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A phenomenological approach for construction theoretical phase diagrams with multiple
phase transitions including incommensurate transitions is developed for the case when a spe-
cial triple point, a Lifshitz-type point, is assumed to be present in the experimental diagram
for {N(CH3)4}2ZnCl4 crystal family. The theoretical temperature-pressure phase diagram for
{N(CH3)4}2ZnCl4 is plotted and is found to be in agreement with the experimental phase di-
agram. The approximations and assumptions made in the construction of the diagrams are
discussed.
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§1. Introduction

Tetramethylammonium (TMA) tetrachlorometallic compounds, {N(CH3)4}2M Cl4 (abbreviated

TMATC-M , hereafter) , where M stands for divalent metals (Mn, Zn, Fe, Co, etc.) and H can

be replaced by D, are well studied crystals with incommensurate phase (IC phase) and many

commensurate phases (Cm/l phases).1–3) The temperature-pressure, T-P, phase diagrams were first

obtained for TMATC-M by Shimizu et al.4,5) Figure 1 schematically shows the unified T-P phase

diagram, which represents the form of T-P phase diagrams for all the crystal family if temperature

and pressure are scaled and their origins are shifted properly.

According to experimental data (see ref. 1–3 and references cited therein), the space group D16
2h

of the initial prototype phase is Pmcn. The modulation wave vector of the IC phase is kz = qc∗.

Space groups of the Cm/l phases with different dimensionless wavenumbers qm/l = m/l are the

following:6,7) q0/1 - C5
2h (P121/c1), q1/3 - C5

2h (P1121/n), q3/7 - D4
2 (P212121), q2/5 - C9

2v (P21cn),

q1/2 - C5
2h (P21/c11), and q1/3 - D4

2 (P212121).

The aim of this paper is to develop a phenomenological approach for construction of the T-P

phase diagrams for the considered crystal family. As an example we choose TMATC-Zn, since the
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experimental T-P phase diagram shown in Fig. 2 of ref. 8 is comparatively simple: the number

of Cm/l phases is small. First we construct a phase diagram in dimensionless variables D and A,

which are combinations of coefficients of thermodynamic potential. Assuming a linear dependence

of D and A on temperature and pressure, we can present the theoretical T-P phase diagram and

compare it with the experimental diagram.

Note that phenomenological approaches describing the phase transition sequence in TMATC-Zn

have been previously applied in many papers,9) however, those approaches differ from the present

simple model. In particular, so far the theoretical T-P phase diagram was not constructed.

The main problem in a phenomenological approach is to obtain the thermodynamic potentials

for all of the possible phases in TMA-family crystals. For this purpose we combine two different

approaches to the description of IC phase transitions. The first one provides thermodynamic

potentials for the IC and Cm/l phases (with the exception of the phase C0/1 with q = 0). The

second one gives the potentials for the IC and C0/1 phases. Both approaches have to provide

precisely the same expression for the IC phase potential. Thus the thermodynamic potentials for

all the phases are obtained with self-consistent coefficients.

It seems to be reasonable that all phases observed in the TMATC-M family crystals are due

to a single soft optical branch of the spectrum of normal modes of the prototype phase of the

crystals.8) The language of lattice dynamics is useful regardless of whether the phase transitions

under investigation are of displacive or order-disorder type. The space groups of the Cm/l phases

are in agreement with this assumption (see Table I). The symmetry of this branch is unambiguously

determined by the space group P121/c1 (C5
2h) of the C0/1 phase provided that the prototype phase

(C0) is Pmcn (D16
2h), and the wave vector of the IC phase is directed along the z-axis.

Table I, which is extraction from tables of ref. 10, gives the space groups for all possible Cm/l

phases corresponding to this branch (see also the table in ref. 6, where the soft branch under

consideration was first considered to be responsible for all the phases observed in TMATC-Zn).

The first column of the table gives the representation of the point group mmm (D2h), according to

which the transition into the C0/1 phase occurs. In the parentheses the lower-rank tensor component

is given which transforms according to this representation. The space group of the C0/1 phase is

also given. The following three columns give the space groups of three possible phases c1, c2 and

c3 for each Cm/l phase for all qm/l = m/l (m+, l+ are even integers and m−, l− are odd integers).

