
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2005

Modeling Adaptive Middleware and Its Applications to Military Modeling Adaptive Middleware and Its Applications to Military

Tactical Datalinks Tactical Datalinks

Jason T. Lawson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Lawson, Jason T., "Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks"
(2005). Theses and Dissertations. 3843.
https://scholar.afit.edu/etd/3843

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3843?utm_source=scholar.afit.edu%2Fetd%2F3843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

MODELING ADAPTIVE MIDDLEWARE
AND ITS APPLICATIONS TO MILITARY

TACTICAL DATALINKS

THESIS

Jason T. Lawson, Captain, USAF

AFIT/GCE/ENG/05-08

 DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government.

i

AFIT/GCE/ENG/05-08

MODELING ADAPTIVE MIDDLEWARE AND ITS APPLICATION TO MILITARY
TACTICAL DATALINKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Jason T. Lawson, BS

Capt, USAF

June 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ii

AFIT/GCE/ENG/05-08

MODELING ADAPTIVE MIDDLEWARE AND ITS APPLICATION TO MILITARY
TACTICAL DATALINKS

Jason T. Lawson, BS
Capt, USAF

Approved:

______________ //signed//__________________ ________________

Dr. Richard Raines (Chairman) date

______________ //signed//__________________ ________________

Dr. Rusty O. Baldwin (Member) date

______________ //signed//__________________ ________________

Dr. Thomas C. Hartrum (Member) date

iii

Acknowledgments

First, I would like thank God for providing the guidance to help me through this

challenging and difficult part of my life. Without God leading my life, I am not sure

where I would be today.

I would like to express my sincere appreciation to my faculty advisor, Dr. Richard

Raines, for his guidance, patience and support throughout the course of this thesis effort.

In addition, I would like to thank Dr. Raines for believing in me enough to allow me to

pursue this thesis effort with the utmost freedom, even in the face of the personal

challenges that were placed before me. I would also like to thank my committee

members, Dr. Rusty Baldwin and Dr. Thomas Hartrum, for their guidance and

knowledge. I wish to express special thanks to Dr. Baldwin for playing an integral role in

helping me through the toughest period of my life, and for instilling in me a new

appreciation for spirituality and the role God plays in my life.

Last, but certainly not least, I would like to thank Mr. Kenneth Littlejohn for his

support and continuous encouragement. I couldn’t ask for a better sponsor, and I will

certainly miss the wide variety of discussions, technical and non-technical, we have had

over the past few years. Our non-technical discussions are certainly another major reason

why God has become an important part of my life.

Jason T. Lawson

iv

Table of Contents

Page

Acknowledgments... iv

List of Figures .. viii

List of Tables ... ix

1. Introduction... 1-1

 1.1 Background... 1-2

 1.2 Research Problem .. 1-2

 1.3 Scope.. 1-3

 1.4 Approach.. 1-4

 1.5 Summary.. 1-4

2. Literature Review... 2-1

 2.1 Introduction.. 2-1

 2.2 Weapon System Open Architecture (WSOA) Program Overview...................... 2-2

 2.3 Relationship of WSOA to Military Tactical Datalinks.. 2-5

 2.4 Quality of Service Management Frameworks... 2-8

 2.5 Adaptive Scheduling Techniques.. 2-17

 2.6 Real-Time Adaptive Resource Management Techniques 2-19

 2.7 Modeling the WSOA Architecture with OPNET®... 2-21

 2.8 Summary... 2-21

3. Methodology... 3-1

 3.1 Introduction.. 3-1

 3.2 Goals and Hypothesis ... 3-1

v

 3.3 Approach ………... 3-2

 3.4 System Boundaries .. 3-3

 3.5 System Services .. 3-4

 3.6 Performance Metrics.. 3-6

 3.7 Parameters.. 3-6

 3.7.1 System... 3-7

 3.7.2 Workload... 3-8

 3.8 Factors.. 3-9

 3.9 Evaluation Technique ... 3-10

 3.10 Experimental Design... 3-10

 3.11 Implementation Details... 3-11

 3.11.1 Link-16 Communications Network.. 3-12

 3.11.2 WSOA Object Request Broker (ORB) Packet................................... 3-13

 3.11.3 QoS Deadline Calculations and Adaptation…................................... 3-14

 3.12 Model Verification and Validation .. 3-17

 3.13 Summary... 3-19

4. Analysis.. 4-1

 4.1 Introduction.. 4-1

 4.2 Statistical Overview... 4-1

 4.2.1 Simulation Statistics.. 4-2

 4.2.2 Confidence Intervals .. 4-2

 4.2.3 Coefficient of Variation ... 4-3

 4.2.4 Analysis of Variance... 4-3

 4.2.5 Random Methods ... 4-5

vi

 4.3 WSOA Image Deadline Scenarios... 4-5

 4.3.1 Image Tiles Per Second Analysis... 4-5

 4.3.2 Compression Level Analysis.. 4-9

 4.3.2 Image Download Time Analysis.. 4-13

 4.4 Conclusion .. 4-17

5. Conclusions... 5-1

 5.1 Restatement of Research Goal.. 5-1

 5.2 Research Contribution .. 5-1

 5.3 Conclusions... 5-2

 5.4 Future Research ... 5-2

 5.4.1 Scheduling Algorithms.. 5-3

 5.4.2 Military Tactical Datalinks.. 5-3

Appendix A. Data ...A-1

Appendix B. Availability of OPNET® Models and Source Code...........................B-1

Bibliography ... BIB-1

vii

List of Figures

Figure Page

Figure 2-1 Layers of DOC Middleware and Surrounding Context................................. 2-4

Figure 2-2 DNS-16 Layered Approach to Dynamic Networking................................... 2-8

Figure 2-3 Masking System Properties... 2-13

Figure 2-4 Sample RTARM Hierarchy... 2-21

Figure 3-1 WSOA Application and Architecture... 3-4

Figure 3-2 Example Link-16 Network with 16 Tactical Nodes................................... 3-14

Figure 3-3 Early, On-Time and Late QoS Boundaries... 3-17

Figure 4-1 Transient Period Validation – Image Tiles Per Second................................ 4-2

Figure 4-2 Image Tiles Per Second Results... 4-6

Figure 4-3 Compression Level Results.. 4-7

Figure 4-4 Image Download Time Results…………...…………………….……...…. 4-7

viii

List of Tables

Table Page

Table 3-1 System and Workload Parameters.. 3-9

Table 3-2 System and Workload Factors.. 3-11

Table 3-3 Experimental Design Determination .. 3-12

Table 3-4 WSOA QoS Adaptation Model.. 3-17

Table A-1 WSOA Architecture Performance Metrics... A-1

Table A-2 Example ANOVA Analysis for 38, 42, 46, 50 and 54 Second Trials.......... A-2

ix

AFIT/GCE/ENG/05-08

Abstract

Open systems solutions and techniques have become the de facto standard for

achieving interoperability between disparate, large-scale, legacy software systems. A key

technology among open systems solutions and techniques is middleware. Middleware, in

general, is used to isolate applications from dependencies introduced by hardware,

operating systems, and other low-level aspects of system architectures. While middleware

approaches are or will be integrated into operational military systems, many open

questions exist about the appropriate areas to applying middleware.

Adaptive middleware is middleware that provides an application with a run-time

adaptation strategy, based upon system-level interfaces and properties. Adaptive

middleware is an example of an active applied research area. Adaptive middleware is

being developed and applied to meet the ever-increasing challenges set forth by the next

generation of mission-critical distributed real-time and embedded (DRE) systems. The

driving force behind many next-generation DRE systems is the establishment of QoS

requirements typically associated with workloads that vary dynamically.

 The Weapon System Open Architecture (WSOA), an adaptive middleware

platform developed by Boeing, is modeled as a part of this research to determine the

scalability of the architecture. The WSOA adaptive middleware was previously flight-

tested with one tactical node, and the test results represent the performance baseline the

architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical

nodes. The results of the modeling and simulation is that the WSOA adaptive middleware

x

can achieve the performance baseline achieved during the original flight-test, in the cases

of 1, 2, and 4 tactical nodes. In addition, the results of the modeling and simulation also

demonstrate that the WSOA adaptive middleware cannot achieve the original

performance baseline, in the cases of 8 and 16 tactical nodes.

xi.

MODELING ADAPTIVE MIDDLEWARE AND ITS APPLICATIONS TO MILITARY
TACTICAL DATALINKS

1. Introduction

The Weapon System Open Architecture (WSOA) program was initiated in 1999

by the AFRL, the Defense Advanced Research Projects Agency (DARPA), and the Open

Systems Joint Task Force (OS-JTF). The goal of the WSOA program is to develop an

open-systems “bridge” between legacy embedded mission systems and off-board

command and control (C2) resources [5]. Open system approaches and techniques were

used because of their potential to address technical limitations that affect the ability of

current systems to prosecute time-sensitive targets (TSTs). These technical limitations

include bandwidth of current military tactical datalinks, static resource management, and

finite computing resources [5].

The architecture developed under the WSOA program is based in large part upon

Bold Stroke, a middleware-centric systems architecture developed by the Boeing

Company for Operational Flight Programs (OFPs). The Bold Stroke architecture fosters

the development of OFPs across multiple fighter aircraft platforms, using standard,

commercial-off-the-shelf (COTS) hardware and software [5]. The WSOA architecture

combines the middleware foundation of Bold Stroke, which is based on the Common

Object Request Broker Architecture (CORBA) standard, along with a QoS management

framework, real-time adaptive resource manager (RTARM) and an adaptive scheduling

framework. The aforementioned technologies are combined to support applications that

dynamically allocate and manage various system resources in response to changes in the

operating environment, while providing guaranteed real-time performance of critical

tasks.

1-1

1.1 Background

The military tactical datalink that WSOA uses is commonly known as Link-16, as

defined in MIL-STD 6016. Link-16 is an encrypted, jam-resistant, nodeless datalink used

by terminals compatible with the Joint Tactical Information Distribution System (JTIDS),

and supports the TADIL J message catalogue [11]. Nodeless networks can use over

several different medium access schemes and Link-16 uses both Time-Division Multiple

Access (TDMA) and Code-Division Multiple Access protocols. TDMA assigns Time

Slot Blocks (TSBs) to individual assets, while CDMA allocates Link-16 datalink

networks, otherwise known as Network Participation Groups (NPGs). Link-16 supports

the distribution of a wide range of combat information in near-real time to U.S. combat

aircraft and command and control centers [11]. In addition, Link-16 has been fielded by

NATO and has seen extensive use in Europe. Information transmitted over Link-16

datalink networks include an integrated air picture with both friendly and hostile aircraft

locations, general situation awareness data, and additional data on potential air and

ground targets [11]. When encryption and jam-resistance are enabled, the maximum

achievable bandwidth of a given Link-16 datalink network is approximately 56 Kbps.

1.2 Research Problem

Modeling and simulating the WSOA architecture to determine its scalability is the

principal goal of this research effort. The modeling and simulation tool used to

investigate various properties of networking protocols is OPNET®. OPNET® models

communication systems of all types and levels of protocols [10]. OPNET® Modeler

supports many types of networking technologies to include TDMA communications

1-2

of standards-based protocol models, with completely open source code.

The current WSOA architecture supports a single command and control aircraft

and a single tactical fighter node. For the purposes of demonstrating the application of

new technology, this type of limited experimental setup was sufficient. However, since

this technology will eventually transition to existing military systems, the scalability of

the WSOA architecture and underlying technology must be established. Specifically, the

goal of this study is to estimate the number of tactical fighter nodes that can be supported

at varying levels of QoS by a given command and control node. Within the context of

this study, support is defined by the requirements set forth by individual tactical fighter

nodes with respect to the various data products provided by the command and control

aircraft. For example, the Weapon System Officer (WSO) for an F-15E Strike Eagle may

define the maximum allowable time for downloading an image to be displayed on the

Tactical Situation Display (TSD).

1.3 Hypothesis

The hypothesis of this study is that the QoS management framework, embedded

within the WSOA middleware architecture, will allow the command and control aircraft

to provide adequate support for at least 16 tactical fighter nodes. As discussed previously,

one major goal of this study is to determine an estimated value for n, the maximum

number of tactical fighter nodes that can be adequately supported. Furthermore, once n +

1 and increasing numbers of tactical fighter nodes are being supported by the command

and control aircraft, it is expected that the WSOA architecture will no longer be able to

support the total number of tactical fighter nodes. Therefore, the requirements set forth by

individual tactical fighter nodes will not be met for various data products provided by the

1-3

command and control aircraft. Thus, individual and collective operational capability of

tactical fighter nodes will not be realized, resulting in an overall loss of military

effectiveness.

