentration function (Equation 6). While 

both polynomials are a little complex to write out, they are easily usable when run with 

some simple programming or a calculator.  

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = [2.6𝑒(−12)]𝒏3 + [2.3𝑒(−7)]𝒏2 

                                                                    −[7𝑒(−3)]𝒏 +  99                        (Equation 5) 

Where  n = PM2.5 number concentration (cm-3)  .  

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 0.02(𝑉 + 5.8𝑒17)
1

3                                                   

   −(1.4𝑒9)(𝑉 + 5.8𝑒17)−
1

3 + 3𝑒4      (Equation 6) 

Where  

𝑉(𝒗) = [√𝑎𝒗2 − 𝑏𝒗 + 𝑐] − 𝑑𝒗  , 

a = 5.2e32  ,  b = 2.7e34  ,  c = 3.4e35  ,  d = 2.3e16  ,  and  v = horizontal visibility (km). 

Number 

Concentration (cm-3) 

Visibility 

(nearest ½ km or SM) 

METAR VIS 

(Metric) 

METAR VIS 

(Imperial) 

Not Available Transmissometer VVVV VV SM 

0 99.0 // 60 9990 60 SM 

2,500 82.5 // 51 9825 51 SM 

5,000 69.0 // 43 9690 43 SM 

7,500 58.0 // 36 9580 36 SM 

10,000 49.0 // 31 9490 31 SM 

12,500 42.0 // 26 9420 26 SM 

15,000 36.5 // 23 9365 23 SM 

17,500 32.5 // 20 9325 20 SM 

20,000 30.0 // 19 9300 19 SM 

22,500 28.0 // 18 9280 18 SM 

25,000 27.0 // 17 9270 17 SM 

27,500 26.0 // 16 9260 16 SM 

30,000 25.5 // 16 9255 16 SM 

32,500 25.0 // 15 9250 15 SM 

35,000 24.0 // 15 9240 15 SM 

37,500 22.5 // 14 9225 14 SM 

40,000 20.5 // 13 9205 13 SM 

42,500 17.0 // 11 9170 11 SM 

45,000 12.5 // 8 9125 8 SM 

47,500 6.5 // 4 9065 4 SM 

50,000+ Transmissometer VVVV VV SM 

 

Table 3. Observed PM2.5 number concentration in increments of 2500 cm-3 and 

corresponding VIS observations rounded to the nearest ½ km or nearest SM. 
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V. Conclusions and Recommendations 

 

Overview 

 Although some of the key atmospheric influences (light extinction and 

cloud/precipitation formation) of PM2.5 are described in this thesis, the question remains 

as to why its widespread observation is not maintained in observational meteorology. 

Organizations that currently gather aerosol data are not unified in their aims or their 

results. For example, the commercially-owned network PurpleAir gives the public access 

to real-time PM2.5 observations via its website. However, its primary mission is to 

monitor air quality, and its sensors are designed to capture larger particles to represent 

aerosol mass. Number concentrations that include ultrafine particles as small as 10-

nanometers are more relevant for meteorologists due to their roles as CCN and Rayleigh 

scatterers. If standardized, continuous observations were available, NWP models like the 

WRF-Chem would be able to initialize with real data instead of estimates based on 

climatic data. An additional and high-attention product that could include PM2.5 

information is the METAR. Since aerosol number concentrations are linked to light 

extinction, they could serve as the basis for a higher-fidelity VIS category.  

Conclusions of Research 

 There is overall disagreement in practice within the aerosol measurement 

community. Some organizations, like the EPA and PurpleAir, focus on the monitoring of 

aerosol mass, while the WMO-led GAW prioritizes aerosol number. Mass measurements 

favor detection of large particles. PM2.5 number concentrations are more useful and 

relevant for observational and numerical meteorology because they communicate the 
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abundance of particles in the accumulation and Aitken modes. There is no agreed-upon 

detection efficiency when using various sensors, and this can drastically impact the type 

and amount of particulate being captured in the reported value. Unless standardization 

occurs, NWP cannot reliably use aerosol data for initialization. Using a CPC, WRF-

Chem PM2.5 characterization errors for Dayton, OH were improved when initializing at a 

single point-location. This improvement can potentially be spread over an area if more 

points are initialized and interpolated. PM2.5 observation can be integrated into the 

existing METAR framework as a converted horizontal visibility. This conversion can be 

performed by LEEDR or a polynomial function within acceptable error from that 

recorded by a transmissometer. The polynomial function can assume constant optical 

properties, size distributions, and meteorological conditions, making it a useful tool at 

any location to encode number concentration as a horizontal visibility estimate. The 

representation of PM2.5 in the VIS category of the METAR would remain familiar for 

customers but become more descriptive for meteorologists.  

Recommendations for Future Study 

 The aspect of this research that demands further attention is modification of the 

WRF-Chem. The method used to alter the model’s input at the surface was entirely 

manual and is not suitable as a long-term solution that alters aerosol abundance 

throughout the entire vertical column. Data assimilation strategies that ingest data from 

several sources or locations would multiply the impacts that initialization has on the 

model’s output. Initializing runs that begin at times other than 00Z could produce varying 

levels of improvement. It is advisable to test larger/smaller domains in different regions, 

during different times of the year, and for longer spans of time. It would be advantageous 
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to work alongside the GAW to petition the ICAO regarding standardization of PM2.5 

measurement, and a minimum detectable particle size when reporting number 

concentrations. Communication with the ICAO regarding improvement of the METAR 

and inclusion of aerosols as a local visibility would be beneficial going forward. Testing 

more data produced through LEEDR would aid in the creation of a more accurate 

conversion from number concentration to horizontal visibility. Comparing more 

converted visibilities to transmissometer values would also hone and advance this 

conversion process.  

Summary 

 Ultimately, this thesis was intended to draw attention to the absence of aerosol 

observation in the meteorological community. The effects of PM2.5 on horizontal 

visibility, cloud/precipitation formation, and atmospheric radiative transfer warrant its 

inclusion in observational meteorology. Just as NWP uses surface micro-meteorological 

observations to initialize each model run, atmospheric-chemistry models like the WRF-

Chem can benefit from real-time surface aerosol measurements. Establishing a network 

of water-based CPCs to monitor PM2.5 number concentrations down to 10-nm would 

provide the coverage necessary for models to interpolate values over an area. The sensors 

of this network could be incorporated within the arrays already located at ICAO weather 

stations. This would allow stations to routinely report PM2.5 in METAR format as a 

comprehensive horizontal visibility. Interpreting meteorologists could then apply this 

knowledge to produce more informative and accurate forecasts for their clients. 
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