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AFIT/GLM/ENS/05-08 

Abstract 

 

Models are used by several organizations in DoD to evaluate systems and 

situations about which full information is not otherwise available to assist in planning and 

decision making.  Various types of models are employed, including deterministic 

spreadsheet models, analytical queuing models, and discrete-event simulations.  Each 

type of model has qualitative benefits and drawbacks compared with the others. 

A recent USTRANSCOM study employed several models of differing type to 

evaluate the ability to deploy a US Army Stryker brigade world-wide within the Chief of 

Staff of the Army-directed 96-hour timeline.  This research uses basic statistical methods 

to explore the differences in the closure time estimates produced by the previously used 

models over similar sets of input parameters.  This research suggests that the conclusions 

reached concerning the ability to close deployment within a specified timeline are 

affected by the model used to evaluate the system.  In the course of the research, new 

models incorporating logic described in previous studies were developed for comparison 

and recently identified distributions describing aircraft cargo loads and en route ground 

times were applied.  This research also developed evidence to support theories that the 

constraints which pose the largest obstacles toward meeting Stryker Deployment closure 

goals are the percent of aircraft required to transit hot cargo pads at en routes and the 

number of en routes required to be traversed during a deployment. 
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OUTPUT ANALYSIS AND COMPARISON OF DEPLOYMENT MODELS WITH 
VARYING FIDELITY 

 
 
 

I.  Introduction 

Background 

Computer simulation is a common planning tool used by several facets of the Air 

Force and Department of Defense in everyday operations, from forecasting requirements 

for spare parts to exercising the supportability of Operations Plans Time-Phased Force 

Deployment Data (TPFDD).  Different types of models using widely varying underlying 

logics are used for different situations, depending on the level of fidelity and detail 

required.  Planners at Air Mobility Command (AMC) and US Transportation Command 

(USTRANSCOM) have developed various models for analyzing deployment lift 

capabilities over various networks.  Each of these models serves a different purpose and 

provides different insights when analyzing a deployment scenario.  The models used run 

the gamut from detailed spreadsheet models rooted in deterministic algebraic formulas to 

complex discrete event simulations that can provide a more detailed rendition of the 

system and set of circumstances to be modeled.   

This research will examine the models and output associated with a 2002 study by 

USTRANSCOM evaluating the ability of the Interim Brigade Combat Team (IBCT, now 

know as Stryker Brigade) to meet the goal of deploying anywhere in the world within 96 

hours of the first departure from their home base.  Several different models were used in 

this study to gain various insights in the ability of the AMC strategic airlift fleet and the 

system of world-wide en route bases to support this deployment scenario. 
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 The background for this scenario is the US military's change in force structure 

since the end of the Cold War coinciding with several changes in policy.  One change has 

been the scaling back of overseas operational bases, including a marked reduction in the 

number of locations of AMC en-route port functions, the transition to the Expeditionary 

Air Force, and a refocus on smaller, regional conflicts.  Yet as the forward presence of 

the US military has been reduced, the number of conflicts we have engaged in has risen.  

The scope of conflicts facing the US military has changed as well.  The possible locations 

and size of force necessary to react to contingencies in today's climate vary widely.  The 

potential enemy for the US is changing, and as seen in the Global War on Terrorism 

(GWOT), becoming less defined.  Battles of the future will be fought on different 

terrains, and the possible locations throughout the world are numerous.  The build-up to 

battle, as evidenced in Operations Enduring Freedom and Iraqi Freedom (OEF and OIF) 

are also likely to be very short when compared to other conflicts such as Operation 

Desert Storm and the Korean and Vietnam Conflicts.  US military force is being 

projected more now than at any other time since before the World Wars (Jones, Orletsky, 

Pirnie, Vick, 2002: 57).   

 These shifts gave rise to the need for units that could sustain combat on a heavier 

scale than light infantry units but be a more rapidly deployable force than heavy armor 

units.  This desire and need for a "middleweight" force has been discussed for some time, 

and can be read about in works dating to at least 1990 (Mazarr, 1990).  Americans are not 

groundbreaking in their thought on these size units, as the French have been moving in 

this direction since the mid-80s and the Chadians had success against Libya in 1987 

employing middleweight units (Mazarr, 1990).  However, it was Operation Desert Storm 
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that highlighted the operational shortfall of the Army.  Congress was briefed in 2001 that, 

"There is, at present, no rapidly deployable force with the staying power to provide our 

leadership with a complete range of strategic options" (Jones, and others 2002: 7).   

 The goal for these type of units, as stated in October 1999 by the Chief of Staff of 

the Army (CSA) in an issued Army Vision Statement for Army Transformation, is to “… 

develop the capability to put a combat force anywhere in the world 96 hours after liftoff – 

in brigade combat teams" (Rekamp and others, 2002: 1).  Joint Vision 2020 backs up this 

goal by stating that our Armed Forces are to undergo transformation to become more 

precise, more lethal, and faster (Jones, and others, 2002).  Joint Vision 2020 also 

discusses the concept of dominant maneuver, which, "For the Army, implies much more 

rapid arrival in theater than had been achieved previously.  It also implies that ground 

troops must arrive ready to fight without the usual reception, staging, and preparation" 

(Jones and others, 2002: 5). 

 In order to test the ability of the Army to meet this deployment timeline and of 

USTRANSCOM to deliver the forces where needed in the time allotted, several studies 

have been conducted.  Each of these studies used models to simulate deployment of the 

Stryker Brigade.  Actual testing of full deployment of these units over the several 

situations theorized simply is not feasible due to limits of time, money, and resources 

(Bower, Halliday, Peltz: 2003; Jones and others, 2002; Rekamp and others, 2002).  As 

mentioned before, this research draws heavily from one study in particular completed in 

2002 by a joint team from USTRANSCOM and AMC.  In the course of that study, three 

distinct models were used to simulate and evaluate the abilities of and limitations to 

deploying a Stryker Brigade via air using current and projected airlift system capabilities.  
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These models were the IBCT Quick Look Tool (QLT), a deterministic spreadsheet 

model; Model for Intertheater Deployment by Air and Sea (MIDAS), a discrete event 

simulation model, and Airlift Flow Model (AFM), a higher-fidelity discrete-event 

simulation model requiring more detailed input data. Each model was used in a different 

manner and provided different insights based on its capabilities and limitations.   

 The primary focus of these models was to evaluate the ability to meet closure 

time.  Closure time, for the purpose of this study, will be defined as meaning the time at 

which all forces associated with a particular deployment package and required to meet a 

Theater Combatant Commander's objectives for that force package have arrived and been 

downloaded at the port of debarkation. Deployment closure is an interchangeable phrase 

for the purpose of this study.  Closure times reported in days are the primary output of 

each model to be examined.  The outputs of each model used in the USTRANSCOM 

study were reported in the appendices of the study report (Rekamp and others, 2002). 

 In addition to these three models, this research proposes two models that should 

lie in between Quick Look and AFM in a continuum of fidelity.  The first of these models 

is a variation of the Quick Look using Decisioneering's Crystal Ball add-in program to 

Microsoft Excel to add some degree of variability at the fleet level.  It will be referred to 

in this research as the Modified Quick Look Tool.  The other model is a very basic 

discrete event simulation created using Rockwell Software's Arena 7.01 program, and 

will be referenced simply as Arena model in this work..  The varying insights gained 

from these models will be the focus of this research effort. 
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Problem Statement 

Mobility planners at many levels repeatedly use models to gain insights into and 

make assumptions about various possible scenarios.  These models range from simple 

deterministic mathematical models through rather detailed, stochastic discrete event 

simulators.  As the models change, there are generally differences in the outputs, even 

when similar inputs are used.  The purpose of this research is to examine not only these 

raw output differences over a single scenario involving output from several models, but 

also to make assessments about the overall insights that can be gained from each model 

and from comparisons between models.  The result of this examination will be 

observations and statements about how the outputs and assumptions about the real 

process being modeled change with the differences between representative models. 

Research Objective 

The main thrust of this work is to answer the following question: how do overall 

insights into a theoretical real-world scenario change when examined over a series of 

models of various levels of fidelity?  A corollary hypothesis to this question is that of the 

four models examined in this case, there exists an ordered continuum of fidelity, and that 

the level of fidelity increases with the amount of variability introduced into the model. 

Investigative Questions 

 In order to build toward answering the overall research question, this research will 

have to research and answer the following questions and sub-questions: 

1.  What are the underlying differences between the models being examined?  

 1a. What is the algebra behind the overall scenario being modeled?   
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 1b. How does each model treat the algebra differently? 

2.  What are the raw data outputs from each of these models over the defined 

scenario sets of inputs? 

3.  What significant mathematical relationships exist between the outputs of the 

various models? 

4.  How do each model and its resulting outputs change the conclusions and 

assumptions that can be made about the scenario? 

5.  How can the observations of the relationships between the specific models 

being studied be applied to relationships of other models and different input 

scenarios? 

Methodology 

 This study consisted of three related phases of comparison.  The first phase 

consisted of a qualitative comparison of the various models and literature related to these 

models.  The goal of this phase was to understand the underlying differences in the 

models and their algebra.  The results of this portion of the study are discussed in chapter 

two.  This phase also prepared understanding for and set up assumptions as to the 

expected differences in model outputs.  During this phase, common treatments were 

identified that could be used in comparing outputs from the models.   

 The next step in this study was to design two additional methods of estimating 

closure time over the 30 given scenarios, and thus the Modified Quick Look Tool and 

Arena models were developed.  During this step, variation was added to create not only 

point estimates of closure time but also ranges and confidence intervals.  Distributions of 
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ground times and cargo loads observed in a study of Operation Iraqi Freedom strategic 

airlift were used to provide this variability (Pelletier, 2004).  In the case of modifying the 

QLT with Crystal Ball, draws were taken randomly from the known distributions and 

applied across the entire scenario for each model run.  Arena models were able to make a 

distinct draw from a cargo load distribution for each aircraft cycle through the model and 

a ground time draw for each time an aircraft landed.  A basic Arena model was 

developed, and modified 30 times to replicate the changes not only in the levels of factors 

for each treatment, but also to reflect the different system of bases each origin-destination 

pair would be assumed to use. 

 The final phase includes a series of pair wise mathematical comparisons of the 

outputs from each model.  The goal of this phase is to confirm a mathematical hierarchy 

of fidelity and identify a mathematical relationship between the inputs levels and the 

respective related outputs from each model.  This step would incorporate linear and non-

linear regression methods, including least squares methods and stepwise regression, 

applied to both the raw data outputs and transformed data ratios. 

Assumptions/Limitations 

There are several assumptions and limitations to this work, many arising from the 

use and comparison of models to represent situations that have not yet, nor are likely to 

ever, occur exactly as modeled.  The 2002 USTRANSCOM study listed an extensive set 

of assumptions about the conditions of the system being modeled; these will be discussed 

and listed within the literature review (Reckamp and others, 2002).  Each model also has 

its own set of limitations; these will be discussed in chapter two or three depending upon 
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the model.  One key assumption throughout this work is that the outputs from the AFM 

model are the closest, most accurate results that could be expected were the scenarios 

modeled to actually occur.   

One important limiting factor in this case study is that the 2002 USTRANSCOM 

study includes just 30 treatments common to both the Quick Look and AFM models.  

Thus, only 30 data points are available for each model for use in comparison, thus 

limiting the number of data points that can be used to carry comparisons through all four 

models.  These 30 data points are achieved by adjusting two factors over three treatments, 

or "deployment cases," over ten separate origin-destination pairs for hypothetical Stryker 

deployment scenarios.  The two factors that are adjusted for the treatments are percent of 

deploying aircraft requiring the use of "hot cargo" pads through the en route airfield 

system and number of aircraft available to move the required cargo and personnel 

(Reckamp and others, 2002).  

Implications 

The implications for this research would be wide-ranging.  Planners and analysts 

at AMC, USTRANSCOM, and other organizations could be able to apply the results to 

aid their future studies.  The specific results of this study will be able to provide a method 

for applying a mathematical relationship between lower-fidelity models and higher-

fidelity models and to allow for simple method to increase the confidence in the results 

obtained from simpler models. 
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Summary 

AMC, USTRANSCOM, and other organizations frequently use models to gain 

insights into a situation.  Models are particularly helpful to these organizations in 

assessing the ability to move cargo throughout the world without going through the 

involved process of physically moving cargo, aircraft, boats, and personnel.  Different 

types of models with varying levels of complexity and fidelity reveal different types of 

inferences and findings about a system.  The purpose of this research is to study a 

particular case where models have been used extensively to assess deployment capability, 

identify how the insights change with the models, and derive a functional relationship 

between the several models. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to two-fold.  Primarily, this chapter will describe 

several of the models and the deployment scenario over which the models are examined.  

