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Abstract 

Open systems solutions and techniques have become the de facto standard for 

achieving interoperability between disparate, large-scale, legacy software systems. A key 

technology among open systems solutions and techniques is middleware. Middleware, in 

general, is used to isolate applications from dependencies introduced by hardware, 

operating systems, and other low-level aspects of system architectures. While middleware 

approaches are or will be integrated into operational military systems, many open 

questions exist about the appropriate areas to applying middleware.  

Adaptive middleware is middleware that provides an application with a run-time 

adaptation strategy, based upon system-level interfaces and properties. Adaptive 

middleware is an example of an active applied research area. Adaptive middleware is 

being developed and applied to meet the ever-increasing challenges set forth by the next 

generation of mission-critical distributed real-time and embedded (DRE) systems. The 

driving force behind many next-generation DRE systems is the establishment of QoS 

requirements typically associated with workloads that vary dynamically.  

 The Weapon System Open Architecture (WSOA), an adaptive middleware 

platform developed by Boeing, is modeled as a part of this research to determine the 

scalability of the architecture. The WSOA adaptive middleware was previously flight-

tested with one tactical node, and the test results represent the performance baseline the 

architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical 

nodes. The results of the modeling and simulation is that the WSOA adaptive middleware  
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can achieve the performance baseline achieved during the original flight-test, in the cases  

of 1, 2, and 4 tactical nodes. In addition, the results of the modeling and simulation also 

demonstrate that the WSOA adaptive middleware cannot achieve the original 

performance baseline, in the cases of 8 and 16 tactical nodes. 
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MODELING ADAPTIVE MIDDLEWARE AND ITS APPLICATIONS TO MILITARY 
TACTICAL DATALINKS 

 
 

1. Introduction 

The Weapon System Open Architecture (WSOA) program was initiated in 1999 

by the AFRL, the Defense Advanced Research Projects Agency (DARPA), and the Open 

Systems Joint Task Force (OS-JTF). The goal of the WSOA program is to develop an 

open-systems “bridge” between legacy embedded mission systems and off-board 

command and control (C2) resources [5]. Open system approaches and techniques were 

used because of their potential to address technical limitations that affect the ability of 

current systems to prosecute time-sensitive targets (TSTs). These technical limitations 

include bandwidth of current military tactical datalinks, static resource management, and 

finite computing resources [5].  

The architecture developed under the WSOA program is based in large part upon 

Bold Stroke, a middleware-centric systems architecture developed by the Boeing 

Company for Operational Flight Programs (OFPs). The Bold Stroke architecture fosters 

the development of OFPs across multiple fighter aircraft platforms, using standard, 

commercial-off-the-shelf (COTS) hardware and software [5]. The WSOA architecture 

combines the middleware foundation of Bold Stroke, which is based on the Common 

Object Request Broker Architecture (CORBA) standard, along with a QoS management 

framework, real-time adaptive resource manager (RTARM) and an adaptive scheduling 

framework. The aforementioned technologies are combined to support applications that 

dynamically allocate and manage various system resources in response to changes in the 

operating environment, while providing guaranteed real-time performance of critical 

tasks.  
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1.1 Background 

The military tactical datalink that WSOA uses is commonly known as Link-16, as 

defined in MIL-STD 6016. Link-16 is an encrypted, jam-resistant, nodeless datalink used 

by terminals compatible with the Joint Tactical Information Distribution System (JTIDS), 

and supports the TADIL J message catalogue [11]. Nodeless networks can use over 

several different medium access schemes and Link-16 uses both Time-Division Multiple 

Access (TDMA) and Code-Division Multiple Access protocols. TDMA assigns Time 

Slot Blocks (TSBs) to individual assets, while CDMA allocates Link-16 datalink 

networks, otherwise known as Network Participation Groups (NPGs). Link-16 supports 

the distribution of a wide range of combat information in near-real time to U.S. combat 

aircraft and command and control centers [11]. In addition, Link-16 has been fielded by 

NATO and has seen extensive use in Europe. Information transmitted over Link-16 

datalink networks include an integrated air picture with both friendly and hostile aircraft 

locations, general situation awareness data, and additional data on potential air and 

ground targets [11]. When encryption and jam-resistance are enabled, the maximum 

achievable bandwidth of a given Link-16 datalink network is approximately 56 Kbps. 

   

1.2 Research Problem 

Modeling and simulating the WSOA architecture to determine its scalability is the 

principal goal of this research effort. The modeling and simulation tool used to 

investigate various properties of networking protocols is OPNET®. OPNET® models 

communication systems of all types and levels of protocols [10]. OPNET® Modeler 

supports many types of networking technologies to include TDMA communications  
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of standards-based protocol models, with completely open source code.  

The current WSOA architecture supports a single command and control aircraft 

and a single tactical fighter node. For the purposes of demonstrating the application of 

new technology, this type of limited experimental setup was sufficient. However, since 

this technology will eventually transition to existing military systems, the scalability of 

the WSOA architecture and underlying technology must be established. Specifically, the 

goal of this study is to estimate the number of tactical fighter nodes that can be supported 

at varying levels of QoS by a given command and control node. Within the context of 

this study, support is defined by the requirements set forth by individual tactical fighter 

nodes with respect to the various data products provided by the command and control 

aircraft. For example, the Weapon System Officer (WSO) for an F-15E Strike Eagle may 

define the maximum allowable time for downloading an image to be displayed on the 

Tactical Situation Display (TSD). 

  
1.3 Hypothesis 

The hypothesis of this study is that the QoS management framework, embedded 

within the WSOA middleware architecture, will allow the command and control aircraft 

to provide adequate support for at least 16 tactical fighter nodes. As discussed previously, 

one major goal of this study is to determine an estimated value for n, the maximum 

number of tactical fighter nodes that can be adequately supported. Furthermore, once n + 

1 and increasing numbers of tactical fighter nodes are being supported by the command 

and control aircraft, it is expected that the WSOA architecture will no longer be able to 

support the total number of tactical fighter nodes. Therefore, the requirements set forth by 

individual tactical fighter nodes will not be met for various data products provided by the  
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command and control aircraft. Thus, individual and collective operational capability of  

tactical fighter nodes will not be realized, resulting in an overall loss of military 

effectiveness. 

 

1.4 Approach 

The general approach taken to investigate the stated hypothesis, and other 

performance-related metrics, is through the use of a discrete-event simulator. Given that 

the WSOA architecture consists primarily of various communication protocols, the 

OPNET® simulation tool is used for building the experimental model and performing all 

experiments described herein. The OPNET® simulation tool is a discrete-event simulator 

targeted to simulate various types of network communication systems [21]. 

Various performance metrics are calculated or measured based upon the 

simulation results produced by exercising the overall system model. The performance 

metrics being used are based upon injecting a known workload into the system, in the 

form of simulated servicing of image requests originating from n individual tactical 

fighter nodes. The effects of this workload will be measured through two metrics: 

throughput measured in image tiles per second, and the compression level of image tiles 

that are transmitted. 

The metrics will be compared to data collected from the WSOA flight test for 

purposes of validation and verification, and a performance and scalability analysis will be 

conducted based upon varying the known workload. 
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1.5 Summary 

The remainder of this document is organized into four chapters. Chapter 2 

contains the literature review where background associated with adaptive middleware is 

presented. The methodology for the experimental phase of this investigation is given in 

Chapter 3. The analysis of the results and comparison to earlier works follow in Chapter 

4. Finally, Chapter 5 provided a summary of the thesis effort and identifies areas of the 

research to be explored in future research efforts. 
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2. Literature Review 

2.1 Introduction 

This chapter provides an overview of pertinent literature relating to adaptive 

middleware and more specifically, the application of adaptive middleware to military 

tactical datalinks for the purposes of enabling enhanced communications capabilities. 

This chapter is organized into six areas, starting with an overview of the Weapon System 

Open Architecture (WSOA) program, followed by a discussion of current and future 

military tactical datalinks. Within the context of the WSOA program, and its relationship 

to current military tactical datalinks, a detailed discussion of the three key components of 

adaptive middleware is provided, which include quality of service (QoS) management 

frameworks, adaptive scheduling techniques and dynamic resource management 

approaches. Finally, this chapter closes with a survey of approaches to modeling adaptive 

middleware and its associated components, within an environment amenable to studying 

the performance of packet-switched communications systems. 

 Open systems approaches and techniques have become the de facto standard for 

achieving interoperability between disparate, large-scale, legacy software systems [5]. A 

key technology among open systems approaches and techniques is middleware. The 

middleware concept was developed based upon recognizing the opportunity to develop 

and evolve systems through reusable software [24]. Middleware, in general, is used to 

isolate applications from dependencies introduced by hardware, operating systems, and 

other low-level aspects of system architectures. Numerous efforts are currently underway 

to develop and field Operational Flight Programs (OFPs) based upon open systems 

approaches such as middleware [25]. While middleware approaches are or will be  
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integrated into operational military systems, many questions exist pertaining to the 

boundaries of applying middleware. 

 Adaptive middleware, one such application boundary, is currently an active 

research topic in the literature. Specifically, adaptive middleware is being developed and 

applied to meet the ever-increasing challenges set forth by the next generation of 

mission-critical distributed real-time and embedded (DRE) systems [9]. The driving force 

behind many next-generation DRE systems is the establishment of QoS requirements, 

typically associated with workloads that vary dynamically.  

In addition, given the distributed nature of these new systems, the varying 

workloads introduced by them are often serviced by shared resources. As such, achieving 

QoS requirements in these types of environments requires new adaptive techniques, such 

as automated reconfiguration, layered resource management, and dynamic scheduling [9]. 

Combined with middleware, these new adaptive techniques can be encapsulated to 

introduce application-level awareness of QoS into next-generation DRE systems, without 

the creation of low-level system dependencies resulting in expensive coupling between 

various layers of such systems. 

 

2.2 Weapon System Open Architecture (WSOA) Program Overview 

 The WSOA program was initiated in 1999 by the Air Force Research Laboratory 

(AFRL), the Defense Advanced Research Projects Agency (DARPA), and the Open 

Systems Joint Task Force (OS-JTF). The goal of the WSOA program is to develop an 

open-systems “bridge” between legacy embedded mission systems and off-board 

command and control (C2) resources [5]. Open system approaches and techniques are  
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seen as a way to address technical limitations that affect the ability of current systems to 

prosecute time-sensitive targets (TSTs). Technical limitations include bandwidth of 

military tactical datalinks, static resource management, and finite computing resources 

[5].  

The architecture developed under the WSOA program is based in large part upon 

Bold Stroke, a middleware-centric systems architecture developed by the Boeing 

Company for OFPs [25]. The Bold Stroke architecture fosters the development of OFPs 

across multiple fighter aircraft platforms, using standard, commercial-off-the-shelf 

(COTS) hardware and software [5]. The WSOA architecture combines the middleware 

foundation of Bold Stroke, based on the Common Object Request Broker Architecture 

(CORBA) standard, along with a QoS management framework, real-time adaptive 

resource manager (RTARM), and an adaptive scheduling framework. The 

aforementioned technologies combine to support applications that can dynamically 

allocate and manage various system resources in response to changes in the operating 

environment, while providing guaranteed real-time performance of critical tasks. 