Spontaneous values for lower-rank tensor components in phases c1 and c2 are also given (for details,

see ref. 10).

§2. Thermodynamic Potentials

We proceed from the assumption that the triple point between the C0, IC and C0/1 phases denoted

by the letters LT in the phase diagrams (Figs. 1 and 2 ) is the special point which was theoretically

introduced by Aslanyan and Levanyuk.11) Although it was called as L-point by analogy with the
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Lifshitz point,12) we call it Lifshitz-type (LT) point because its properties differ from that of the

L-point (see a classification of such triple points in ref. 13 ).

According to this assumption, we represent the soft optical branch or, more precisely, a depen-

dence of the elastic coefficient α on the wavenumber q by the expression

α(q) = α− δq2 − κq4 + τq6, (1)

where κ > 0 and τ > 0 are supposed. Above equation can be rewritten in the form

α(q) = a+ τ(b2 − q2)2[2(b2 − q2
L) + q2], (2)

a = α− 2τb4(b2 − q2
L), δ = τb2(3b2 − 4q2

L), q2
L = κ/2τ,

where we introduce two new variables a and b and the notation qL.

According to the symmetry of the C0 phase, any optical branch has a fixed extremum only in

the center of the Brillouin zone. This extremum, equal to α(0) = α, is a minimum if δ < 0 and is a

maximum if δ > 0. From eq. (1), under the condition δ > −κ2

3τ , it follows that α(q) has a minimum

at an arbitrary point of the Brillouin zone:

q = b, α(b) = a. (3)

where b is the position and a is the value of this minimum. Thus, in the interval of values −κ2/3τ <

δ < 0, the dependence α(q) has two minima. Their values become equal to each other α = a at

δ = −κ2/4τ or b = qL. When α = a = 0, the coordinates of the LT-point on the (δ, a) plane11)

and on the (b, a) plane are determined, respectively, by:

δ = −τq4
L, a = 0; b = qL, a = 0. (4)

The soft mode expressed by the dependence α(q) is doubly degenerate, i.e. α(q) = α(−q). Hence,

the star of wave vectors has two rays and the order parameter corresponding to an arbitrary q-value

has two components. The components η and ξ can be regarded as amplitudes of two modes with

wavenumbers q and −q which belong to this branch. Using the polar coordinate system η = ρ cosϕ

and ξ = ρ sin ϕ, we can write the thermodynamic potential in the form14)

Φ = α(q)ρ2 + βρ4 − α′2lρ2l cos 2lϕ, (5)

where α(q) is given by eq. (1) or (2). We suppose that the coefficients β and α′2l are independent of

q, and β > 0. We neglect invariants higher orders in ρ, in particular, those that are necessary for

Φ being not equal to −∞ at ρ =∞. Note that invariants of higher orders in ρ do not change the

results substantially. The coefficient α′2l of the anisotropic (in the η− ξ space) invariant is nonzero

only for rational values q = qm/l = m/l, where m and l are integers.

For the IC phase q has irrational values, and the potential takes the form

ΦIC = (α− δq2 − κq4 + τq6)ρ2 + βρ4. (6)
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Since the mode with given q is harmonic vibration, we can say that expression (6) is obtained in a

single-harmonic approximation.

In the approach discussed above, which can be called a phenomenological description of a devil’s

staircase,14) it is impossible to obtain the C0/1 phase potential, since the soft branch at the point

q = 0 is nondegenerate, i.e. only one mode corresponds to the value q = 0 (all the irreducible

representations of the point group D2h are one-component). Therefore we use the approach to

description of the C0-IC-C0/1 phase transition sequence.15) The density of thermodynamic potential

can be presented in the form

Φ(z) = αζ2 + βζ4 − δ(∂ζ
∂z

)2 − κ(
∂2ζ

∂z2
)2 + τ(

∂3ζ

∂z3
)2, (7)

where ζ is a one-component order parameter which can be considered as the amplitude of the

mode with q = 0 belonged to the same soft branch. The spatial coordinate z is scaled by the lattice

parameter c.