It will explain the logic behind the models and break down the algebra behind not only 

the models but also the general theory of airlift deployment.  Secondarily, this chapter 

will discuss treatments of mathematical and simulation models and differences in how 

these different types of models can be used.  Also, this chapter will detail what differing 

kinds of outputs and results can be obtained from each type of model and how they can 

shape assumptions made about the scenario being modeled. 

Stochastic Spreadsheet Models 

General Research 

The literature reveals that spreadsheet models are widely used to analyze, 

simulate, and solve many problems throughout a wide range of industries. Spreadsheets 

by nature are primarily input - equation - output models.  Their primary use is for day-to-

day analytical tasks (CFO Research Services, 2004).  They are generally deterministic in 

nature, and are easy to manipulate for single-point estimates, and analysis of what-ifs and 

various changes in scenarios (Lander and Harrison, 2000).     Their utility is that they can 

perform several calculations, that may otherwise take hours by hand, in a matter of 

seconds.  They can become rather cumbersome when used to model more complex 

situations and do not conceptually solve any problems that couldn't be solved through 

manual calculations, even if they can complete the calculations rather quickly (Baudin 
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and others, 1992; CFO Research, 2004).  This research will deal with one spreadsheet 

model in particular, and address a way of potentially adding variability to a model that 

has not yet been used in any kind of stochastic manner. 

IBCT Quick Look Tool Algebra 

The ICBT Quick Look Tool is a deterministic spreadsheet model using Microsoft 

Excel and Visual Basic for Applications (VBA) macros.  It utilizes cycle analysis 

methods to rapidly compute closure time for a matrix of origin-destination pairs over a 

set of deployment scenarios.  It also uses cycle analysis methodology to determine the 

constraining factor limiting the system throughput (Reckamp and others, 2002).  Cycle 

analysis as related to deployment modeling focuses on determining the number of 

complete cycles a single aircraft in a fleet can complete in a day, then extending that 

through an entire available fleet for movement and multiplying by a payload factor to 

determine how many short tons or personnel can be moved per day.  Based what can be 

moved each day, calculations are extended to determine how many days it would require 

to complete all movements with the available fleet (Brigantic and Merrill, 2004).  A 

conceptual example of a notional airlift cycle appears at Figure 1. 

In the notional deployment cycle depicted at Figure 1, the strategic lift originates 

from its home station, picks up cargo and/or passengers at the designated Aerial Port of 

Embarkation (APOE), stops at an enroute airfield for gas, servicing, and possibly a swap 

of crew, continues to the Aerial Port of Debarkation for download of cargo, then returns 

through a choice of routes to the APOE to repeat the cycle as necessary until all cargo 

and personnel to be deployed have been moved through the strategic airlift system to the 

APOD, at which point the deployment will be called closed (Brigantic and Merrill, 2004). 
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Figure 1.  Theoretical Strategic Airlift Cycle (Brigantic and Merrill, 2004: 2) 

 

The Quick Look tool is designed to apply the Algebra of Airlift, as described by 

Brigantic and Merrill (2004), to several deployment scenarios simultaneously.  The main 

thrust of the algebra is to compute the total time required to complete a round-trip cycle, 

and then determine how many cycles are required to complete a deployment.  The simple 

equation for cycle time is  

 

Cycle time = RTFT +TGT [hrs], (1) 

 

where RTFT is Round Trip Flying Time and TGT is Total Ground Time.  The equations 

for deriving these variables follow (Brigantic and Merrill, 2004): 

 

[hrs]...  
2

2

1

1

n

n

dblock spee
leg dist

dblock spee
leg dist

dblock spee
leg distRTFT +++=  (2) 
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and 

TGT = on-load time + {(en route ground time) (number of enroute stops in 

 cycle)} + off load time [hrs]. (3) 

 

However, the algebra also considers that there are several other factors which may 

conspire to constrain the ability to move aircraft through a system in the most efficient 

manner.  To account for these additional possible constraints, the idea of flow interval is 

introduced.  Flow interval is the max of station interval, aircraft allocation interval, and 

flying hour capability interval.  A fourth factor, crew interval, also is in play in the 

general algebra, but is not considered in the course of this work.  Equations for these 

factors follow (Brigantic and Merrill, 2004):  

 

]hrs[
CapabilityStation

TimeGroundStationIntervalStation =  (4) 

 

]hrs[
dApportioneAircraft

TimeCycleIntervalAllocationAircraft =  (5) 

 

]hrs[24
dApportioneAircraftRateUte

RTFTIntervalCapabilityHourFlying
×

×
=  (6) 

 

{ } ]hrs[(4),(3),2),(max=IntervalFlow  (7) 
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To define these intervals, station interval would be the minimum amount of time 

required between each aircraft for servicing at an airfield, aircraft allocation interval 

would be the minimum average time between aircraft cycles, and flying hour capability 

interval would be the minimum average time between aircraft launches to meet the 

expected amount of flying hours for a given number of aircraft (Brigantic and Merrill, 

2004: 3,4)  The flow interval would then be the best interval which could be realized and 

would represent the most restrictive factor in the system.  

Having discovered this restrictor, the algebra can now be used to compute a new 

closure time with the equation below.  In this case, one way en route time is defined as 

the total ground time and flight time from the time an aircraft begins loading cargo at the 

APOE through to the time the cargo is offloaded at the APOD (Brigantic and Merrill, 

2004, 4). 

 

]days[
24

)()1( TimeEnrouteWayOneIntervalFlowRequiredMissionsClosure +×−
=  (8) 

 

There are additional equations and factors discussed in the literature relating to 

other parameters that can be calculated relating to the algebra, such as number of aircraft 

required or number of short tons per day able to be moved.  However, they are not a 

factor in this research so they will not be discussed.  An additional important factor to 

define that will be discussed is maximum aircraft on ground, or MOG.  This value is a 

function of the ability of an airfield to park, service, and fuel aircraft on station.  This is 
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often a set value for each airfield and defined by most limiting factor on the airfield.  

Within the algebra construct, a formula is defined for MOG.  It is 

  

IntervalFlow
TimeGroundLimitingMOG =  (9) 

 

One additional factor to be defined that was alluded to above is UTE rate.  UTE 

rate is essentially the number of hours an aircraft can be expected to fly in a 24-hour 

period.  It can be defined and input into a system to test it effect on limiting closure.  

Otherwise, for the purposes of this study, UTE rate for a fleet is defined as (Brigantic, 

Merrill, 2004: 6) 

 

]hrs/day[24
dApportioneAircraftIntervalFlow

RTFTRateUte
×

×
= . (10) 

 

Application of IBCT Quick Look Tool Algebra 

The QLT provides both drop-down menus and the ability to manually enter the 

independent variables used to change the condition over which deployment is modeled.  

The variables available to change are fleet, percent of aircraft requiring hot cargo parking 

spots, number of available parking spots and hot cargo parking spots for APOE, APOD, 

and en routes, as well as total cargo movement requirement and a queuing efficiency 

factor.  The user also has the ability to define the aircraft block speeds, distance between 

origins and destinations, aircraft cargo payloads, UTE rates, aircraft ground times, and 
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the aircraft fleets on embedded spreadsheets.  Once the user has defined all variables and 

parameters of a scenario for execution, Quick Look follows the following steps, as 

outlined in Mahan and others (2004), to compute a closure time for each origin-

destination pair. 

(1)  Compute cycles per day per aircraft. 

(2)  Compute STONS per day per aircraft by multiplying cycles per day per 

aircraft by aircraft payloads. 

(3)  Compute fleet potential STONS per day by multiplying STONS per day per 

aircraft by the number of aircraft for each aircraft type then summing the totals for each 

aircraft type in the fleet. 

(4)  Compute potential fleet closure time from wheels up to wheels down by 

dividing the movement requirement in short tons by short tons the fleet can move per day 

and adding an adjustment for delay until the first aircraft arrives. 

(5)  Compute the total MOG required at APOD and APOE to optimize fleet 

potential by the following expression:     

 

 
24

)}()(#)//{( timegroundfleetinaircraftaircraftdaycycles ××  (11) 

 

(6)   Compute the hot cargo MOG required at APOE and en routes to optimize 

the fleet potential by the following expression: 
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24

)}(*)(%)(#)//{( timegroundHCPfleetinaircraftaircraftdaycycles ×××  (12) 

* % HCP = percentage of aircraft requiring hot cargo parking spots 

 

(7)  Compute constrained throughputs, similar to identifying the flow interval, 

through the following relationship: 

 

     If (scenario MOG at a node) < (MOG Requirement at node), then MOG 

constrained throughput = (available MOG)/(required MOG) ×  fleet potential throughput 

(short tons) per day (13) 

 

(8)  Identify the limiting factor based on the input variable constraint that 

minimizes throughput. 

 

(9)  Finally, compute constrained closures from wheels up to wheels down based 

on the limiting factor by dividing the movement requirement in short tons by the 

constrained amount of short tons the fleet can move per day and adding an adjustment for 

delay until the first aircraft arrives. 

Crystal Ball 

Crystal Ball is a program created and licensed by the Decisioneering Corporation 

as an add-in to Micorsoft's Excel spreadsheet program.  It adds the ability to provide 

Monte Carlo functions within spreadsheet models (Lander and Harrison, 2000).  It does 

so by making random draws from defined distributions from set cells, then applying those 
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random draws into a user-defined formula in order to produce a one-trial result for a 

defined forecast cell.  Crystal Ball can then repeat the process rapidly, capturing all the 

results from each defined forecast cell.  Crystal Ball can then produce several outputs, 

including detailed statistics, frequency charts, flexible user-defined reports, sensitivity 

analysis, and trend charts.  Data can be exported from Crystal Ball directly to Microsoft 

Excel. 

Discrete Event Simulations 

General Research 

The general concept of discrete-event simulations is a relatively simple one.  

Similar to movements around a board game, these simulations involve modeling a system 

as it evolves over time by representing variables changing and events happening 

instantaneously at separate points in time (Law and Kelton, 2000; Baudin and others, 

1992).  Instead of using a mathematical equation to determine an estimate of simulation 

as in spread sheet models, discrete-event simulators make an attempt to actually run 

through a simplified version of the real process and record data about the system and 

events as things happen in simulated real-time.  This allows for the introduction of 

variability as events can be set to happen or behave according to user-defined probability 

distributions.  The key to simulation models is that while they exercise at the entity level, 

they are exploring and simulating the relationships and interdependencies of the several 

operators, events, and entities in the system (Baudin and others, 1992). 

The dynamic nature of discrete-event simulations requires the model to keep track 

of the current simulated time at all moments within the model run.  This is done through 
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the use of a simulation clock, although there is generally no relation between a simulation 

time and time required to run a model. (Law and Kelton, 2000: 7).   

Discrete-event simulations can utilize either an event-scheduling approach, 

wherein the "times of future events are explicitly coded into the model and explicitly 

scheduled to occur in the simulated future" (Law and Kelton, 2000: 11), or a process 

approach, in which the code describes the experiences of the entity as it cycles through 

the defined system.  The process approach was used in building the proprietary model in 

Arena for this study. 

Airlift Flow Model (AFM) 

The Airlift Flow Model (AFM) was a model that included great system detail and 

was a large simulation of the global, wartime mobility system.  AMC Studies and 

Analysis Flight was the primary owner of this model.  It was a data driven model that 

depended upon a detailed movement requirements file for passengers and cargo as input 

(Reckamp and others, 2002).  It was comprised of over 60,000 lines of code in various 

programming languages (Browne, 2000).  It has since been primarily replaced by other 

models compliant with the Air Force's High Level Architecture.   

In AFM, aircraft were individually loaded by piece from very detailed data 

entered in a specific format. The piece-by-piece loading of the aircraft facilitated an 

estimate of the average amount of cargo that could be loaded on each aircraft in the 

Stryker Brigade deployment scenario.  One iteration of AFM was thus run and completed 

prior to the exhaustive scenario examination with Quick Look.  The average cargo loads 

from these runs were then substituted in several of the scenarios examined in place of the 

AFPAM 10-1403 mandated planning factors.  Once the aircraft were loaded with 
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passengers and cargo, the aircraft were made to compete for resources and service as they 

delivered cargo through a deployment scenario (Reckamp and others, 2002).   