Since the foundation of the WSOA architecture is middleware, a review of current 

middleware technologies is in order.  Middleware, or more specifically, distributed object 

computing (DOC) middleware, can be decomposed into the following layers: domain-

specific middleware services, common middleware services, distribution middleware, 

and host infrastructure middleware [24]. Viewing this decomposition from higher to 

lower layers as in Figure 2-1, it is not altogether different from the OSI Reference Model 

for network protocols [9]. In addition, there are a number of competing technologies at 

each of the layers. 
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Figure 2-1. Layers of DOC Middleware and Surrounding Context [5] 

 

The lowest layer of DOC middleware is the host infrastructure layer. The purpose 

of the host infrastructure layer is to encapsulate and enhance native OS communication 

and concurrency mechanisms to support reusable components and software. Competing 

technologies at this layer include the Sun Java Virtual Machine [18], .NET [29] which is 

Microsoft’s platform for XML services, and the Adaptive Communication Environment 

(ACE) [26], a highly portable toolkit developed at Washington University. At this layer 

of the middleware, the WSOA architecture uses ACE. This choice is dictated by the 

implementation of the Bold Stroke architecture, which focuses on open commercial 

standards and technology. 

The role of the distribution layer is to define higher-level models for distributed 

computing, based in large part on reusable components and frameworks that extend the 

native services of the operating system [24]. Competing technologies include OMG’s  
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CORBA standard, Sun’s Java Remote Invocation (RMI) [33], Microsoft’s Distributed 

Component Object Model (DCOM) [3] and an emerging technology known as the Simple 

Object Access Protocol (SOAP) [27]. At this layer of the middleware, the WSOA  

architecture implements the CORBA standard.  

Next, the function of the common middleware services layer is to augment the 

distribution layer by defining more abstract domain-independent services that typically 

are responsible for implementing what is known as the “plumbing code” often required in 

distributed computing environments [24]. Examples of competing technologies at this 

layer include OMG’s CORBA Common Object Services (CORBAservices) [20], Sun’s 

Enterprise Java Beans (EJB) technology [30], and Microsoft’s .NET Web services [29]. 

At this layer of the middleware, the WSOA architecture implements the CORBAservices.  

Finally, the purpose of the domain-specific middleware services is to achieve 

domain-specific goals and requirements that are not addressed by the lower-level services 

[24]. A prime example of the technology operating at this layer is the Bold Stroke 

architecture which defines specific component services to support mission critical 

functions such as navigation, display management, sensor management, situation 

awareness, data link management and weapons control. Since the targeted application 

space is avionics, the WSOA architecture inherently takes advantage of the existing 

domain-specific services that are implemented as part of the Bold Stroke architecture.  

   

2.3 Relationship of WSOA to Military Tactical Datalinks 

 The goal of the WSOA program is to develop an open-systems “bridge” between 

legacy embedded mission systems and off-board command and control (C2) resources,  
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via military tactical datalinks such as Link-16. To gain insight into the meaning of the 

term “open-systems bridge”, the relationship of WSOA to military tactical datalinks 

much be established. This relationship can be clearly established by comparing and 

contrasting the capabilities of current military tactical datalinks with the capabilities of 

new applications that are enabled by the development of WSOA.  

 Although limited, Link-16 does provide combat aircraft and command and control 

centers a means to exchange data and information. Link-16 is somewhat inflexible since 

it is based upon an underlying TDMA architecture and relies on the TADIL J message 

catalogue. WSOA overcomes this limitation by implementing a pluggable protocol 

through the CORBA communications architecture that has for custom messaging and  

transport mechanisms [5]. The application-level impact of the pluggable protocol is two-

fold. First, implementation of custom messaging, as opposed to reliance on the messages 

sets defined in the TADIL J catalogues, allows for different types of data to be exchanged 

between tactical and C2 assets. This benefit is clearly established by a demonstration 

application developed under the WSOA program. Instead of Link-16 delivering simple 

track and threat location data, WSOA-enabled applications can deliver richer data sets 

such as a Virtual Target Folder (VTF). A VTF has descriptive information regarding the 

target, an index of available imagery via thumbnail images, designated critical point 

locations, and information concerning threats in the vicinity of the target [5].  

Second, custom messaging and transport mechanisms allow more efficient use of 

bandwidth. This has also been shown by a demonstration application developed under the 

WSOA program. When a user received a VTF and clicks on an image thumbnail, a 

request for a larger version of the image submitted. During the download of the larger  
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image, measures of QoS and resource utilization are monitored to adapt the process of 

downloading [5]. Simple adaptations include increasing or decreasing the level of 

compression for individual image tiles based upon whether the previous image tile is 

behind schedule, on schedule or ahead of schedule [5]. 

To increase the capability and flexibility introduced by WSOA within Link-16 

datalink networks, enhancements and improvements to Link-16 are needed. One 

promising enhancement to Link-16 is known as Dynamic Networking System for Link– 

16 (DNS-16) [7]. DNS-16 consists of a three-layer protocol implemented on top of the 

current Link-16 physical layer. These three layers consist of the Link Monitor-16 

(LMON-16), the Unified Slot Allocation Protocol-16 (USAP-16) [35], and the Smart 

Information Management Systems-16 (SIMS-16) [7]. A hierarchical view of layers is 

provided in Figure 2-2. To use this new protocol, a proxy is introduced. Proxies provide 

dynamic networking capability without requiring the upgrade of all Link-16 terminals. 

Platforms with dynamic networking capability act as proxies for platforms with 

unmodified terminals [7].  By not upgrading the entire inventory of Link-16 platforms, a 

dynamic network capability can be achieved at a reduced cost and impact on the 

warfighter.  

LMON-16 provides an interface between the Link-16 terminal and the higher 

layers by monitoring traffic flow through the terminal itself. Specifically, the LMON-16 

layer extracts messages, such as Precise Position, Location, and Identification (PPLI) 

messages, from the stream and use the information to establish a new dynamic network 

NPG.  In addition, bootstrap messages generated by other dynamic terminals are 

decoded, and communication tables are constructed in an effort to ensure contention-free  
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communication [22]. 

USAP-16 layer provides a set of protocols enabling the network to distribute a 

common picture of the current operational network to itself [22].   The USAP protocols 

achieve this by monitoring the RF environment, allocating channel resources on demand 

based upon a heuristic function, and automatically detecting and resolving contention that 

results from changes in connectivity. The underlying USAP protocols have been 

previously developed and demonstrated as part of Soldier Phone, a separate program that 

supports a multi-net TDMA network architecture [2]. USAP protocols enable contention-

free slot assignment within a multi-net TDMA network architecture [22]. 

SIMS-16

USAP-16

Adaptive, distributed
network design

Network integrity
& negotiation

Physical Link

Dynamic
Network

Mgmt

Monitor Link-16 Traffic
LMON-16

LINK-16

 

Figure 2-2. DNS-16 Layered Approach to Dynamic Networking [7] 

 

SIMS-16 assigns TSBs to NPGs, making transmit assignments and negotiating 

proxy assignments [22]. SIMS-16 automatically associates a dynamic terminal with each 

legacy terminal to serve as its proxy to the USAP-16 datalink network.  While any 

dynamic terminal should be able to serve as a proxy, dynamic terminals serving in an  

 

2-8 

 
 



    

 

operational C2 role, such as E2C or AWACS, are preferred over other dynamic terminals 

[22]. The purpose of a proxy is to recognize terminals without dynamic capability in the 

vicinity and execute the USAP-16 protocols for them to obtain network bandwidth.  After 

obtaining the required bandwidth, the proxy terminal sends the legacy terminals the 

appropriate messages to reconfigure those units as necessary to integrate them into the 

USAP-16 datalink network [22]. In the future, additional functionality may be 

incorporated into this layer. 

 

2.4 Quality of Service Management Frameworks 

 Adaptive military applications can be included in the WSOA architecture, in large 

part, due to the QoS management framework incorporated into the Bold Stroke  

middleware. As defined by Schantz [23], Quality of Service (QoS) activities improve and 

control network resources to achieve a certain level of service. In the broadest sense, QoS 

involves the multitude of properties beyond the application specific functional behavior 

of a particular distributed application [23]. Examples include performance characteristics, 

dependability, behavior and adaptability under various changing environments, and 

security. Other significant QoS activities include specification, negotiation, enforcement, 

detection, notification, and reconfiguration and adaptation [23]. Each of these processes 

will be discussed in the following sections. 

One QoS management framework is known as the Quality Objects (QuO) 

framework. The QuO framework supports QoS at the CORBA layer [36]. Specifically, 

the QuO framework solves current issues in the development of DRE systems including 

ignoring system properties associated with different environments and platforms, the  
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difficulty programmers encounter when dealing with WAN-level properties associated 

with DRE systems, the large barrier to entry regarding the development of minimally 

adaptive DRE systems, and the inability of programmers to create strongly adaptive 

systems with cross-platform implementations [36]. Some of these issues are due in large 

part to the current lack of information regarding such systems, and the lack of maturity 

concerning associated technology.  

 The QuO framework provides solutions to these issues in several ways [36]. First, 

the QuO framework defines system properties as first class entities, and integrates 

knowledge of these properties so the application can be aware of and handle changes in 

the operating environment. Second, the QuO framework reduces the variance of system 

properties via masking, so that programmers can deal with a relatively invariant subset of 

system properties. Third, the QuO framework exposes key design decisions of a given 

object’s implementation and use to help the application reconfigure dynamically. Finally, 

the QuO framework supports the reuse of various QuO architectural components at 

different points in the lifecycle of the application. 

QoS management starts with a connection. A connection is a boundary where 

expected usage patterns and QoS requirements between client and server objects can be 

negotiated [36]. Delegate object(s) on the client are created to abstract and manage the 

communication occurring across the connection defined between the client delegate 

object(s) and the remote server object(s).  Once a connection is established, an associated 

client delegate object(s) is created and bound to a remote server object(s), the definition 

and negotiation of QoS regions can begin.  

A QoS region can be classified into one of two levels of system conditions [36].  
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First, a negotiated region is a region defined in terms of both the client and server object 

usage based upon the system conditions the objects attempt to operate in. Typically, a 

given client delegate object will support a number of negotiated regions. In addition to 

negotiated regions, reality regions are defined as the actual QoS associated with the 

interaction of the client and server objects, as measured by the QoS of the runtime 

system.  The adaptive nature of the QuO framework is encapsulated in the specification 

of handler routines that execute based upon transitions that occur in either the negotiated 

or reality regions. Handler routines allow the application on the client side to make 

decisions regarding the usefulness of compensatory actions, or to modify the original 

QoS requirements of the application.  