In a single harmonic approximation,

ζ =
√

2ρ cos qz, (8)

the potential of the IC phase, according to eq. (7), takes the form

ΦIC = (α− δq2 − κq4 + τq6)ρ2 +
3
2
βρ4. (9)

For the same IC phase the potential in the first approach, i.e. in the notation of eq. (5), has the

form of eq. (6). The potentials (9) and (6) will be equivalent if we replace in eq. (9) 3
2β by β. The

same replacing must be made in eq. (7) for the potential of the C0/1 and C0 phases:

Φ0/1 = αζ2 +
2
3
βζ4. (10)

Thus, using two different phenomenological approaches for the description of IC phase transitions,

and requiring that they must provide the same expressions for the potential of the IC phase in

both approaches, we have obtained the thermodynamic potentials for all of the possible phases in

TMATC-M ; namely eq. (5) for the Cm/l phases, eq. (6) for the IC phase, and eq. (10) for the C0/1

and C0 phases.

§3. Minimization of the Thermodynamic Potentials

We now minimize these potentials with respect to their variables to simplify them as far as

possible. Minimizing eq. (10) with respect to ζ, we obtain the values of thermodynamic potentials

for the C0 phase (α > 0) and C0/1 phase (α < 0), respectively

Φ0 = 0, Φ0/1 = −3α2/8β. (11)
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Minimizing eq. (6) with respect to q, we obtain the equilibrium value of q, which has been given

above: q = 0, α(0) = α at δ < −κ2/4τ , or b < qL, and eq. (3) at δ > −κ2/4τ , or b > qL. Next

minimizing eq. (6) with respect to ρ, we arrive at the expression

ΦIC = −a2/4β, (12)

at a < 0 and b > qL. Note that ΦIC = −α2/4β at α < 0 and b < qL, which value is larger than the

value of Φ0/1 in eq. (11), and, hence, the IC phase is unstable at b < qL.

The Cm/l phases are characterized by the fixed numbers qm/l = m/l. Minimizing eq. (5) with

respect to ϕ, we obtain cos 2lϕ = ±1, that corresponds to the phases c1 and c2 (for each Cm/l

phase, see Table I), which are stable for α′2l > 0 and < 0, respectively. Now minimizing eq. (5)

with respect to ρ, we arrive at the expression

Φm/l = −
α2
m/l

4β
[1 +

|α′2l|
β

(
−αm/l

2β
)l−2], (13)

αm/l ≡ α(qm/l),

which is valid at the condition of weak anisotropy. This condition implies that the anisotropic (i.e.

ϕ-dependent) invariant in potential (5) is small in comparison with isotropic (independent of ϕ)

invariant:
|α′2l|ρ2l

2βρ4
=
|α′2l|
2β

(
−αm/l

2β
)l−2 � 1, (14)

For l = 2 the condition (14) is not fulfilled, but we can obtain an explicit expression for the

potential without resorting to the condition of weak anisotropy:

Φ1/2 = −
α2

1/2

4(β − |α′4|)
, (15)

where |α′4| < β is assumed.

§4. Phase Boundaries

Equating the thermodynamic potentials for different phases, i.e. eqs. (11)-(13) and (15), we

obtain expressions for the boundaries between phases, i.e. lines of phase transitions. It is useful to

introduce the following variables and parameters:

D =
δ

τQ4
, A = − a

τQ6
, B =

b

Q
,

Qm/l =
qm/l
Q

, QL =
qL
Q
, ε2l =

τQ6

2β
(
|α′2l|
τQ6

)1/(l−1). (16)

For convenience the sign of A is chosen opposite to that of a. Each Cm/l phase is characterized

by only one dimensionless parameter ε2l depending on the magnitude of the coefficient α′2l. Q is

simply a number and we introduce it in eq. (16) only for convenience of choosing different values

during the calculation of phase diagrams.
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First we construct a phase diagram in the plane of D and A, choosing these variables as coordinate

axes and setting QL and ε2l being constant. From eq. (12) the C0-IC boundary is given by

A = 0. (17)

For the IC-Cm/l boundary we obtain from eqs. (12) and (13) under the condition (14) the expression

A =
1
ε2l
{(B2 −Q2

m/l)
2[2(B2 −Q2

L) +Q2
m/l]}

1/(l−1). (18)

The condition of weak anisotropy (14) is reduced to the form

ε2l(ε2lA)l−2 � 1. (19)

For the Cm/l-Cm′/l′ boundary we obtain from (13) under the condition (19) the expression

(ε2lA)l−1 − (B2 −Q2
m/l)

2[2(B2 −Q2
L) +Q2

m/l]

= (ε2l′A)l
′−1 − (B2 −Q2

m′/l′)
2[2(B2 −Q2

L) +Q2
m′/l′ ], (20)

which can be resolved with respect to B2.

