

Okba TIBERMACINE

Orchestration de Web Services Fiables
Reliable Web Services Orchestration

../../2015

M. Abdelmalik BACHIR Mâıtre de conférences A à l’Université de Biskra Examinateur

M. Salah SADOU Mâıtre de conférences HDR, à l’université de Bretagne Sud, France Examinateur

M. Abdelouahab MOUSSAOUI Professeur à l’université de Setif 1 Examinateur

M. Chouki TIBERMACINE Mâıtre de conférences à l’université de Montpellier, France Co-Rapporteur

M. Foudil CHERIF Mâıtre de conférences A à l’Université de Biskra Rapporteur

M. Noureddine DJEDDI Professeur à l’Université de Biskra Président

Reliable Web Services Orchestration

Abstract:
Service Oriented Computing (SOC) represents a paradigm for building dis-

tributed applications over the Internet. Service Oriented Architecture (SOA) is
an architectural style that allows developing these applications based on services.
Over the past decade, Web services orchestration has become thriving area of
research and academic efforts. Although many orchestration-related challenges
have been tackled, orchestration reliability and its verification are still an open,
critical and prerequisite issue as web service orchestration are affecting several
life-days activities.

This thesis addresses the subject of reliable web service orchestrations. In
particular, it contributes a set of approaches, techniques and tools to address
the selection and orchestration of reliable web services. Firstly, it refines
life-cycle phases of service orchestration to ensure reliability analysis and
verification during orchestration design and run-time. As well as it proposes an
architecture, based on an enhanced service registry, to achieve the same goal.
Secondly, it introduces an approach for measuring web services similarity based
on their interfaces that serves as a basic technique for identifying similarity,
substitutability and composability relationships between web services. Besides,
a Tool coined WSSIM, implementing this approach is developed, and it is
available for reproducible research. The tool is experimented on a set real web
services for validation. Thirdly, the thesis contributes with an approach for the
identification of simple and complex service substitutes. The latter is built upon
similarity measurement, FCA classification and reliability analysis. In addition,
a set of algorithms are presented to describe the functionality of different phases
in the identification process. Fourthly, to consider reputation of services as a
’softer’ form or reliability, the thesis introduces a framework and a mathematical
model for web service reputation management.

Keywords: Service oriented architecture, Web services selection and
recommendation, Similarity assessment, Reputation management, Reliability
verification and analysis.

Orchestration de Web Services Fiables
Resumé: L’Informatique Orienté Services représente un paradigme pour con-
struire des applications distribuées sur Internet. L’Architecture Orientée Ser-
vices(SOA) est un style architectural qui permet le développement de ces appli-
cations à base de services. Au cours de la dernière décennie, l’orchestration des
services Web est devenue un domaine très actif dans la recherche scientifique et
académique. Bien que de nombreux défis liés à l’orchestration aient été abordés,
la fiabilité de l’orchestration et de sa vérification restent encore un sujet ou-
vert, prérequis et important de fait que ces orchestrations affectent aujourd’hui
plusieurs activités quotidiennes.

Cette thèse focalise sur le sujet d’orchestration des Services Web Fiables.
En particulier, elle contribue avec un ensemble d’approches, de techniques
et d’outils pour améliorer la sélection et l’orchestration des services web
fiables. Premièrement, elle affine les phases du cycle de vie d’orchestration
de services web afin d’assurer une vérification continuée de fiabilité lors des
phases de conception et d’exécution. En outre, elle propose une architecture
conceptuelle basée sur un registre de service amélioré, pour la mise en ÅŞuvre
d’orchestrations fiables. Deuxièmement, elle présente une approche de mesure
de similarité entre les services web. L’approche repose sur la comparaison
des interfaces WSDL de services. L’approche sert à identifié les relations de
similarité, de substituabilité et de composabilité entre services. L’outil WSSIM
a été développé pour mettre en oeuvre l’approche proposée. Pour validation,
l’outil a été expérimenté avec un ensemble important de services web réels.
Troisièmement, la thèse contribue avec une approche pour l’identification des
substituts de services simples et complexes. L’approche utilise les techniques
de mesure de similarité, la classification de service avec FCA et l’analyse de
fiabilité pour identifier et sélectionner les meilleurs substitutes. Un ensemble
d’algorithmes aient été proposés pour décrire le processus d’identification.
Quatrièmement, pour examiner la réputation des services comme un autre
critère de fiabilité, la thèse introduit un Framework et un modèle mathématique
pour la gestion de réputation de service Web.

Keywords:
Architecture Orientée Services, Selection et Recommendation des Services

Web, Measure de Similarité, Gestion de Réputation, Vérification de Fiabilité

: �
	

jÊÓ

QK
ñ¢
�
JK. Õ

�
æîE
 AÓA« @PA£@

(Service Oriented Computing) ék. ñ

�
JË @

�
éJ

�
KAÓY

	
g

�
éJ.�ñmÌ'@ ÐY

�
®
�
K

(Service Oriented �
éJ

�
KAÓY

	
mÌ'@

�
éJ

	
�J. Ë @ Q

	
¯ñ

�
K ð .

�
I

	
KQ

�
�
	
KB@

�
éºJ.

�
� úÎ«

�
é« 	PñÖÏ @

�
HA

�
®J
J.¢

�
JË @

ùÒ�
�
�

�
H@Ygð �A�

@ úÎ«

�
HA

�
®J
J.¢

�
JË @ è

	
Yë ZA

	
J�. K. iÒ��
 ø

	
YË@ ú

æ�Y

	
JêË @ h.

	
XñÒ

	
JË @ Architecture)

(Web Aêm.
×X ð Aê

�
®J
�

	
�
�
K ©Ó , (Services Web) I. K
ñË@

�
HAÓY

	
g Q�.

�
Jª

�
K AÒ» . (Services) �

HAÓY
	

g

½Ë
	
YË .

�
éJ

�
KAÓY

	
mÌ'@

�
éJ

	
�J. Ë @

�
é�Y

	
JêË

�
éJ
ÊJ
ª

	
®
�
K BñÊg Services Orchestration and Composition)

ð . AJ

�
®J
J.¢

�
� ð AK
Q

	
¢

	
� ©J

	
�@ñÖÏ @ è

	
Yë

�
é�@PYK.

	á�

�
JkAJ. Ë @ ÉJ.

�
¯ 	áÓ @YK
@

	Q�
�Ó AÓAÒ

�
Jë@

�
èQ�

	
g

B@

�
éK
Qå

�
�ªË@

�
I

	
Q̄«

�
éJ

�
¯ñ

�
KñÓ

	
à

@ B@

,

�
éJ

K 	Qk. Pñ��. ñË ð AîD
Ë @

�
�Q¢

�
JË @ Õç

�
' É¿ A

�
�ÖÏ @ 	áÓ YK
YªË@

	
àñ» 	áÓ Ñ

	
«QË@ úÎ«

Aî
�
DJ.

�
¯ @QÓ ð (Orchestration and Composition reliability) I. K
ñË@

�
HA����ÓY

	
g l .

×X ð
�

�J
�
	
�
�
K

AÒ» ,
�
é�@PYÊË Agñ

�
J
	
®Ó ð Ag. Qk A«ñ

	
�ñÓ ù

�
®J.

�
K ,

�
ém.
×YÖÏ @ ð@

�
é¢J
��. Ë @

�
HAÓY

	
mÌ'@

�
èAJ
k

�
èPðX øYÓ úÎ«

.
�
éJ
ÓñJ
Ë @

�
èAJ
m

Ì'@ ú

	
¯

�
HA£A

�
�

	
�

�
èY« úÎ« Q

�
K

ñ
�
K

�
HPA�

�
HAÓY

	
mÌ'@ è

	
Yë

	
àñ»

�
é

	
ªËAK.

�
éJ
Òë

@ ú

æ�

�
JºK
 é

	
K

@

ð ,
�
é
�
¯ñ

�
KñÖÏ @

�
HAÓY

	
mÌ'@

�
�J
�

	
�
�
K ð l .

×X Èñk
�
é�@PX ÐY

�
®
�
JË ÐAªË@ AëPA£@ ú

	
¯

�
éËA�QË@ è

	
Yë ú

�
G

A
�
K ð

H. @ñË@
�

HAÓY
	

g ZA
�
®
�
J
	
KB

�
H@ðX

B@ ð i. ëA

	
JÖÏ @ ð ÈñÊmÌ'@ 	áÓ

�
é«ñÒm.

× Õç'
Y
�
®
�
K ú

	
¯ ,

�
�X

@ É¾

�
��. ÑëA�

�
�

	á«
�
ém.
�
�
'A

	
JË @ I. K
ñË@

�
HAÓY

	
g

�
èPðX Ég@QÓ úÎ« CK
Yª

�
K Bð

@ ÐY

�
®
�
K

	
X @

. Aê
�
®J
�

	
�
�
K ð Aêm.

×X ð
�
é
�
¯ñ

�
KñÖÏ @

	áÓ ¨ñ
	
JË @ @

	
Yë ZA

	
JJ. Ë AJ
�Y

	
Jë AgQ�

�
�
®Ó ÐY

�
®
�
K AÒ» . Aî

�
DJ

�
¯ñ

�
KñÓ

�
éJ.

�
¯ @QÖÏ ½Ë

	
X ð l .

×YË@ ð
�

�J
�
	
�
�
JË @

�
éJ
ÊÔ

«

	á�
K. éK. A
�

�
�
�Ë @ �AJ

�
®Ë

�
éJ
j. î

	
DÓ ÐY

�
®
�
K , AJ

	
K A

�
K . H. @ñË@

�
HAÓY

	
g Qå

�
�
	
JË ÐY

�
®
�
JÓ Ém.

��
úÎ« @XAÒ

�
J«@ l .

