
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2005

A Knowledge Matrix Modeling of the Intelligence Cycle A Knowledge Matrix Modeling of the Intelligence Cycle

Kevin J. Whaley

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Whaley, Kevin J., "A Knowledge Matrix Modeling of the Intelligence Cycle" (2005). Theses and
Dissertations. 3785.
https://scholar.afit.edu/etd/3785

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/354268182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3785?utm_source=scholar.afit.edu%2Fetd%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A KNOWLEDGE MATRIX MODELING

OF THE INTELLIGENCE CYCLE

THESIS

Kevin J. Whaley, Capt, USAF

AFIT/GOR/ENS/05-18

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GOR/ENS/05-18

A KNOWLEDGE MATRIX MODELING

OF THE INTELLIGENCE CYCLE

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Kevin J. Whaley, BBA

Capt, USAF

March 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/05-18

A KNOWLEDGE MATRIX MODELING

OF THE INTELLIGENCE CYCLE

Kevin J. Whaley, BBA
Capt, USAF

Approved:

_____________________________________ ______________
John O. Miller, PhD (Chairman) Date

_____________________________________ ______________
Stephen P. Chambal, Maj, USAF, PhD (Reader) Date

iv

AFIT/GOR/ENS/05-18

Abstract

This effort models information flow through the United States Intelligence Community’s

Intelligence Cycle using a knowledge matrix methodology. The knowledge matrix

methodology takes explicit data from multiple sources and fuses that data to measure a

current level of knowledge about a target, or situation. Knowledge matrices are used to

develop a measure of user-needs satisfaction. User-needs satisfaction compares

requested levels of knowledge to a probability of collecting that knowledge within a

designated timeframe. This effort expands the work done by Captain Carl Pawling in his

March 2004 thesis, Modeling and Simulation of the Military Intelligence Process, by

modeling intelligence as an opportunistic, multi-source, multi-entity system of systems.

The value of intelligence fusion is compared, and analyzed between three different

algorithms; no fusion, a mixed forward and fuse strategy, and strict fusion strategy.

These fusion algorithms are then applied to competing intelligence collection

architectures in varying intelligence activity scenarios to determine which architectures

will most improve the probability of satisfactory collection. Satisfactory collection is

measured in terms of quantity, timeliness, and user-need satisfaction of

completed intelligence reports.

.

v

Acknowledgements

 Thank you to the entire GOR-05M class and all of my professors for helping me

complete this course of study. Special thanks to Capt Clinton Clark, 1Lt Tim Cook, 1Lt

Jim Markham, and1Lt Earl Bednar you all helped me through this course when I needed

help most. May those who walk this path after me realize their fortunes and not become

enmeshed in a quixotic academic quagmire. Learn what you can while you attend AFIT

and then go forth and do good work.

 The most thanks go to my family for they have given the most and asked the least

of me during my time at AFIT.

vi

Table of Contents

Page

Abstract .. iv

Acknowledgements... v

List of Figures .. viii

List of Tables .. x

1. Introduction... 1-1
1.1 Background.. 1-1
1.2 Problem Statement ... 1-2
1.3 Research Objective .. 1-2
1.4 Research Focus .. 1-3
1.5 Methodology.. 1-4
1.6 Assumptions and Limitations .. 1-5
1.7 Preview .. 1-6

2. Literature Review.. 2-1
2.1 Introduction.. 2-1
2.2 Defining Intelligence ... 2-2
2.3 Knowledge and Intelligence .. 2-3
2.4 The Nature of Information ... 2-4
2.5 The Nature of Data... 2-8
2.6 Knowledge Management ... 2-11
2.7 The Value of Knowledge and Intelligence .. 2-14
2.8 A Brief History of the American Intelligence Enterprise 2-16
2.9 The U.S. Intelligence Community and the Intelligence Cycle 2-18
2.10 Quantifying and Modeling Intelligence and Knowledge....................... 2-26
2.11 Summary .. 2-33

3. Methodology ... 3-1
3.1 Introduction.. 3-1
3.2 Knowledge Matrix Concept... 3-3
3.3 Modifying the Knowledge Matrix Method.. 3-5
3.4 Model Creation with Arena ... 3-11
3.5 The Intelligence Cycle - A Needs Driven Model 3-13

3.5.1 Model Concept ... 3-13
3.5.2 Planning & Guidance Submodel.. 3-13
3.5.3 Collection Submodel.. 3-25
3.5.4 Need Assessment ... 3-30
3.5.5 Processing & Exploitation Submodel .. 3-38
3.5.6 Analysis and Production Submodel ... 3-42
3.5.7 Dissemination Submodel ... 3-45

3.6 Validation and Verification.. 3-49
4. Data Analysis .. 4-1

vii

4.1 Introduction.. 4-1
4.2 Overcoming Initialization Bias .. 4-2
4.3 Statistical Measures Defined.. 4-5

4.3.1 Measuring Quantity.. 4-5
4.3.2 Measuring User Satisfaction .. 4-6

4.4 Creating a Baseline Scenario ... 4-8
4.4.1 Baseline Results ... 4-9
4.4.2 Baseline Inferences .. 4-13

4.5 Effect of a Heightened Perceived Threat Environment 4-14
4.5.1 Heightened Perceived Threat (WAR) Results 4-14
4.5.2 WAR Quantity ... 4-15
4.5.3 WAR User Satisfaction.. 4-16
4.5.2 Heightened Perceived Threat Inferences ... 4-18

4.6 Comparing Intelligence Architectures ... 4-19
4.6.1 Comparing Architectures Results .. 4-19
4.6.2 Comparing Architecture Inferences ... 4-24

4.7 Analysis Summary ... 4-25
5. Conclusions ... 5-1

5.1 Model Capabilities ... 5-1
5.2 Model Strengths ... 5-2
5.3 Model Weaknesses with Suggested Improvements................................. 5-3
5.4 Future Research ... 5-4

Appendix A: Acronym Listing ... A-1
Appendix B: User-Defined Model Attributes... B-1
Appendix C: Resource Parameter Tables ... C-1
Appendix D: Resource Schedules... D-1
Appendix E: Paired T-Tests...E-1

Bibliography ... 171

Vita.. 173

viii

List of Figures

 Page

1. Intelligence Cycle (JP 2-0, 2000:V)...2-19

2. Conceptual Model Flow-Chart ..3-2

3. Partial Wire Diagram - Planning and Direction Submodel3-14

4. Entity.Type Animated Figures...3-17

5. Post Library Needs Assessment Logic ..3-24

6. RADINT1 Capacity & Availability Schedule ...3-27

7. Wire Diagram - Collection Submodel ...3-28

8. Wire Diagram - Time Management Subprocess..3-29

9. Wire-Diagram Activity_State Needs Parser and Counts Logic...............................3-31

10. Wire Diagram - Collection Decision Tree Logic...3-32

11. Wire Diagram - Resource Selection Modeling..3-36

12. Wire Diagram - Processing & Exploitation Submodel..3-39

13. Wire Diagram -Analysis & Production Submodel ..3-44

14. Wire Diagram - Dissemination Submodel...3-47

15. Wire Diagram - No Fusion Statistics Collection ...3-48

16. Initialization Bias ...4-3

17. WIP Spiking Details ..4-4

18. Discrete Vs. Continuous Satisfaction Ratios Measured ..4-8

19. Baseline Quantity Measured ..4-10

20. Baseline Total User Satisfaction..4-11

21. Baseline Timeliness Comparison by Algorithm..4-12

22. Baseline User-Needs Satisfaction by Algorithm ...4-13

ix

23. Mixed Fusion Baseline Vs. War Quantity ...4-15

24. War Total Satisfaction Algorithm Comparison ...4-16

25. Mixed Fusion Base Vs. War Timeliness Comparison ...4-17

26. Mixed Fusion Baseline Vs. War User Needs Satisfaction.......................................4-18

27. Mixed Fusion Quantity Architecture Comparison...4-20

28. Scatter-Plot of MF Quantity Architecture Comparison ...4-21

29. Total Satisfaction Architecture Comparison..4-22

30. Timeliness Comparison between Architectures...4-23

31. User Needs Satisfaction Comparison by Architecture...4-24

32. Location Satisfaction Comparison by Architecture...4-25

33. IMINT1 Resource Schedule ... D-2

34. IMINT2 Resource Schedule ... D-3

35. SIGINT1 Resource Sched... D-4

36. SIGINT2 Resource Schedule.. D-5

37. RADINT1 Resource Schedule.. D-6

38. RADINT2 Resource Schedule.. D-7

39. MASINT2 Resource Schedule.. D-8

x

List of Tables

Table Page

40. Intelligence Disciplines (JP 2-0, 2000: 25)..2-21

41. Fusion Level Definitions (JDL, 2004:1)..2-24

42. Original Knowledge Matrix Example..3-4

43. Satisfaction Level Definitions..3-6

44. User-Needs Vector in a Knowledge Matrix...3-7

45. User-Needs Generation Distributions ..3-8

46. Sample Collection Matrix, IMINT1 ..3-9

47. Comparison of Collection Vector to a User Needs Vector......................................3-10

48. Second Sensor Collection Vector Compared to Original User-Needs Vector3-10

49. Maximum Satisfaction Vector ...3-11

50. Entity Arrival Rate Distributions ...3-16

51. Attributes Assigned at Matrix _Creation Node ...3-20

52. Attributes Assigned at Opportunity_Matrix Node...3-21

53. Library_Search Example of Collection Vector Distributions..................................3-22

54. RADINT1 Parameters Modeled ..3-26

55. IMINT Parameters .. C-1

56. SIGINT Parameters... C-2

57. RADINT Parameters... C-3

58. MASINT Parameters .. C-4

59. OSINT Parameters .. C-5

60. Counter -Intelligence Parameters.. C-6

61. HUMINT Parameters.. C-7

1-1

A KNOWLEDGE MATRIX MODELING

OF THE INTELLIGENCE CYCLE

1. Introduction

1.1 Background

 The United States Intelligence Community (IC) and the Department of Defense

(DoD) did not thwart the September 11th 2001 Al Qaida terrorist attacks because of a

series of intelligence failures. The 9/11 commission stated that the attacks highlighted

four kinds of intelligence failures: in imagination, policy, capabilities and management

(9/11 Commission Report, 2004: 339.). All four of these failures involved a central

theme, lack of community cohesion and therefore a dearth of information sharing

 The 9/11 Commission Report proposed that information be shared horizontally,

across new networks that transcend individual agencies. A decentralized network model,

the concept behind much of the information revolution, is one of the suggested solutions

to horizontal integration. In the decentralized network model, agencies would still have

their own databases, but those databases would be searchable across agency lines. In this

system, levels of classified information could still be protected through the design of the

network and an “information rights management” approach that controls access to the

data, not access to the whole network.” The new term used to describe this network is a

“trusted information network.” Since the idea of a trusted information network was

1-2

proposed, the IC and DoD have endeavored to incorporate horizontal integration into

intelligence planning and operations. One key portion of horizontal integration is the

complicated question of what investments should be made today to prepare for

intelligence collection in the future. What intelligence architectures will improve

Intelligence Community cooperation, coordination, and communication? What

architecture will give the United States the best probability for successful intelligence

collection?

1.2 Problem Statement

The National Security Space Organization (NSSO) was chartered by the Decision

Support Center (DSC) Senior Steering Group (SSG) – USD(AT&L), VCJCS, and

ASD(C3I), to report on the performance of multi-INT fusion. The Mulit-INT Fusion

report produced illustrated the value of fusing intelligence data and modeled how

imagery data might be fused to create new knowledge. This report together with the

aftermath of September 11th spawned numerous questions concerning intelligence fusion.

How do we attain greater fusion not only between military organizations, but across the

entire Intelligence Community? How can fusion be measured? How can we use artificial

intelligence to assist in fusion, and lessen some of the information overload experienced

by human intelligence analysts? Finally, the two questions at the crux of this effort, does

fusion exist, and if so, what intelligence architecture(s) will best support fusion and be

most likely to meet end-user information needs?

1.3 Research Objective

The ultimate goal of this effort is to accurately model the flow of intelligence

information through a multi-INT system and provide an output measure of total

1-3

satisfaction. Total satisfaction is defined as achieving a requested knowledge level

within a specified timeframe. Given differing intelligence systems architectures (i.e.

different sets of resources), the approximate collection distributions in a 24-hour time

period, and the appropriate processing delays this model will determine which

architecture will most likely meet user information needs satisfaction. The model must

be both generic and flexible enough to analyze notional scenarios based on future needs

estimates and future collection capabilities.

 The secondary objective is to provide insight into the intelligence fusion process

using a knowledge matrix methodology. The knowledge matrix method is a simple,

straightforward, database management solution to the problem of modeling intelligence

fusion. The method primarily uses probabilistic Monte Carlo simulation to deal with

modeling knowledge and satisfaction levels. Although this work is only a model, some

of the intelligence fusion concepts espoused here could be directly applied to real world

intelligence processes. Compiling centralized data in generalized data categories to build

automatically updating databases could assist intelligence professionals across the

Intelligence Community better discover, analyze, and employ data.

1.4 Research Focus

 Model development focuses on three areas of improvement; the creation of user-

needs as knowledge matrices, the design of the collections sub-model, and the flow of

knowledge matrices through the intelligence cycle. The preponderance of research

concentrates on developing a methodology to model and quantify satisfaction. In pursuit

of this goal the primary task was to develop a creation scheme and fusion methodology

for knowledge matrices. Once the mechanics of creation and fusion were developed an

1-4

unclassified but accurate abstraction of the U.S. intelligence cycle had to be formulated.

The model thus created had to be easily modified so what-if analysis and varying

scenarios and parameter levels could be tested and compared.

1.5 Methodology

 The kernel concept of the knowledge matrix method was developed in the NSSO

report titled Multi-Intelligence Fusion Performance, and was further espoused in the

RAND study, Measuring the Value of High Level Fusion. The knowledge matrices

generated in this model are 6x6 matrices. The six rows represent information quality

levels and the five columns define generalized knowledge areas commonly used in

intelligence reporting. A modified tasking method was developed so that knowledge

matrices could be used to model information flow. Intelligence tasking usually takes the

form of Requests for Information (RFIs). The RFIs generated in this model are

knowledge matrices which specify a user-needs satisfaction level within a specified time

limit. Once the initial RFIs are generated, the model hands the requests off to the

collections submodel.

 The collections sub-module is comprised of six primary user-needs satisfaction

collection submodels. A number of generic collection resource platforms supports each

user-needs submodel. These platforms represent the array of intelligence collection

platforms owned by agencies across the Intelligence Community. Each collection

platform acts as a data source to update knowledge matrices flowing through the

intelligence cycle. When collection is complete, or a pre-specified request time limit

occurs, the available sensor reports are fused using a knowledge matrix fusion algorithm

to create a maximum satisfaction vector. The resulting maximum satisfaction vector is

1-5

scored to determine the level of satisfaction attained. This will create a high level model

of what has become known as the Intelligence, Surveillance, and Reconnaissance (ISR)

System of Systems. Given the correct number of collection resource platforms, and

accurate collection and processing distributions this model should adequately model the

complex interactions of ISR platforms in the intelligence cycle. This work’s final

product will be an analysis of competing intelligence resource architectures using

notional request levels, and notional collection distributions. The measures of interest for

this analysis remain essentially the same as the previous work; quantity, timeliness, and

user-needs satisfaction. The ultimate measure of effectiveness, Total Satisfaction, will

have more fidelity in the current model than in past models due to the knowledge matrix

method employed.

1.6 Assumptions and Limitations

 Some assumptions must be established because we are working with a model of

the real world. The first assumption is that this will not reflect all the intricacies of the

real world system due to the level of abstraction. This model is an abstraction because it

does not incorporate human intuition, initiative, or experience. Fusion by a human being

includes deductions and inferences, which this model will not illustrate. A further

abstraction beyond no human in the loop modeling is that this model is not a truth versus

perceived truth model. Improving knowledge quality in an area will not drive improved

collections capability. No information dependencies are simulated. This leads to two

more assumptions, first that all RFI arrivals are independent of each other, and second

that collection efforts by differing sensors are independent of each other. This model

does not employ any actual sensor or collection data. The driving data in this model are

1-6

the statistical collection probabilities and process delay probabilities, which must be

subjectively derived by Subject Matter Experts (SMEs). Collection probabilities and

process delays are not included in this thesis because they are classified items. Also due

to classification issues not all intelligence disciplines, collection platforms, or collection

methodologies are included in this model. This classification issue extends to

distributions used to create quality request levels, timeliness requirements, and delay

times for processing data. Initially, all distributions used are notional; the thoughts and

theories supporting each distribution used are noted in Chapter three, Methodology.

 This model is designed to be generic so that classified analysis can be undertaken

when the correct probabilities are placed in the model. It is assumed, that the model will

accurately reflect real world performance when either empirical data or theoretically

sound probabilities are employed.

 The final assumption is that dissemination will occur as a generic time delay only,

and that all data will be disseminated to the correct user without any need for further

explanation. Despite its level of abstraction from reality this model could be used to

facilitate an improved understanding of the intelligence cycle, its functions and responses

1.7 Preview

 This thesis contains five chapters. This chapter, the Introduction, contains

background information, a synopsis of the thesis concept, and the development of

research goals. The second chapter, Literature Review, discusses the concept of data as

the building blocks of knowledge; the connection between knowledge and intelligence; a

brief history of the U.S. intelligence enterprise and the Intelligence Cycle, and a look at

several different ways used to model and quantify knowledge in computer simulations.

1-7

Chapter three discusses the methodology used to develop the Arena model. A detailed

discussion of model creation correlates how and why the model performs as it does

compared to real world processes. The topics of matrix creation and how the matrices

flow through the abstracted intelligence cycle is presented together with the ensuing

modeling difficulties and solutions. The fourth chapter, Results and Analysis, presents

the output and insights discovered from a baseline, peacetime scenario, a heightened

perceived threat or wartime scenario, and a competing architectures scenario where a the

decision must be made to purchase more UAV assets or a satellite upgrade. The fifth

chapter, Conclusions, outlines the model strengths and weaknesses, recommends future

model improvements and future theoretical research topics.

2-1

2. Literature Review

Intelligence is probably the least understood and most misrepresented of
the professions.” “Your successes are unheralded, your failures are
trumpeted. For obviously you cannot tell of operations that go along well.
Those that go badly generally speak for themselves.”

President John F. Kennedy, November 28 1961, inauguration of the
new CIA Headquarters building and retirement of Allen Dulles as
CIA director

2.1 Introduction

 To accurately model, any process one must obviously understand the system

mechanics; how objects flow through a system and how processes relate to each other.

However, understanding only the mechanical aspects of a problem is often shallow

knowledge, which may reveal only the initial symptoms of a deeper problem. To

understand the deeper issues and solve the true problems requires an understanding of the

events that led up to the current system state. Learning the history of a system can

provide enhanced insights, which can lead to system improvements and a solution to root

problems instead of a series of cosmetic fixes. In the following section we seek to

understand the nature of intelligence by: defining intelligence, delving into the discovery

of information and data, the creation of knowledge; realizing the value of intelligence,

reviewing the formation of the U.S. Intelligence Community; discussing the intelligence

cycle and intelligence disciplines; and finally investigating some current methodology for

quantifying and modeling the value of knowledge and hence intelligence. Therefore, the

initial issue is naturally, what is intelligence?

2-2

2.2 Defining Intelligence

 What is intelligence? What does it supposed to do? Many intelligence

professionals have struggled to accurately answer these questions and define intelligence.

Dr. Michael Warner of the CIA History Staff researched this question extensively and

compiled a comprehensive list of intelligence definitions applied by credible

organizations and individuals. The culmination of his work concludes in this definition,

“Intelligence is secret, state activity to understand or influence foreign entities.” (Warner,

2002: 7) This definition is curious because it handily avoids a keyword noted in almost

all other definitions of intelligence. Dr. Warner’s definition omits the word

“knowledge”. The majority of definitions he listed himself incorporate the concept of

knowledge into intelligence. For example, the Department of Defense defines

intelligence as “Knowledge of an enemy’s capabilities and intentions” (JP 2-0, 2000: V),

and the CIA defines intelligence as “Knowledge and foreknowledge of the world around

us – the prelude to decision and action by US policymakers.” (Warner, 2002: 2). Dr.

Warner avoids using the term knowledge by substituting the phrase “understand foreign

entities.” His avoidance of the term knowledge may be his way of avoiding a fairly

ambiguous and passive word. His choice of words implies action. The words understand

and influence, describe intelligence in an active manner, and intelligence is, as we shall

see, a very active process. However, the actions implicit in the word understand are the

actions of gathering information, analyzing or thinking about the information, and then

making inferences or deductions based on the pool of information presented. The

“understanding” process is essentially the creation of knowledge from data, for that is

what intelligence produces, knowledge. Understanding and knowing are synonymous

2-3

states of being therefore, for the purposes of this thesis we shall assume that intelligence

seeks to gain knowledge. As previously mentioned the term knowledge is ambiguous

and requires further elucidation.

2.3 Knowledge and Intelligence

 Knowledge is a non-physical product, the result of complex combinations of

cognitive algorithms unique to every human brain. The word knowledge has numerous

shades of meaning dependent upon and individual’s experiences. To give some frame of

reference to this discussion of knowledge several definitions are presented

(Dictionary.com:20 Aug 2004).

 Knowledge is information associated with rules which allow inferences to be
 drawn automatically so that the information can be employed for useful purposes.
 www.seanet.com/~daveg/glossary.htm

 The information context; understanding the significance of information.
 www.cio.gov.bc.ca/other/daf/IRM_Glossary.htm

 Information defines facts (A is B). Knowledge defines what one should do if certain facts
 apply. Thus, if A is B, then do C. There are many different ways knowledge can be
 encoded, but policies and business rules are popular formats.
 www.bptrends.com/resources_glossary.cfm

 Knowledge is part of the hierarchy made up of data, information and knowledge. Data are
 raw facts. Information is data with context and perspective. Knowledge is information with
 guidance for action based upon insight and experience.
 www.itilpeople.com/Glossary/Glossary_k.htm

 We selected these definitions because they all indicate that knowledge consists of

information, and that information is bits of specific data. The data to knowledge concept

is well documented in many knowledge management texts. As computing power has

improved so too has our ability to organize and access data. A number of knowledge

management articles, books, and collegiate texts have come to the consensus that raw

data “fused” in some fashion can eventually become new knowledge (Waltz, 2003: 3).

2-4

When used in the Intelligence arena we are most often interested knowledge about the

nature of the physical world. We want spatial knowledge, where a physical object is

located, and temporal knowledge, when an event/interaction between physical objects

occurred.

2.4 The Nature of Information

 Information in this thesis refers to items of intelligence value, usually a collection

of related data that forms some kind of information. We can break down the term “items

of intelligence value” into four distinct information categories; known facts, secrets,

disinformation, and mysteries. (Berkowitz; 1989: 86)

A known fact is information open to discovery given the proper equipment or

technology. The cost to discover this information may be prohibitive, but the information

is available in the open given the proper resources. Known facts are not necessarily

common knowledge. Most all people know that bombs exist, but not all people know

how to make a bomb. If one wanted to build a bomb, the information could be found and

applied because the ingredients needed to make a common bomb are known facts. Most

people just choose not to know this piece of information. Not all facts can be discovered

by open means. Some facts are protected by nation-states, or hidden by individuals as

secrets.

 Secrets, involve concealing or protecting information to some degree (Berkowitz,

1989: 88). We all know that nuclear bombs exist, but most people and even many nation-

states do not know how to build a nuclear bomb. This is because of the protections

placed upon this secret information. Because it can be difficult to obtain secret

information, knowledge of secret information is often incomplete. This lack of

2-5

information is known as an intelligence gap. Filling intelligence gaps is one of the major

challenges intelligence agencies face. Dealing with an intelligence gap creates

uncertainty. We try to quantify our lack of information by making probabilistic

estimates. One of the methods used to quantify uncertainty in intelligence was the Kent

scale developed by Sherman Kent and Allen Foster Dulles, the first two Directors of the

Central Intelligence Agency (DCI) (Kent, 1964: 4-5). The Kent scale was created

because of a miscommunication between intelligence professionals and decision makers

over the Invasion of Yugoslavia in 1951. An intelligence report, called a National

Intelligence Estimate (NIE) at the time, concluded with the phrase “We believe that the

extent of Satellite military and propaganda preparations indicates that an attack on

Yugoslavia in 1951 should be considered a serious possibility.” Speaking with some

colleagues who read the report, Kent was shocked to discover that some readers had

estimated the odds of invasion as low as a 20% chance of occurring. Kent himself felt

that the chances of invasion were sitting at least 65% in favor of an invasion occurring.

 Realizing that this issue of quantifying uncertainty would continually crop up he

created a table (the Kent Scale), which broke uncertainty up into five different levels;

Almost Certain (90% certainty), Probable (75% certainty), Chances are Even (50%

certain), Probably Not (30% certainty), Almost certainly not (7% certainty). (Kent, 1964:

2-5) This chart, and its fuzzy quantification scheme, has been used by many intelligence

agencies since its inception. The chart is not an exact measure but it does serve to put

some kind of quantification or bound on the amount of uncertainty inherent in the

intelligence gap being scrutinized. Here another problem becomes apparent, what

2-6

happens when information is deliberately tampered with to increase our level of

uncertainty? What happens when we discover disinformation?

 Disinformation is an active attempt to deceive or mislead intelligence collectors

and hence distract intelligence resources and decision makers from the adversary’s true

actions/intentions (Berkowitz, 1989: 96). This type of information, when accepted as

truth, can degrade knowledge by falsely increasing the certainty of an incorrect solution.

Statisticians term the probability of accepting something as true that is actually false as a

Type I error, or alpha error. Because statistics can be considered the science of extracting

information from data it may make sense to view this type of data in a statistical context

(Ramesh, 1998: 1). Adversaries wishing to distract or confuse a decision maker want to

increase the chance that a Type I error is committed. Many misinformation techniques

are used to create type I errors and deceive the unwary. Some commonly noted

techniques are radio spoofing, visual decoys and double agents, but many more advanced

techniques can be used as well. One famous and successful disinformation campaign was

Operation Mincemeat, the man who never was, performed by the British Secret Service

during WWII. (Berkowitz; 1989: 96). A corpse, dressed as a Royal Marine Captain with

a number of falsified secret documents, was purposely released from a sub off the coast

of Spain. The false documents stated that the current plan was to fool the German’s into

thinking that Sicily would be invaded next and not some other unnamed location. The

German’s not wanting to be fooled, redeployed units from Sicily to the island they

thought would be invaded, Corsica (Berkowitz, 1989: 96). This ruse undoubtedly made

the actual invasion of Sicily a bit simpler for the Allies. Intelligence professionals must

2-7

continually be wary that data discovered may be misinformation data (Berkowitz, 1989:

86).

 The final information type that intelligence must deal with is the mystery.

(Berkowitz, 1989: 103) Mysterious data can take two forms, paradox and uniform

certainty. Paradoxes are circular logic, or impossible outcomes (i.e. 1+1 = 4). Paradoxes

often appear as a piece of data or information that is anomalous but seems significant.

This type of mysterious data forces intelligence agencies to ask more questions and

search for corroborating data. If the data is corroborated but still cannot be put into

proper context it is termed a mystery and a determination must be made if the

information gap created by the mystery is worth the time and effort to pursue.

 The second form of mystery, uniform certainty, is one where all the probabilities,

or facts are known, but no answer is possible to extrapolate from the data. An example of

this kind of mystery is the “voter’s paradox” (Berkowitz 1989: 103). There are three

different courses of action (COA) possible. Decision Maker#1 favors COA A, then COA

B, and finally COA C. Decision Maker #2 favors COA B, then COA C, and finally COA

A. Lastly Decision Maker #3 favors COA C, then COA A, and finally COA B. If all

three Decision Makers have an equal vote in what COA will be taken then the sum of the

three pieces of data negate each other and we are left with zero knowledge. We only

know that there are three courses of action and that each has a uniform 33% chance of

occurring. This uniform certainty is actually maximum uncertainty given a problem

where all factors are known. Uncertainty is the antithesis of knowledge and an anathema

to intelligence. The problem is that uncertainty abounds. It is ubiquitously present in

2-8

almost all intelligence problems because it is found at the very base of the knowledge

chain, at the data level.

2.5 The Nature of Data

 Because both knowledge and information can be broken down into data we must

understand the nature of data. Data could be a spreadsheet of numbers, or a single

number. It could be a string of textual characters (i.e. a language), or a single character.

It could be any symbol to which meaning or value is assigned. Data has a multitude of

forms and methods of transfer from oral, to print, to electronic. Shannon’s information

theory breaks data down into bytes or bits. These bits do not have to “mean” anything in

particular. They can simply be a string of numbers whose only value or meaning is that

they take up space on a computers hard drive. For the purposes of this thesis we seek a

different form of data. We seek data that encodes or implies some meaning.

