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Abstract

Modulation recognition is important for both military and commercial com-

munication applications, particularly in cases where enhanced situation awareness

and/or channel assessment is required to mitigate intentional or collateral interfer-

ence. Modulation recognition via template matching or statistical analysis is a key

aspect of non-cooperative (non-matched filtering) signal interception, classification,

and exploitation.

This research concerns the evaluation and modification of a conventional Digi-

tally Modulated Signal Recognition Algorithm (DMRA) to enable multi-carrier, Or-

thogonal Frequency Division Multiplexing (OFDM), waveform recognition. The orig-

inal DMRA architecture was developed to classify binary and 4-ary communication

signals for three fundamental data modulations, i.e., Amplitude Shift Keying (ASK),

Phase Shift Keying (PSK), and Frequency Shift Keying (FSK). By adding an addi-

tional key feature and threshold to the original DMRA architecture, a modified DMRA

architecture is developed to enable the reliable recognition of OFDM waveforms.

Simulation results for the modified DMRA architecture show a 95.25% success

rate for OFDM waveform recognition at a signal-to-noise ratio (SNR) of 11.0 dB.

When operated under scenarios where FSK signals are neither present nor considered

an alternative, the modified DMRA architecture yields success rates of 100%, 98.25%,

and 98.25% for classifying PSK2, PSK4, and OFDM, respectively, at a SNR of 5.0 dB.
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MODIFICATION OF A MODULATION RECOGNITION

ALGORITHM TO ENABLE MULTI-CARRIER

RECOGNITION

I. Introduction

1.1 Introduction

Modulation recognition is important for both military and commercial com-

munication applications, particularly in cases where enhanced situation awareness

and/or channel assessment is required to mitigate intentional or collateral interfer-

ence. Modulation recognition via template matching or statistical analysis is a key

aspect of non-cooperative (non-matched filtering) signal interception, classification,

and exploitation. The study of modulation type is important for several reasons.

“First, applying the signal to an improper demodulator may partially or completely

damage the content of the signal. Second, knowing the correct modulation type helps

to recognize the threat and determine the suitable jamming waveform. Also, modu-

lation recognition is important for national security.” [6]

1.2 Problem Statement

Orthogonal frequency division multiplexing (OFDM) is a multi-carrier technique

that is becoming more prevalent as commercial companies migrate toward deployment

of fourth generation (4G) communication systems. The advent of OFDM and its

use in digital radio and cellular telephone systems indicates that a capability for

distinguishing this modulation from fundamental modulations would be beneficial to

the Air Force. This research focuses on developing a technique for the non-cooperative

(non-matched filter) detection of OFDM signals by characterizing and modifying an

existing automatic modulation recognition algorithm.

1



1.3 Research Assumptions

Several assumptions are made concerning the environment and the signals con-

sidered for this research. The channel is modelled with additive white Gaussian noise

(AWGN). Input AWGN power levels are set to achieve desired signal-to-noise ratios

(SNR) at the radio frequency (RF) filter output. Only one signal is present in the

RF environment at a time, and it is assumed to be received along a direct line-of-

sight path from the transmitter, i.e., no multi-path signal reflections are considered.

With the exception of the OFDM signal itself, only binary and 4-ary fundamentally

modulated waveforms are considered. The carrier frequency of all signals is set in

the center of the RF filter. In all cases the symbol rate (symbols per second) and

sampling frequency (samples per second) remain constant. Thus the actual bit rate

(bits per second) varies as a function of modulation type, which dictates the number

of bits per symbol.

1.4 Research Scope

The Digitally Modulated Signal Recognition Algorithm (DMRA), as developed

by Azzouz and Nandi [7], is initially modelled here for the purpose of differentiating

three fundamental modulated signal types: amplitude shift keying (ASK), phase shift

keying (PSK), and frequency shift keying (FSK). Performance of the initial DMRA

architecture is then characterized by introducing a quadrature amplitude modulated

OFDM (QAM-OFDM) signal. Analysis of performance results is then conducted,

and a modified DMRA architecture is proposed to permit reliable differentiation of

OFDM from ASK, PSK, and FSK.

1.5 Research Approach

A literature search was conducted to determine the available types of modulation

recognition algorithms and which had been used in the past. A 2003 modulation

survey conducted by Su and Kosinski [18] provided a starting point. This survey

introduced three types of algorithms which were classified as 1) baseband modulation

2



recognition, 2) almost baseband modulation recognition, and 3) direct modulation

recognition. It also highlighted the work of Liedtke [16], DeSimio and Prescott [13,14],

and Azzouz and Nandi [6–10], among others. Each of the algorithms is discussed

further in Section 2.4.

As a result of this review and discussions with researchers at AFRL, the DMRA

architecture offered by Azzouz and Nandi [7] was chosen for consideration. This choice

was prudent given numerous citations in previous studies and a well documented

implementation scheme. Thus the original DMRA architecture was developed in two

research phases, a development phase which yielded key feature thresholds for the

fundamental modulation types considered, and an operational phase which used the

developmental thresholds and DMRA to establish recognition performance based on

confusion matrices. Operational results from this work were then compared to Azzouz

and Nandi’s [7] results to verify consistency.

Following development and operational characterization of the initial DMRA

architecture, the QAM-OFDM waveform is introduced to determine the fundamental

modulation type with which it would be most “confused”. Based on these results,

a modified DMRA architecture is introduced to permit OFDM classification. The

development process is then reproduced with the OFDM signal present to determine

a new key feature and threshold. Operational performance results are then provided

for the DMRA with the OFDM signal present.

1.6 Materials and Equipment

The modulated signals and DMRAs presented in this work were simulated using

MATLABr Version 7.0, developed by Mathworks, Inc. The simulations were run on a

2.2 GHz Athlon XP personal computer. This simulation methodology allowed precise

control of the RF environment, signals, and key feature calculations.

3



1.7 Thesis Organization

Chapter 2 provides background information and analytic expressions for the

modulations investigated, including amplitude shift keying (ASK), phase shift keying

(PSK), frequency shift keying (FSK), and orthogonal frequency division multiplexing

(OFDM). The DMRA architecture of Azzouz and Nandi [7] is also introduced. Chap-

ter 3 presents the methodology used for conducting the research, including the param-

eters used to create the modulated signals and to calculate the key DMRA features.