×@Q�. Ë @

,
�
éK. A

�
�

�
�Ë @

�
HA

�
¯C« 	á«

	

�
�ºËAK. iÒ��
 ø

	
YË@ @

	
Yëð , Aî

�
EAêk. @ð

	
�ð

�
HA

	
®ÊÖÏ A

�
®

	
¯ð I. K
ñË@

�
HAÓY

	
g

ø

	
YË@ WSSIM ú«YK
 l .

×A
	
KQK. QK
ñ¢

�
� Õç

�
' , ½Ë

	
X úÍ@

�
é
	
¯A

	
�BAK. .

�
HAÓY

	
mÌ'@ è

	
Yë

	á�
K. I. J
»
Q�
�Ë @ ð ÈXAJ.

�
JË @

¼PA
�

�
�
� , A

�
JË A

�
K .

�
éîE. A

�
�ÖÏ @

�
éJ
ÒÊªË@

�
HñjJ. Ë @ ú

	
¯ éËAÒª

�
J�B hñ

�
J
	
®Ó l .

×A
	
KQ�. Ë @ @

	
Yë ð , éK. A

�
�

�
�Ë @ �AJ

�
®K. Ðñ

�
®K

�
éJ
j. î

	
DÖÏ @ è

	
Yë ð .

�
éÊ¢ªÖÏ @ I. K
ñË@

�
HAÓY

	
mÌ

�
é
�
¯ñ

�
KñÖÏ @ É

K @YJ. Ë @

	
¬A

�
�

�
�» B øQ

	
k@

�
éJ
j. î

	
DÓ Õç'
Y

�
®
�
JK.

�
éËA�QË@

(Formal �
éJ
ÖÞ

�QË @ Õæ

ëA

	
®ÖÏ @ ÉJ
Êm

�
�
' �

é
�
®K
Q£

�
é¢�@ñK.

	
J

	
��

�
JË @ ð , éK. A

�
�

�
�Ë @

�
HA�@PX úÎ«

�
éJ

	
�J.Ó

	áÓ ú
	

æªÒ»
�
éÓY

	
mÌ'@

�
éªÖÞ� PAJ.

�
J«B@

	á�
ªK.
	
Y

	
gCË , AªK. @P .

�
éJ

�
¯ñ

�
KñÖÏ @ ÉJ
ËAm

�
�
' ð Concept Analysis)

ð H. @ñË@
�

HAÓY
	

g
�
éªÖÞ� Õæ

J

�
®
�
JK. Ðñ

�
®K
 AJ

	
�AK
P Ag.

	
XñÖ

	
ß @ ð @PA£@

A

	
��

@

�
éËA�QË@ ÐY

�
®
�
K ,

�
é
�
®
�
JË @ ú

	
G AªÓ

�
HAÓY

	
g PAJ

�
J

	
k@ ú

	
¯ Y«A��
 AÜØ .

�
HAÓY

	
mÌ'@ ½Ê

�
JË

	á�

�
®K. A�Ë@

	á�
ÓY
	

j
�
J�ÖÏ @ Z @P

�
@ úÎ« ZA

	
JK. Aî

�
E @Xð 	QÓ

. l .
×YË@ ð

�
�J
�

	
�
�
JË @

�
éJ
ÊÔ

« ZA
	
J
�
K

@ ð ÉJ.

�
¯

�
éJ

�
¯ñ

�
KñÓ Q�

�» B@ I. K
ñË@

, éK. A
�

�
�
�Ë @ �AJ

�
¯ , I. K
ñË@

�
HAÓY

	
g h@Q

�
�
�
¯@ ð PAJ

�
J

	
k@ ,

�
éJ

�
KAÓY

	
mÌ'@

�
éJ

	
�J. Ë @ :

�
éJ
kA

�
J
	
®Ó

�
HAÒÊ¿

.
�
éJ

�
¯ñ

�
KñÖÏ @

�
éJ.

�
¯ @QÓ ð ÉJ
ËAm

�
�
' ,

�
éªÒ�Ë@ Q�
J
�

�
�

Acknowledgments

All praise and thanks to my lord, Allah !

I am grateful to Dr. Foudil Cherif and Dr. Chouki Tibermacine my academic
supervisors, for their support, guidance, assistance and encouragements during
this long journey.

I deeply thank Jury members: Prof. Djeddi Noureddine, Dr. Salah Sadou,
Dr. Abdelmalik Bachir, and Prof. Abdelouahab Moussaoui, for accepting to
evaluate this work. In addition, I would like to express my sincere respect to
the anonymous reviewers of the published papers who provided me with helpful
critics, suggestions and guidance.

My thanks go to my colleagues at the computer science department of Biskra
university. I am also grateful for friends who helped me. I sincerely thank them
all for their support.

I would like to mention my family (my mother, my wife, my son, my brothers,
my sisters and all my relatives). I cannot say enough thankful to them simply
because they are the reasons for me to keep on trying.

Finally, to all of my dear friends, who I cannot name all of them since I am
afraid of missing someones, I sincerely appreciate their friendships, which have
brought different meanings to my life.

Contents

Page

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3

1.2.1 Reliable web service orchestration 4
1.2.2 Web service interface similarity measurement 5
1.2.3 Web service substitutes selection 5
1.2.4 Web service reputation management 5

1.3 Contributions and main results 6
1.4 Thesis outline . 9

I State of the Art 11

2 Background 12
2.1 Overview . 13
2.2 Web service fundamentals . 13

2.2.1 Web Services . 13
2.2.2 Web service model and its underlying technologies 14
2.2.3 Quality of Service . 18
2.2.4 Web services composition 20
2.2.5 Web services composition life cycle 22
2.2.6 Web service composition languages 23

2.3 Similarity measurement schemes 26
2.3.1 Vector space model . 27
2.3.2 Term Frequency - Inverse Document Frequency 27
2.3.3 Latent Semantic Indexing 29
2.3.4 Similarity and Distance Measures 30

2.4 Formal Concept Analysis . 33
2.4.1 Case study . 33
2.4.2 Formal Context . 34
2.4.3 Formal Concept . 36
2.4.4 Object and attributes concepts 36
2.4.5 Subconcept and superconcept 36
2.4.6 Concept lattice . 36
2.4.7 FCA for web Services . 38

2.5 Trust and Reputation . 38

Contents iii

2.5.1 Trust . 39
2.5.2 Reputation . 39
2.5.3 Trust management systems 40
2.5.4 Reputation computation methods 40

2.6 Summary . 41

3 Literature Review 43
3.1 Overview . 43
3.2 Web service composition methods 44

3.2.1 Methods . 44
3.2.2 Discussion . 49

3.3 Reliable web service compositions methods 50
3.3.1 Methods . 50
3.3.2 Discussion . 54

3.4 Fault recovery in web service composition 55
3.4.1 Methods . 55
3.4.2 Discussion . 56

3.5 Similarity measurement for service discovery and selection 56
3.5.1 Methods . 56
3.5.2 Discussion . 58

3.6 Lattice-based web service classification 59
3.6.1 Methods . 59
3.6.2 Discussion . 60

3.7 Reputation management models 63
3.7.1 Methods . 63
3.7.2 Discussion . 66

3.8 Summary . 68

II Contributions 70

4 Framework for Reliable Web Services Orchestration 71
4.1 Overview . 71
4.2 Reliable WS orchestrations life-cycle 72

4.2.1 Phase 1: Requirement specification 73
4.2.2 Phase 2: Abstract process modeling 73
4.2.3 Phase 3: Service search, selection and contracting 73
4.2.4 Phase 4: Binding and business process execution 74
4.2.5 Run-time monitoring . 74
4.2.6 Reliability analysis . 75
4.2.7 Repair and reconfiguration 75

Contents iv

4.2.8 Web service recommendation 75
4.3 Architecture for reliable WS orchestrations 75

4.3.1 Service provider . 78
4.3.2 Designer . 79
4.3.3 Web Service Recommendation System 80

4.4 Summary . 83

5 An approach for web service similarity assessment 84
5.1 Overview . 84
5.2 Similarity assessment approach 85

5.2.1 Identifiers similarity . 88
5.2.2 Documentation similarity 89
5.2.3 Grammatical tags for enhancing identifier similarity 90
5.2.4 Operations similarity . 91
5.2.5 Messages similarity . 92
5.2.6 Complex-type parameters similarity 93
5.2.7 Simple-type parameter similarity 94
5.2.8 Maximal score computation from the similarity matrix . . 95

5.3 WSSim: a tool for measuring web service similarity 96
5.3.1 Overview of WSSim Functionalities 96
5.3.2 Underlying Technologies 97
5.3.3 WSSim as a Web Service 98

5.4 Experiments and validation . 100
5.4.1 Tuning . 100
5.4.2 Case Study . 100

5.5 Summary . 103

6 Web Service Substitutes Identification Approach 105
6.1 Overview . 106
6.2 Case study . 106
6.3 Architecture’s overview . 106
6.4 Components description . 109

6.4.1 Keyword and Signature extractor 109
6.4.2 Service retriever . 110
6.4.3 Service filterer . 113
6.4.4 Similarity assessor . 114
6.4.5 Context builder and FCA classifier 116
6.4.6 Lattice interpreter . 123
6.4.7 Reliability Analyzer . 125

6.5 Experiment and validation . 126
6.5.1 Methodology . 127

Contents v

6.5.2 Data selection . 127
6.5.3 Orchestration extraction 127
6.5.4 Substitute extraction . 128
6.5.5 System performances . 129
6.5.6 Result measurement . 130
6.5.7 Threats to validity . 132

6.6 Summary . 133

7 Web Service Reputation Management Framework 134
7.1 Overview . 135
7.2 Reputation management framework 135

7.2.1 Framework architecture 135
7.2.2 Feedback collector . 136
7.2.3 Reputation manager . 137
7.2.4 Search and selection interface 138
7.2.5 Service recommender . 138

7.3 Reputation assessment model . 139
7.3.1 Evaluation metrics . 139
7.3.2 Assessment formula . 140
7.3.3 Reputation . 141
7.3.4 Honesty factor . 141
7.3.5 Suspicious user penalization 143
7.3.6 Provider reputation . 143
7.3.7 WS Orchestration reputation assessment 143