1.4 Approach

The general approach taken to investigate the stated hypothesis, and other

performance-related metrics, is through the use of a discrete-event simulator. Given that

the WSOA architecture consists primarily of various communication protocols, the

OPNET® simulation tool is used for building the experimental model and performing all

experiments described herein. The OPNET® simulation tool is a discrete-event simulator

targeted to simulate various types of network communication systems [21].

Various performance metrics are calculated or measured based upon the

simulation results produced by exercising the overall system model. The performance

metrics being used are based upon injecting a known workload into the system, in the

form of simulated servicing of image requests originating from n individual tactical

fighter nodes. The effects of this workload will be measured through two metrics:

throughput measured in image tiles per second, and the compression level of image tiles

that are transmitted.

The metrics will be compared to data collected from the WSOA flight test for

purposes of validation and verification, and a performance and scalability analysis will be

conducted based upon varying the known workload.

1-4

1.5 Summary

The remainder of this document is organized into four chapters. Chapter 2

contains the literature review where background associated with adaptive middleware is

presented. The methodology for the experimental phase of this investigation is given in

Chapter 3. The analysis of the results and comparison to earlier works follow in Chapter

4. Finally, Chapter 5 provided a summary of the thesis effort and identifies areas of the

research to be explored in future research efforts.

1-5

2. Literature Review

2.1 Introduction

This chapter provides an overview of pertinent literature relating to adaptive

middleware and more specifically, the application of adaptive middleware to military

tactical datalinks for the purposes of enabling enhanced communications capabilities.

This chapter is organized into six areas, starting with an overview of the Weapon System

Open Architecture (WSOA) program, followed by a discussion of current and future

military tactical datalinks. Within the context of the WSOA program, and its relationship

to current military tactical datalinks, a detailed discussion of the three key components of

adaptive middleware is provided, which include quality of service (QoS) management

frameworks, adaptive scheduling techniques and dynamic resource management

approaches. Finally, this chapter closes with a survey of approaches to modeling adaptive

middleware and its associated components, within an environment amenable to studying

the performance of packet-switched communications systems.

 Open systems approaches and techniques have become the de facto standard for

achieving interoperability between disparate, large-scale, legacy software systems [5]. A

key technology among open systems approaches and techniques is middleware. The

middleware concept was developed based upon recognizing the opportunity to develop

and evolve systems through reusable software [24]. Middleware, in general, is used to

isolate applications from dependencies introduced by hardware, operating systems, and

other low-level aspects of system architectures. Numerous efforts are currently underway

to develop and field Operational Flight Programs (OFPs) based upon open systems

approaches such as middleware [25]. While middleware approaches are or will be

2-1

integrated into operational military systems, many questions exist pertaining to the

boundaries of applying middleware.

 Adaptive middleware, one such application boundary, is currently an active

research topic in the literature. Specifically, adaptive middleware is being developed and

applied to meet the ever-increasing challenges set forth by the next generation of

mission-critical distributed real-time and embedded (DRE) systems [9]. The driving force

behind many next-generation DRE systems is the establishment of QoS requirements,

typically associated with workloads that vary dynamically.

In addition, given the distributed nature of these new systems, the varying

workloads introduced by them are often serviced by shared resources. As such, achieving

QoS requirements in these types of environments requires new adaptive techniques, such

as automated reconfiguration, layered resource management, and dynamic scheduling [9].

Combined with middleware, these new adaptive techniques can be encapsulated to

introduce application-level awareness of QoS into next-generation DRE systems, without

the creation of low-level system dependencies resulting in expensive coupling between

various layers of such systems.

2.2 Weapon System Open Architecture (WSOA) Program Overview

 The WSOA program was initiated in 1999 by the Air Force Research Laboratory

(AFRL), the Defense Advanced Research Projects Agency (DARPA), and the Open

Systems Joint Task Force (OS-JTF). The goal of the WSOA program is to develop an

open-systems “bridge” between legacy embedded mission systems and off-board

command and control (C2) resources [5]. Open system approaches and techniques are

2-2

seen as a way to address technical limitations that affect the ability of current systems to

prosecute time-sensitive targets (TSTs). Technical limitations include bandwidth of

military tactical datalinks, static resource management, and finite computing resources

[5].

The architecture developed under the WSOA program is based in large part upon

Bold Stroke, a middleware-centric systems architecture developed by the Boeing

Company for OFPs [25]. The Bold Stroke architecture fosters the development of OFPs

across multiple fighter aircraft platforms, using standard, commercial-off-the-shelf

(COTS) hardware and software [5]. The WSOA architecture combines the middleware

foundation of Bold Stroke, based on the Common Object Request Broker Architecture

(CORBA) standard, along with a QoS management framework, real-time adaptive

resource manager (RTARM), and an adaptive scheduling framework. The

aforementioned technologies combine to support applications that can dynamically

allocate and manage various system resources in response to changes in the operating

environment, while providing guaranteed real-time performance of critical tasks.

Since the foundation of the WSOA architecture is middleware, a review of current

middleware technologies is in order. Middleware, or more specifically, distributed object

computing (DOC) middleware, can be decomposed into the following layers: domain-

specific middleware services, common middleware services, distribution middleware,

and host infrastructure middleware [24]. Viewing this decomposition from higher to

lower layers as in Figure 2-1, it is not altogether different from the OSI Reference Model

for network protocols [9]. In addition, there are a number of competing technologies at

each of the layers.

2-3

Figure 2-1. Layers of DOC Middleware and Surrounding Context [5]

The lowest layer of DOC middleware is the host infrastructure layer. The purpose

of the host infrastructure layer is to encapsulate and enhance native OS communication

and concurrency mechanisms to support reusable components and software. Competing

technologies at this layer include the Sun Java Virtual Machine [18], .NET [29] which is

Microsoft’s platform for XML services, and the Adaptive Communication Environment

(ACE) [26], a highly portable toolkit developed at Washington University. At this layer

of the middleware, the WSOA architecture uses ACE. This choice is dictated by the

implementation of the Bold Stroke architecture, which focuses on open commercial

standards and technology.

The role of the distribution layer is to define higher-level models for distributed

computing, based in large part on reusable components and frameworks that extend the

native services of the operating system [24]. Competing technologies include OMG’s

2-4

CORBA standard, Sun’s Java Remote Invocation (RMI) [33], Microsoft’s Distributed

Component Object Model (DCOM) [3] and an emerging technology known as the Simple

Object Access Protocol (SOAP) [27]. At this layer of the middleware, the WSOA

architecture implements the CORBA standard.

Next, the function of the common middleware services layer is to augment the

distribution layer by defining more abstract domain-independent services that typically

are responsible for implementing what is known as the “plumbing code” often required in

distributed computing environments [24]. Examples of competing technologies at this

layer include OMG’s CORBA Common Object Services (CORBAservices) [20], Sun’s

Enterprise Java Beans (EJB) technology [30], and Microsoft’s .NET Web services [29].

At this layer of the middleware, the WSOA architecture implements the CORBAservices.

Finally, the purpose of the domain-specific middleware services is to achieve

domain-specific goals and requirements that are not addressed by the lower-level services

[24]. A prime example of the technology operating at this layer is the Bold Stroke

architecture which defines specific component services to support mission critical

functions such as navigation, display management, sensor management, situation

awareness, data link management and weapons control. Since the targeted application

space is avionics, the WSOA architecture inherently takes advantage of the existing

domain-specific services that are implemented as part of the Bold Stroke architecture.

2.3 Relationship of WSOA to Military Tactical Datalinks

 The goal of the WSOA program is to develop an open-systems “bridge” between

legacy embedded mission systems and off-board command and control (C2) resources,

2-5

via military tactical datalinks such as Link-16. To gain insight into the meaning of the

term “open-systems bridge”, the relationship of WSOA to military tactical datalinks

much be established. This relationship can be clearly established by comparing and

contrasting the capabilities of current military tactical datalinks with the capabilities of

new applications that are enabled by the development of WSOA.

 Although limited, Link-16 does provide combat aircraft and command and control

centers a means to exchange data and information. Link-16 is somewhat inflexible since

it is based upon an underlying TDMA architecture and relies on the TADIL J message

catalogue. WSOA overcomes this limitation by implementing a pluggable protocol

through the CORBA communications architecture that has for custom messaging and

transport mechanisms [5]. The application-level impact of the pluggable protocol is two-

fold. First, implementation of custom messaging, as opposed to reliance on the messages

sets defined in the TADIL J catalogues, allows for different types of data to be exchanged

between tactical and C2 assets. This benefit is clearly established by a demonstration

application developed under the WSOA program. Instead of Link-16 delivering simple

track and threat location data, WSOA-enabled applications can deliver richer data sets

such as a Virtual Target Folder (VTF). A VTF has descriptive information regarding the

target, an index of available imagery via thumbnail images, designated critical point

locations, and information concerning threats in the vicinity of the target [5].

Second, custom messaging and transport mechanisms allow more efficient use of

bandwidth. This has also been shown by a demonstration application developed under the

WSOA program. When a user received a VTF and clicks on an image thumbnail, a

request for a larger version of the image submitted. During the download of the larger

2-6

image, measures of QoS and resource utilization are monitored to adapt the process of

downloading [5]. Simple adaptations include increasing or decreasing the level of

compression for individual image tiles based upon whether the previous image tile is

behind schedule, on schedule or ahead of schedule [5].

To increase the capability and flexibility introduced by WSOA within Link-16

datalink networks, enhancements and improvements to Link-16 are needed. One

promising enhancement to Link-16 is known as Dynamic Networking System for Link–

16 (DNS-16) [7]. DNS-16 consists of a three-layer protocol implemented on top of the

current Link-16 physical layer. These three layers consist of the Link Monitor-16

(LMON-16), the Unified Slot Allocation Protocol-16 (USAP-16) [35], and the Smart

Information Management Systems-16 (SIMS-16) [7]. A hierarchical view of layers is

provided in Figure 2-2. To use this new protocol, a proxy is introduced. Proxies provide

dynamic networking capability without requiring the upgrade of all Link-16 terminals.

Platforms with dynamic networking capability act as proxies for platforms with

unmodified terminals [7]. By not upgrading the entire inventory of Link-16 platforms, a

dynamic network capability can be achieved at a reduced cost and impact on the

warfighter.

LMON-16 provides an interface between the Link-16 terminal and the higher

layers by monitoring traffic flow through the terminal itself. Specifically, the LMON-16

layer extracts messages, such as Precise Position, Location, and Identification (PPLI)

messages, from the stream and use the information to establish a new dynamic network

NPG. In addition, bootstrap messages generated by other dynamic terminals are

decoded, and communication tables are constructed in an effort to ensure contention-free

2-7

communication [22].

USAP-16 layer provides a set of protocols enabling the network to distribute a

common picture of the current operational network to itself [22]. The USAP protocols

achieve this by monitoring the RF environment, allocating channel resources on demand

based upon a heuristic function, and automatically detecting and resolving contention that

results from changes in connectivity. The underlying USAP protocols have been

previously developed and demonstrated as part of Soldier Phone, a separate program that

supports a multi-net TDMA network architecture [2]. USAP protocols enable contention-

free slot assignment within a multi-net TDMA network architecture [22].

SIMS-16

USAP-16

Adaptive, distributed
network design

Network integrity
& negotiation

Physical Link

Dynamic
Network

Mgmt

Monitor Link-16 Traffic
LMON-16

LINK-16

Figure 2-2. DNS-16 Layered Approach to Dynamic Networking [7]

SIMS-16 assigns TSBs to NPGs, making transmit assignments and negotiating

proxy assignments [22]. SIMS-16 automatically associates a dynamic terminal with each

legacy terminal to serve as its proxy to the USAP-16 datalink network. While any

dynamic terminal should be able to serve as a proxy, dynamic terminals serving in an

2-8

operational C2 role, such as E2C or AWACS, are preferred over other dynamic terminals

[22]. The purpose of a proxy is to recognize terminals without dynamic capability in the

vicinity and execute the USAP-16 protocols for them to obtain network bandwidth. After

obtaining the required bandwidth, the proxy terminal sends the legacy terminals the

appropriate messages to reconfigure those units as necessary to integrate them into the

USAP-16 datalink network [22]. In the future, additional functionality may be

incorporated into this layer.

2.4 Quality of Service Management Frameworks

 Adaptive military applications can be included in the WSOA architecture, in large

part, due to the QoS management framework incorporated into the Bold Stroke

middleware. As defined by Schantz [23], Quality of Service (QoS) activities improve and

control network resources to achieve a certain level of service. In the broadest sense, QoS

involves the multitude of properties beyond the application specific functional behavior

of a particular distributed application [23]. Examples include performance characteristics,

dependability, behavior and adaptability under various changing environments, and

security. Other significant QoS activities include specification, negotiation, enforcement,

detection, notification, and reconfiguration and adaptation [23]. Each of these processes

will be discussed in the following sections.