Chapter 4 provides simulation results and analysis for the fundamental modulation

DMRA and the modified DMRA for recognizing OFDM. Chapter 5 presents con-

clusions drawn from the research and provides recommendations for possible future

research. Additional supporting data is provided in the appendices.

4



II. Background

2.1 Introduction

This chapter introduces signal characteristics for the modulation types consid-

ered and the digital signal modulation recognition algorithm that is used for estimat-

ing signal type. Section 2.2 describes the fundamental modulations (ASK, PSK, and

FSK) and Section 2.3 introduces orthogonal frequency division multiplexing (OFDM).

Section 2.4 provides a brief background on the use of modulation recognition. Sec-

tion 2.5 describes the Digitally Modulated Signal Recognition Algorithm (DMRA)

developed by Azzouz and Nandi [7]. Section 2.6 introduces the key features, classi-

fication process, and confusion matrices for the DMRA. Section 2.7 summarizes the

chapter.

2.2 Signal Types: Fundamental Modulations

“Digital modulation is the process by which digital symbols are transformed

into waveforms that are compatible with the characteristics of the channel.” [17]

Bandpass modulation consists of converting an information signal into a sinusoidal

waveform. This information can be conveyed in the following parameters of an RF

carrier: amplitude, phase, frequency, or any combination thereof. The fundamental

modulations, as described in this research, consist of modulations which only involve

varying one signal parameter at a time on a symbol-by-symbol basis. The fundamental

modulation types considered include amplitude shift keying (ASK), phase shift keying

(PSK), and frequency shift keying (FSK).

2.2.1 Amplitude Shift Keying (ASK). Amplitude shift keying (ASK) is a

form of amplitude modulation in which the modulating wave changes amplitude on a

symbol-by-symbol basis using predetermined, discrete amplitude values. The analytic

expression for M-ary ASK is

sk(i) = ak cos

(
2πfci

fs

)
, (1)

5



where fc is the carrier frequency, ak = Ak + Ao for Ao a constant bias factor, k =

1, 2, . . . , M , sample index i satisfies 1 ≤ i ≤ Ns = fs/rs, Ns is the number of samples

per symbol, fs is the sample frequency, and rs is the symbol duration.

2.2.2 Phase Shift Keying (PSK). Phase shift keying (FSK) is “the form of

phase modulation in which the modulating function shifts the instantaneous phase

of the modulated wave on a symbol-by-symbol basis using predetermined, discrete

phase values.” [11] The analytic expression for PSK is

sk(i) =
√

2P cos

(
2πfci

fs

+ φk

)
, (2)

where fc is the carrier frequency, φk = 2πk/M +φo, k = 0, 1, . . . , M−1, sample index

i satisfies 1 ≤ i ≤ Ns = fs/rs, Ns is the number of samples per symbol, fs is the

sample frequency, and rs is the symbol duration.

2.2.3 Frequency Shift Keying (FSK). Frequency shift keying (FSK) is “the

form of frequency modulation in which the modulating wave shifts the output fre-

quency on a symbol-by-symbol basis using predetermined values, and the output

wave has no phase discontinuity.” [11] The analytic expression for FSK is

sk(i) =
√

2P cos

(
2πfki

fs

)
, (3)

where fc is the carrier frequency, fk = fc + krs, sample index i satisfies 1 ≤ i ≤ Ns =

fs/rs, Ns is the number of samples per symbol, fs is the sample frequency, and rs is

the symbol duration. The values of k are chosen as [. . . ,−2,−1 < k < 1, 2, . . .],

k 6= 0, to maintain a minimum FSK tone spacing of rs.

2.3 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is a combination of data

modulation and multiple-access coding that segments a communication channel ac-

6



cording to frequency to permit channel sharing [1]. OFDM has been used since the

mid-1960s and was originally patented in 1970 as a means to overcome the wasted

bandwidth found in traditional frequency and time division multiplexing schemes [12].

At that time, the complexities associated with implementing OFDM made it too ex-

pensive for commercial applications. Thus, OFDM was primarily used for military

applications until the 1990s.

Over the past ten years, the world of wireless communication has seen expo-

nential growth. This growth has prompted the development of standards by the

Institute of Electrical and Electronics Engineers (IEEE) for wireless devices for local

area networks [15]. Although these standards implement various modulation types

and coding schemes, including complementary code keying (CCK) and packet bi-

nary convolutional coding (PBCC), the predominant modulation cited in the IEEE

802.11a, 802.11g, 802.16a, and 802.15.3a(proposed) standards is OFDM [2–5].

OFDM is a combination of modulation and multiplexing that relies on spec-

tral segmentation to provide signal discrimination / separability, i.e., it divides the

spectrum into a number of equally spaced regions where mutually orthogonal data

modulated tones are placed. The instantaneous spectrum of these tones, which are

independently modulated with user data, do overlap, yet they do so while providing

manageable interference with each other.

The time domain representation for the kth quadrature amplitude modulated

OFDM (QAM-OFDM) symbol comprised of Nc total subcarriers per symbol, or 2Nc

total bits per symbol given that there are two bits per QAM symbol, is

sk(t) =
Nc∑

n=1

{Bc(n) cos(2πfnt) + Bs(n) sin(2πfnt)} , (4)

where fn is the nth subcarrier frequency and Bc(n) and Bs(n) are data dependent

cosine and sine weights, respectively, for the nth subcarrier given by

7



Bc(n) = (−1)bk+2(n−1) Bs(n) = (−1)bk+(2n−1) (5)

for an input sequence of bits for the kth QAM-OFDM symbol given by

Bk = [b1, b2, b3, ... b2Nc ] . (6)

The resultant frequency domain expression for the QAM-OFDM symbol given

by Equation 4 is

Sk(f) =
Nc∑

n=1

[
1

2
{BPos} δ(f − fn) +

1

2
{BNeg} δ(f + fn)

]
, (7)

where the complex (j used to denote
√−1 here) positive and negative frequency

components are

BPos(n) = Bc(n)− jBs(n) BNeg(n) = Bc(n) + jBs(n). (8)

2.4 Modulation Recognition

One of the earlier reports published on the subject of automatic classification

of modulation was written by Weaver, Cole, Krumland, and Miller [19]. This techni-

cal report, written for the Air Force Avionics Laboratory, focused on the rapid and

automatic identification of modulation types of high frequency radio signals. In 1984,