AFM added a great deal of realism to the scenarios modeled in comparison with 

Quick Look.  It simulated individual aircraft, infrastructure, airfields, service capabilities, 

and fuel resources globally.  It also applied distributions describing maintenance 

reliability rates and repair times for aircraft. Aircraft performance, ground times, and 

cargo capacities were represented for each aircraft type.   

Arena 

Arena is a commercially available simulation software program licensed and 

distributed by the Rockwell software corporation, and is a "true Microsoft Windows 

operating system application" (Kelton and others, 2004: 49).  It allows the analyst to 

build and run models as simple or as detailed as is desired.  Arena uses, "interchangeable 

templates of graphical simulation modeling and analysis modules that you can combine 

to build a fairly wide variety of simulation models" (Kelton and others, 2004: 12).  Arena 

allows for hierarchical models to be constructed.  All actions are governed by 

distributions, attributes, and variables that can be programmed by the analyst.  It is a 

mechanistic simulation, meaning that individual operations throughout a given system 

happen (with respect to order and time) as they would in reality (Kelton and others, 

2004).   

There are seven basic groups of parts in the Arena simulation.  The entities are the 

items that move around through a designed system.  They are the dynamic objects in the 

system, and in this study they will represent the aircraft.  The attributes are common 

characteristics ascribed to entities.  As each attribute is assigned to an entity, it stays with 
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that entity throughout the model run until it is changed through another assignment 

module.  The variables in Arena are global, and each reflects some characteristic of the 

system as a whole.  For instance, a variable may be used to track cargo moved or system 

time.  Resources represent items used to service entities, and when a resource is being 

used, it is seized, and then released once an entity has finished its use of the entity.  

Queues build around resources as they wait to use the resource that another entity is 

already busy using.  Statistical accumulators gather data and track performance measures 

about just about everything happening in the system.  They provide the data that is 

available in many forms in various reports once a simulation is completed (Kelton and 

others, 2004).  The final, most important part of the discrete-event model is the event.  An 

event is defined in Arena as, "anything that happens at an instant of simulated time that 

might change attributes, variables, or statistical accumulators" (Kelton and others, 2004: 

27).   

The output data captured by Arena is very extensive.  Mean times, numbers, 

ranges, percent time in use, and queue size are just the tip of the surface of outputs 

available.  Arena can display output in either plain text form in notepad or database from 

in an application of Microsoft Access. 

Relevant Research 

IBCT and other Stryker Deployment Studies 

The literature reveals that several studies have been completed to assess the 

ability to deploy the Stryker Brigade within it prescribed timeline.  All have assessed that 

under current conditions and with the current composition of the Stryker Brigades, the 
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goal of 96-hour deployment is not feasible (GAO, 2003; Bower and others, 2003; Jones 

and others, 2002, Reckamp and others, 2002).  The particular study which will be the 

basis for this research is the 2002 USTRANSCOM study that used several different 

models to exhaustively examine alternatives to the status quo that may allow Stryker to 

meet its deployment timeline.   

For the purposes of their study, the USTRANSCOM team used two established 

deployment simulation models and a spreadsheet deployment model developed by 

USTRANSCOM to estimate deployment closure.  It is important to keep in mind 

throughout this research that the Quick Look Tool (QLT) developed by the 

USTRANSCOM study team was not intended to be the 100% solution for simulating 

Stryker Brigade or other deployments via air.  It was intended to quickly make closure 

estimates for several scenarios simultaneously and provide information relating to the 

limiting factors for each deployment scenario.  After several iterations had been 

examined using the QLT, certain scenarios and origin-destination pairs were chosen for 

more detailed examination with AFM and MIDAS models.  The decisions about which 

treatments to examine further were based on several factors, including results from QLT 

suggesting which changes to the deployment scenarios would yield results in the effort to 

reduce deployment closure times and meet the 4-day deployment closure goal.  The 

several combinations of factors that were studied for further in-depth analysis were 

named by case.  The initial case including assumptions that no changes would be made 

from the current deployment state was labeled the baseline case.  Two other cases that 

were exercised using all models were identified, and will be referred to in this research, 

as cases D and I (Reckamp and others, 2002). 
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In the course of their study, the USTRANSCOM team identified several 

assumptions about the system they were evaluating which have been carried over into 

this work.  The list of assumptions is: 

• The Stryker Brigade is the primary airlift claimant in a surge 
operation using FY 05 C-5s and C-17s.  The airlift fleet does not 
include aircraft withheld for high priority missions, training aircraft, 
etc.  

• No C-130s used in strategic deployment. 
• FY 05 infrastructure including completion of JIWG recommended 

projects at the APOEs to support 20 minute departure interval 
• Army will maintain passenger and cargo flow to meet deployment 

timelines 
• Unit integrity modeled at a company level without sequencing 

priority 
• Unit Basic Load uploaded on vehicles  
• 50% of deploying aircraft have hot cargo (i.e. ammunition in 

quantities and/or with hazardous classification that requires loading 
at a specified safety distance from buildings or aircraft) restricted 
loads in the baseline scenario 

• Augmented air crew for extended duty up to 24 hours  
• Sufficient reserve augmentation is available to provide timely 

support for increase airlift requirements  
• Used most direct route for overflight rights 
• Required diplomatic clearances are in place or granted immediately 

to include all overflight and basing rights 
• All foreign and US airfield operation quiet hours are waived 
• APOD is a benign environment - AMC Threat Working Group 

assessment that APOD is safe to operate 
• Consolidated APOD maximum working MOG of 7 with no hot 

cargo restrictions and multiple APODs available 
• No aircraft refueling at APOD to preserve in theater fuel for Army 

operations.  Aircraft refueled at the recovery airfield after the 
APOD. 

• Returning aircraft have no hot cargo and therefore no hot cargo 
restrictions 

• Surge utilization rates in accordance with Air Force Pamphlet 
(AFPAM) 10-1403  

• Standard ground times for all on-load and en route stops.  Expedited 
for off-load operations.  All ground times in accord with AFPAM 
10-1403* 

• Weather is not a mitigating factor  
 
(Reckamp and others, 2002: 5, 6) 
 
* Modified in this study as described in table 1 
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Model Comparisons 

Models have been compared before in several studies.  However, most writings 

deal with either validating one model in comparison with another or discuss qualitative 

comparisons between different model types.  The literature reveals several alternatives 

for simulation comparisons, including gaining feedback from users, use of expert 

opinion, and model-to-model comparisons (Hicks and Long, 1992: 24).  As the thrust of 

this research is not to make qualitative comparisons, but simply to make quantitative 

observations regarding the outputs of different types of models, model-to-model 

comparison methods hold the most value for this research. 

One example of model-to-model comparisons is the September 1987 effort by 

Gregg Clark, titled "The Theater Simulation of Airbase Resources and Logistics 

Composite Models: A Comparison," consisted of a statistical analysis using a randomized 

block design with two dependent variables while adjusting only one independent 

variable, and used nearly identical input databases.  He concluded that there were 

statistically, "no significant differences in the results of the two models" (Hicks and 

Long, 1992: 25).   

A second notable effort was conducted in 1991, by David Leonhardt, titled A 

Comparison of the All Mobile Tactical Air Force and Logistics Composite Simulation 

Models.  He used a similar design and again found the two models in his study to produce 

statistically similar results. 

A third follow-on study conducted by Heston Hicks and Lawrence Long in 1992, 

titled A Methodology for Model Comparison Using the Theater Simulation of Airbase 
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Resources and All Mobile Tactical Air Force Models, discussed these and other studies 

and developed a detailed methodology for making a full comparison of models using 

qualitative and quantitative aspects.  The results of this study detailed statistical methods, 

including means testing of outputs and comparison of confidence limit estimates, useful 

in comparing models.  He also continued to stress the importance of qualitative measures 

when assessing the effectiveness of models for use in the Air Force (Hicks and Long, 

1992). 

A more recent study conducted in 2000 by Ken Browne, titled Using RSM, DOE, 

and Linear Regression to Develop a Metamodel to Predict Cargo Delivery of a Time 

Phased Force Deployment Document [sic] focused on regression techniques and other 

methods to create a meta-model of a detailed model.  In the course of his work, he also 

made detailed tests about the differences in output between his new meta-model and the 

full version of the model (Browne, 2000).  His methods leading to the conclusion that the 

outputs of the tow models were nearly identical will also be helpful in guiding this work 

as an attempt is made to compare different types of models that will not have similar data 

input methods. 

The most recent and most relevant comparison was a 2001 study by Julien 

Granger, Ananth Krishnamurthy, and Stephen Robinson, titled "Stochastic Modeling of 

Airlift Operations."  This study made statistical comparisons of mean outputs of two 

proprietary approximations of AFM, one being a simulation model and the other being a 

deterministic network approximation model.  This study used a full 24 factorial design to 

measure the effects of variability, ramp space, flying times, and ground times.  The 

purpose of this study was to observe and measure the effects that allowing certain 
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parameters, in this case flying times and ground times, vary in one model while being 

treated deterministically in another model.  Several insights were derived from this study.  

Two key insights were that increasing variability in modeling increased the time required 

to complete a cargo movement, and that adding aircraft had a decreasing effect on 

improving airlift completion time (Granger and others, 2001).  Similar methods as were 

used in this 2001 study will be applied in this work. 

Payload and Ground Time Distributions 

Standard planning factors for ground times and aircraft loads may or may not be 

the best factors for using in planning or modeling airlift.  One study conducted by Dana 

Pelletier in August 2004 suggests that, in fact, the actual ground times at en route 

locations deviate upward from the scheduled ground times by a factor governed by a 

separate set distribution each for the C-17 aircraft and for the C-5 (Pelletier, 2004).  The 

same study also suggests that aircraft payloads typically fall short of the AFPAM 10-

1403 planning factors for weight, and proposes a set of distributions to describe the 

expected short ton payloads for both C-17 and C-5 aircraft.  These distributions are 

displayed at Table 1. 

Table 1. Deployment Distributions 
 

Aircraft Payload Distribution Ground time distribution 
C-5 Normal (49.9, 12.9) scheduled + Lognormal (1.27, 1.62) 
C-17 Normal (28.8, 9.9) scheduled + Lognormal (0.916, 1.38) 

(Pelletier, 2004) 
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In order to maintain fidelity with the studies that have been previously completed, 

these distributions will not be applied in full in the models created by the researcher for 

this study.  Instead, the deviations from the mean will be applied to the means for payload 

and ground times used in the USTRANSCOM study. 

Summary 

The review of literature has provided a broad base from which to build this 

research.  It provided the beginning from which to build a detailed study into the 

differences between the models and examine how newly proposed distributions may 

affect the outcomes.  The case being analyzed has been discussed, the types of models 

being analyzed have been explained, new distributions to be applied to the algebra have 

been introduced, and the algebra behind the models has been examined. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to detail the methods used to answer the question of 

how overall insights into a theoretical real-world scenario change when examined over a 

series of models.  The first step, as in any problem, is to define the problem at hand.  The 

two sections following will discuss the models created in the course of this study.  The 

fourth section will lay out all assumptions that have been made in this research in 

addition to those which were carried over from previous works and outlined in the 

literature review.  The next two sections will define the variables of interest in this work 

and the data input into the models.  Once the problem, models, assumptions, variables, 

and data have been described, description of the methods used in the pair wise 

comparisons between AFM and the other models will follow.  Finally, any additional 

insights will be discussed. 

Definition of the Problem 

 Before a problem can be properly explored, it must be fully explained to and 

understood by the analyst.  In the case of this research, the problem evolved over time 

and a series of discussions with many outside agencies, including representatives from 

AMC, USTRANSCOM, European En-route Steering Committee, McChord AFB Aerial 

Port, and Ft. Lewis Logistics and Combat Plans.  Through thorough inspection of 

previous works and lengthy discussion, it was determined that the most useful result of 

study would be to examine the relationship between the models used in examining the 

ability to meet the goal of deploying the Stryker Brigade within 96 hours.  Whereas 
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studies have been made comparing the benefits and drawbacks of spreadsheet models 

against other models, few if any have quantitatively investigated the differences of the 

outputs produced by these different types of models when exercised over a similar set of 

input parameters (Baudin and others, 1992; Harrison and Lander, 2000) 

 The most direct question of concern is regarding the insights yielded by each 

model.  Specifically, the focus was to identify if and where the insights into the ability to 

meet the closure goal may change as different models are used to assess the ability of the 

system.  To clarify, the goal was to determine if there were situations where one model 

may predict that closure could be reached within the desired time frame while other 

models may determine that closure within the specified time window was not attainable. 