One QoS management framework is known as the Quality Objects (QuO)

framework. The QuO framework supports QoS at the CORBA layer [36]. Specifically,

the QuO framework solves current issues in the development of DRE systems including

ignoring system properties associated with different environments and platforms, the

2-9

difficulty programmers encounter when dealing with WAN-level properties associated

with DRE systems, the large barrier to entry regarding the development of minimally

adaptive DRE systems, and the inability of programmers to create strongly adaptive

systems with cross-platform implementations [36]. Some of these issues are due in large

part to the current lack of information regarding such systems, and the lack of maturity

concerning associated technology.

 The QuO framework provides solutions to these issues in several ways [36]. First,

the QuO framework defines system properties as first class entities, and integrates

knowledge of these properties so the application can be aware of and handle changes in

the operating environment. Second, the QuO framework reduces the variance of system

properties via masking, so that programmers can deal with a relatively invariant subset of

system properties. Third, the QuO framework exposes key design decisions of a given

object’s implementation and use to help the application reconfigure dynamically. Finally,

the QuO framework supports the reuse of various QuO architectural components at

different points in the lifecycle of the application.

QoS management starts with a connection. A connection is a boundary where

expected usage patterns and QoS requirements between client and server objects can be

negotiated [36]. Delegate object(s) on the client are created to abstract and manage the

communication occurring across the connection defined between the client delegate

object(s) and the remote server object(s). Once a connection is established, an associated

client delegate object(s) is created and bound to a remote server object(s), the definition

and negotiation of QoS regions can begin.

A QoS region can be classified into one of two levels of system conditions [36].

2-10

First, a negotiated region is a region defined in terms of both the client and server object

usage based upon the system conditions the objects attempt to operate in. Typically, a

given client delegate object will support a number of negotiated regions. In addition to

negotiated regions, reality regions are defined as the actual QoS associated with the

interaction of the client and server objects, as measured by the QoS of the runtime

system. The adaptive nature of the QuO framework is encapsulated in the specification

of handler routines that execute based upon transitions that occur in either the negotiated

or reality regions. Handler routines allow the application on the client side to make

decisions regarding the usefulness of compensatory actions, or to modify the original

QoS requirements of the application.

Adaptivity implies the existence of multiple behaviors that can potentially occur

during the execution of DRE systems that implement the QuO framework. For instance,

applications can complete tasks later than expected either through tolerating finishing a

task later or rescheduling a task for execution at a future time. Another adaptive behavior

modifies the work that an application does. Applications may accomplish less work than

expected, which can mean greater errors, lower data resolutions, etc. Adaptive behavior

concerns the substitution of alternate mechanisms that possess different system

properties. Alternate mechanisms include any type of resource not utilized under normal

system operating conditions, for example a compression algorithm, used to compress data

when throughput exceeds bandwidth limitations [36].

The QuO framework also supports a number of binding times, referred to as

commitment epochs [36]. Commitment epochs are established at definition, connection,

negotiation, and invocation times. At definition time, QoS regions are defined and bound

2-11

to various handlers to create different adaptive behaviors. Typically, this is accomplished

via a description language targeted for QuO, and referred to as QDL. At connection time,

adaptive behavior is created by instantiated constructs such as delegate objects that can

bind the shape of QoS structures enumerated at definition time. During negotiation,

bounds are defined that the client delegate object and server object attempt to operate

within.

To resolve the second issue, reducing the variance in system properties, three

separate steps are taken. First, existing sources of variance are masked through the

layering of delegate objects. An example of this masking, within the context of WSOA, is

the system-level delegate object that is layered on top of other delegate objects which are

monitoring the loading of the processor, the download time for the current image, etc.

From a system-level perspective, the sources of variance are masked by the main

delegate, which produces an aggregate assessment of overall system QoS state. Second,

system knowledge is brought together from different sources. These sources consist

primarily of members of the system design team, such as the client designer, object

designer, ORB designer. Finally, the designers of the system must ensure that delegate

objects are sufficiently complex to handle system conditions as first class objects.

Variance in system properties can occur during routine operation. Systems that

support QoS management must be able to mask this variance at different levels in the

system, since the information required to recognize this variance is available at different

times and at different places. Each layer in the QoS management framework tries to

maintain the QoS provided to higher levels by masking changing system conditions

within negotiated levels of defined QoS regions. When system conditions change such

2-12

that masking is no longer effective, a handler routine passes this information to a higher

layer that can adapt to the changing conditions within its masking range [36]. This may

result in both layers attempting to change policies, or other simple modifications, to adapt

to the new system conditions. When simple modifications are not successful, a change in

expectations is realized, which results in the renegotiation of the boundaries of the layer

corresponding to the original QoS region. Figure 2-3 depicts a typical scenario where

changing system conditions or properties are masked.

Figure 2-3. Masking System Properties

Integration of system knowledge from different sources is a key process in

2-13

reducing the variance of system properties. Sources for this information include the client

designer, object designer, QuO designer, ORB designer, and operations staff. Each source

can provided different types of information. For instance, the client designer is keenly

aware of the need for a delegate object to renegotiate QoS regions. A second example is

the operations staff. The operations staff is responsible for knowledge of resource

availability, resource access permissions, and administrative domains.

The QuO framework also addresses the third issue, exposing key design decisions

of a given object’s implementation and use, specifically to provide an application with

assistance in reconfiguring dynamically. While many complex software systems can

operate effectively based solely on layered abstractions that only expose functional

interfaces, DRE systems cannot operate effectively in this type of environment. DRE

systems have grown to staggering levels of complexity, with a wide range of resource

and usage patterns, and components of DRE systems are required to service a wide range

of clients. Thus, a single implementation of a component in a DRE system is not

adequate to meet the demands of all possible clients. Open implementation techniques

[13] allow system designers to expose key performance and reliability design decisions

associated with components and objects. These key design decisions and other usage

pattern information of a given component or object, can be abstracted and specified as

implementation meta-data [36]. This meta-data is specified separately from the functional

aspects of the component or object. Thus, an architecture or framework based upon this

meta-data allows a system to reason about itself and adapt to changes occurring within

relevant system properties.

The QuO framework specifies separate meta-data using of its Quality Description

2-14

Language (QDL). QDL is made up of several independent description languages that

specify system property meta-data: the Contract Description Language (CDL), the

Resource Description Language (RDL), and the Structure Description Language (SDL).

The CDL defines expected usage patterns and QoS requirements for a given connection

to an object typically located on a server. The RDL defines the physical resources used

by an object. The SDL defines the internal design of an object and quantifies how a given

object consumes resources that are allocated to it.

Finally, the Quo framework resolves the fourth issue, the reuse of various

architectural components, by introducing new steps in the design process normally

associated with developing software within object-oriented frameworks such as CORBA.

The overall design process for developing CORBA components and objects is modified

to include the role of a QoS designer. In addition, formal and reusable contracts are

developed using CDL. This adds another step to the CORBA design process, and

likewise introduces additional steps in the design processes for other object-oriented

software architectures.

Listing 1 is an example of the structure of a typical contract that contains

negotiated QoS regions, from a hypothetical screen-saver application. Specifically, the

key elements of the listing are the definition of the contract regions which are defined

through the Allocated and Free constructs in the ScreenSaver contract. Within both

constructs, the client_expections and object_expectations objects capture the regions of

transition for the application, i.e. in terms of throughput and accuracy. Using the

Allocated and Free constructs, the appropriate callback methods are executed to force the

transition between QoS regions, when changes in the values for throughput and accuracy

reach a predetermined boundary.

2-15

// Forward declarations for classes used in the connection’s
// parameters.
interface ScreenSaver_client_callback;
interface ScreenSaver_negotiated_region;
interface ScreenSaver_client_expectations;

connection invScreenSaver(
 // 3 Parameters required for every QDL connection
 // for client_callback
 in ScreenSaver_client_callback cl_call,
 // for client_expectations
 in ScreenSaver_client_expectations cl_exp,
 // for object_expectations
 out ScreenSaver_object_expectations ob_exp,

// Parameters specific to this connection, which can be used in //
predicates for negotiated and reality regions.

 in double max_invoc m_p_s,
 in double max_idle s) is

 client_callback interface ScreenSaver_client_callback
 object_callback interface ScreenSaver_object_callback
 client_expectations interface ScreenSaver_client_expectations
 object_expectations interface ScreenSaver_object_expectations

// Meta-level interfaces
contract ScreenSaver is // CDL negotiated regions are

 Allocated:
 when client_expectations.throughput > 0 m_p_s and
 when client_expectations.throughput <= max_invoc m_p_s and
 when object_expectations.capacity >= max_invoc m_p_s
 Free:
 when client_expectations.throughput == 0 m_p_s and
 when object_expectations.capacity == 0 m_p_s
 transition callbacks are
 Allocated -> Free:
 object_callback->client_asleep()
 Free -> Allocated:
 object_callback->client_awake()
 client_calllback->now_allocated()
 end transition callbacks

end negotiated regions

reality regions for Allocated are separate
reality regions for Free are separate

end contract ScreenSaver // CDL

// RDL, SDL, etc. go here
end connection invScreenSaver

Listing 1. CDL for ScreenSaver Negotiated Regions

2-16

separate reality regions for ScreenSaver::Allocated:

Normal:
 when.QuO_condition.measured_throughput > 0 m_p_s and

 when QuO_condition.measured_throughput <= max_invoc m_p_s and
 when QuO_condition.measured_capacity >= max_invoc m_p_s and
 when QuO_condition.measured_idleness <= max_idle secs

Insufficient_resources:
 when QuO_condition.measured_capacity < max_invoc m_p_s

Client_overlimit:
 when QuO_condition.measured_throughput > max_invoc m_p_s

Client_asleep:
 when QuO_condition.measured_idleness > max_idle sec

// Precedences tell which reality regions are chosen if more than // one
predicate is true
precedence Normal, Client_asleep, Client_overlimit, No_resources
transitions callbacks are

 Normal -> Insufficient_resources:
// Warn the client that there isn’t enough capacity, even
// though we’re in negotiated region Allocated and thus
// there is supposed to be capacity.
client_callback->warn_no_resources()
// Tell the object to allocate more capacity (or lower its //
expectations)
object_callback->allocate_capacity(max_invoc)

 Insufficient_resources -> Normal:
 // Let the client know that it doesn't have to hold its

// breath any more
client_callback->warn_enough_resources()

 any -> Client_overlimit:
 // Let the client know it is exceeding its negotiated
 // promise
 client_callback->warn_overlimit(max_invoc)
 any -> Client_asleep:
 // Let both the object and the client know that the client
 // has gone asleep. One or both may reset their expectations
 // (e.g., the client’s throughput or the object’s capacity),
 // which could cause a renegotiation.
 client_callback -> warn_sleeping()
 object_callback -> client_asleep()
end transition callbacks

end separate reality regions ScreenSaver::Allocated

Listing 2. CDL for Reality Regions for ScreenSaver Negotiated Region Allocated

Listing 2 provides another example of the structure of a contract that contains QoS

region transitions and the associated callback methods, for a hypothetical screen-saver

application.

To streamline the process of creating delegate and server objects, automated

methods and techniques have been developed to generate objects and software necessary

2-16

to build the infrastructure for these new system calls and routines. Although the

generation of many delegate and server objects is automated, a number of modifications

to these objects are likely to be required if a given contract is being reused across a given

software architecture. For instance, client callback routines will likely require re-

implementation, or multiple implementations, to deal with changing system conditions.

2.5 Adaptive Scheduling Techniques

 Many DRE systems, and other real-time systems, have historically employed

static scheduling techniques to enforce deterministic execution of the system, and other

real-time performance requirements [16]. This type of scheduling discipline does not

provide the flexibility required for a given application to adapt and reconfigure when

system conditions change, which in turn affects the overall QoS of the system. Thus,

dynamic scheduling methods and techniques that allow systems the flexibility to respond

to changes in QoS are needed. It is important to note that QuO only specifies the actions

to be taken to manage changes in the system that result in changes in QoS. Other

mechanisms, such as dynamic scheduling, are required so the system can react and adapt

to changes in the operating environment. As will be discussed later, other mechanisms

are also required to allow dynamic and real-time monitoring of resources, the results of

which are interpreted by management frameworks such as QuO.