Liedtke [16] focused on the real-time classification of ASK2, FSK2, PSK2, PSK4, and

PSK8 modulations. His procedure used a universal demodulator for feature extrac-

tion. DeSimio and Prescott [13, 14] later introduced, in 1988, a procedure to classify

ASK2, PSK2, PSK4, and FSK2 using moment analysis. Subsequent to this earlier

work, Azzouz and Nandi [6–10] developed multiple procedures for the classification

of ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4. Their classical decision theoretic

methods are discussed in Section 2.5.
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Figure 1: Fundamental Modulation DMRA Decision Tree [7]

2.5 Digitally Modulated Signal Recognition Algorithm (DMRA)

The digitally modulated signal recognition algorithm (DMRA) considered for

this research was developed by Azzouz and Nandi [7] and utilizes a decision-theoretic

approach. Each decision about modulation type is derived from information extracted

across the entire observation interval, rather than on a symbol-by-symbol basis. The

final decision is based on the calculation of five key features which are extracted

from the instantaneous amplitude, phase, and frequency of the signal. A decision

threshold for each of these features is set to discriminate between modulations. The

fundamental modulation DMRA decision tree is outlined in Figure 1.
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2.6 Key Feature Extraction

The DMRA recognition performance is based on five key features: γmax, σAP ,

σDP , σAA, and σAF . This section describes the calculation of each key feature as

introduced by Azzouz and Nandi [7].

2.6.1 Maximum Power Spectral Density Feature (γmax). The first key fea-

ture shown in Figure 1, γmax, separates the signals that contain amplitude information

(ASK2, ASK4, PSK2, and PSK4) from those signals that do not have amplitude in-

formation (FSK2 and FSK4). It denotes the maximum power spectral density of the

normalized centered instantaneous amplitude of the intercepted signal and is [7]

γmax =
max|DFT (acn(i))|2

Ns

, (9)

where Ns is the number of samples per segment and acn(i), the normalized centered

instantaneous amplitude, is [7]

acn(i) =
a(i)

ma

− 1 (10)

for ma, the average value of instantaneous amplitude, given by [7]

ma =
1

Ns

Ns∑
i=1

a(i), (11)

where a(i) is the instantaneous amplitude of the signal.

2.6.2 Absolute Phase Feature (σAP ). The second key feature shown in

Figure 1, σAP , separates the signal that contains absolute phase information (PSK4)

from those signals that have no absolute phase information (ASK2, ASK4, and PSK2).

It denotes the standard deviation of the absolute values of the centered non-linear

component of the instantaneous phase evaluated over the non-weak intervals of a

10



signal segment and is [7]

σAP =

√√√√√ 1

C


 ∑

an(i)>at

φ2
NL(i)


−


 1

C

∑

an(i)>at

|φNL(i)|



2

, (12)

where φNL(i) is the values of the centered non-linear component of the instantaneous

phase φ(i) and C is the number of samples in φNL(i) for which the amplitude an(i)

is above a threshold, at. This threshold is used to enhance algorithm performance by

eliminating portions of the signal that are most affected by noise and is considered to

remove the “weak” intervals of a signal segment.

2.6.3 Direct Phase (σDP ). The third key feature shown in Figure 1, σDP ,

separates the signal that contains direct phase information (PSK2) from those signals

that have no direct phase information (ASK2 and ASK4). It denotes the standard

deviation of the centered non-linear component of the direct (non-absolute) instanta-

neous phase, evaluated over the non-weak intervals of a signal segment and is [7]

σDP =

√√√√√ 1

C


 ∑

an(i)>at

φ2
NL(i)


−


 1

C

∑

an(i)>at

φNL(i)




2

. (13)

2.6.4 Absolute Amplitude (σAA). The fourth key feature shown in Figure 1,

σAA, separates the signal that has absolute and direct amplitude information (ASK4)

from the signal that has no absolute amplitude information (ASK2). It denotes the

standard deviation of the absolute values of the normalized-centered instantaneous

amplitude of a signal segment and is [7]

σAA =

√√√√ 1

Ns

(
Ns∑
i=1

a2
cn(i)

)
−

(
1

Ns

Ns∑
i=1

|acn(i)|
)2

. (14)
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2.6.5 Absolute Frequency (σAF ). The fifth key feature shown in Figure 1,

σAF , separates the signal that has no absolute frequency information (FSK2) from

the signal that has absolute and direct frequency information (FSK4). It denotes

the standard deviation of the absolute value of the normalized-centered instantaneous

frequency evaluated over the non-weak intervals of a signal segment and is [7]

σAF =

√√√√√ 1

C


 ∑

an(i)>at

f 2
N(i)


−


 1

C

∑

an(i)>at

|fN(i)|



2

, (15)

where

fN(i) =
f(i)−mf

rs

. (16)

Here rs is the symbol rate of the sequence and mf , the average value of the instanta-

neous frequency, is given by [7]

mf =
1

Ns

Ns∑
i=1

f(i), (17)

where f(i) is the instantaneous frequency of the signal.

2.6.6 Classification. Signal classification (recognition) is based on reliably

measuring the signal parameters and calculating the signal features. These signal

features are then compared to set thresholds, tγ, tAP , tDP , tAA, and tAF . Various

algorithms can be created using the five key signal features by varying the order

that thresholds are applied and decisions are made. The algorithm selected for this

research is the DMRA I architecture as previously shown in Figure 1 [7].

2.6.7 Confusion Matrices. The confusion matrix is used to show DMRA

performance results in a table format. The first column of entries contains the modu-

lation types that are input into the DMRA. The entries in the first row represent the

modulation types of signal classification. For illustrative purposes, a sample confusion

matrix for 200 input signal replications is shown in Table 1. In this case, the matrix

12



Table 1: Sample Confusion Matrix
Simulated Deduced Modulation Type

Modulation Type Mod. 1 Mod. 2 Mod. 3

Modulation 1 140 60 0
Modulation 2 0 200 0
Modulation 3 1 0 199

shows that the success rate for classifying Modulation 2 is 100% and that Modulation

1 is confused 30% of the time with Modulation 2 (60 occurrences). Modulation 3

is successfully classified 99.5% of the time, with only one occurrence confused with

Modulation 1.

2.7 Summary

This chapter introduced the signal modulation characteristics for the fundamen-

tal modulation types of ASK, PSK, and FSK and the more complex OFDM structure.