The Models 

Modified Quick Look Tool 

 As discussed in the literature review, the IBCT Quick Look Tool is a detailed 

deterministic spreadsheet model capable of simultaneously computing closure for several 

origin-destination pairs over a set of defined inputs applied to all pairs.  This tool 

provides as output only a point estimate of the time required to complete a deployment, 

without any particular level of confidence about that estimate (Mahan, J.M., W.H. Key II, 

R.T. Brigantic, and K Rekamp, 2004).   

 For this study, a level of variance has been injected into the QLT with the 

introduction of Crystal Ball and the subsequent creation of the Modified Quick Look 

Tool.  Crystal Ball, applied in the course of this study, would for each replication of the 

simulation be called on to make one random draw from a user-defined distribution for 
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each variable defined to be stochastic.  As the value from this draw was then held 

constant and applied across fleet level calculations, this model can be described as fleet-

level stochastic.     

 For the purposes of this study, only two of the defining variables were made to 

vary with each computation of closure.  These two variables were payload and en route 

ground times.  The basis for allowing these two particular variables to vary was the work 

by Maj Pelletier (2004); discussed in the literature review, suggesting that enroute ground 

times and cargo payloads follow specific distributions when operating in strategic combat 

lift operations.  For the purpose of this study, one important deviation from his findings 

was carried throughout the model runs.  Where his work suggested that the mean 

payloads for C-5 and C-17 aircraft were 48.98 and 28.75 short tons, respectively, this 

study continued to use the means reported in the 2002 IBCT study of 77.9 and 56.9, 

respectively.  These means were gathered from simulated aircraft loads incorporated in 

initial runs of the AFM model (Reckamp and others, 2002).  Pelletier's reported standard 

deviations from the mean were then directly applied to these means to form the 

distribution from which Crystal Ball made draws for each run.  

 When this model was run, all ten origin-destination pairs were modeled 

simultaneously.  Once the variables of fleet composition and percent of aircraft requiring 

hot cargo pads was set, Crystal Ball created and recorded statistics from 1,000 trials for 

each origin-destination pair.  For each trial, draws were made for C-5 and C-17 aircraft 

loads and ground times, and the results of draws were applied to the fleet level for each 

origin-destination pair simultaneously. 
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Arena 7.01 

Arena allowed the study to bridge between the deterministic, algebra-driven 

spreadsheet models and the fully stochastic detailed discrete event simulation of AFM.  

In the case of this study, the Arena model built was not as detailed as AFM, however, it 

did move beyond the algebraic spreadsheet-based models to provide significant levels of 

discrete event simulation and queuing within the system.  As with the Modified QLT, 

only two inputs into the system were treated stochastically: aircraft loads and ground 

times.  These variables were assigned the same distributions as in the Modified QLT.  

However, Arena presented more challenges in that due to the way the general model was 

constructed, nodes had to be added or removed and definition of time values and 

resources had to be adjusted for each model.  A separate model branching from the basic 

model was thus created, run, and recorded for each treatment.  

 A sample of the basic model is displayed at Figure 2.  In this model, the entities 

created are the cargo aircraft, and enter the system from the upper-left hand modules, 

subsequently moving through the model clockwise.  They are created once every twenty 

minutes, are assigned an aircraft type, and then, if there are at least 50 short tons of cargo 

remaining to be moved from the APOE, they are assigned several attributes, including the 

amount of cargo they will carry and the time they will spend on the ground being 

serviced at each en route stop.  After this set of assignments, the aircraft flow through a 

circuit representing a fixed route based upon data from the 2002 study at Appendix C.  

Delay nodes represent block time between airfields, and seize/delay/release nodes 

represent airfields.  After the APOD, the system is again tested to see if cargo remains to 

be moved from the APOE.  If not, the entity leaves the system, otherwise, it "flies" a 
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retrograde route back to the decision point to see if cargo remains once the aircraft 

reaches the APOE.  If so, then all attributes are re-assigned and the trip begins again.  

Otherwise, the entity leaves the system.  When the last entity leaves the system, the 

model terminates and the chief variable of interest, closure time, is recorded.   

 As each origin-destination pair required a separate model for simulation in Arena, 

each origin-destination pair was modeled independently of the others.  In order to keep 

fidelity with the Modified QLT, each treatment was accorded 1,000 trial runs and Arena 

gathered and calculated resultant statistics.  However, to ensure that the results were not 

affected by initialization effects, the system was reset to default seeds from which to 

begin draws for each set of trials.  Warm-up periods were not considered as a steady-state 

system was not being modeled, and all statistics were cleared and reset prior to each trial.  

A representative model layout is pictured at Figure 2, while representations of the model 

for each origin - destination pair are included at Appendix C.  
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Figure 2.  Arena Model Sample 
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Assumptions 

 There are several assumptions to be made in this study in addition to those carried 

over from the 2002 study and detailed in the literature review.  These assumptions and 

the rationale behind them for this thesis effort are listed below. 

 1.  The first assumption that gives rise to all comparisons made and is the basis for 

all observations is that AFM output is the "truth" against which other models are 

measured.  That is, that the output from AFM as reported in the 2002 USTRANSCOM 

study are treated, for this study, as being fully accurate.  This is necessary as there is no 

possible way to physically conduct the actions being modeled, as such a set of repetitive 

deployments would be both time-consuming and exorbitantly expensive.  One could 

argue that other models may be more accurate, but for the purposes of this study, the data 

at hand will be used.  AFM is sufficiently detailed in its replication of events for this to 

be a reasonable assumption. 

 2. The distributions for ground times defined by Maj Pelletier (2004) and used in the 

Modified QLT and Arena will be those that describe the operations at en route bases on 

both outbound and retrograde journeys of aircraft.  This is a reasonable assumption based 

on the most recent data and study available when conducting this study. 

 3. Aircraft will be modeled flying a single, consistent, fixed route for each origin-

destination pair.  While this scenario may be unlikely to hold for every aircraft flight in 

the number it would take to transport the amount of cargo associated with this study, it is 

reasonable in this thesis.  This assumption was implied in the methodology of the QLT 

(Mahan and others, 2004) and through the outline of the theoretical routes in the 2002 
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study (Key, 2005; Reckamp and others, 2002).  To deviate from this assumption would 

make comparing models less meaningful. 

 4.  Aerial refueling is not considered for the purpose of this study.  While some 

reported results from previous studies included the effects of including aerial refueling, 

none of the reported treatments common to both Quick Look and AFM included aerial 

refueling.  

 5. Personnel and equipment will be available to support the infrastructure as defined 

in each model or set of models.  This is an extension of assumptions made in the 

USTRANSCOM study that the AMC Global Reach Laydown initial enabling force 

structure is deployed and in place before the commencement of deployment operations 

for the Stryker Brigade.  Any lack of personnel or equipment shortage is assumed to be 

captured in the enroute ground time distributions as defined by Maj Pelletier. 

Definition of Variables 

 The primary dependent variable examined throughout this work is the closure 

time output from each model.  This variable is defined to be the time at which all cargo 

had successfully reached the APOD and been offloaded from aircraft.  For the purpose of 

being able to carry comparisons through all the models at the same treatment, the factors 

and treatments to be used were limited by what was recorded and reported from the 2002 

USTRANSCOM IBCT study.  Only two factors other than origin-destination were varied 

in common over the course of the 2002, and thus this, study, and the full factorization of 

these two factors was not reported for all models.  The result was a total of only three 

cases were applied to each of ten origin-destination pairs using both the QLT and AFM.  
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Thus, a total of 30 treatments provide common points of comparison over which to assess 

the differences in insights from these models.  The independent variables in this case 

were the percentage of aircraft requiring hot cargo pads, which had two levels, and the 

size of the aircraft fleet, with three levels. 

Input Data 

Data was only required to be input for the two models created in the course of this 

study.  As discussed in the literature review, for Modified QLT, all data bar those 

distributions mentioned above were already included in the tool as created by 

USTRANSCOM.  However, the proper choices for all available variables had to be 

chosen before running each iteration of the model.  In the case of the Arena model, data 

had to be calculated and input for the following independent variables: flying time 

between airfields, number of airfields used per origin-destination pair, effective number 

of aircraft parking spots per airfield, and number and type of aircraft per fleet.  All 

expressions bar flying time between airfields were available in the USTRANSCOM 

study (Reckamp and others, 2002: 42).  To derive flying time between airfields, a chart 

embedded in the QLT was used to determine the speed at which the aircraft would be 

flying, and the USTRANSCOM study listed the distance for each leg in the defined 

routes.  This allowed for the calculation of flying time (FT) through equation 14. 

 

    
 

leg distFT
block speed

=  (14) 
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Output Analysis 

 The output available for analysis ranges from the extensive and detailed outputs 

generated by Arena and the Modified QLT through Crystal Ball to very limited point 

estimates available from AFM.  This data did lend itself, however, to several methods of 

investigation in searching for insights to the relationships between the models.  The 

evaluation method of each model was to compare its output over the 30 available 

treatments to those from AFM.  This was done in a technique similar to evaluating 

forecast methods.  AFM output data was treated as the "actual" and the output data from 

each model was treated as a forecast.  First, error terms for each model compared against 

AFM were calculated.  The models were then compared against each other based on 

these error terms.  Once this comparison was completed, each model was evaluated on 

the basis of whether or not its estimates were conservative compared again to AFM using 

simple algebraic techniques and visual inspection.  Finally, the models were examined to 

discern if there was a point at which the insights yielded by the model would change.  

The method for this analysis was to use regression techniques, including stepwise 

regression, to fit regression lines to the output from each model.  These regression lines 

were then plotted to determine if any intersections existed, which would indicate points at 

which insights would change between models. 

Additional Insights 

 This sensitivity analysis, as with other studies of its type, provide many 

opportunities to examine what effects changes in the input parameters or independent 

variables have on the dependent output response variable of interest.  While earlier only 
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three basic independent variables were identified, in fact several other contributing 

factors possibly affecting the length of time required for cargo to move through a system 

vary with the change in origin-destination pair.  In the course of regression analysis on 

each model, several of these factors were able to be introduced and inspected to 

determine their effects on the closure time.  This led to a suggestion as to what factors 

may affect closure the most.  This would be an important additional note to 

USTRANSCOM as it could allow them to focus on certain areas for improvement toward 

meeting the goal of deploying a Stryker Brigade in 4 days (or confirm their previous 

assessments of critical constraints to closure). 

Summary 

The methodology is the backbone of the experimental process.  The methodology 

provides a road map for reaching the answers to the questions posed that from the basis 

of a study.  The road map that is displayed in this methodology was used to guide the 

analysis conducted in support of this research and displayed in chapter four. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter summarizes the results of the statistical discoveries and mathematical 

comparisons between the outputs from the Quick Look Tool, Modified Quick Look Tool, 

and Arena, respectively, and the Airlift Flow Model.  First discussed are the inputs and 

parameters dictated to each model, and the verification and validation techniques applied.  

Basic model output results are then displayed and simple statistical comparisons are 

discussed.  Results of regression analysis are then displayed, and finally the additional 

insights revealed through this examination are discussed. 

Inputs and Parameters 

 The key to ensuring a valid set of comparisons is to properly control the inputs 

and parameters over which each model is exercised.  For this study, there were two basic 

dependent variables that were applied similarly to each model.  In addition, there were 

ten different origin-destination pairs to which each set of independent variables were 

applied to test for deployment closure.  However, each of the models also had several 

other adjustable factors that contributed to determining the final outcome results.  These 

adjustable parameters were not treated exactly the same over each model; this contributes 

to some of the differences in outputs between models.  What follows is a breakdown of 

all adjustable factors, including independent variables, and how they were set for each 

treatment and model. 

 Weight of total cargo to be moved.  For this study, cargo movement requirements 

were held constant at 14,663 short tons. 
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 Route.  As mentioned before, each origin-destination pair was constrained to a 

single set of en route locations, consistent with those defined in Appendix C of the 2002 

USTRANSCOM study.  This information is available at appendix B to this study. 