 Unfortunately, data is often not readily available. Intelligence entities must seek

out or collect data. In the course of collecting data four challenges are typically

encountered. (Zack, 2004: 862)

1. Uncertainty: not having enough data/information

2. Complexity: having more data/information than one can easily process
 (i.e. information overload)

3. Ambiguity: not having a conceptual framework for interpreting data/information

4. Equivocality: having several competing or contradictory conceptual frameworks

The first challenge to overcome, uncertainty, we talked about at length in the nature of

information section. We can say that we are uncertain about a situation when we do not

know all of the factors affecting that situation. If all factors were known then making a

2-9

decision would be much simpler. In the IC great leaps have been made to overcome

uncertainty. We now have platforms that collect tremendous amounts of data. Some

would say that too much data is collected and nothing is done with it. This improved

collection ability has not translated into improved understanding of the battlespace. We

are overcoming data uncertainty, but we are now encountering the second challenge of

data collection, complexity.

 Complexity deals with the effective management of collected data. We now have

more data than can be efficiently analyzed and correlated by the human resources

currently available. Former Deputy Director of Intelligence (DDI) for the CIA, Jack

Davis (1992:35) discussed this issue of data complexity at length. “The human mind is

the most creative analytic tool in existence, but it reaches limits in three areas: the

volume of information it can store, the number of variables that can be brought to bear on

a problem coherently, and the ability to track the consequences of the whole set of

variables in one of the factors under consideration.” The current amount of data that can

be collected confounds the ability of the human mind to rationally cope with it. Nobel

Laureate Herbert Simon coined the term, information overload, in the mid 1950s.

 What information consumes is rather obvious: it consumes the attention of its
 recipients. Hence, a wealth of information creates a poverty of attention, and a
 need to allocate that attention efficiently among the overabundance of
 information sources that might consume it. (Tiwana, 2000: 55)

The latest military lingo for this deluge of data is analysis paralysis. We are paralyzed by

too much data. That in itself is an issue, but we also become further paralyzed by the

next issue, equivocaltiy. Equivocality means that we have conflicting data. One report

states that troops are in-garrison at a certain time and another report states that they are

out of garrison at the same time. One expert states that there is only a 30% chance of a

2-10

drought in a country this year while a second expert says that there is a 60% chance of a

drought? Which data or probability is correct? Equivocality of data has become an area

of great concern in the field of sensor fusion and as we gather more data the chances of

receiving conflicting or erroneous data increases, but at least we understand what choices

are when we have conflicting data. At least we have a choice of directions or avenues of

inquiry to explore. What happens when we have data which may be significant, but we

have not idea of it’s meaning. We then face the problem of ambiguity.

 Ambiguity means that we have some data, but we don’t know what it means. For

example, we may collect a signal that literally translates to “The fat man has a red

lollipop.” We have the transmission, we have the translation, but we do not have the

meaning of the message. We do not have the necessary knowledge to understand the

message’s importance therefore the message (e.g. the data) is ambiguous. Both

ambiguous data and equivocal data can fall into the information category of a mystery,

which we may not have the time or resources to solve.

If data is the foundation of knowledge then these four data challenges are the

cracks in our knowledge foundation. The cracks may not all stem from uncertainty, but a

high degree of uncertainty does seem to simulate them. When we have a high degree of

uncertainty we begin to collect more data in order to reduce our uncertainty about an

outcome. Our attempts to mitigate our uncertainty have led us to collect massive

amounts of data. This massive collection of data is not clearly organized or effectively

managed. Due to this state of affairs, a complexity issue has been created. We have too

much data and we do not know what to do with it all. This massive data collection effort

has also inadvertently increased equivocality and ambiguity issues that we face. The

2-11

more data we have the more chance we have of that data conflicting or being just plain

not understandable. Collecting data is not a bad thing in and of itself, but the real issue

here is collecting the “right data”. What is the right data? How do we identity it and how

do we discover just the right data without being inundated with all the other interesting

but irrelevant intelligence data? One answer to this question has been espoused for quite

some time in the field of knowledge management.

2.6 Knowledge Management

 Knowledge management texts have attempted to deal with uncertainty in

knowledge by dividing knowledge into two categories, explicit and tacit. (Waltz, 20003:

63) Explicit knowledge is literally “book learning”, knowledge that is written down,

codified, scientific, and logical. Some examples would be, calculus, geometry, algebra,

statistics, physics, orbital mechanics, geodesy, artificial intelligence just to name a few.

Explicit knowledge is made up of known facts that can be measured and are concretely

definable. Because it can be codified mathematically, explicit knowledge can be

automated and transferred electronically (Waltz; 2003: 63). Due to the ease of

automation, infallible logic, and completely researched nature of explicit knowledge it

will be the primary type of knowledge and data presented in this thesis.

Tacit knowledge on the other hand is instinctual or intuitive. It is often described

as a gut feeling, which is not easily described, or written down. It is learned by

experience, and it is inherently uncertain. This type of knowledge is rife with

uncertainty, but it is accepted as valid knowledge because the followers and leaders who

adhere to the loose guidelines established by this type of knowledge appear to be

successful. This knowledge appears to support correct decision making more than 50%

2-12

of the time so the uncertainties inherent in this knowledge do not overwhelm the value

inherent in the knowledge. The real question with tacit knowledge is how unknowable is

it? Is tacit knowledge really unknowable, or can tacit knowledge be made explicit by

some concerted effort?

A RAND study conducted in the early seventies contended that not only should

data and knowledge be explicit, but the questions or requests for information asked of

intelligence sources should be explicit as well. The study, Quantifying Uncertainty Into

Numerical Probabilities for The Reporting of Intelligence, noted that the statements

passed between the intelligence system and decision maker may be divided into two

categories: confirmable and non-confirmable (essentially explicit and tacit). A

confirmable or explicit statement is one that can be judged as true, or false by any

reasonable person, given that all the facts regarding the statement are known (Brown,

1973: 1). An example of an explicit question might be, how many were tanks are present

at the An Najaf Republican Guard Barracks at noon today? The question is posed so that

the information is attainable and confirmable. This question has a definite, finite answer.

An example of a non-explicit question would be, between this guard unit and an Iranian

Badr Corp tank unit which one would win a tank battle? Probabilities could be

postulated, but actual ground truth might never be known. Intelligence units are often

asked to answer or at least opine an answer to this type of non-confirmable question. The

essential problem with these types of opinion questions is that too many variables are

involved. There are too many interactions between variables, and too much variance

within those variables and interactions. Any answer to this question would contain some

inherent degree of uncertainty. The study noted that many superficially non-confirmable

2-13

statements are simply shorthand expressions for a bundle of confirmable statements.

(Brown, 1973: 1). There are a number of confirmable questions that could be formulated

regarding the tank battle. Which unit has more tanks? Which unit has trained more in

the last year? Which unit has more modernized or newer tanks? Which tank type has a

greater range? Which tank type has thicker armor or reactive armor? Which tanks’

firepower is more penetrating? All of these questions are confirmable, and will give

some indications as to who would most likely win the proposed scenario, but the answer

would still be highly uncertain. If explicit questions are asked then explicit data can be

accrued and exploited to create explicit knowledge. Essentially, it boils down to first

asking the right questions. Once the right questions are asked intelligence assets can then

review and/or collect the available pertinent data. The data can then be fused into

information (i.e. groups of facts, which imply meanings) and eventually the information

groups will form a larger picture, a picture of the true situation. This picture of truth is

the spatial, and temporal knowledge intelligence seeks and it is the first of two

intelligence goals.

The second intelligence goal beyond a picture of truth is the CIA’s concept of

foreknowledge, the ability to predict future situations based on inferences and deductions

made concerning the current perceived truth. This foreknowledge goal deals with non-

physical knowledge of intention, capability, and will. Because this type of knowledge is

seldom available as factual data, we must postulate it using probabilities.

Ultimately these two intelligence products, a true picture of current events (based

on data) and a prediction of the future picture (based on probabilities) have been valued

2-14

because they allow decision makers to act upon facts and constructive reasoning, not

fears.

2.7 The Value of Knowledge and Intelligence

 We cannot touch knowledge; we cannot feel knowledge, but we can feel or

experience the effects of knowledge. Leaders throughout history have experienced the

effects of knowledge first hand. Whether the situation has been tactical, or strategic,

militaristic, economic or diplomatic the party with superior knowledge has held a

recognized advantage over their adversaries. Using intelligence to gain knowledge and

hopefully some kind of advantage is historically well documented. Two examples oft

cited by intelligence academics are the writings of Sun Tzu and the Bible.

 In 480 B.C., Sun Tzu wrote a chapter in his Art of War treatise called The Use of

Spies. He noted that, “Foreknowledge cannot be elicited from spirits. It cannot be

obtained inductively from experience, nor by any deductive calculation. It must be

obtained from men who know the enemy situation” (Rudnicki, 1996: 86). Sun Tzu

highly recommended the use of spies, the only source of intelligence available at the time

of his writing. Another prime example of intelligence activity is in the bible story of

Moses leading the Israelites through the wilderness. God told Moses to send one ruler

from each of the twelve tribes of Israel to explore Canaan. He said, “Go up through the

Negev and on into the hill country. See what the land is like and whether the people who

live there are strong or weak, few or many. What kind of land do they live in? Is it good

or bad? What kind of towns do they live in? Are they unwalled or fortified? How is the

soil? Is it fertile or poor? Are there trees on it or not? Do your best to bring back some

of the fruit of the land.” (Numbers 13:17-20, NIV). Using human intelligence or any

2-15

other sort of intelligence to gain an advantage over an opponent is commonly seen

throughout history. A plethora of successful intelligence exploits can be seen throughout

the course of history. Some examples are: the Greek victory at Thermopylae to the

Venetian embassies expanding merchant trade; the British defeat of the Spanish Armada;

the decryption of the German Enigma machine by mathematicians at Bletchley Park; and

the decoding of Japanese messages under the code name “Magic” during World War II to

mention a few successful intelligence endeavors. These examples and many others like

them support the notion that intelligence can be invaluable to the leader who knows how

to use it.

Therefore, knowledge is valuable. How valuable? We have specific historical

instances that highlight intelligence as the most valuable factor in a situation, but

hindsight is 20/20. Seeing intelligence in a historical context where the critical elements

of a situation are known, we are able to say that the intelligence acquired was a

significant contributor to the success of a battle, a war, or a national objective. Based on

these past successes we continue to invest in similar current intelligence endeavors. The

problem with intelligence is that as events unfold in real time, not all critical factors are

known or recognized, and the decision maker must proceed to allocate resources based on

intelligence as it is understood at that time. So how, in the present tense, can the value of

intelligence be quantified? How much time, effort and other resources (such as human

lives) should be spent to create gains in intelligence? The answer usually seems to be

situation dependent and seems to fall into the area of a tacit question that requires further

categorization into explicit questions. Pursuing the marginal value of intelligence is

outside the scope of this research. Suffice to say that current thought indicates that

2-16

intelligence is valuable and worth the investment of considerable resources. There has

been only one voice of dissent in the past three hundred years.

Carl Von Clausewitz, the well known Prussian author of the treatise On War,

generally did not look kindly upon the intelligence enterprise. Clausewitz stated that, “A

great part of the information obtained in War is contradictory, a still greater part is false,

and by far the greatest part is of a doubtful character” (Clausewitz, 1982: 162).

Clausewitz’s derision of intelligence is no doubt a product of his era (1780-1831).

Intelligence in those days was not a technological endeavor. It consisted mostly of

human intelligence (HUMINT) or “soft intel” (Waltz, 2003: 6). Technology, “hard intel”,

has mitigated much of the data which Clausewitz opined as false and of doubtful

character, but it has not yet solved the problem of conflicting or contradictory data.

Interestingly a reason for this mitigation of unreliable data might be that modern

technology focuses on answering only explicit questions. In order to acquire data from a

non-human source an explicit question or task must be asked of a machine. It is also

interesting to note that Clausewitz wrote about intelligence just as the nascent American

nation, which today has risen to the forefront of intelligence collection, appeared.

2.8 A Brief History of the American Intelligence Enterprise

The first state sponsored American intelligence officer appears to have been

Alexander Hamilton (Dulles, 1963: 29). Hamilton and his two assistants, Tallmadge and

Boudinot, gathered information, performed counter-espionage activities, and developed

ciphers for George Washington and the revolution (Dulles, 1963: 29). Intelligence work

was not formalized during the Revolutionary War, or in any other action until the Civil

War. Most intelligence networks were setup out of a general’s or a politician’s pocket.

2-17

At the start of the Civil War President Lincoln hired Allen Pinkerton, a private

detective, to setup a makeshift intelligence organization for the Union (Dulles, 1963: 38).

Lincoln made Pinkerton an army major and allowed him free reign to gather intelligence

as he saw fit. Most historians agree that Pinkerton’s organization was ineffective and

Pinkerton himself most likely realized this as he resigned before the war ended. The

Lincoln administration decided to formalize military intelligence at this time by forming

the Bureau for Military Information headed by Major George H. Sharpe (Dulles, 1963:

39). Following the Civil War, both the army and the navy established permanent

intelligence agencies. The Army setup the Military Intelligence Division and the Navy

created the Office of Naval Intelligence. The Military Intelligence Division was placed

under the auspices of the Army’s Second Division and was given the designation G-2

(Dulles, 1963: 41). To this day Army intelligence is known as G-2, while joint military

intelligence is the J-2. This formalized structure withered away after the Civil War ended

because no mission was clearly defined. Because of this American forces in World War I

did not have a true intelligence cadre. Most intelligence was passed along by French and

English forces (Dulles, 1963: 41). World War II was the defining moment for American

intelligence. Following the catastrophe at Pearl Harbor, President Franklin D. Roosevelt

called on Colonel William J. Donovan to establish the Office of Strategic Services (OSS).

This precursor to the Central Intelligence Agency (CIA) performed admirably on a global

scale (in North Africa, Europe, the Far East) throughout the course of World War II. If

not for the actions of Soviet Union following WWII this organization might too have

withered away. President Truman on March 12, 1947 signed the National Security Act

which unified all military service intelligence activities under the Secretary of Defense;

2-18

created a civilian intelligence service, the CIA; and established the National Security

Council to advise the President on intelligence matters. With this formalization of

intelligence sanctioned by the President the structure of the current intelligence

community was founded.

2.9 The U.S. Intelligence Community and the Intelligence Cycle

 The U.S. Intelligence Community has come a long way since 1947. After

President Truman created a formal organizational structure the federal government began

funding intelligence in earnest. The resultant intelligence community is universally

recognized as one of the largest and most technologically advanced in the world. A list

of Intelligence Community Members, as outlined in the 9/11 Commission Report

follows. (9/11 Commission Report, 2004: 405-406)

Members of the U.S. Intelligence Community:

• Office of the director of Central Intelligence, which includes the Office of the
Deputy Director of Central Intelligence for Community Management, the
Community Management Staff, the Terrorism Threat Interrogation Center, the
National Intelligence Council and other community offices

• The Central Intelligence Agency (CIA), which performs human source collection,
all-source analysis, and advanced science and technology

National Intelligence Agencies:

• National Security Agency (NSA), which performs signals collection and analysis
• National Geospatial-Intelligence Agency (NGA), which performs imagery

collection and analysis
• National Reconnaissance Office (NRO), which develops, acquires, and launches

space systems for intelligence collection
• Other National reconnaissance programs

Departmental Intelligence Agencies:

• Defense Intelligence Agency (DIA), of the Department of Defense
• Intelligence entities of the Army, Navy, Air Force, and Marines
• Bureau of Intelligence and Research (INR) of the Department of State
• Office of Terrorism and Finance Intelligence of the Department of Treasury

2-19

• Office of Intelligence and the Counterterrorism and Counterintelligence Divisions
of the Federal Bureau of Investigation of the Department of Justice

• Office of Intelligence of the Department of Energy
• Directorate of Information Analysis and Infrastructure Protection (IAIP)
• Directorate of Coast Guard Intelligence of the Department of Homeland Security

As the intelligence community became formalized, so to did the processes and

practices followed by intelligence professionals. Over time a generalized process model

known as the Intelligence Cycle became accepted by the various military and civilian

intelligence enterprises. Figure 2-1 displays the Intelligence Cycle in its current form.

Figure 2-1 Intelligence Cycle (JP 2-0, 2000:V)

 The Intelligence Cycle of Figure 2-1 is a broad conceptual model, which outlines

an ideal information flow between the entities that makeup the Intelligence Community.

The Intelligence Cycle displayed illustrates the operational mission at the model core.

This shows that the operational mission is always central. Actual political or military

missions are the reason that intelligence is gathered in the first place. This model

2-20

recognizes that intelligence is an operational support function, also known as a force

multiplier. The next sub-central ring, evaluation and feedback used to be a sixth sector of

the intelligence cycle pie, but was modified as a second ring in the late 1980’s when

Total Quality Management (TQM) revealed to the world that process improvement never

stops. To represent the continual process improvement efforts that occur at every step of

the intelligence cycle this ring was added. The five outer sectors are the true meat of the

intelligence cycle. They outline the five basic cycle steps which structure the gathering

of data and creation of knowledge in the U.S. Intelligence Community.

 The cycle is generally begins in the Planning and Direction sector. In Planning

and Direction, the decision makers and information end-users request information,

identify information gaps, and generally define items of valuable intelligence. The

process of planning and directing is continually evolving as the world situation evolves.

However, the physical product of this planning is an annually reviewed and stratified list

of valuable intelligence items called the Essential Elements of Information (EEI’s). This

master EEI list keeps the Intelligence Community in loose coordination to fulfill the

listed desires of intelligence users. Given this list of EEI’s the agencies of the IC’s then

go forth to collect data concerning these EEI’s to lessen our uncertainty concerning them.

 Intelligence collection, the next sector in this model, refers to data collection. The

gathering of data involves the use of open sources, sensors, and spies to discover answers

to specific questions or to monitor events. In the framework of intelligence collection

there are currently seven recognized Intelligence disciplines illustrated in Table 2-1.

Each discipline focuses on a different genre of intelligence collection. For example,

IMINT deals primarily with obtaining visual evidence while SIGINT is concerned with

2-21

entity communications, any form of message sent between entities of interest. Each of

the intelligence disciplines listed have a variety of sensors and collection techniques

available to them. No one entity in the IC has total control over any one intelligence

discipline. The Intelligence Cycle model assumes at this point that intelligence faces an

uncertainty problem that can be solved by gathering more data. If the EEI in question

does not require more data collection then this phase as well as the Processing and

Exploitation can be omitted.

Table 2-1 Intelligence Disciplines (JP 2-0, 2000: 25)

 Processing and Exploitation deal with the physical processes that must occur for a

piece of data to be realized as intelligence information. The photographs must be

developed and possibly annotated to highlight significant details that an untrained eye

might miss. A signal report must be filed and its contents translated or deciphered. Once

the necessary preparation has been completed and the data has notionally been converted

into information the next process can begin, Analysis and Production.

 Analysis and Production is the phase of the intelligence cycle where knowledge is

created. It occurs at a fairly macro level and involves the fusing of various pieces of

intelligence information available from the seven intelligence disciplines. Here in the

INTELLIGENCE DISCIPLINES

IMINT Imagery Intelligence

HUMINT Human Intelligence

SIGINT Signals Intelligence

MASINT Measurement and Signature Intelligence

OSINT Open-Source Intelligence

TECHINT Technical Intelligence

CI Counterintelligence

2-22

piecemeal jigsaw puzzle of facts, where intelligence disciplines attempt to compete

instead of corroborate to show their worth, we see disjointed bits of the truth which leave

decision makers and information users wondering about the effectiveness of intelligence

as a whole. These battles over who has the actual true picture of a situation have been

termed theologic wars. A poem by John Godfrey Saxe called the Hindu Parable

illustrates this idea of a theologic war that can occur between intelligence collection

agencies. (Saxe, 1880: 1)

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! but the Elephant
Is very like a wall!"

The Second, feeling of the tusk
Cried, "Ho! what have we here,
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a spear!"

The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up he spake:
"I see," quoth he, "the Elephant
Is very like a snake!"

The Fourth reached out an eager hand,
And felt about the knee:
"What most this wondrous beast is like
Is mighty plain," quoth he"'Tis clear enough the

Elephant
Is very like a tree!

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a fan!"

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope.
"I see," quoth he, "the Elephant
Is very like a rope!"

And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong
Though each was partly in the right,
And all were in the wrong!

Moral:

So oft in theologic wars,
The disputants, I ween,
Rail on in utter ignorance
Of what each other mean,
And prate about an Elephant
Not one of them has seen

 The IC is attempting to rid itself of these theologic wars and concentrate on fusing

data rather than fighting over whose intelligence is better. Both in initial collection and

in the Analysis and Production phase more emphasis is being placed on fusing data.

 “Fusion is the synergistic process of associating, correlating, and combining

2-24

Hostile, Friendly, and Neutral Forces data and environment factors to derive information

and knowledge, tailorable to support the warfighter to effect and expedite command and

control.” (Keithley, 2000:2) Table 2-2 outlines the current definitions of the five fusion

levels

Table 2-2 Fusion Level Definitions (JDL, 2004:1)

Fusion Levels Defined
Level Title Description

0 Source Preprocessing Normalize, order, compress,
merge sensor data

1 Object/Entity Refinement

Refine position, track, identify
objects by fusing individual
sensor position & identity
estimates

2 Situation Refinement

Interpret Relationship between
objects & events: Order of
Battle(OB), Common
Operating Picture (COP),
Situational Awareness (SA)

3 Threat Refinement
Estimate enemy capability &
Intent; Predictive BattleSpace
Awareness (PBA)

4 Process Refinement

Refine estimates, optimize ISR
resources modify fusion
processes to improve
information

5 User Refinement

User visualization of fusion
products & generate
feedback/control to improve
products

(JDL, Joint Directors Laboratories, Extract 2004, 1)

 Data fusion uses deductive reasoning to correlate incoming reports with existing

knowledge to improve the level of knowledge within each specified knowledge type

(Waltz, 2003: 280). In Level 1 fusion the sensor/source reports are grouped

geographically and temporally (Waltz, 2003: 280). This type of fusion is a mapping from

2-25

a database into the real world and some might call it a four dimensional mapping. This

mapping or transformation creates a common time-space coordinate system to detect an

association between multiple sensors about a common object (Waltz, 2003: 281). The

associations will theoretically increase the current level of knowledge concerning the

target object. The correlation metric, C, is: ∑
=

=
n

i
ii xwC

11
 where, wi = weighting

coefficient for attribute xi , and xi = ith correlation attribute metric (Waltz, 2003: 281).

Level 1 fusion is present in the current intelligence cycle, but it is not distribute

throughout the IC, but rather stove-piped by INT. Level 1 fusion decreases the workload

on human analysts by auto-correlating databases into this real world mapping. The next

step is correlating objects and/or events to each other.

 Level 2 fusion associates objects with one another, and is currently mostly manual

(Keithley, 2000: 3). A good example of this might be a terrorist network that is

geographically separated but can still communicate via cellular phones, websites, and

intermediaries. In this case geographic proximity would not show any correlation, time

may also be an elusive correlation. This means that the current level 1 fusion method is

not sufficient. A new method of correlating message content will have to be invented.

Current real world fusion engines are used in the Defense Information Infrastructure

(DII) Common Operating Environment (COE) in combination with the Modernized

Integrated Database (MIDB). Only low level fusion, Level 1, is currently automated.

Level 2 automation is underway, but the higher levels of fusion are still entirely in the

realm of research and development.

2-26

 Once the pieces of information are fused into knowledge, theologic wars aside,

that knowledge must be given to the proper authorities so that decisions can be

implemented. This is the Dissemination and Integration phase of the intelligence cycle.

In this phase knowledge gained does not necessarily go directly back to the initial

requestor. Knowledge must be given to the authority that can use it to best effect. For

example, let us assume that a naval unit discovers some data that leads them to the

knowledge that a land attack will occur against an Army post. That knowledge must flow

to the Army. Then, through the dissemination chain, the Navy knowledge should flow

back to the Commander of the Army post, not just back to the Captain of the ship or the

Admiral in charge of the Fleet. Proper and timely dissemination of knowledge and the

integration of that knowledge into a decision, or action validates the value of intelligence.

We could collect all the data in the world, but if we do not use it; what was the point in

the first place? The Intelligence Cycle provides a framework for discovering and moving

data to create knowledge, but it does not measure or quantify that knowledge.

2.10 Quantifying and Modeling Intelligence and Knowledge

The short answer to the question of intelligence quantification is that no one, non-

subjective methodology is used to measure intelligence. The most commonly used

measure of intelligence, as we briefly discussed, is the Kent Scale. The scale is really a

five-tiered stratification of uncertainty based on the consensus of a group of intelligence

professionals. It is extremely subjective, does not lend itself to automation or a

mathematical methodology, and it is inefficiently time consuming. Its only saving grace

is that it seems to work and it is simple enough to be universally understood.

2-27

To delve more deeply into the question of quantifying intelligence and attempt to

develop a less subjective quantification scheme, we must break down intelligence by

asking some explicit questions. First, if we are to measure the value of knowledge, what

is our base line, our starting point? Do we assume that we know nothing and start at

zero?

This begs the question can knowledge be measured on a scale from zero to

infinity? Can knowledge be bounded? Is zero a proper lower bound, or can we know

less than nothing? When is knowledge considered 100% totally accounted for,

understood, or “known? Can we assume that a certain amount of knowledge is enough,

and once that level of knowledge is attained we are close enough, and have reached a

near enough approximation of 100%? Does intelligence have diminishing amounts of

return as we gather more of it? Can we say at some point that the cost of further gains is

not worth the effort or resources required? All these questions and many more regarding

quantifying knowledge are actually questions of probability because probability as we

stated before is a mathematical form of representing knowledge.

 To illustrate the concept that probability is a mathematical form of knowledge

let’s used the oft example of Polya’s urn. Say that we know there are a total of five blue

balls, three red balls, and one urn. If the balls are placed in the urn and we are given a

chance to pick one ball out of that urn then we can postulate that we have a 5/8 chance of

getting a blue ball and a 3/8 chance of getting a red ball. Those probabilities represent

knowledge. If we pull a blue ball then our knowledge has changed, we know now that

there are only four blue balls left and three red. Note that our level of knowledge hasn’t

improved. We still know and understand all the variables in the game. Having a simple

2-28

mathematically linear rule set and full knowledge of all variables means that we have

100% knowledge of our system. We have the true full picture of this game at any one

point in time. Intelligence rarely has a rule set this simple, and all variables are almost

never known. This means that probabilistic knowledge is difficult to attain, but it maybe

the only mathematically tractable way to model knowledge. Even this mathematical

tractability is quickly challenged by two simple changes to Polya’s Urn game. Let’s add

another urn, and a random distribution of balls between the two urns. We still have eight

balls total, five blue and three red, now however each of the two urns may have no balls,

all the balls, or a proportion in between. Now when we pick an urn we do not know what

our true chance of picking a blue ball will be. We can postulate that the chance of

picking a blue ball is still higher because more blue balls are present, but our uncertainty

level has increased. The problem with statistical knowledge and in particular the

knowledge modeling done based on Bayes Rule (which is what we were using when we

determined our probabilities in the Polya’s Urn example), is an assumption of prior

knowledge. In the Polya’s Urn example the initial number of balls is given, eight. Then

the number of blue and red balls are given, five and three respectively. With all this

given data a problem is easily solved and probabilities can be determined. In the real

world intelligence problem these given values are not easily discovered. The opposing

force strength is often unknown and at best is estimated by Intelligence Preparation of the

Battlespace (IPB). Despite the uncertainty present in modeling intelligence/knowledge

based on a set of estimated points this seems to be the primary direction of all modeling

and quantification efforts to date.

2-29

While no universally used methods for quantifying intelligence exist, there are

four generally accepted theories for fusing knowledge have been postulated. The four

theories are: Bayesian Networks, Information Theory, Boolean Logic, and Evidential

Reasoning. (Kraiman, 2001: 2-3) All four theories assume a base starting knowledge of

zero. Nothing is assumed either known. We start perfectly non-biased. All assume a

linear approach to increasing the quantity of knowledge over time. All assume that

knowledge can be measured on a scale from zero to one hundred, from no knowledge to

total knowledge. Bayes’ Rule is commonly stated as

∑
=

= k

i
ii

jj
j

BPBAP

BPBAP
ABP

1

)()|(

)()/(
)|(

 We assume (B1,B2,…Bk) are partitions of the set of all possible outcomes, S, into

k separate spaces and P(Bi)>0 for i=1,2,…k. (Wackerly, 2002: p68). The assumption

that is commonly made in many intelligence models is that the total number of enemy is

known. It the enemy strength is known then the probability of enemy troops being in an

area is the probability of A given B (P(A|B)), and the probability of a sensor finding the

enemy is estimated as the Probability of B. The issues here are that our calculations are

based on two assumptions that may not be factual. First, we assume that our knowledge

of the enemy strength is accurate, and second we assume that our probability of detecting

the enemy is accurate. If both of these assumptions are true then this formulation will be

accurate and provide a suitable model for quantifying the knowledge gains and fusing

2-30

intelligence. Obtaining accurate IPB and actual sensor readings is the challenge to this

methodology.