The DMRA used for initial results was introduced, including the analytic expressions

for each of the five key features required. The fundamental modulation DMRA de-

cision tree was presented to illustrate the signal classification process. Finally, the

confusion matrix was introduced as a means for presenting recognition data. Chapter

3 provides the methodology and specific details used for implementing the DMRA

process.

13



III. Methodology

3.1 Introduction

Performance of the DMRA process described in Chapter 2 and shown in Fig-

ure 1 is determined by comparing key features to set thresholds. The first step in

expanding the DMRA architecture to include OFDM recognition capability is to ver-

ify consistency with the DMRA model presented by Azzouz and Nandi [7]. Figure 2

shows the process used here to determine key feature threshold values.

The purpose and functionality of each block in Figure 2 is addressed in this

chapter. Section 3.2 and Section 3.3 discuss characteristics of the fundamental modu-

lations and the OFDM signals. Section 3.4 provides details of the RF bandpass filter

and calculations used to determine output signal-to-noise ratio (SNR). Section 3.5 and

Section 3.6 outline the signal parameters and the calculation of the five key features.

Section 3.7 considers developmental procedures and operational performance of the

DMRA. Section 3.8 describes OFDM signal introduction into the DMRA. Finally,

Section 3.9 summarizes the chapter.

3.2 Modulated Signals: Fundamental Modulation Parameters

All signals, sk(i), used in the simulations are generated over one observation

interval using the analytic expressions of Chapter 2 and parameters consistent with

those of [7].

The following parameter values are used in simulation:

• Carrier Frequency, fc = 150 kHz

• Sampling Rate, fs = 1200 kHz

• Symbol Rate, rs = 12.5 kHz

• Number of Samples per Symbol Duration, Ns = 96

• Observation Interval, Tobs = 20 Symbols = 1920 Samples

14
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Figure 2: Modulation Recognition Process

The kth symbol of the fundamental modulations is generated using

sk(i) = ak cos

(
2πfki

fs

+ φk

)
, (18)

where the amplitude (ak), frequency (fk) and phase (φk) are given in Table 2.

Table 2: Fundamental Modulation Signal Parameters
Modulation Type ak fk (kHz) φk

ASK2 .9k + .1 fc 0
ASK4 .3214k + .0357 fc 0
PSK2 1 fc (1− k)π
PSK4 1 fc k π

2

FSK2 1 4rsk + fc − 2rs 0
FSK4 1 fc − (k + 1)rs if k < 2 0

fc + (k − 1)rs if k ≥ 2
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Table 3: Spectral Weights for Gray Coded QAM-OFDM
Bit Pattern BPos BNeg

0 0 1 - i 1 + i
1 0 -1 - i -1 + i
0 1 1 + i 1 - i
1 1 -1 + i -1 - i

3.3 Modulated Signals: OFDM

The kth symbol of the 4-ary, QAM-OFDM is generated by taking the Inverse

Fast Fourier Transform (IFFT) of

Sk(f) =
Nc∑

n=1

[
1

2
{BPos} δ(f − fn) +

1

2
{BNeg} δ(f + fn)

]
, (19)

where for Gray Coded QAM the BPos and BNeq values of Table 3 are used. The

following parameter values are used in QAM-OFDM simulations:

• Number of Carriers used per OFDM Symbol, Ncar = 5

• Number of OFDM Symbols Generated, Tobs = 20

• Number of Frequency Components (IFFT Points), NS = 96

• Center Frequency Component, fc = 150 kHz

• Symbol Rate, rs = 12.5 kHz

3.4 Bandpass Filter Characteristics and SNR Calculation

An 8th-order Chebyshev bandpass filter having a 0.001 dB bandpass ripple was

simulated for each signal considered. The RF filter bandwidth used for each signal

is outlined in Table 4. “In practice, the bandwidth of any intercepting receiver is

chosen to be slightly larger than the intercepted signal bandwidth” [7]. Therefore,

the simulated noise is bandlimited to a −3.0 dB bandwidth of 1.16 times the simu-

lated modulated signal bandwidth. The simulated Chebyshev filter responses for the

bandwidths listed in Table 4 are shown in Figure 3.
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Table 4: RF Filter Bandwidths
Modulation Type Theoretical Expression Simulated Value (kHz)

ASK 4rs 50
PSK 6rs 75
FSK 8rs 100

OFDM 5rs 62.5
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Figure 3: Filter Response of 8th-Order Chebyshev Filter
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The signal-to-noise ratio (SNR) for each input signal is adjusted at the bandpass

filter output. The input noise n(t) is generated using a zero-mean normally distributed

random number generator and is filtered at the same bandwidth as the modulated

signal. To establish the desired SNR at the filter output, the sampled input noise

sequence is multiplied by a scale factor [7]

Rsn =

√
Sp

Np

(
10

−SNR
20

)
, (20)

where SNR is calculated in decibels, Sp = 1
N

∑N
i=1 s2(i), and Np = 1

N

∑N
i=1 n2(i).

3.5 Signal Qualifying Parameters

The three signal qualifying parameters used for calculating the key features,

include instantaneous amplitude, instantaneous phase, and instantaneous frequency.

Instantaneous amplitude a(i) is calculated by taking the absolute value of the Hilbert

transform of the signal. Instantaneous phase φ(i) is calculated by taking the arc

tangent of the imaginary part of the Hilbert transform divided by the real part of the

Hilbert transform. Instantaneous frequency f(i) is calculated by taking the derivative

of the instantaneous phase.

3.6 Key Feature Extraction

Analytic expressions for each of the key features are outlined in Section 2.4. For

all results presented a normalized amplitude threshold at = 1 was used.

3.7 DMRA Processing

Characterization of the DMRA process used for signal classification involved two

phases of research. In the first developmental phase, signals with known modulations

are input into the system and used to calculate key feature values for a range of

desired SNR values. The features values are then plotted versus SNR to establish

thresholds for the decision tree of Figure 1. In the second operational phase, signals
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of interest are input to the DMRA, which is tasked with automatically deciding which

modulation type is present using the thresholds calculated in the development stage.