Distance between en routes: the length of each flying leg was also defined in the 2002 

study and is again available at Appendix B herein. 

 Parking spots and hot cargo pads (HCP). With Quick Look and Modified Quick 

Look, there was only one setting available for number of parking spots and HCP 

available at en route locations, regardless of the number of en routes required in a route.  

Therefore, the selector had to be set for the most constraining en route location in each 

origin-destination pair.  Cargo could move through the entire system no faster than it 

could move through the tightest point.  With Arena modeling each en route separately, 

each node had to be built to represent a specific number of parking spots and HCP.  In 

order to properly model the constraints of HCP on total throughput, the number of 

effective parking spots under a certain percentage of aircraft requiring hot cargo spots 

was calculated.  The formula is: 

 

 Effective MOG with ( x)% hot cargo = min{total parking spots, HCP/(x/100)}  (15) 

 

 Queuing efficiency factor.  This was an adjustment factor available in Quick 

Look that was carried over to the modified Quick Look.  The purpose of this factor was 

to attempt to capture some of the delays due to queuing for parking spots and resources at 

bases within the en route system.  This parameter was thus not considered in the Arena 

model, as Arena already has as in its underlying code a queuing discipline defined.  After 
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several experiments to replicate the reported outputs from Quick Look, it was determined 

that the required setting for this factor was 100%. 

Validation 

Validation is the process of assessing how well a model replicates the system it is 

supposed to represent (Carson, 2002: 1).  That, in a form, is the entire thrust of this work 

- to compare the nominated models to the model held up as the gold standard, AFM.  The 

goal of this study is not to pass judgment on whether certain models were the correct 

models to be used for evaluating the deployment of the Stryker Brigade -- rather, it is to 

examine ways in which the outputs of the nominated models differ. Because this is a case 

study comparison of modeling methods, and not an effort to fit the best model to a real 

situation, validation of the models to external systems is not applicable in this work.  The 

models presented from previous works are assumed to be both verified and validated.   

Verification 

 Verification involves exercising an "apparently correct model for the specific 

purpose of finding and fixing modeling errors" (Carson, 2002:1).  Basically, the concern 

is that the model behaves the way it is expected to.  In this case, an example would be 

that relaxing some of the input parameters that are constrains to closure and having the 

model reflect decreased closure times.  Again, the only two models with which 

verification may be a concern in this study would be the set of Arena models and, to a 

lesser extent, the modified Quick Look Tool.  Typical rigorous methods of verification 

were difficult in this instance, as the data points available for comparison are not great 

enough in number to allow for a set to be held back from the creation of each model for 

verification.  Instead, for this study, a simple method of inspection was used for 
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verification.  Representative origin - destination pairs were selected, and a series of 

parameter adjustments were made to ensure that the expected reactions from the models 

were witnessed.  In order to avoid replicating runs that would be carried out in the course 

of the study comparisons, adjustments were made to the amount of cargo required to be 

moved, and separately, the cargo loads and ground times were fixed and then adjusted up 

or down.    The expected reactions to parameter adjustments were witnessed.  For 

example, when the amount of cargo was decreased, the time required to close went down, 

and when ground times were increased, the estimate of closure time increased.  Also, the 

actual runs of the models used in the study comparisons served as an additional level of 

verification, as the results from each model reflected the expected changes in reaction to 

the adjustments in the independent variables.   

Results of Simulation Scenarios 

Both models created for this experiment were run to replicate the 30 treatments 

for which data was available from previous runs of QLT and AFM.  Table 4.1 is a 

composite chart of the output data from the runs all four models examined.  While the 

1,000 trials run with both Arena and Modified QLT yielded a series of statistics including 

median, range, variance, and half-width for each treatment, only point estimates of mean 

closure times are displayed to facilitate comparisons.  As discussed earlier, Quick Look 

and AFM results available were not reported with any data relating to a range or variance 

in closure estimates.  Also included in this first table are the two independent variables 

for these trials, fleet and percent of deploying aircraft requiring hot cargo pads, as well as 

the factor of primary differentiation between origin-destination pairs, round trip distance.  

For points where AFM and QLT disagreed on round trip distance, distances calculated 
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from the routes outlined in the USTRANSCOM 2002 IBCT study, Appendix C, Aerial 

Routing (2002), are reported.  All reported values are in units of days estimated for 

closure. 

 

Table 2. Compiled Model Results 

origin-destination pair

total 
roundtrip 
distance # C-17 # C-5

% sorties 
req HCP

AFM 
closure time 

(days)

Quick Look Tool 
closure time 

(days)
QLT modified 

mean
Arena 
Mean

Alexandria-Venezuela 4324 42 48 50% 5.6 5.2 6.44 5.460
McChord-Columbia 6541 42 48 50% 6.5 5.3 6.54 6.56
Hickam-New Guinea 9356 42 48 50% 8.2 6.9 9.77 9.51
Wheeler Sack-Sierra Leone 10457 42 48 50% 15.1 13.1 18.71 18.10
Ramstein-Congo 12709 42 48 50% 14 9.1 12.93 16.43
McChord-Balkans 13109 42 48 50% 8.1 6.3 7.34 7.20
Elmendorf-Sri Lanka 14978 42 48 50% 10.1 7.3 10.25 10.19
Eielson-Sri Lanka 15224 42 48 50% 8.9 7.3 10.25 10.18
Wheeler-Sack-Congo 16393 42 48 50% 19.1 13.5 19.20 19.19
McChord-Angola 17171 42 48 50% 15.6 13.6 19.26 19.31
Alexandria-Venezuela 4324 84 60 25% 5.5 3.1 3.41 4.51
McChord-Columbia 6541 84 60 25% 4.7 3.2 4.44 4.63
Hickam-New Guinea 9356 84 60 25% 8.2 5.6 5.26 9.49
Wheeler Sack-Sierra Leone 10457 84 60 25% 10.9 6.9 9.70 9.56
Ramstein-Congo 12709 84 60 25% 14 7 9.85 15.70
McChord-Balkans 13109 84 60 25% 7 4.3 5.10 4.97
Elmendorf-Sri Lanka 14978 84 60 25% 7.3 5 5.89 6.42
Eielson-Sri Lanka 15224 84 60 25% 6.9 5 5.89 6.23
Wheeler-Sack-Congo 16393 84 60 25% 15.7 7.3 10.20 10.01
McChord-Angola 17171 84 60 25% 13 7.4 10.24 10.40
Alexandria-Venezuela 4324 135 100 25% 5.3 3.1 3.41 4.52
McChord-Columbia 6541 135 100 25% 4.6 3.2 4.44 4.624
Hickam-New Guinea 9356 135 100 25% 8.2 5.6 5.26 9.43
Wheeler Sack-Sierra Leone 10457 135 100 25% 10.7 6.9 9.71 9.53
Ramstein-Congo 12709 135 100 25% 13.9 7 9.86 16.16
McChord-Balkans 13109 135 100 25% 6.9 3.7 4.97 4.25
Elmendorf-Sri Lanka 14978 135 100 25% 7.2 4.2 5.74 6.38
Eielson-Sri Lanka 15224 135 100 25% 6.5 4.2 5.74 6.19
Wheeler-Sack-Congo 16393 135 100 25% 15.2 7.3 10.20 9.99
McChord-Angola 17171 135 100 25% 12.9 7.4 10.25 10.36
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From inspection, it appears that the Quick Look Tool consistently returned 

optimistic estimates of closure, while the modified QLT and Arena models both returned 

results that fell either side of the AFM closure calculations.  This is the first note that 

differing insights may result from using different models to simulate these treatments, 

and provides us with reason to further examine these sets of data. 
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Further detailed results from the runs of the Modified QLT model, including 

range and variance information, are displayed in Table 3.  The half-width statistic 

reported is the expected 95% confidence interval about the mean based on the trials 

recorded.  As the version of Quick Look that was made available for this study did not 

provide separate calculations for routes from originating from Elmendorf and Eielson, 

only nine sets of origin-destination pairs are displayed.  Deterministically modeling 

routes originating from Eielson using Elmendorf as the origin should not affect the results 

of this study and comparisons, as the 2002 reported closure estimates using Quick Look 

are identical for the routes originating form these locations and using Sri Lanka as the 

APOD (Reckamp and others, 2002: 45-47).   

The further detailed results from the runs of the Arena model are next displayed at 

Table 4.  The Arena model was able to successfully model deployments from Eielson 

AFB and Elmendorf AFB separately, and thus separate outputs are included for each.  

Arena did not report median, standard deviation, and variance, thus they are not displayed 

here.  As these statistics are not part of the primary comparisons in this study, the missing 

statistics do not affect the conclusions. 
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Table 3. Crystal Ball Modified Quick Look Tool Results 
Statistics McChord AFB-Balkans Ramstien - Congo Elmendorf-Sri Lainka McChord-Angola McChord - South America

Trials 1000 1000 1000 1000 1000
Mean 7.34 12.93 10.25 19.26 6.54
Median 7.05 12.35 9.83 18.43 6.24
Standard Deviation 1.30 2.87 2.21 1.47 1.38
half-width 0.08 0.18 0.14 0.09 0.09
Variance 1.69 8.23 4.89 17.96 1.90
Range Minimum 5.44 8.60 6.96 12.81 4.48
Range Maximum 15.62 29.17 23.08 43.18 14.68
Range Width 10.18 20.57 16.13 30.38 10.21

Alexandria - Venezuela Wheeler-Sack - Congo Hickam - New Guinea Wheeler-Sack Sierra Leone
Trials 1000 1000 1000 1000
Mean 6.44 19.20 9.77 18.71
Median 6.13 18.38 9.35 17.89
Standard Deviation 1.40 4.22 2.16 4.17
half-width 0.09 0.26 0.13 0.26
Variance 1.96 17.81 4.65 17.42
Range Minimum 4.37 12.77 6.52 12.31
Range Maximum 14.87 42.98 22.15 41.95
Range Width 10.50 30.21 15.64 29.64

Statistics McChord- Balkans Ramstien - Congo Elmendorf-Sri Lainka McChord-Angola McChord - Columbia
Trials 1000 1000 1000 1000 1000
Mean 5.10 9.85 5.89 10.24 4.44
Median 4.87 9.42 5.63 9.78 4.24
Standard Deviation 0.92 2.15 1.05 2.15 0.96
half-width 0.06 0.13 0.07 0.13 0.06
Variance 0.85 4.62 1.10 4.63 0.91
Range Minimum 3.74 6.57 4.35 6.95 2.99
Range Maximum 9.97 20.89 11.66 21.35 9.35
Range Width 6.23 14.32 7.31 14.40 6.36

Alexandria - Venezuela Wheeler-Sack - Congo Hickam - New Guinea Wheeler-Sack Sierra Leone
Trials 1000 1000 1000 1000
Mean 3.41 10.20 5.26 9.70
Median 3.25 9.74 5.02 9.27
Standard Deviation 0.70 2.14 1.10 2.11
half-width 0.04 0.13 0.07 0.13
Variance 0.49 4.59 1.22 4.45
Range Minimum 2.46 6.92 3.59 6.46
Range Maximum 7.12 21.31 10.87 20.72
Range Width 4.66 14.40 7.28 14.26

Statistics McChord- Balkans Ramstien - Congo Elmendorf-Sri Lainka McChord-Angola McChord - Columbia
Trials 1000 1000 1000 1000 1000
Mean 4.97 9.86 5.74 10.25 4.44
Median 4.75 9.41 5.49 9.79 4.24
Standard Deviation 1.00 2.15 1.14 2.15 0.95
half-width 0.06 0.13 0.07 0.13 0.06
Variance 1.00 4.61 1.31 4.61 0.91
Range Minimum 3.47 6.58 4.03 6.96 2.99
Range Maximum 10.04 20.81 11.75 21.33 9.34
Range Width 6.57 14.23 7.72 14.37 6.35

Alexandria - Venezuela Wheeler-Sack - Congo Hickam - New Guinea Wheeler-Sack Sierra Leone
Trials 1000 1000 1000 1000
Mean 3.41 10.20 5.26 9.71
Median 3.25 9.73 5.02 9.27
Standard Deviation 0.70 2.14 1.10 2.11
half-width 0.04 0.13 0.07 0.13
Variance 0.49 4.58 1.21 4.44
Range Minimum 2.46 6.92 3.60 6.47
Range Maximum 7.09 21.29 10.86 20.70
Range Width 4.63 14.37 7.27 14.23