We consider the boundaries with the C0/1 phase. The C0-C0/1 boundary, as follows from eq. (11),

has the form

A = 2B4(B2 −Q2
L). (21)

The IC-C0/1 boundary, as follows from (12) and (11), has the form

A = 2c0B
4(B2 −Q2

L), c0 ≡ 3 +
√

6 ' 5.45. (22)

For the C0/1-Cm/l boundary we obtain from (13) and (11) under the condition (19) the expression

A = 2c0B
4(B2 −Q2

L)− (c0 − 1)(B2 −Q2
m/l)

2[2(B2 −Q2
L) +Q2

m/l]

+(c0 − 1)(ε2lA)l−1. (23)

We consider the boundaries with the C1/2 phase. The IC-C1/2 boundary, as follows from (12)

and (15), has the form

A = c4(B2 −Q2
1/2)2[2(B2 −Q2

L) +Q2
1/2],

c4 ≡
1

2ε4
[1 + (1− 2ε4)1/2], ε4 =

|α′4|
2β

. (24)

For the Cm/l-C1/2 boundary we obtain from (13) and (15) under the condition (19) the expression

A = c4(B2 −Q2
1/2)2[2(B2 −Q2

L) +Q2
1/2]

−(c4 − 1)(B2 −Q2
m/l)

2[2(B2 −Q2
L) +Q2

m/l] + (c4 − 1)(ε2lA)l−1. (25)

The C0/1-C1/2 boundary, as follows from (15) and (11), has the form

A = (c4 − c0)−1{c0(c4 − 1)2B4(B2 −Q2
L)− c4(c0 − 1)(B2 −Q2

1/2)2[2(B2 −Q2
L) +Q2

1/2]}. (26)
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The boundaries C0-IC, eq. (17), C0-C0/1, eq. (21), and IC-C0/1, eq. (22), intersect at the LT-point.

Its coordinates are

D = −Q4
L, A = 0. (27)

These three boundaries converge to the LT-point at angles to each other, and the value of q changes

by jump to zero at the LT-point. Therein lies the difference between the LT-point and the Lifshitz-

point. The boundaries IC-Cm/l, IC-Cm′/l′ , eq. (18), and Cm/l-Cm′/l′ , eq. (20), intersect at a single

point. This is also the case for boundaries IC-Cm/l, eq. (18), IC-C0/1, eq. (22), and C0/1-Cm/l,

eq. (23), as well as for the boundaries IC-Cm/l, eq. (18), IC-C1/2, eq. (24), and Cm/l-C1/2, eq. (25).

These intersections confirm the fact that none of the expressions for the boundaries contain terms

which are beyond the accuracy of the approach determined by condition (19).

Expression (2), connecting δ and b2, takes the form

D = B2(3B2 − 4Q2
L). (28)

Note that the variables D and A are expressed in terms of B2. Therefore, setting the values of B2

we can construct the phase diagram in the D-A plane.

§5. T-P Phase Diagram for TMATC-Zn

In order to construct the D-A phase diagram for TMATC-Zn, we must choose values of the

parameters Q, QL and εm/l for each Cm/l phase; in this case for m/l = 1
3 and 2

5 . In practice, such a

choice have to be realized via a best fit of the theoretical T-P diagram, as obtained from the D-A

diagram, to the experimental T-P diagram shown in Fig. 2. We choose the following values of the

parameters

Q =
1
2
, Q2

L =
1
2
, ε6 = 1, ε10 = 1. (29)

They are taken with accuracy only up to the first digit. Figure 3 shows the D-A phase diagram

constructed according to the expressions (17)-(28) and (29). The Cm/l phases are labeled with

their ratios m/l. LT denotes the LT-point with its coordinates given by (27).