3.7.1 DMRA Development for Fundamental Modulations. The development

phase determines the following five key feature thresholds, tγ, tAP , tDP , tAA,and tAF ,

with threshold determination based on 400 realizations (observation intervals) for each

of the six fundamental modulated signals (binary and 4-ary signaling for each funda-

mental modulation type). These realizations are calculated for SNR values ranging

from 0.0 to 20.0 dB. Note that during the development phase, the RF filter band-

width is changed to “match” (correspond) the approximate null-to-null bandwidth of

the input signal as given in Table 4.

Figure 4 shows a sample key feature plot for illustrating the threshold deter-

mination process. In this instance separation between Signals 1 & 2 and Signal 3 is

desired. It can be seen that the threshold value needed to separate these signals is 6

and is valid for SNR ≥ 0 dB.

3.7.2 DMRA Operation for Fundamental Modulations. The operational

phase implements the initial DMRA architecture using the thresholds calculated in

the development phase. Each of the fundamental modulations is simulated for 400 re-

alizations (observation intervals) using random data. Each of these simulations is run

for a given SNR value. During this phase, the RF filter bandwidth is fixed for all input

signal types at a value of 6× rs. This bandwidth is chosen because it is the narrowest

bandwidth that equals the maximum null-to-null bandwidth of the fundamental sig-

nals considered, specifically the FSK4 signal. Operational DMRA simulation results

are summarized using a confusion matrix as described in Section 2.6.7. These con-

fusion matrices are then compared to the confusion matrices created by Azzouz and

Nandi [7] to verify consistency.
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Figure 4: Sample Feature Threshold Determination

3.8 Introduction of OFDM into DMRA

To determine how to adjust the original DMRA architecture to include OFDM

decision criteria, it is necessary to determine how OFDM is classified in the origi-

nal DMRA. This determination is accomplished by introducing the OFDM waveform

into original DMRA without changing the feature thresholds, SNR value, or RF filter

bandwidth. Using the data presented in this confusion matrix, it can be determined

which features or thresholds need to be adjusted for classifying OFDM. Once the new

features or thresholds are determined, they are compared to see which DMRA modi-

fication provides the best performance at lower SNR values. The modified DMRA is

then used to create new confusion matrices for the performance of OFDM.

3.9 Summary

This chapter introduced and outlined the modulation recognition process shown

in Figure 2. The modulation types (ASK, PSK, FSK, and OFDM), filter charac-
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teristics, and SNR realizations were discussed. The methodology for implementing

the original DMRA architecture was presented, as well as a process for characteriz-

ing DMRA performance with an OFDM signal present. Operational results for the

DMRA and modified DMRA are shown in Chapter 4.
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IV. Results and Analysis

4.1 Introduction

This chapter provides developmental and operational performance results for the

Digitally Modulated Signal Recognition Algorithm (DMRA) introduced in Chapters 2

and 3. First, Section 4.2 provides the time waveforms and instantaneous detection

results which are used in the initial DMRA architecture. Next, Section 4.3 presents

the key feature plots and thresholds for the fundamental modulations. Section 4.4

provides the operational results and analysis for the fundamental modulations. Then

Section 4.5 introduces the OFDM waveform and provides performance results for

the initial DMRA architecture with the OFDM waveform present. Results are then

presented for a modified DMRA architecture, which includes an additional key feature

decision for recognizing OFDM.

4.2 Fundamental Modulation Time Waveforms

The fundamental waveforms are modulated using Equation 18 with the signal

parameters listed in Table 2. The results shown in this section are for the binary

modulations. Additional results for the 4-ary modulations are presented in Appendix

A.

Figure 5 shows representative time domain waveforms for one observation in-

terval, Tobs, consisting of 20 symbols. Results shown in this figure, and subsequent

results in Figure 6 through Figure 9, were generated using a random binary wave-

form. The random binary waveform shown in the following figures is given by:

[10101100101111001000].

4.2.1 Normalized Centered Amplitude Response (acn). The normalized cen-

tered amplitude response, acn, is used in the calculation of γmax and σAP for the

DMRA. Equation 10 gives the expression for calculating acn. Figure 6 shows acn

responses corresponding to the ASK2, PSK2, and FSK2 time domain waveforms of

Figure 5. With the exception of some minuscule spurious responses occurring at
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Figure 5: Time Domain Waveforms for Binary Modulations

symbol boundaries in the PSK2 and FSK2 acn responses, the ASK2 acn response is

the only response reflecting structure which is consistent with the modulation type

employed.

4.2.2 Normalized Centered Nonlinear Phase Response (φNL). The normal-

ized centered nonlinear phase response, φNL, is used in the calculation of σAP and

σDP for the DMRA. In first calculating φNL the signal phase is limited to values

between −π and π. As shown in Figure 7, only the PSK2 φNL response accurately

reflects structure which is consistent with the modulation type employed. The ASK2

φNL response reflects minor variation near symbol boundaries and the FSK2 φNL

response, if viewed unwrapped, would reflect a linear phase progression within each

symbol interval, which is consistent with constant tone transmission.

4.2.3 Normalized Centered Frequency Response (fN). The normalized cen-

tered frequency response, fN , is used in the calculation of σAF for the DMRA. The
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Figure 6: Normalized Centered Instantaneous Amplitude Response, acn, for Binary
Modulated Waveforms of Figure 5
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lated Waveforms of Figure 5
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Figure 8: Nonlinear Phase Response, φNL2, for Binary Modulated Waveforms of
Figure 5

analytic expression for calculating fN is given in Equation 16. To calculate the fN

response, the instantaneous frequency, f(i) is first calculated. As indicated in Chap-

ter 3, instantaneous frequency f(i) is given as the derivative of instantaneous phase.

To accurately determine the frequency, the absolute phase values must be used versus

the modulo phase values of φNL shown in Figure 7. Therefore, a non-modulo phase

function, φNL2, is used as shown in Figure 8. Using φNL2, the normalized centered

frequency responses fN of the time domain waveforms in Figure 5 are obtained as

shown in Figure 9. With the exception of spurious responses appearing in the ASK2

and PSK2 plots, the fN response for FSK2 is the only plot showing structure which

is consistent with the modulation type employed.

4.3 Initial DMRA Development for Fundamental Modulations

The initial DMRA development for fundamental modulations begins by first

determining threshold values for the five key DMRA features. Each plot in this
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Figure 9: Normalized Centered Frequency Response, fN , for Binary Modulated
Waveforms of Figure 5

section is derived using 400 realizations and SNR values ranging from 0.0 to 20.0 dB.