Information theory quantifies knowledge using Shannon’s Information Entropy

Theory. Shannon’s theory states that an event. ai has a probability p(ai) of occurring.

Knowing this probability the knowledge associated with the probability is K(ai)=-log pi.

Given n mutually exclusive and collectively exhaustive events, (a1,a2,…an), where each

has a probability of occurring of pi=p(ai), then the ”average information, uncertainty or

Shannon entropy” is,

∑=
−=

n

i ii pppH
1

log)(

 Using this theory an interesting article “Modeling Knowledge in Combat

Models” proposed a method of measuring the value of spatial knowledge in a combat

model. The final algorithms generated concerning general knowledge K(X) and specific

two dimensional spatial knowledge, K(x,y), are presented below.

)1ln(
)()1ln()(

+
−+

=
n

XHnXK

or

1
11)(

)(
)]()1[ln(

+
−=−= −+−

n
eeXK

xH
xHn ,

,where ∑∞

−∞=
−=

i ii xfxfXH)()](ln[)(for the discrete case and,

∫
∞

∞−
−= dttftfXH)())(ln()(

 or the continuous case. (Perry, 2003; p46-54).

2-31

 The two dimensional specific knowledge is modeled using the following

equation:

2

max

ln

11),(

2

max

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

σ
σσ

σ

eyxK .

 The σ values noted relate to the Circular Error Probable (CEP) accuracy of the

intelligence sensors being modeled. These algorithms were applied to the Combat

Sample Generator (COSAGE). Which the Army uses to create “victim-killer

scoreboards” for their Combat Effectiveness Model (CEM) and RAND also uses these

scoreboards to run their Joint Integrated Contingency Model (JICM). This only one

example of Shannon’s entropy theory, many more exists.

The method of Evidential Reasoning is based on the Dempster-Shafer Theory of

Evidence. The Dempster-Shafer Theory of Evidence takes a series of belief sets

(Bel1,…,Beln) and combines them if certain conditions are met. The conditions that must

be met are presented in a series of three theorems, Theorem 3.1, 3.2, and 3.4, and the

actual combination theorem is given as Theorem 3.3 (Shafer, 1976:57-64).

As an extension of Dem

1

0

1
1||)()...()1(

−

≠
⊂

+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−= ∑
B

SB
n

B BQBQK

pster-Shafer Theory, Alan Steinberg suggested the following formulation for

stochastic simulations if two uniform sampling vectors g and h are to be fused.

f
j
=1-(1-g

j
)(1-h

j
)[1-ln{(1-g

j
)(1-h

j
)}].

(Gonzales, 2003: 8). Dempster-Shafer Theory of Evidence was used in the JCOAT

simulation tool as well as in a RAND Ground C4-ISR Assessment Model (GCAM)

2-32

 The final method Boolean Logic unlike the other three commonly used methods

does not deal in the realm of statistical probability. Boolean Logic allows for the creation

of rule sets, which evaluate statements (factual or probabilistic). The statements are

evaluated using up to seven different gate types; NOT, AND, OR, NOR, NAND, XOR,

XNOR. The following is an explanation of each of the Boolean Logic gates mentioned

(Schneeweiss, 1989: 6):

 NOT – If the expression evaluated is not true then this switch is engaged, or this
 path is followed.

 AND - This operator evaluates the truth of two or more elements in an
 expression. If both evaluate as true then this switch is engaged.

 OR – This operator evaluates if either one or the other of two elements in an
 expression are true. If either is true then this switch in engaged.

 NAND – This is an inversion of the AND operator. If neither of the operators in
 an expression evaluate as true then this switch is engaged.

 NOR – This is an inversion of the OR operator. If either one or the other of the
 operators in an expression is false than this switch is engaged.

 XOR – Known as the “exclusive or ” because if either operator is true, but not
 both then this switch is engaged. This logic can be created with a
 combination of other Boolean logic, but creating this one gate is less
 cumbersome.

 XNOR – Known as the “exclusive nor” because if one operator is false, but not
 both then this switch is engaged.

Using these nodal evaluations, a decision tree methodology can be established

which will direct the flow of data into the correct knowledge end node. The gain in

knowledge is determined by a linear increase in each end node. Another interesting note

about Boolean Logic is that it can be used in conjunction with any of the three fusion

2-33

algorithms above to fuse data into knowledge once data has been sent to the correct

knowledge bin.

 All four fusion theories are applied in a number of combat models which

incorporate intelligence into their calculations. Some Air Force specific combat models,

which use one of the above methods for fusing data, are the Extended Air Defense

Simulation (EADSIM), the THUNDER Air Campaign Model, and AFRL’s ISR-TPED

model. The primary issue with these models is that they assume that intelligence is really

only spatial awareness, where an object (usually the adversary) is in space. Spatial

awareness is level one fusion as previously defined in the Analysis and Production

section of the Intelligence Cycle, but full fusion and full spectrum intelligence is much

more than just spatial awareness. Captain Carl Pawling in conjunction with the NSSO

began a new effort to evaluate the value of varying intelligence architectures. No model

currently attempts to incorporate the broad range of intelligence processes into one

model. Captain Pawling’s work focused mostly on architecture issue of whether to Task,

Process, Evaluate, Disseminate (TPED), or to Task, Process, Post, Use (TPPU)

intelligence information. He modeled the TPED vs. TPPU issue as a single stream of

intelligence with multiple users. In his work, he briefly mentions the possible use of a

knowledge matrix methodology, but he did not pursue it.

2.11 Summary

 The United States Intelligence Community has made tremendous advances since

its inception in 1947. It continually strives to attain three goals simultaneously, a perfect

picture of the past truth, present truth, and an accurate probabilistic view of the future.

2-34

Unfortunately, absolute knowledge and perfect prognostication are seldom attainable.

The data collection issues of uncertainty, complexity, ambiguity, and equivocality

combined with the challenges of always asking the right questions and battling internal

theologic wars between intelligence sources all muddy the waters of the intelligence

profession.

 The right intelligence is invaluable and can be the most significant factor that

contributes to a success, but there is no method currently available to quantify knowledge

gained by intelligence in a non-subjective, and unbiased manner. This work attempts to

put some bounds on the quantification issue using a knowledge matrix method to bind the

intelligence questions into an explicit meta-data shell format, much like Captain Pawling

suggests with his formatted intelligence input sheets. Once the problem is bounded the

value of intelligence and fusion is tied to user-needs satisfaction. These concepts are

discussed in detail in Chapter 3.

3-1

3. Methodology

3.1 Introduction

The model developed in this chapter is a high-level Arena process model, which

simulates the flow and fusion of knowledge/intelligence through the U.S. Intelligence

Cycle. The model’s purpose is two-fold. First it can be used as an analysis tool to

determine what intelligence architecture(s) will provide the greatest number of satisfied

Requests for Information within set time constraints. The model measures of

effectiveness (MOE) will be Quantity (number of requests completed), Timeliness

(number of requests completed within the constraint time), and User Satisfaction

(meeting a requested information satisfaction level). In addition to modeling various

intelligence architectures the model will also illustrate the value of multiple source

intelligence fusion using the same MOEs previously stated.

The model concept is based upon Captain Carl Pawling’s 2003 thesis, “Modeling

and Simulation of the Intelligence Cycle”. Primarily two innovations were applied to the

model concept to make it more closely simulate reality. First multiple intelligence

resources were added to simulate the diverse platforms used to collect information.

Second, a knowledge matrix methodology was implemented for modeling and measuring

data, information, knowledge and user-needs satisfaction in the Intelligence Cycle. These

two innovations considerably increased model complexity and resulted in a number of

improved intelligence modeling techniques such as; Needs-driven intelligence modeling;

opportunity intelligence collection vice strictly tasked collection; Standing Request for

3-2

Information (SRFI) looping logic, decision tree logic for modeling resource allocation,

and a simple fusion algorithm.

As in Captain Pawling’s original thesis, this model uses the Intelligence Cycle

precept presented in Joint Publication 2.0, Intelligence Support to Operations, as an

outline. The Intelligence Cycle Model is comprised of five sub-models; Planning &

Guidance, Collection, Processing & Exploitation, Production & Analysis, and

Dissemination, representing each phase of the Intelligence Cycle. Figure 3-1 displays a

generalized flow chart of this process model. The actual model is far more complex than

the figure depicted.

Rank 1

User
Needs

Library
Search

Library

Collection Sort
& Queue

Rank 2

Rank 3

Rank 4

Rank 5

Need Sat
Time Elapse

IMINT

Opportunistic
Collection SIGINT

IMINT- I1

SIGINT- S1

RADINT

RADINT- R1

HUMINT

HUMINT- H1

MASINT

MASINT- M1

IMINT- I2

IMINT- I3

SIGINT- S2

RADINT- R2

HUMINT- H2

MASINT- M2

OSINT

OSINT- O1

OSINT- O2

CI

CI- C1

CI- C2

Needs
Check

Processing

Delay

Needs
Check

Dissemination

Standing
Adhoc

Standing
Adhoc

Data
Fusion

Figure 3-1 Conceptual Model Flow-Chart

3-3

The knowledge matrix method was a concept developed by the National Space

Security Organization (NSSO) at the behest of the Decision Support Center (DSC) Senior

Steering Group (SSG) in the spring of 2001. The methodology was presented to the

DSC-SSG in the Multi-Intelligence Fusion Performance report in order to illustrate the

value of data fusion in the intelligence enterprise. The report was based on an experiment

conducted using Joint C4ISR Operations Analysis Tool (JCOAT) Campaign Model

(Keithley, 2000: 7). Table 3-1, illustrates a generic knowledge matrix setup for the

JCOAT model.

3.2 Knowledge Matrix Concept

 The concept behind the knowledge matrix methodology is fairly intuitive. A

knowledge matrix is essentially a state vector describing the present level of knowledge

attained about an object (Keithley, 2000: 8). The columns of the matrix are generalized

knowledge types while the matrix rows are increasing levels information quality for each

knowledge type. The generalized knowledge types of the knowledge matrix method are:

Location, Track, Identity, Activity/State, Intent, and Capability (illustrated in Table 3-1).

The knowledge matrix essentially breaks down intelligence into the standard journalistic

terms; who, what, where, when why, and how (i.e. who = Identity, what = Activity/State,

where = Location and/or Track, when = implicit time of collection, why = Intent, how =

Capability). The quality levels obtained in each of the six Knowledge areas can be

collected by a variety of intelligence resources. In the original knowledge matrix each of

the Knowledge Areas was broken down into six quality levels, Table 3-1 illustrates six

levels of image quality from 10 Kilometers (Km) to 5 meters (m).

3-4

 This initial knowledge matrix concept used in the JCOAT model focused on

tactical intelligence and ISR assets. In the experiment each intelligence resource was

assessed as having a certain probability of detecting at each of these levels shown above.

The probabilities were normalized, based on the Central Limit Theorem, about an

empirically determined mean. To apply this concept to the entire scope of Intelligence

Cycle the Knowledge Matrix Methodology needed to be broadened to incorporate the

ability to model other types of intelligence collection and model the flow of information

throughout the entire intelligence system, not just the tactical sensors. Therefore, some

conceptual adjustments were required.

Table 3-1 Original Knowledge Matrix Example

Knowledge Areas
Location Track Identity Activity/State Capability Intent

5 meters Vectors &
prediction

Specify
Object &
Hierarchy

Many actions,
states &
linkages

Many factors
& influences

Desired end state
& intent for future
ops known

10
meters

Vectors &
prediction

Specify
Object

Many actions,
states &
several
linkages

Several
Factors &
influences

Desired end state
known & intent
for future ops
determined

20
meters

General
Speed &
direction

Type Object
Several
actions, states
& one linkage

Few factors
and influence

Desired end state
& intent for future
ops determined

100
meters

Toward or
Away

Distinguish
Object

Few actions,
states, no
linkages

Few factors
and no
influence

Desired end state
determined &
intent for future
ops inferable

1 Km Stationary
or not

Discriminate
Object

Single action or
state

One factor
and no
influence

Desired end state
inferable & intent
for future ops
inferable

10 Km Detect Detect Detect Detect

Desired end state
inferable & intent
for future ops
unknown

3-5

3.3 Modifying the Knowledge Matrix Method

The core knowledge matrix concept remains the same in this model. The same

six abstracted knowledge areas; Location, Activity/State, Track, Identity, Intent, and

Capability, are maintained. There are still six tiers associated with each knowledge area.

The quintessential shift made is an abstraction of what each of these tiers represents.

Instead of quantifying the quality level of a sensor, for example the 10Km to 5m for the

imagery fidelity example used in the last section, the tiers now represent satisfaction.

Satisfaction is a subjective measure broken down much like the Kent Scale

discussed in Chapter Two. There are six satisfaction tiers are associated with user-needs

and collection vector responses. The user-needs and the collection vector responses are

decomposed according to the scale shown in Table 3-2. This shift to measuring

satisfaction instead of pure quality means that information applicability and not strictly

sensor fidelity is our primary measure of effectiveness (MOE) for this model. An

example is in order; let us assume that a request for information desires to know the

country in which an individual is located. If an intelligence asset is able to produce the

city where the individual is located then the user is satisfied at a level 3, according to the

new information needs met scale. The country and the individual are matched as

requested, not to a targeting level, but well enough to satisfy the end-user.

The actual sensor used to collect that intelligence may have a low fidelity rating

(10Km for example), but the information still rates well and is usable. In other words,

the resulting satisfaction may score fairly high, a 3 satisfaction for location even though

the sensor report was of poor quality. Applicability does not always require a high degree

3-6

of sensor fidelity. This leads into two new concepts using knowledge matrices, creating a

user-needs vector, and quantifying satisfaction.

Table 3-2 Satisfaction Level Definitions

A user-needs vector is a vector of six values each of which represent a required

satisfaction in their respective knowledge areas. The user-needs vector for Table 3-3

would be (3,0,4,2,1,2). This assumes that an end-user can quantify their needs in a

matrix construct.

 If end-users could conceivably request information in this vector format an

electronic request shell could be made to generate RFIs in a knowledge matrix format. A

text section would also have to be included to highlight richer details that could not be

transmitted using a strictly knowledge matrix method.

Tier
User-need
Satisfaction

Meaning to the
User Collection Vector

Meaning to the
Collector

5
Excellent Perfect Knowledge,

Absolute Truth
Absolute Knowledge of a
person/place/thing/event

No Uncertainty,
Rarely Achieved

4

Very Good
Detailed
information, with
supported data

Satisfactory

Target quality,
Immediate
Actionable
Information

3
Good

Functional
information not
highly detailed

Largely Satisfied Can report and use

2
Satisfactory Data with possible

contextual issues
Meets minimum reporting
standards

Data with minimal
uncertainty

1

Marginal

Data with
intelligence gaps,
Little supporting
evidence

Below Reporting
threshold

Data with
considerable
uncertainty

0 No Need No Need Unsatisfactory Cannot Report

3-7

Table 3-3 User-Needs Vector in a Knowledge Matrix

 Modeling the creation of this user-needs vector is done using a set of discrete

probability functions like the ones illustrated in Table 3-4. Table 3-4 requires some

explanation. DISC is the acronym used by Arena for a discrete probability density

function (PDF). The string of numbers in parentheses fully characterizes that PDF. The

Activity_State_Need PDF is read; P(X=0) = 0.1, P(X=1) = 0.2, P(X=2) = 0.4, P(X=3) =

0.8, P(X=4) = 0.98, P(X=5) = 1.0. The final value, 22, defines the common random

number (CRN) stream assigned to this distribution using Arena’s common random

number capability. The CRN variance reduction technique will be discussed further in

this chapter in section 3.4 Modeling with Arena. The random vectors of needs generated

represent explicit questions to which end-users desire answers. Each RFI generated in

this manner may require more than one intelligence resource to satisfy its needs.

 The satisfaction responses to this user-needs vector could then be tabulated using

the knowledge matrix concept as a collection vector. This collection vector is the same

conceptually as the original knowledge matrix kernel. The collection vector from each

Information
Need

 Attributes of Object

 Location Track Identity Activity/Status Capability Intent

Satisfaction
Levels
Needed

5

 4 Need
 3 Need
 2 Need Need
 1 Need
 0 Need

3-8

intelligence resource used would be that sensor’s current level of knowledge reported

concerning a particular intelligence target. The sensors current knowledge level can then

be compared to the user-needs requested knowledge level to derive a satisfaction level.

Table 3-4 User-Needs Generation Distributions

Satisfaction is a continuous state of being; it is not black and white. We can be

unsatisfied, somewhat satisfied, mostly satisfied, almost satisfied, and of course totally

satisfied. We often state satisfaction levels in terms of percentiles. We were 100%

satisfied with the product, or 80% satisfied, or 50% satisfied, and so on and so forth.

This continuous level of satisfaction requires a continuous probability distribution for

modeling purposes. To model a sensor’s ability to satisfy User-needs each of the 15

sensor resources simulated in this model was given a notional triangular collection

distribution in each knowledge area of the knowledge matrix. Table 3-5 is an example of

what possible satisfaction levels a resource, IMINT1, might obtain. Refer to Appendix C

for a listing of the 15 sensors simulated in this model and their associated collection

distributions.

The triangular distribution was chosen and applied on all resources for three

reasons: it is continuous; it is bounded; and a most likely value (the mode) can be easily

assigned. The triangular distribution is a good example because it seems well suited to

User Need Attributes Requested Satisfaction Level Distribution
Activity_State_Need DISC(0.1, 0, 0.2, 1,0.4,2,0.8,3,0.98,4,1.0,5,22)
Capabililty_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.98,4,1.0,5,23)
Identity_Need DISC(0.18, 0, 0.3, 1,0.4,2,0.75,3,0.98,4,1.0,5,21)
Intent_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.98,4,1.0,5,24)
Location_Need DISC(0.1, 0, 0.25, 1,0.35,2,0.75,3,0.98,4,1.0,5,20)
Track_Need DISC(0.8,0,0.9,4,1.0,5,16)

3-9

our purposes here. If empirical data suggests that the appropriate distribution is

something other than triangular than any distribution could be easily applied..

Table 3-5 Sample Collection Matrix, IMINT1

 As we stated previously satisfaction is a continuous state of being therefore a

continuous distribution should be used. Bounding is important because a sensor may

only be able to satisfy a user-need request up to a maximum level (i.e. Sat Lvl 4, but not

at a level 5). The sensor simply does not have the fidelity or capability for whatever

reason. Another possible scenario is that a sensor always attains at least a level 2

satisfaction level (a picture is always taken, it just may not be the fidelity required).

These user-need levels are based on the 0-5 scale outlined in Table 3-2. The collection

vector for Table 3-6 would be (2,0,3,3,2,0). Integer values are used for simplicity in this

example, but keep in mind that any of these integer values could easily be a real non-

integer number within the bounds of its user-need probability distribution.

 Comparing the dark Sensor X collection vector versus the grey User-needs vector

it can be seen that the sensor did not provided 100% satisfaction in all knowledge areas.

This sensor report then would not satisfy an end-user. Only 2 of 5 knowledge areas were

satisfied therefore

IMINT 1 Sat LvL Loc Activity/State Track Identity Intent Capability
 5 Max
 4 Mode
 3 Max Max Max
 2 Mode Max
 1 Mode Max/Mode Mode Mode
 0 Min Min Min Min Min Min

3-10

Table 3-6 Comparison of Collection Vector to a User Needs Vector

Information
Need

Attributes of Object

 Location Track Identity Activity/Status Capability Intent

5
4
3 SensorX Sensor X
2 Sensor X Sensor X
1

Satisfaction
Levels

0 Sensor
X

 Sensor X

the end-user is only 2/5 or 40% satisfied with this sensor report. Often intelligence

knowledge is improved by the fusion of two different data sources. To improve our

knowledge level and hence our satisfaction level we would request another collection

either by this sensor or by a different sensor. For example, let us assume that a second

report, Table 3-7, arrives from sensor Y

Table 3-7 Second Sensor Collection Vector Compared to Original User-Needs Vector

 We could fuse this information using any of the methods discussed in Chapter 2,

or we could, if the multiple reports were received at approximately the same time, just

Information
Need

Attributes of Object

 Location Track Identity Activity/Status Capability Intent

5
4
3 Sensor Y SensorY

2 Sensor Y
1 Sensor Y

Satisfaction
Levels

0 Sensor Y Sensor Y

3-11

take the maximum satisfaction level from each report and derive a vector of maximum

satisfaction as shown in Table 3-8. This maximum satisfaction vector fused from the two

reports gives us a 4/5 or 80% satisfaction level. This model assumes that each user-need

is best fulfilled by collection from one resource. The application of this algorithm is

discussed in the section 3.7, the Production and Analysis submodel.

Table 3-8 Maximum Satisfaction Vector

Information
Need

Attributes of Object

 Location Track Identity Activity/Status Capability Intent

5
4
3 Max X,Y Max X,Y Max X,Y Max X,Y

2 Max X,Y
1

Satisfaction
Levels

0 Max X,Y

3.4 Model Creation with Arena

 The Intelligence Cycle model created is a discrete event simulation built with the

Arena modeling software. The Arena software package was chosen for this simulation

because the original model created by Captain Pawling was run in Arena, it was flexible,

had a powerful and intuitive graphical user interface (GUI), and a superb random number

generator. “The Arena generator has the facility for splitting the cycle of 3.1 x 1057

random numbers into 1.8 x 1019 sub-streams, each of length 1.7 x 1038. Each stream is

further divided subdivided into 2.3 x 1015 sub-streams of length 7.6 x 10 22 apiece.”

(Kelton, 2003; p502) A robust random number generator, like the one in Arena was

required for two reasons; first to drive the all of the random number draws for the

3-12

model’s probabilistic processes, and second because over 200 separate random number

streams were used to reduce model variance using the Common Random Numbers

 Variance reduction technique (Kelton 2003; p512). CRN is a technique used to

synchronize streams of random numbers when comparing model modifications. Some

example modifications might be adding new resources, changing RFI arrival rates, or

changing collection probability distributions. By keeping the random numbers

synchronized, we can better determine if changes that occur in the system are due to the

architecture change instead of simply a change in the random numbers drawn.

 Note again at this point that all random number distributions used in this model

are strictly notional. No empirical data or any other study currently supports the

distributions used to model intelligence resources or processes. Should this thesis

generate sufficient interest then empirical data could be collected from real world

systems. A best fit could be applied to that data, and the proper distribution allocated to

each process and resource in this model. As each phase of the Intelligence Cycle model

is presented, a brief description of the notional distributions applied will be discussed.

 Finally, Arena is an extremely flexible, attribute based modeling package. Users

can define any number of attributes to characterize the entities created in a model. By

characterize we mean that these attributes not only describe the “physical traits” of an

entity, but also define that entity’s interaction with the model logic, and other entities

encountered in the simulation. Attributes are extremely powerful and allow for almost

any process to be modeled using this software. There are 49 user-defined attributes and

26 user defined variables used to characterize each entity which flows through this

model. For a listing of all user-defined attributes and variables, refer to Appendix B.

3-13

3.5 The Intelligence Cycle - A Needs Driven Model

3.5.1 Model Concept

 It was mentioned in the introduction to this chapter that this model is needs driven

and user-needs were discussed in the knowledge matrix methodology section. Needs

driven means that information users are able to identify their needs, quantify those needs,

and submit them in a knowledge matrix format. The knowledge matrices formed will be

the Requests For Information (RFIs) which flow through this model. The assumption of

a clearly stated need is reasonable as we discussed in Chapter II. If a question cannot be

clearly and explicitly formed then a clear answer to that question most likely will not be

forthcoming. It is the clear statement of user-needs in a knowledge matrix format which

drives this Intelligence Cycle model.

3.5.2 Planning & Guidance Submodel

 This first section of the model simulates two distinctly different “Need Events.”

Those two events are the planned submittal of RFI’s, and the unplanned discovery of data

which fulfills an already established EEI. Intelligence can be collected without a specific

tasking. Sensors which are set to automatic search cycles or have human search

operators may discover unasked for data. Non-specific searches may seem like a waste

of resources but they can often provide valuable and unexpected insights. By including

these collection opportunities in the model an attempt is made to more accurately capture

resource utilization levels and successful/unsuccessful efforts in collecting non-tasked

data.

 In this model, the creation of RFIs represents a multitude of information users

identifying their needs and submitting requests (RFIs). The untasked discovery of EEI

3-14

supporting data represents intelligence collectors that utilize resources to find data

without a specific RFI directing search efforts. The user-needs which drive RFI creation,

and the untasked discovery are simulated through the probabilistic creation of user-needs

vectors as previously shown in Table 3-4. Figure 3-2 illustrates Planning and Direction

starting with the end-users. The first six nodes, the arrow shaped creation nodes of

Figure 3-2 represent all end-users, thousands of end-users, both military and civilian.

These first six nodes generate all of the entities which flow though the model. For this

model the first five nodes labeled Rank1- Rank5 abstract the arrival of RFI requests into

the intelligence cycle. The sixth node, labeled Opportunity _Collect represents

information that is discovered, but not specifically requested

Rank_1

Opportunity_Collect

P riority_A ssign1

Rank_2

Rank_3

P riority_A ssign2

P riority_A ssign3

Determine_Due_Date

T ru e

F a l s e

Rank_4 P riority_A ssign4

Rank_5 P riority_A ssign5

Opportunity_A ssign

RFI_OP _S plit

T ru e

F a l s e

PLANNING AND DIRECTION SUBMODEL

Crit_Due_Date

Other_Due_Date

Matrix_Creation

Opportunity Matrix

0

0

0

0

0

 0

0

0

0

 0

Figure 3-2 Partial Wire Diagram - Planning and Direction Submodel

3-15

Note that the five nodes titled Rank1 to Rank5 do not directly correlate to the

social, political, or military rank of a requestor. These ranks refer to the priority of the

requested EEI regardless if the actual requestor is an Army sergeant in the field or the

President of the United States. In reality, the Army sergeant may have a higher ranked

EEI need than the President of the United States because of that soldier’s tactical

situation. Five priority levels provide a sufficient number of choices for message ranks.

The ranks represent (1) Critical, (2) Urgent, (3) Important, (4) Standard, and (5) Non-

Time Critical RFIs. For the purposes of this model, Critical means that a mission cannot

be completed without this request fulfilled. Urgent means that a mission may be

completed without this information. It is not a show stopper, but mission degradation

will occur. Important means that fulfilling this request will act as a force multiplier for

friendly forces (i.e. give us an advantage over our opponents). Standard is usually an

indications and warning type of request, something that must be monitored but does not

constitute a higher priority. Finally Non-Time Critical requests are good to know bits of

information, items that may be useful but are not considered directly actionable such as

training data or scenario development data.

In modeling entity generation rates for each of the creation nodes (Rank1-5 and

Opportunity_Collect) the assumption is made that each entity, arrival rate can be modeled

as a stationary Poisson process. This means that arrivals occur singly, are independent of

each other, and the average rate is constant over time (Kelton, 2004:225). This

assumption was made because no empirical data could be used in this unclassified thesis

and stationary Poisson process are generally accepted as a good starting point for

modeling discrete arrival rates (Law, 2000; 390)). Each entity type is assigned a Poisson

3-16

arrival rate based on their varying λ mean times of arrival (e.g. they all have varying

exponential inter-arrival times of 1/λ). The arrival distributions used for the baseline

scenario are shown in Table 3-9.

Table 3-9 Entity Arrival Rate Distributions

Baseline Scenario Arrival Rates
Entity.Type Distribution(λ,CRN)
Rank1 POIS(48,1)
Rank2 POIS(15,2)
Rank3 POIS(10,3)
Rank4 POIS(8,4)
Rank5 POIS(12,5)
Opportunity_Collect POIS(6,493)

Once an entity is created, attributes are assigned to characterize that entity. Initial

software attributes are automatically assigned by the Arena package upon entity creation.

The software package tracks entities and establish fundamental model logic with these

attributes. Two software assigned attributes, Entity.SerialNumber and Entity.Type, are

used significantly in this application. Entity.SerialNumber is a unique number assigned

to each entity upon creation. This number tracks each entity as it flows through the

Intelligence Cycle model. An interesting property of the Entity.SerialNumber attribute is

that entities duplicated throughout the course of the model all retain the same

Entity.SerialNumber. This property is used extensively in the fusion logic portion of this

model.

The Entity.Type attribute is linked to the animated images which flow through the

model. The six images used are shown in Figure 3-3. The images represent the created

entities ranked 1-5 and the opportunity collect entity.