 Static scheduling techniques suffer from the following limitations: inefficient

handling of non-periodic processing, utilization penalty for non-harmonic periods, and

inflexible handling of invocation-to-invocation variation in resource requirements. Static

2-17

scheduling handles non-periodic processing inefficiently because such disciplines must

treat non-periodic processing as periodic processing that occurs at its maximum possible

rate, which typically does not occur in practice. Static scheduling implicitly enforces a

phasing penalty for non-harmonic periods. This penalty occurs because tasks with non-

harmonic periods introduce unscheduled gaps of time Thus, attaining CPU usage close to

100% is not achievable. Static scheduling also does not allow for flexible handling of

resources on an invocation-to-invocation basis. Static scheduling enforces a worst-case

allocation of resources, producing a similar type of inflexibility as encountered in non-

periodic processing [15].

 Dynamic scheduling strategies do not suffer the limitations described previously.

Unfortunately, dynamic scheduling strategies mitigate these limitations through increased

overhead. In DRE systems additional overhead may introduce other unfavorable

conditions. For example, dynamic scheduling strategies can behave non-deterministically

under heavy loading conditions. Thus, a careful trade-off must be made when

considering the use of dynamic scheduling strategies. Two dynamic scheduling strategies

explored under the WSOA architecture, and other avionics applications, are Earliest

Deadline First (EDF) and Minimum Latency First (MLF).

 EDF [14, 17] gives highest priority to the task with the earliest deadline. A major

limitation of EDF scheduling is that the task with the earliest deadline is executed without

the probability of meeting its deadline. For instance, a task that requires more time to

complete than is actually available prior to reaching its deadline will still be dispatched

by the EDF algorithm. A more efficient use of processing resources would be to execute

a task with a later deadline that can finish prior to its deadline being reached.

2-18

 MLF [28] is a scheduling technique that refines the EDF scheduling discipline by

accounting for execution time. MLF dispatches an operation or task whose laxity is least.

Laxity is defined as the time-to-deadline minus the remaining execution time [15]. Thus,

this type of scheduling strategy will detect when an operation or task will not meet its

deadline, and then reevaluate the current schedule of operations or tasks.

2.6 Real-Time Adaptive Resource Management Techniques

 The Real-Time Adaptive Resource Management (RTARM) system [4], is the

methodology that the WSOA architecture uses to dynamically manage and monitor

system resources. RTARM supports a number of services that are useful to DRE systems,

to include end-to-end QoS negotiation, QoS adaptation, real-time monitoring and

hierarchical QoS feedback adaptation. RTARM supports management and monitoring of

systems resources, along with network resource management via integration of the NetEx

resource management system [4].

 Specifically, RTARM uses a hierarchical resource management

architecture that provides integrated management over different types of resources. This

resource management architecture is recursive, in addition to being structured in a

hierarchical fashion. System and network resources are controlled by Service Managers

(SMs), which are themselves controlled by higher-level service managers. Figure 2-4

shows a sample RTARM hierarchy consisting of a CPU SM, a network SM and two

high-level SMs, to provide integrated resource management capability. Several benefits

are realized from utilizing such a hierarchical and recursive resource management

strategy. Services with complex QoS requirements and representations are easier to

2-19

implement on top of uniform basic services for resource management [4]. An additional

benefit of this type of architecture is it allows an application to interact based upon a

richer representation of QoS. A drawback of this type of hierarchical approach is the

distance between top-level and base-level SMs. If the number of intermediate SMs is

large or causes measurable amounts of latency, applications with time-sensitive

functionality may or may not be able to implement this type of QoS management

framework.

A typical Service Manager is made up of the following functions: Negotiator,

Translator, Allocator, Adapter, Scheduler, Enactor, Monitor, Detector and Feedback

Adapter [4]. The Negotiator brokers contract admission and can delegate responsibilities

to other components. The Translator is used to translate high-level QoS into low-level

physical representations. The Allocator is directly responsible for the allocation and

release of individual resources. The Adapter performs resource allocation/release

depending upon the current state of the QoS contract. The Scheduler determines whether

the allocation of resources and the predicted change in system QoS are feasible. The

Enactor enforces changes in application-level QoS or other measures of status. The

Monitor continuously watches all the associated applications and passes any status

information, to include QoS usage, onto the detector. The Detector uses the information

passed to it from the Monitor, and detects changes in the operation of a given application.

The Feedback Adapter invokes corrective action for a given application when its runtime

status, to include QoS, changes significantly.

2-20

Figure 2-4. Sample RTARM Hierarchy [4]

2.7 Modeling the WSOA Architecture with OPNET®

 Modeling and simulating the WSOA architecture to determine its scalability is the

principle goal of this research effort. The modeling and simulation tool used to

investigate various properties of networking protocols is OPNET®. OPNET® models

communication systems of all types and levels of protocols [10]. OPNET® Modeler

provides capability and support for simulating many types of networking technologies to

include TDMA/CDMA communications networks such as Link-16. In addition,

OPNET® Modeler has a comprehensive library of standards-based protocol models, with

completely open source code.

 Researchers and students at the University of Arizona have used the OPNET®

Modeler package to conduct initial research and work into developing OPNET® models

2-21

of the CORBA architecture [8]. This research group has modeled the twelve-step process

that encapsulates CORBA object communications, to include: client invocation, client

data marshalling, client send, server receipt, server data unmarshalling, server upcall,

server return, server data marshalling, server send, client receipt, client data

unmarshalling, and client return. This research effort also explored using the OPNET®

Modeler package to model dynamic invocation, to simulate the Internet Inter-ORB

Protocol [19], and to model the CORBA binding operation and naming service [8]. This

research is relevant to the effort described here because the CORBA models developed as

a part of that research can be utilized as a basis for constructing an adaptive middleware

model, as described previously.

2.8 Summary

The literature review in this chapter presents progressively more detailed

descriptions of adaptive middleware, and the application of adaptive middleware to

military tactical datalinks for the purposes of enabling enhanced communication

capabilities. After briefly introducing the Weapon System Open Architecture (WSOA)

program, a section is presented on a discussion concerning current and future military

tactical datalinks. Next, a detailed discussion of the three key components of adaptive

middleware is provided. Specifically, quality of service (QoS) management frameworks,

adaptive scheduling techniques and dynamic resource management approaches are all

described in detail. This chapter concludes with an overview of approaches to modeling

adaptive middleware, and its associated components, within an environment amenable to

studying the performance of packet-switched communications systems.

2-22

3. Methodology

3.1 Introduction

This chapter describes the methodology used in this effort. The goals of the thesis

are presented, followed by the hypothesis. This is followed by a description of the

approach and methods used to design the simulation, including performance metrics,

system parameters, experimental design and implementation details. Finally, a discussion

of the validation and verification associated with experiment is given.

3.2 Goals and Hypothesis

The goal of this study is to determine the maximum number of tactical fighter

nodes that can be supported, at varying levels of QoS, by a given command and control

node. Within the context of this study, the term adequately is defined by the requirements

set forth by individual tactical fighter nodes with respect to the various data products

provided by the command and control aircraft. For example, the Weapon System Officer

(WSO) for an F-15E Strike Eagle may define the maximum allowable time for

downloading an image to be displayed on his or her Tactical Situation Display (TSD).

 The hypothesis of this study is that the QoS management framework, embedded

within the WSOA middleware architecture, will allow the command and control aircraft

to provide adequate support for n tactical fighter nodes. As discussed previously, one

major goal of this study is to determine an estimated value for n, the maximum number of

tactical fighter nodes that can be adequately supported. Furthermore, once n + 1 and

increasing numbers of tactical fighter nodes are being supported by the command and

control aircraft, it is expected that the WSOA architecture will no longer be able to

support the total number of tactical fighter nodes. Therefore, the requirements set forth by

3-1

individual tactical fighter nodes will not be met for various data products provided by the

command and control aircraft. Thus, individual and collective operational capability of

tactical fighter nodes will not be realized, resulting in an overall loss of military

effectiveness.

3.3 Approach

The approach used to investigate the stated hypothesis, and other performance-

related metrics, is through the use of a discrete-event simulator. Given that the WSOA

architecture consists primarily of various communication protocols, the OPNET®

network simulation tool is used for building the experimental model and performing all

experiments described herein. The OPNET® simulation tool is a discrete-event simulator

used to simulate various types of network communication systems [21].

Various performance metrics, as described below and in Chapter 4, are calculated

or measured based upon the simulation results produced by exercising the overall system

model. The performance metrics are gathered after injecting a known workload into the

system in the form of simulated image requests originating from n individual tactical

fighter nodes. The effects of this workload will be measured through two metrics:

throughput measured in image tiles per second, and the compression level of image tiles

that are transmitted.

The metrics are compared to data collected from WSOA flight tests for purposes

of validation and verification, and a performance and scalability analysis is conducted

based upon varying the known workload.

3-2

3.4 System Boundaries

The System Under Test (SUT) is the WSOA architecture. Shown in Figure 3-1 is

the WSOA architecture, and interfaces the following components: Joint Tactical

Information Distribution System (JTIDS) terminals, and the Link-16 communications

protocol. The WSOA architecture includes the CORBA-based middleware, the Quality

Object (QuO) QoS management framework, RTARM framework, the dynamic

scheduling framework (not depicted in Figure 3-1), and the various portions of the

WSOA Time-Sensitive Targets (TST) application. The Component Under Test (CUT) is

the adaptive middleware, which includes the CORBA-compliant Object Request Brokers

(ORBexpress and TAO ORB), the Pluggable Protocols, the QuO Quality of Service

Management framework, and the Adaptive Resource Mgmt framework (RTARM).

This study is limited to investigating the scalability of the WSOA architecture

within the context of a single Network Participation Group (NPG) as defined by MIL-

STD 6016 (Link-16). A NGP is the basic channel used for communication across a Link-

16 network. Simulating a single command and control node and multiple tactical fighter

nodes is an implicit limitation set forth by the context of a single NPG. This assumes that

the typical number of tactical fighter nodes operating on a single NPG will not saturate

the capability of the WSOA architecture, although the possibility exists that the results of

the experiments will prove that such an assumption is invalid.

3-3

Figure 3-1. WSOA Application and Architecture

3.5 System Services

The basic service provided by the WSOA architecture is the delivery of command

and control data in real-time to strategic and tactical military assets. The basic services

provided by the WSOA architecture are similar to those provided by the Link-16

communication protocol. Link-16 is currently fielded to support the distribution of a wide

range of combat information in near-real time to U.S. combat aircraft and command and

control centers [11]. For airborne military assets, examples of command and control data

typically include an integrated air picture with friendly and hostile aircraft locations,

3-4

general situation awareness data, and additional data on potential air and ground targets

[11]. This information is typically displayed on a heads-up display (HUD) or a Tactical

Situation Display (TSD).

The difference that exists in services provided by the WSOA architecture, as

opposed to the services provided by Link-16, lies in the richness of the data that can be

delivered and the additional flexibility in accessing this set of richer data. Instead of

transmitting general situational awareness data and information, the WSOA architecture

enables applications that can communicate with rich data sets, such as the Virtual Target

Folder (VTF). The VTF is made up of thumbnail and full-size imagery, a 9-line briefing,

and other descriptive information about the target, and threats in the vicinity of the target.

Thumbnail images are used to select and download full-size images from the command

and control node [5].

Another implicit service provided by the WSOA architecture is the management

of QoS. Management of QoS is handled transparently by the WSOA architecture via

monitoring the download of the VTF and associated imagery [5]. The WSOA

architecture supports adaptation of the overarching application based upon QoS

requirements implemented in the form of QuO contracts [3]. When the specified terms of

the QuO contracts are not being achieved, the WSOA architecture can modify the

compression level of imagery tiles being downloaded, and thus can support altering the

size of image tiles being downloaded.

In summary, there are numerous potential outcomes of the services provided by

the WSOA architecture. Given that QoS management is a basic service of the WSOA

architecture, one potential outcome is that VTF imagery tiles are transmitted at various

3-5

compression levels, corresponding to the current level of QoS supported by the WSOA

architecture (i.e., imagery tiles being delivered on time, early or late). Another potential

outcome is that VTF imagery tiles are all transmitted at one compression level. This

corresponds to either a lack of dynamic QoS management being provided by the WSOA

architecture, or an overall time limit for image download that is long enough to

accommodate sending all the VTF images at the same compression level.

3.6 Performance Metrics

One primary metric of concern is throughput, measured in image tiles per second.

This metric is calculated based upon the number of VTF image tiles per second that are

measured in transit across the simulated Link-16 network. This performance metric will

be impacted by the ability of the WSOA architecture to adapt to changes in the load

placed on the Link-16 network.

 Another primary metric of concern is end-to-end image delay time. An overall

time limit is set for each tactical node to receive a full 512 x 512 pixel image. Typically,

these time limits are set to a value of less than one minute. A time-limit of one minute

was established by operational users involved with the WSOA flight demonstration [34].

Thus, this metric will be key to determining n, the maximum number of tactical fighter

nodes that can be adequately supported by the command and control node. In addition,

this metric provides further context for the discussion of this issue in detail.