The error bars contained in each plot represent one standard deviation from the mean

value.

4.3.1 Dependence of γmax on SNR. The first key feature, γmax, is calculated

for all six fundamental modulations (ASK2, ASK4, PSK2, PSK4, FSK2, FSK4). Since

FSK2 and FSK4 have a constant instantaneous amplitude, their normalized centered

instantaneous amplitude response acn is ideally zero. [7]. In practice, however, a near-

zero response similar to that shown in Figure 6 for FSK2 is achieved. Thus, the

initial DMRA architecture first divides signals into two groups, those exhibiting some

instantaneous amplitude response (ASK2, ASK4, PSK2, PSK4) and those having

no amplitude response (FSK2, FSK4). Results for 400 realizations are presented in

Figure 10, with Figure 11 providing an expanded view. As shown in Figure 11 by the

solid horizontal line, a DMRA threshold value for γmax of tγ = 2.32 is chosen. For this

threshold value, there is at least one standard deviation of separability for SNR ≥
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11.0 dB. Note also that for this threshold value and all SNR values considered, the

γmax value for signals possessing an instantaneous amplitude response (ASK2, ASK4,

PSK2, PSK4) remain above the threshold.

4.3.2 Dependence of σAP on SNR, (γmax ≥ tγ). The second key feature

considered is σAP , which is calculated for the four modulations containing instanta-

neous amplitude information (ASK2, ASK4, PSK2, PSK4). Since ASK2, ASK4, and

PSK2 have no absolute phase information, they can be separated from PSK4, which

contains absolute phase information. Results for 400 realizations are presented in

Figure 12, with Figure 13 providing an expanded view. As shown in Figure 13 by

the solid horizontal line, a DMRA threshold value for σAP of tAP = 0.77 is chosen.

For this threshold value, there is at least one standard deviation of separability for

SNR ≥ 0.0 dB.
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4.3.3 Dependence of σDP on SNR, (σAP ≤ tAP ). The third key feature con-

sidered is σDP , which is calculated for the three modulations not containing absolute

phase information (ASK2, ASK4, PSK2). Since ASK2 and ASK4 have no direct phase

information, they can be separated from PSK4 which contains direct phase informa-

tion. Results for 400 realizations are presented in Figure 14. As shown in Figure 14

by the solid horizontal line, a DMRA threshold value for σDP of tDP = 1.2 is chosen.

For this threshold value, there is at least one standard deviation of separability for

SNR ≥ 0.0 dB.

4.3.4 Dependence of σAA on SNR, (σDP ≤ tDP ). The fourth key feature

considered is σAA, which is calculated for the two modulations not containing di-

rect phase information (ASK2 and ASK4). Since ASK2 has no absolute amplitude

information, it can be separated from ASK4 which contains absolute amplitude infor-

mation. Results for 400 realizations are presented Figure 15. As shown in Figure 15

by the solid horizontal line, a DMRA threshold value for σAA of tAA = 0.283 is chosen.
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Figure 14: Direct Phase Feature, σDP

For this threshold value, there is at least one standard deviation of separability for

SNR ≥ 8.0 dB.

4.3.5 Dependence of σAF on SNR, (γmax < tγ). The fifth and final key

feature considered is σAF , which is calculated for the two modulations not contain-

ing absolute amplitude information (FSK2 and FSK4). Since FSK2 has no absolute

frequency information, it can be separated from FSK4, which contains absolute fre-

quency information. Results for 400 realizations are presented in Figure 16, with

Figure 17 providing an expanded view. As shown in Figure 17 by the solid horizontal

line, a DMRA threshold value for σAF of tAF = 3.3 is chosen. For this threshold value,

there is at least one standard deviation of separability for SNR ≥ 12.0 dB. This is

clearly the poorest separability of all features considered.

4.3.6 Summary of Initial DMRA Threshold Values. The threshold value for

each key feature was chosen based on two criteria. First, the threshold is set such
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Table 5: Key Feature Threshold Values for Initial DMRA
Key Feature Thresholds Optimum Value SNR Limit

tγ 2.32 SNR > 11 dB
tAP 0.77 SNR ≥ 0 dB
tDP 1.2 SNR ≥ 0 dB
tAA 0.283 SNR ≥ 8 dB
tAF 3.3 SNR ≥ 12 dB

that the error bars at the lowest SNR value (SNR Limit) do not overlap. Second, the

chosen threshold value falls just below the one standard deviation error bar for all

SNR values higher than the SNR limit. For example, the SNR limit for γmax, shown

in Figure 11, is 11.0 dB. The first criteria is met for a SNR limit of 10 dB; however,

moving the threshold up to the 10 dB point would cause the threshold to be within

the PSK2 and PSK4 error bars for all SNR values greater than 10.0 dB. Table 5

shows the chosen threshold value and SNR limit for each of the five key features.
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Table 6: Fundamental Modulation Confusion Matrix for SNR = 10 dB and BW =
6× rs

Simulated Deduced Modulation Type
Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4

ASK2 400 0 0 0 0 0
ASK4 27 373 0 0 0 0
PSK2 0 0 399 0 1 0
PSK4 0 0 1 395 4 0
FSK2 0 0 0 300 99 1
FSK4 0 0 0 273 4 123

Table 7: Azzouz and Nandi’s Confusion Matrix for SNR = 10.0 dB [7]
Simulated Deduced Modulation Type

Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4

ASK2 393 7 0 0 0 0
ASK4 0 400 0 0 0 0
PSK2 0 0 397 0 3 0
PSK4 0 0 0 395 5 0
FSK2 0 0 0 2 398 0
FSK4 0 0 0 5 2 393

4.4 Operational DMRA Performance: Fundamental Modulations

The operational DMRA performance is characterized using the chosen feature

thresholds and the fundamental modulations under consideration. Confusion ma-

trix results are generated using a given input bandwidth (dictated by the RF filter

implementation) and desired SNR value (at the RF filter output).

4.4.1 Confusion Matrix Analysis. Table 6 shows confusion matrix results

for SNR = 10.0 dB using an RF bandwidth equaling six times the symbol rate

(BW = 6 × rs). To compare results shown in Table 6 with results given by Azzouz

and Nandi [7], results in Table 3.4 of [7] are converted from percentages to actual

occurrences and presented here in Table 7.