3-17

Figure 3-3 Entity.Type Animated Figures

Many more attributes are automatically assigned by the software package, but we

are not concerned with them at this time. The attributes of prime concern are 55 user-

defined attributes which characterize each entity as it flows through the Cycle. The first

user-defined attributes are allocated at the assign nodes encountered immediately

following each of the six create-nodes. These are the octagonal Assign blocks labeled

Priority Assign1 to Priority Assign5, and Opportunity_Assign.

These Assign blocks, and all others throughout the model, add or modify

attributes for each entity that passes through them. The two attributes assigned at each of

the first six-assign blocks are Priority and RFI_Type. Priority represents the Urgency of

the RFI request as described above. The Priority_Assign blocks assign an integer value

to the Priority attribute from 1 to 5. Priority_Assign1 is set to 1, Priority Assign2 is set to

2, …, Priority Assign5 is set to 5. The Opportunity_Assign block applies a random

Priority assignment based on a discrete distribution DISC(0.22, 1,0.35,2,0.7,3,0.9,4,

1.0,5,33). These Priority values are used throughout the model for queuing purposes.

Their application will be discussed further when queuing logic is explained.

 The RFI_Type attribute, like the Priority attribute, drives much of the critical

logic in subsequent model performance. The RFI_Type attribute is divided into three

specific categories: 1) Time-Critical; 2) Time Dependent; and 3) Fill At Will. The

concept behind the RFI_Type attribute is simple, but essential to the question of

O 432 1 5

3-18

intelligence collection. Does the intelligence need to be collected in the fastest possible

manner, only at a specific time, or filled as time permits?

The Time Critical RFI_Type is self-explanatory. These RFIs must be filled as fast

as possible therefore this RFI type is mostly associated with a Priority = 1 request. A

Priority = 5 would most likely not be time critical and this logic has been implemented in

the model. The next RFI_Type, Time Dependent, means that collection must occur at a

specific time, not earlier and not later. Often intelligence events are time dependent and

assets must be allocated at the correct time or the data collected may not be usable. The

final RFI_Type, Fill At Will means that this request can be filled early without any

adverse consequences. These types of RFI’s will most likely have a due date constraint,

but it is not a pressing one. Once Priority and RFI_Type are assigned the entities flow

into a diamond shaped decision node.

At a decision node, the model evaluates a logic statement to determine if the

statement is true or false. Some decision nodes will have N different branches because

more than two possible outcomes exist. This first decision node, Determine_Date_Due

evaluates the statement, RFI_Type = =1 || Entity.Type= =Opportunity (the symbol = =

means evaluate statement for truth and the || symbol is read as “or”). There are only two

possible outcomes either the entity possesses at least one of the attribute types

Opportunity_ Collect Entity.Type or RFI_Type 1, or it does not. If the statement

evaluates to true then the entity is sent to the Crit_Due_Date assign node where a

Due_Date within the next 2 to 48 hours is assigned (time assignment is based on a

~TRIA(,2,12,48) distribution, mean=12 and Standard Deviation=2). If the statement is

not true then the entity is a Non-Time Critical RFI and it is sent to the Other_Due_Date

3-19

assign node where a Due_Date is assigned with an ~Exponential (10days) distribution,

(λ=10days). This indicates that the mean value of this request is approximately a week

and a half, but theoretically the elongated tail probabilities of the exponential distribution

allows for a request that could be due years in the future. The exponential distribution

works because theoretically such an intelligence collection request could exist.

 Once a Due_Date attribute is assigned to each entity then the entities are once

again broken back down into RFI entities and Opportunity collect entities by the logic in

the RFI_OP decision node. The RFI entities flow to the RFI Matrix_Creation Node and

the Opportunity entities flow to the Opportunity Matrix. These two nodes are the

foundation on which this model is built. They assign the majority of the user-defined

attributes which characterize all model entities. They generate three types of attributes;

administrative attributes, decision logic attributes, and knowledge matrix user-needs

vectors. Administrative attributes are model constructs used to help the entities flow

through the processes within the model. Decision logic attributes determine what paths

the entities will choose as they interact with the model. The knowledge matrix User-

needs vectors have already been discussed. They drive collection and are the measuring

sticks to which satisfaction is applied. Table3-10 depicts the Matrix_Creation attributes

assigned to RFI entities generated in the model. Table 3-11 depicts the

Opportunity_Matrix node attributes assigned to Opportunity entities generated in the

3-20

Table 3-10 Attributes Assigned at Matrix _Creation Node

model. The Matrix_Creation node and the Opportunity Matrix both assign the same

attributes, but do so based on different distributions. For example the

 Opportunity_Matrix will generate only zeros for the Library_Search attribute

because Opportunity Entity.Types collect only new raw data.

They do not search through archives for previously discovered data. A regular RFI

however, could have needs that are fulfilled by a library search of archived data so an

archival search is modeled.

 The most critical attributes assigned at these nodes are the attributes which form

our User-needs vector. The possibility does exist that a vector of all zeros could be

created in either of these two nodes.

TYPE MATRIX_CREATION VALUES ASSIGNED
Admin Reoccurance Due_Date-Entity.CreateTime
 RFI_Create_Date Entity.CreateTime
 Sort_Rule Due_Date*Priority

Decision Abroad DISC(0.5,0,1,1,13)
 Contine_Collect_After_Due DISC(0.8, 0, 1.0, 1,18)
 Detectable_Emissions DISC(0.5, 0, 1.0, 1,14)
 Emits_RF DISC(0.5,0,1,1,15)
 Library_Search TRIA(0,0.8,1,17)
 Quit_Collect Due_Date+DaysToBaseTime(EXPO(30,32))
 Standing_or_Adhoc DISC(0.6, 0, 0.61, 6, 0.66, 12, 0.74, 24, 0.80, 48,
 0.9,168,0.95 720,1.0,4368,19)

 KM Activity_State_Need DISC(0.1, 0, 0.2, 1,0.4,2,0.8,3,0.98,4,1.0,5,22)
 Capabililty_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.98,4,1.0,5,23)
 Identity_Need DISC(0.18, 0, 0.3, 1,0.4,2,0.75,3,0.98,4,1.0,5,21)
 Intent_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.98,4,1.0,5,24)
 Location_Need DISC(0.1, 0, 0.25, 1,0.35,2,0.75,3,0.98,4,1.0,5,20)
 Track_Need DISC(0.8,0,0.9,4,1.0,5,16)

3-21

Table 3-11 Attributes Assigned at Opportunity_Matrix Node

TYPE OPPORTUNITY_MATRIX VALUES ASSIGNED
Admin Sort_Rule Due_Date*Priority

Decision Abroad DISC(0.5,0,1,1,26)
 Contine_Collect_After_Due DISC(0.8, 0, 1.0, 1,31)
 Detectable_Emission DISC(0.5,0,1,27)
 Emits_RF DISC(0.5,0,1,1,28)
 Library_Search 0 (No Library Search Ever)
 Quit_Collect_Date Due_Date+DaysToBaseTime(EXPO(30,32))
 Standing_or_Adhoc 0 (Adhoc only, never a Standing RFI)

KM Activity_State_Need DISC(0.1, 0, 0.2, 1,0.4,2,0.75,3,0.9,4,1.0,5,36)
 Capabililty_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.95,4,1.0,5,37)
 Identity_Need DISC(0.1, 0, 0.2, 1,0.4,2,0.75,3,0.9,4,1.0,5,35)
 Intent_Need DISC(0.3, 0, 0.45, 1,0.6,2,0.9,3,0.95,4,1.0,5,38)
 Location_Need DISC(0.1, 0, 0.25, 1,0.35,2,0.5,3,0.9,4,1.0,5,34)
 Track_Need DISC(0.8,0,0.9,4,1.0,5,29)

To prevent one of these null RFIs from shooting through the model, drop logic is

added in the form of a decision node (Null_RFI_Decide) and a dispose node (Null_RFI).

Any null RFI created will trip the truth logic and be disposed of immediately. If an RFI

is not a null RFI then it proceeds to the next decide node, the Library_Search decide

node. This Library node represents the time an intelligence professional might spend

looking for information archived in any number of intelligence databases or libraries. As

such the Library process node enacts a delay, but does not utilize any intelligence

collection resource. The delay is modeled as TRIA(0.5,1,8) distribution which means

that a minimum time of a half hour and a maximum time of one work day (8 hours) could

be spent searching for archived information. Note that this is the first delay built into the

model, after this library search delay some information may have been gained. To model

this information gain the Library assigns six new attributes, collect attributes, to the RFI

as illustrated in Table 3-12.

3-22

Table 3-12 Library_Search Example of Collection Vector Distributions

Collect Attributes Level of Satisfaction Probabilities
Activity_State_Collect Tria(0,1,2,496)
Capabililty_Collect Tria(0,1,2,499)
Identity_Collect Tria(0,1,2,497)
Intent_Collect Tria(0,1,1,498)
Location_Collect Tria(0,1,3,495)
Track_Collect 0

With the Library collection vector created the RFsI flow into the Drop_Logic

decision node. Drop Logic is a reoccurring theme through out the Intelligence Cycle.

Drop Logic is a check to see if the information being requested is still worth collecting.

The attribute Due_Date is used to simulate a report deadline, a time when information is

required to be back to the end-user/requestor. This end-user established deadline is the

time constraint mentioned at the start of this chapter. Often information must be

collected despite the fact that its point of maximum usefulness is past. For these

instances the Continue_Collect _After_Due attribute was added to the model. But even

valuable information has a finite shelf life so there will come a time when collection is

pointless and no further effort should be made, for this point in time the Quit_Collect

attribute was added to the model. The model compares these three attributes; Due_Date,

Continue_Collect_After_Due, and Quit Collect against the simulation clock time,

TNOW, to determine entity timeliness and proper progression through the Intelligence

Cycle.

Drop Logic does not imply that the RFI will drop out of the system entirely,

possibly just out of the current submodel. Due to tardiness an entity may simply be

forwarded to a point further along in the Intelligence Cycle (i.e. skipping fusion), it may

be sent back to the end-user as a null collect report (i.e. collection not accomplished

3-23

because time ran out), or it may be recycled into the Intelligence Cycle if it is a standing

RFI entity.

At this point the difference between a Standing_RFI and an Adhoc_RFI must be

explained. An Adhoc_RFI is a one time request for information that will shoot through

the Intelligence Cycle only once. Note that an Opportunity Entity.Type will always be

modeled as an Adhoc_RFI. A Standing_RFI on the other hand is a reoccurring request

for intelligence. A Standing_RFI will loop through the Intelligence Cycle a number of

times, based on its periodicity (daily, weekly, monthly, semi-annually), until its

Quit_Collect date occurs.

This Adhoc versus Standing RFI’s model logic is a significant improvement over

the previous model. It more closely simulates the real world making the model a true

Intelligence Cycle, rather than a straight line Intelligence Process. There is one drawback

to this method that we will discuss further in Chapter IV, cycling RFI’s complicates

statistics collection by skewing our current work in progress (WIP) estimations for each

Entity.Type.

 If the entity is not dropped or recycled in the Drop Logic sequence then the final

node in the Planning and Direction submodel is encountered, the Needs_Check submodel.

This submodel forwards RFIs satisfied by the Library Search to the Process and

Evaluation submodel, or submits the request for further collection because a library

search did not reveal enough information to satisfy the end-user. Within the Needs_

Check submodel is the Needs_Assess Library subprocess block. The logic in this block,

shown in Figure 3-4 counts the number of non-zero user-needs in the user-needs vector

and assigns that value to an attribute called Num_Needs. The number of needs is

3-24

counted at this point because of an assumption made concerning collection. It is assumed

that efficient collection is obtained by assigning each user-need above zero one-collection

resource. This assumption drives both the collection and fusion algorithms used in this

model. Note that there is an extra decision node in our needs check logic called Library_

Check even though library is not a need. The Library_Check node is included because

we do not want to lose any information that was gained in a library search. If this logic

were not included then the collection vector gained by the library search would not be

included in the fusion process later in the model.

Num _Needs1Lib1

T r u e

F a ls e

LocO vr _0 Lib1 Act O vr _0Lib1
T r u e

F a ls e

Num _Needs2Lib1 Num _Needs3Lib1

Tr ackO vr _0Lib1
T r u e

F a ls e

I dO vr _0Lib1
T r u e

F a ls e

I nt ent O vr _0Lib1
T r u e

F a ls e

Capabilit yO vr _0Lib1
T r u e

F a ls e

Num _Needs4Lib1 Num _Needs5Lib1 Num _Needs6Lib1

Libr ar y_CheckLib1
T r u e

F a ls e

Num _Needs7Lib1

P OS T LIBRARY NEEDS AS S ES S M ENT S UBM ODEL

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

Figure 3-4 Post Library Needs Assessment Logic

If all needs were satisfied the RFI skips further collection and jumps to the Processing

and Evaluation node. If not all needs were not satisfied the entity continues out of the

Planning and Direction submodel into the Collections submodel.

 In summary there are five ways to exit the Planning and Direction submodel:

1) Drop out of the Intelligence Cycle entirely because Quit_Collect time was
surpassed

3-25

2) Jump from Needs_Check to the Processing & Exploitation submodel because all
Needs were fulfilled in the Library search

3) Leave through the exit point without a needs check because no library search was

done

4) Leave through the exit point after a Needs_Check identified that needs were not

satisfied

5) Be sent to the Standing RFI hold node because Due_Date expired but not
Quit_Collect

3.5.3 Collection Submodel

This submodel simulates entity prioritization, resource selection, resource

allocation, and intelligence platform data gathering performance. The assumption that

each non-zero user-need element requires one collection resource to satisfy its need is

key to the logic used in this model. Original RFI’s are duplicated based on Num_Needs

and sent to each user-need area collection submodel for simulated collection. Resource

capabilities and intelligence target characteristics are evaluated to determine what one

resource is most likely to collect the requested data within the Due_Date time constraint.

This evaluation is performed as decision tree logic within each user-need collection

submodel. Collection is simulated as a time delay followed by the assignment of a

collection vector, similar to that shown previously at the Library_Assign node. We hope

that the collection vector for each user-need will satisfy the primary need in that vector

(i.e. the need that resource was chosen to fulfill). Essentially an RFI is matched against

the resources that will most likely result in a satisfactory collection vector. This section

is heavily dependent upon proper intelligence resource modeling.

3-26

3.5.3.1 Resource Modeling

Fifteen different intelligence platforms are simulated in this portion of the model.

Realistic resource simulation involves creating collection probabilities, estimating

quantities of requests that can be handled at the same time, and creating resource

schedules. Table 3-13 most of the parameters assigned to the RADINT1 Resource. For

this model the RADINT1 resource models a real world Space Based Radar (SBR). The

parameters shown characterize the probabilities that RADINT1 will capture data in each

of the knowledge matrix-knowledge areas. The last three parameters characterize the

systems ability to collect RF emissions, other emissions, and if the system can operate

both (B) abroad and within the US. This system has and N for both RF and Find Emis

because it does not perform those functions, but it can operate both abroad (outside the

U.S.) and at home. Refer to Appendix C for a comprehensive list of all fifteen resources

and all of their associated parameters.

Table 3-13 RADINT1 Parameters Modeled

Sat
LvL Loc

Activity
State Track Id Intent Capability System

R
F
?

Find
Emis Abroad

5 Max SBR N N B
4 Mode
3 N/A N/A
2 Max Max Max
1 Mode Mode Mode
0 Min Min Min Min

Now that we know what the RADINT1 resource can do, we have to know when it

is available for operations. Figure 3-5 depicts the scheduled availability and capacity for

3-27

RADINT1. Looking at Figure 3-5 we can see that the RADINT1 can simultaneously

handle up to 250 entities. The resource is available 12 hours out of each day, but only in

fifteen minute intervals, then it is down for a fifteen minute interval. For diagrams of all

resource schedules used in this model, refer to Appendix C. More resources could easily

be added to the model as needed.

Due to the complexity of this process, there are a number of assumptions that

must be made. These assumptions are discussed as the section progresses. Also due to

this section’s complexity it contains a number of layers that are broken down into

separate subsections. Figure 3-6 displays the first layer of the collection submodel

Figure 3-5 RADINT1 Capacity & Availability Schedule

3-28

 Notice in Figure 3-6 that this collection submodel has two entrance points. The

upper entrance point is the one through which first time requests will flow into the

submodel, and the lower entrance is the one through which standing RFI’s will loop

through the collection submodel. Both entrances flow into the Time Management sub-

process node.

Time_Mgmt
Branch

If
I f
I f
I f
I f
I f

Location_Need>0
Activity_State_Need>0
Track_Need>0
Identity_Need>0
Intent_Need>0
Capability_Need>0

Collection
Need_Assess

Activity_State_Logic

Track_Logic

Identity_Logic

Intent_Logic

Capabilty_Logic

RESOURCE ALLOCATION LOGIC SUBMODELS

Location_Logic

COLLECTION SUBMODEL

 0 0

Figure 3-6 Wire Diagram - Collection Submodel

 .

3.5.3.2 Time Management Subprocess

 The purpose behind this node was outlined in the discussion of RFI_Types. A

type 2 RFI means that the RFI is time dependent; it should only be collected at a certain

time and not before. The logic applied in this submodel, Figure 3-7, will hold entities

here until they are within 48 hours of collection, at which time they will be released back

3-29

into the Cycle. The first decide node Not_T_Dependent will determine if the RFI is type

2 or not. If not then it is allowed to continue on its way. If it is a type 2 RFI then it is

sent to the next decide node, Time_Parser which will determine the proper Hold node to

send the entity to based on that entities Due_Date. The nodes shown are RFI’s six

months out, a month to six months out, A week to a month out, a week to two days out,

and then after this last hold node the entity is released from the Time_Mgmt subprocess.

Time_Parser

Due_Date-TNOW<=48
Due_Date-TNOW>48 && Due_Date-TNOW<= 168
Due_Date-TNOW >168 && Due_Date-TNOW<=672
Due_Date-TNOW >672 && Due_Date-TNOW<=4032
Due_Date-TNOW >4032

Else

W e e k
Two _ Da y s _ to a

M o n th
W e e k _ to _ a

M o n th s
On e _ to _ Si x

Ov e r_ 6 _ M o n th s

Tr ue

False

Not_T_Dependent

Oops_Time_Parser

0

 0

0

Figure 3-7 Wire Diagram - Time Management Subprocess

The prioritization scheme used in the queues for each of the hold nodes is a

lowest attribute first scheme, with Due_Date as the attribute that is queued. Each hold

node scans for a condition to be met. For example in the Week_To_A_Month hold node,

when Due_Date – TNOW < = 168 then less than a week is left and the entity waiting is

released to the Two_Days_To_a_Week hold node. This logic is followed until the entity

3-30

is released from the Time_Mgmt subprocess and continues on to the Needs_Assesment

Logic.

3.5.4 Need Assessment

The logic in the Need_Assess Collection subprocess node is the same as that used

previously in the Need_Assess Library subprocess node. This node once again counts the

number of non-zero user-needs so that fusion and statistics collection is possible later in

the model. This action is repeated because entities which either skipped library search or

were not satisfied by the the library search never had a needs assessment completed.

Once Num_Needs is established the entity will proceed out of the Needs_Assess

subprocess and into a branch node. This branch node is first step in resource allocation.

Based on the assumption that each need can be fulfilled best by one resource this node

evaluates each entity’s user-need vector and sends a duplicate of the original entity to

each user-need logic submodel which requires a satisfaction greater than zero. For

example if an entity has a user-needs vector with four needs above zero then four

duplicates are created and each one is sent to its appropriate Need_Logic submodel for

collection (i.e. Activity_State_Logic, Location_Logic, Track_Logic etc…).

3.5.4.1 ActivityState_Collect Node-by-Node Collection Example

 This step in the model simulates logic that an automated Collection Manager

might employ. We will use the Activity_State_Logic submodel as our example for this

area of the model. Each of the Needs_Logic submodels are setup with logic similar to the

Activity_ State_Logic submodel. Figure 3-8 illustrates the first logic layer.

3-31

 The first decide node checks to see what kind of satisfaction level is required.

This may be a question of sensor fidelity in the real world sense because many

satisfaction levels can be based upon a degree of resolution desired. The decide node

Needs_Parser_Act divides the entities into those that require a 3 to a 5 satisfaction level,

and those that need only a 1 to 2 level of satisfaction. We will follow the track of entities

that require a 3 to 5 level satisfaction. These entities are routed to the Act_HiRes

submodel. Again the Act_RegRes has very similar logic.

Need_Pars e r_Ac t
Tr ue

False

DD_M et_Ac tRR

DD_No t_Ac tRR

Tr ue

False

Need_Ev a l_Ac tHR

Need_M e t_Ac tHR

Need_No t_Ac tHR

Tr ue

False

Need_Ev a l_Ac tRR

Need_M e t_Ac tRR

Need_No t_Ac tRR

A c t_H iR es

Act_ Re g _ Re s

Ac tRR_TEv a l
Tr ue

False

DD_M et_Ac tHR

DD_No t_Ac tHR

Ac tHR_TEv a l
Tr ue

False

0

 0

0

 0

0

 0

0

 0

0

 0

Figure 3-8 Wire-Diagram Activity_State Needs Parser and Counts Logic

3.5.4.2 Hi-Resolution Collection Decision Tree

 The Hi-Res and Reg_Res collection submodels simulate intelligence resource

selection, and data gathering. Figure 3-9 depicts a very simple decision tree used to

determine what intelligence resource set should be selected. The basis for using a

decision tree at this point in the model was stimulated by a discussion in the text “Making

Hard Decisions with Decision Tools” (Clemen, 2001; 83) The decisions made are based

3-32

upon attribute information provided to the computer Collection Manager through the RFI

input shell. In the case of Opportunity entities it is assumed that the seized resource

found EEI supporting information in the course of a search.

Ab ro ad _Ac tHR
Tr ue

False

RF_Ac tHR1
Tr ue

False

RF_Ac tHR_ 0
Tr ue

False

Tr ue

False

Em is s ions _Ac tHR0 1

Tr ue

False

Em is s ion s _ Ac tHR00

Tr ue

False

Em is s ion s _ Ac tHR11

Tr ue

False

Em is s ions _Ac tHR1 0

Act1 1 1 _ HR

Act1 1 0 _ HR

Act1 0 1 _ HR

Act1 0 0 _ HR

Act0 1 1 _ HR

ActHR_ 0 1 0

ActHR_ 0 0 1

ActHR_ 0 0 0

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

Figure 3-9 Wire Diagram - Collection Decision Tree Logic

 In this simple sample problem the three attributes were used to create the decision

trees; Abroad, Emits_RF, and Detectable_Emissions. These attributes are set to either 1

(true) or 0, false based on a user-defined probability distribution. The Abroad attribute

determines if the intelligence target is within the United States, or on foreign soil.

Certain intelligence resources are located only in the U.S. and others are located only

abroad. For example, the FBI operates only within the United States, while a Rivet Joint

aircraft usually operates only abroad. The next attribute, Emits_RF, refers to the type of

communications conducted by the intelligence target. Does the target communicate using

3-33

any form of Radio Frequency, or other Electro-Magnetic communication (cell phone, fax,

walkie-talkie, short wave radio, etc…). If electronic communication is used then another

set of resources might be engaged against the target.

The final attribute used in this decision tree is Detectable_Emmissions. This

attribute is added as a catch all for remaining intelligence resource allocation. For an

example of a detectable emission consider a magnetic anomaly detector (MAD) which

could be used to look for coastal submarine activity (example based on text of Nimrod

MR2 description on the Federation of American Scientist website). These three attributes

are very simple, explicit questions which when used in this decision tree format create a

kind of a Ruled Needs based asset allocation strategy. Each entity will travel through the

decision tree logic, following its “true” path until it reaches the appropriate collect

submodel. For our example, we will look at the Act110_HR submodel.

3.5.4.3 Activity_State_Collection Resources

 The Act110_HR submodel, Figure 3-10, displays the final stage of asset selection

and tasking in the Act110_HR submodel. Act110_HR means that this submodel deals

with intelligence targets that are abroad, emit and RF signal, but do not have other

detectable emissions, the binary designator kept decision tree logic orderly as the model

was created. Also of note at his point is the fact that decision tree logic could become

cumbersome quite quickly. There will be 2N final collect submodels like Act110_HR.

Where N in this case is the number of attributes which make up the splits in our decision

tree. We used three attributes therefore 23 = 8 possible Collect submodels. If seven

attributes are used to define the decision tree then 27 = 128 different Collect submodels

3-34

similar to the one shown in Figure 3-10 Act_110_HR. There are more than seven

attributes that could be used to characterize intelligence targets and some of those

attributes may have an outcome space larger than simply true or false (0 or 1).

 The collect submodel names like Act110_HR were designed to be easily

understood one reads them as: Need(Abroad,Emit_RF,Detectable_Emissions)_

Need_Satisfaction Level(High Resolution (HR), or Regular Resolution(RR)). Once

through the decision tree logic the collect subroutines at the ends of the decision trees are

the very bottom layer, the foundation of this modeling effort. It is at this point that a

human must determine which resource(s) which will most likely achieve the best

collection vector based on the information and constraints presented by the RFI input

data (i.e. the defining attributes such as Abroad, Emits_RF, Due_Date, etc…) and

program those resources into the computers resource seize logic. This is the most

hardwired portion of this model and would be the most tedious to change during

architecture restructuring.

 The first node encountered in the Act110_HR collect submodel is a queue node.

This queue prioritizes entities based on a lowest attribute first rule. The attribute used for

this prioritization is the Sort_Rule attribute. The Sort_Rule attribute value is determined

by (Due_Date-TNOW)* Priority. This simple decision algorithm gives equal weight to

priority and time remaining in a strictly linear fashion. Once entities are prioritized they

will wait in queue until they reach the front of the queue. Once an entity is the first in

line it will be pulled forward by its associated select node. In the select node the entity’s

Sort_Rule attribute is compared to the Sort_Rule attribute for all entities, in all other

collect submodels throughout the entire model which are requesting use of the same

3-35

resource(s) because these select nodes use Arena’s shared resource capability. The entity

with the lowest Sort_Rule will be allowed to seize the desired resource. If multiple

resources are available the Select node will determine which of the resources provided

should be utilized based on a Resource Selection Rule (RSR). In Figure 3-10 because we

are in the Act110_HR collect submodel and the three SIGINT assets have similar

collection vector distributions the RSR is Smallest Number Busy (SNB). The asset least

heavily tasked will pick up the slack from those that are heavily tasked.

 After a resource is seized an immediate drop logic check is performed. This drop

logic is implemented at this point because it is possible that the entity in question could

have been held in its Queue node past its Due_Date. If it is past due

(TNOW>=Due_Date) then the entity will flow to the CC_Chk_Act111_HR decision

node, where a check is made to see if collection is still warranted. If the entity is past it’s

Quit_Collect date then it is immediately sent to the Release resource node, and the

resource in question is release without incurring any time on the simulation clock. The

entity is then given a Null_Collect report (which means all Need_Collect attributes are set

to zero). The fact that the report was dropped before collection was done is counted by

the count node and the entity is finally forward by the Route Node,

“ActHR111RptSkpS1”. A route node allows an entity to jump from one area in Arena to

another without following the wire diagram. All entities which are sent through this drop

logic sequence are sent to the Processing and Exploitation “No_Resource_Siezed” station.

For a route node to be used it must have a destination station node associated with it.

3-36

DL _ Ac t1 1 0 _ HR
Tr ue

False

CC_ Ch k _ Ac t1 1 0 _ HR

Tr ue

False

Rp tSk pS1
Ac tHR111

Act HR_110. Q ueue

Que ue

Ac t1 1 0 _ No Rp tNo _ Rp t_ Ac tHR1 1 0

Se l ec t

SI G I NT1

Se i z e

SI G I NT2

Se iz e

SI G I NT3

Se i z e

SI G I NT1_DELAY

De la y

SI G I NT1

Re lea s e

Ac t1 1 0 _ HRS2
Tr ue

False

CC_ Ch k _ Ac t1 1 0 _ HRS2

Tr ue

False

Rp tSk pS2
Ac tHR11 1

Ac t1 1 0 _ No Rp tS2No _ Rp t_ Ac tHR1 1 0 S2

SI G I NT2_DELAY

De l ay

SI G I NT2

Re l eas e

DL _ Ac t1 1 0 _ HRS1
Tr ue

False

CC_ Ch k _ Ac t1 1 0 _ HRS3

Tr ue

False

Rp tSk p S3
Ac tHR1 11

Ac t1 1 0 _ No Rp tS3No _ Rp t_ Ac tHR1 1 0 S3

SI G I NT3_DELAY

De l ay

SI G I NT3

Re l eas e

SI G I NT1

Re l eas e

SI G I NT2

Re l eas e

SI G I NT3

Re l eas e

ACT _ 1 1 0 _ HR_ SIG1

ACT _ HR_ 1 1 1 _ SIG2

ACT 1 1 0 _ HR_ SIG3

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

Figure 3-10 Wire Diagram - Resource Selection Modeling

Essentially this drop logic sequence ensures that timed out reports do not occupy

resources without reason. They are not dropped from the system because all reports,

even those with null collection vectors, are required for proper functioning of the fusion

algorithm which begins in the Processing and Exploitation section of the model. All

reports that are submitted for collection must be accounted for after collection or in this

case non-collection have been performed. The fusion algorithm is expecting to receive a

3-37

specific number of reports equal to Num_Needs/Num_Needs_Norming. If any reports are

dropped from the system at this point the fusion logic later in the model will hold all the

other Need_Collect reports on this intelligence target waiting in the Processing and

Exploitation’s First_Fuse queue until its Quit_Collect date is reached.