Adaptivity implies the existence of multiple behaviors that can potentially occur 

during the execution of DRE systems that implement the QuO framework. For instance, 

applications can complete tasks later than expected either through tolerating finishing a 

task later or rescheduling a task for execution at a future time. Another adaptive behavior 

modifies the work that an application does. Applications may accomplish less work than  

expected, which can mean greater errors, lower data resolutions, etc. Adaptive behavior 

concerns the substitution of alternate mechanisms that possess different system 

properties. Alternate mechanisms include any type of resource not utilized under normal 

system operating conditions, for example a compression algorithm, used to compress data 

when throughput exceeds bandwidth limitations [36].  

The QuO framework also supports a number of binding times, referred to as 

commitment epochs [36]. Commitment epochs are established at definition, connection, 

negotiation, and invocation times. At definition time, QoS regions are defined and bound  
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to various handlers to create different adaptive behaviors. Typically, this is accomplished 

via a description language targeted for QuO, and referred to as QDL. At connection time, 

adaptive behavior is created by instantiated constructs such as delegate objects that can 

bind the shape of QoS structures enumerated at definition time. During negotiation, 

bounds are defined that the client delegate object and server object attempt to operate 

within. 

To resolve the second issue, reducing the variance in system properties, three 

separate steps are taken. First, existing sources of variance are masked through the 

layering of delegate objects. An example of this masking, within the context of WSOA, is 

the system-level delegate object that is layered on top of other delegate objects which are 

monitoring the loading of the processor, the download time for the current image, etc. 

From a system-level perspective, the sources of variance are masked by the main 

delegate, which produces an aggregate assessment of overall system QoS state.  Second, 

system knowledge is brought together from different sources. These sources consist 

primarily of members of the system design team, such as the client designer, object 

designer, ORB designer. Finally, the designers of the system must ensure that delegate 

objects are sufficiently complex to handle system conditions as first class objects.  

Variance in system properties can occur during routine operation. Systems that 

support QoS management must be able to mask this variance at different levels in the 

system, since the information required to recognize this variance is available at different 

times and at different places. Each layer in the QoS management framework tries to 

maintain the QoS provided to higher levels by masking changing system conditions 

within negotiated levels of defined QoS regions. When system conditions change such  
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that masking is no longer effective, a handler routine passes this information to a higher 

layer that can adapt to the changing conditions within its masking range [36]. This may 

result in both layers attempting to change policies, or other simple modifications, to adapt 

to the new system conditions. When simple modifications are not successful, a change in 

expectations is realized, which results in the renegotiation of the boundaries of the layer 

corresponding to the original QoS region. Figure 2-3 depicts a typical scenario where 

changing system conditions or properties are masked.  

 

 

Figure 2-3. Masking System Properties 

 

Integration of system knowledge from different sources is a key process in  
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reducing the variance of system properties. Sources for this information include the client 

designer, object designer, QuO designer, ORB designer, and operations staff. Each source 

can provided different types of information. For instance, the client designer is keenly 

aware of the need for a delegate object to renegotiate QoS regions. A second example is 

the operations staff. The operations staff is responsible for knowledge of resource 

availability, resource access permissions, and administrative domains. 

The QuO framework also addresses the third issue, exposing key design decisions 

of a given object’s implementation and use, specifically to provide an application with 

assistance in reconfiguring dynamically. While many complex software systems can 

operate effectively based solely on layered abstractions that only expose functional  

interfaces, DRE systems cannot operate effectively in this type of environment. DRE  

systems have grown to staggering levels of complexity, with a wide range of resource 

and usage patterns, and components of DRE systems are required to service a wide range 

of clients. Thus, a single implementation of a component in a DRE system is not 

adequate to meet the demands of all possible clients. Open implementation techniques 

[13] allow system designers to expose key performance and reliability design decisions 

associated with components and objects. These key design decisions and other usage 

pattern information of a given component or object, can be abstracted and specified as 

implementation meta-data [36]. This meta-data is specified separately from the functional 

aspects of the component or object. Thus, an architecture or framework based upon this 

meta-data allows a system to reason about itself and adapt to changes occurring within 

relevant system properties. 

The QuO framework specifies separate meta-data using of its Quality Description  
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Language (QDL). QDL is made up of several independent description languages that 

specify system property meta-data: the Contract Description Language (CDL), the 

Resource Description Language (RDL), and the Structure Description Language (SDL). 

The CDL defines expected usage patterns and QoS requirements for a given connection 

to an object typically located on a server. The RDL defines the physical resources used 

by an object. The SDL defines the internal design of an object and quantifies how a given 

object consumes resources that are allocated to it.  

Finally, the Quo framework resolves the fourth issue, the reuse of various 

architectural components, by introducing new steps in the design process normally 

associated with developing software within object-oriented frameworks such as CORBA.  

The overall design process for developing CORBA components and objects is modified 

to include the role of a QoS designer. In addition, formal and reusable contracts are  

developed using CDL. This adds another step to the CORBA design process, and 

likewise introduces additional steps in the design processes for other object-oriented 

software architectures.  

Listing 1 is an example of the structure of a typical contract that contains 

negotiated QoS regions, from a hypothetical screen-saver application.  Specifically, the 

key elements of the listing are the definition of the contract regions which are defined 

through the Allocated and Free constructs in the ScreenSaver contract. Within both 

constructs, the client_expections and object_expectations objects capture the regions of 

transition for the application, i.e. in terms of throughput and accuracy. Using the 

Allocated and Free constructs, the appropriate callback methods are executed to force the 

transition between QoS regions, when changes in the values for throughput and accuracy 

reach a predetermined boundary. 

2-15 



    

 

 
// Forward declarations for classes used in the connection’s  
// parameters. 
interface ScreenSaver_client_callback;  
interface ScreenSaver_negotiated_region;  
interface ScreenSaver_client_expectations; 
 
connection invScreenSaver( 
 // 3 Parameters required for every QDL connection  
 // for client_callback 
 in ScreenSaver_client_callback cl_call,   
 // for client_expectations 
 in ScreenSaver_client_expectations cl_exp,  
 // for object_expectations  
 out ScreenSaver_object_expectations ob_exp,  

// Parameters specific to this connection, which can be used in   // 
predicates for negotiated and reality regions. 

 in double max_invoc m_p_s, 
 in double max_idle s    ) is 
 
 client_callback interface ScreenSaver_client_callback 
 object_callback interface ScreenSaver_object_callback 
 client_expectations interface ScreenSaver_client_expectations 
 object_expectations interface ScreenSaver_object_expectations 
 
// Meta-level interfaces 
contract ScreenSaver is  // CDL negotiated regions are 
       
    Allocated:   
       when client_expectations.throughput > 0 m_p_s and 
       when client_expectations.throughput <= max_invoc  m_p_s and 
       when object_expectations.capacity >= max_invoc m_p_s 
    Free: 
       when client_expectations.throughput == 0 m_p_s and 
       when object_expectations.capacity == 0 m_p_s 
    transition callbacks are 
       Allocated -> Free: 
  object_callback->client_asleep() 
       Free -> Allocated: 
  object_callback->client_awake() 
  client_calllback->now_allocated() 
    end transition callbacks 
 
end negotiated regions 
 
reality regions for Allocated are separate 
reality regions for Free are separate 
 
end contract ScreenSaver // CDL 
 
// RDL, SDL, etc. go here 
end connection invScreenSaver 
 

Listing 1. CDL for ScreenSaver Negotiated Regions 
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separate reality regions for ScreenSaver::Allocated:  

Normal:  
          when.QuO_condition.measured_throughput > 0 m_p_s and  

   when QuO_condition.measured_throughput <= max_invoc m_p_s and   
   when QuO_condition.measured_capacity >= max_invoc m_p_s and   
   when QuO_condition.measured_idleness <= max_idle secs  
 
Insufficient_resources:  
   when QuO_condition.measured_capacity < max_invoc m_p_s  
 
Client_overlimit:  
   when QuO_condition.measured_throughput > max_invoc m_p_s  
 
Client_asleep:  
   when QuO_condition.measured_idleness > max_idle sec  
 
// Precedences tell which reality regions are chosen if more than // one 
predicate is true  
precedence Normal, Client_asleep, Client_overlimit, No_resources 
transitions callbacks are  

         Normal -> Insufficient_resources:  
// Warn the client that there isn’t enough capacity, even   
// though we’re in negotiated region Allocated and thus  
// there is supposed to be capacity.  
client_callback->warn_no_resources()  
// Tell the object to allocate more capacity (or lower its // 
expectations)  
object_callback->allocate_capacity(max_invoc) 

         Insufficient_resources -> Normal:  
            // Let the client know that it doesn't have to hold its  

// breath any more  
client_callback->warn_enough_resources()  

   any -> Client_overlimit:  
     // Let the client know it is exceeding its negotiated  
     // promise  
     client_callback->warn_overlimit(max_invoc)  
   any -> Client_asleep:  
     // Let both the object and the client know that the client  
     // has gone asleep. One or both may reset their expectations    
     // (e.g., the client’s throughput or the object’s capacity),  
     //  which could cause a renegotiation.  
     client_callback -> warn_sleeping()  
     object_callback -> client_asleep()  
end transition callbacks  

end separate reality regions ScreenSaver::Allocated 
 

Listing 2. CDL for Reality Regions for ScreenSaver Negotiated Region Allocated 
 

Listing 2 provides another example of the structure of a contract that contains QoS  

region transitions and the associated callback methods, for a hypothetical screen-saver 

application. 

To streamline the process of creating delegate and server objects, automated 

methods and techniques have been developed to generate objects and software necessary  
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to build the infrastructure for these new system calls and routines. Although the 

generation of many delegate and server objects is automated, a number of modifications 

to these objects are likely to be required if a given contract is being reused across a given 

software architecture. For instance, client callback routines will likely require re-

implementation, or multiple implementations, to deal with changing system conditions. 

 

2.5 Adaptive Scheduling Techniques 

 Many DRE systems, and other real-time systems, have historically employed 

static scheduling techniques to enforce deterministic execution of the system, and other 

real-time performance requirements [16]. This type of scheduling discipline does not 

provide the flexibility required for a given application to adapt and reconfigure when 

system conditions change, which in turn affects the overall QoS of the system. Thus, 

dynamic scheduling methods and techniques that allow systems the flexibility to respond 

to changes in QoS are needed.  It is important to note that QuO only specifies the actions 

to be taken to manage changes in the system that result in changes in QoS. Other 

mechanisms, such as dynamic scheduling, are required so the system can react and adapt 

to changes in the operating environment. As will be discussed later, other mechanisms 

are also required to allow dynamic and real-time monitoring of resources, the results of 

which are interpreted by management frameworks such as QuO.  