 Another primary metric of concern is the compression level of image tiles that are

transmitted across the Link-16 network via the WSOA architecture. The compression

level of image tiles is important from a user perspective. If the WSOA architecture

3-6

cannot consistently deliver a majority of the image tiles at high resolution, i.e. a low

image compression level, then the received imagery is not likely to be useful to the pilot,

weapon systems officer or other operator on the aircraft [34].

3.7 Parameters

 The parameters for the SUT are divided into two categories: system and

workload. The system parameters are those that define the underlying system model and

stay constant between simulation runs. As such, the system parameters are derived from

technical specifications of the hardware and software that are components of the WSOA

architecture. The workload parameters are those characteristics that affect the behavior of

the workload. In this case, the workload parameters for the WSOA architecture are based

on averages derived from actual workloads executed during live flight tests.

3.7.1 System

The WSOA architecture encompasses a number of system parameters, as depicted

in Figure 3-1. The primary system parameters are the VTF imagery data, the JTIDS

terminals, the Link-16 interface software, levels of compression utilized for VTF imagery

tiles, and the scheduling algorithm used for providing timely service to multiple tactical

nodes [34].

The imagery data being transmitted as part of the WSOA program consists

primarily of images that are 512 x 512 pixels in size, and stored at 24 bits/pixel [34]. This

results in an overall image size of 6,291,456 bits, and uncompressed image tiles of size

393,216 bits. VTF images are divided into 16 tiles.

 The JTIDS terminals and Link-16 host interface software are system parameters

3-7

because their technical specification limits the performance of the WSOA architecture.

Link-16 is a TDMA-based communication system. The basic unit of time in a Link-16

TDMA architecture is the epoch, which is defined to be 12.8 minutes [1]. Each time slot

in a Link-16 TDMA ring is approximately 7.8125 ms [1]. A Link-16 TDMA ring is split

up into three sets of timeslots: A, B and C [1]. Based upon the experimental design of the

WSOA program, only one set of time slots is used. Using only one set of time slots

provides 512 time slots per frame, with a frame length of 12s [1].

Another system parameter related to the QoS management framework is the

levels of compression used to compress the VTF image tiles that are being transmitted

across the Link-16 network. The compression levels used in this thesis, which are exactly

the same compression levels used in the WSOA architecture are: 50:1, 75:1 and 100:1

[34]. Based on the image size described previously, these compression levels translate

into image tile sizes that require approximately 7864 bits, 5243 bits, and 3932 bits,

respectively. As such, these image tile sizes require 11, 8 and 6 Link-16 time-slots,

respectively.

The scheduling algorithm used to service the imagery requests is also a system

parameter. The scheduling algorithm used for this purpose is round-robin scheduling.

This same scheduling algorithm will be used as the workload on the system is varied.

Round-robin was chosen due to simplicity of implementation, and the lack of a defined

scheduling algorithm within the WSOA architecture for supporting multiple tactical

nodes. Other scheduling algorithms should be investigated as future research in this area.

3.7.2 Workload

The most significant workload parameter is the time associated with the

3-8

processing of image tiles. Image tile processing times are normally distributed based

upon data from actual tests conducted on aircraft running the WSOA software

architecture [34]. Image tile processing is divided into four separate parameters: tile

queuing, tile decompression, QuO contract evaluation and QuO delegate execution. The

timing parameters associated with QuO are the primary workload parameters being

introduced to model the WSOA middleware architecture. Therefore, a sum of the

parameters at a specific instance during the simulation represents an accurate model of

the time required by the WSOA architecture to process a given image tile. Please refer to

Table 3-1 for the specific averages and standard deviations associated with each of the

timing parameters.

Table 3-1 System and Workload Parameters
Image Size 512 x 512 pixels, 24

bits/pixel
Link-16 TDMA Epoch 12.8 minutes

Link-16 TDMA Slot Length 7.8125 ms
Link-16 TDMA Frame

Length
12 s

Imagery Compression
Levels

50:1, 75:1, 100:1

System

Scheduling Algorithm Round-Robin
Tile Queuing μ = 550.087 ms

σ = 67087.693 ms
Tile Decompression μ = 17.344 ms

σ = 6.324 ms
QuO Contract Evaluation μ = 78.203 ms

σ = 3197.117 ms

Workload

QuO Delegate Execution

μ = 124.844 ms
σ = 6083.308 ms

3-9

3.8 Factors

There are two workload factors under consideration, number of tactical nodes and

image deadline. The number of tactical nodes introduced into the system defines the

workload of the system, since the command and control node is responsible for sending

imagery data to all the tactical nodes requesting such data via the Link-16

communications network. The number of tactical nodes affects the number of receivers

of imagery data, and the number of senders of QoS responses. This has a direct impact on

the number of Link-16 TDMA slots that can be dedicated to a given tactical node, and

thus the total number of tactical nodes that can be supported by the WSOA architecture.

The number of tactical nodes that were introduced into the system ranged from 1 to 16.

The case of a single tactical node is used to validate and verify the behavior of the model.

The number of tactical nodes is then expanded in an exponential fashion, i.e., 2, 4, 8 and

16.

The deadline for downloading a complete image affects the calculations used by

the WSOA architecture to determine whether the download of a given image tile is early,

on-time or late. If the download of a given image tile is early or late, then appropriate

transitions in the tactical nodes QoS state will occur, and those transitions will be

communicated back to the C2 node. In turn, the C2 node will begin transmitting imagery

to that tactical node at a different compression level. The overall image download time is

varied between 38 – 54 seconds to control the workload on the system at a finer level of

granularity.

3-10

Table 3-2 Workload Factors
Number of Tactical Nodes 1, 2, 4, 8, 16 Workload

Image Deadline 38s, 42s, 46s, 50s, 54s

3.9 Evaluation Technique

 The WSOA architecture under investigation has not implemented a scheduling

algorithm, supporting the transmission of imagery data to multiple tactical nodes, to

validate the results of the simulation against. The current research effort is being used to

assess a “what-if” scenario, specifically to determine the maximum number of tactical

nodes that the WSOA architecture can support. As such, the type of evaluation is

simulation. The correctness of the modeled WSOA architecture is validated based upon

the single tactical node case, since the WSOA architecture currently supports a single

tactical node.

3.10 Experimental Design

The experiment uses the Link-16 TDMA communications model designed and

implemented by Rockwell-Collins [7], which specifies all of the system parameters listed

previously. This model also defines the workload based upon the bandwidth provided to a

given node to receive and transmit data via the TDMA structure. Bandwidth is allocated

to individual nodes via a slot map [1], which lays out recurrence rate numbers and indices

create blocks of bandwidth.

In writing the code necessary to implement a functioning version of the WSOA

architecture in OPNET®, all documentation relevant to the WSOA architecture is used to

ensure the accuracy of the model. In addition, engineers from the Boeing Company, the

3-11

prime contractor responsible for implementing the WSOA architecture, were consulted

when questions of implementation detail arose. The results are compared to existing data

and test results measured from the WSOA architecture executing on actual aircraft. Any

simplifications introduced to make the modeling more efficient or remove unnecessary

functionality is documented.

After correctly implementing a functional version of WSOA architecture on top

of the modeled Link-16 TDMA system, the experimental phase begins. Comparisons are

based on a 90% confidence interval. Based on the stated factors, a full factorial

experiment would require the number of experiments shown in Table 3-3.

Table 3-3 Experimental Design Determination
Image Download

Time
Number of Tactical

Nodes
Runs for CI Total Experiments

38s 5 (1, 2, 4, 8, 16) 5 25
42s 5 (1, 2, 4, 8, 16) 5 25
46s 5 (1, 2, 4, 8, 16) 5 25
50s 5 (1, 2, 4, 8, 16) 5 25

3.11 Implementation Details

Implementing a complex software architecture, such as WSOA, requires that

some assumptions be made and the parts of the architecture that are not implemented be

documented and explained. The functionality associated with the Real-Time Adaptive

Resource Manager (RTARM) and the dynamic scheduler was not implemented

specifically in the model. The behavior of both RTARM and the dynamic scheduler are

implicitly modeled through the image tile processing times. Since these image tile

3-12

processing times are based upon existing data from execution of the WSOA architecture,

it is assumed that they model the behavior of RTARM and the dynamic scheduler.

3.11.1 Link-16 Communications Network

The wireless communication network shown in Figure 3-2 is similar to the

communications network used during the WSOA ground and flight tests. The primary

difference in the two communications networks is the number of tactical nodes, i.e., F-

15s. In WSOA ground and flights tests, there is only one tactical node. In Figure 3-2

there are 16 tactical nodes, which are presented for the purposes of illustration. Other

configurations are also similar with the primary difference being the number of tactical

nodes.

Link-16 is a broadcast-type protocol so each node in the network can

communicate with any other node that is within line-of-sight distance. All required

system parameters are defined, to include the length of a timeslot, total number of

timeslots, frame-size, number of timeslots in a given frame, etc., as discussed previously.

Bandwidth is allocated to individual nodes through the use of a slot-map, which divides

the bandwidth of the TDMA structure into usable blocks. The division of the bandwidth

is accomplished via the use of Rate Recurrence Numbers (RRNs) and indices [1]. The

RRNs divide a given frame of timeslots into blocks of timeslots, where each block of

timeslots contains 2n-6 timeslots, with n being the RRN. The indices are used to address a

given block of timeslots. For example, the ordered list of indices of timeslot blocks for

RRN 12 is the following: 0, 4, 2, 6, 1, 5, 3, and 7 [1].

3-13

Figure 3-2. Example Link-16 Network with 16 Tactical Nodes

3.11.2 WSOA Object Request Broker (ORB) Packet

The WSOA ORB Packet message is a data packet used to simulate the

transmission of imagery data to all relevant tactical nodes. The WSOA ORB Packet

message contains fields for a source address, destination address, image tile number,

image tile fragment number, response flag, tactical node QoS status, compression level

associated with the simulated imagery data, and a time stamp.

The source and destination address fields are used by a node to determine if a

given packet is addressed to that node. Since the communications network is limited to a

single subnet that contains the C2 and all tactical nodes, no routing algorithm is required.

The C2 node transmits simulated imagery data, and the tactical nodes transmit responses

3-14

based on this simulated imagery data. The image tile number and image tile fragment

number are used to for the purposes of keeping track of the number of image tiles being

sent to a given tactical node. Due to the Link-16 TDMA structure, a given image tile

must be fragmented for transport across the network.

The response flag is used to determine if a given packet is a simulated imagery

data packet transmitted from the C2 node, or a response packet transmitted from one of

the tactical nodes. If the packet is a response from one of the tactical nodes, then the QoS

status field contains information related to the current QoS status of that tactical node.

Otherwise, the compression level field contains information related to the compression

level of the current simulated imagery data being transmitted. The time stamp is used by

a given tactical node as a part of its QoS early and late deadline calculations.

3.11.3 QoS Deadline Calculations and Adaptation

 The QoS deadline calculations performed by the tactical nodes are used to

determine the approximate number of image tiles that the tactical node should have

received either ahead or behind schedule. Adaptation in the WSOA architecture,

regarding the level of compression that imagery data is transmitted at, is controlled

principally by these calculations [34]. The following formulas are those used in the

WSOA architecture and implemented in the WSOA architecture model:

Early Deadline: (3.1)

Number of image tiles = (0.2 * Total image tiles) +

 ((Total image tiles/Maximum image download time) *

 (Current total image download time))

3-15

Late Deadline: (3.2)

Number of image tiles = - (0.2 * Total image tiles) +

 ((Total image tiles/Maximum image download time) *

 (Current total image download time))

If the number of the current image tile received by the tactical node is greater than the

value calculated for the early deadline, then the QoS status is early. If the number of the

current image tile received by the tactical node is less than the value calculated for the

late deadline, then the QoS status is late. If the number of the current image tile received

by the tactical node is greater than the value calculated for the late deadline, but less than

the value calculated for the early deadline, then the QoS status is determined to be on-

time [34]. Figure 3-3 illustrates the boundaries created by the early and late deadlines. In

the figure, the lines labeled Image A and B represent two hypothetical images being

downloaded via the WSOA architecture. I represents the percentage of the image which

has been downloaded and processed by the tactical node. X and Z represent initial offsets,

in terms of the percentage of a given image already downloaded and processed. These

offsets demonstrate the convergence of the execution of the WSOA architecture to On-

Time QoS region, and associated Y offset.