 If a Need_Collect report is not past its Due_Date or if collection is still warranted

after the Due_Date then the entity, with its resource still seized, flows into its delay node.

It is delayed based on its predetermined delay distribution (refer to Appendix C for delay

distributions used) the two distributions used are Triangular and Exponential distributions

with differing (min,mode,max) and λ values depending on the resource being modeled.

Once the delay is completed the entity flows into its Collect assign node, ActHR_110_

SIG1 in our example case. In this assign node a needs collection vector is created by the

assignment of six new attributes: Activity_State_Collect, Location_Collect, Track_

Collect, Identity_Collect, Intent_Collect, and Capability_Collect. All of these

Need_Collect attributes are assigned Triangular probability distributions. Once this

needs collection vector is generated the entity flows into the resource Release node. The

entity then exits the collect submodel and steps back into the decision tree submodel,

from which it immediately exits up into the Needs_Logic submodel.

3.5.4.4 Exiting Collection

Looking back to the Need_Logic submodel, Figure 3-8, we see that two decide

and count sequences follows both the Hi_Res and Reg_Res decision tree submodels. The

first decision node after exiting simulated collection, the “Needs_Eval_ActHR” node for

example, determines whether the specified need (Activity_State_Need) was successfully

3-38

satisfied by the Activity_State_Collect attribute. The entity is directed to the proper count

node (the rectangle with the clipped upper left corner) for either satisfying the

Activity_State_Need or not satisfying that Need. Then whether the Need was satisfied or

not the entity enters the next decision node, ActHR_TEval, where timeliness is

determined. If the Due_Date is still greater than TNOW, the entity did not spend too

long in collection and run over time so the entity flows to the DD_Met_ActHR node and

that counter is incremented. If timeliness fails at this point then the entity is sent to the

DD_Not_ActHR. These two counter sequences serve as flags to alert us if either our

user-needs MOEs and/or our timeliness MOEs are met at this point in the model. If a

failing trend is noted then there may be a problem with the architecture that was

established, or with the allocation of resources. These are the last nodes encountered in

this submodel. After these counters, entities will exit the Activity_State_Logic submodel,

and then exit the Collection submodel altogether and flow into the Processing and

Exploitiation submodel.

3.5.5 Processing & Exploitation Submodel

 The Processing and Exploitation submodel, Figure 3-11, simulates four events;

preparation of finished intelligence products, implementation of logic to evaluate

different forms of fusion, the decisions of if and/or when to fuse or forward information,

and collection vector batching (i.e. pre-fusion). The three different fusion algorithms are

formulated at this point in the model. They are, no fusion (NF), mixed fusion (MF), and

strict fusion (SF). Each algorithm uses the exact same collection vectors to evaluate

model MOEs.

3-39

First_Fuse

Delay
Exploitat ion

DD_Met_PE

DD_Not_PEDL_PE

Tr ue

False

Fo r_ L a te s
Ch k _ M ix _ Fu s e

No_Time_Sep

O r iginal

Duplicat e

No_Time_Sep2
O r iginal

Duplicat e

Si e z e d
No _ Re s o u rc e

Non_Collects
PeTO_Skip_Fuse

Collect_Separate
O r iginal

Duplicat e

Dropped_Separate
O r iginal

Duplicat e

No _ Fu s io n

L ib _ Sa t Ne e d s

PROCESSING AND EXPLOITATION SUBMODEL

M i x e d F u s i o n Su b m o d e l

SF _ Cl e a r_ Af te r_ Qu i t_ L o g i c

Found

Not Found

Qu i t_ Da te _ Se a rc h

O r iginal

Rem oved Ent it y

SF_ Qu i ts _ Cle a r

 0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

Figure 3-11 Wire Diagram - Processing & Exploitation Submodel

The first event, preparing a finished intelligence product, is simulated as a simple

delay in the first node of the Processing and Exploitation submodel, Exploitation_Delay.

The actual activities performed at this time might be annotating imagery, transcribing a

SIGINT report, or debriefing a HUMINT source. The assumption made in this model is

that a TPED (Task, Process, Exploit, Disseminate) architecture is in place and not a

TPPU (Task, Process, Post, Use). Captain Pawling gives a good brief explanation of

TPED vs. TPPU in his thesis (Pawling, 2004; 2-5). A TPED architecture assumes that all

intelligence must be processed in some way, while TPPU assumes that some types of

intelligence are finished products as soon as they are collected and can be used

immediately without any processing. In this model no resources are seized during this

processing time. If TPPU versus TPED architectural comparisons need to be run and if

3-40

processing resources needed to be modeled then the Exploitation_Delay node could be

modified into a subprocess node and TPPU logic could be incorporated as needed.

 The two other entry points into the Processing and Exploitation Submodel are the

“No_Resource_Seized” station located just beneath the Exploitation_Delay node, and the

Lib_Sat Needs station, from which RFIs satisfied in library search arrive. At this point

the implementation of differing fusion algorithms begins.

Recall that the original RFI or Opportunity Collect was a vector of one to six non-

zero user needs. Each non-zero user-need created a duplicate of that RFI to be sent to a

Collection_ Logic submodel as an individual resource tasking. Therefore the number of

collection vectors generated for each RFI is always equal to the value of the Num_Needs

attribute (Num_Needs-1 if a library search was used as a resource as well). The first step

in formulating the three different fusion algorithms is to duplicate every collection vector

and send them all through the No Fusion route. The No_Fusion route node sends all of

the collection vectors to the Non_Fused station in the Dissemination submodel, where

statistical analysis will be performed on all of the collection vectors generated, without

any fusion applied. The MOE evaluation done on the Non_Fused reports will be

compared with a mixed fuse and forward strategy, and a strict fusion strategy. With the

No Fusion collection vectors already disseminated, the original collection vectors are

duplicated once again. The duplicated vectors sent to the mixed fusion submodel and the

originals are sent through the strict fusion algorithm. This way all of the same collection

vectors are fused in three different ways so that the value of fusion can be analyzed. At

this point both the Mixed Fusion and Strict Fusion algorithms must decide to either fuse

or forward the collection vectors they receive.

3-41

The decision to fuse and/or forward, is based upon the time remaining from the

current time until entity Due_Date. The assumption made at this point is that time is the

primary concern because an end-user has established a time constraint, the Due_Date. It

is assumed that the information is needed by that time or it may not be useful. While

fusion may improve user-needs satisfaction, it may also take too long and not meet end-

user time requirements. The mixed fusion algorithm depends upon a user defined global

variable, Fuse_Limit, which is established as the number of hours preceding Due_Date

when fusion may make an entity go over Due_Date. In other words if Due_Date-TNOW

<= Fuse_Limit then fusion should not be started and immediate forwarding should occur

the same as in the no fusion case. If fusion has already begun then the collection vectors

that are available should be fused and forwarded. The fusion algorithm used is very

simple. All the collection vectors are reviewed and the maximum satisfaction value

across all vectors is kept in each user-needs area. This will create a vector of maximum

satisfaction that is sent to the Forwarded Reports station in the dissemination submodel.

The logic needed to implement this algorithm in Arena is fairly complex and does not

lend itself well to wire diagrams.

The strict fusion algorithm works much the same as the mixed fusion algorithm

except that it does not use the Fuse_Limit variable. Strict Fusion will wait for all

collection vectors to arrive until it reaches an entities Quit_Collect date. Once a quit

collect date occurs then the fuse and forward functions are tripped just as they are in

mixed fusion algorithm.

A brief discussion on how Arena performs batching may give the reader some

more insight into the logic used within the model. What the model is really doing at this

3-42

point is putting the original RFI back together as one entity rather than allow all the

separate collection vectors to process individually. For strict fusion the First_Fuse node

queues up all of the original collection vectors. It does this by sorting all of the collection

vectors in the queue according to the Sort_Rule prioritization scheme, the same one used

in the collection submodel. What this will do is put all the collection vectors from one

RFI in order in the queue. All the collection vectors generated by that RFI should be

lined up next to each other in the queue. Then Arena matches up entities that have the

same Entity.SerialNumber attribute. Recall that this number is unique to all newly

created entities, but is retained during all the duplication processes that happened at the

Collection submodel branch node, and at all other duplication nodes along the way. The

First_Fuse queue will match entities with the same Entity.SerialNumber together until it

has reached its matching quota, which in this case is equal to then Num_Needs attribute

value. Once there are “Num_Needs” number of entities in queue with the same

Entity.SerialNumber these entities are bundled together as one entity and released from

the queue. In this case the entity created is a temporary one which means that all of the

individual data from each of the collection vectors is still available for processing. Once

a bundled entity is release from pre-fusion it is sent to the Analysis and Production

submodel.

3.5.6 Analysis and Production Submodel

 The Analysis and Production submodel is dedicated to data fusion and the

resubmission of standing RFIs back into the Intelligence Cycle. This submodel simulates

knowledge creation from the multiple data sources tasked in the collection phase. Given

multiple collection vectors as our bits of data or information the fusion method used in

3-43

this model takes the maximum satisfaction value (Need_Collect) in each Need Column

across all the collect vectors from each of the resources tasked. The example given in

section 3.3, Modifying the Knowledge Matrix Method, discussed this fusion

methodology in detail with an example provided. However in this model the fusion

algorithm used is not as important as the process established to implement the algorithm.

It is the iterative framework established to support this simple maximum satisfaction

vector methodology that could be used to support any of the more complex fusion

algorithms discussed in Chapter Two. With that in mind let’s look at the way that the

Arena software was used to model information fusion.

 Fusion preparation began at the end of the Processing & Exploitation submodel in

the First_Fuse node. Note that there is no fusion delay node in this submodel. It was

determined that the time spent waiting in the First_Fuse queue for all collection vectors

generated by a single RFI would account for delay spent fusing information. Also not

adding a time delay takes out the model idiosyncrasy of delaying an entity that has only

one user-need and really does not require any fusion. All other entities with more than

one user-need are batched together in the First_Fuse node and still retain all of their

separate collection vectors. The algorithm implemented here takes those temporarily

bundled entities, separates them once again and does a pair-wise comparison of entities in

the time order that they arrived at the First_Fuse node. As each of the entities is

compared, the maximum value of the comparison is saved as a variable, the

Activity_State_Fuse variable, for example, represents the maximum Activity_State_

Collect value achieved after all pair-wise comparisons are made. Thus, a maximum

collection vector over all user-needs is obtained. The final entity for each set of entities

3-44

to be fused is directed to the Final_Fusion assign node, where the maximum satisfaction

vector is assigned as an entity attribute. Then the final entity triggers the ClearingHouse

assign node, which resets all the Need_Fuse variables back to zero so that the next set of

collection vectors can be processed.

 When the final entity of a set enters the Second_Fuse node it completes the same

queueing and batching algorithm applied in First_Fuse. Note that there will be not time

delay here because all of the entities flow into the node at virtually the same instant. All

the entities in a set are reformed as one permanent entity with one maximum satisfaction

vector (as assigned to the last entity that passed through when the RFI set was split apart).

Now that the original RFI or Opportunity_Collect is back together and we enter the

second phase of the Production and Analysis submodel, resubmitting of Standing RFIs.

G r oup_Shoot

Second_Fuse
Fusion Clear _Fusion_Var s

T r u e

F a ls e

Post _Fusion

Final_Fusion Clear ingHouse

STAND_V_ADHO C

T r u e

F a ls e

St anding_Hold

St and_Rqst _Loop
O r ig in a l

Du p lic a t e

St and_RFI _Sat Updat e_Due_Dat eSt anding_Collect s

Past _Q uit
T r u e

F a ls e

Past _Q uit _2
T r u e

F a ls e

Dr op_St and_RFISt at ion
St anding_Hold

STANDING RFI LOOP LOGIC

Ct
Disposed SRFI

ANALYSIS AND PRODUCTION SUBMODEL

F o u n d

No t Fo u n d

Search
Duplicat e_SRFI

Dispose
Duplicat e SRFI

O ver _Q uit _SF

Num _Needs
SF_Fuse_To

0

 0

0

 0

0

 0

0

 0

0

 0

0

 0

0

0

Figure 3-12 Wire Diagram -Analysis & Production Submodel

3-45

The first decision-block of this area, Stand_V_Adhoc, determines if the request is

a Standing RFI or not. If the entity is a Standing RFI then it is sent to the

Stand_Rqst_Loop separate node where it is duplicated. The original entity is sent out of

the Production and Analysis submodel to the end-user(s). With the information sent on

its way the duplicate will be sent to a Past_Quit decision node. The Past_Quit decision

node determines if the RFI is no longer needed in the system. If TNOW>= Quit_Collect

then the RFI has reached the end of its collection loop and is dropped out of the

Intelligence Cycle at the Drop_Stand_RFI dispose node. If the RFI is still within its

collection cycle then it is counted and assigned a Looping_RFI_Count attribute so that

analysis could be done on the number of times that an RFI loops through the system.

Once these administrative details are completed the RFI is held in Standing_Hold node

until Due_Date. The entity is prioritized in the hold queue from lowest to highest

Due_Date order. When TNOW >= Due_Date a Standing RFI’s Due_Date the RFI is

released from the hold queue. It’s new Due_Date is assigned at the Update_Due_Date

node and then it proceeds to the Past_Quit2 decision node. This node checks to see if the

RFI has exceeded its Quit_ Collect time while it was held in the Standing_Hold node. If

this is the case then the RFI is sent to the Drop_Stand_RFI dispose node, if not then the

RFI is looped back into the Intelligence Cycle at the beginning of the collection

submodel. If the entity is not a Standing RFI then it immediately leaves the Analysis and

Production submodel for the Dissemination submodel.

3.5.7 Dissemination Submodel

3-46

 Dissemination is the final step before a user receives information. This model

assumes that dissemination is correctly implemented meaning the correct end-users

receive the correct information, Figure 3-13. Recall that the information requestor is not

always the one who most needs the information acquired. This assumption of correct

information delivery is simulated as a simple time delay in this model. The delay is set as

a triangular distribution TRIA(0.1,0.5,1.5) this assumes time to type information into a

computer and transfer a file, or dial a phone and relay a message.. Normally

dissemination is the end of the Intelligence Cycle, or possibly a new beginning as more

information supplied usually breeds more questions, (i.e. more RFI’s). In this model

however the majority of the Dissemination submodel is taken up by automated statistics

collection. The Dissemination submodel breaks out statistics into three categories

previously mentioned; No Fusion, Mixed Fusion, and Strict Fusion. All three statistics

collection areas are setup identically. We will use the No Fusion submodel for our

example, Figure 3-14.

3-47

Forw arded_Rpts

Non_Fused
A ll_Rpts

Strict Fusion

No_Fusion P erformed

Mixed_Fusion_Forward

E NT_T_Out

DISSEMINATION AND STATISTICS SUBMODEL

No_Col lec t_Entities

1
1

DuplicateCommon_Denom

0

Figure 3-13 Wire Diagram - Dissemination Submodel

 In No Fusion, statistics collection counts every non-zero user-need as a collection

vector. Recall that one RFI or Opportunity collect may have multiple resource taskings

because it can have up six User-needs to satisfy plus a possible library search This means

that when the RFI or Opportunity entity was split up according to User-needs at the

branch node in the collection submodel, all of the individual tasked need requests were

counted separately. This includes all library searches, all requests with null_collection

vectors, and all populated collection vectors. From this breakout of total tasking we can

see exactly how much simulated collection took place over the course of the simulation

run period. The counter NF_Tol_Entities at the beginning of the no fusion section will

tell us how many total collections were requested.

3-48

NF_TO TAL_SAT

NF_Ct _Needs_Met Fusion_Per cent ages
O r ig ina l

Dup lic a t e

N F _ N e e d s _ P e rc e n t a g e s

B ra n c h

I f
I f
I f
I f
I f
I f

%Num_Needs_Sat >= 1
%Num_Needs_Sat>=.80 && %Num_Needs_Sat<1
%Num_Needs_Sat>=.60 && %Num_Needs_Sat<0.8
%Num_Needs_Sat>=0.4 && %Num_Needs_Sat<0.6
%Num_Needs_Sat>=0.2 && %Num_Needs_Sat<0.4
%Num_Needs_Sat<0.20

NF_80_99%_NeedSat

NF_60_79%_NeedSat

NF_40_59%_NeedSat

NF_20_39%_NeedSat

NF_0_20%_NeedSat

NFTimely_W_Needs

Tr u e

Fa ls e

NFTimely_WO_Needs
Tr u e

Fa ls e

NF_Needs_NTime

NF_Tot al_Failure

NF_N80_99N

NF_N60_79

NF_N40_59

NF_N20_39

NF_N_0_20

Delay
NF_Disseminat e

NF_Tol_Ent it ies

NF_100%_NeedSatNF_N_100%

NF_Time_No_Needs

NO FUSION STATISTICS SUBMODEL

NF_St at s_Sep
O r igin a l

Dup lic a t e

NF_Tot _Sat

NF_NO K_NT

NF_TO K_NN

NF_Tot _Fail

Tr ue

Fa ls e

Final_NF Need_Eval

NF_SumSt at s
O r ig ina l

Dup lic a t e

B ra n c h

I f
I f
I f
I f
I f
I f

Sat_Sum>=1
Sat_Sum>=0.8 && Sat_Sum<1
Sat_Sum>=0.6 && Sat_Sum<0.8
Sat_Sum>=0.4 && Sat_Sum<0.6
Sat_Sum>=0.2 && Sat_Sum<0.4
Sat_Sum>=0 && Sat_Sum<0.2

NF_80_99%_Sat Sum

NF_60_79%_Sat Sum

NF_40_59%_Sat Sum

NF_20_39%_Sat Sum

NF_0_20%_Sat Sum

NF_Sat Sum80_99N

NF_Sat Sum60_79

NF_Sat Sum40_59

NF_Sat Sum20_39

NF_Sat Sum_0_20

NF_100%_Sat SumNF_Sat Sum_100%

0

 0

0

 0

0

0

0

0

0

0

 0

0

 0

0

0

 0

0

0

0

 0

0

 0

0

 0

0

0

0

0

0

0

Figure 3-14 Wire Diagram - No Fusion Statistics Collection

Once a total count has been made the entities are duplicated three times so that three

different levels of statistical evaluation can be made. The first split will send entities up

to the highest level of statistical collection, our top level MOE’s. The top four-dispose

nodes, left pointing blocks, determine our four levels of general satisfaction:

1) Total Satisfaction, all user-needs satisfied and timely

2) All user-needs satisfied, but timeliness not satisfied

3) Timeliness satisfied, but user-needs not satisfied

4) Total Failure, neither timeliness nor user-needs satisfied

3-49

The only difference for Mixed Fusion and Strict Fusion are the types of entities that

arrive at each node. Rather than all tasked user-needs requests Strict Fusion receives

only fused collection vectors

3.6 Validation and Verification

 Two specific tests verify this model. The first test was a series of logic tests

within the model itself. Drop logic dispose nodes were placed in the model at key logic

locations to determine if logic processes were working as anticipated. At the conclusion

of each set of test runs, and actual scenario runs, all drop logic sequences returned zero

values so no model logic in those key areas was broken. The second test conducted to

verify the model’s functionality was a series of common sense tests.

 The common sense tests followed an entity through the model using single time

steps on the model event calendar while monitoring model animation and calculations at

each step. The model was run for approximately 10,000 hours. Then animation was

paused, and the next entity generated was followed systematically through the entire

process. Specific checks made as the entity progressed through the model included

verifying appropriate queuing according to the Sort expression, routing through the

library, time management, needs assessment and intelligence resource processes.

Routing followed all assigned attribute values as specified in the Matrix Creation assign

node. Finally, the entity was followed through each of the fusion algorithms to ensure

that each algorithm was performing correctly. The model displayed no logic aberrations,

such as entities stuck in queues indefinitely or entities not queuing correctly. There was

only one model idiosyncrasy noted. After the statistics are truncated, see section 4.2

Overcoming Initialization Bias, the Mixed or Strict Fusion algorithms could become the

3-50

quantity leader over the No Fusion algorithm. At first, this appeared to be a double

counting, error, but as further investigation revealed no double counting occurred. At the

one-year truncation point, statistics clear but there are still entities from that initial year in

the Mixed and Strict Fusion queues. Those first-year entities are processed together with

the newly generated entities in the second year where statistics are collected. In this way

the Strict and Mixed Fusion algorithms can become quantity leaders because they have

more entities available to process compared to the No Fusion algorithm that have not

been processed. This means that between fusion algorithms quantity is not a good

performance measure for this model.

 The model is subject to validation by the end-user, subject matter experts (SMEs)

at the NSSO, Mr. James Kindle, and Dr. Hans Keithley. These two SMEs were consulted

during model development to ensure that the model concept reasonably represented the

real world processes modeled. The model flow follows the guidelines outlined in Joint

Publication 2.0, Intelligence Support to Operations. Notional data was created based on

the operational and intelligence experiences of the author. Where those experiences were

lacking generic assumptions were made. The true validation of this model can be

assessed when empirical data is loaded into the model and model runs are compared

against real world results.

4-1

4. Data Analysis

4.1 Introduction

 This model was built primarily as a “what if” analysis tool to discriminate

between the perceived values of competing intelligence architectures. The discriminating

values used were the MOE’s; quantity of collections, and user satisfaction. User

satisfaction is a combination of user-needs and timeliness requirements. User-needs are

based on the knowledge matrix concept of six distinct knowledge areas divided into six

levels of satisfaction (refer to Table 3-2 for descriptions). Timeliness is the date, and in

the case of this model, the hour by which a request must be satisfied.

 The secondary objective for this model was to investigate the value of data fusion.

The value of data fusion is measured using the same MOE’s as the architecture analysis

against three different fusion algorithms; No Fusion, Mixed Fusion, and Strict Fusion.

All algorithms operate simultaneously during model runs.

No Fusion considers all collection vectors as separate entities and evaluates them

individually against time and user-need requirements. Mixed Fusion works on the

concept that fusion should occur within given time constraints instead of immediate

individual evaluations. In Mixed Fusion, the decision to fuse or forward data uses a user-

defined variable, Fuse_Limit, as the cutoff time prior to a collection Due_Date. When an

entity waiting for fusion hits the Fuse_Limit then fusion is terminated and all currently

collected information is fused and forwarded. This methodology attempts to stay within

the end user’s time constraints by gathering, fusing, and sending forward a fused product

before the end-user’s Due_Date deadline. The final fusion method applied, Strict Fusion

4-2

holds requests until all collection is completed, or until an entity reached its

Quit_Collect_Date. Recall that the Quit_Collect_Date is after the end-user’s Due-Date.

The Quit_Collect_Date is the time after which collection is no longer valuable. The data

collected up to the Quit_Collect_Date point is fused, and the information disseminated to

the end-users. These three fusion methodologies measure the value of fusion for each of

the following scenarios.

1) A baseline case of one year of standard, peace-time intelligence collection

2) A year long heightened intelligence environment, possibly a wartime scenario
or a perceived threat scenario

3) The decision to purchase an upgraded imagery satellite, or twenty-four more

Unmanned Arial Vehicles (UAVs), based on a years worth of Baseline
simulation.

4.2 Overcoming Initialization Bias

 Once the model was created, validation and verification was performed as

outlined in Chapter 3, one more test had to be done before scenario modeling could

occur. Initialization bias had to be removed from the model. Initialization bias occurs

when a process starts from an empty and idle state and generally biases the model

statistics by making processes appear to react more quickly at first because they are not

initially occupied. As time passes the process may begin to slow down as the model

begins to introduce more entities into the system. The objective is to find out when the

system begins to level out by examining a selected system performance value. The value

of interest for this model is the number of Entities currently in processes and is referred to

as Work In Progress (WIP). Arena conveniently calculates WIP measures for all entity

types in a model. WIP measured for each Entity.Type (Rank 1-5 and Opportunity

4-3

_Collect) were used to determine when initialization bias was mitigated in ten long term,

3650 day replications. Several key results were noted from these ten initialization bias

test runs;

1) The longest average time to overcome system bias was approximately 365 days. As

displayed in Figure 4-1. After one year of steep incline of initialization bias fades and the

system levels out. Some further increase occurs for the next six months and then the

system seems to level out.

Figure 4-1 Initialization Bias

2) It is intuitive, but should be mentioned, that the WIP calculations for the different

entity types are not independent, but rather very highly correlated. The correlation occurs

due to the queuing priority that higher ranked entities enjoy. The time a Rank 3 entity

Hrs 2680-2684

Hrs 1624-1627

Hrs 5480-5483

8700 Hours Entities WIP.Rank4

 E
nt

iti
es

 in
 S

ys
te

m

Simulation Hours

4-4

spends in queues throughout the system is directly related to the number of Rank1 and

Rank2 entities that are currently in the system. This correlation causes increasing WIP

trends and the sharp spiking behavior displayed by lower ranking entities. The sharp

spikes noted in Figure 4-1 are the results surges in new arrivals and/or a sudden dump

into the system of Type 2, Time Dependent RFIs, from the Time Management sub-

process. In Figure 4-1 the spikes appear as single point masses, however, further

investigation showed that each spike did have some mass associated with it as shown in

Figure 4-2.

Figure 4-2 WIP Spiking Details

3) WIP estimates are also skewed because of a Standing RFI and a Time Dependent RFI

bias. WIP counts all entities in the system, whether in a process queue/delay or in a hold

queue. With Time Dependent RFIs and Standing RFI’s much waiting, or hold time

occurs until the right time to collect. This waiting is not a backlog, but rather a planned

hold. These necessary holds tended to skew the simple Arena WIP statistic making work

in progress appear high than resource utilization rates would indicate.

Entities.WIP(Rank4) Spike 1624-

Simulation Hours

E
ntities in S

ystem

4-5

4) Use of a one year warm-up period places an appropriate number of initial entities in

queues for Mixed Fusion and Strict Fusion, but will have little effect on No Fusion.

 The bottom line is that 365 simulation days were selected be run and thrown out

before any statistics collection occurs. This means that to study one year of a baseline

scenario the model must simulate two years, collecting statistics only on the second year.

Every replication run accounts for this warm-up period.

4.3 Statistical Measures Defined

 This section will discuss the three MOE’s; quantity, timeliness and user-needs

satisfaction, used to compare the algorithms and architectures in this model.

4.3.1 Measuring Quantity

 The Quantity MOE assumes that more is better because the more collection

vectors an intelligence architecture is able to process, the more chance there is that an

intelligence gap will be filled by those collection vectors. This model assumes that the

fusion function will accommodate greater information flows without any slow downs or

other adverse effects. The obvious common denominator for measuring quantity is the

final number of collection vectors processed at the conclusion of each simulation run.

 Counting collection vectors at the conclusion of each simulation run seems

innocuously simple at first, but recall that each RFI or Opportunity_Collect has a

randomly generated user-needs vector. This random vector determines how many

resource requests (i.e. collection vectors) are formulated. The No Fusion algorithm is the

most straightforward as it already counts every collection vector separately. This means

if an RFI has a user-needs vector of (1,0,0,3,2,4), the No Fusion algorithm will receive

four different collection vectors associated with the four non-zero User Needs. No

4-6

Fusion will evaluate each of the four collection vectors against the original user-needs

vector (1,0,0,3,2,4) to see how much satisfaction each report fulfilled (0-100%). This

straight forward count of all collection vectors is simple for the No Fusion case, four

needs equals four collection vectors. A problem arose however, when we looked at the

Mixed Fusion and Strict Fusion algorithms. Both of these algorithms mapped the four

collection vectors into a single maximum satisfaction vector. This single maximum

satisfaction vector is the collection vector for each of these fusion methodologies. The

solution applied to this issue was to count the number of collection vectors fused together

and then when statistics were processed duplicates of the maximum satisfaction vector

were made so that all collection vectors were accounted for.

4.3.2 Measuring User Satisfaction

 Total user satisfaction is a combination of meeting user-needs within set time

constraints. We will look at the issues involved in creating user-needs and in terminating

fusion or collection due to time constraints. No weighting scheme is assigned to

timeliness or user-needs satisfaction. The model user must determine what is more

important, on time reports or higher satisfaction reports, these two measures will only

provide comparative probabilistic values, not conclusive answers.