 Static scheduling techniques suffer from the following limitations: inefficient 

handling of non-periodic processing, utilization penalty for non-harmonic periods, and 

inflexible handling of invocation-to-invocation variation in resource requirements. Static  
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scheduling handles non-periodic processing inefficiently because such disciplines must 

treat non-periodic processing as periodic processing that occurs at its maximum possible 

rate, which typically does not occur in practice.  Static scheduling implicitly enforces a 

phasing penalty for non-harmonic periods. This penalty occurs because tasks with non-

harmonic periods introduce unscheduled gaps of time Thus, attaining CPU usage close to  

100% is not achievable. Static scheduling also does not allow for flexible handling of 

resources on an invocation-to-invocation basis. Static scheduling enforces a worst-case 

allocation of resources, producing a similar type of inflexibility as encountered in non-

periodic processing [15]. 

 Dynamic scheduling strategies do not suffer the limitations described previously. 

Unfortunately, dynamic scheduling strategies mitigate these limitations through increased 

overhead. In DRE systems additional overhead may introduce other unfavorable 

conditions. For example, dynamic scheduling strategies can behave non-deterministically 

under heavy loading conditions.  Thus, a careful trade-off must be made when 

considering the use of dynamic scheduling strategies. Two dynamic scheduling strategies 

explored under the WSOA architecture, and other avionics applications, are Earliest 

Deadline First (EDF) and Minimum Latency First (MLF).  

 EDF [14, 17] gives highest priority to the task with the earliest deadline. A major 

limitation of EDF scheduling is that the task with the earliest deadline is executed without 

the probability of meeting its deadline. For instance, a task that requires more time to 

complete than is actually available prior to reaching its deadline will still be dispatched 

by the EDF algorithm. A more efficient use of processing resources would be to execute 

a task with a later deadline that can finish prior to its deadline being reached. 
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 MLF [28] is a scheduling technique that refines the EDF scheduling discipline by 

accounting for execution time. MLF dispatches an operation or task whose laxity is least. 

Laxity is defined as the time-to-deadline minus the remaining execution time [15]. Thus, 

this type of scheduling strategy will detect when an operation or task will not meet its 

deadline, and then reevaluate the current schedule of operations or tasks. 

  

2.6 Real-Time Adaptive Resource Management Techniques 

 The Real-Time Adaptive Resource Management (RTARM) system [4], is the 

methodology that the WSOA architecture uses to dynamically manage and monitor 

system resources. RTARM supports a number of services that are useful to DRE systems, 

to include end-to-end QoS negotiation, QoS adaptation, real-time monitoring and 

hierarchical QoS feedback adaptation. RTARM supports management and monitoring of 

systems resources, along with network resource management via integration of the NetEx 

resource management system [4].  

 Specifically, RTARM uses a hierarchical resource management 

architecture that provides integrated management over different types of resources. This 

resource management architecture is recursive, in addition to being structured in a 

hierarchical fashion. System and network resources are controlled by Service Managers 

(SMs), which are themselves controlled by higher-level service managers. Figure 2-4 

shows a sample RTARM hierarchy consisting of a CPU SM, a network SM and two 

high-level SMs, to provide integrated resource management capability. Several benefits 

are realized from utilizing such a hierarchical and recursive resource management 

strategy. Services with complex QoS requirements and representations are easier to  
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implement on top of uniform basic services for resource management [4]. An additional 

benefit of this type of architecture is it allows an application to interact based upon a 

richer representation of QoS. A drawback of this type of hierarchical approach is the 

distance between top-level and base-level SMs. If the number of intermediate SMs is 

large or causes measurable amounts of latency, applications with time-sensitive 

functionality may or may not be able to implement this type of QoS management 

framework.  

A typical Service Manager is made up of the following functions: Negotiator,  

Translator, Allocator, Adapter, Scheduler, Enactor, Monitor, Detector and Feedback 

Adapter [4]. The Negotiator brokers contract admission and can delegate responsibilities 

to other components.  The Translator is used to translate high-level QoS into low-level 

physical representations. The Allocator is directly responsible for the allocation and 

release of individual resources.  The Adapter performs resource allocation/release 

depending upon the current state of the QoS contract. The Scheduler determines whether 

the allocation of resources and the predicted change in system QoS are feasible. The 

Enactor enforces changes in application-level QoS or other measures of status. The 

Monitor continuously watches all the associated applications and passes any status 

information, to include QoS usage, onto the detector. The Detector uses the information 

passed to it from the Monitor, and detects changes in the operation of a given application. 

The Feedback Adapter invokes corrective action for a given application when its runtime 

status, to include QoS, changes significantly. 

 

 

 

2-20 

 



    

 

Figure 2-4. Sample RTARM Hierarchy [4] 

 

2.7 Modeling the WSOA Architecture with OPNET® 

 Modeling and simulating the WSOA architecture to determine its scalability is the 

principle goal of this research effort. The modeling and simulation tool used to 

investigate various properties of networking protocols is OPNET®. OPNET® models 

communication systems of all types and levels of protocols [10]. OPNET® Modeler 

provides capability and support for simulating many types of networking technologies to 

include TDMA/CDMA communications networks such as Link-16. In addition, 

OPNET® Modeler has a comprehensive library of standards-based protocol models, with 

completely open source code. 

 Researchers and students at the University of Arizona have used the OPNET® 

Modeler package to conduct initial research and work into developing OPNET® models  

 

2-21 

 
 



    

 

of the CORBA architecture [8]. This research group has modeled the twelve-step process 

that encapsulates CORBA object communications, to include: client invocation, client 

data marshalling, client send, server receipt, server data unmarshalling, server upcall, 

server return, server data marshalling, server send, client receipt, client data 

unmarshalling, and client return. This research effort also explored using the OPNET® 

Modeler package to model dynamic invocation, to simulate the Internet Inter-ORB 

Protocol [19], and to model the CORBA binding operation and naming service [8]. This 

research is relevant to the effort described here because the CORBA models developed as 

a part of that research can be utilized as a basis for constructing an adaptive middleware 

model, as described previously.    

 

2.8 Summary 

The literature review in this chapter presents progressively more detailed 

descriptions of adaptive middleware, and the application of adaptive middleware to 

military tactical datalinks for the purposes of enabling enhanced communication 

capabilities. After briefly introducing the Weapon System Open Architecture (WSOA) 

program, a section is presented on a discussion concerning current and future military 

tactical datalinks. Next, a detailed discussion of the three key components of adaptive 

middleware is provided. Specifically, quality of service (QoS) management frameworks, 

adaptive scheduling techniques and dynamic resource management approaches are all 

described in detail. This chapter concludes with an overview of approaches to modeling 

adaptive middleware, and its associated components, within an environment amenable to 

studying the performance of packet-switched communications systems. 
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3. Methodology 

3.1 Introduction 
 

This chapter describes the methodology used in this effort. The goals of the thesis 

are presented, followed by the hypothesis. This is followed by a description of the 

approach and methods used to design the simulation, including performance metrics, 

system parameters, experimental design and implementation details. Finally, a discussion 

of the validation and verification associated with experiment is given. 

 

3.2 Goals and Hypothesis 

The goal of this study is to determine the maximum number of tactical fighter 

nodes that can be supported, at varying levels of QoS, by a given command and control 

node. Within the context of this study, the term adequately is defined by the requirements 

set forth by individual tactical fighter nodes with respect to the various data products 

provided by the command and control aircraft. For example, the Weapon System Officer 

(WSO) for an F-15E Strike Eagle may define the maximum allowable time for 

downloading an image to be displayed on his or her Tactical Situation Display (TSD). 

 The hypothesis of this study is that the QoS management framework, embedded 

within the WSOA middleware architecture, will allow the command and control aircraft 

to provide adequate support for n tactical fighter nodes. As discussed previously, one 

major goal of this study is to determine an estimated value for n, the maximum number of 

tactical fighter nodes that can be adequately supported. Furthermore, once n + 1 and 

increasing numbers of tactical fighter nodes are being supported by the command and 

control aircraft, it is expected that the WSOA architecture will no longer be able to  

support the total number of tactical fighter nodes. Therefore, the requirements set forth by 
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individual tactical fighter nodes will not be met for various data products provided by the 

command and control aircraft. Thus, individual and collective operational capability of  

tactical fighter nodes will not be realized, resulting in an overall loss of military 

effectiveness. 

 

3.3 Approach 
 

The approach used to investigate the stated hypothesis, and other performance-

related metrics, is through the use of a discrete-event simulator. Given that the WSOA 

architecture consists primarily of various communication protocols, the OPNET® 

network simulation tool is used for building the experimental model and performing all 

experiments described herein. The OPNET® simulation tool is a discrete-event simulator 

used to simulate various types of network communication systems [21].  

Various performance metrics, as described below and in Chapter 4, are calculated 

or measured based upon the simulation results produced by exercising the overall system 

model. The performance metrics are gathered after injecting a known workload into the 

system in the form of simulated image requests originating from n individual tactical 

fighter nodes. The effects of this workload will be measured through two metrics: 

throughput measured in image tiles per second, and the compression level of image tiles 

that are transmitted. 

The metrics are compared to data collected from WSOA flight tests for purposes 

of validation and verification, and a performance and scalability analysis is conducted 

based upon varying the known workload.  
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3.4 System Boundaries 

The System Under Test (SUT) is the WSOA architecture.  Shown in Figure 3-1 is 

the WSOA architecture, and interfaces the following components: Joint Tactical 

Information Distribution System (JTIDS) terminals, and the Link-16 communications 

protocol. The WSOA architecture includes the CORBA-based middleware, the Quality 

Object (QuO) QoS management framework, RTARM framework, the dynamic 

scheduling framework (not depicted in Figure 3-1), and the various portions of the 

WSOA Time-Sensitive Targets (TST) application. The Component Under Test (CUT) is 

the adaptive middleware, which includes the CORBA-compliant Object Request Brokers 

(ORBexpress and TAO ORB), the Pluggable Protocols, the QuO Quality of Service 

Management framework, and the Adaptive Resource Mgmt framework (RTARM).  

This study is limited to investigating the scalability of the WSOA architecture 

within the context of a single Network Participation Group (NPG) as defined by MIL-

STD 6016 (Link-16). A NGP is the basic channel used for communication across a Link-

16 network.  Simulating a single command and control node and multiple tactical fighter 

nodes is an implicit limitation set forth by the context of a single NPG. This assumes that 

the typical number of tactical fighter nodes operating on a single NPG will not saturate 

the capability of the WSOA architecture, although the possibility exists that the results of 

the experiments will prove that such an assumption is invalid. 
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Figure 3-1. WSOA Application and Architecture 

 

 

3.5 System Services 

The basic service provided by the WSOA architecture is the delivery of command 

and control data in real-time to strategic and tactical military assets. The basic services 

provided by the WSOA architecture are similar to those provided by the Link-16 

communication protocol. Link-16 is currently fielded to support the distribution of a wide 

range of combat information in near-real time to U.S. combat aircraft and command and 

control centers [11]. For airborne military assets, examples of command and control data 

typically include an integrated air picture with friendly and hostile aircraft locations,  
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general situation awareness data, and additional data on potential air and ground targets 

[11]. This information is typically displayed on a heads-up display (HUD) or a Tactical  

Situation Display (TSD). 