 The above calculations are performed each time a complete image tile is received

by a tactical node. This differs somewhat from the actual WSOA architecture, where the

calculations occur on a much more frequent basis, due to the scheduling of tasks by the

on-board computer in the WSOA architecture. Once the updated QoS status is

determined by the tactical node, it is transmitted to the C2 node so that future imagery

data can be transmitted at a level of compression appropriate for the tactical node. This

feedback mechanism is the central adaptation mechanism in the WSOA architecture. The

3-16

0

0.5I

I

Start

DeadlineTime

%
 Im

ag
e

Pr
oc

es
se

d Early

Late

On Time

• request higher priority

• request lower Q level on next tile

• notify application

• request higher Q level on next tile

• finish early

Image A

Image B
0.X I

0.Z I

0.Y I

Figure 3-3. Early, On-Time and Late QoS Boundaries

Table 3-4 WSOA QoS Adaptation Model
Updated QoS Status Current Compression Level New Compression Level

50:1 50:1

75:1 50:1

Early

100:1 50:1

50:1 50:1

75:1 75:1

On-Time

100:1 100:1

50:1 100:1

75:1 100:1

Late

100:1 100:1

3-17

adaptation that is modeled, and occurs in the actual WSOA architecture, is depicted in

Table 3-4.

3.12 Model Verification and Validation
Model verification was accomplished using a systematic approach. Simulation

code was compiled for the target system. Problems with syntax and illegal statements

were identified by the simulation environment and corrected. Once the models compiled

correctly, the debugging cycle began.

The process of debugging began by implementing the capability to pass a WSOA

ORB Packet message between the C2 node and a single tactical node. After designing

and implementing the capability to send one WSOA ORB Packet message, the model

was extended so that a single tactical node could send a response packet back to the C2

node. Once these first two steps were accomplished, then a basic feedback mechanism,

very similar to the exact mechanism used in the WSOA architecture, was implemented

and could be extended further. This is a brief overview of the major implementation

milestones, but for the purposes of debugging, all of the following information was traced

to verify that:

1. The C2 node transmitted the correct number of fragments for an image tile, at a

given compression level. For image tiles compressed at 50:1, 75:1 and 100:1, the

correct number of image tile fragments was 11, 8 and 6, respectively.

2. The tactical node performed the QoS Early and Late deadline calculations

correctly and resulted in the tactical node transmitting a response packet that

correctly reported the updated QoS status of the tactical node. For tactical nodes

that updated their status to Early, On-Time or Late, the correct value associated

with each status was 0, 1, and 2, respectively.

3-18

3. The C2 node maintained an accurate record, via an array, of the image tile

numbers, image tile fragment numbers, compression levels, and QoS status for

each tactical node.

4. The C2 node delivered the correct number of image tiles for a given tactical

node. While this value could have been modified for the purposes of finer

adaptation granularity, the correct number of image tiles was kept constant at 16.

5. The C2 node correctly performed the round-robin scheduling for all sets of

tactical nodes, to include 1, 2, and 4 tactical nodes.

Model validation was accomplished using results and test data obtained from the

Air Force Research Laboratory and Boeing, concerning actual ground and flight tests

conducted on the WSOA architecture. Three elements of the model must be validated

[12]:

1. Assumptions,

2. Input parameter values and distributions, and

3. Output values.

Since a working implementation of the WSOA architecture existed, then no major

assumptions had to be made concerning the model of the WSOA architecture. All

implementation details and questions could be answered either through existing

documentation or consultation with engineers at the Air Force Research Laboratory or the

Boeing Company.

3-19

Underlying network model validation was accomplished by sending WSOA ORB

Packet messages back and forth between a single C2 node and a multiple tactical nodes.

Source and destination addresses were assigned sequentially and packets

were sent and received by all tactical nodes.

Input parameters for the image tile processing times were chosen to closely match

the parameters used in the WSOA ground and flight tests [34]. The choice of

distributions for each image tile processing parameter was developed from statistical

analysis, which in-turn was based on actual test data and results.

Output values used to validate the model consisted primarily of the compression

levels of the simulated imagery data for a single tactical node. Validation tests were run

with overall image deadlines of 38, 42, 46, and 50 seconds. The values of the

compression levels for a single tactical node were compared to the values that were

recorded during the WSOA ground and flight tests.

In general, the simulation results matched the results from the WSOA ground and

flight tests. Slight variations did occur, but can be attributed to the granularity of time that

the Early/Late deadline calculations were performed at. As explained previously, the

calculations in the simulation were performed on a periodic basis, while the calculations

that occurred in the actual WSOA ground and flight tests were performed on a periodic

basis with a much shorter period.

3.13 Summary

This chapter presented the methodology for the experimental stage of this thesis.

Additional background information regarding the goals and hypothesis, system

3-20

boundaries and system services was presented. Performance metrics, parameters, factors,

experimental design, implementation details, and validation and verification of the model

were all presented and described in detail.

3-21

4. Analysis

4.1 Introduction

This chapter presents simulation results and analysis. Before explaining the

simulation results, a brief overview of the statistical methods used is presented.

Following this overview, the results from the image tile performance measurements are

presented. All three metrics will be presented in the context of 1, 2, 4, 8 and 16 tactical

nodes. The conclusion of this chapter discusses the original research goal, to determine a

value for n, and the relationship between this value and the allocation of TDMA

bandwidth.

4.2 Statistical Overview

This section explains the methods used to determine results and provides a brief

overview of how statistical values are generated and applied. Pilot studies and

preliminary simulations were run to determine the transient period of the simulation. In

Figure 4-1, the transient period was over within the first 300 seconds of simulation time.

4.2.1 Simulation Statistics

Simulation sets are divided into five groups, based on overall image deadline.

Groups are subdivided into five distinct loading levels, based on number of tactical

fighter nodes. Each group is executed five times, with different random seeds, to achieve

the desired confidence interval width, and yielding 125 total experiments.

4-1

Transient Period Validation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

85
.5

16
4

24
3

32
1

40
0

47
9

55
8

63
6

71
5

79
4

87
2

95
1

10
30

11
09

11
87

12
66

13
45

14
24

15
02

15
81

16
60

17
39

Simulation
Time (Seconds)

Im
ag

e
Ti

le
s/

Se
co

nd

Figure 4-1. Transient Period Validation – Image Tiles Per Second

4.2.2 Confidence Intervals

The confidence level chosen for this research is 90%. A 90% confidence level

indicates that for any mean, there is a 90% probability that the actual mean lies inside the

interval [12]. The following equation defines the confidence interval

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−− n
szx

n
szx

2
1

2
1

, αα 4.1

where x is the sample mean,
2

1 α
−

z is the ⎟
⎠
⎞

⎜
⎝
⎛ −

2
1 α quantile of a unit normal variate, σ is

the variance, s is the standard deviation, and n is the number of samples. If the confidence

4-2

interval computed for one mean contains the second mean, then the two items being

compared can be considered statistically equivalent. If a given confidence interval does

not contain the mean, then the items being compared may be considered statistically

different at the given level of confidence.

4.2.3 Coefficient of Variation

The Coefficient of Variation (C.O.V.) [12], is the ratio of standard deviation to

sample mean, which is defined by the following equation:

x
sVOC =... 4.2

A C.O.V. of less than 10% is used as a stopping criterion for simulations.

4.2.4 Analysis of Variance

ANalysis Of VAriance (ANOVA) is used to determine interactions between the

primary effects, secondary effects, and tertiary effects [12]. ANOVA is a method to

calculate the variance attributable to each experimental factor, and assign each

experimental factor a percentage of the total variation. Factors can be classified by the

resulting experimental effects that are observed. A single factor is the source of primary

effects, interactions between two factors contribute to secondary effects, and as such,

interactions between three factors result in the tertiary effects. The sum of the squares for

the determined effect is divided by the total sum of squares for all effects. The final step

in the analysis is to perform an F-test to determine the significance of the allocation at the

given significance level. The ANOVA analysis is only valid if the assumptions below are

satisfied:

1. Residuals versus predicted responses should show no trend when

plotted on a scatter plot,

4-3

2. Normal quantile-quantile plot should show a straight line of data points

with little (or no) deviation.

The method of calculating ANOVA tables is presented below for a two factor experiment

[12]. Equation 4.3 is the total sum of squares for both factors. Equations 4.4 and 4.5

show the primary sum of square effects for factors A and B. Equation 4.6 shows the

combined sum of squares effect for factor AB.

 ab
yySS

a

i
ij

b

j
T

2

1

2

1

−=∑∑
= =

 4.3

ab
yy

b
SS

a

i
iA

2

1

2
...

1
−= ∑

=
 4.4

 ab
yy

a
SS

b

j
jB

2

1

2
...

1
−= ∑

=
 4.5

 BA

a

i
ij

b

j
AB SSSS

ab
yySS −−−=∑∑

= =

2

1

2
...

1
 4.6

4.2.5 Random Methods

Stochastic methods were used to generate the image tile service times to include

tile queuing, tile decompression, QuO contract evaluation and QuO delegate execution.

These image tile processing time parameters were modeled as being normally distributed

based upon data from actual tests conducted on aircraft running the WSOA software

architecture [34]. By seeding the simulation runs differently for the five separate trials,

the values generated for each time parameter are different for each simulation iteration,

but still follow the distributions identified as characterizing the existing test data.

4-4

4.3 WSOA Image Deadline Scenarios

 There are five scenarios that simulate the behavior of the WSOA architecture, in

terms of deadlines for downloading a complete image. The following deadlines are used

for image downloads (in seconds): 38, 42, 46, 50, and 54. These values are chosen as the

image download deadlines because these values are the same as those used during the

ground and flight testing conducted on the WSOA architecture.

4.3.1 Image Tiles Per Second Analysis

As discussed previously, the Image Tiles Per Second analysis is replicated for 1,

2, 4, 8 and 16 tactical nodes.

Figure 4-2 shows the results for the Image Tiles Per Second metric for each of the

respective image deadline experiments. As demonstrated by the experimental results, the

number of tactical nodes does not impact the overall performance of the WSOA

architecture in the cases of 1, 2 and 4 tactical nodes. There is a slight reduction in

throughput for the 1, 2, and 4 node experiments across the various image deadlines. As

the deadline is extended from 38 seconds to 42 seconds and so on, the overall throughput

for the system is reduced because a given image is allowed more time for downloading.

Initially, the performance of the WSOA architecture does seem to be impacted

significantly by the number of tactical nodes in the 8 and 16 node cases. This can be

attributed to the amount of TDMA bandwidth allocated in these cases. In the 2 and 4

node cases, the amount of TDMA bandwidth allocated to each tactical node is equal to

the bandwidth allocated to a single tactical node. In the 8 and 16 node cases, the amount

of TDMA bandwidth allocated to each tactical node is not equal because there is not

enough bandwidth for such an allocation. Therefore, the tactical nodes in these cases are

4-5

forced to share bandwidth. As a consequence, the scheduling algorithm used to service

the imagery requests affects the performance of the WSOA architecture. As will be

discussed later, TDMA bandwidth should have been considered as separate factor to be

studied independent of the number of tactical nodes. A different scheduling algorithm

might be able to provide some improvement in the performance of the WSOA

architecture. But, this type of modification is unlikely to improve the performance to the

level observed in the 1, 2, and 4 node cases. Thus the performance of the WSOA

architecture does scale well for this metric, based on the assumption that each tactical

node is allocated sufficient bandwidth.

All of the results presented, across each of the image deadlines, are within the

90% confidence interval, and thus can be considered statistically identical. This behavior

is confirmed by ANOVA analysis (c.f., Appendix A) which finds that the overall image

deadline accounts for 0.67% of the variance for each experiment. The number of tactical

nodes accounts for 98.72% of the variance for each experiment. The maximum average

value for the image tiles per second metric is approximately 0.17. This metric is derived

by measuring the number of image tiles that are received during a given period that a

single image is downloaded.

These results, given the respective image deadlines, are expected. The throughput

of the WSOA architecture, as measured by image tiles per second, is considered

satisfactory for the 1, 2, and 4 node cases. The throughput of the WSOA architecture is

not satisfactory in the cases of 8 and 16 nodes. Further simulation and analysis is required

to determine for certain that the results obtained in the 8 and 16 nodes cases can be

attributed directly to the allocation of TDMA bandwidth. Once accomplished, then a

4-6

definitive statement as to overall scalability of the WSOA architecture can be made with

regard to this performance metric.

Image Tiles Per Second

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16

Number of Nodes

Im
ag

e
Ti

le
s

Pe
r

Se
co

nd

38s Deadline
42s Deadline
46s Deadline
50s Deadline
54s Deadline

Figure 4-2. Image Tiles Per Second Results

4.3.2 Compression Level Analysis

As discussed previously, the Compression Level analysis is replicated for 1, 2, 4,

8 and 16 tactical nodes. The Compression Level metric is an average of the compression

levels measured for the image tiles being transmitted. The compression levels used by the

WSOA architecture are discrete, i.e. 50:1, 75:1 and 100:1, but an average of the recorded

values provides relative insight into overall image resolution. A compression level

average closer to 50 would indicate that the overall image resolution is nearly maximum,

4-7

while conversely, a compression level average closer to 100 would indicate that the

overall image resolution is nearly minimum.