In comparing Table 6 and 7 results, it can be seen that the results are consistent

with one exception. Results of this work show some confusion exists in calling FSK2
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Table 8: Fundamental Modulation Confusion Matrix for SNR = 11.0 dB and
BW = 6× rs

Simulated Deduced Modulation Type
Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4

ASK2 400 0 0 0 0 0
ASK4 30 370 0 0 0 0
PSK2 0 0 389 0 11 0
PSK4 0 0 42 339 19 0
FSK2 0 0 0 115 285 0
FSK4 0 0 0 160 10 230

and FSK4 as PSK4. In analyzing the cause for this deviation, it was determined that

the γmax calculation is most susceptible to noise at lower SNR values, as shown in

Figure 11. Setting this deviation aside, the results are consistent both in the confusion

matrices and in the feature plots of Figure 10 through Figure 17.

Now that it has been shown that the results for SNR = 10.0 dB are consistent

with Azzouz and Nandi [7] (apart from the noted deviation), the DMRA performance

is shown to improve (less confusion) at a higher SNR values. For demonstration, an

SNR = 11.0 dB is chosen because it includes SNR Limit for γmax, which is the first

key feature calculated and primary contributor to the confusion seen in the 10.0 dB

case. Table 8 shows the confusion matrix for SNR = 11.0 dB and BW = 6× rs.

4.5 Introduction of QAM-OFDM Waveform

The QAM-OFDM waveform is generated by taking the IFFT of Equation 19.

Figure 18 shows the time domain representation of the OFDM waveform over one

observation interval, Tobs, containing 20 QAM-OFDM symbols. Figure 19 shows

the corresponding amplitude acn, phase φNL and φNL2 and frequency fN functions

required for DMRA processing. Most notable in this case is that both the acn and

φNL functions appear to possess some measurable structure.

4.5.1 Unmodified DMRA Performance: OFDM Waveform Present. Opera-

tional DMRA performance is first determined with an OFDM waveform input without
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Figure 19: DMRA Features for OFDM Waveform of Figure 18

making any changes to the original DMRA architecture, threshold values of Table 5,

or RF bandwidth. The resultant DMRA confusion matrix for this case is shown in

Table 9.

4.5.2 Analysis of Unmodified DMRA with OFDM Waveform. Table 9 shows

that OFDM signal characteristics cause the DMRA to call it PSK4 with nearly 100%

certainty (only three instances of it being classified as PSK2). For the DMRA to

distinguish OFDM as its own modulation type, another feature or threshold must be

created. To determine which DMRA modification is most appropriate, the current

feature thresholds were evaluated with the OFDM signal present. Since OFDM is

most confused with PSK2 and PSK4, the first threshold evaluated was σAP . These

results are shown in Figures 20, with Figure 21 providing an expanded plot. Figure 21

shows that a new threshold, between PSK4 and OFDM, could be implemented for

SNR ≥ 11.0 dB.
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Table 9: Confusion Matrix for Unmodified DMRA with OFDM Input for SNR =
11.0 dB and BW = 6× rs

Simulated Deduced Modulation Type
Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4

ASK2 400 0 0 0 0 0
ASK4 30 370 0 0 0 0
PSK2 0 0 389 0 11 0
PSK4 0 0 42 339 19 0
FSK2 0 0 0 115 285 0
FSK4 0 0 0 160 10 230
OFDM 0 0 3 397 0 0
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Figure 20: DMRA Absolute Phase Feature, σAP , with OFDM Waveform Present
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Figure 21: Expanded Plot: DMRA Absolute Phase Feature, σAP , with OFDM
Waveform Present

An alternate implementation involves retaining the original threshold for σAP

and adding an additional key feature. One such option involves adding an additional

σAF feature after the calculation of σAP . The results for σAF containing PSK4 and

OFDM are shown in Figure 22. The figure shows that a threshold could be chosen

such that reliable separability is maintained for SNR ≥ 5.0 dB. Given that the SNR

limit for adding a new feature is lower than that of adding an addition threshold in

σAP , the new feature σAF with threshold tAF (OFDM) is implemented.

4.5.3 Modified DMRA Performance: OFDM Waveform Present. The mod-

ified DMRA decision tree including OFDM recognition is shown in Figure 23. An

updated table of threshold values and SNR limits is provided in Table 10. With the

exception of tAF (OFDM) being added, there are no changes relative to Table 5.

4.5.4 OFDM Recognition Results. Table 11 shows confusion matrix results

for the modified DMRA with an OFDM signal present. The success rate for classifying
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Table 10: Key Feature Threshold Values for the Modified DMRA
Key Feature Thresholds Modified Value SNR Limit

tγ 2.32 SNR > 11 dB
tAP 0.77 SNR ≥ 0 dB
tDP 1.2 SNR ≥ 0 dB
tAA 0.283 SNR ≥ 8 dB
tAF 3.3 SNR ≥ 12 dB

tAF (OFDM) 2.85 SNR ≥ 5 dB

OFDM signals at 11.0 dB is 95.25%. It should also be noted that the confusion shown

in the original DMRA between FSK and PSK has decreased, with FSK now being

somewhat confused with OFDM. This result can be attributed to the fact that the

FSK signals have higher values in the σAF feature and are classified with OFDM

above the tAF (OFDM) threshold.

To see how the modified DMRA might perform at lower SNR values, it is next

assumed that the input signal is correctly classified (separated) using the γmax fea-

ture. This assumption is made to by-pass what appears to be the most significant

contributor of confusion given that tγ separability is limited to SNR ≥ 11.0 dB. Un-

der this assumption, the modified DMRA decision tree can be simplified as shown in

Figure 24, where only ASK, PSK, and OFDM are recognition options.

Using this limited decision tree, confusion matrix results were generated for

SNR = 5.0 dB and BW = 6× rs and are provided in Table 12. Although confusion

remains between ASK2 and ASK4, it can be seen that the performance of the PSK

and OFDM signals have improved; the success rate for OFDM is now at 98.25% and

the success rates for PSK2 and PSK4 are 100% and 98.25%, respectively.