7.4 Reputation bootstrapping Model 145
7.4.1 Provider reputation-based estimation 148
7.4.2 Reputation estimation from similar services 148
7.4.3 Regression-based Reputation estimation 151
7.4.4 Evaluation of the bootstrapping Model 152

7.5 Experiments . 157
7.5.1 Description . 157
7.5.2 Reputation with varying maliciousness density 164
7.5.3 Impact of time sensitivity factor 166
7.5.4 Effect of the penalization mechanism 167
7.5.5 Execution time performance 168
7.5.6 Performance comparison 169
7.5.7 Limitations . 175

7.6 Summary . 176

Contents vi

8 Conclusion and Future Work 177
8.1 Summary . 177
8.2 Future Work . 180

8.2.1 Improvement on the proposed approaches 180
8.2.2 Formal Requirement Engineering Method 180
8.2.3 Web services monitoring approach 181

Bibliography 182

List of Figures

1.1 The SOA triangle . 2

2.1 W3C Web service reference model 15
2.2 QoS parameters [168] . 19
2.3 Service orchestration and service choreography 21
2.4 Service composition life cycle [146] 22
2.5 The Concept Lattice for the Context in Table 2.2 37
2.6 The resulted concept lattice focusing on one concept 37

4.1 Reliable orchestration life-cycle 72
4.2 Architecture for reliable orchestration 77

5.1 Similarity Measurement Process 86
5.2 Identifier similarity matrix sample 91
5.3 An oriented labeled graph representation of a sample Message . . 94
5.4 Screenshot of the tool WSSim . 99
5.5 Similarity results between a set of compared identifiers 101
5.6 Substitution results . 102
5.7 Experiment Results . 103

6.1 Abstract BPEL description for the weather widget example 107
6.2 Global schema of the substitute identification process 108
6.3 Filtered web services information 113
6.4 A generic form for the similarity matrix (SimMatrix) 114
6.5 Case study similarity matrix (SimMat)) 116
6.6 Clusters identified from SimMat 118
6.7 Clusters similarity matrix (CLSimMat) 118
6.8 Scaled and context matrix . 120
6.9 Square Concepts, Interchanged Context Matrix and identified groups121
6.10 Operation-group context matrix (OPGContextMat) 121
6.11 Extended groups . 122
6.12 Final Concept Matrix . 123
6.13 Final Lattice . 124
6.14 Final lattice interpretation . 125
6.15 List of (N-to-1) substitutes . 126
6.16 Number of obtained substitutes 128
6.17 Experiments Execution time . 129
6.18 Result of manual verification of extracted substitutes 130

List of Figures viii

7.1 Architecture of the Reputation Manager 136
7.2 Example of the assessment of the Honesty Factor 142
7.3 Output from the regression data analysis tool 154
7.4 Calculated and estimated reputation of a sample of test services . 156
7.5 Ideal and assessed reputations with 25%, 70% and 95% of mali-

cious user density . 163
7.6 Graphical used interface of the Java-based simulator 164
7.7 Effect of Time Sensitivity Factor on the F-Measure 166
7.8 Effect of penalization mechanism on F-Measure performances . . 167
7.9 Execution time versus variation of transaction numbers 168
7.10 Ideal and compared assessed reputations with 25% of malicious

user density . 171
7.11 Mean Absolute Error comparison with the alteration of malicious

users density (a smaller MAE means a better performance) 172
7.12 F-Measure performance comparison with the alteration of mali-

cious users density . 174

List of Tables

2.1 Programming language classification table 34
2.2 A formal context of programming language classification 35

3.1 Similarity methods comparison 59
3.2 Lattice-based service classification methods comparison 62
3.3 Reputation management methods comparison 67

5.1 List of similarity metrics . 90
5.2 Similarity table between dataType [133] 95
5.3 Simple dataType groups [133] . 95
5.4 An excerpt of a similarity matrix 96
5.5 Number of retrieved web services 101

7.1 Attributes of the service relation 139
7.2 Attributes of the similarity relation 139
7.3 Web service candidate information of the hypothetical WS orches-

tration . 144
7.4 The first ten recommended web service combinations for the or-

chestration based on the estimated reputation values 145
7.5 Generic form of service QoS vectors and reputation 149
7.6 Mean QoS values . 150
7.7 QoS metrics selected from QWS dataset 153
7.8 R2, MEA and PE comparison by varying malicious density 156
7.9 Classes of simulated web services 157
7.10 Honest User Rates . 158
7.11 Malicious User Rates . 159
7.12 Simulation parameters . 160
7.13 Mean Absolute Error and F-Measure values comparison 173

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Problem Statement . 3

1.2.1 Reliable web service orchestration 4
1.2.2 Web service interface similarity measurement 5
1.2.3 Web service substitutes selection 5
1.2.4 Web service reputation management 5

1.3 Contributions and main results 6
1.4 Thesis outline . 9

1.1 Context
Nowadays, the need for advanced service-based software systems is in continu-
ous increase, following the growth of consumer requirements that become more
demanding and massively complex. This kind of software systems are both mod-
eled and developed following service-oriented paradigm, that defines the neces-
sary conceptual fundamentals to cope with requirements complexity and integra-
tion challenges by promoting the development of autonomous, loosely coupled,
platform-independent and reusable software entities called services [127,128].

The idea behind this paradigm is to allow organizations to offer their business
functionalities as services with well defined interfaces over the Internet, and thus,
other companies can use, compose, and/or integrate these services into more
capable business application eventually available for others as services. This
vision of developing distributed applications is depicted into an architectural
style called Service Oriented Architecture (SOA) [59], that allows services to be
published, discovered and consumed by applications or other services.

SOA principal stakeholders and their roles are depicted within The SOA tri-
angle (see Figure 1.1). Interactions between these stakeholders are conducted as

1.1. Context 2

Service
Registry

Service
Requester

Service
Provider

Find

Bind

Register

Service
Contract

Figure 1.1: The SOA triangle

follows: First, a service provider that offers a business functionality as a service,
publishes (’Registers’) a service contract that describes the service registry. Sec-
ond, a service requester can query the registry to ’find’ specific services. Third,
based on the results returned by the registry, the requester can dynamically bind
to one of the service.

Practically, an implementation of SOA is achieved by using Web services
standards and technologies, including (i) WSDL (Web Service Description Lan-
guage [33]) that serves as a language to describe service interfaces (contracts),
(ii) UDDI (Universal Description, Discovery and Integration [18]) that represents
a service registry for storing and publishing services contracts, and (iii) SOAP
(Simple object Access Protocol [24]) that serves as a transport protocol that
allows interactions between service requesters and providers.

One of the most challenging topics in SOA and web services technology, that
was extensively studied in industry and academia, is web services composition,
which is known also as web service orchestration. In general, web services orches-
tration is the process that combines several web services to form a single web
service that performs more complex functionality [146]. The result of service
orchestration is called composite service [19, 28].

Although many challenges and issues related to web services orchestration
have been tackled theoretically and practically in the literature, web services
orchestration reliability and its verification are still an open, critical and pre-
requisite issue as these web services orchestrations are present in our everyday
life affecting different functions and situations [73]. In general, system reliability
is considered as the probability that the system completes its task whenever it
is invoked [97]. Hence, for web services orchestrations users, reliability means
that composite services, and thus its orchestrated services, work correctly and
without interruptions, and they are available when they are required. In addi-

1.2. Problem Statement 3

tion, reliability includes the satisfaction of Quality of Service (Qos) minimum
requirements defined by orchestration designers. Moreover, reliability for service
designers and stakeholders can be considerer as the ability to trust that services
offered by other providers fulfills requirements and works as expected [73].

This thesis addresses some orchestration reliability-related problems that are
precisely defined in the next sections.

1.2 Problem Statement
The problem to be addressed in this thesis can be expressed by the following
research question:

How can reliable web services orchestration be ensured through the
selection of reliable and reputable atomic service candidates and their
substitutes at different phase of orchestration life cycle?

In particular, this main research question can be divided into the following
two sub-questions:

• How are reliable atomic Web services selected for web services orchestration
at design phase?
Reliability of web service orchestration depends mainly on reliabilities of
its atomic services [73]. Ideally, orchestration designer has to select service
candidates that answers required functionalities and ensures high Quality
of Service. Thus, reliability built a confidence to the technical capabili-
ties of the selected services. Moreover, reliability can have "softer", non-
technical forms that manifest by reputation and trust. (i.e., aggregation
of experiences with the service or service provider) and trust (i.e., Trust is
gained from person’s or organization’s experiences with the service or ser-
vice provider). Thus, reliable service candidates have to be also reputable
and trustful.

• How do we select service substitute candidates that could replace simple or
composed unreliable web services at run-time and/or maintenance phases?
To maintain the required reliability, the service system must be able to
update itself (self-reconfiguration) or updated by the orchestration stake-
holder to maintain the required reliability in case of failure of one of its
atomic services, or in case of detection of undesirable changes in its relia-
bility. That is, atomic service candidates that become unreliable have to

1.2. Problem Statement 4

be replaced by reliable substitutes that guarantee the same functionalities
and required reliability (QoS and reputation).

These questions raise the need for a set of methods and frameworks for ef-
fectively guarantee the selection of reliable atomic service candidates and their
substitutes.

More specifically, in this thesis we address the following points:

1. Reliable web service orchestrations,

2. Similarity assessment between web services,

3. Identification of service substitutes,

4. Web service reputation measurement.

Note that related problems such run-time monitoring, dynamic reconfigura-
tions and adaptation, etc. are out of the scope of this thesis.