4.3.2.1 Measuring Timeliness Satisfaction

 Timeliness was discussed in detail in sections 3.5.5, 3.6, and 3.7. The attributes

which define timeliness are Due_Date and Quit_Collect_Date. Timeliness is a user-

defined constraint, which bounds total satisfaction.

4-7

4.3.2.2 Measuring User-Needs Satisfaction

There are a number of ways to measure satisfaction. Two methods are presented

here; a discretized satisfaction ratio, and a continuous satisfaction ratio. In the discretized

satisfaction ratio, originally discussed in Chapter 3, the six knowledge areas of a user-

needs vector are compared against all applicable collection vectors to see how many

knowledge areas were satisfied. This means that if five out of six vectors, or 5/6 of our

user needs are satisfied the end-user satisfaction level is 83.5%. Because there are only

six knowledge areas in the knowledge matrix the maximum satisfaction fidelity of this

discretized methodology is 16.5% (i.e. 1/6). This methodology becomes worse as fewer

non-zero user-needs are present in the user-needs vector. For example, if there are only

two non-zero user needs in a user-needs vector we can only attain a satisfaction fidelity

levels of 0%, 50%, or 100% (i.e. 0/2, 1/2, 2/2). Realizing the problem introduced by this

discretized satisfaction ratio, a continuous satisfaction ratio was developed. The

continuous satisfaction ratio takes all of the partially and totally satisfied user-needs areas

sums them, and then divides by the number of user-needs. Let us say that our user-need

vector is (0,3,0,0,3,0) and our maximum satisfaction vector after fusion is

(1.00,2.96,0.00,2.50,1.83,0.00). In our example, this would lead to 2.96/2 + 1.83/2 =

0.798, the discretized satisfaction ratio for this example would be 0%. This means that

the user has about eighty percent of their request vice nothing. Due to this discovery, the

continuous method of assessing user-need satisfaction will be the measurement standard.

4-8

Figure 4-3 further illustrates this point.

Discrete Vs. Continuous Satisfaction

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0-20 20-40 40-60 60-80 80-100 100.00

Satisfaction Levels

Pe
rc

en
t S

at
is

fa
ct

io
n

MF Discretized
MF Continuous

Figure 4-3 Discrete Vs. Continuous Satisfaction Ratios Measured

4.4 Creating a Baseline Scenario

 The baseline scenario created assumes that no extraordinary events such as a war

or terrorist attack have occurred in the period of interest. Intelligence requests and

collections are operating within acceptable parameters. Appendices B, C, D, and E list

all baseline scenario parameters. Refer to these appendices for any questions regarding

entity arrival rates, user-needs distributions, collection resource probability distributions,

resource capacities, or resource schedules.

4-9

4.4.1 Baseline Results

 All results are based on a sample size of n = 50 replications. Each replication was

two years long, however, the first year of statistics collection was removed to compensate

for initialization bias. Each of the Measures of Effectiveness are analyzed and the results

compared between the three fusion algorithms.

Due to the notional nature of the collection inputs and an overestimation of

system capabilities by the author, total satisfaction results are low for all of the examples

used. However because the data is notional the accuracy of the results is not truly

relevant. These same system capabilities are used across all scenarios and architectures.

The true relevance of these examples is the fact that differences between scenarios and

architectures can be compared and analyzed. To obtain true, accurate results parameter

changes could be made to reflect empirical data

4.4.1.1 Quantity

 Figure 4-4 illustrates why quantity is not a good MOE to use when making

comparisons between fusion algorithms. The intervals were too close for our paired-t-

test to pick up any significant statistical differences between the three algorithms. In

addition, as discussed in section 3.9, Validation and Verification, the quantity leader in

Figure 4-4 is the Strict Fusion algorithm. This is a counter intuitive result because the No

Fusion algorithm must process collection vectors quicker than the other two algorithms.

The reason for this counter intuitive result lies in the fact that the mixed and strict fusion

algorithms begin the post truncation point with entities already in queue due to our warm-

up period. This causes the quantity comparison to be biased in their favor, because they

have more entities to count than the No Fusion algorithm.

4-10

Quantity Comparison between Fusion Algorithms

20,308.28 20,311.74 20,318.80

20,000.00

20,100.00

20,200.00

20,300.00

20,400.00

20,500.00

20,600.00

20,700.00

20,800.00

20,900.00

21,000.00

Baseline Quantities by Fusion Algorithm

One Year of Collection

C
ol

le
ct

io
n

Ve
ct

or
s

Pr
oc

es
se

d

NF Avg Quantity
MF Avg Quantity
SF Avg Quantity

Figure 4-4 Baseline Quantity Measured

4.4.1.2 Baseline Total Satisfaction

 Figure 4-5 illustrates that the Mixed Fusion algorithm provides the highest total

satisfaction percentage at 9.3%. Total satisfaction is a discrete measure in this model.

When all user-needs are met before a Due_Date then an end-user is totally satisfied

according to the rules applied in this model. Figure 4-5 is a simple quantity count of the

number of collection vectors that entered the total satisfaction bin for each algorithm

during statistics collection. As we will see the mixed fusion algorithm consistently

performs better than the other two algorithms when total user satisfaction is measured.

4-11

Total Satisfaction by Algorithm

0.075

0.093

0.080

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Total Satisfaction by Algorithm

One Year of Collection

Pe
rc

en
t T

ot
al

 S
at

is
fa

ct
io

n

NF Sat
MF Sat
SF Sat

Figure 4-5 Baseline Total User Satisfaction

4.4.1.2.1 Timeliness

 Figure 4-6, which shows No Fusion as the timeliest algorithm, validates the

model’s performance because it makes intuitive sense. No Fusion is always the timeliest

algorithm because it has none of the delays built into it that the mixed and strict fusion

algorithms possess. More importantly however, note that the mixed fusion algorithm

performs almost as well as the no fusion algorithm. A paired t-test performed on the no

fusion percent timely and the mixed fusion percent timely found that there was statistical

difference between the two points.

4-12

Baseline Timeliness Comparison by Algorithm

0.647
0.63

0.482

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

On Time by Algorithm

One Year of Collection

Pe
rc

en
t o

n
Ti

m
e

NF Timely
MF Timely
SF Timely

Figure 4-6 Baseline Timeliness Comparison by Algorithm

4.4.1.2.2 User-Needs

Figure 4-7 compares the percent of user-needs satisfaction, using the continuous

satisfaction ratio method. Strict fusion obviously provides more user-needs satisfaction

with over 75% of the collection vectors being satisfied at the 80% or better satisfaction

level. Despite this high level of user-need satisfaction, the strict fusion algorithm is not

timely enough meet a higher total satisfaction percentage. The mixed fusion algorithm

with approximately 65% of its collection vectors meeting the 80% or better satisfaction

level fairs better in a total satisfaction scenario.

4-13

Baseline User Satisfaction by Algorithm

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0-20 20-40 40-60 60-80 80-100 100.00

Satisfaction Levels

Pe
rc

en
t S

at
is

fa
ct

io
n

NF Sat
MF Sat
SF Sat

Figure 4-7 Baseline User-Needs Satisfaction by Algorithm

4.4.2 Baseline Inferences

The baseline scenario will be the yardstick against which other architectures and

intelligence scenarios are measured. After running and analyzing this baseline scenario

the following observations were made:

1) Quantity is not a good measure of effectiveness between fusion algorithms because of
the inherent inequality between the base number of entities.

2) Timeliness percentages work to compare both architectures and algorithms.

3) Total satisfaction percentages, and user-needs satisfaction levels appear to be good
measures to use for comparing both architectures and algorithms as well.

4-14

4.5 Effect of a Heightened Perceived Threat Environment

A heightened perceived threat environment is simulated by increasing the arrival

rates of Rank1, Rank2, and Opportunity_Collect entities. The assumption made here is

that more end-users will perceive their needs as urgent or critical, and if there is some

sort of threat present then Opportunity_Collects will increase because there will be more

potential to discover information of intelligence value.

 Rank1 arrival rate was increased to Poisson(λ=4). Rank2 arrival rate was

increased to Poisson(λ=3), and the Opportunity_Collect arrival rate was increased to

Poisson(λ=2). No other parameters were changed within the model. Fifty model

simulation runs were performed in the same manner as the baseline scenario.

4.5.1 Heightened Perceived Threat (WAR) Results

Intelligence appears to operate more efficiently in the wartime scenario. This

seems a bit odd at first glance because the system is more saturated than it was for the

base line scenario. What this means is that the system had a considerable amount of

slack in the baseline scenario and that some high quality resources were not being

efficiently tasked in the baseline scenario as well. Further analysis shows that the system

operates more efficiently as well because more high priority requests (Rank 1 & Rank2)

are in process. This deluge of high priority requests will speed up some of the model

processing, and force the selection of higher quality resources. Often higher quality

resources are requested during wartime and due to this assumption, we may be

experiencing higher user-need satisfaction levels. This wartime combination results in

improved timeliness and total satisfaction percentages. As before the mixed fusion

4-15

algorithm continues to perform the best in the area of total satisfaction, therefore the

mixed fusion algorithm will be the algorithm of choice to compare the performance of

this heightened perceived threat scenario against the baseline scenario.

4.5.2 WAR Quantity

With the increased arrival rates applied to this model, it makes sense that the

quantity of collection vectors is significantly increased. Figure 4-8 shows that the

number of collection vectors processed in the mixed fusion war scenario is almost double

that of the collection vectors processed in the mixed fusion baseline scenario.

Mixed Fusion Baseline Vs. War Quantity Comparison

20,311.74

36,031.20

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

Quantity Comparision by Scenario

One Year of Collection

C
ol

le
ct

io
n

Ve
ct

or
s

MF Base
MF War

Figure 4-8 Mixed Fusion Baseline Vs. War Quantity

4-16

4.5.3 WAR User Satisfaction

Mixed fusion continues to be the total satisfaction leader among the three algorithms in

the wartime scenario shown in Figure 4-9. It remains the total satisfaction leader for the

same reasons that it was the leader in the baseline scenario. It is timelier than strict

fusion and has a higher percentage of satisfaction than no fusion.

War Total Satisfaction Comparison by Algorithm

0.082

0.104

0.090

0.000

0.020

0.040

0.060

0.080

0.100

0.120

Total Satisfaction by Fusion Algorithm

One Year of Collection

Pe
rc

en
t o

f C
ol

le
ct

io
n

Ve
ct

or
s

NF War
MF War
SF War

Figure 4-9 War Total Satisfaction Algorithm Comparison

4.5.3.1 WAR Timeliness

The war scenario timeliness bar charts presented the same information as the

baseline scenario comparison between algorithms. The same stair step pattern was noted

with No fusion as the timeliest (73% timely), followed by mixed fusion (70.8% timely),

and finally strict fusion with (53.5% timely). All algorithms had a significantly higher

4-17

ratio of timely reports in the war scenario compared to the baseline scenario, as

illustrated for the mixed fusion case in Figure 4-10.

Mixed Fusion Baseline Vs. War Percent Timely

0.628

0.708

0.580

0.600

0.620

0.640

0.660

0.680

0.700

0.720

Timeliness Comparison by Scenario

One Year of Collection

Pe
rc

en
t o

n
Ti

m
e

MF Base
MF War

Figure 4-10 Mixed Fusion Base Vs. War Timeliness Comparison

4.5.3.2.1 WAR User-Needs

User needs, like timeliness, plotted similarly to the baseline scenario so once

again the more interesting plot is the comparison of the mixed fusion war scenario to the

mixed fusion baseline scenario. Figure 4-11 shows clearly that user-needs are more often

satisfied at the 80% or higher level in the war scenario than in the baseline scenario. This

result was not expected. Extra time was spent attempting to discover the reason why the

system would perform in this manner. The most likely reason was already mentioned,

4-18

the higher priority requests and collections using a greater percentage of the higher

fidelity assets.

Mixed Fusion Baseline Vs War User Needs Satisfaction

25%

6%

3%
1%

30%

35%

17%

6%

3%
1%

34%

39%

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0-20 20-40 40-60 60-80 80-100 100.00

User Needs Satisfaction Levels

Pe
rc

en
t o

f C
ol

le
ct

io
n

Ve
ct

or
s

MF Base
MF War

Figure 4-11 Mixed Fusion Baseline Vs. War User Needs Satisfaction

4.5.2 Heightened Perceived Threat Inferences

 Curiously, this model does seem to emulate the real world in this wartime

scenario. It always seems that in times of crisis more is able to be done than was done in

peacetime. This model captures that phenomenon. More entities were processed with a

higher percentage of them on time, and with a higher level of user needs satisfaction. All

mixed fusion comparisons between the wartime and peacetime scenario were verified

using a paired t-test at a 90% confidence interval, and all tests showed that the statistics

4-19

compared possessed significant statistical differences. Refer to Appendix E for

spreadsheets detailing the paired t-test calculations.

4.6 Comparing Intelligence Architectures

 Two different architectures are defined, analyzed, and the model MOEs compared

in two separate model architecture constructs. The two intelligence architectures

evaluated are the purchase of an upgrade to our imagery satellite (IMINT1), or the

purchase of 24 more Unmanned Arial Vehicles (UAV), IMINT2.

 The imagery satellite upgrade was modeled by modifying IMINT1 in three ways:

1) Location_Collect distribution changed from TRIA(2,4,5) to TRIA(3,4,5);

2) Identity_Collect distribution changed from TRIA(0,2,4) to TRIA(1,3,4);

3) Capacity schedule for IMINT1 upgraded to 500 entity capacity vice 250.

 To model the purchase of 24 new UAV’s the capacity of the IMINT2 schedule

was adjusted to 30 maximum, a 500% increase, which means that the availabilities for

each time scheduled time period were raised 500% as well (i.e instead of 2 available at

1200 there are now 10 available).

4.6.1 Comparing Architectures Results

 While the actual results from this architecture comparison are based on strictly

notional data they can still give us some insights about our notional system. The results

seem to indicate that purchasing the satellite upgrade is a slightly better decision than

purchasing a greater number of UAVs. We will investigate these notional results further

in each section to see why this might be.

4-20

4.6.1.1 Quantity

The notional results from this comparison were particularly surprising. It

appeared at first from Figure 4-12 that buying either of the new capabilities would lower

the quantity of collected reports. Further analysis done with Figure 4-13 and by

performing a paired t-test showed that among the three configurations no significant

statistical difference could be detected at a 90% confidence level. As Figure 4-13 shows

the variance in the system makes it impossible to tell which model process more

collection vectors on average. Recall that CRN’s were used to reduce the variance due to

different random number draws. Both architectures modeled had the exact same RFI and

Opportunity arrival rates, as well as the exact same user-needs requirements and

Mixed Fusion Quantity Comparison by Algorithm

20,311.74

20,160.56

20,124.74

20,000.00

20,050.00

20,100.00

20,150.00

20,200.00

20,250.00

20,300.00

20,350.00

Quantity Comparison by Architecture

One Year of Collection

C
ol

le
ct

io
n

Ve
ct

or
s

MF Base
MF UAV
MF IMINT

Figure 4-12 Mixed Fusion Quantity Architecture Comparison

4-21

administrative attributes. The random numbers will remain in synchronization until

resources are allocated in the collection submodel. The variance is reduced because the

differences in the modeled systems are due to the actual architecture changes made not

because of differing random number streams. The scatter plot in Figure 4-13 shows the

confidence intervals of the three different architectures overlap so we cannot determine

any significant differences in quantity between the three algorithms.

MF Quantity Comparison By Algorithm

18000

18500

19000

19500

20000

20500

21000

21500

22000

0 10 20 30 40 50 60

By Simulation Run

C
ol

le
ct

io
n

Ve
ct

or
s

MF Base
MF UAV
MF IMINT

Figure 4-13 Scatter-Plot of MF Quantity Architecture Comparison

4.6.1.2 User Satisfaction

 The IMINT1 upgrade choice in Figure 4-14 appears to provide the best total

satisfaction percentage, although it is by no means a large improvement over either other

architecture. The paired t-tests performed did show that statistical differences were

4-22

present. The mean total satisfaction displayed by the IMINT1 option was clearly higher

than the means of the other two architectures.

Total Satisfaction Comparison by Architecture

0.09

0.095

0.101

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

Total Satisfaction by Architecture

One Year of Collection

Pe
rc

en
t S

at
is

fie
d

MF Base
MF UAV
MF IMINT

Figure 4-14 Total Satisfaction Architecture Comparison

4.6.1.2.1 Timeliness

Figure 4-15 shows that all three architectures are timely with about 63% of their

collection vectors. There is no significant statistical difference between the three

architectures at the 90% confidence level.

4-23

Mixed Fusion Timeliness Comparison by Architecture

0.63
0.631

0.626

0.60

0.61

0.62

0.63

0.64

0.65

Percent Timely by Algorithm

One Year of Collection

Pe
rc

en
t o

f C
ol

le
ct

io
n

Ve
ct

or
s

MF Base
MF UAV
MF IMINT1

Figure 4-15 Timeliness Comparison between Architectures

4.6.1.2.2 User-Needs

Figure 4-16 shows why the IMINT1 option appears to have a higher total satisfaction

percentage than the other two architectures. User-needs have a slightly higher chance of

being totally satisfied with the IMINT1 architecture.

4-24

User Needs Satifaction Comparison by Architecture

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0-20 20-40 40-60 60-80 80-100 100.00

User Satisfaction Levels

Pe
rc

en
t S

at
is

fie
d

MF Base
MF UAV
MF IMINT

Figure 4-16 User Needs Satisfaction Comparison by Architecture

4.6.2 Comparing Architecture Inferences

 The decision to purchase the improved satellite architecture seems to be the

correct answers because it provides a better probability of satisfying user-needs. There is

too much variance in the system and the means are simply too close to make any sound

decisions based on timeliness or quantity at this point. As a final check to see which

architecture performs better in its specialty, the Location_Need satisfaction statistics were

compiled and plotted in Figure 4-17. The comparison of the two architectures is close,

but the IMINT architecture still appears more capable, but only slightly so. The question

for the decision maker now is, do the marginal gains accrued over the Baseline scenario

warrant purchasing the IMINT1 upgrade?

4-25

Mixed Fusion Baseline Vs. War Location Satisfaction

0.49% 2%
6% 7% 7%

79%

0.5% 1.9%
4.8% 5.0% 4.9%

82.8%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0-25 25-50 50-75 75-90 90-100 100

Levels of Location Satisfaction

Pe
rc

en
t o

f L
oc

at
io

n
N

ee
ds

 S
at

is
fie

d

MF UAV
MF IMINT

Figure 4-17 Location Satisfaction Comparison by Architecture

4.7 Analysis Summary

 The data used in this section was purely notional. The output could have been

meticulously arranged to tell us whatever the author wanted to prove by modifying the

input variables. This must be admitted up front, however this was not the way in which

this experiment was conducted. The inputs were purely notional, not designed to model

reality, nor designed to inflate model results. Input parameters were all established prior

to running the model, and were an attempt at a non-biased selection. The output which

admittedly places Total Satisfaction at a fairly abysmal 10% illustrates the fact that the

collection probabilities applied to this model do not satisfy user-needs. If this was in fact

the case this model would highlight the fact that a new architecture is needed. This does

not however invalidate the model as a useful tool rather it shows what the model can do.

4-26

 While the numbers are low they do show that the model can be used to determine

differences between architectures and scenarios. Insight can be gained into the fictional

system that was established. In this fictional scenario the decision to purchase the

proposed IMINT1 upgrade is most likely not worth the cost. If insight into a fictional

system can be established with this model, then with the proper inputs some insights into

real world systems can be gained as well.

5-1

5. Conclusions

This chapter reviews model capabilities, strengths and weaknesses. Suggestions

for future model improvements are provided, as well as some possible future research

areas that might benefit the study and advancement of intelligence management.

5.1 Model Capabilities

This model is an end-to-end, multi-INT, model of the Intelligence Cycle. It

provides the end-user tremendous flexibility to compare and evaluate any intelligence

architecture in any scenario. The knowledge matrix concept provides much of this

flexibility and gives this model the ability to quantify user-needs satisfaction, which we

have established as a separate measure compared to sensor quality. Given accurate

probabilities and resource capabilities, this model will provide architectural improvement

insights as we illustrated in Chapter four.

This model will let the end-user know what architecture is most likely to collect

more information, what architecture will return information in the timeliest manner, and

what architecture is most likely to satisfy end-user information needs. These insights

should allow an end-user to understand the capabilities of the systems, which they are

purchasing, and not only what capabilities they are gaining, but also how those

capabilities will mesh with systems already in place. This model will be able to estimate

whether or not this new system will fill the intelligence gap(s) that the end-user wishes to

alleviate. It evaluates architectures at a macro-level taking a broad look at intelligence

across agency bounds and across the intelligence spectrum from strategic-level

intelligence down to tactical-level intelligence.

5-2

5.2 Model Strengths

 Because this is an unclassified work, information flow, not accurate modeling

parameters was the primary thesis focus. The true strength of this model lies in its

realistic process flows and flexibility. Much of the modeling flexibility originates from

the knowledge matrix methodology.

Knowledge matrices were created to describe the current state of knowledge

concerning a target. Using knowledge matrices as a vehicle to communicate user-needs

was an unexpected innovation. This concept shift from quality to satisfaction seems to

work well, and may have some real world application in the form of user-input data

request shells, which will ensure that information requests ask explicit, answerable

questions. Two other often-overlooked RFI issues are incorporated in this model, the

time-dependent nature of some RFI’s, and the recycling of standing RFIs. This model

identifies and manages time dependent RFI’s and keeps standing RFIs cycling through

the system until a simulated Quit_Collect data. Both of these mechanics illustrate

appropriate simulation of actual issues.

Not only are RFI procedures modeled well with knowledge matrices, but

opportunity collection entities, which are often overlooked in other models, are an

integral part of this model. Opportunity collection accounts for resources utilized in an

untasked search collection capacity. This in turn leads to another model strength, its

consideration of multiple generic intelligence platforms.

Additionally this model can simulate any number of intelligence resources with

an endless combination of resource parameters. This inherent resource modeling

5-3

flexibility means that this model can simulate any intelligence architecture the end-user

might postulate.

Keeping with the flexibility theme the model can also evaluate different pair-wise

comparison type fusion algorithms. The mixed fusion and strict fusion scenarios

presented here are extremely simple, but the flexible model flow will allow more

complex fusion algorithms to be modeled.

5.3 Model Weaknesses with Suggested Improvements

 While this model is a powerful and flexible tool, it can still be improved. This

model could have excellent application to analyze or compare still more architectural

changes and scenarios if the following list of improvements were implemented:

a. Resource capabilities are strictly notional. Empirical data is required if this model

and its insights are to be used for real world operations. Model output can only be

as good as the input.

b. Create a Task Process Post Use (TPPU) vs. Task Process Evaluate Disseminate

(TPED) architecture in the Exploitation Delay subprocess. This would allow for

modeling of both automated and human resources used in the exploitation

process. It would also depict more accurately the number of resources, and the

amount of time needed to process intelligence data.

c. Implement more complex fusion algorithms. The current algorithms do not

capture any of the synergy effects experienced in intelligence information fusion.

To tie in with the TPPU vs. TPED improvement, some value may be added to

5-4

fusion in the Exploitation and Processing submodel. This should be further

investigated, and added to the model.

d. This model assumes that information flow occurs without any transitional errors

or Equivocality issues. In other words, this model assumes all information will

either add to our satisfaction or be disregarded. It does not consider erroneous

information or misinformation. It may be worthwhile to include this in the model.

Also in the realm of adding realism, some sensors may have periodic breakdowns

or maintenance schedules, which should be incorporated into the model.

e. Finally, this model views time as its primary constraint. Entities are fused either

when all collection vectors requested are received or when a preset time limit

occurs. It may improve model performance to have data forwarded as soon as the

requested level of satisfaction is attained vice waiting for another situation to

occur. This will also mean terminating further collection by other sensors

throughout the model as no more information is needed to satisfy the RFI.

5.4 Future Research

 There are two areas of future research espoused by this work. The first is a

method for quantifying knowledge, specifically in an intelligence collection and needs-

satisfaction context. Some probability models begin to touch upon knowledge

quantification, but some of the basic questions such as boundedness, scale, and the

possibly additive or exponential nature of knowledge has not been thoroughly

investigated. There are still many unanswered questions as we noted in section 2.10,

Quantifying and Modeling Intelligence and Knowledge.

5-5

Given that knowledge is quantifiable, the second area for future research recognized

by this thesis work is the need for a method to capture intelligence fusion synergies.

First, the fact that such synergies do exist must be validated. Then if this synergy does

exist, how is it created and how can it be modeled?