The difference that exists in services provided by the WSOA architecture, as 

opposed to the services provided by Link-16, lies in the richness of the data that can be 

delivered and the additional flexibility in accessing this set of richer data. Instead of 

transmitting general situational awareness data and information, the WSOA architecture 

enables applications that can communicate with rich data sets, such as the Virtual Target 

Folder (VTF). The VTF is made up of thumbnail and full-size imagery, a 9-line briefing, 

and other descriptive information about the target, and threats in the vicinity of the target. 

Thumbnail images are used to select and download full-size images from the command 

and control node [5].   

Another implicit service provided by the WSOA architecture is the management 

of QoS. Management of QoS is handled transparently by the WSOA architecture via 

monitoring the download of the VTF and associated imagery [5]. The WSOA 

architecture supports adaptation of the overarching application based upon QoS 

requirements implemented in the form of QuO contracts [3]. When the specified terms of 

the QuO contracts are not being achieved, the WSOA architecture can modify the 

compression level of imagery tiles being downloaded, and thus can support altering the 

size of image tiles being downloaded.  

In summary, there are numerous potential outcomes of the services provided by 

the WSOA architecture. Given that QoS management is a basic service of the WSOA 

architecture, one potential outcome is that VTF imagery tiles are transmitted at various  
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compression levels, corresponding to the current level of QoS supported by the WSOA 

architecture (i.e., imagery tiles being delivered on time, early or late). Another potential 

outcome is that VTF imagery tiles are all transmitted at one compression level. This  

corresponds to either a lack of dynamic QoS management being provided by the WSOA 

architecture, or an overall time limit for image download that is long enough to  

accommodate sending all the VTF images at the same compression level.  

 

3.6 Performance Metrics  

One primary metric of concern is throughput, measured in image tiles per second. 

This metric is calculated based upon the number of VTF image tiles per second that are 

measured in transit across the simulated Link-16 network. This performance metric will 

be impacted by the ability of the WSOA architecture to adapt to changes in the load 

placed on the Link-16 network.  

 Another primary metric of concern is end-to-end image delay time. An overall 

time limit is set for each tactical node to receive a full 512 x 512 pixel image. Typically, 

these time limits are set to a value of less than one minute. A time-limit of one minute 

was established by operational users involved with the WSOA flight demonstration [34]. 

Thus, this metric will be key to determining n, the maximum number of tactical fighter 

nodes that can be adequately supported by the command and control node. In addition, 

this metric provides further context for the discussion of this issue in detail. 

 Another primary metric of concern is the compression level of image tiles that are 

transmitted across the Link-16 network via the WSOA architecture.  The compression 

level of image tiles is important from a user perspective. If the WSOA architecture  
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cannot consistently deliver a majority of the image tiles at high resolution, i.e. a low 

image compression level, then the received imagery is not likely to be useful to the pilot, 

weapon systems officer or other operator on the aircraft [34].  

 

3.7 Parameters 

 The parameters for the SUT are divided into two categories: system and  

workload. The system parameters are those that define the underlying system model and 

stay constant between simulation runs. As such, the system parameters are derived from 

technical specifications of the hardware and software that are components of the WSOA 

architecture. The workload parameters are those characteristics that affect the behavior of 

the workload. In this case, the workload parameters for the WSOA architecture are based 

on averages derived from actual workloads executed during live flight tests. 

3.7.1 System 

The WSOA architecture encompasses a number of system parameters, as depicted 

in Figure 3-1. The primary system parameters are the VTF imagery data, the JTIDS 

terminals, the Link-16 interface software, levels of compression utilized for VTF imagery 

tiles, and the scheduling algorithm used for providing timely service to multiple tactical 

nodes [34].  

The imagery data being transmitted as part of the WSOA program consists 

primarily of images that are 512 x 512 pixels in size, and stored at 24 bits/pixel [34]. This 

results in an overall image size of 6,291,456 bits, and uncompressed image tiles of size 

393,216 bits. VTF images are divided into 16 tiles. 

 The JTIDS terminals and Link-16 host interface software are system parameters  
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because their technical specification limits the performance of the WSOA architecture. 

Link-16 is a TDMA-based communication system. The basic unit of time in a Link-16 

TDMA architecture is the epoch, which is defined to be 12.8 minutes [1]. Each time slot 

in a Link-16 TDMA ring is approximately 7.8125 ms [1]. A Link-16 TDMA ring is split 

up into three sets of timeslots: A, B and C [1]. Based upon the experimental design of the 

WSOA program, only one set of time slots is used. Using only one set of time slots  

provides 512 time slots per frame, with a frame length of 12s [1].  

Another system parameter related to the QoS management framework is the  

levels of compression used to compress the VTF image tiles that are being transmitted 

across the Link-16 network. The compression levels used in this thesis, which are exactly 

the same compression levels used in the WSOA architecture are: 50:1, 75:1 and 100:1 

[34]. Based on the image size described previously, these compression levels translate 

into image tile sizes that require approximately 7864 bits, 5243 bits, and 3932 bits, 

respectively. As such, these image tile sizes require 11, 8 and 6 Link-16 time-slots, 

respectively.  

The scheduling algorithm used to service the imagery requests is also a system 

parameter. The scheduling algorithm used for this purpose is round-robin scheduling. 

This same scheduling algorithm will be used as the workload on the system is varied. 

Round-robin was chosen due to simplicity of implementation, and the lack of a defined 

scheduling algorithm within the WSOA architecture for supporting multiple tactical 

nodes. Other scheduling algorithms should be investigated as future research in this area. 

3.7.2 Workload 
 

The most significant workload parameter is the time associated with the  
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processing of image tiles. Image tile processing times are normally distributed based 

upon data from actual tests conducted on aircraft running the WSOA software 

architecture [34]. Image tile processing is divided into four separate parameters: tile 

queuing, tile decompression, QuO contract evaluation and QuO delegate execution. The 

timing parameters associated with QuO are the primary workload parameters being 

introduced to model the WSOA middleware architecture. Therefore, a sum of the 

parameters at a specific instance during the simulation represents an accurate model of  

the time required by the WSOA architecture to process a given image tile. Please refer to 

Table 3-1 for the specific averages and standard deviations associated with each of the 

timing parameters. 

 

 

Table 3-1 System and Workload Parameters 
Image Size 512 x 512 pixels, 24 

bits/pixel 
Link-16 TDMA Epoch 12.8 minutes 

Link-16 TDMA Slot Length 7.8125 ms 
Link-16 TDMA Frame 

Length 
12 s 

Imagery Compression 
Levels 

50:1, 75:1, 100:1 

System 

Scheduling Algorithm Round-Robin 
Tile Queuing μ = 550.087 ms 

σ = 67087.693 ms 
Tile Decompression μ = 17.344 ms 

σ = 6.324 ms 
QuO Contract Evaluation μ = 78.203 ms 

σ = 3197.117 ms 

Workload 
 

QuO Delegate Execution 
 

μ = 124.844 ms 
σ = 6083.308 ms 
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3.8 Factors 

There are two workload factors under consideration, number of tactical nodes and 

image deadline. The number of tactical nodes introduced into the system defines the 

workload of the system, since the command and control node is responsible for sending 

imagery data to all the tactical nodes requesting such data via the Link-16 

communications network. The number of tactical nodes affects the number of receivers 

of imagery data, and the number of senders of QoS responses. This has a direct impact on 

the number of Link-16 TDMA slots that can be dedicated to a given tactical node, and 

thus the total number of tactical nodes that can be supported by the WSOA architecture. 

The number of tactical nodes that were introduced into the system ranged from 1 to 16. 

The case of a single tactical node is used to validate and verify the behavior of the model. 

The number of tactical nodes is then expanded in an exponential fashion, i.e., 2, 4, 8 and 

16.  

The deadline for downloading a complete image affects the calculations used by 

the WSOA architecture to determine whether the download of a given image tile is early, 

on-time or late. If the download of a given image tile is early or late, then appropriate 

transitions in the tactical nodes QoS state will occur, and those transitions will be 

communicated back to the C2 node. In turn, the C2 node will begin transmitting imagery 

to that tactical node at a different compression level.  The overall image download time is 

varied between 38 – 54 seconds to control the workload on the system at a finer level of 

granularity.  
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Table 3-2 Workload Factors 
Number of Tactical Nodes 1, 2, 4, 8, 16 Workload 

Image Deadline 38s, 42s, 46s, 50s, 54s 
 

 

3.9 Evaluation Technique 

 The WSOA architecture under investigation has not implemented a scheduling 

algorithm, supporting the transmission of imagery data to multiple tactical nodes, to 

validate the results of the simulation against. The current research effort is being used to 

assess a “what-if” scenario, specifically to determine the maximum number of tactical 

nodes that the WSOA architecture can support. As such, the type of evaluation is 

simulation. The correctness of the modeled WSOA architecture is validated based upon 

the single tactical node case, since the WSOA architecture currently supports a single 

tactical node.  

 

3.10 Experimental Design 

The experiment uses the Link-16 TDMA communications model designed and 

implemented by Rockwell-Collins [7], which specifies all of the system parameters listed  

previously. This model also defines the workload based upon the bandwidth provided to a 

given node to receive and transmit data via the TDMA structure.  Bandwidth is allocated 

to individual nodes via a slot map [1], which lays out recurrence rate numbers and indices 

create blocks of bandwidth.  

In writing the code necessary to implement a functioning version of the WSOA 

architecture in OPNET®, all documentation relevant to the WSOA architecture is used to 

ensure the accuracy of the model. In addition, engineers from the Boeing Company, the  
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prime contractor responsible for implementing the WSOA architecture, were consulted 

when questions of implementation detail arose. The results are compared to existing data 

and test results measured from the WSOA architecture executing on actual aircraft. Any 

simplifications introduced to make the modeling more efficient or remove unnecessary 

functionality is documented.  

After correctly implementing a functional version of WSOA architecture on top 

of the modeled Link-16 TDMA system, the experimental phase begins. Comparisons are 

based on a 90% confidence interval.  Based on the stated factors, a full factorial 

experiment would require the number of experiments shown in Table 3-3. 

 

Table 3-3 Experimental Design Determination 
Image Download 

Time 
Number of Tactical 

Nodes 
Runs for CI Total Experiments 

38s 5 (1, 2, 4, 8, 16) 5 25 
42s 5 (1, 2, 4, 8, 16) 5 25 
46s 5 (1, 2, 4, 8, 16) 5 25 
50s 5 (1, 2, 4, 8, 16) 5 25 

 

 

3.11 Implementation Details 

Implementing a complex software architecture, such as WSOA, requires that  

some assumptions be made and the parts of the architecture that are not implemented be 

documented and explained. The functionality associated with the Real-Time Adaptive 

Resource Manager (RTARM) and the dynamic scheduler was not implemented 

specifically in the model. The behavior of both RTARM and the dynamic scheduler are 

implicitly modeled through the image tile processing times. Since these image tile  
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processing times are based upon existing data from execution of the WSOA architecture,  

it is assumed that they model the behavior of RTARM and the dynamic scheduler.  