1.2.1 Reliable web service orchestration
Web service reliability and its verification is prerequisite in failure-prone envi-
ronments, as these services and their orchestrations are affecting several every-
day on-line activities. Thus, there is a major need to develop reliable service
orchestration architecture that ensure the verification of reliability alongside or-
chestration’s 1 life cycle. This architecture has to be designed in a way that:

• Facilitates the selection of reliable web services during different life-cycle
phase;

• Allows the identification, thus the recommendation, of service substitutes
for better replacement and adaptation;

• Permits the conduction of continuous reliability analysis;

• Provides mechanisms for evaluating accurately the reputation of web ser-
vice and the trustworthiness of their providers;

• Affords mechanisms for run-time service QoS monitoring;

• Simplifies requirement documentation for orchestration stakeholders;

• Enables to compose, manage and update service orchestrations at run time,
etc.

1Service orchestration and service composition are often used interchangeably in this thesis

1.2. Problem Statement 5

1.2.2 Web service interface similarity measurement
The study of similarity between web services is one of the underlying techniques
for service classification, selection and service substitutes identification. Goals
behind studying similarity between web services are multiples, including:

• Select and retrieve from registries, catalogs and portals web services that
match some keywords and satisfy some criteria.

• Identify substitutes (replacements) between web services or between their
operations.

• Determine service composability i.e., whether in two operations, belonging
to two web services, the output of the first operation is similar to the input
of the second operation. Thus, the first service can be composed with the
second service.

Therefore, there is a need for similarity assessment approaches and tools that
could achieve these goals. Mainly, these approaches and tools propositions have
to take into account the absence of web service behavior description and to focus
on the statical content description presented by Web service description language
(WSDL) files. Moreover, they should address structural and semantic aspects of
these descriptions during the comparison (i.e, Matchmaking) process.

1.2.3 Web service substitutes selection
Web services are software component that are exposed to errors and failures
that may have different origins: a failure in the network, the unavailability of
the application server or the database server, an error or an exception in the
program implementing the service, etc. Some of these faults cannot be detected
immediately, and it could have many consequences on service compositions using
them [93]. In the literature, service substitution and adaptation is a technique
proposed to overcome the failure in service orchestration by replacing defected
web services. Though identifying and selecting substitutes is a crucial for or-
chestration healing, it is still a challenging task, especially with the absence of
behavioral descriptions of web services.

Thus, there is a demand for approaches that simplify the identification and
the selection of simple and complex service substitutes, based on the failed service
description file and the required reliability criteria.

1.2.4 Web service reputation management
In the context of web services, reputation is seen as a collective measurement
of the opinion of a community of users regarding their actual experiences with

1.3. Contributions and main results 6

the web services [105, 121]. Reputation reflects the reliability, trustworthiness
and credibility of web services and their providers [176], which consider it as an
important factor for web service selection and recommendation [143, 173, 177,
183,188].

In fact, the measurement of web service reputation is challenging due to
many factors including the presence of malicious users that could inject false
feedback ratings into the reputation system. Thus, pure feedback ratings have
to be distinguished from malicious ratings. In addition, user credibility has to
be fairly evaluated and other factors like age of ratings have to be considered
during reputation assessment.

Hence, there is a need for a reputation management framework that faces
these challenges and evaluates accurately the reputation and trustworthiness or
web services and their providers, in order to conduct more successful reliable
service selection and recommendation.

1.3 Contributions and main results
To address some of the challenges described previously, this thesis makes five ma-
jor contributions: (i) an architecture for reliable web service orchestrations, (ii) a
practical approach for the measurement of similarity between web services, (iii)
a process for the identification of reliable web service substitutes, (iv) a frame-
work and a mathematical model for the management of web service reputation,
and (v) a reputation bootstrapping technique for estimating initial reputation of
newcomer services .

~ Architecture for reliable Web service orchestrations: In which, we
propose a general architecture that assists stakeholders to ensure reliable
web service orchestrations. The architecture is built upon three main com-
ponents: (i) service provider, (II) orchestration stakeholder, and (III) a
web service recommendation system that enhances classical web service
registries and catalogs. In this architecture, the third component serves
as a central unit that ensures the recommendation of reliable web services
with a continuous reliability analysis, and a notification service for orches-
tration subscribers. Moreover, the component ensures other tasks such
as:

– Registers services, providers and clients,
– Monitors on-demand web services and tracks their QoS,
– Assesses similarity between services,

1.3. Contributions and main results 7

– Identifies service substitutes and evaluates their reliability,
– Evaluates reputation scores of services and their providers,
– Notifies providers and clients with updates and occurred changes, etc.

~ Practical approach for the measurement of web service similarity
[C,D] [164,165]: In which we propose a solution to assess the similarity be-
tween web services by analyzing their interfaces; The approach compares
between elements in the two matched WSDL files (e.g., operations, mes-
sages, parameters ...etc) and determines the similarity score between them.
Similarity scores range between 0 and 1, where 0 means a total dissimilar-
ity and 1 means a complete similarity. The approach uses different lexical
and semantic similarity metrics to evaluate how close elements are to each
other. Moreover, the measurement process is parametrized by a collec-
tion of weights associated to the different levels of web service description.
The challenge of measuring the similarity between complex types, which
are generally represented by XML schema, is handled by using different
techniques (e.g., similarity flooding) for getting accurate scores.
A tool coined ’WSSIM’ that implements this approach is developed using
Java programming language and a set of other underlying technologies.
The tool is publicly available2 for reproducible research. The approach
and its implementing tool have been experimented for validation on a set
of real-world Web services.

~ A Process of relevant substitutes identification for healing failed
Web service orchestrations [B] [166] To ensure the reliability in web
service orchestration, reliable service substitutes have to be identified before
and during orchestration runtime. Therefore, even though a failure occurs
in the orchestration, the system will be able to replace the defected service
and thus to ensure its continuous functionality under equivalent or better
QoS. For this end, we propose an approach for identifying relevant web
service substitutes. The approach is built upon two techniques; the first
is the similarity assessment between web services that enable to evaluate
similarity and composability relationships between a set of web service
candidates; and the second technique is the Formal concept analysis (FCA),
which is used for classifying the compared services to retrieve substitutes.

~ Reputation management framework for Web services In which we
propose an architecture with an assessment model for reputation manage-
ment of web services and their providers. The approach aims to accurately
assess the reputation of web services based on user feedback ratings.

2WSSIM is available at https://code.google.com/p/wssim/

https://code.google.com/p/wssim/

1.3. Contributions and main results 8

The proposed framework provides some solutions to the deficiencies and
limitations found on the literature. The contribution of this framework
can be summarized as follows:

– First, we propose a generic architecture for the management of web
service reputation to facilitate web service selection and recommenda-
tion. We describe the main components that handle feedback rating
acquisition, storing and aggregation, in addition to service recommen-
dation.

– Second, we propose an enhanced reputation assessment model that
encloses rating time sensitivity and user credibility factors. The first
factor permits to assign more weights to new feedback ratings. We
believe that the behavior of service providers is in continuous change
due to the dynamic nature of their environment. Therefore, an effec-
tive reputation assessment model should assign more importance to
recent feedback ratings.
The second factor ensures the evaluation of user’s honesty which has
its impact on considering fair feedback ratings. We apply a user pe-
nalization mechanism to exclude unfair ratings received from users
who do not guarantee a certain credibility (i.e., less or equal than a
threshold).

– We propose a formula for the evaluation of the overall reputation of
web service orchestration for better recommendation.

– Finally, we conduct experiments for evaluating the performance and
accuracy of the proposed reputation assessment model.

~ Regression-Based Bootstrapping technique of Web Service Rep-
utation Measurement [A] [167] in which we introduce a bootstrapping
model for evaluating the initial reputation of web services newly published.
The technique is based on three main phases:

– Provider reputation evaluation: The system assesses the reputation
of the new service provider from the reputation of its previously pub-
lished web services.

– Reputation estimation from similar web services: First, the system
selects among the long-standing web services those which are simi-
lar to the newcomer service. Second, the system builds an equation
model based on: i) reputation scores and ii) QoS values of similar ser-
vices. Finally, the system, based on the established model, estimates
a reputation value of the newcomer service.

1.4. Thesis outline 9

– Regression-based reputation estimation: Likewise to the second phase,
the system builds a multiple linear regression model from QoS and
reputation data of all long-standing web services. This model enables
the estimation of the unknown reputation value of newcomer services
from their known values of QoS.

The final reputation is assigned to the newcomer web service depending on
the results of the three phases.

1.4 Thesis outline
This thesis contains a background and state-of-the-art study, a description of the
proposed contributions, and some conclusions and perspectives. This content is
organized in 8 chapters as follows:

> Chapter 2 presents a background material on: Web Services fundamen-
tals (Sect. 2.2), some similarity measurement schemes and metrics used
to evaluate the similarity between texts and documents (Sect. 2.3), the
Formal Concept Analysis technique (FCA) for objects classification (Sect.
2.4). As well as basic concepts of reputation and trusts (Sect. 2.5).

> Chapter3 studies the related works, draws advantages and limitations of
existing approaches, and spotlights challenges and opening issues of thesis
related subjects.

> Chapter 4 describes the different phases of reliable web services orches-
tration’s life cycle (Sect. 4.2). Moreover, the chapter introduces an archi-
tecture for reliable web service orchestration (Sect. 4.3).

> Chapter 5 describes the proposed Web services similarity measurement
approach (Sect. 5.2). Then, it presents the tool WSSIM that implements
the approach (Sect. 5.3), as well as it describes the conducted experiments
and validation process (Sect. 5.4).

> Chapter 6 introduces an approach for the identification of service substi-
tutes. The chapter describes the illustrative example used alongside the
description of identification process (Sect. 6.2). Second, it covers the de-
scription of the architecture and the components of the approach (Sect.

1.4. Thesis outline 10

6.3). Third, it shows the conducted experiments and validation methodol-
ogy and obtained results (Sect. 6.2).