A-1

Appendix A: Acronym Listing

AFRL Air Force Research Laboratory
ASD Assistant Secretary of Defense
AWACS Airborne Warning and Control System
C3I Command, Control, Communications, and Intelligence
CEM Combat Effectiveness Model
CI Counter Intelligence
COA Course of Action
COSAGE Combat Sample Generator
CRN Common Random Numbers
DISC(*,*,*,*) Discrete Probability Distribution (Value1, Probability1,Val2, Prob)
DoD Department of Defense
DSC Decision Support Center
EADSIM Extended Air Defense Simulation
EEI Elements of Essential Information
EXPO(*,*) Exponential Distribution (Mean, CRN Stream)
FBI Federal Bureau of Investigation
HUMINT Human Intelligence
IC Intelligence Community
IID Independent and Identically Distributed
IMINT Imagery Intelligence
INT Intelligence, usually refers to a specific intelligence discipline
IPB Intelligence Preparation of the Battlespace
ISR Intelligence, Surveillance, & Reconnaissance
JCOAT Joint C4ISR Operations Analysis Tool
JICM Joint Integrated Contingency Model
MAD Magnetic Anomaly Detector
MASINT Measures and Signatures Intelligence
MOE Measure of Effectiveness
NSSO National Security Space Organization
RADINT Radar Intelligence
RF Radio Frequency
RFI Request For Information
RSR Resource Selection Rule
SBR Space Based Radar
SIGINT Signals Intelligence
SNB Smallest Number Busy
SSG Senior Steering Group
TNOW Current Simulation Clock Time

A-2

TPED Task, Process, Evaluate, Disseminate
TPED Task, Process, Exploit, Disseminate
TPPU Task, Process, Post, Use
TRIA(*,*,*,*) Triangular Distribution (Min,Mode,Max, CRN Stream)
VCJCS Vice Chairman of the Joint Chiefs of Staff

B
-1

Appendix B: User-Defined Model Attributes

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

1 Priority Priority_Assign1 1 Denotes Request Significance - Rank is not a
Military

Used in the Sort
Equation

 Priority Priority_Assign2 2 Social or Political equivalent Note: An Opportunity
 Priority Priority_Assign3 3 relates only to RFI Need Urgency Collect can be any
 Priority Priority_Assign4 4 Priority
 Priority Priority_Assign5 5
 Priority Opportunity Matrix 1 to 5 DISC(0.22, 1,0.35,2,0.7,3,0.9,4,1.0,5,33)

2 RFI_Type Priority_Assign1 1 to 3 DISC(0.5, 1, 0.95, 2,1.0,3,6) 1 = A Time Critical RFI

 RFI_Type Priority_Assign2 1 to 3 DISC(0.4, 1, 0.85, 2,1.0,3,7) 2 = A Time Dependent
RFI

 RFI_Type Priority_Assign3 1 to 3 DISC(0.1,1, 0.6, 2,1.0,3,8) 3 = A Fill at Will RFI
 RFI_Type Priority_Assign4 1 to 3 DISC(0.01,1, 0.6, 2,1.0,9)
 RFI_Type Priority_Assign5 1 to 3 DISC(0.01, 1, 0.6, 2,1.0,3,493)
 RFI_Type Opportunity Matrix 1 or 2 DISC(0.2,1,1.0,2,25)

3 Date_Due Crit_Due_Date 0 to 14 hrs Distributed ~TRIA (2,6,12), Hours, Used for
RFI_Type=1

Time (in Hours or
Days)

 Date_Due Other_Due_Date 0 to Infinity TNOW+DaysToBaseTime(EXPO(7)) by which collection
must

 Date_Due Opportunity Matrix 0 to Infinity TNOW + TRIA(2,6,12), Hours occur for information to
be

 Date_Due Update_Due_Date 0 to Infinity TNOW+Reoccurance useful

4 Abroad Matrix_Creation 0 or 1 Disc(0.5,0,1,1,13) Event of Interest in U.S.
= 0

 Abroad Opportunity Matrix 0 or 1 Disc(0.5,0,1,1,26) EOI not in U.S. = 1

5 Emit_RF Matrix_Creation 0 or 1 Disc(0.5,0,1,1,15) Target uses no RF
Comm = 0

 Emit_RF Opportunity Matrix 0 or 1 Disc(0.5,0,1,1,28) Target uses RF Comm
= 1

B
-2

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

6 Detectable Emissions Matrix_Creation 0 or 1 Disc(0.5,0,1,1,14) Emits Other = 1
 Detectable Emissions Opportunity Matrix 0 or 1 Disc(0.5,0,1,1,27) No other Emissions = 0

7 Sort_Rule Matrix_Creation 1 to Infinity Due_Date*Priority Used to determine
Queue

 Sort_Rule Opportunity_Matri
x 1 to Infinity Due_Date*Priority order

8 RFI_Create_Date Matrix_Creation 0 to Infinity Entity.CreateTime Used in RFI Loop Logic

 RFI_Create_Date Opportunity_Matri
x 0 to Infinity TNOW

9 Continue_Collect_Afte
r Due Matrix_Creation 0 or 1 DISC(0.8, 0, 1.0, 1,18) Information vital must

be

 Continue_Collect_Afte
r Due

Opportunity_Matri
x 0 or 1 DISC(0.8, 0, 1.0, 1,31) collected if possible

10 Quit_Collect Matrix_Creation 0 to Infinity Due_Date+DaysToBaseTime(EXPO(30,29)) Point at which all
collection

 Quit_Collect Opportunity_Matri
x 0 to Infinity Due_Date+DaysToBaseTime(EXPO(30,32)) must cease

11 Standing_or_ Adhoc Matrix_Creation 0,6,12,24,4
8,

DISC(0.6, 0, 0.61, 6, 0.66, 12, 0.74, 24, 0.80, 48,
0.9, Administrative attribute

 Standing_or_ Adhoc Matrix_Creation 168, 720,
4368 168,0.95,720,1.0,4368,19) used to determine RFI

 Standing_or_ Adhoc Opportunity_Matri
x 0 Opportunity Entities are never Standing RFIs Looping Logic

12 Library_Search Matrix_Creation 0 or 1 TRIA(0,0.8,1,17) Search of multiple
databases

 Library_Search Opportunity_Matri
x 0 Opportunity Entities collect raw data, not archived

data

B
-3

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

13 Location_Need Matrix_Creation 0 to 5 DISC(0.1, 0, 0.25, 1,0.45,2,0.88,3,0.98,4,1.0,5,20) User's estimated
satisfaction

 Location_Need OpportunityMatrix 0 to 5 DISC(0.1, 0, 0.25, 1,0.45,2,0.88,3,0.98,4,1.0,5,34) requirement

14 Activity_State_Need Matrix_Creation 0 to 5 DISC(0.1, 0, 0.2, 1,0.5,2,0.8,3,0.98,4,1.0,5,22) User's estimated
satisfaction

 Activity_State_Need OpportunityMatrix 0 to 5 DISC(0.1, 0, 0.2, 1,0.5,2,0.8,3,0.98,4,1.0,5,36) requirement

15 Track_Need Matrix_Creation 0 to 5 DISC(0.6,0,0.95,4,1.0,5,16) User's estimated
satisfaction

 Track_Need Opportunity_Matri
x 0 to 5 DISC(0.6,0,0.95,4,1.0,5,30) requirement

16 Identity_Need Matrix_Creation 0 to 5 DISC(0.18, 0, 0.3, 1,0.5,2,0.8,3,0.98,4,1.0,5,21) User's estimated
satisfaction

 Identity_Need Opportunity_Matri
x 0 to 5 DISC(0.18, 0, 0.3, 1,0.5,2,0.8,3,0.98,4,1.0,5,35) requirement

17 Intent_Need Matrix_Creation 0 to 5 DISC(0.3, 0, 0.55, 1,0.8,2,0.9,3,0.98,4,1.0,5,24) User's estimated
satisfaction

 Intent_Need Opportunity_Matri
x 0 to 5 DISC(0.3, 0, 0.55, 1,0.8,2,0.9,3,0.98,4,1.0,5,38) requirement

18 Capability_Need Matrix_Creation 0 to 5 DISC(0.3, 0, 0.45, 1,0.7,2,0.92,3,0.98,4,1.0,5,23) User's estimated
satisfaction

 Capability_Need Opportunity_Matri
x 0 to 5 DISC(0.3, 0, 0.45, 1,0.7,2,0.92,3,0.98,4,1.0,5,37) requirement

19 Num_Needs Num_Needs1-7 0 to 7 Num_Needs+1 Number of non-zero

 Num_Needs NumNum_Needs1
Lib1-7 0 to 7 Num_Needs+1 user-needs

20 Location_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

B
-4

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

 Location_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

21 Activity_State_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

 Activity_State_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

22 Track_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

 Track_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

23 Identity_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

 Identity_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

24 Intent_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

 Intent_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

25 Capability_Collect All Collect
Submodels 0 to 5 Refer to Appendix C Resource Collection

Distributions
Modified in Arena

Equations

 Capability_Collect No_Report_
Nodes 0 Past Due_Date, no Resource Assigned Located in Multiple

Nodes

26 Looping_RFI_Count Standing_Collects 1 to Infinity Looping_RFI_Count+1 Number of times an
RFI

 is re-accomplished

27 Final_Location Final_Fusion 0 to 5 Location_Fuse (var) Post Fusion Result
 Final_Location MF_Final_Fusion 0 to 5 MF_Location_Fuse

B
-5

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

 Final_Location SFQ Final_Fusion SFQ_Location_Fuse

28 Final_Activity_State Final_Fusion 0 to 5 Activity_State_Fuse(var) Post Fusion Result
 Final_Activity_State MF_Final_Fusion 0 to 5 MF_Activity_State_Fuse
 Final_Activity_State SFQ Final_Fusion 0 to 5 SFQ_Activity_State_Fuse

29 Final_Track Final_Fusion 0 to 5 Track_Fuse(var) Post Fusion Result
 Final_Track MF_Final_Fusion 0 to 5 MF_Track_Fuse
 Final_Track SFQ Final_Fusion 0 to 5 SFQ_Track_Fuse

30 Final_Identity Final_Fusion 0 to 5 Identity_Fuse(var) Post Fusion Result
 Final_Identity MF_Final_Fusion 0 to 5 MF_Identity_Fuse
 Final_Identity SFQ Final_Fusion 0 to 5 SFQ_Identity_Fuse

31 Final_Intent Final_Fusion 0 to 5 Intent_Fuse(var) Post Fusion Result
 Final_Intent MF_Final_Fusion 0 to 5 MF_Intent_Fuse
 Final_Intent SFQ Final_Fusion 0 to 5 SFQ_Intent_Fuse

32 Final_Capability Final_Fusion 0 to 5 Capability_Fuse(var) Post Fusion Result
 Final_Capability MF_Final_Fusion 0 to 5 MF_Capability_Fuse
 Final_Capability SFQ Final_Fusion 0 to 5 SFQ_Capability_Fuse

33 Num_Needs_Sat Count_Sat 0 0 Used for Discrete
 Num_Needs_Sat Loc_Sat 0 to 1 Num_Needs_Sat +1 Satisfaction Measure
 Num_Needs_Sat Act_Sat 0 to 2 Num_Needs_Sat +1
 Num_Needs_Sat Track_Sat 0 to 3 Num_Needs_Sat +1
 Num_Needs_Sat Id_Sat 0 to 4 Num_Needs_Sat +1
 Num_Needs_Sat Intent_Sat 0 to 5 Num_Needs_Sat +1
 Num_Needs_Sat Capability_Sat 0 to 6 Num_Needs_Sat +1

34 %Location_Sat NF_Loc_is_Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous
 %Location_Sat NF_Loc_Sat 1 Mn(1,Final_Location/Location_Need) Satisfaction Measure

 %Location_Sat NF_%Loc_Sat 0 to .99 MX(Final_Location/Location_Need,
Location_Collect/Location_Need)

B
-6

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

35 %Activity_State_Sat NF_Act_is_Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous

 %Activity_State_Sat NF_Act_Sat 1 mn(1,Final_Activity_State/Activity_State_Need) Satisfaction Measure

 %Activity_State_Sat NF_%Act_Sat 0 to .99 mx(Final_Activity_State/Activity_State_Need,Act_
State_Collect/Activity_State_Need)

36 %Track_Sat NF_Track_is_Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous

 %Track_Sat NF_Track_Sat 1 mn(1,Final_Track/Track_Need) Satisfaction Measure

 %Track_Sat NF_%Track_Sat 0 to .99 mx(Final_Track/Track_Need,
Track_Collect/Track_Need)

37 %Identity_Sat NF_Id_is_Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous

 %Identity_Sat NF_Id_Sat 1 mn(1,Final_Identity/Identity_Need) Satisfaction Measure

 %Identity_Sat NF_%Id_Sat 0 to .99 mx(Final_Identity/Identity_Need,
Identity_Collect /Identity_Need)

38 %Intent_Sat NF_Intent_is_Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous

 %Intent_Sat NF_Intent_Sat 1 mn(1,Final_Intent/Intent_Need) Satisfaction Measure

 %Intent_Sat NF_%Intent_Sat 0 to .99 mx(Final_Intent/Intent_Need,
Intent_Collect/Intent_Need)

39 %Capability_Sat NF_Capability_is_
Zero 0.0001 Substitute for 0, so division can be accomplished Used for Continuous

 %Capability_Sat NF_Capability_is_
Zero 1 mn(1,Final_Capability/Capability_Need) Satisfaction Measure

 %Capability_Sat NF_%Capability_
Sat 0 to .99 mx(Final_Capability/Capability_Need,

Capability_Collect/Capability_Need)

40 %_Num_Needs_Sat* NF_Percent_Need
s_ Sat W Lib 0 to 100% Num_Needs_Sat/(Num_Needs-1) Used for Continuous

Satisfaction Measure

 %_Num_Needs_Sat* NF_Percent_Need
s_ Sat No Lib 0 to 100% Num_Needs_Sat/Num_Needs

41 Reoccurrences Creation_Matrix 0 to Infinity Due_Date-RFI_Creation_Time RFI Periodicity

B
-7

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

42 SF_Fuse SF_Fuse_Quits 1 to 6 SFQ_Fuse_for_Set Establish SF batch size

43 MF_Fuse MF_Fuse_To
Num_Needs 1 to 6 Num_Needs Establish MF batch size

 MF_Singlton_Rpts 1 Only one RFI available or User-need requested
 FF_MF_Fuse_Set 1 to 6 MF_Fuse_for_Set (var)

44 MF_Search MF_Searcher 1 to Infinity Entity.SerialNumber Used because Areana
 required a user-defined
 attribute for execution

45 MF_Loop MF_Loop_Ct 1 to Infinity Counter for number of RFI's taken out of MF_Q

46 SFQ_Search SF_Quit_
Out_Check Entity.SerialNumber Used because Areana

 required a user-defined
 attribute for execution

47 SFQ_Fuse SF_Fuse_To
Num_Needs 1 to 6 Num_Needs

48 SFQ_Loop SF_Loop_Ct 1 to 6 SFQ_Loop+1

Counter for number of
RFIs with same

Entity.SerialNumber in
First_Fuse Queue

 SFQ_Loop SF_Loop_Ct2 1 to 6 SFQ_Loop+1 (clear the Wait_For All_Clear hold
node)

49 Sat_Sum* MF_Sum_Need
_Sats WLib 0 to 100%

(%Activity_State_Sat+%Location_Sat+%Intent_Sat
+%Identity_Sat+%Track_Sat+%Capability_Sat)/(N

um_Needs-1)

Sum of Partial
Satisfaction Levels

B
-8

 Attribute Name Nodes Assigned Possible
Values Description Further Explanation

 Sat_Sum* MF_Sum_Need
_Sats WOLib 0 to 100%

(%Activity_State_Sat+%Location_Sat+%Intent_Sat
+%Identity_Sat+%Track_Sat+%Capability_Sat)/Nu

m_Needs

* Note: Any attribute name followed by a * means that this attribute is used in each of the fusion algorithms (NF, MF, and SF)
Only one case is presented in this table, but this attribute is actually computed 3 times the only difference in the naming
convention is that NF, MF or SF proceeds its Node Assigned name. All calculations are the same.

B
-9

Appendix B Continued – User Defined Variables

 Attribute Name Nodes Assigned Possible Values Description
1 Location_Fuse Fusion 0 to 5 MX(Location_Fuse,Location_Collect)

2 Activity_State_Fuse Fusion 0 to 5 MX(Activity_State_Fuse,Activity_State_Collect)

3 Track_Fuse Fusion 0 to 5 MX(Track_Fuse,Track_Collect)

4 Identity_Fuse Fusion 0 to 5 MX(Identity_Fuse,Identity_Collect)

5 Intent_Fuse Fusion 0 to 5 MX(Intent_Fuse,Intent_Collect)

6 Capability_Fuse Fusion 0 to 5 MX(Capability_Fuse,Capability_Collect)

7 Post_Fuse Post_Fusion 1 to 6 Counts a batch of RFI's through fusion

8 No_Fuse_Limit Assigned in User-Defined If this many or fewer hours are left to Due_Date

 No_Fuse_Limit Arena Equations 0 to Infinity then the report is sent both to the fusion cell
 No_Fuse_Limit as well as to the end user.

9 MF_Strict_Search MF_Q_Ent_Ct MF_Search Used as a Variable so all queued entities
 MF_Strict_Search Clear_Set_Var 0 Clear variable for next iteration

10 MF_Fuse_For_Set MF_Q_Ent_Ct 0 to MF_Loop Counter for number of entities

 MF_Fuse_For_Set MF_Loop_Ct MF_Loop taken out of MF_Q
 MF_Fuse_For_Set MF_Loop_Ct_Out MF_Loop+1 Final out count
 MF_Fuse_For_Set Clear_Set_Var Clear_Set_Var Clear variable for next iteration

11 MF_Location_Fuse MF_Fusion 0 to 5 MX(MF_Location_Fuse,Location_Collect)

 MF_Location_Fuse MF ClearingHouse 0 Clear variable for next iteration

B
-10

 Attribute Name Nodes Assigned Possible Values Description

12 MF_Activity_State_Fuse MF_Fusion 0 to 5 MX(MF_Activity_State_Fuse,Activity_State_Collect)

 MF_Activity_State_Fuse MF ClearingHouse 0 Clear variable for next iteration

13 MF_Track_Fuse MF_Fusion 0 to 5 MX(MF_Track_Fuse,Track_Collect)

 MF_Track_Fuse MF ClearingHouse 0 Clear variable for next iteration

14 MF_Identity_Fuse MF_Fusion 0 to 5 MX(MF_Identity_Fuse,Identity_Collect)

 MF_Identity_Fuse MF ClearingHouse 0 Clear variable for next iteration

15 MF_Intent_Fuse MF_Fusion 0 to 5 MX(MF_Intent_Fuse,Intent_Collect)

 MF_Intent_Fuse MF ClearingHouse 0 Clear variable for next iteration

16 MF_Capability_Fuse MF_Fusion 0 to 5 MX(MF_Capability_Fuse,Capability_Collect)

 MF_Capability_Fuse MF ClearingHouse 0 Clear variable for next iteration

17 MF_Post_Fuse MF_Post_Fusion 0 to 6 MF_Post_Fuse+1

 MF_Post_Fuse MF ClearingHouse 0 Clear variable for next iteration

18 SFQ_Strict_Search SF_Quit_ Out_Check 0 To 6 SFQ_Search

 SFQ_Strict_Search SF_Loop_Ct_Out 1 to 6 SFQ_Fuse_For_Set
 SFQ_Strict_Search SF_Clear_Vars 0 Clear variable for next iteration

19 SFQ_Fuse_For_Set SF_Quit_ Out_Check 0 Set counter variable

 SFQ_Fuse_For_Set SF_Loop_Ct 1 to 6 SFQ_Loop (Search First_Fuse)
 SFQ_Fuse_For_Set SF_Loop_Ct2 1 to 6 SFQ_Loop (Search Wait_For All_Clear node)
 SFQ_Fuse_For_Set SF_Loop_Ct_Out 1 to 7 SFQ_Loop+1
 SFQ_Fuse_For_Set SF_Clear_Vars 0 Clear variable for next iteration

B
-11

 Attribute Name Nodes Assigned Possible Values Description
20 SFQ_Location_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Location_Fuse,Location_Collect)

 SFQ_Location_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

21 SFQ_Activity_State_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Activity_State_Fuse,Activity_State_Collect)

 SFQ_Activity_State_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

22 SFQ_Track_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Track_Fuse,Track_Collect)

 SFQ_Track_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

23 SFQ_Identity_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Identity_Fuse,Identity_Collect)

 SFQ_Identity_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

24 SFQ_Intent_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Intent_Fuse,Intent_Collect)

 SFQ_Intent_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

25 SFQ_Capability_Fuse SF_Quit_Fusion 0 To 5 MX(SFQ_Capability_Fuse,Capability_Collect)

 SFQ_Capability_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

26 SFQ_Post_Fuse SFQ_Post_Fusion 1 To 6 SFQ_Post_Fuse+1

 SFQ_Post_Fuse SFQ ClearingHouse 0 Clear variable for next iteration

C
-1

Appendix C: Resource Parameter Tables

Each of the tables that follow in this section characterize the probability of a resource collecting information in each area of a
knowledge matrix, given that there is something to collect. The triangular distribution is used for all of the resources in this
model. The parameters RF, Detect Emissions, and Abroad are the three sample parameters used to determine what collection
resource can best fulfill a user-need.
Table 5-1 IMINT Parameters

IMINT
1

Sat
LvL Loc

Activity/
State Track Id Intent Capability

Expected
Time
Delay System

Entity
Capacity

R
F
?

 Find
Emis Abroad

 5 Max
TRIA(1,6,

8) Satellite 250 N N B
 4 Mode
 3 Max Max Max
 2 Mode Mode Max

 1
Max/
Mode Mode Mode

 0 Min Min Min Min Min Min

IMINT
2

Sat
LvL Loc

Activity/
State Track Id Intent Capability

Expected
Time
Delay System

Entity
Capacity

R
F
?

Find
Emis Abroad

 5 Max Max
TRIA(1,2,

8) UAV 6 N N Y
 4 Mode Max Max
 3 Mode Max Max Mode
 2 Mode Mode Mode
 1
 0 Min Min Min Min Min Min

N = No, Y=Yes, B=Both, Min = Minimum, Mode= most likely collect, Max= Maximum

C
-2

Table 5-2 SIGINT Parameters

SIGINT1
Sat
LvL Loc

Activity/
State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max Max Max Max EXP(2)hr RJ 30 Y N Y
 4 Max
 3 Max Mode
 2 Mode Mode Mode Mode Mode
 1
 0 Min Min Min Min Min Min

SIGINT2
Sat
LvL Loc

Activity/
State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max Max Max Max EXP(2)hr Army 20 Y N Y
 4 Max
 3 Max Mode
 2 Mode Mode Mode Mode Mode
 1
 0 Min Min Min Min Min Min

SIGINT3
Sat
LvL Loc

Activity/
State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max Max Max Max EXP(2)hr Other 200 Y N B
 4 Max
 3 Max Mode
 2 Mode Mode Mode Mode Mode
 1
 0 Min Min Min Min Min Min

C
-3

Table 5-3 RADINT Parameters

RADINT1 Sat
LvL Loc Activity/

State Track Identity Intent Capability
Expected

Time
Delay

System Entity
Capacity

R
F
?

Find
Emis

b
r
o
a
d

 5 Max TRIA(.05, SBR 200 N N B

 4 Mode 0.10,
0.25)

 3 None None
 2 Max Min Max Max
 1 Mode Mode Mode
 0 Min Min Min

RADINT2
Sat
LvL Loc

Activity/
State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity

R
F
?

Find
Emis

A
b
r
o
a
d

 5 Max Max
TRIA(0.0

5, AWACS 200 N N

O
n
l
y

 4 Mode 0.1, 0.25)
 3 Max Max Min Mode
 2 Mode

 1 Mode
Max/M
ode Max/Mode

 0 Min Min Min Min Min

C
-4

Table 5-4 MASINT Parameters

MASINT1
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max TRIA(0,0.1,) Other 100 N Y All
 4 Max 0.25)
 3 Mode Mode None Max
 2 Max Max
 1 Mode Mode Mode
 0 Min Min Min Min Min

MASINT2
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max TRIA(0,3,6) Other 500 N Y All
 4
 3 Max Mode None Max
 2 Mode Max Max
 1 Mode Mode Mode
 0 Min Min Min Min Min

C
-5

Table 5-5 OSINT Parameters

OSINT1
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Exp(24)hr FBIS 800 N N Y
 4 Max
 3 Max None Max
 2 Max Mode
 1 Mode Mode Max/Mode Mode
 0 Min Min Min Min Min

OSINT2
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 EXP(6)hr CNN 800 N N Al
 4 Max
 3 Max None Max Max Max
 2 Mode Mode
 1 Mode Mode Mode
 0 Min Min Min Min Min

C
-6

Table 5-6 Counter -Intelligence Parameters

CI1
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max EXP(48)hr DHS Capacity N N N
 4 Max Max Dependent
 3 Max Mode Max on
 2 Mode None Human
 1 Mode Mode Mode Resources
 0 Min Min Min Min Min

CI2
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity RF?

Find
Emis Abroad

 5 Max Max EXP(48)hr FBI Capacity N N N
 4 Max Dependent
 3 Max Mode Max on
 2 Mode None Human
 1 Mode Mode Mode Resources
 0 Min Min Min Min Min

C
-7

Table 5-7 HUMINT Parameters

HUMINT1
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity

R
F
?

Find
Emis

Abr
oa
d

 5 Max Max Max Max Max EXP(72)hr CIA Capacity N N Y
 4 Dependent
 3 on
 2 Mode Mode None Mode Mode Mode Human
 1 Resources
 0 Min Min Min Min Min

HUMINT2
Sat
LvL Loc Activity/State Track Identity Intent Capability

Expected
Time
Delay System

Entity
Capacity

R
F
?

Find
Emis

Abr
oa
d

 5 Max Max Max Max Max EXP(48)hr Indigenous Capacity N N Y
 4 Populance Dependent
 3 on
 2 Mode Mode None Mode Mode Mode Human
 1 Resources
 0 Min Min Min Min Min

D
-1

Appendix D: Resource Schedules

The following charts illustrate how seven of the resources within this model are established using the Arena Resource

scheduling capability. The Y-axis illustrates the capacity level for each entity (i.e. how many targets it can collect against at any

one point in time). The X-axis illustrates one twenty-four hour period. Each resource in this model is based on a 24 hours = one

day reoccurring schedule. Other schedule formats could be established if the end-user so desires.

The seven resources modeled are:

IMINT1
IMINT2
SIGINT2
SIGINT3
RADINT1
RADINT2
MASINT2

The other eight resources in this model all use a fixed capacity strategy. Fixed capcity means that each of these resources

has preset maximum collection level that never changes over time.

D
-2

Figure D-1 IMINT1 Resource Schedule

D
-3

Figure D-2 IMINT2 Resource Schedule

D
-4

Figure D-3 SIGINT1 Resource Sched

D
-5

Figure D-4 SIGINT2 Resource Schedule

D
-6

Figure D-5 RADINT1 Resource Schedule

D
-7

Figure D-6 RADINT2 Resource Schedule

D
-8

Figure D-7 MASINT2 Resource Schedule

E-1

Appendix E: Paired T-Tests

For each of the following paired t-test spreadsheets the statistic measured is the

difference between the mean values of the two algorithms or architectures in question. In

each comparison, fifty replications were run using a common random number variance

reduction technique.

E-2

Base MF %Timely Vs. UAV MF %Timely

Run Base MF % Timely UAV MF %Timely Difference Mean Squared Dif
1 0.606480132 0.600791659 0.01 0.0001
2 0.600655611 0.633138203 -0.03 0.0009
3 0.611971055 0.649825147 -0.04 0.0013
4 0.619639259 0.592426786 0.03 0.0009
5 0.654403511 0.665191209 -0.01 0.0001
6 0.643138046 0.631641026 0.01 0.0002
7 0.641405794 0.651207052 -0.01 0.0001
8 0.637457896 0.645749598 -0.01 0.0000
9 0.610045662 0.625988924 -0.02 0.0002

10 0.587623118 0.665135677 -0.08 0.0057
11 0.6342234 0.591766724 0.04 0.0020
12 0.670959032 0.584973829 0.09 0.0077
13 0.6215967 0.599325159 0.02 0.0006
14 0.615972894 0.632836117 -0.02 0.0002
15 0.638538341 0.614327384 0.02 0.0007
16 0.614108082 0.607248029 0.01 0.0001
17 0.626916778 0.63682042 -0.01 0.0001
18 0.626372559 0.605190998 0.02 0.0005
19 0.652550481 0.677709418 -0.03 0.0005
20 0.599450263 0.605421542 -0.01 0.0000
21 0.621305539 0.659612931 -0.04 0.0013
22 0.664907652 0.594390152 0.07 0.0053
23 0.636322418 0.647209396 -0.01 0.0001
24 0.608941976 0.623282331 -0.01 0.0002
25 0.639626451 0.658125839 -0.02 0.0003
26 0.635631286 0.652010561 -0.02 0.0002
27 0.646752063 0.587070499 0.06 0.0038
28 0.663218803 0.608828296 0.05 0.0032
29 0.608350652 0.675055049 -0.07 0.0042
30 0.633339982 0.627730536 0.01 0.0001
31 0.603096749 0.66945823 -0.07 0.0041
32 0.616563835 0.630747338 -0.01 0.0001
33 0.637518987 0.611623882 0.03 0.0008
34 0.646296963 0.629937736 0.02 0.0003
35 0.602778565 0.647469722 -0.04 0.0018
36 0.646638486 0.644267388 0.00 0.0000
37 0.640272498 0.680285239 -0.04 0.0014
38 0.65593551 0.626949378 0.03 0.0010
39 0.634690603 0.667031649 -0.03 0.0009
40 0.661710037 0.600327026 0.06 0.0040
41 0.608870396 0.595888778 0.01 0.0002
42 0.610030805 0.603770937 0.01 0.0001
43 0.655127037 0.673152567 -0.02 0.0003
44 0.638147057 0.618413919 0.02 0.0005
45 0.60642746 0.662925454 -0.06 0.0030
46 0.602485052 0.663371382 -0.06 0.0035
47 0.62279875 0.602835864 0.02 0.0005
48 0.599808978 0.633603649 -0.03 0.0010
49 0.673412385 0.624762276 0.05 0.0026
50 0.612381722 0.611052226 0.00 0.0000

 Qbar = 0.00 Variance Qbar = 0.0000
 90% Confidence interval -0.01 to 0.0047
 0.95 T-statistic = 1.2990

E-3

Base MF %Timley Vs. IMINT MF % Timely
Run Base MF % Timely IMINT MF %Timely Difference Mean Squared Dif

1 0.606480132 0.608608265 0.00 0.0000
2 0.600655611 0.623396303 -0.02 0.0006
3 0.611971055 0.652146695 -0.04 0.0018
4 0.619639259 0.648007735 -0.03 0.0009
5 0.654403511 0.63575564 0.02 0.0003
6 0.643138046 0.608191994 0.03 0.0011
7 0.641405794 0.64446896 0.00 0.0000
8 0.637457896 0.611070964 0.03 0.0006
9 0.610045662 0.639412682 -0.03 0.0010

10 0.587623118 0.623918804 -0.04 0.0014
11 0.6342234 0.619616987 0.01 0.0002
12 0.670959032 0.634455033 0.04 0.0012
13 0.6215967 0.616387699 0.01 0.0000
14 0.615972894 0.592722949 0.02 0.0005
15 0.638538341 0.578380666 0.06 0.0034
16 0.614108082 0.632820161 -0.02 0.0004
17 0.626916778 0.629563046 0.00 0.0000
18 0.626372559 0.624118648 0.00 0.0000
19 0.652550481 0.611470728 0.04 0.0015
20 0.599450263 0.630658646 -0.03 0.0011
21 0.621305539 0.632189785 -0.01 0.0002
22 0.664907652 0.627432201 0.04 0.0013
23 0.636322418 0.615691231 0.02 0.0004
24 0.608941976 0.598532892 0.01 0.0001
25 0.639626451 0.63825131 0.00 0.0000
26 0.635631286 0.647253475 -0.01 0.0002
27 0.646752063 0.63465912 0.01 0.0001
28 0.663218803 0.632495745 0.03 0.0008
29 0.608350652 0.624416983 -0.02 0.0003
30 0.633339982 0.664279946 -0.03 0.0011
31 0.603096749 0.633363886 -0.03 0.0010
32 0.616563835 0.625424146 -0.01 0.0001
33 0.637518987 0.621521707 0.02 0.0002
34 0.646296963 0.594832166 0.05 0.0025
35 0.602778565 0.650035565 -0.05 0.0024
36 0.646638486 0.635644051 0.01 0.0001
37 0.640272498 0.619111904 0.02 0.0004
38 0.65593551 0.647192947 0.01 0.0000
39 0.634690603 0.631191097 0.00 0.0000
40 0.661710037 0.662438923 0.00 0.0000
41 0.608870396 0.64272173 -0.03 0.0013
42 0.610030805 0.599428435 0.01 0.0001
43 0.655127037 0.650717459 0.00 0.0000
44 0.638147057 0.611732392 0.03 0.0006
45 0.60642746 0.65113245 -0.04 0.0022
46 0.602485052 0.653732106 -0.05 0.0028
47 0.62279875 0.614805208 0.01 0.0000
48 0.599808978 0.613507813 -0.01 0.0002
49 0.673412385 0.609815003 0.06 0.0038
50 0.612381722 0.609868294 0.00 0.0000