3.11.1 Link-16 Communications Network 

The wireless communication network shown in Figure 3-2 is similar to the 

communications network used during the WSOA ground and flight tests. The primary 

difference in the two communications networks is the number of tactical nodes, i.e., F-

15s. In WSOA ground and flights tests, there is only one tactical node. In Figure 3-2 

there are 16 tactical nodes, which are presented for the purposes of illustration. Other 

configurations are also similar with the primary difference being the number of tactical 

nodes.  

Link-16 is a broadcast-type protocol so each node in the network can 

communicate with any other node that is within line-of-sight distance.  All required 

system parameters are defined, to include the length of a timeslot, total number of 

timeslots, frame-size, number of timeslots in a given frame, etc., as discussed previously. 

Bandwidth is allocated to individual nodes through the use of a slot-map, which divides 

the bandwidth of the TDMA structure into usable blocks. The division of the bandwidth 

is accomplished via the use of Rate Recurrence Numbers (RRNs) and indices [1]. The 

RRNs divide a given frame of timeslots into blocks of timeslots, where each block of  

timeslots contains 2n-6 timeslots, with n being the RRN. The indices are used to address a  

given block of timeslots. For example, the ordered list of indices of timeslot blocks for  

RRN 12 is the following: 0, 4, 2, 6, 1, 5, 3, and 7 [1]. 
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Figure 3-2. Example Link-16 Network with 16 Tactical Nodes 
 

3.11.2 WSOA Object Request Broker (ORB) Packet  

The WSOA ORB Packet message is a data packet used to simulate the 

transmission of imagery data to all relevant tactical nodes. The WSOA ORB Packet 

message contains fields for a source address, destination address, image tile number, 

image tile fragment number, response flag, tactical node QoS status, compression level 

associated with the simulated imagery data, and a time stamp.  

The source and destination address fields are used by a node to determine if a  

given packet is addressed to that node. Since the communications network is limited to a  

single subnet that contains the C2 and all tactical nodes, no routing algorithm is required. 

The C2 node transmits simulated imagery data, and the tactical nodes transmit responses  
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based on this simulated imagery data. The image tile number and image tile fragment 

number are used to for the purposes of keeping track of the number of image tiles being 

sent to a given tactical node. Due to the Link-16 TDMA structure, a given image tile 

must be fragmented for transport across the network.  

The response flag is used to determine if a given packet is a simulated imagery 

data packet transmitted from the C2 node, or a response packet transmitted from one of 

the tactical nodes. If the packet is a response from one of the tactical nodes, then the QoS 

status field contains information related to the current QoS status of that tactical node. 

Otherwise, the compression level field contains information related to the compression 

level of the current simulated imagery data being transmitted. The time stamp is used by 

a given tactical node as a part of its QoS early and late deadline calculations. 

3.11.3 QoS Deadline Calculations and Adaptation 

 The QoS deadline calculations performed by the tactical nodes are used to 

determine the approximate number of image tiles that the tactical node should have 

received either ahead or behind schedule. Adaptation in the WSOA architecture, 

regarding the level of compression that imagery data is transmitted at, is controlled 

principally by these calculations [34]. The following formulas are those used in the 

WSOA architecture and implemented in the WSOA architecture model: 

 

Early Deadline:       (3.1) 

Number of image tiles = (0.2 * Total image tiles) +  

                                                    ((Total image tiles/Maximum image download time) * 

         (Current total image download time))  
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Late Deadline:        (3.2) 

Number of image tiles = - (0.2 * Total image tiles) +  

                                                    ((Total image tiles/Maximum image download time) * 

         (Current total image download time))  
 

If the number of the current image tile received by the tactical node is greater than the 

value calculated for the early deadline, then the QoS status is early.  If the number of the 

current image tile received by the tactical node is less than the value calculated for the 

late deadline, then the QoS status is late. If the number of the current image tile received 

by the tactical node is greater than the value calculated for the late deadline, but less than 

the value calculated for the early deadline, then the QoS status is determined to be on-

time [34]. Figure 3-3 illustrates the boundaries created by the early and late deadlines. In 

the figure, the lines labeled Image A and B represent two hypothetical images being 

downloaded via the WSOA architecture. I represents the percentage of the image which 

has been downloaded and processed by the tactical node. X and Z represent initial offsets, 

in terms of the percentage of a given image already downloaded and processed. These 

offsets demonstrate the convergence of the execution of the WSOA architecture to On-

Time QoS region, and associated Y offset.  

 The above calculations are performed each time a complete image tile is received 

by a tactical node. This differs somewhat from the actual WSOA architecture, where the 

calculations occur on a much more frequent basis, due to the scheduling of tasks by the 

on-board computer in the WSOA architecture. Once the updated QoS status is 

determined by the tactical node, it is transmitted to the C2 node so that future imagery 

data can be transmitted at a level of compression appropriate for the tactical node. This 

feedback mechanism is the central adaptation mechanism in the WSOA architecture. The  
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Table 3-4 WSOA QoS Adaptation Model 
Updated QoS Status Current Compression Level New Compression Level 

50:1 50:1 

75:1 50:1 

Early 

100:1 50:1 

50:1 50:1 

75:1 75:1 

On-Time 

100:1 100:1 

50:1 100:1 

75:1 100:1 

Late 

100:1 100:1 
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adaptation that is modeled, and occurs in the actual WSOA architecture, is depicted in 

Table 3-4.  

3.12 Model Verification and Validation 
Model verification was accomplished using a systematic approach. Simulation 

code was compiled for the target system. Problems with syntax and illegal statements 

were identified by the simulation environment and corrected. Once the models compiled 

correctly, the debugging cycle began. 

The process of debugging began by implementing the capability to pass a WSOA 

ORB Packet message between the C2 node and a single tactical node. After designing 

and implementing the capability to send one WSOA ORB Packet message, the model 

was extended so that a single tactical node could send a response packet back to the C2 

node. Once these first two steps were accomplished, then a basic feedback mechanism, 

very similar to the exact mechanism used in the WSOA architecture, was implemented 

and could be extended further. This is a brief overview of the major implementation 

milestones, but for the purposes of debugging, all of the following information was traced 

to verify that: 

1. The C2 node transmitted the correct number of fragments for an image tile, at a 

given compression level. For image tiles compressed at 50:1, 75:1 and 100:1, the 

correct number of image tile fragments was 11, 8 and 6, respectively. 

2. The tactical node performed the QoS Early and Late deadline calculations 

correctly and resulted in the tactical node transmitting a response packet that 

correctly reported the updated QoS status of the tactical node. For tactical nodes 

that updated their status to Early, On-Time or Late, the correct value associated 

with each status was 0, 1, and 2, respectively. 
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3. The C2 node maintained an accurate record, via an array, of the image tile 

numbers, image tile fragment numbers, compression levels, and QoS status for 

each tactical node. 

4. The C2 node delivered the correct number of image tiles for a given tactical 

node. While this value could have been modified for the purposes of finer 

adaptation granularity, the correct number of image tiles was kept constant at 16.  

5. The C2 node correctly performed the round-robin scheduling for all sets of 

tactical nodes, to include 1, 2, and 4 tactical nodes. 

Model validation was accomplished using results and test data obtained from the 

Air Force Research Laboratory and Boeing, concerning actual ground and flight tests 

conducted on the WSOA architecture. Three elements of the model must be validated 

[12]: 

1. Assumptions, 

2. Input parameter values and distributions, and 

3. Output values. 

 

Since a working implementation of the WSOA architecture existed, then no major 

assumptions had to be made concerning the model of the WSOA architecture. All 

implementation details and questions could be answered either through existing 

documentation or consultation with engineers at the Air Force Research Laboratory or the 

Boeing Company. 
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Underlying network model validation was accomplished by sending WSOA ORB 

Packet messages back and forth between a single C2 node and a multiple tactical nodes. 

Source and destination addresses were assigned sequentially and packets 

were sent and received by all tactical nodes. 

Input parameters for the image tile processing times were chosen to closely match 

the parameters used in the WSOA ground and flight tests [34]. The choice of 

distributions for each image tile processing parameter was developed from statistical  

analysis, which in-turn was based on actual test data and results.  

Output values used to validate the model consisted primarily of the compression 

levels of the simulated imagery data for a single tactical node. Validation tests were run 

with overall image deadlines of 38, 42, 46, and 50 seconds. The values of the 

compression levels for a single tactical node were compared to the values that were 

recorded during the WSOA ground and flight tests.  

In general, the simulation results matched the results from the WSOA ground and 

flight tests. Slight variations did occur, but can be attributed to the granularity of time that 

the Early/Late deadline calculations were performed at. As explained previously, the 

calculations in the simulation were performed on a periodic basis, while the calculations 

that occurred in the actual WSOA ground and flight tests were performed on a periodic 

basis with a much shorter period.  

 

3.13 Summary 

This chapter presented the methodology for the experimental stage of this thesis. 

Additional background information regarding the goals and hypothesis, system  
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boundaries and system services was presented. Performance metrics, parameters, factors, 

experimental design, implementation details, and validation and verification of the model 

were all presented and described in detail. 
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4. Analysis 

4.1 Introduction 

This chapter presents simulation results and analysis. Before explaining the 

simulation results, a brief overview of the statistical methods used is presented. 

Following this overview, the results from the image tile performance measurements are 

presented. All three metrics will be presented in the context of 1, 2, 4, 8 and 16 tactical 

nodes. The conclusion of this chapter discusses the original research goal, to determine a 

value for n, and the relationship between this value and the allocation of TDMA 

bandwidth. 

 

4.2 Statistical Overview 

This section explains the methods used to determine results and provides a brief 

overview of how statistical values are generated and applied. Pilot studies and 

preliminary simulations were run to determine the transient period of the simulation. In 

Figure 4-1, the transient period was over within the first 300 seconds of simulation time.  

4.2.1 Simulation Statistics 

Simulation sets are divided into five groups, based on overall image deadline. 

Groups are subdivided into five distinct loading levels, based on number of tactical 

fighter nodes. Each group is executed five times, with different random seeds, to achieve 

the desired confidence interval width, and yielding 125 total experiments. 
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Figure 4-1. Transient Period Validation – Image Tiles Per Second 
 

4.2.2 Confidence Intervals 

The confidence level chosen for this research is 90%. A 90% confidence level 

indicates that for any mean, there is a 90% probability that the actual mean lies inside the 

interval [12]. The following equation defines the confidence interval  
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interval computed for one mean contains the second mean, then the two items being 

compared can be considered statistically equivalent. If a given confidence interval does 

not contain the mean, then the items being compared may be considered statistically 

different at the given level of confidence. 