> Chapter 7 describes contributions four and five. It presents a framework
for web service reputation management. The chapter starts by describ-
ing the architecture and its core components (Sect. 7.2). It presents the
mathematical model proposed for the assessment of service and provider
reputations (Sect. 7.3). Then, it introduces the bootstrapping model and
its evaluation (Sect. 7.4). Finally, it presents the conducted experiments
for validating the proposed reputation assessment model (Sect. 7.5).

> Chapter 8 concludes the thesis with a summary of contributions (Sect.
8.1), and outlines some future research directions (Sect. 8.2).

Related publications
A- Okba Tibermacine, Chouki Tibermacine, Foudil Cherif, Regression-Based

Bootstrapping of Web Service Reputation, to appear in Proceedings of the
13th IEEE International Conference on Web Services (ICWS’15), Applica-
tion Track, New York, USA, June-July 2015. IEEE Computer Society.

B- Okba Tibermacine, Chouki Tibermacine, Foudil Cherif, A process to iden-
tify relevant substitutes for healing failed WS-* orchestrations, Journal of
Systems and Software, Elsevier, Volume 104, June 2015, Pages 1-16, ISSN
0164-1212.

C- Okba Tibermacine, Chouki Tibermacine and Foudil Cherif. A Practical
Approach to the Measurement of Similarity between WSDL-based Web
Services. In (RNTI) (French-Speaking Journal: Revue des Nouvelles Tech-
nologies de l’Information), special issue of selected papers from CAL 2013,
volume RNTI-L-7, 2014, Pages 3-18.

D- Okba Tibermacine, Chouki Tibermacine and Foudil Cherif. WSSim: a
Tool for the Measurement of Web Service Interface Similarity. In proceed-
ings of the french-speaking conference on Software Architectures (CAL’13),
Toulouse, France. May 2013.

It is important to note that all relevant publications co-authored by the au-
thor of this thesis are referenced in this chapter. The thesis mainly summarizes
these publications and in the remaining chapters their content is used without
being referenced individually.

Part I

State of the Art

Chapter 2

Background

Contents
2.1 Overview . 13
2.2 Web service fundamentals 13

2.2.1 Web Services . 13
2.2.2 Web service model and its underlying technologies 14
2.2.3 Quality of Service . 18
2.2.4 Web services composition 20
2.2.5 Web services composition life cycle 22
2.2.6 Web service composition languages 23

2.3 Similarity measurement schemes 26
2.3.1 Vector space model . 27
2.3.2 Term Frequency - Inverse Document Frequency 27
2.3.3 Latent Semantic Indexing 29
2.3.4 Similarity and Distance Measures 30

2.4 Formal Concept Analysis . 33
2.4.1 Case study . 33
2.4.2 Formal Context . 34
2.4.3 Formal Concept . 36
2.4.4 Object and attributes concepts 36
2.4.5 Subconcept and superconcept 36
2.4.6 Concept lattice . 36
2.4.7 FCA for web Services . 38

2.5 Trust and Reputation . 38
2.5.1 Trust . 39
2.5.2 Reputation . 39
2.5.3 Trust management systems 40
2.5.4 Reputation computation methods 40

2.1. Overview 13

2.6 Summary . 41

2.1 Overview
This chapter describes some of the background information needed to facilitate
the understanding of the research work described in the second part of this thesis.
Section 2.2 starts by giving a brief survey of the most important aspects of Web
services and Web service orchestrations. Section 2.3 shows some Information
Retrieval (IR) techniques used for measuring the similarity between structured
documents. These techniques are applied for evaluating the similarity between
web service interfaces as it is described in Chapter 5. In addition, Section 2.4
presents a classification technique called Formal Concept Analysis that we use
in our substitute identification process for classification of web services and their
substitutes. Moreover, Section 2.5 summarizes concepts and notions of reputa-
tion and trust in the web service context.

2.2 Web service fundamentals

2.2.1 Web Services
Web services have many definitions that range from the very generic to the very
specific. For instance, a web service is considered as an application accessible
to other application over the web (see e.g., [30]). This definition is very generic
and any resource with a universal Resource Locator (URL) can be seen as web
service.

A second definition provided by IBM is that " Web services are a new breed
of web application. They are self-contained, self-describing, modular applications
that can be published, located, and invoked across the web. Web services perform
functions, which can be anything from simple requests to complicated business
processes. Once a web service is deployed, other applications (and other web ser-
vices) can discover and invoke the deployed service" [112]. This formal definition
gives more details and stresses that web services should be open, that is, they
need to be published, located and invoked over the web.

In addition, another formal definition of web services is given by the World
Wide Web Consortium 1 (W3C) as follows :" a software application identified by
a Universal Resource Identifier (URI), whose public interfaces and bindings are
defined, and described using eXtensible Markup Language (XML). Its definition

1World Wide Web Consortium: www.w3c.org

www.w3c.org

2.2. Web service fundamentals 14

can be discovered by other software systems. These systems may then interact
with the web service in a manner prescribed by its definition, using XML based
messages conveyed by Internet protocols" [174]. This definition emphasizes that
web services should be able to be defined, described, discovered and clearly
mentions that XML is a part of the solution to allow web services to be integrated
into more complex distributed application.

Moreover, Papazoglou [125] summarizes the existing definitions into the fol-
lowing : "a Web service is a platform-independent, loosely coupled, self-contained,
programmable Web-enabled application that can be described, published, discov-
ered, coordinated, and configured using XML artifacts (open standards) for the
purpose of developing distributed interoperable applications".

There are two main categories of web services: the traditional SOAP-based
web services and the RESTful web services. The first category are also called
WS-* web services, their development depends on three important standard-
ization initiatives, i.e., WSDL, SOAP, UDDI. The registration, discovery and
invocation of these services are implemented by SOAP calls. The second cate-
gory of web services are based on the Representational State Transfer (REST)
model [63] which was introduced as an architectural style for building large-scale
distributed hypermedia systems. RESTful web services identified by URIs, and
interact through a uniform interface, i.e., a fixed set of operations of the Hyper-
text Transfer Protocol (HTTP): GET, PUT,DELETE and POST.

This thesis focuses only on the study of SOAP-based web services which are
used typically to integrate complex enterprise applications.

2.2.2 Web service model and its underlying technologies
In this subsection, we present the web service model, and a set of standards used
for describe, publish, discover and invoke web services.

Web service model

The basic web service model (see Figure 2.1) is set up of three types of partici-
pants (web service roles) including : service provider, service registry and service
client (requester). Interactions between these three participants are: service pub-
lishing, finding and binding (invoking). These interactions depend onWeb service
artifacts, which include service description and service implementation [192].

Participants in the Web service model are described as follows:

• Service provider is the owner of the web service. The owner holds the

2.2. Web service fundamentals 15

SERVICE REGISTRY

1

Service
Description

SERVICE CLIENT

Service
Request

SERVICE PROVIDER

Service
Description

XML

11

nn

1

WSDL

WSDLWSDL

WSDLWSDL

WSDLSOAP

WSDL

Bind and invoke

PublishFind

UDDI UDDI

Figure 2.1: W3C Web service reference model

implementation of the service application and makes it accessible via
the web (i.e., identified by an URI).
• Service client represents a human or a software agent that intends to

make use of some services to achieve a certain goal.
• Service registry (or service broker) is a searchable registry providing

service descriptions. It implements a set of mechanisms to facilitate
service providers to publish their service descriptions. Meanwhile, it
also enables service clients to locate services and get binding informa-
tions.

Interactions are organized in three modes:

• Service publication is to make the service description available in the
registry so that the service client can find it.
• Service lookup is to query the registry for a certain type of service and

then retrieve the service description.
• Service binding is to locate, contact, and invoke the service based on

the binding information in the service description.

Artifacts includes the service implementation and description:

2.2. Web service fundamentals 16

• Service implementation is a network accessible software module real-
ized by the service provider. It could be invoked by a service client or
act as a service client to interact with another service provider.
• Service description could contain the syntactic and semantic infor-

mation of the Web services. The syntactic information describes the
input/output of the operations, the binding information, the data
types, and so on.

The next subsection presents the different technologies used for the con-
cretization of the web service reference model, including WSDL, SOAP and
UDDI. These technologies are a subpart of the Web service technology stack.

Web Service Description Language

Legacy web services are described using the Web Service Description Language
(WSDL) [33]. The later is an XML-based language that contains several elements
to describe functionalities of a web service. Logically, a WSDL document can be
seen as two parts; an abstract and a concrete part. The abstract part describes
operations of the web service that form its interface, along with their input and
output parameters and the XML schema definition that specifies parameter data
types. The concrete part describes how the service should be bound, that is, it
describes the binding protocol and service’s endpoints.

A typical WSDL document has a root definition element <wsdl:definitions>,
which comprises the following sections:

– Service section (<wsdl:service>) specifies the service name and a collection
of concrete implementation endpoints of Web service.

– Port describes how a binding is deployed at a particular network endpoint.

– Binding section (<wsdl:service>) describes the implementation details of
how the elements in a portType are converted into a concrete implemen-
tation in a particular combination of data formats and protocols.

– PortType section (<wsdl:portType>) is a Web service’s abstract interface
definition where each child operation element defines an abstract method
signature.

– Messages section (<message>) defines the format of the message, or a set
of input or output parameters, referred to by the method signatures or
operations. A message is composed of parts.

– Types section (<wsdl:types>) defines the collection of all the data types
used in the Web service as referenced by the various message part elements.

2.2. Web service fundamentals 17

Simple Object Access Protocol

Simple Object Access Protocol (SOAP) [24] is an XML-based language that
defines a flexible binding framework for exchanging structural messages for in-
vocation and result response between web services. SOAP provides a message
construct that can be exchanged over a variety of underlying protocols (such as
HTTP/HTTPS TCP, UDP, BEEP, SMTP, or JMS).

A SOAP message is an ordinary XML document, consisting of a SOAP en-
velop, which is the root element of the message, with an optional header and
a SOAP body.The header contains information that indicate how the message
is routed to reach its final destination, and how it can be preprocessed and by
whom. The body is a container for mandatory information intended for the
ultimate recipient of the message.

Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI) [18] is an XML-based
standard that offers a mechanism to classify, catalog and manage web services,
so that they can be discovered, located and consumed [125].

UDDI provides two basic specifications that define a service registry’s struc-
ture and operation [44]:

– A definition of the information to provide about each service, and how to
encode it.

– A query and update API for the registry that describes how this informa-
tion can be accessed and updated.

The UDDI business registry consists of three directories:

– Business Entity (or white pages), which lists the providers and their
related basic information such as a company name, address, and phone
numbers, as well as other standard business identifiers like tax numbers.

– Business Service (or yellow pages), which provide a classification of ser-
vices based on standard taxonomies.

– Binding Template (or green pages), which provides information about a
company’s key business processes, such as operating platform, supported
programs, purchasing methods, shipping and billing requirements, and
other higher-level business protocols.

2.2. Web service fundamentals 18

It is important to note that UDDI’s are not the unique place to search for web
services; service discovery can be conducted also through web service portals and
search engines such as ProgrammableWeb 2, WebServiceList 3 and Xmethods4.

2.2.3 Quality of Service
Quality of Service (QoS) is a set of characteristics (properties) that describes
the non-functional aspects (quality aspect) of a service. QoS refers to the ability
of the service to respond to expected invocations and to perform them at a
level that corresponds to the mutual expectations of both its provider and its
consumer [125]. Truong et al. [168] presented a detailed taxonomy of web services
QoS (see figure 2.2). By evaluating the QoS aspects of a set of Web services that
share the same goals, a consumer could identify which service meets the quality
requirements of the request. QoS attributes are influenced by the Internet’s
dynamic and unpredictable nature. Therefore, delivering good QoS and selecting
services with Good QoS are critical and significant challenges [8].

In the following we present a list of QoS parameters for web services:

– Performance. Represents the speed in which a service request can be com-
pleted, measured in terms of throughput, response time, execution time,
latency and transaction time [69,154]:

– Throughput. Number of Web service requests served within a period
of time [154].

– Response time. Time consumed between invocation and completion
of the requested service operation [45,69].

– Processing time (execution time). Time taken by a Web service to
process a request [69].

– Latency. Time consumed between the service request arrives and the
moment it is served [83].

– Transaction time. Time used by the service to complete a transaction
[69].

– Availability. Probability that the system is ready to be used. The service
should be available when it is invoked [69].

2http://www.programmableweb.com
3http://www.webservicelist.com
4http://www.xmethods.com

http://www.programmableweb.com
http://www.webservicelist.com
http://www.xmethods.com

2.2. Web service fundamentals 19

QoS

Performance

Dependability

Configuration

Cost

CustomMetric

Time

Ratio

Availability

Accessibility

Accuracy

Reliability

Capacity

Manageability

Security

VirtualOrganization

Location

LevelOfService

ServiceVersion

SupportedStandard

Frame

ProcessingTime

ResponseTime

Latency

ServiceThroughput

DataTransferRate

earliestStartTime

latestStartTime

earliestEndTime

latestEndTime

CompTime

CommTime

Authentication

Authorization

SecurityLevel

Integrity

Confidentiality

Accountability

GridSite

Organization

Geography

BestEffort

Guaranteed

TransportLevel

MessageLevel

EncryptionLevel

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Figure 2.2: QoS parameters [168]

2.2. Web service fundamentals 20

– Reliability. Probability that the request is correctly responded, maintaining
the service quality [45]. A measure of reliability can be the number of
failures per period of time (day, week, etc.) [69,154].

– Accessibility. Property of a service to serve a request from a consumer [154].

– Security. Ability to ensure authorization, confidentiality, traceabil-
ity/auditability, data encryption, and non-repudiation [69].

– Scalability. Ability of increasing the computing capacity of a service
provider’s computer system to process more requests, operations or trans-
actions in a given period of time [69].

2.2.4 Web services composition
The true capacity of SOA and web service technologies is achieved through com-
posing multiple services into more capable and powerful applications [146]. Web
service composition is performed by aggregating either atomic (also called ele-
mentary [144]) or composite services. A composite service [19,28] is an umbrella
structure that brought together other composite and atomic services that collab-
orate to implement a set of operations (Or a business process, i.e, a set of logically
related tasks performed to achieve a well-defined business outcome [125]). A well
known example of composite service is the travel preparation service (e.g., [192]),
which integrates services for booking flights, booking hotels, searching for attrac-
tions, etc.

Service composition can be realized either by service orchestration or service
choreography [129]. Orchestration is where a central or master element (service)
controls all aspects of the process (see Figure 2.3 (a)). Choreography is where
each element of the process is autonomous and controls its own behavior (see
Figure 2.3 (b)).

Web services orchestration

Web services orchestration represents a single executable business process that
coordinates the interaction among the different services, by describing a flow
from the perspective and under control of a single endpoint [125]. A service
orchestration includes management of the transactions between these services,
including any necessary error handling, as well as describing the overall process
[146]. In a services orchestration, invoked Web services neither know and nor
need to know that they are being orchestrated as part of the high level service
(i.e., the composite service) and that they are playing a role in a business process
definition. Only the central coordinator of the orchestration is aware of this goal,

2.2. Web service fundamentals 21

(B) Service Choreography

(A) web service orchestration

Composite
Service

Web Service A

Web Service C

Web Service A

Web Service B

Web Service D

Web Service C

Web Service

Web Service

B

D

invoke

reply

invoke

reply

re
ceive

se
nd

se
nd

re
ceive

send
receive

receivesend

invoke

reply

invoke

reply

Figure 2.3: Service orchestration and service choreography

so the orchestration is centralized with explicit definitions of operations and the
order of invocation of web services [81].

Standards for web service orchestration include the Business Process Model-
ing Notation (PBMN) [179] and the Business Process Execution Language (WS-
BPEL or BPEL in short) [4, 22]. The former is used for defining the visual
representation of the sequence, and BPEL represents the code that executes the
sequence. The two languages are largely supported by the industry.

Web services choreography

Service choreography is non-executable abstract process that defines the interac-
tion protocol between the involved web services from a global perspective. That
is, each partner describes its part in the interaction, which is defined by public
exchange of messages, rules of interaction and agreements between two or more
business process endpoints [146]. Choreography is typically associated with the
interactions that occur between multiple web services rather than specific busi-
ness process that a single party execute like in service orchestration.

The standard that support web service choreographies is the Web Service
Choreography Description Language [84] (WS-CDL).

2.2. Web service fundamentals 22

Figure 2.4: Service composition life cycle [146]

2.2.5 Web services composition life cycle
A service composition life cycle is divided into four phases, including definition,
service selection, deployment and execution phases. Figure 2.4 schematizes the
service composition life cycle. These phases are described according to Sheng et
al. [146] as follows:

– Definition phase: in this phase, the designer specifies the services compo-
sition requirements which are then decomposed, either semi-automatically
or automatically, into an abstract process. The abstract process specifies
a set of activities, the control and data flow among them, the Quality of
Service (Qos) requirements, and the exceptional behavior.

– Service selection phase: in this phase, for each activity in the business pro-
cess, relevant web services that match activity’s requirements are located
by searching services registries or service search engines. Web services
search is conducted based on information contained in the published ser-
vice description document. Often, more then one service candidate will
meet these requirements. Therefore, the best matched service with the
highest Qos are selected. Once the required web services are identified and

2.2. Web service fundamentals 23

bound to the corresponding activities, the constructed composite service is
produced.

– Deployment phase: The constructed composite service is deployed on
servers, allowing its instantiation and invocation by end users. The re-
sult os this phase is an executable composite service.

– Execution phase: in this phase, instances of the composite service are cre-
ated and executed by the execution engines, which is responsible for in-
voking the individual service components. During composite service run
time, monitoring tasks, including logging, execution tracking, performance
measuring and exception handling, should be performed [146].

2.2.6 Web service composition languages
In this subsection, we present some standard languages used in academia and
industry for web service composition.

Web Services Business Process Execution Language

Web service Business Process Execution (WS-BPEL) [4], or BPEL in short, is an
XML-based language for Web services orchestration. In BPEL, the orchestration
result is called a process, participating services are called partners, and message
exchange or intermediate result transformation is called an activity.

A partner represents either a consumer service of the implemented business
process, or a provider of a service used in the business process. That is, it
can be a web service that the process invokes, or any client that invokes the
process. The BPEL interacts with each partner using a partnerLink construct.
The partner link establishes a conversation channel between the process and the
partner service.

BPEL introduces several types of primitive activities to:

– allow for interaction with the applications being composed (e.g., invoke,
reply, and receive activities).

– wait for some time (the wait activity).

– copy data from one place to another (the assign activity).

– indicate error conditions (the throw activity).

– terminate the entire composition instance (the exit).

– do nothing (the empty activity).

2.2. Web service fundamentals 24

These primitive activities can be combined into more complex ones using
structured activities (also called constructs) provided by BPEL such as se-
quence, while, If and flow.

Moreover, a particular construct offered by BPEL is scope, which provides a
way to divide a complex business process into hierarchically organized parts. In
a scope, there is a collection of activities that can have their own variables, fault
handlers, and compensation handlers.

A fault handler gets executed when an exception arises, for example through
the execution of the throw activity, while compensation handlers are triggered
due to faults or through compensate activities that force compensation of a scope.

An interesting feature of BPEL is its support for two distinct styles of process
modeling: the graph-oriented style, involving definition of a composition using
graph primitives (nodes and edges), and the ’algebraic’ style derived from process
calculi, in which complex control constructs (such as the compound activities
above) result in implicit control flow [146]. Each of these alone provides sufficient
expressibility. Supporting both styles gives the designer maximum flexibility to
develop a model in the most intuitive way.