Figure 4-3 shows the results for the Compression Level metric for each of the

respective image deadline experiments. As demonstrated by the results, the number of

tactical nodes does not impact the adaptation strategy of the WSOA architecture in the

cases of 1, 2 and 4 tactical nodes. There is a reduction in the metric results for the 1, 2,

and 4 node experiments across the various image deadlines. As the deadline is extended

from 38 seconds to 42 seconds and so on, the average compression level for individual

image tiles is reduced because the image is allowed more time for downloading. Thus,

the WSOA architecture has more flexibility in regards to selecting the compression level

for a given image tile.

Initially, the adaptation strategy of the WSOA architecture does seem to be

impacted significantly by the number of tactical nodes in the 8 and 16 node cases. Once

again, this can be attributed to the amount of TDMA bandwidth allocated in these cases.

The allocation of TDMA bandwidth has a significant effect on the compression level for

individual image tiles for the same reasons provided in the analysis of the Image Tiles

Per Second metric. Again, TDMA bandwidth should have been considered as a separate

factor to be studied independent of the number of tactical nodes. Thus the performance of

the WSOA architecture does scale well for this metric, based on the assumption that each

tactical node is allocated sufficient bandwidth.

All of the results presented, across each of the image deadlines, are within the

90% confidence interval, and thus can be considered statistically identical. This behavior

is confirmed by ANOVA analysis which finds that the image deadline accounts for

4-8

14.09% of the variance for each experiment. The number of tactical nodes accounts for

76.80% of the variance for each experiment. The maximum average value for the

compression level metric is approximately 75.36.

These results, given the respective image deadlines, are expected. The average

compression level of the WSOA architecture is considered satisfactory for the 1, 2, and 4

node cases. The average compression level of the WSOA architecture is not satisfactory

in the cases of 8 and 16 nodes. Further simulation and analysis is required to determine

for certain that the results obtained in the 8 and 16 nodes cases can be attributed directly

to the allocation of TDMA bandwidth. Once accomplished, then a definitive statement as

to overall scalability of the WSOA architecture can be made with regard to this

performance metric.

Compression Level

0

20

40

60

80

100

120

1 2 4 8 16

Number of Nodes

C
om

pr
es

si
on

 L
ev

el
 (X

:1
)

38s Deadline
42s Deadline
46s Deadline
50s Deadline
54s Deadline

Figure 4-3. Compression Level Results

4-9

4.3.3 Image Download Time Analysis

The Image Download Time analysis is replicated for 1, 2, 4, 8 and 16 tactical

nodes. The Image Download Time metric measures the time required by a given tactical

fighter node to download a single complete image.

Figure 4-4 shows results for the Image Download Time metric for each of the

respective image deadline experiments. As demonstrated by the results in the cases of 1,

2 and 4 tactical nodes, the number of nodes does not affect the overall download time for

a given image transmitted by the WSOA architecture.

There is a slight increase in the metric results for the 1, 2, and 4 node experiments

across the various image deadlines. As the deadline is extended from 38 seconds to 42

seconds and so on, the overall image download time increases proportional to the

increase in the image deadline.

Initially, the overall download time for a given image transmitted by the WSOA

architecture does seem to be impacted significantly by the number of tactical nodes in the

8 and 16 node cases. Once again, this can be attributed to the amount of TDMA

bandwidth allocated in these cases. The allocation of TDMA bandwidth has a significant

effect on the image download time for the same reasons provided in the analysis of the

Image Tiles Per Second and Compression Level metrics. Again, TDMA bandwidth

should have been considered as a separate factor to be studied independent of the number

of tactical nodes. Thus the performance of the WSOA architecture does scale well for this

metric, based on the assumption that each tactical node is allocated sufficient bandwidth.

All of the previous results are within the 90% confidence interval, and thus can be

considered statistically identical. This behavior is confirmed by ANOVA analysis which

finds that the overall image deadline accounts for 0.09% of the variance for each

4-10

experiment. The number of tactical nodes accounts for 99.86% of the variance for each

experiment. The maximum average value for the image download time metric is

approximately 181.65s.

Image Download Time

0

100

200

300

400

500

600

700

1 2 4 8 16

Number of Nodes

Im
ag

e
D

ow
nl

oa
d

Ti
m

e
(s

)

38s Deadline
42s Deadline
46s Deadline
50s Deadline
54s Deadline

Figure 4-4. Image Download Time Results

These results, given the respective image deadlines, are expected. The overall

download time for a given image transmitted by the WSOA architecture is considered

satisfactory for the 1, 2, and 4 node cases. The overall download time for a given image

transmitted by the WSOA architecture is not satisfactory in the cases of 8 and 16 nodes.

Further simulation and analysis is required to determine for certain that the results

obtained in the 8 and 16 nodes cases can be attributed directly to the allocation of TDMA

bandwidth. Once accomplished, then a definitive statement as to overall scalability of the

WSOA architecture can be made with regard to this performance metric.

4-11

4.4 Conclusion

The WSOA architecture provides a scalable framework for the transmission of

real-time imagery and other complex data products from command and control aircraft,

such as AWACS or JSTARS, to tactical aircraft, such as F-15s or F-16s. As demonstrated

by the results, the WSOA architecture scales well with the increase in the number of

tactical nodes that are supported by the architecture, in the 1, 2 and 4 node cases. In the

cases of 8 and 16 tactical nodes, the performance of the WSOA architecture initially

seemed to be impacted significantly by the number of nodes. While this is statistically

true in regards to all three of the metrics collected in the context of the analysis that was

performed, the actual explanation for the impact on performance is related to the

allocation of TDMA bandwidth.

As discussed previously, further simulation and analysis is required to determine

for certain that the results obtained in the 8 and 16 nodes cases can be attributed directly

to the allocation of TDMA bandwidth. This will require additional research and work to

modify the existing simulation model to support a “low-bandwidth” TDMA allocation in

the 1, 2, and 4 node cases. This simulation of this “low-bandwidth” TDMA allocation

will provide the additional data required to perform a complete analysis that can clearly

demonstrate that bandwidth is the factor that has the greatest effect on the scalability of

the WSOA architecture. At this point, only in the 1, 2, and 4 node cases can one conclude

that the WSOA architecture still scales well, regardless of the number of tactical nodes.

4-12

5. Conclusions

5.1 Restatement of Research Goal

The principal goal of this research effort is modeling and simulating the WSOA

architecture, to determine its scalability as a networking protocol for DRE systems. The

current WSOA architecture supports a single command and control aircraft and a single

tactical fighter node. For the purposes of demonstrating the application of new

technology, this type of limited experimental setup is sufficient. Since this technology

will eventually transition to existing military systems, questions concerning the

scalability of the WSOA architecture and underlying technology must be explored.

Specifically, the goal of this study was to determine the maximum number of tactical

fighter nodes that can be supported, at varying levels of QoS, by a given command and

control node.

5.2 Research Contribution

This research is the first to implement and analyze the WSOA middleware

architecture in a network simulation environment. This work also introduces a simple

round-robin scheduling algorithm to transmit image tiles to multiple tactical nodes. While

round-robin scheduling is certainly not unique, this type of scheduling is the first to be

implemented in the context of the WSOA architecture supporting multiple tactical nodes.

In addition, this forms the foundation for future research involving other more pertinent

scheduling algorithms, when such algorithms are eventually identified.

5-1

5.3 Conclusion

A scalable protocol is a critical component in any information infrastructure,

especially in the case of an infrastructure that is attempting to disseminate information in

real-time. As implemented here, the WSOA architecture provides this capability for up to

4 tactical nodes. This successful demonstration of the WSOA architecture is due in large

part to the amount of Link-16 TDMA bandwidth that is allocated to each tactical node. In

the 2 and 4 node cases, the amount of TDMA bandwidth is essentially equal to that which

is allocated in the single node case. Thus, in experiments with increasing numbers of

tactical nodes, the nodes are required to share the available Link-16 TDMA bandwidth.

As demonstrated in the 8 and 16 node cases, this sharing of bandwidth has a significant

impact on the performance of the WSOA architecture.

Given the explanation and justification above, one can conclude that the number

of tactical nodes alone did not affect the performance of the WSOA architecture in any

significant fashion. Thus, the WSOA architecture effectively adapted to changes in the

deadline set for the overall download time for a single image, regardless of the number of

tactical nodes.

5.4 Future Research

Many facets of the WSOA architecture lend themselves to areas for future

research and improvement. The most obvious future research effort is to continue

experimenting with the number of tactical nodes that the WSOA architecture supports in

simulation, so as to determine a value for the parameter n that is further refined for

different operational contexts. Based on the results of this effort and the context given,

an estimated value for this parameter falls in the range between 4 and 8 tactical nodes.

5-2

5.4.1 Scheduling Algorithms

 Once sufficient research has been completed in the area of applying dynamic

TDMA bandwidth allocation strategies to military tactical datalinks such as Link-16, then

the research completed and documented here on the WSOA architecture should be

revisited. The admission of tactical nodes into the existing communications infrastructure

will likely be the deciding factor in choosing a scheduling algorithm for ordering the

transmission of image tiles by the C2 node. Experimentation in this area could be

performed in the near future, but should be directed by the results of on-going research to

add dynamic bandwidth allocation strategies to existing military tactical datalinks.

Possible scheduling algorithms include priority-based schemes, real-time schemes (RMA,

EDF, etc.) and just about any other applicable scheduling algorithm.

5.4.2 Military Tactical Datalinks

Given that the implementation of the WSOA architecture presented here is fairly

modular, another interesting area of research would be to substitute models of other

military tactical datalinks for the Link-16 model presented here. In all likelihood, the C2

node will be supporting tactical nodes that are acting as flight leads for particular strike

packages or other arrangements of aircrafts. As such, it may be the job of a flight lead

aircraft to disseminate real-time information transmitted across the WSOA architecture to

other tactical nodes in the strike package. Thus, studying the performance of the WSOA

architecture in the context of other military tactical datalinks should also be explored.

5-3

Appendix A. Data

Table A-1. WSOA Architecture Performance Metrics

Image Tiles Per
Second

Compression Level Image Download
Time

Image
Deadline

of
Tactical
Nodes μ Σ μ σ μ Σ

1 0.27604 0.00000 82.42686 0.07714 38.62302 0.01254

2 0.27544 0.00000 77.70597 0.13251 40.02178 0.02434

4 0.27877 0.00000 81.96039 0.01315 40.38903 0.00578

8 0.06554 0.00000 97.98015 0.00003 185.46009 0.00008

38
Seconds

16 0.02379 0.00000 94.44008 0.04978 548.32441 3.70920

1 0.25121 0.00000 72.44048 0.24871 43.24858 0.03392

2 0.25658 0.00000 68.79808 0.19755 44.32527 0.04181

4 0.26071 0.00000 66.42475 0.02364 45.07008 0.00679

8 0.06334 0.00000 97.52994 0.00000 187.76057 0.00973

42
Seconds

16 0.02361 0.00000 94.66064 0.00959 580.35583 0.54118

1 0.23120 0.00000 58.20557 0.03471 50.18691 0.00228

2 0.25685 0.00001 56.96875 0.46322 49.76129 0.12759

4 0.28294 0.00001 59.99566 0.36036 47.30541 0.12676

8 0.06262 0.00000 97.37964 0.00034 188.44555 0.00978

46
Seconds

16 0.02334 0.00000 94.64290 0.00746 582.11194 0.51355

1 0.22734 0.00000 50.00000 0.00000 54.75167 0.00166

2 0.24160 0.00000 50.00000 0.00000 53.56711 0.00313

4 0.25047 0.00000 50.00000 0.00000 52.90575 0.00081

8 0.06148 0.00000 97.15617 0.00074 186.68725 0.01612

50
Seconds

16 0.02311 0.00000 94.24186 0.00108 586.28092 0.11814

1 0.22734 0.00000 50.00000 0.00000 54.75167 0.00166

2 0.24160 0.00000 50.00000 0.00000 53.56711 0.003134

4 0.25047 0.00000 50.00000 0.00000 52.90575 0.00081

8 0.06058 0.00000 96.88285 0.00037 188.12161 0.00003

54
Seconds

16 0.02297 0.00000 94.19334 0.00067 586.37747 0.92064

A-1

Note: An * after the percentage denotes the effect was significant based
on the computed F-Test