4.2.3 Coefficient of Variation 

The Coefficient of Variation (C.O.V.) [12], is the ratio of standard deviation to 

sample mean, which is defined by the following equation:  

                                                       
x
sVOC =...                                               4.2                  

A C.O.V. of less than 10% is used as a stopping criterion for simulations. 

4.2.4 Analysis of Variance 

ANalysis Of VAriance (ANOVA) is used to determine interactions between the 

primary effects, secondary effects, and tertiary effects [12]. ANOVA is a method to 

calculate the variance attributable to each experimental factor, and assign each 

experimental factor a percentage of the total variation. Factors can be classified by the 

resulting experimental effects that are observed. A single factor is the source of primary 

effects, interactions between two factors contribute to secondary effects, and as such, 

interactions between three factors result in the tertiary effects. The sum of the squares for  

the determined effect is divided by the total sum of squares for all effects. The final step  

in the analysis is to perform an F-test to determine the significance of the allocation at the 

given significance level. The ANOVA analysis is only valid if the assumptions below are 

satisfied: 

1. Residuals versus predicted responses should show no trend when 

plotted on a scatter plot, 
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2. Normal quantile-quantile plot should show a straight line of data points 

with little (or no) deviation. 

The method of calculating ANOVA tables is presented below for a two factor experiment 

[12]. Equation 4.3 is the total sum of squares for both factors.  Equations 4.4 and 4.5 

show the primary sum of square effects for factors A and B. Equation 4.6 shows the 

combined sum of squares effect for factor AB. 
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4.2.5 Random Methods 

Stochastic methods were used to generate the image tile service times to include 

tile queuing, tile decompression, QuO contract evaluation and QuO delegate execution. 

These image tile processing time parameters were modeled as being normally distributed 

based upon data from actual tests conducted on aircraft running the WSOA software 

architecture [34]. By seeding the simulation runs differently for the five separate trials,  

the values generated for each time parameter are different for each simulation iteration, 

but still follow the distributions identified as characterizing the existing test data. 
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4.3 WSOA Image Deadline Scenarios 

 There are five scenarios that simulate the behavior of the WSOA architecture, in 

terms of deadlines for downloading a complete image. The following deadlines are used 

for image downloads (in seconds): 38, 42, 46, 50, and 54. These values are chosen as the 

image download deadlines because these values are the same as those used during the 

ground and flight testing conducted on the WSOA architecture.  

4.3.1 Image Tiles Per Second Analysis 

As discussed previously, the Image Tiles Per Second analysis is replicated for 1, 

2, 4, 8 and 16 tactical nodes.  

Figure 4-2 shows the results for the Image Tiles Per Second metric for each of the 

respective image deadline experiments. As demonstrated by the experimental results, the 

number of tactical nodes does not impact the overall performance of the WSOA 

architecture in the cases of 1, 2 and 4 tactical nodes. There is a slight reduction in 

throughput for the 1, 2, and 4 node experiments across the various image deadlines. As  

the deadline is extended from 38 seconds to 42 seconds and so on, the overall throughput 

for the system is reduced because a given image is allowed more time for downloading.  

Initially, the performance of the WSOA architecture does seem to be impacted 

significantly by the number of tactical nodes in the 8 and 16 node cases. This can be 

attributed to the amount of TDMA bandwidth allocated in these cases. In the 2 and 4 

node cases, the amount of TDMA bandwidth allocated to each tactical node is equal to 

the bandwidth allocated to a single tactical node. In the 8 and 16 node cases, the amount  

of TDMA bandwidth allocated to each tactical node is not equal because there is not 

enough bandwidth for such an allocation. Therefore, the tactical nodes in these cases are  
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forced to share bandwidth. As a consequence, the scheduling algorithm used to service 

the imagery requests affects the performance of the WSOA architecture. As will be 

discussed later, TDMA bandwidth should have been considered as separate factor to be 

studied independent of the number of tactical nodes. A different scheduling algorithm 

might be able to provide some improvement in the performance of the WSOA 

architecture. But, this type of modification is unlikely to improve the performance to the 

level observed in the 1, 2, and 4 node cases. Thus the performance of the WSOA 

architecture does scale well for this metric, based on the assumption that each tactical 

node is allocated sufficient bandwidth. 

All of the results presented, across each of the image deadlines, are within the 

90% confidence interval, and thus can be considered statistically identical. This behavior 

is confirmed by ANOVA analysis (c.f., Appendix A) which finds that the overall image 

deadline accounts for 0.67% of the variance for each experiment. The number of tactical 

nodes accounts for 98.72% of the variance for each experiment. The maximum average 

value for the image tiles per second metric is approximately 0.17. This metric is derived 

by measuring the number of image tiles that are received during a given period that a 

single image is downloaded. 

These results, given the respective image deadlines, are expected. The throughput 

of the WSOA architecture, as measured by image tiles per second, is considered 

satisfactory for the 1, 2, and 4 node cases. The throughput of the WSOA architecture is 

not satisfactory in the cases of 8 and 16 nodes. Further simulation and analysis is required 

to determine for certain that the results obtained in the 8 and 16 nodes cases can be 

attributed directly to the allocation of TDMA bandwidth. Once accomplished, then a  
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definitive statement as to overall scalability of the WSOA architecture can be made with 

regard to this performance metric. 
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Figure 4-2. Image Tiles Per Second Results 

 
 
4.3.2 Compression Level Analysis 

As discussed previously, the Compression Level analysis is replicated for 1, 2, 4,  

8 and 16 tactical nodes. The Compression Level metric is an average of the compression  

levels measured for the image tiles being transmitted. The compression levels used by the 

WSOA architecture are discrete, i.e. 50:1, 75:1 and 100:1, but an average of the recorded 

values provides relative insight into overall image resolution. A compression level 

average closer to 50 would indicate that the overall image resolution is nearly maximum,  
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while conversely, a compression level average closer to 100 would indicate that the 

overall image resolution is nearly minimum. 

Figure 4-3 shows the results for the Compression Level metric for each of the 

respective image deadline experiments. As demonstrated by the results, the number of  

tactical nodes does not impact the adaptation strategy of the WSOA architecture in the  

cases of 1, 2 and 4 tactical nodes. There is a reduction in the metric results for the 1, 2, 

and 4 node experiments across the various image deadlines. As the deadline is extended 

from 38 seconds to 42 seconds and so on, the average compression level for individual 

image tiles is reduced because the image is allowed more time for downloading. Thus, 

the WSOA architecture has more flexibility in regards to selecting the compression level 

for a given image tile.  

Initially, the adaptation strategy of the WSOA architecture does seem to be 

impacted significantly by the number of tactical nodes in the 8 and 16 node cases. Once 

again, this can be attributed to the amount of TDMA bandwidth allocated in these cases. 

The allocation of TDMA bandwidth has a significant effect on the compression level for 

individual image tiles for the same reasons provided in the analysis of the Image Tiles  

Per Second metric. Again, TDMA bandwidth should have been considered as a separate 

factor to be studied independent of the number of tactical nodes. Thus the performance of 

the WSOA architecture does scale well for this metric, based on the assumption that each 

tactical node is allocated sufficient bandwidth. 

All of the results presented, across each of the image deadlines, are within the 

90% confidence interval, and thus can be considered statistically identical. This behavior 

is confirmed by ANOVA analysis which finds that the image deadline accounts for  
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14.09% of the variance for each experiment. The number of tactical nodes accounts for 

76.80% of the variance for each experiment. The maximum average value for the 

compression level metric is approximately 75.36.  

These results, given the respective image deadlines, are expected. The average  

compression level of the WSOA architecture is considered satisfactory for the 1, 2, and 4 

node cases. The average compression level of the WSOA architecture is not satisfactory  

in the cases of 8 and 16 nodes. Further simulation and analysis is required to determine 

for certain that the results obtained in the 8 and 16 nodes cases can be attributed directly 

to the allocation of TDMA bandwidth. Once accomplished, then a definitive statement as 

to overall scalability of the WSOA architecture can be made with regard to this 

performance metric. 
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Figure 4-3. Compression Level Results 
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4.3.3 Image Download Time Analysis  

The Image Download Time analysis is replicated for 1, 2, 4, 8 and 16 tactical 

nodes. The Image Download Time metric measures the time required by a given tactical 

fighter node to download a single complete image.   

Figure 4-4 shows results for the Image Download Time metric for each of the 

respective image deadline experiments. As demonstrated by the results in the cases of 1, 

2 and 4 tactical nodes, the number of nodes does not affect the overall download time for 

a given image transmitted by the WSOA architecture. 

There is a slight increase in the metric results for the 1, 2, and 4 node experiments 

across the various image deadlines. As the deadline is extended from 38 seconds to 42 

seconds and so on, the overall image download time increases proportional to the 

increase in the image deadline.  

Initially, the overall download time for a given image transmitted by the WSOA  

architecture does seem to be impacted significantly by the number of tactical nodes in the 

8 and 16 node cases. Once again, this can be attributed to the amount of TDMA 

bandwidth allocated in these cases. The allocation of TDMA bandwidth has a significant 

effect on the image download time for the same reasons provided in the analysis of the  

Image Tiles Per Second and Compression Level metrics. Again, TDMA bandwidth 

should have been considered as a separate factor to be studied independent of the number 

of tactical nodes. Thus the performance of the WSOA architecture does scale well for this 

metric, based on the assumption that each tactical node is allocated sufficient bandwidth. 

All of the previous results are within the 90% confidence interval, and thus can be 

considered statistically identical. This behavior is confirmed by ANOVA analysis which 

finds that the overall image deadline accounts for 0.09% of the variance for each  
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experiment. The number of tactical nodes accounts for 99.86% of the variance for each 

experiment. The maximum average value for the image download time metric is 

approximately 181.65s. 
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Figure 4-4. Image Download Time Results 

 
These results, given the respective image deadlines, are expected. The overall 

download time for a given image transmitted by the WSOA architecture is considered 

satisfactory for the 1, 2, and 4 node cases. The overall download time for a given image 

transmitted by the WSOA architecture is not satisfactory in the cases of 8 and 16 nodes. 

Further simulation and analysis is required to determine for certain that the results 

obtained in the 8 and 16 nodes cases can be attributed directly to the allocation of TDMA 

bandwidth. Once accomplished, then a definitive statement as to overall scalability of the 

WSOA architecture can be made with regard to this performance metric. 
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4.4 Conclusion 

The WSOA architecture provides a scalable framework for the transmission of 

real-time imagery and other complex data products from command and control aircraft, 

such as AWACS or JSTARS, to tactical aircraft, such as F-15s or F-16s. As demonstrated 

by the results, the WSOA architecture scales well with the increase in the number of 

tactical nodes that are supported by the architecture, in the 1, 2 and 4 node cases. In the 

cases of 8 and 16 tactical nodes, the performance of the WSOA architecture initially 

seemed to be impacted significantly by the number of nodes. While this is statistically 

true in regards to all three of the metrics collected in the context of the analysis that was 

performed, the actual explanation for the impact on performance is related to the 

allocation of TDMA bandwidth.  