Web Services Choreography Description Language

Web Services Choreography Description Language (WS-CDL) [84] is an XML-
based language that describes peer-to-peer collaborations of participants by
defining their observable behavior. WS-CDL captures service interactions from
a global perspective, meaning that all participating services are treated equally,
which is different from BPEL where service interactions are described from one
single participant perspective. WS-CDL supports exception handling through a
special kind of workunit, namely Exception, which is associated with a choreogra-
phy and is enabled when an exception occurs. Another special kind of workunit is
Finalizer, which is enabled when its associated choreography completes success-
fully. A finalizer can confirm, cancel or modify the effects of completed actions
of the choreography, which can be used to provide a compensation mechanism,
as well as a range of coordination models.

Business Process Modeling Language

Business Process Modeling Language, or BPML in short, is an XML-based lan-
guage that is proposed by the Business Process Management Initiative5. Initially
developed to describe business processes that can be executed by a business
process management system. The later version of BPML incorporates many
concepts of Web Service Choreography Interface (WSCI), which focuses on the

5(BPMI.org)

(

2.2. Web service fundamentals 25

choreography of Web services. BPML provides basic and structural activities
that are similar to those in BPEL. Basic activities are used to invoke the avail-
able services (action), assign a new value to a message (assign) and instantiate
a process (call). Structured activities are used to manage the branch selection
(choice and switch), repetition (until and while), sequential (sequence) and con-
current activities (all). BPML allows developers to schedule tasks to determine
the time to perform the task by using schedule.

A context is important element in BPML. It contains local definitions that
specify common behavior for all activities within the same context, which can
be used to exchange information and coordinate execution. Signal is used to
synchronize between parallel activities executing within the same context. De-
signed for long-running business processes, BPML also supports the feature of
persistency. Nested processes could be established by aggregating several sub-
processes. Two transaction mechanisms, atomic and open nested transactions,
are provided in BPML. The former is for short-lived transactions while the lat-
ter is for long-running transactions. BPML also provides the exception handling
mechanism (exception process) to deal with exceptional events, and the compen-
sation mechanism (compensation process) to reverse the effects of a completed
activity [146].

Electronic Business Using XML

Electronic Business Using XML or ebXML in short, aims at defining a set of spec-
ifications for enabling business-to-business (B2B) interactions among companies
of different size. ebXML consists of the following components: (1) Messaging
service provides a standard way to exchange business messages between orga-
nizations. The messaging service does not rely on any particular file transport
mechanism (such as SMTP, HTTP, or FTP) or network for exchanging data. (2)
Registry is a database of items that support doing business electronically. This
component stores important information about businesses such as XML schemas
of business documents, definitions of library components for business process
modeling, and trading partner agreements [146].

(3) Trading partner information. The Collaboration Protocol Profile (CPP)
provides the definition of an XML document that specifies the details of how
an organization is able to conduct business electronically. The Collaboration
Protocol Agreement (CPA) specifies the details of how two organizations have
agreed to conduct business electronically. (4) Business Process Specification
Schema (BPSS) provides the definition of an XML document modeling business
processes (i.e., composite services). It identifies the overall business process, the
roles, transactions, identification of the used business documents (the DTDs or

2.3. Similarity measurement schemes 26

schemas), document flow, legal aspects, security aspects, business level acknowl-
edgments, and status.

OWL-S

OWL-S previously DAML-S (DARPA Agent Markup Language for Web Ser-
vices), is a language that provides the ability to describe and reasoning semanti-
cally over services. This language comprises three ontologies: (1) service profile,
(2) process model, and (3) grounding ontology. The service profile ontology is
used for describing services to facilitate the service discovery. Service descriptions
and queries are built from a description of functional properties (e.g., inputs, out-
puts, and preconditions) and non-functional properties (e.g., QoS parameters).
Moreover, the service profile class can be specialized to create profile taxonomies
that subsequently describe different classes of services. Besides, Process models
describe the composition and execution of Web services. The process model is
used both for reasoning about possible compositions (e.g., validation) and for
controlling the enactment and invocation of a service. OWL-S defines three
possible process classes: composite, simple, and atomic.

Atomic processes are directly invocable and have no subprocesses. Simple
processes are not invocable and provide a means of describing service or process
abstractions. A simple process does not have any specific binding to a physical
service and thus has to be realized either by an atomic process, or expanded into
a composite process. Composite processes are hierarchically defined workflows,
consisting of atomic, simple and other composite processes. Finally, the ground-
ing of a service specifies the details of how to access the service. The process
model is mapped to a WSDL description of the service, through a thin ground-
ing. Each atomic process is mapped to a WSDL operation, and the OWL-S
properties used to represent inputs and outputs are grounded in terms of XML
data types. Additional properties pertaining to the binding of the service are
also provided (e.g., the IP address of the machine hosting the service, the ports
used to expose the service) [146].

2.3 Similarity measurement schemes
Similarity measures are essential for pattern recognition problems such as cluster-
ing, classification and information retrieval problems [96]. This section presents
some similarity metrics and techniques that we employ in the assessment of
similarity between web service interfaces (for details, see similarity assessment
approach in Chapter 5).

2.3. Similarity measurement schemes 27

2.3.1 Vector space model
To reduce the analysis complexity of textual documents and to make them easier
to handle, document has to be transformed from the full text version to docu-
ment vector which describes the content of the text document. One of the used
technique for such transformation is the vector space model (VSM). Vector space
model [140] is an algebraic model that represents text document as a vector of
identifiers, such as, index terms.

The procedure of VSM can be divided to three phases: (i) document indexing
where content bearing terms are extracted from the full text document. (ii)
weighting of the indexed terms to enhance retrieval content of document relevant
to the user. (iii) ranking documents with respect to user’s query according to a
similarity measure.

With a VSM, both documents and queries are represented as vectors :

dj = {w1,j, w2,j, ..., wt,j}

qj = {w1,q, w2,q, ..., wn,q}

Where, di is the document number i in the corpus (collection) and wi,j, 1 ≤ i ≤ t

is the words (terms) of this document, and qj in the user query number j. If a
term occurs in the document, its value in the vector is non-zero. Different way
of computing these values, also known as (term) weights, are proposed in the
literature, including Term Frequency -Inverse Document Frequency (TF-IDF)
for instance.

2.3.2 Term Frequency - Inverse Document Frequency
Term Frequency - Inverse Document Frequency or (TF-IDF for short) is a nu-
meric statistic technique that is used for scoring and term indexing. TF-IDF
evolved from IDF [150] that comes with the idea that a term in a query which
occurs in many documents is not a good discriminator, and should be given less
weight than one which occurs in few documents [196]. besides, TF measures how
frequently a term occurs in a document.

The basic formula of TF-IDF for term weighting is the following :

wi,j = tfi,j × log(N
dfi

)

where

• wi,j is the weight for the ith term in the jth document.

• N is the number of document in the collection (corpus).

2.3. Similarity measurement schemes 28

• tfi,j is the term frequency of the ith term in the jth document.

• dfi is the document frequency of the ith term in the collection.

Example

A simplified example of the vector space model with TF-IDF is presented in this
subsection (The example is taken from [74]). Consider a very small collection C
that consists in the following three documents:

d1:" new york times"

d2:" new york post"

d3:" los angeles times"

The total number of documents is N = 3, the idf values for the term are:

new log2(3/2) = 0.584

york log2(3/2) = 0.584

times log2(3/2) = 0.584

post log2(3/1) = 1.584

los log2(3/1) = 1.584

angeles log2(3/1) = 1.584

For all the document, we calculate the tf scores for all the terms in C. We
assume the words in the vector are ordered alphabetically.

angeles los new post times york
d1 0 0 1 0 1 1
d2 0 0 1 1 0 1
d3 1 1 0 0 1 0

Then, we multiply the tf scores by the idf values for each term.

angeles los new post times york
d1 0 0 0.584 0 0.584 0.584
d2 0 0 0.584 1.584 0 0.584
d3 1.584 1.584 0 0 0.584 0

2.3. Similarity measurement schemes 29

Given the following query "new york times", we calculate the tf − idf vector
for the query, and compute the score of each document in C in relative to this
query, using the cosine similarity measure. When computing the tf − id values
for the query terms we divide the frequency by the maximum frequency (2) and
multiply with the idf values.

q 0 0 (2/2)*0.584=584 0 (1/2)*0.584=0.292 0

We calculate the length of each document and of the query

Length of d1 = sqrt(0.584ˆ2+0.584ˆ2+0.584ˆ2)=1.011

Length of d2 = sqrt(0.584ˆ2+1.584ˆ2+0.584ˆ2)=1.786

Length of d3 = sqrt(1.584ˆ2+1.584ˆ2+0.584ˆ2)=2.316

Length of q = sqrt(0.584ˆ2+0.292ˆ2)=0.652

Then, the similarity values are :
cosSim(d1,q) = (0∗0+0∗0+0.584∗0.584+0∗0+0.584∗0.292+0.584∗0)/(1.011∗0.652) = 0.776

cosSim(d2,q) = (0*0+0*0+0.584*0.584+1.584*0+0*0.292+0.584*0) / (1.786*0.652) = 0.292

cosSim(d3,q) = (1.584*0+1.584*0+0*0.584+0*0+0.584*0.292+0*0) / (2.316*0.652) = 0.112

According to the similarity values, the order in which the documents are returned
as result to the query will be :d1,d2,d3.

2.3.3 Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an extension of the vector space method [49].
LSI can retrieve relevant documents even when they do not share any words with
the query. Therefore if only a synonym of the keyword is present in a document,
the document will be still found relevant. The idea behind LSI is to transform
the matrix of documents by terms in a more concentrated matrix by reducing
the dimension of the vector space. The number of dimensions becomes much
lower, there is no longer a dimension for each term, but rather a dimension for
each ’latent’ concept or group of synonyms (though it is not clear what is the
desired number of concepts). The dimensionality of the matrix is reduced by a
mathematical process called Singular Value Decomposition.