Case D;  60 x C-5, 84 x C-17; 25% A/C req. HCP

Base Case;  48 x C-5, 42 x C-17; 50% A/C req. HCP

Case I; 100 x C-5, 135 x C-17; 25% A/c req. HCP
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Table 4. Arena Model Results 

Statistics
McChord AFB-

Balkans Ramstien - Congo
Elmendorf-Sri 

Lainka McChord-Angola
McChord - South 

America
Trials 1000 1000 1000 1000 1000
Mean 7.20 16.43 10.19 19.31 6.56
half-width 0.01 0.03 0.02 0.03 0.01
Range Minimum 6.77 15.13 9.40 17.96 6.07
Range Maximum 9.13 17.98 11.79 21.02 7.52
Range Width 2.36 2.84 2.38 3.06 1.44

Alexandria - 
Venezuela

Wheeler-Sack - 
Congo

Hickam - New 
Guinea

Wheeler-Sack Sierra 
Leone

Eielson - Sri 
Lanka

Trials 1000 1000 1000 1000 1000
Mean 5.46 19.19 9.51 18.10 10.18
half-width 0.00 0.03 0.02 0.03 0.02
Range Minimum 5.28 17.85 8.78 16.50 9.48
Range Maximum 6.28 20.88 10.65 20.07 11.33
Range Width 1.00 3.03 1.87 3.57 1.85

Statistics McChord- Balkans Ramstien - Congo
Elmendorf-Sri 

Lainka McChord-Angola McChord - Columbia
Trials 1000 1000 1000 1000 1000
Mean 4.97 15.70 6.42 10.40 4.63
half-width 0.01 0.03 0.01 0.02 0.01
Range Minimum 4.63 14.54 5.96 9.62 4.26
Range Maximum 6.40 17.80 8.29 12.19 5.33
Range Width 1.77 3.26 2.33 2.56 1.07

Alexandria - 
Venezuela

Wheeler-Sack - 
Congo

Hickam - New 
Guinea

Wheeler-Sack Sierra 
Leone

Eielson - Sri 
Lanka

Trials 1000 1000 1000 1000 1000
Mean 4.51 10.01 9.49 9.56 6.23
half-width 0.02 0.02 0.02 0.02 0.01
Range Minimum 4.13 9.24 8.84 8.85 5.74
Range Maximum 9.78 12.27 10.63 10.88 7.53
Range Width 5.64 3.03 1.80 2.03 1.79

Statistics McChord- Balkans Ramstien - Congo
Elmendorf-Sri 

Lainka McChord-Angola McChord - Columbia
Trials 1000 1000 1000 1000 1000
Mean 4.25 16.16 6.38 10.36 4.62
half-width 0.01 0.03 0.01 0.02 0.01
Range Minimum 3.93 15.11 5.96 9.75 4.27
Range Maximum 6.00 18.26 7.60 11.41 6.79
Range Width 2.07 3.15 1.64 1.66 2.52

Alexandria - 
Venezuela

Wheeler-Sack - 
Congo

Hickam - New 
Guinea

Wheeler-Sack Sierra 
Leone

Eielson - Sri 
Lanka

Trials 1000 1000 1000 1000 1000
Mean 4.52 9.99 9.43 9.53 6.19
half-width 0.01 0.02 0.02 0.02 0.01
Range Minimum 4.15 9.30 8.73 8.88 5.80
Range Maximum 9.41 11.14 10.34 11.32 7.41
Range Width 5.25 1.84 1.61 2.44 1.61

Base Case;  48 x C-5, 42 x C-17; 50% A/C req. HCP

Case D;  60 x C-5, 84 x C-17; 25% A/C req. HCP

Case I; 100 x C-5, 135 x C-17; 25% A/c req. HCP
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Forecast Error Terms 

A first method of inspecting the differences among the outputs of the several 

models, beyond a visual inspection of the raw data output, is to treat each model as a 

forecast of the predicted output expected from AFM to model the same treatments.  

Calculation of the difference between each predicted point and the AFM output, in this 

case treated as the "actual," form the error terms.  The raw data errors from all model 

outputs in this study are displayed in Table 5.  Admittedly, there are some difficulties in 

making comparisons between the several models due to the precision with which the 

Quick Look and AFM data are reported (only one decimal place) in the USTRANSCOM 

study (Reckamp and others, 2002: 45-47).  The data available from the user-run 

simulations with Arena and Modified Quick Look were available to ten decimal places, 

but for the purposes of display, have been truncated to two.  Additional precision is 

unnecessary as that would begin to involve calculations considering units of time in 

minutes or smaller, which would be of little consequence when judging the ability to 

meet a goal set in units of days.  Furthermore, the differences in the error terms displayed 

at Table 6 are great enough that limiting the precision with which results are reported 

should not change the observations made about the change in insights when moving 

between models. 

Simple error terms don't explain much beyond what can be gathered from a visual 

examination of the raw data output.  However, several statistical measures of model error 

exist to provide us with a more concise picture of what has happened in our study.  For 

this research work, four statistical error measures are initially considered, including mean 

error, mean absolute error, mean percent error, and mean absolute percent error.   
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Table 5. Error Data 
tmnt # QLT QLT Mod Arena QLT QLT Mod Arena QLT QLT Mod Arena QLT QLT Mod Arena

1 0.4 -0.84 0.14 0.4 0.84 0.14 7.1% -15.02% 2.51% 7.1% 15.02% 2.51%
2 1.2 -0.04 -0.06 1.2 0.04 0.06 18.5% -0.61% -0.90% 18.5% 0.61% 0.90%
3 1.3 -1.57 -1.31 1.3 1.57 1.31 15.9% -19.13% -15.97% 15.9% 19.13% 15.97%
4 2 -3.61 -3.00 2 3.61 3.00 13.2% -23.89% -19.88% 13.2% 23.89% 19.88%
5 4.9 1.07 -2.43 4.9 1.07 2.43 35.0% 7.62% -17.38% 35.0% 7.62% 17.38%
6 1.8 0.76 0.90 1.8 0.76 0.90 22.2% 9.43% 11.05% 22.2% 9.43% 11.05%
7 1.6 -1.35 -1.28 1.6 1.35 1.28 18.0% -15.22% -14.38% 18.0% 15.22% 14.38%
8 2.8 -0.15 -0.09 2.8 0.15 0.09 27.7% -1.53% -0.85% 27.7% 1.53% 0.85%
9 5.6 -0.10 -0.09 5.6 0.10 0.09 29.3% -0.55% -0.49% 29.3% 0.55% 0.49%

10 2 -3.66 -3.71 2 3.66 3.71 12.8% -23.45% -23.81% 12.8% 23.45% 23.81%
11 2.4 2.09 0.99 2.4 2.09 0.99 43.6% 37.99% 18.07% 43.6% 37.99% 18.07%
12 1.5 0.26 0.07 1.5 0.26 0.07 31.9% 5.55% 1.53% 31.9% 5.55% 1.53%
13 2.6 2.94 -1.29 2.6 2.94 1.29 31.7% 35.87% -15.77% 31.7% 35.87% 15.77%
14 4 1.20 1.35 4 1.20 1.35 36.7% 10.97% 12.34% 36.7% 10.97% 12.34%
15 7 4.15 -1.70 7 4.15 1.70 50.0% 29.63% -12.11% 50.0% 29.63% 12.11%
16 2.7 1.90 2.03 2.7 1.90 2.03 38.6% 27.20% 28.95% 38.6% 27.20% 28.95%
17 1.9 1.01 0.67 1.9 1.01 0.67 27.5% 14.60% 9.75% 27.5% 14.60% 9.75%
18 2.3 1.41 0.88 2.3 1.41 0.88 31.5% 19.28% 12.03% 31.5% 19.28% 12.03%
19 8.4 5.50 5.69 8.4 5.50 5.69 53.5% 35.05% 36.22% 53.5% 35.05% 36.22%
20 5.6 2.76 2.60 5.6 2.76 2.60 43.1% 21.21% 20.01% 43.1% 21.21% 20.01%
21 2.2 1.89 0.78 2.2 1.89 0.78 41.5% 35.64% 14.80% 41.5% 35.64% 14.80%
22 1.4 0.16 -0.02 1.4 0.16 0.02 30.4% 3.43% -0.52% 30.4% 3.43% 0.52%
23 2.6 2.94 -1.23 2.6 2.94 1.23 31.7% 35.83% -15.03% 31.7% 35.83% 15.03%
24 3.8 0.99 1.17 3.8 0.99 1.17 35.5% 9.24% 10.95% 35.5% 9.24% 10.95%
25 6.9 4.04 -2.26 6.9 4.04 2.26 49.6% 29.08% -16.24% 49.6% 29.08% 16.24%
26 3.2 1.93 2.65 3.2 1.93 2.65 46.4% 27.94% 38.46% 46.4% 27.94% 38.46%
27 2.3 0.76 0.31 2.3 0.76 0.31 35.4% 11.66% 4.71% 35.4% 11.66% 4.71%
28 3 1.46 0.82 3 1.46 0.82 41.7% 20.25% 11.37% 41.7% 20.25% 11.37%
29 7.9 5.00 5.21 7.9 5.00 5.21 52.0% 32.87% 34.28% 52.0% 32.87% 34.28%
30 5.5 2.65 2.54 5.5 2.65 2.54 42.6% 20.54% 19.66% 42.6% 20.54% 19.66%
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∆ from AFM abs ∆ from AFM  % ∆ from AFM  abs % ∆ from AFM

 

 

Mean error is the simplest of error measures, but typically provides little 

information and is usually relatively small as the positive errors tend to be offset by 

negative errors, and thus does not give much information relative to the size of the typical 

error made by the predictor.  However, a large mean error can serve to highlight a 

forecast bias of consistent over- or under- estimating in the forecasts (Makridakis and 

others, 1998: 43).  In the course of this study, an overestimate would be considered a 

conservative estimate of the ability to meet closure, while an underestimate would be 

considered an optimistic estimate of the ability to meet closure.  The formula for mean 

error, adapted for this study, is: 

 
1

( - )   n i i
i

AFM ModelMean Error
n=

= ∑  (16) 
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Mean absolute error, which first converts each error term to be non-negative 

before summing and averaging the results, is not affected by these cancellation effects.  

Thus, it has the advantage of showcasing the real mean distance by which the forecast 

missed the actual (Makridakis and others, 1998: 43).  The formula for mean absolute 

error is: 

 
1

-
    n i i

i

AFM Model
Mean Absolute Error

n=
= ∑  (17) 

Neither mean error nor mean absolute error, however, take into account the scale 

of the data being measured.  As a result, comparisons across different time series or of 

events having a significantly different range of results are not fully supported by these 

terms.  To account for scale in comparison, percent error is a helpful tool.  Mean percent 

error, similar to mean error, allows for positive and negative error terms to cancel each 

other out, but still be helpful in identifying any optimistic (for the purposes of this study, 

low-sided or positive) or conservative (negative, or high-sided) bias (Makridakis and 

others, 1998: 43-44) .  The formula for mean percent error is: 

 

 
1

( - )1    n i i
i

i

AFM ModelMean Percent Error
n AFM=

= ∑  (18) 

Mean Absolute percent error has the same advantages that are inherent in the 

mean absolute error, as well as the adjustment for scale prevalent in the mean percent 

error.  The only drawbacks to using mean absolute percent error for comparisons are 

when a meaningful origin is not present, i.e. when the zero on the scale is arbitrary, or 

when in time series values at or very close to zero are common (Makridakis and others, 
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1998: 44).  Neither of these are the case in this study.  The formula for mean absolute 

percent error is: 

 
1

-1     n i i
i

i

AFM Model
Mean Absolute Percent Error

n AFM=
= ∑  (19) 

Table 4.5 displays the computed error terms for each model judged in its ability to 

predict the closure estimates from AFM.  These terms give a first look assessment of the 

ability of each model to predict the closure estimates produced by AFM.  These results 

provide interesting analysis as to the level of fidelity with which Mean error and mean 

absolute error terms are reported in days.  The first observation from this table is 

confirmation of the initial suspicion that Quick Look is consistently optimistic, 

underestimating the closure time compared with AFM.  This is confirmed through the 

relatively high mean error and the fact that the mean error and the mean absolute error are 

identical, indicating a lack of negative deviations (points where actual - forecast < 0) to 

cancel out any of the positive deviations.   