4.6 Summary

This chapter provides both the developmental and operational performance of

the original, modulated, and limited DMRA architectures. The time domain wave-

forms and detection results are shown for the modulation types considered, includ-

ing ASK, PSK, FSK, and OFDM. Key features and their associated thresholds are
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Table 11: Confusion Matrix with OFDM for SNR = 11 dB and BW = 6× rs

Simulated Deduced Modulation Type
Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 OFDM

ASK2 400 0 0 0 0 0 0
ASK4 58 342 0 0 0 0 0
PSK2 0 0 374 0 26 0 0
PSK4 0 0 3 380 17 0 0
FSK2 0 0 0 13 284 2 101
FSK4 0 0 0 0 24 222 154
OFDM 0 0 2 17 0 0 381
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Figure 24: Decision Tree for the Modified DMRA (Limited to ASK, PSK, and
OFDM)
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Table 12: Limited Confusion Matrix with OFDM for SNR = 5.0 dB and BW =
6× rs

Simulated Deduced Modulation Type
Modulation Type ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 OFDM

ASK2 79 321 0 0 x x 0
ASK4 68 332 0 0 x x 0
PSK2 0 0 400 0 x x 0
PSK4 0 0 0 393 x x 7
FSK2 x x x x x x x
FSK4 x x x x x x x
OFDM 0 0 7 0 x x 393

presented along with DMRA performance for specific SNR values. Performance re-

sults are represented and analyzed using confusion matrices. It was shown that for

the original DMRA architecture, OFDM signals were classified as PSK4 and PSK2.

The original DMRA architecture was then modified to incorporate an additional σAF

key feature decision using a new threshold, tAF (OFDM), to permit OFDM waveform

classification. The modification resulted in a success rate of 95.25% for OFDM clas-

sification at an SNR = 11.0 dB. The modified DMRA architecture was then limited

by removing the γmax feature (classification of FSK modulation removed) to more

fully characterize DMRA OFDM performance at decreased SNR values; this removal

increased the OFDM classification success rate to 98.25% at a SNR = 5.0 dB.
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V. Conclusions

5.1 Summary

The majority of this research was devoted to developing and characterizing the

conventional Digitally Modulated Signal Recognition Algorithm (DMRA) designed

by Azzouz and Nandi [7]. The DMRA was originally designed to classify ASK2,

ASK4, PSK2, PSK4, FSK2, and FSK4 signals. The original DMRA architecture

implemented here yielded performance that was consistent with previously published

results.

An Orthogonal Frequency Division Multiplexed (OFDM) waveform was intro-

duced into the original DMRA architecture and its performance was assessed. It was

found the that the OFDM waveform was most “confused” with the PSK modulations,

specifically PSK4. The DMRA architecture was then modified to include a key feature

decision and new threshold for OFDM recognition. Using the modified DMRA archi-

tecture, it was determined that the OFDM waveform could be successfully classified

up to 95.25% of the time for an SNR value of 11.0 dB.

To determine OFDM classification performance at the newly established σAF (OFDM)

limit, the FSK decision option was removed from the DMRA. This operation was sim-

ulated by removing the γmax decision and σAF key features from the right side of the

modified DMRA. Limiting the system in this manner improved the overall success rate

at an SNR value down to 5.0 dB; success rates of 100% (PSK2), 98.25% (PSK4),

and 98.25% (OFDM) were realized.

5.2 Recommendations for Future Research

5.2.1 Improvement of Fundamental Modulation Performance. In some cases

the current DMRA model was found to be quite “sensitive” to input waveform struc-

ture. Thus, it would be beneficial to consider the development of a more robust

algorithm that is less sensitive for a given waveform type. For example, the current

DMRA is “sensitive” to the specific implementation of ASK, i.e., the σAA calcula-

43



tion greatly varies based on the coefficients used in Table 2. In most instances, a

discernable threshold cannot be found in the σAA plot.

Changing the order of key features could also be investigated as a means for

improving performance. Adjusting the features with higher SNR limits may improve

the overall system performance. The order of the features could also be removed from

consideration using an artificial neural network. In addition to changing the order of

each key feature, new key features could be introduced in the system, which could

include moment analysis, power-law classification, zero-crossings, etc.

5.2.2 Additional Waveform Recognition. This work only considered ASK2,

ASK4, PSK2, PSK4, FSK2, FSK4, and 4-ary QAM-OFDM signals. The DMRA

could be expanded to include classification for larger fundamental signal sets. These

sets could include M-ary ASK, PSK, and FSK where the value of M is larger than

four. The system could also be expanded to include various OFDM signals, such as

those used in IEEE 802.11 and 802.16 standards [2,3,5] and those proposed for IEEE

802.15 standards. [4].

The system could also be expanded to include other types of signals, such as Fre-

quency Hopping Spread Spectrum(FHSS), Direct Sequence Spread Spectrum(DSSS),

Ultra-Wideband(UWB), and other spectrally encoded systems.
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Appendix A.

A.1 4-ary Modulation Waveforms and Instantaneous Plots

Figure 25 shows representative time domain waveforms for one observation in-

terval, Tobs, consisting of 20 symbols. Results shown in this figure, and subsequent

results in Figure 26 through Figure 29, were generated using a random binary sequence

of data given by: [01300021021311303223].
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Figure 25: Time Domain Waveforms for 4-ary Modulations
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Figure 26: Normalized Centered Instantaneous Amplitude Response, acn, for 4-ary
Modulated Waveforms of Figure 25
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Figure 27: Normalized Centered Nonlinear Phase Response, φNL, for 4-ary Modu-
lated Waveforms of Figure 25
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Figure 28: Nonlinear Phase Response, φNL2, for 4-ary Modulated Waveforms of
Figure 25
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Figure 29: Normalized Centered Frequency Response, fN , for Binary Modulated
Waveforms of Figure 25
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interception, classification, and exploitation. This research concerns the evaluation and modification of a conventional
Digitally Modulated Signal Recognition Algorithm (DMRA) to enable multi-carrier, OFDM, waveform recognition. The
original DMRA architecture was developed to classify communication signals for three fundamental data modulations,
i.e., ASK, PSK, and FSK. By adding an additional key feature and threshold to the original DMRA architecture, a
modified DMRA architecture is developed to enable the reliable recognition of OFDM waveforms. Simulation results for
the modified DMRA architecture show a 95.25% success rate for OFDM waveform recognition at a signal-to-noise ratio
(SNR) of 11.0 dB. When operated under scenarios where FSK signals are neither present nor considered an alternative,
the modified DMRA architecture yields a success rate of 98.25% for classifying OFDM at a SNR of 5.0 dB.
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