Table A-2. ANOVA Analysis for 38, 42, 46, 50 and 54 Second Trials

 Image Tiles Per
Second

Compression
Level

Image Download
Time

Overall
Image

Deadline
0.67% * 14.09% * 0.09% *

Main
Effects # of

Tactical
Nodes

98.72% * 76.80% * 99.86% *

Unaccounted 0.61% 9.11% 0.05% *

Example A-2. Image Tiles Per Second ANOVA

Computation of
Effects

 Image
Deadline

 38 42 46 50 54 Row
Sum

Row
Mean

Row
Effect

 # of
Nodes

1 0.2760 0.2512 0.2312 0.2273 0.22734 1.2131 0.2426 0.0730

 2 0.2754 0.2565 0.2568 0.2416 0.2416 1.2720 0.2544 0.0848
 4 0.2787 0.2607 0.2829 0.2504 0.25047 1.3233 0.2646 0.0951
 8 0.0655 0.0633 0.0626 0.0614 0.06058 0.3135 0.0627 -0.1068
 16 0.0237 0.0236 0.0233 0.0231 0.02297 0.1168 0.0233 -0.1461
 Column

Sum
0.919 0.855 0.856 0.804 0.80296

 Column
Mean

0.183 0.171 0.171 0.160 0.16059 0.1695

 Column
Effect

0.014 0.001 0.001 -0.008 -0.0089

Estimating Experimental Error Image
Deadline

 38 42 46 50 54
 # of

Nodes
1 0.019 0.007 -0.013 -0.006 -0.0063

 2 0.006 0.000 0.000 -0.004 -0.0038 SSE
 4 0.000 -0.005 0.016 -0.005 -0.0052 0.0016
 8 -0.011 0.000 -0.001 0.007 0.00683
 16 -0.014 -0.001 -0.002 0.009 0.0086

 A-2

Allocation of
Variation

 SST = SSY-SS0
 SSY = SS0 + SSA + SSB +

 SSE

 SSY = 0.994154
 SS0 = 0.718744
 SSA = 0.001844
 SSB = 0.271874
 SST = 0.275410
 SSE = 0.001690

 Var. %

Deadline
0.669

 % #
Nodes

98.71

 % Error 0.613
 Total 100

Analysis of Variance

 MSA = 0.000461
 MSB = 0.067968
 MSE = 0.000105
 FA = 4.363842
 FB = 643.1368

 Compo

nent
Sum of
Sqrs.

% of
Var.

Degre
es

Mean
Sqr

F-
Comp

F-Table

 y 0.994154
 ybar 0.718744
 y-ybar 0.275410 100 24
 Dead. 0.001844 0.669 4 0.000 4.363 2.33
 # Nodes 0.271874 98.71 4 0.067 643.1 2.33
 Errors 0.001690 0.613 16 0.000

A-3

Appendix B. Availability of OPNET® Models and Source Code

OPNET® Models and source code are not included as part of this document. Interested

parties should direct their inquiries to:

Dr. Richard Raines

AFIT/ENG

2950 Hobson Way, Bldg 642

Wright-Patterson AFB, OH 45433-7765

B-1

Bibliography

[1] Barto, Jon L, Air Force JTIDS Network Library Design Guide, revision 2,
 MTR-10872, Mitre: Bedford, Massachusetts, September 1991.

[2] Bittel Raymond, Caples Edward, Young C. David, Loso Frank, Soldier

 Phone: An Innovative Approach to Wireless Multimedia Applications,
 Proceedings of IEEE MILCOM 1998, October 1998.

[3] Box, D., Essential COM, Addison-Wesley, Reading, MA, 1997.

[4] Cardei I., Jha R., Cardei A. Pavan, Hierarchical Architecture for Real-Time
 Adaptive Resource Management. Proceedings of the ACM/IFIP Middleware
 2000 Conference, Palisades, NY, April 2000.

[5] Corman Dr. David, Gossett Jeanna, Weapon System Open Architecture –
 Using Emerging Open System Architecture Standards to Enable
 Innovative Techniques for Time Critical Target Prosecution. Proceedings of
 2002 IEEE Digital Avionics Systems Conference.

[6] DARPA, “The Quorum Program”,
 http://www.darpa.mil/ito/research/quorum/index.html, 1999.

[7] DNS-16 Final Report. Rockwell-Collins. 2003

[8] ECE 678: Integrated Telecommunications Networks.
 http://www.ece.arizona.edu/~ece678/notes/Projects2003.ppt

[9] Gill Christopher, Loyall Joseph, Schantz Richard, and Schmidt Doug.
 Experiences Using Adaptive Middleware in Distributed Real-time

 Embedded Application Contexts: a Dependability Perspective.
 Workshop on Dependable Middleware-Based Systems, Part of

 Dependable Systems and Networks Conference (DSN 2002), June 26,
 2002, Bethesda, Maryland.

[10] Horowitz, Eric J., Modeling Object-Oriented Architectures With OPNET®.
 http:///www.citeseer.nj.nec.com/527123.html.

[11] Hura Myron, et al. Interoperability-A Continuing Challenge in Coalition Air
 Operations. RAND Corporation. 2000.

[12] Jain, Raj. The Art of Computer Systems Performance Analysis. John Wiley &
 Sons. 1991.

BIB-1

http://www.darpa.mil/ito/research/quorum/index.html
http://www.ece.arizona.edu/%7Eece678/notes/Projects2003.ppt
http:///www.citeseer.nj.nec.com/527123.html

[13] Kiczales G., Towards a New Model of Abstraction in the Engineering of
 Software. Proceedings of the Workshop on Reflection and Meta-Level
 Architectures (IMSA ’92), 1992.

[14] Klein M. H., Ralya T., Pollak B., Obenza R., Harbour M.G., A Practitioner’s
 Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for
 Real-Time Systems. Norwell MA, Kluwer Academic Publishers, 1993.

[15] Levine David L., Gill D. Christopher, Schmidt Douglas C., Dynamic
 Scheduling Strategies for Avionics Mission Computing. Proceedings of
 1998 IEEE Digital Avionics Systems Conference.

[16] Leydekkers P., Gay V., Franken L., A Computational and Engineering View
 on Open Distributed Real-Time Multimedia Exchange. Proceedings of the
 Fifth International Workshop on Network and Operating System Support for
 Digital and Audio and Video (NOSSDAV ’95), Boston USA, April 1995.

[17] Liu C., Layland J., Scheduling Algorithms for Mulitprogramming in a Hard
 Real-Time Environment. Journal of the ACM, Vol. 20, pg 46-61, January
 1973.

[18] Lindholm T., Yellin F., The Java Virtual Machine Specification, Addison-
 Wesley, Reading, MA, 1997.

[19] Object Management Group. The Common Object Request Broker:
 Architecture and Specification, 2.2 ed., Feb 1998.

[20] Object Management Group. “CORBAServices: Common Object Service
 Specification,” OMG Technical Document formal/98-12-31.

[21] OPNET®, http://www.opnet.com

[22] Pond L.C., Li V.O.K. A Distributed Time-Slot Assignment Protocol for

 Mobile Multi-Hop Broadcast Packet Radio Networks, Proceedings of IEEE
 MILCOM 1989, Vol. 1, November 1989.

[23] Schantz Richard, Quality of Service, a survey article prepared for
 Encyclopedia of Distributed Computing, Kluwer Academic Publishers,

 Partha Dasgupta and Joseph Urban, editors. 1999.

[24] Schantz R.E. , Schmidt D. C., Middleware for Distributed Systems –
 Evolving the Common Structure for Network-centric Applications. Chapter
 in The Encyclopedia of Software Engineering. John Wiley & Sons.
 December 2001.

BIB-2

http://www.opnet.com/

[25] Sharp David C. Reducing Avionics Software Cost Through Component Based
 Product Line Development. 1998 Software Technology Conference. April
 1998.

[26] Schmidt D., Huston S., C++ Network Programming: Resolving Complexity
 with ACE and Patterns, Addison-Wesley, Reading, MA, 2001.

 [27] Snell J., MacLeod K., Programming Web Applications with SOAP,
 O’Reilly, 2001.

[28] Stewart D. B., Khosla P. K., Real-Time Scheduling of Sensor-Based Control
 Systems, Real-Time Programming (W. Halang and K. Ramamritham, eds.),

 Tarrytown NY, Pergamon Press, 1992.

[29] Thai T. Lam H., .NET Framework Essentials, O’Reilly, 2001.

[30] Thomas, Anne. “Enterprise Java Bean Technology”,
 http://java.sun.com/products/ejb/white_paper.html, Dec. 1998.

[31] Tuma Petr, Buble Adam. Overview of the CORBA Performance.
 http://citeseer.nj.nec.com/tuma02overview.html.

[32] Wang Nanbor, Schmidt Douglas C., Gokhale Aniruddha, Gill Christopher
 D., Balachandran Natarajan, Rodrigues Craig, Loyall Joseph, and Schantz
 Richard E. Total of Quality of Service Provisioning in Middleware and
 Applications. The Journal of Microprocessors and Mircrosystems, Elsevier,
 vol. 26, number 9-10, January 2003.

[33] Wollrath A., Riggs R., Waldo J. “A Distributed Object Model for the Java
 System,” USENIX Computing Systems, 9(4), 1996.

[34] Weapon System Open Architecture (WSOA) Final Report. Boeing
 Company. 2002

[35] Young C. David, USAP: A Unifying Dynamic Distributed Multichannel
 TDMA Slot Assignment Protocol. Proceedings of 1996 IEEE Digital
 Avionics Systems Conference.

[36] Zinky John, Bakken David, Schantz Richard. Architectural Support for
 Quality of Service for CORBA Objects. Theory and Practice of Object
 Systems, April 1997.

BIB-3

http://java.sun.com/products/ejb/white_paper.html

Vita

Captain Jason T. Lawson graduated from Lyman Hall High School in

Wallingford, Connecticut. He entered undergraduate studies at the University of

Connecticut in Storrs, Connecticut where he graduated with a Bachelor of Science degree

in Engineering in December 1998. He was commissioned through the Detachment 115

AFROTC at the University of Connecticut.

 His first assignment was at Wright-Patterson AFB as a HW/SW Systems

Research Engineer for the Information Directorate of the Air Force Research Laboratory.

in March 1999. In August 2002, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, he will be assigned to

the Air Intelligence Agency, Lackland AFB.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
13-06-2005

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Jun 2003 – Nov 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Lawson, Jason, T., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Bldg 641
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/05-08

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/IFTA
 Attn: Mr. Kenneth Littlejohn
 Bldg 620, Rm N3-F22
 2241 Avionics Circle
 WPAFB OH 45433 DSN: 785-6548x3587

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Open systems solutions and techniques have become the de facto standard for achieving interoperability between disparate, large-scale, legacy software
systems. A key technology among open systems solutions and techniques is middleware. Middleware, in general, is used to isolate applications from
dependencies introduced by hardware, operating systems, and other low-level aspects of system architectures. While middleware approaches are or will be
integrated into operational military systems, many open questions exist about the appropriate areas to applying middleware.

Adaptive middleware is middleware that provides an application with a run-time adaptation strategy, based upon system-level interfaces and properties.
Adaptive middleware is an example of an active applied research area. Adaptive middleware is being developed and applied to meet the ever-increasing
challenges set forth by the next generation of mission-critical distributed real-time and embedded (DRE) systems. The driving force behind many next-
generation DRE systems is the establishment of QoS requirements typically associated with workloads that vary dynamically.

The Weapon System Open Architecture (WSOA), an adaptive middleware platform developed by Boeing, is modeled as a part of this research to determine
the scalability of the architecture. The WSOA adaptive middleware was previously flight-tested with one tactical node, and the test results represent the
performance baseline the architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical nodes. The results of the modeling and
simulation is that the WSOA adaptive middleware can achieve the performance baseline achieved during the original flight-test, in the cases of 1, 2, and 4
tactical nodes. In addition, the results of the modeling and simulation also demonstrate that the WSOA adaptive middleware cannot achieve the original
performance baseline, in the cases of 8 and 16 tactical nodes.

15. SUBJECT TERMS
 Middleware, Adaptive Middleware, QoS, Quality of Service, Military Tactical Datalinks, Link-16, Open Systems, Distributed Real-Time, Embedded,
 OPNET®

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Richard A. Raines, Dr., (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
100 19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4278; e-mail: Richard.Raines@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks
	Recommended Citation

	Listing 2. CDL for Reality Regions for ScreenSaver Negotiated Region Allocated
	Table 3-1 System and Workload Parameters

	System
	Table 3-2 Workload Factors
	Table 3-3 Experimental Design Determination

	Figure 3-2. Example Link-16 Network with 16 Tactical Nodes
	This chapter presents simulation results and analysis. Before explaining the simulation results, a brief overview of the statistical methods used is presented.
	Figure 4-1. Transient Period Validation – Image Tiles Per Second

	Bibliography
	 Workshop on Dependable Middleware-Based Systems, Part of