 

 Table 6. Error Terms Gathered 
model Quick Look Modified Quick Look  Arena 

mean error 3.36 1.18 0.34 

mean abs error 3.36 1.94 1.58 

mean % e 33.16% 12.72% 4.44% 

mean abs % e 33.16% 19.34% 14.67% 
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Means comparisons 

 An important statistic regularly reported and gauged in the original 

USTRANSCOM IBCT study was the mean closure time for all origin-destination pairs 

considered for a particular case of deployment parameters (Reckamp and others, 2002).  

In that vein, another meaningful measure of the differences or possible changes in 

insights gained from using differing models is to compare the different mean closure 

times from each model over each case.  What would be of particular interest in this case 

would be if we were to observe an instance where one model may suggest that over a 

certain set of parameters, a set deployment closure time goal my be achievable, whereas 

other models disagree. 

Several insights into the similarities and differences between model insights are 

evident in the chart at Table 7.  Evidence suggests that each model shows significant 

improvement in closure time from the base case to case D, but very little improvement 

from case D to case I.  However, this is where the similarities seem to end.  One simple 

observation from this table further confirms that Quick Look is consistently the most 

optimistic model for estimating closure.  An interesting observation from this table is that 

while Arena and the modified Quick Look are both more conservative than AFM in the 

base case, they are both more conservative in other cases, yet still not as optimistic in 

their estimates as the basic Quick Look.  This observation provides basis for continuing 

the investigation to the differences in insights provided by the models. 
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Table 7.  Mean Closure Times by Model and Case 

 AFM Quick Look Quick Look mod Arena 

base 11.12 8.76 12.07 12.21 

case D 9.32 5.48 7.00 8.19 

case I 9.14 5.26 6.96 8.14 
 

 Another important drive from the USTRANSCOM study was to evaluate the 

improvements gained by adjusting some of the factors treated as independent variables.  

In that light, a key indicator of whether the insights provided by the models differ is the 

amount of improvement they reflect when constraints are relaxed.  Table 8, an extension 

of Table 7, displays the improvements, measured in both days and percentage, for each 

model as the constraints (independent variables) are relaxed from the base case through 

case D and then case I.  As displayed at Table 8, Arena and AFM, the discrete-event 

simulations, reveal smaller improvements, measured in both days improvement and 

percentage improvement, when measured over case D.  However, when case I is applied, 

it is the two models which are employing similar distributions from which to draw 

aircraft loads and en route ground times that share the smallest improvements. 

 

Table 8.  Mean Improvements by Case and Model 

 AFM Quick Look Quick Look mod Arena 

Case D 1.8 15.55% 3.28 35.55% 5.07 40.66% 4.02 29.95% 

Case I 0.18 2.09% 0.22 4.60% 0.04 0.71% 0.05 1.42% 
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As mentioned above, also worth investigating is how these insights into the ability 

to meet closure time may change if, as suggested in some other studies of Stryker Brigade 

deployments (Bower and others, 2003; GAO, 2003), the deployment closure goal was 

relaxed. Table 9 lists the number of origin-destination pairs (out of ten) for which a 

certain model estimates over a given case that the deployment closure goal can be 

achieved.  It is interesting to note that in this comparison of models, the excel-based 

spreadsheets and the discrete-event simulation models continue to show similar changes 

when the closure goal is relaxed.  Also, this table further highlights the optimistic nature 

of Quick Look. 

 

 Table 9. Estimates to Meet Closure Goals  

4 days 6 days  8 days 4 days 6 days 8 days 4 days 6 days 8 days 4 days 6 days  8 days
base case 0 1 2 0 2 6 0 0 3 0 1 3
case D 0 2 5 2 6 10 1 6 6 0 3 5
case I 0 2 5 3 6 10 1 6 6 0 3 5

ArenaAFM Quick Look Quick Look modified

 
 

Regression Results 

 Another method of evaluating the level of fidelity with which each model matches 

the outcomes produced by AFM is by plotting the expected values of closure gathered 

from AFM by the predicted estimates of days required for closure estimated by the 

several models.  Included at Appendix D is a series of plots of AFM actual closure 

estimates against the closure estimates predicted by each model.  What would be 

expected for each model would be to see a nearly linear pattern of plotted points along an 

axis lying 45 degrees from the origin, indicating that the model reasonably replicates the 

output from AFM.   
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What is evident in the plots is that there is a similar but increasing level of 

correlation throughout this set of three models when compared with AFM.  Also of note 

is that the regression lines fit to each set of plots are associated with a slightly increasing 

R-Square value as the models increase in variability from Quick Look through to Arena.  

All models show and adjusted R-square value in the range of .73 to .80, and correlations 

between .86 and .89.  These values work to hint that while there is a significant level of 

correlation across all models, there is still a significant amount of variance within the 

AFM model results that cannot be explained by the other three models.  An interesting 

point to note are that all the points in the graph plotting AFM against Quick Look lie 

above a diagonal line running at a 45-degree angle from the origin, again indicating the 

severe forecast bias in the Quick Look model.  Also of note is that each model shows 

improvement in the form of an increased adjusted R-square value by fitting a curve as 

opposed to a line through the data, indicating that the relationships between the models 

are not strictly linear.  

Additional Insights 

 Through the methods of stepwise regression used to create meta-model equations 

for each model, the primary factors affecting closure time were revealed, as well as the 

total percent of variance that can be explained by each set of factors.  While interesting in 

its own right, these additional insights generally were not different from what was 

discovered using the "constraints" evaluations included in the Quick Look Tool and 

reported and discussed at length in the USTRANSCOM IBCT study (Mahan and others, 

2004; Reckamp and others, 2002).  It was interesting to note that the number of en route 

stops and the percent of aircraft requiring use of hot cargo parking were the two factors 
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consistently reported across all models to contribute the most to determining the amount 

of time required for closure.  Total roundtrip distance was also a factor reported in half of 

the models, but the total number of aircraft used to move the cargo was not sufficiently 

significant in any of the model estimates.   

The figures found in Appendix E represent the resultant models created as meta-

models from the four models in the study, beginning with AFM.  Of note in these models 

is that the chosen predictors used to estimate the output of each model vary widely in 

their ability to match the outputs of the model itself, as borne out in the wide range of 

adjusted R-Square values, ranging from .45 for Arena to .95 for modified Quick Look. 

This makes it difficult to create a meaningful set of transformation functions among the 

models, and also indicates that some models must be affected differently by each 

parameter. 

The resultant equations of the respective meta-models estimated through 

regression are: 

 

AFM closure time = .3132 - .0004× round trip distance +7.5600×x%hot cargo + 

3.2422×#en route stops + .5951(#en route stops – 3.7)2 +6.6×10-8(round trip distance - 

12026.2)2    (20) 

 

Quick Look closure time = -2.6699 + 13.5600×%hot cargo + 1.2567×#en route stops + 

4.4149(%hot cargo-.333)(#en route stops-3.7) (21) 
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Modified Quick Look closure time = 1.1096 + .0002×round trip distance + 

12.3560×%hot cargo  - .1473×#en route stops + .00025(round trip distance – 

12026.2)(% hot cargo - .333) + 1.75×10-8 (round trip distance – 12026.2)2 (22) 

 

Arena closure time = -2.514 + 16.1812x%hot cargo + 1.7935×#en route stops +  

8.3453(%hot cargo-.333)(#en route stops-3.7) (23) 

 

Summary 

This chapter provided an exploration of the methods used in comparing the 

outputs of the models investigated in this study.  The primary insights that were noted 

were that different models reflected different gains from relaxing constraints toward 

meeting closure, and that the Quick Look model was consistently biased low in its 

estimation.  However, as shown through the regression analysis, simple equations can be 

applied to each model equating the model to AFM and serve to reduce much of the 

difference between the models. 
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V.  Conclusions and Recommendations 

Chapter Overview 

As presented previously, the purpose of this research effort was to investigate 

differences between deployment simulation models and explore the varying insights each 

model may produce.  Conclusions from previous chapters are presented in this chapter, as 

well as explanations of the significance of the research and recommendations for further 

study. 

Conclusions of Research 

Because of the relatively few data points available for comparison in this study, 

any conclusions drawn from this work are speculative at best.  All conclusions suggested 

herein are reflections of what is indicated through the examination of the treatments 

available, and beg further study to continue the investigation into these relationships. 

The collection of charts and graphs from chapter four suggests potential 

conclusions to this research.  The first suggested conclusion, supported by the analysis of 

error terms in Table 6, is that adding variability into a deployment model, at either fleet 

or entity level, increases the fidelity of the model and its ability to closely replicate what 

is accepted as the real system.  Adding variability is shown in this instance to reduce both 

forecast bias and shrink the average distance between the forecast estimate and the actual 

closure time result.  Both of these measures indicate a more accurate forecast, and both 

improvement measures are apparent even when added at the macro (fleet) level within a 

spreadsheet model.  

Further, the regression analysis combined with the analysis of error terms serves 

to suggest that even simple discrete-event models relying on queuing discipline rather 
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than algebraic analysis provide measurable gains in prediction reliability.  Forecast 

closures estimated by these models are more accurate, less biased, and are more closely 

correlated to the accepted actual.  As shown in Table 9, the queuing model also most 

likely to lead one to make the correct assessments as to the ability to meet a closure goal.  

In addition, these models provide information about the expected range and variance 

about the estimated mean closure times, and this information can provide additional 

opportunities for evaluation of ability to close. 

Another conclusion of this study is that the application in models of newly 

identified ground time distributions reveals a greater sensitivity to the constraints of 

MOG, and particularly hot cargo parking spots, than previously thought.  The appearance 

of this fact is suggested in Tables 7 and 8.  Both the modified Quick Look and Arena, the 

models employing the new ground time distributions, show greater reductions in closure 

time when the percentage of aircraft requiring hot cargo parking spots is halved from the 

base case to case D than do AFM and Quick Look.  AFM and Quick Look, conversely, 

show greater reductions in ground time between case D and case I, when the only change 

in treatments was increasing the number of aircraft. 

An additional conclusion to this research is that, in conjunction with applications 

of regression analysis, use of deterministic models can nearly as accurately as queuing 

models predict outcomes.  While this may seem at first to be in contradiction to my first 

conclusion above, it is important to note that this statement is qualified.  Where we see 

comparable results from Quick Look and Arena are in their ability to, with the help of 

regression, explain over 80% of the variance in the AFM outputs.  Even though Arena by 
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itself does a better job of predicting AFM, the regression equations relating Quick Look 

and Arena to AFM produce similarly close approximations of AFM outputs. 

Significance of Research 

The significance of this research is two-fold.  First, it provides some suggestions 

to deployment planners about the methods that might be best in order to assess potential 

deployment actions.  It also suggests that using the new en route ground time 

distributions in planning may provide more efficacy.  Both points will be discussed in 

recommendations for action. 

Recommendations for Action 

The first suggestion for action is to continue using deterministic spreadsheet 

models as the baseline from which to begin situational sensitivity analysis.  This use of 

spreadsheets as a predicting tool can be greatly enhanced if a set of results from a very 

robust model are known, and regression can be applied to equate the output of the two.  

Then, spread sheet models can be used to quickly and more accurately estimate the 

results realized from running the robust model.  Also, if the spreadsheet models are 

shown to be still optimistically biased in their estimation, they can be used as an 

estimation of a floor to say that, since this most optimistic estimation does not conclude 

an action to be feasible, then it would be safe to assume that the more robust model 

would reach the same conclusion. 

This would also suggest that additional work be done to investigate and identify 

distributions applicable to deployment planning factors.  The work here has suggested 

that application of one planning factor distribution in particular can affect the conclusions 

drawn from estimating the ability to move cargo through a system; surely, if other 
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planning factors were investigated and found to be governed by significant distributions, 

use of these distributions in estimating aircraft movements would affect the outcome 

estimations further. 

Finally, this research would recommend further tailoring of the set of Arena 

models used for this study.  Arena is a useful and powerful tool and provides many 

additional capabilities compared with spreadsheet models while being simpler than AFM 

and other robust models.  However, while the proprietary models built and used in this 

study were useful for analysis in this case, several areas for improvements in the models 

were identified which could aid in their continued use assessing the ability to move 

cargo.  Primarily, an ability to consolidate the several models into one model using drop-

down input cells would aid in the ability to model multiple routes with one model by 

allowing changes to routes, distances between airfields, parking spots, HCP, number en 

routes required without breaking down and re-building model. 