As discussed previously, further simulation and analysis is required to determine 

for certain that the results obtained in the 8 and 16 nodes cases can be attributed directly 

to the allocation of TDMA bandwidth. This will require additional research and work to 

modify the existing simulation model to support a “low-bandwidth” TDMA allocation in 

the 1, 2, and 4 node cases. This simulation of this “low-bandwidth” TDMA allocation 

will provide the additional data required to perform a complete analysis that can clearly 

demonstrate that bandwidth is the factor that has the greatest effect on the scalability of 

the WSOA architecture. At this point, only in the 1, 2, and 4 node cases can one conclude 

that the WSOA architecture still scales well, regardless of the number of tactical nodes. 
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5. Conclusions 
 
 

5.1 Restatement of Research Goal 

The principal goal of this research effort is modeling and simulating the WSOA 

architecture, to determine its scalability as a networking protocol for DRE systems. The 

current WSOA architecture supports a single command and control aircraft and a single 

tactical fighter node. For the purposes of demonstrating the application of new 

technology, this type of limited experimental setup is sufficient. Since this technology 

will eventually transition to existing military systems, questions concerning the 

scalability of the WSOA architecture and underlying technology must be explored. 

Specifically, the goal of this study was to determine the maximum number of tactical 

fighter nodes that can be supported, at varying levels of QoS, by a given command and 

control node.  

 

5.2 Research Contribution 

This research is the first to implement and analyze the WSOA middleware 

architecture in a network simulation environment. This work also introduces a simple 

round-robin scheduling algorithm to transmit image tiles to multiple tactical nodes. While 

round-robin scheduling is certainly not unique, this type of scheduling is the first to be 

implemented in the context of the WSOA architecture supporting multiple tactical nodes. 

In addition, this forms the foundation for future research involving other more pertinent 

scheduling algorithms, when such algorithms are eventually identified. 
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5.3 Conclusion 

A scalable protocol is a critical component in any information infrastructure, 

especially in the case of an infrastructure that is attempting to disseminate information in 

real-time. As implemented here, the WSOA architecture provides this capability for up to 

4 tactical nodes. This successful demonstration of the WSOA architecture is due in large 

part to the amount of Link-16 TDMA bandwidth that is allocated to each tactical node. In 

the 2 and 4 node cases, the amount of TDMA bandwidth is essentially equal to that which 

is allocated in the single node case. Thus, in experiments with increasing numbers of 

tactical nodes, the nodes are required to share the available Link-16 TDMA bandwidth. 

As demonstrated in the 8 and 16 node cases, this sharing of bandwidth has a significant 

impact on the performance of the WSOA architecture. 

Given the explanation and justification above, one can conclude that the number 

of tactical nodes alone did not affect the performance of the WSOA architecture in any 

significant fashion. Thus, the WSOA architecture effectively adapted to changes in the 

deadline set for the overall download time for a single image, regardless of the number of 

tactical nodes.   

 

5.4 Future Research 

Many facets of the WSOA architecture lend themselves to areas for future 

research and improvement. The most obvious future research effort is to continue 

experimenting with the number of tactical nodes that the WSOA architecture supports in 

simulation, so as to determine a value for the parameter n that is further refined for 

different operational contexts.  Based on the results of this effort and the context given, 

an estimated value for this parameter falls in the range between 4 and 8 tactical nodes.  
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5.4.1 Scheduling Algorithms 

 Once sufficient research has been completed in the area of applying dynamic 

TDMA bandwidth allocation strategies to military tactical datalinks such as Link-16, then 

the research completed and documented here on the WSOA architecture should be 

revisited. The admission of tactical nodes into the existing communications infrastructure 

will likely be the deciding factor in choosing a scheduling algorithm for ordering the 

transmission of image tiles by the C2 node. Experimentation in this area could be 

performed in the near future, but should be directed by the results of on-going research to 

add dynamic bandwidth allocation strategies to existing military tactical datalinks. 

Possible scheduling algorithms include priority-based schemes, real-time schemes (RMA, 

EDF, etc.) and just about any other applicable scheduling algorithm. 

5.4.2 Military Tactical Datalinks 

Given that the implementation of the WSOA architecture presented here is fairly 

modular, another interesting area of research would be to substitute models of other 

military tactical datalinks for the Link-16 model presented here. In all likelihood, the C2 

node will be supporting tactical nodes that are acting as flight leads for particular strike 

packages or other arrangements of aircrafts. As such, it may be the job of a flight lead 

aircraft to disseminate real-time information transmitted across the WSOA architecture to 

other tactical nodes in the strike package. Thus, studying the performance of the WSOA 

architecture in the context of other military tactical datalinks should also be explored.  
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Appendix A. Data 

 

Table A-1. WSOA Architecture Performance Metrics 

 

Image Tiles Per 
Second 

Compression Level Image Download 
Time 

Image 
Deadline 

# of 
Tactical 
Nodes μ Σ μ σ μ Σ 

1 0.27604 0.00000 82.42686 0.07714 38.62302 0.01254 

2 0.27544 0.00000 77.70597 0.13251 40.02178 0.02434 

4 0.27877 0.00000 81.96039 0.01315 40.38903 0.00578 

8 0.06554 0.00000 97.98015 0.00003 185.46009 0.00008 

38  
Seconds 

16 0.02379 0.00000 94.44008 0.04978 548.32441 3.70920 

1 0.25121 0.00000 72.44048 0.24871 43.24858 0.03392 

2 0.25658 0.00000 68.79808 0.19755 44.32527 0.04181 

4 0.26071 0.00000 66.42475 0.02364 45.07008 0.00679 

8 0.06334 0.00000 97.52994 0.00000 187.76057 0.00973 

42 
Seconds 

16 0.02361 0.00000 94.66064 0.00959 580.35583 0.54118 

1 0.23120 0.00000 58.20557 0.03471 50.18691 0.00228 

2 0.25685 0.00001 56.96875 0.46322 49.76129 0.12759 

4 0.28294 0.00001 59.99566 0.36036 47.30541 0.12676 

8 0.06262 0.00000 97.37964 0.00034 188.44555 0.00978 

46 
Seconds 

16 0.02334 0.00000 94.64290 0.00746 582.11194 0.51355 

1 0.22734 0.00000 50.00000 0.00000 54.75167 0.00166 

2 0.24160 0.00000 50.00000 0.00000 53.56711 0.00313 

4 0.25047 0.00000 50.00000 0.00000 52.90575 0.00081 

8 0.06148 0.00000 97.15617 0.00074 186.68725 0.01612 

50 
Seconds 

16 0.02311 0.00000 94.24186 0.00108 586.28092 0.11814 

1 0.22734 0.00000 50.00000 0.00000 54.75167 0.00166 

2 0.24160 0.00000 50.00000 0.00000 53.56711 0.003134 

4 0.25047 0.00000 50.00000 0.00000 52.90575 0.00081 

8 0.06058 0.00000 96.88285 0.00037 188.12161 0.00003 

54 
Seconds 

16 0.02297 0.00000 94.19334 0.00067 586.37747 0.92064 
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Note: An * after the percentage denotes the effect was significant based 
on the computed F-Test 
 
 

Table A-2. ANOVA Analysis for 38, 42, 46, 50 and 54 Second Trials 

 

 Image Tiles Per 
Second 

Compression 
Level 

Image Download 
Time 

Overall 
Image 

Deadline 
0.67% * 14.09% * 0.09% * 

Main 
Effects # of 

Tactical 
Nodes 

98.72% * 76.80% * 99.86% * 

Unaccounted 0.61% 9.11% 0.05% * 
 

 

Example A-2. Image Tiles Per Second ANOVA 

Computation of 
Effects 

 Image 
Deadline 

 

   38 42 46 50 54 Row 
Sum 

Row 
Mean 

Row 
Effect 

 # of 
Nodes 

1 0.2760 0.2512 0.2312 0.2273 0.22734 1.2131 0.2426 0.0730

  2 0.2754 0.2565 0.2568 0.2416 0.2416 1.2720 0.2544 0.0848
  4 0.2787 0.2607 0.2829 0.2504 0.25047 1.3233 0.2646 0.0951
  8 0.0655 0.0633 0.0626 0.0614 0.06058 0.3135 0.0627 -0.1068
  16 0.0237 0.0236 0.0233 0.0231 0.02297 0.1168 0.0233 -0.1461
  Column 

Sum 
0.919 0.855 0.856 0.804 0.80296 

  Column 
Mean 

0.183 0.171 0.171 0.160 0.16059 0.1695

  Column 
Effect 

0.014 0.001 0.001 -0.008 -0.0089 

    
    

Estimating Experimental Error Image 
Deadline 

 

   38 42 46 50 54 
 # of 

Nodes 
1 0.019 0.007 -0.013 -0.006 -0.0063 

  2 0.006 0.000 0.000 -0.004 -0.0038 SSE 
  4 0.000 -0.005 0.016 -0.005 -0.0052 0.0016
  8 -0.011 0.000 -0.001 0.007 0.00683 
  16 -0.014 -0.001 -0.002 0.009 0.0086 

   A-2  
      



    

 

 
 
Allocation of 
Variation 

  

  SST = SSY-SS0  
 SSY = SS0 + SSA + SSB +    

            SSE 
 

    
 SSY =  0.994154  
 SS0 =  0.718744  
 SSA =  0.001844  
 SSB =  0.271874  
 SST =  0.275410  
 SSE =  0.001690  
    
 Var. % 

Deadline 
0.669  

  % # 
Nodes 

98.71  

  % Error 0.613  
  Total 100  
    
    

Analysis of Variance   
    
 MSA =  0.000461  
 MSB =  0.067968  
 MSE =  0.000105  
 FA =  4.363842  
 FB =  643.1368  
    
 Compo

nent 
Sum of 
Sqrs. 

% of 
Var. 

Degre
es 

Mean 
Sqr 

F-
Comp 

F-Table 

 y 0.994154  
 ybar 0.718744  
 y-ybar 0.275410 100 24  
 Dead. 0.001844 0.669 4 0.000 4.363 2.33 
 # Nodes 0.271874 98.71 4 0.067 643.1 2.33 
 Errors 0.001690 0.613 16 0.000  
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Appendix B. Availability of OPNET®  Models and Source Code 
 
 

OPNET® Models and source code are not included as part of this document. Interested 

parties should direct their inquiries to: 

 

Dr. Richard Raines 

AFIT/ENG 

2950 Hobson Way, Bldg 642 

Wright-Patterson AFB, OH 45433-7765 
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