When constructing the T-P phase diagram from the D-A diagram given by Fig. 3, we assume

that D and A depend linearly on T and P. Then the T and P axes will be straight lines in the D-A

diagram. Their position, orientation, and scale are determined from the best fit to the experimental

T-P diagram (Fig. 2). For simplicity we put tanT̂D = tanP̂A = 2, while the origin of theT and

P axes is so chosen that they cut equal lengthes on the D and A axes (measureing from the LT

point).

Figure 4 shows the T-P phase diagram constructed from Fig. 3 with the choice of T and P axes

indicated there. The Cm/l phases with m/l = 1
3 and 2

5 are hatched. The T-axis in the D-A diagram

in Fig. 3 is chosen in such a way that the Cm/l phases intersected by the T-axis are the same and

have approximately the same widths as in Fig. 2. The P-axis in the D-A diagram in Fig. 3 is chosen

7



in such a way that the C0-IC phase transition line has approximately the same inclination as in

Fig. 2. By comparing Fig. 4 with Fig. 2, we see that the theoretical and experimental T-P phase

diagrams agree sufficiently well. This agreement could be improved by making a more suitable

selection of the parameters Q, QL and ε2l, and by achieving a more precise orientations of the T-

and P-axes in the D-A diagram.

§6. Discussion

In conclusion, we enumerate again all approximations and assumptions made when constructing

the theoretical D-A and T-P phase diagrams. The triple point existing in the experimental T-P

diagrams for TMATC-M crystal family (Figs. 1 and 2) is assumed to be the Lifshitz -type point,

which was introduced in ref. 11. Owing to this assumption we succeeded in explanation of such

a special feature of the diagrams as the absence of the IC phase to the left from the triple point,

where the line of phase transitions separates the C0 and C0/1 phases.

The single-harmonic approximation was used for the IC phase. This leads to insignificant errors

when determining the boundaries between the IC and Cm/l phases. The weak anisotropy condition

was used for the Cm/l phases. This allows to obtain explicit expressions for the potentials, and

hence, for the boundaries of the Cm/l phases. However, for small l and in a region of large A-values

in the D-A diagram this condition may not be well satisfied.

Construction of the phase diagram in the D-A plane means that only D and A vary with T and

P, while the remaining quantities are assumed to be constant. These are the QL and ε2l and, hence,

the coefficients κ, τ , β and α′2l. The assumption that D and A depend linearly on T and P is valid

not too far from the axes A and D in the D-A diagram. When constructing the phase diagrams

the numerical values of the parameters were taken with accuracy only up to the first digit.

The approximations and assumptions above-listed did not prevent us from obtaining a fairly

good agreement between the theoretical and experimental T-P phase diagrams for TMATC-Zn.

And this is in spite of the fact that in the phenomenological model considered here the number

of dimensionless parameters which are used is small: QL and just one parameter ε2l for each

commensurate phase. The phenomenological approach to structural phase transitions is known to

be well justified. The result above mentioned demonstrates that it is just as well justified in this case,

i.e., as applied to complicated phase diagrams on which the special triple point, incommensurate

phase, and a large number of commensurate phases exist. This approach is considered to be

adequate to the experimental data.
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Table I. The space groups of all possible commensurate phases associated with a soft optical branch with the wave

vector kz = qc∗ of the space group Pmcn(D16
2h) of TMATC-Zn.

0
1

m−
l−

m+
l−

m−
l+

c1 P212121 D
4
2 (xyz) P121/c1 C

5
2h (zx) Pc21n C

9
2v (y)

P121/c1 C
5
2h B2g (zx) c2 P1121/n C

5
2h (xy) P21cn C

9
2v (x) P21/c11 C5

2h (yz)

c3 P1121 C
2
2 P1c1 C2

s Pc11 C2
s

Fig. 1. Unified temperature-pressure phase diagram for TMATC-M family crystals from ref. 2. The position of

zero pressure for each compound is plotted by an arrow. Small letter d indicates the deuterated compound.

Fig. 2. The experimental T-P phase diagram for TMATC-Zn from ref. 8.
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Fig. 3. The D-A phase diagram with the LT-point plotted for TMATC-Zn.

Fig. 4. The theoretical T-P phase diagram plotted on the basis of Fig. 3 for TMATC-Zn.
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