Recommendations for Future Research 

The power of the conclusions drawn is relatively weak as there are very few 

treatments over which to observe the several relationships.  Suggestions for further study 

fall into three categories: making similar checks and tests using current fielded models, 

adding treatments across which the models are tested, and adding additional levels of 

variability into modified spreadsheet model. 

This study used data from and exercised modified models originally developed in 

2002.  They were judges against a similarly dated set of data from another model run in 

2002.  AFM is no longer the standard, as newer models have been developed and 

implemented in its place.  In order to increase the validity an applicability of the 
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comparisons between spreadsheet and discrete-event simulation models, the most current 

models should be analyzed for comparison. 

Without the ability to compare models over the entire range and combination set 

of factors, it is impossible to make air-tight assessments of the relationships observed 

between the models.  The reality could be that the relationships observed were only 

evident in the specially observed cases and do not carry forth to other treatments, or there 

may be significant relationships that are not discovered when examining only the 

treatments in this study.  In order to be more assured of the findings presented in this 

study, similar comparisons should be made over a wider range of treatments to rule out 

coincidental observations. 

The fact that only two inputs, cargo load and en route ground time, were allowed 

to vary in these studies also leaves room for further examination, particularly within the 

Quick Look model.  It would be worth investigating the effects from adding additional 

levels of probability to other factors in the equation two factors nominated are on-load 

and off-load times.  While it may be that adding additional levels of variability increase 

the fidelity of the spreadsheet model with respect to a baseline, gold-standard robust 

discrete-event simulator, it may also be the case that adding fleet-level random draws 

adds the possibility that several draws near the tail end of distributions are drawn during 

the same run and thus produce an outlying result. 

Summary 

This research provided as many questions as it did answers.  It did, however, 

point out a few interesting discoveries.  Elements of probability can be added to 

deterministic spreadsheet models and have an effect to increase the fidelity of the model.  
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Also, several methods of modeling used in conjunction can produce useful outputs and 

thus save the time and effort of repeatedly running detailed simulation models.  In the 

end, the type of model necessary for analysis should be determined by the details 

required in the insights to be produced by the analyst.   
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Appendix A: Glossary of Acronyms 

 

AMC Air Mobility Command 

AFM Airlift Flow Model 

AFPAM Air Force Pamphlet 

APOD Aerial Port of Debarkation 

APOE Aerial Port of Embarkation 

EERISC European Enroute Infrastructure Steering Committee 

GWOT Global War on Terror 

HCP Hot Cargo Pad/Parking spot 

IBCT Interim Brigade Combat Team 

JIWG Joint Infrastructure Working Group 

MOG Maximum (aircraft) on Ground 

QLT Quick Look Tool 

RTFT Round Trip Flying Time 

TGT Total Ground Time  

TPFDD Time-Phased Force Deployment Data 

USTRANSCOM United States Transportation Command 
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Appendix B: En Route Capabilities/Aerial Routing

Scenario Airfield ICAO Type of Stop Distance Fueling
Non-Hot 
Cargo 
Spots

Hot Cargo 
Spots

Effective 
MOG with 
50% hot 
cargo

Dover KDOV Fuel - X 9 or 9 3 or 3 6 or 6
Wheeler-Sack AAF KGTB Onload 269 9 or 9 3 or 3 6 or 6

Lajes LPLA En Route 2,180 X 8 or 8 1 or 1 2 or 2
Ascencion FHAW En Route 2,894 X 8 or 8 1 or 1 2 or 2

Lubumbashi FZQA Off 2,488 0 7 or 7 7 or 7
Waterkloof YMWK Recover 856 X 9 or 9 na 9 or 9
Ascencion FHAW En Route 2,656 X 8 or 8 1 or 1 7 or 7

Roosevelt Roads LPLA En Route 3,419 X 9 or 9 na 9 or 9
Dover KDOV Home 1,631 X 9 or 9 3 or 3 6 or 6

Roundtrip Distance: 16,393
McChord KTCM Onload/Fuel - X 9 or 9 3 or 3 6 or 6

Dover KDOV En Route 2,082 X 6 or 6 3 or 3 6 or 6
Lajes LPLA En Route 2,231 X 8 or 8 1 or 1 2 or 2

Ascension FHAW En Route 2,894 X 8 or 8 1 or 1 2 or 2
Luanda KNLU Offload 1,641 0 7 or 7 7 or 7

Ascension FHAW Recover 1,641 X 8 or 8 1 or 1 7 or 7
Roosevelt Roads TJNR En Route 3,419 X 9 or 9 na 9 or 9

McChord KTCM Home 3,263 X 9 or 9 3 or 3 6 or 6
Roundtrip Distance: 17,171

Dover KDOV Fuel - X 6 or 6 3 or 3 6 or 6
Wheeler-Sack AAF KGTB Onload 269 9 or 9 3 or 3 6 or 6

Lajes LPLA En Route 2,180 X 8 or 8 1 or 1 2 or 2
Freetown GFLL Offload 1,959 0 7 or 7 7 or 7
Ascencion FHAW Recovery 999 X 9 or 9 na 9 or 9

Roosevelt Roads TJNR En Route 3,419 X 9 or 9 na 9 or 9
Dover KDOV Home 1,631 X 6 or 6 3 or 3 6 or 6

Roundtrip Distance: 10,457
Hickam PHIK Onload/Fuel - X 9 or 9 3 or 3 6 or 6

Andersen PGUA En Route 3,289 X 7 or 7 2 or 2 4 or 4
Port Moresby AYPY Offload 1,389 0 7 or 7 7 or 7

Andersen PGUA Recover 1,389 X 7 or 7 2 or 2 4 or 4
Hickam PHIK Home 3,289 X 9 or 9 3 or 3 6 or 6

Roundtrip Distance: 9,356
Barksdale KBAD Fuel - X 9 or 9 na 9 or 9

Alexandria IAP KAEX Onload 91 X 9 or 9 3 or 3 6 or 6
Caracas SVFM Offload 2,026 0 7 or 7 7 or 7

Roosevelt Roads TJNR Recover 471 X 9 or 9 na 9 or 9
Barksdale KBAD Home 1,736 X 9 or 9 na 9 or 9

Roundtrip Distance: 4,324
McChord KTCM Onload/Fuel - X 9 or 9 3 or 3 6 or 6

Kelly KSKF En Route 1,539 X 6 or 6 3 or 3 6 or 6
Ernesto Cortissoz SKBQ Offload 1,734 0 7 or 7 7 or 7

Randolph KRND Recover 1,726 X 9 or 9 na 9 or 9 
McChord KTCM Home 1,542 X 9 or 9 3 or 3 6 or 6

Roundtrip Distance: 6,541
Eielson PAEI Onload/Fuel - X 8 or 8 4 or 2 8 or 4
Yokota* RJTY En Route 3,201 X 7 or 7 2 or 2 4 or 4

U Taphao* VTBU En Route 3,194 X 7 or 7 2 or 2 4 or 4
Colombo VCBI Offload 1,292 0 7 or 7 7 or 7
Singapore WSSS Recover 1,484 X 9 or 9 na 9 or 9
Kadena RODN En Route 2,034 X 9 or 9 na 9 or 9
Eielson PAEI Home 4,019 X 8 or 8 4 or 2 8 or 4

Roundtrip Distance: 15,224

Alexandria IAP to Venezuela

Wheeler-Sack AAF to Congo

McChord AFB to Angola

Wheeler-Sack AAF to Sierra 
Leone 

Hickam AFB to New Guinea

McChord AFB to Colombia

Eielson AFB to Sri Lanka
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(Reckamp and others, 2004: 42-3) 

Elmendorf PAED Onload/Fuel - X 9 or 9 3 or 3 6 or 6
Yokota* RJTY En Route 3,080 X 7 or 7 2 or 2 4 or 4

U Taphao* VTBU En Route 3,194 X 7 or 7 2 or 2 4 or 4
Colombo VCBI Offload 1,292 0 7 or 7 7 or 7
Singapore WSSS Recover 1,484 X 9 or 9 na 9 or 9

Kansai RJBB En Route 2,647 X 9 or 9 na 9 or 9
Elmendorf PAED Home 3,281 X 9 or 9 3 or 3 6 or 6

Roundtrip Distance: 14,978
Ramstein ETAR Onload/Fuel - X 6 or 6 3 or 3 6 or 6

Cario HECW En Route 1,815 X 2 or 1 2 or 1 4 or 2
Nairobi HKRE En Route 3,071 X 2 or 2 2 or 2 4 or 4

Lubumbashi FZQA Offload 832  0 7 or 7 7 or 7
Ascension FHAW Recover 2,488 X 9 or 9 na 9 or 9

Lajes LPLA En Route 2,894 X 9 or 9 na 9 or 9
Ramstein ETAR Home 1,609 X 6 or 6 3 ro 3 6 or 6

        
Roundtrip Distance: 12,709

McChord KTCM Onload/Fuel - 9 or 9 3 or 3 6 or 6
McGuire KWRI Enroute 2,092 X 9 or 9 3 or 3 6 or 6

Ramstein* ETAR Enroute 3,375 X 6 or 6 3 or 3 6 or 6
Skopje LYSK Offload 1,033 0 7 or 7 7 or 7
Rota LERT Recover 1,331 X 9 or 9 na 9 or 9
Dover KDOV Enroute 3,196 X 9 or 9 na 9 or 9

McChord KTCM Home 2,082 X 9 or 9 3 or 3 6 or 6
Roundtrip Distance: 13,109

Elmendorf AFB to Sri Lanka

Ramstein AB to Congo

McChord AFB to Balkans

Scenario Airfield ICAO Type of Stop Distance Fueling
Non-Hot 
Cargo 
Spots

Hot Cargo 
Spots

Effective 
MOG with 
50% hot 

cargo
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Appendix C: Arena Model Graphical Representations 
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Elmendorf - Sri Lanka model 
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Hickam - New Guinea model 
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McChord - Columbia model 
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McChord - Balkans model 
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Wheeler-Sack - Congo model 
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Appendix D: JMP Regression Outputs 

Plot of AFM by Quick Look Tool predicted values 

5

10

15

20

AF
M

 c
lo

su
re

 ti
m

e

5 10 15 20
QLT closure t ime

Linear Fit
Bivariate Normal Ellipse P=0.950
Polynomial Fit Degree=2

AFM closure time = 1.9365688 + 1.2189894 QLT closure time

RSquare
RSquare Adj
Root Mean Square Error
Mean of  Response
Observ ations (or Sum Wgts)

 0.74024
0.730963
2.080091

    9.86
      30

Summary of Fit

Model
Error
C. Total

Source
    1
   28
   29

DF
 345.24218
 121.14982
 466.39200

Sum of  Squares
 345.242
   4.327

Mean Square
 79.7920

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
QLT closure t ime

Term
1.9365688
1.2189894

Estimate
  0.9649

0.136465

Std Error
  2.01
  8.93

t Ratio
0.0545
<.0001

Prob>|t|

Parameter Estimates

Linear Fit

QLT closure time
AFM closure time

Variable
     6.5
    9.86

Mean
2.830499
4.010297

Std Dev
0.860372

Correlation
  0.0000

Signif . Prob
    30

Number

Correlation 

AFM closure time = 0.6977909 + 1.512305 QLT closure time - 0.0862237
(QLT closure time-6.5) 2̂

RSquare
RSquare Adj
Root Mean Square Error
Mean of  Response
Observ ations (or Sum Wgts)

0.789051
0.773426
1.908894

    9.86
      30

Summary of Fit

Model
Error
C. Total

Source
    2
   27
   29

DF
 368.00730
  98.38470
 466.39200

Sum of  Squares
 184.004
   3.644

Mean Square
 50.4967

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
QLT closure t ime
(QLT closure time-6.5) 2̂

Term
0.6977909
 1.512305
-0.086224

Estimate
1.014749
0.171623
0.034496

Std Error
  0.69
  8.81
 -2.50

t Ratio
0.4975
<.0001
0.0188

Prob>|t|

Parameter Estimates

Polynomial Fit Degree=2

Bivariate Fit of AFM closure time By QLT closure time

 



 

- 71 - 

Plot of AFM by Modified Quick Look Tool predicted values 
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Plot of AFM by Arena predicted values 
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Appendix E: Meta-model Estimates 
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Quick Look Meta-model estimate 
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Modified Quick Look Meta-model Estimate 
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Arena Meta-model estimate 
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