 Qbar = 0.0018 Variance Qbar = 0.0000
 90% Confidence interval -0.0034 to 0.0069

E-4

UAV MF % Timely Vs. IMINT MF % Timely
Run UAV MF %Timely IMINT MF %Timely Difference Mean Squared Dif

1 0.600791659 0.608608265 -0.01 0.0001
2 0.633138203 0.623396303 0.01 0.0001
3 0.649825147 0.652146695 0.00 0.0000
4 0.592426786 0.648007735 -0.06 0.0033
5 0.665191209 0.63575564 0.03 0.0008
6 0.631641026 0.608191994 0.02 0.0005
7 0.651207052 0.64446896 0.01 0.0000
8 0.645749598 0.611070964 0.03 0.0011
9 0.625988924 0.639412682 -0.01 0.0002

10 0.665135677 0.623918804 0.04 0.0016
11 0.591766724 0.619616987 -0.03 0.0009
12 0.584973829 0.634455033 -0.05 0.0026
13 0.599325159 0.616387699 -0.02 0.0004
14 0.632836117 0.592722949 0.04 0.0015
15 0.614327384 0.578380666 0.04 0.0012
16 0.607248029 0.632820161 -0.03 0.0007
17 0.63682042 0.629563046 0.01 0.0000
18 0.605190998 0.624118648 -0.02 0.0004
19 0.677709418 0.611470728 0.07 0.0042
20 0.605421542 0.630658646 -0.03 0.0007
21 0.659612931 0.632189785 0.03 0.0007
22 0.594390152 0.627432201 -0.03 0.0012
23 0.647209396 0.615691231 0.03 0.0009
24 0.623282331 0.598532892 0.02 0.0005
25 0.658125839 0.63825131 0.02 0.0003
26 0.652010561 0.647253475 0.00 0.0000
27 0.587070499 0.63465912 -0.05 0.0024
28 0.608828296 0.632495745 -0.02 0.0006
29 0.675055049 0.624416983 0.05 0.0024
30 0.627730536 0.664279946 -0.04 0.0015
31 0.66945823 0.633363886 0.04 0.0012
32 0.630747338 0.625424146 0.01 0.0000
33 0.611623882 0.621521707 -0.01 0.0001
34 0.629937736 0.594832166 0.04 0.0011
35 0.647469722 0.650035565 0.00 0.0000
36 0.644267388 0.635644051 0.01 0.0000
37 0.680285239 0.619111904 0.06 0.0035
38 0.626949378 0.647192947 -0.02 0.0005
39 0.667031649 0.631191097 0.04 0.0012
40 0.600327026 0.662438923 -0.06 0.0041
41 0.595888778 0.64272173 -0.05 0.0024
42 0.603770937 0.599428435 0.00 0.0000
43 0.673152567 0.650717459 0.02 0.0004
44 0.618413919 0.611732392 0.01 0.0000
45 0.662925454 0.65113245 0.01 0.0001
46 0.663371382 0.653732106 0.01 0.0001
47 0.602835864 0.614805208 -0.01 0.0002
48 0.633603649 0.613507813 0.02 0.0003
49 0.624762276 0.609815003 0.01 0.0002
50 0.611052226 0.609868294 0.00 0.0000

 Qbar = 0.0038 Variance Qbar = 0.0000
 90% Confidence interval -0.0019 to 0.0094
 0.95 T-statistic = 1.2990

E-5

Base MF Quantity Vs. UAV MF Quantity
Run Base MF Quanity UAV MF Quantity Difference Mean Squared Dif

1 20586 20716 -130.00 79,062.19
2 20744 19645 1,099.00 898,362.75
3 20867 19159 1,708.00 2,423,688.51
4 20846 21444 -598.00 561,270.67
5 19598 19429 169.00 317.55
6 19834 19500 334.00 33,423.15
7 20572 19966 606.00 206,861.23
8 20188 19904 284.00 17,641.15
9 20805 20224 581.00 184,745.23

10 21524 18942 2,582.00 5,908,885.87
11 19624 21571 -1,947.00 4,402,359.31
12 19259 21589 -2,330.00 6,156,254.19
13 20605 21042 -437.00 345,955.71
14 20660 20179 481.00 108,781.23
15 19731 20227 -496.00 418,841.95
16 20910 21054 -144.00 87,131.23
17 20151 19902 249.00 9,568.75
18 20582 21152 -570.00 520,100.59
19 19859 19017 842.00 477,232.27
20 21101 20769 332.00 32,695.87
21 20436 18808 1,628.00 2,180,997.31
22 19329 21284 -1,955.00 4,435,994.19
23 19850 19924 -74.00 50,706.03
24 21181 20522 659.00 257,881.15
25 19810 19358 452.00 90,492.67
26 20482 19696 786.00 402,996.43
27 19751 21362 -1,611.00 3,105,278.35
28 19529 20978 -1,449.00 2,560,576.03
29 21172 19074 2,098.00 3,790,108.11
30 20054 19639 415.00 69,600.99
31 20796 19344 1,452.00 1,692,132.67
32 21070 20379 691.00 291,405.63
33 19750 20802 -1,052.00 1,447,642.11
34 19457 19594 -137.00 83,047.71
35 21162 19899 1,263.00 1,236,143.71
36 19872 19956 -84.00 55,309.63
37 20257 18651 1,606.00 2,116,501.23
38 19476 20327 -851.00 1,004,364.75
39 19942 19179 763.00 374,323.71
40 19368 21405 -2,037.00 4,788,131.71
41 21149 20967 182.00 949.87
42 20776 21374 -598.00 561,270.67
43 19758 19067 691.00 291,405.63
44 20033 20289 -256.00 165,795.55
45 20568 19156 1,412.00 1,589,667.07
46 21408 19624 1,784.00 2,666,101.15
47 20159 20946 -787.00 880,181.71
48 20940 19730 1,210.00 1,121,099.79
49 18975 20507 -1,532.00 2,833,094.91
50 21031 20756 275.00 15,331.39

 Qbar = 151.18 Variance Qbar = 25,727.23
 90% Confidence interval -57.18 to 359.54
 0.90 T-statistic = 1.299

E-6

Base MF Quantity Vs.lMINT MF Quantity
Run Base MF Quanity IMINT MF Quantity Difference Mean Squared Dif

1 20586 20399 187.00 0.00
2 20744 19798 946.00 576,081.00
3 20867 19169 1,698.00 2,283,121.00
4 20846 19651 1,195.00 1,016,064.00
5 19598 20036 -438.00 390,625.00
6 19834 20459 -625.00 659,344.00
7 20572 19942 630.00 196,249.00
8 20188 20757 -569.00 571,536.00
9 20805 19887 918.00 534,361.00

10 21524 20001 1,523.00 1,784,896.00
11 19624 20156 -532.00 516,961.00
12 19259 20148 -889.00 1,157,776.00
13 20605 20552 53.00 17,956.00
14 20660 21025 -365.00 304,704.00
15 19731 21268 -1,537.00 2,972,176.00
16 20910 20396 514.00 106,929.00
17 20151 20025 126.00 3,721.00
18 20582 20565 17.00 28,900.00
19 19859 21010 -1,151.00 1,790,244.00
20 21101 19616 1,485.00 1,684,804.00
21 20436 19559 877.00 476,100.00
22 19329 19838 -509.00 484,416.00
23 19850 20572 -722.00 826,281.00
24 21181 21130 51.00 18,496.00
25 19810 19649 161.00 676.00
26 20482 19643 839.00 425,104.00
27 19751 19787 -36.00 49,729.00
28 19529 19978 -449.00 404,496.00
29 21172 20797 375.00 35,344.00
30 20054 18575 1,479.00 1,669,264.00
31 20796 19638 1,158.00 942,841.00
32 21070 20335 735.00 300,304.00
33 19750 20017 -267.00 206,116.00
34 19457 20705 -1,248.00 2,059,225.00
35 21162 19682 1,480.00 1,671,849.00
36 19872 20340 -468.00 429,025.00
37 20257 20741 -484.00 450,241.00
38 19476 19736 -260.00 199,809.00
39 19942 19948 -6.00 37,249.00
40 19368 19238 130.00 3,249.00
41 21149 19517 1,632.00 2,088,025.00
42 20776 20995 -219.00 164,836.00
43 19758 19583 175.00 144.00
44 20033 20388 -355.00 293,764.00
45 20568 19162 1,406.00 1,485,961.00
46 21408 19560 1,848.00 2,758,921.00
47 20159 20047 112.00 5,625.00
48 20940 20862 78.00 11,881.00
49 18975 20703 -1,728.00 3,667,225.00
50 21031 20652 379.00 36,864.00

 Qbar = 187.00 Variance Qbar = 15,428.37
 90% Confidence interval 25.65 to 348.35
 0.90 T-statistic = 1.299

E-7

UAV MF Quantity Vs. IMINT MF Quantity
Run UAV MF Quantity IMINT MF Quantity Difference Mean Squared Dif

1 20716 20399 317.00 79,062.19
2 19645 19798 -153.00 35,652.99
3 19159 19169 -10.00 2,099.47
4 21444 19651 1,793.00 3,087,681.55
5 19429 20036 -607.00 413,217.55
6 19500 20459 -959.00 989,666.83
7 19966 19942 24.00 139.71
8 19904 20757 -853.00 790,000.99
9 20224 19887 337.00 90,709.39

10 18942 20001 -1,059.00 1,198,630.83
11 21571 20156 1,415.00 1,902,137.47
12 21589 20148 1,441.00 1,974,530.83
13 21042 20552 490.00 206,279.47
14 20179 21025 -846.00 777,606.51
15 20227 21268 -1,041.00 1,159,541.31
16 21054 20396 658.00 387,107.95
17 19902 20025 -123.00 25,223.79
18 21152 20565 587.00 303,799.39
19 19017 21010 -1,993.00 4,116,110.59
20 20769 19616 1,153.00 1,248,091.15
21 18808 19559 -751.00 619,085.71
22 21284 19838 1,446.00 1,988,607.63
23 19924 20572 -648.00 467,609.79
24 20522 21130 -608.00 414,504.19
25 19358 19649 -291.00 106,811.31
26 19696 19643 53.00 295.15
27 21362 19787 1,575.00 2,369,075.07
28 20978 19978 1,000.00 929,643.07
29 19074 20797 -1,723.00 3,093,447.79
30 19639 18575 1,064.00 1,057,154.11
31 19344 19638 -294.00 108,781.23
32 20379 20335 44.00 66.91
33 20802 20017 785.00 561,270.67
34 19594 20705 -1,111.00 1,315,196.11
35 19899 19682 217.00 32,826.19
36 19956 20340 -384.00 176,248.83
37 18651 20741 -2,090.00 4,519,110.67
38 20327 19736 591.00 308,224.83
39 19179 19948 -769.00 647,735.23
40 21405 19238 2,167.00 4,541,928.19
41 20967 19517 1,450.00 1,999,905.07
42 21374 20995 379.00 117,772.51
43 19067 19583 -516.00 304,505.31
44 20289 20388 -99.00 18,176.43
45 19156 19162 -6.00 1,748.91
46 19624 19560 64.00 794.11
47 20946 20047 899.00 745,079.71
48 19730 20862 -1,132.00 1,363,803.55
49 20507 20703 -196.00 53,740.51
50 20756 20652 104.00 4,648.51

 Qbar = 35.82 Variance Qbar = 19,042.89
 90% Confidence interval -143.44 to 215.08
 0.90 T-statistic = 1.299

E-8

Base MF %TotSat Vs.UAV MF %TotSat
Run Base MF %TotSat UAV MF %TotSat Difference Mean Squared Dif

1 0.090789857 0.092923344 -0.0021 0.0000
2 0.089471654 0.094476966 -0.0050 0.0000
3 0.090046485 0.10350227 -0.0135 0.0001
4 0.086731267 0.09112106 -0.0044 0.0000
5 0.093121747 0.09501261 -0.0019 0.0000
6 0.089644046 0.093948718 -0.0043 0.0000
7 0.096441766 0.10027046 -0.0038 0.0000
8 0.096740638 0.092745177 0.0040 0.0000
9 0.086709925 0.092958861 -0.0062 0.0000

10 0.09333767 0.101837187 -0.0085 0.0000
11 0.099571953 0.085253349 0.0143 0.0003
12 0.096785918 0.092130252 0.0047 0.0000
13 0.091773841 0.093717327 -0.0019 0.0000
14 0.091239109 0.093959066 -0.0027 0.0000
15 0.088844965 0.082266278 0.0066 0.0001
16 0.08986131 0.093093949 -0.0032 0.0000
17 0.096124262 0.089388001 0.0067 0.0001
18 0.084491303 0.085003782 -0.0005 0.0000
19 0.089229065 0.093968554 -0.0047 0.0000
20 0.094166153 0.096634407 -0.0025 0.0000
21 0.092728518 0.101924713 -0.0092 0.0001
22 0.099901702 0.092839692 0.0071 0.0001
23 0.102871537 0.095814094 0.0071 0.0001
24 0.089891884 0.095214891 -0.0053 0.0000
25 0.094649167 0.096394256 -0.0017 0.0000
26 0.097012011 0.102457352 -0.0054 0.0000
27 0.09604577 0.09446681 0.0016 0.0000
28 0.095857443 0.093335876 0.0025 0.0000
29 0.088182505 0.105431477 -0.0172 0.0002
30 0.088361424 0.090635979 -0.0023 0.0000
31 0.088622812 0.096774194 -0.0082 0.0000
32 0.089795918 0.086363413 0.0034 0.0000
33 0.100151899 0.09277954 0.0074 0.0001
34 0.093693786 0.103603144 -0.0099 0.0001
35 0.093044136 0.094979647 -0.0019 0.0000
36 0.09666868 0.091200641 0.0055 0.0000
37 0.097349065 0.107876253 -0.0105 0.0001
38 0.096888478 0.095242781 0.0016 0.0000
39 0.09156554 0.095886125 -0.0043 0.0000
40 0.100733168 0.088203691 0.0125 0.0002
41 0.083360915 0.095960319 -0.0126 0.0001
42 0.091596072 0.088659119 0.0029 0.0000
43 0.102338293 0.111658887 -0.0093 0.0001
44 0.090001498 0.095864754 -0.0059 0.0000
45 0.097870478 0.091877219 0.0060 0.0001
46 0.091227578 0.086985324 0.0042 0.0000
47 0.097574284 0.088179127 0.0094 0.0001
48 0.09226361 0.10562595 -0.0134 0.0001
49 0.096916996 0.094358024 0.0026 0.0000
50 0.087204603 0.09259973 -0.0054 0.0000

 Qbar = 0.00 Variance Qbar = 0.0000
 90% Confidence interval -0.0028 to -0.0003
 0.90 T-statistic = 1.2990

E-9

Base MF %TotSat Vs. IMINT MF %TotSat
Run Base MF %TotSat IMINT MF %TotSat Difference Mean Squared Dif

1 0.090789857 0.104024707 -0.01323 0.00003
2 0.089471654 0.103141731 -0.01367 0.00003
3 0.090046485 0.100683395 -0.01064 0.00001
4 0.086731267 0.106152359 -0.01942 0.00014
5 0.093121747 0.100069874 -0.00695 0.00000
6 0.089644046 0.099907131 -0.01026 0.00001
7 0.096441766 0.103149132 -0.00671 0.00000
8 0.096740638 0.101893337 -0.00515 0.00001
9 0.086709925 0.095288379 -0.00858 0.00000

10 0.09333767 0.102894855 -0.00956 0.00000
11 0.099571953 0.102748561 -0.00318 0.00002
12 0.096785918 0.090877506 0.00591 0.00019
13 0.091773841 0.099503698 -0.00773 0.00000
14 0.091239109 0.098644471 -0.00741 0.00000
15 0.088844965 0.095824713 -0.00698 0.00000
16 0.08986131 0.100313787 -0.01045 0.00001
17 0.096124262 0.096629213 -0.00050 0.00005
18 0.084491303 0.098857282 -0.01437 0.00004
19 0.089229065 0.091861019 -0.00263 0.00003
20 0.094166153 0.107157423 -0.01299 0.00003
21 0.092728518 0.107009561 -0.01428 0.00004
22 0.099901702 0.100211715 -0.00031 0.00006
23 0.102871537 0.09955279 0.00332 0.00012
24 0.089891884 0.094320871 -0.00443 0.00001
25 0.094649167 0.100870273 -0.00622 0.00000
26 0.097012011 0.106144683 -0.00913 0.00000
27 0.09604577 0.104108758 -0.00806 0.00000
28 0.095857443 0.101061167 -0.00520 0.00001
29 0.088182505 0.092465259 -0.00428 0.00001
30 0.088361424 0.109932705 -0.02157 0.00019
31 0.088622812 0.104185762 -0.01556 0.00006
32 0.089795918 0.097762478 -0.00797 0.00000
33 0.100151899 0.103711845 -0.00356 0.00002
34 0.093693786 0.095242695 -0.00155 0.00004
35 0.093044136 0.09241947 0.00062 0.00007
36 0.09666868 0.098820059 -0.00215 0.00003
37 0.097349065 0.101152307 -0.00380 0.00002
38 0.096888478 0.101388326 -0.00450 0.00001
39 0.09156554 0.10647684 -0.01491 0.00005
40 0.100733168 0.105884188 -0.00515 0.00001
41 0.083360915 0.100220321 -0.01686 0.00008
42 0.091596072 0.098547273 -0.00695 0.00000
43 0.102338293 0.109125262 -0.00679 0.00000
44 0.090001498 0.098832647 -0.00883 0.00000
45 0.097870478 0.106304144 -0.00843 0.00000
46 0.091227578 0.105981595 -0.01475 0.00005
47 0.097574284 0.107796678 -0.01022 0.00001
48 0.09226361 0.099750743 -0.00749 0.00000
49 0.096916996 0.102159107 -0.00524 0.00001
50 0.087204603 0.097520821 -0.01032 0.00001

 Qbar = -0.01 Variance Qbar = 0.00000
 90% Confidence interval -0.01 to -0.00677
 0.90 T-statistic = 1.29900

E-10

UAV MF %TotSat Vs IMINT MF%TotSat
Run UAV MF %TotSat IMINT MF %TotSat Difference Mean Squared Dif

1 0.092923344 0.104024707 -0.01110 0.00002
2 0.094476966 0.103141731 -0.00866 0.00001
3 0.10350227 0.100683395 0.00282 0.00008
4 0.09112106 0.106152359 -0.01503 0.00008
5 0.09501261 0.100069874 -0.00506 0.00000
6 0.093948718 0.099907131 -0.00596 0.00000
7 0.10027046 0.103149132 -0.00288 0.00001
8 0.092745177 0.101893337 -0.00915 0.00001
9 0.092958861 0.095288379 -0.00233 0.00002

10 0.101837187 0.102894855 -0.00106 0.00003
11 0.085253349 0.102748561 -0.01750 0.00013
12 0.092130252 0.090877506 0.00125 0.00006
13 0.093717327 0.099503698 -0.00579 0.00000
14 0.093959066 0.098644471 -0.00469 0.00000
15 0.082266278 0.095824713 -0.01356 0.00005
16 0.093093949 0.100313787 -0.00722 0.00000
17 0.089388001 0.096629213 -0.00724 0.00000
18 0.085003782 0.098857282 -0.01385 0.00006
19 0.093968554 0.091861019 0.00211 0.00007
20 0.096634407 0.107157423 -0.01052 0.00002
21 0.101924713 0.107009561 -0.00508 0.00000
22 0.092839692 0.100211715 -0.00737 0.00000
23 0.095814094 0.09955279 -0.00374 0.00001
24 0.095214891 0.094320871 0.00089 0.00005
25 0.096394256 0.100870273 -0.00448 0.00000
26 0.102457352 0.106144683 -0.00369 0.00001
27 0.09446681 0.104108758 -0.00964 0.00001
28 0.093335876 0.101061167 -0.00773 0.00000
29 0.105431477 0.092465259 0.01297 0.00037
30 0.090635979 0.109932705 -0.01930 0.00017
31 0.096774194 0.104185762 -0.00741 0.00000
32 0.086363413 0.097762478 -0.01140 0.00003
33 0.09277954 0.103711845 -0.01093 0.00002
34 0.103603144 0.095242695 0.00836 0.00021
35 0.094979647 0.09241947 0.00256 0.00008
36 0.091200641 0.098820059 -0.00762 0.00000
37 0.107876253 0.101152307 0.00672 0.00017
38 0.095242781 0.101388326 -0.00615 0.00000
39 0.095886125 0.10647684 -0.01059 0.00002
40 0.088203691 0.105884188 -0.01768 0.00013
41 0.095960319 0.100220321 -0.00426 0.00000
42 0.088659119 0.098547273 -0.00989 0.00001
43 0.111658887 0.109125262 0.00253 0.00008
44 0.095864754 0.098832647 -0.00297 0.00001
45 0.091877219 0.106304144 -0.01443 0.00007
46 0.086985324 0.105981595 -0.01900 0.00016
47 0.088179127 0.107796678 -0.01962 0.00018
48 0.10562595 0.099750743 0.00588 0.00015
49 0.094358024 0.102159107 -0.00780 0.00000
50 0.09259973 0.097520821 -0.00492 0.00000

 Qbar = -0.01 Variance Qbar = 0.00000
 90% Confidence interval -0.01 to -0.00489
 0.90 T-statistic = 1.299

171

Bibliography

Berkowitz, Bruce D. and Allen E Goodman. Strategic Intelligence for American
National Security. New Jersey: Princeton University Press, 1989.

Brown, Thomas A. and Shuford, Emir H. Quantifying Uncertainty Into Numerical
Probabilities for The Reporting of Intelligence. Santa Monica CA: RAND Report For
DARPA. R-1185-ARPA, July 1973.

Clemen, Robert T. and Reilly Terence, Making Hard Decisions with DecisionTools.
Pacific Grove, CA: DUXBURY 2001.

Davis, Jack. “Combating Mind Set,” Studies in Intelligence, Vol 36, No 5, 1992, 35-36.

Department of Defense. Doctrine for Intelligence Support to Joint Operations. Joint
Publication 2-0. Washington: GPO, 9 March 2000.

Department of Defense. Joint Tactics, Techniques, and Procedures for Joint Intelligence
Preparation of the Battlespace. Joint Publication 2-01.3. Washington: GPO, 24 March
2000.

Gonzales, Daniel and Louis R. Moore III. “Measuring the Value of High Level Fusion”.
RAND Corporation

“Intelligence, Surveillance, and Reconnaissance Processing, Exploitation, and
Dissemination System (ISR-PEDS) Study, Phase II Final Report,” Air Force Studies and
Analysis Agency

Keegan, John. Intelligence in War. New York: Alfred A Knopf, 2003.

Kelton, David, W. and others, Simulation with Arena, Third Edition. Boston: McGraw-
Hill, 2004.

Kent Sherman, “Words of Estimative Probability.” Center for the Study of Intelligence,
Studies in Intelligence Fall 1964, Washington D.C. CIA.

Kiethley, Hans. National Security Space Architecture. Multi-INT Fusion Performance
Model. Presentation to the Joint C4ISR Decision Support Center (DSC) FY2000 Study
Task 3 (DSC 00-2), 2000.

Kraiman, James B. MULTI-SENSOR FUSION EFFECTS ON THE
CHARACTERISATIONS AND OPTIMIZATION OF TPED ARCHITECTURE
PERFORMANCE. AFRL-IF-RS-TR-2001-74, 13441-4505, Dynamic Technologies Inc.
May 2001, 2-3

172

Law, Averill and David W. Kelton. Simulation Modeling and Analysis, Third edition.
Boston, ; McGraw-Hill, 2000.

Pawling, Carl R. Modeling and Simulation of the Military Intelligence Process. MS
thesis, AFIT/GOR/ENS/09-04. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2004.

Perry, Walter. “Modeling Knowledge in Combat Models.” Military Operations
Research, Vol8, N1, 2003.

Shafer, Glenn. A Mathematical Theory of Evidence, New Jersey: Princeton University
Press, 1976.

Schneedweiss, Winfrid G. Boolean Functions with Engineering Applications and
Computer Programs. Berlin: Spinger-Verlag, 1989.

Szayna, Thomas S. et al. The Emergence of Peer Competitors A Framework for
Analysis. Contract DASW01-96-C-0004. Santa Monica CA: RAND Arroyo Center,
2001.

Tiwana, Amrit, The Knowledge Management Toolkit. New Jersey: Prentice Hall PTR,
2000.

Wackerly, Dennis, D. and others, Mathematical Statistics with Applications, California:
DUXBURY, 2002.

Waltz, Edward. Knowledge Management in the Intelligence Enterprise. Massachusetts:
Artech House, 2003.

173

Vita

Captain Kevin J. Whaley graduated from Chariho Regional High School in

Woodriver Junction, Rhode Island. He enlisted in the Air Force as a Russian Cryptologic

Linguist in August 1989. He graduated from the Defense Language Institute’s Basic

Russian course in September 1990, and from the Basic Cryptologic Technician course at

Goodfellow AFB in March 1991. His first duty assignment was to RAF Chicksands, UK

from March 1991 – May 1994. He returned to DLI to attend the Intermediate Russian

language course from May 1994 – March 1995. He then served as a certified section and

supervisor at the Medina Regional SIGINT Operations Center (MRSOC) from March

1995 – January 1997. At this time Staff Sergeant Whaley was awarded an education and

commissioning opportunity through the Airman Scholarship Commissioning Program

(ASCP). He attended the University of Texas, at San Antonio where he graduated Magna

Cum Laude, with a Bachelor of Business Administration in May 1999.

His first commissioned assignment was the Goodfellow AFB for the Basic

Officer Intelligence Course, and the Combat Targeting Course (CTC), September 1999-

June 2000. Then Lieutenant Whaley was stationed in Aviano AB, Italy from June 200-

August 2003. While at Aviano he worked as the sole intelligence officer for the 603d Air

Control Squadron (ACS) and as the 31st Fighter Wing’s Chief Targeteer. He deployed

once to Bosnia to support Operation Joint Forge in August 2000, and twice to Kuwait,

Ali Al Salem AB, and Al Jaber AB in 2001 and 2002 respectively. Upon graduation he

will be assigned to the National Reconnaissance Office.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
21-03-2005

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Jul 2004 – Mar 2005

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Knowledge Matrix Modeling of the Intelligence Cycle
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
2004-119
5e. TASK NUMBER

6. AUTHOR(S)

Whaley, Kevin J, Captain USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/05-18
10. SPONSOR/MONITOR’S
ACRONYM(S)

NSSO

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Space Office (NSSO)
Concepts and Analysis - Mr. Shaw
P.O. Box 222310
Chantilly, VA 20153-2310
 11. SPONSOR/MONITOR’S

REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This effort models information flow through the United States Intelligence Community’s Intelligence
Cycle using a knowledge matrix methodology. The knowledge matrix methodology takes explicit data
from multiple sources and fuses that data to measure a current level of knowledge about a target, or
situation. Knowledge matrices are used to develop a measure of user-needs satisfaction. User-needs
satisfaction compares requested levels of knowledge to a probability of collecting that knowledge within
a designated timeframe. This effort expands the work done by Captain Carl Pawling in his March 2004
thesis, Modeling and Simulation of the Military Intelligence Process, by modeling intelligence as an
opportunistic, multi-source, multi-entity system of systems. The value of intelligence fusion is compared,
and analyzed between three different algorithms; no fusion, a mixed forward and fuse strategy, and strict
fusion strategy. These fusion algorithms are then applied to competing intelligence collection
architectures in varying intelligence activity scenarios to determine which architectures will most improve
the probability of satisfactory collection. Satisfactory collection is measured in terms of quantity,
timeliness, and user-need satisfaction of completed intelligence reports.
15. SUBJECT TERMS
 INTELLIGENCE, SIMULATION, MODELING

16. SECURITY CLASSIFICATION
OF: UNCLASSIFIED

19a. NAME OF RESPONSIBLE PERSON
DR. J.O. Miller, AFIT/ENS

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

174 19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4326

	A Knowledge Matrix Modeling of the Intelligence Cycle
	Recommended Citation

	Microsoft Word - whaley_Thesis_Final 17Mar.doc