The advantage of LSI is its strong formal framework that can be applied
for text collections in any language and the capacity to retrieve many relevant
documents. But the calculation of LSI is expensive, so in practice it works only
for relatively small text collections [74].

2.3. Similarity measurement schemes 30

2.3.4 Similarity and Distance Measures
Terminology

Similarity: measure of how close to each other two instances are. The closer
the instance are to each other, the larger is the similarity value.

Dissimilarity: measure of how different two instances are. Dissimilarity is
large when instances are very different and is small when they are close.

Proximity : refers to either similarity or dissimilarity.

Distance metric : a measure of dissimilarity that obeys to the following laws
(Laws of triangle norm) [163]:

• d(x, y) ≤ 0; d(x, y) = 0, iffx = y;
• d(x, y) = d(y, x);
• d(x, y) + d(y, z) ≥ d(x, z).

Conversion of similarity and dissimilarity measures [50]: if we denote
s(x, y) the similarity between x and y. We can revert the similarity to
serve as the dissimilarity measures (d(d, y)) and vice versa. Thus, if we
have (d(d, y)) we can use

s(x, y) = 1
d(x, y)

or
s(x, y) = 1

d(x, y) + 0.5
as the corresponding similarity measure. if similarity measure values range
between 0 and 1 (so called degree of similarity), then the corresponding
dissimilarity measures can be defines as

d(x, y) = 1− s(x, y)

Euclidean Distance

The Euclidean distance between two points is given by Minikowski distance met-
ric. It can be used in one-, two-, or higher-dimensional space. Mathematically,
the Euclidean distance between two points p and q is given as follows [142]:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2

where n is the number of dimensions. The euclidean distance measures the
numeral difference for each corresponding attributes of point p and q. Then, it
combines the square of differences in each dimension into an overall distance.

2.3. Similarity measurement schemes 31

Cosine Similarity

The cosine similarity is a measure of similarity of two non-binary vector. The
typical example is the document vector, where each attribute represents the
frequency with which a particular word occurs in the document. Each document
vector is sparse since it has relatively few non-zero attributes. Therefore, the
cosine similarity ignores 0-0 matches. The cosine similarity is defined by the
following equation [160]:

cos(A,B) = A×B
||A||||B||

=

n∑
i=1

Ai ×Bi√
n∑
i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2
.

The resulting similarity ranges from -1 meaning exactly opposite, to 1 mean-
ing exactly the same. with 0 usually indicating independence, and in-between
values indicating intermediate similarity or dissimilarity.

For text matching, the attribute vectors A and B are usually the term fre-
quency vectors of the documents. The cosine similarity can be seen as a method
of normalizing document length during comparison. In the case of information
retrieval, the cosine similarity of two documents will range from 0 to 1, since
the term frequencies (tf-idf weights) cannot be negative. The angle between two
term frequency vectors cannot be greater than 90.

Jaccard Coefficient

Jaccard coefficient [77] and distance measures respectively the similarity and
dissimilarity (diversity) between finite sample sets. This coefficient is defined
as the size of the intersection between the two sets divided by the size of their
union.

Mathematically, Let A and B be two finite sets. The Jaccard coefficient that
measures the similarity between the two sets is defined as follows:

J(A,B) = |A ∩B|
|A ∪B|

.

If the two sets are empty, we define J(A,B) = 1. Clearly, 0 ≤ J(A,B) ≤ 1.
The Jacard distance is defined as follows:

dJ(A,B) = 1− J(A,B) = |A ∪B| − |A ∩B|
|A ∪B|

.

2.3. Similarity measurement schemes 32

Levenshtein Distance

Levenshtien [92] is a string metric for measuring the distance between two strings
(character sequences). It is defined as the minimum number of operations to
transform one string into the other, where the operations may be deletion of a
character, insertion of a character or substitution of a character. For instance,
the distance between the Word take and cake is one, because the character t in
the first word must be substituted by character c to get the second word.

Mathematically, the levenshtien distance between string a and b is given by
the function leva,b(|i|, |j|), which is defined as follows:

leva,b(i, j) =

max(i, j) if min(i, j) = 0,

min

leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + 1(ai,bj)

otherwise.

where, 1(ai,bj) is the indicator function equal to 0 when (ai = bj) and 1
otherwise.

Jaro-Winkler Distance

Jaro-Winkler distance [181] is a similarity measurement distance between strings.
It is a variant of the Jaro distance proposed in [78]. The Jaro measure is the
weighted sum of percentage of matched characters. Winkler increased this mea-
sure for matching initial characters, then rescaled it. The higher the Jaro-winkler
distance for two strings is, the more similar the strings are. The score is normal-
ized such that 0 equates to no similarity and 1 is an exact match.

Mathematically [36], given strings s = a1...aK and t = b1...bL, define a charac-
ter ai in s to be common with t there is a bj = ai in t such that i−H ≤ j ≤ i+H,
where

H = min(|s|, |t|)
2

. Let s′ = a′1...a
′
K be the characters in s which are common with t (in the

same order they appear in s) and let t′ = b′1...b
′
L be analogous; now define a

transposition for s′ and t′ to be a position i such that a′i , b′i. Let Ts′,t′ be half
the number of transpositions for s′ and t′. The Jaro similarity metric for s and
t is

Jaro(s, t) = {
0 if s’=0,
1
3

(
|s′|
|s| + |t′|

|t| + |s′|−Ts′,t′

|s′|

)
otherwise. }

2.4. Formal Concept Analysis 33

The Winkler variant uses the length P of the longest common prefix of s and
t. Letting P ′ = max(P, 4) we define

Jaro-Winkler(s, t) = Jaro(s, t) + P ′

10 .(1− Jaro(s, t))

For illustration, given the string s MARTHA and t MARHTA, we find :
|s′| = 6, |s| = 6 and |t| = 6. There are mismatched characters T/H and H/t,
thus, T = 2

2 = 1. The Jaro score between s and t :

Jaro(s, t) = 1
3

(6
6 + 6

6 + 6− 1
6

)
= 0.944

To find the JaroWinkler score, we have P ′ = 3. Using the standard weight (1
10)

we get:
Jaro-Winkler(s, t) = 0.944 + 3

10 .(1− 0944) = 0.961.

2.4 Formal Concept Analysis
Formal Concept Analysis (FCA) [67, 180] is a technique of data mining and
branch of mathematical lattice theory. FCA is used, among others, in data anal-
ysis, information retrieval, software engineering and data mining. FCA analyzes
data which describes a relationship between groups of objects that share common
attributes and provides an associated graphical representation.

The main goal of FCA is to model concepts of thought as a unit of two parts:

– The concept Extension which comprises all objects that belong to the con-
cept.

– The concept Intention which contains all attributes that these objects
share.

We present in this section the fundamental concepts of FCA.

2.4.1 Case study
We explains the FCA technique using a case study about some programming
language classification 6. Tables 2.1 classifies some programming languages ac-
cording to the following criterion:

6 This classification is taken from the following website: http://techdistrict.kirkk.
com/2009/03/30/programming-language-classification/ (visited:01/03/2015)

http://techdistrict.kirkk.com/2009/03/30/programming-language-classification/
http://techdistrict.kirkk.com/2009/03/30/programming-language-classification/

2.4. Formal Concept Analysis 34

Table 2.1: Programming language classification table

Language Type
System

Problem
Space

Runtime
Environment Paradigm

Java Static General Managed OO, Imperative
Ruby Dynamic General Managed OO, Imperative
C Static General Unmanaged Procedural, Imperative
C++ Static General Unmanaged OO, Imperative
Python Dynamic General Managed OO, Imperative
PHP Dynamic General Managed OO, Imperative
Fortran Static General Unmanaged Procedural, Imperative
Perl Dynamic General Managed Procedural, Imperative
COBOL Static General Managed Procedural, Imperative
SQL Dynamic DSL Managed Declarative
WS-BPEL Dynamic DSL Managed Declarative
Lua Dynamic General Managed Functional, Imperative
smalltalk Dynamic General Unmanaged OO, Imperative
Objective-C Static General Unmanaged OO, Imperative
ABAP Static General Managed OO, Imperative
Erlang Dynamic General Managed Functional
F# Static General Managed OO, Functional
Scala Static General Managed OO, Imperative, Functional
M Dynamic Purpose Managed Declarative
Clojure Dynamic General Managed OO, Imperative, Functional

– Type system: Indicates whether the la language is Static or Dynamic.

– Problem space: indicates if the language isGeneral, orDomain Specific,
or for a given Purpose.

– Run-Time environment: indicates if the language’s environment is Man-
aged (i.e., garbage collection, etc.) or an Unmanaged environment.

– Paradigm: indicates to which programming paradigm the language be-
longs; Object-Oriented (OO), Procedural, Functional, Imperative, or
Declarative.

2.4.2 Formal Context
A formal context is denoted asK = (G,M, I) where G is a set of objects,M is
a set of attributes, and I is a binary relation betweenG andM (I ⊂ G×M),
(g,m) ∈ I is read: "object g has attribute m" such that g ∈ G and m ∈M .

2.4. Formal Concept Analysis 35

Table 2.2: A formal context of programming language classification

D
yn

am
ic

St
at
ic

G
en

er
al

D
SL

Pu
rp
os
e

M
an

ag
ed

U
nm

an
ag

ed

O
O

Im
pe

ra
tiv

e

D
ec
la
ra
tiv

e

Pr
oc
ed

ur
al

Fu
nc

tio
na

l

Java x x x x x
Ruby x x x x x
C x x x x x
C++ x x x x x
Python x x x x x
PHP x x x x x x
Fortran x x x x x
Perl x x x x x
COBOL x x x x x
SQL x x x x
WS-BPEL x x x x
Lua x x x x x
smalltalk x x x x x
Objective-C x x x x x
ABAP x x x x x
Erlang x x x x
F# x x x x x
Scala x x x x x x
M x x x x
Clojure x x x x x x

A formal context is represented as a cross table in which, objects appear as
row labels and attributes as column labels. A cross in the cell (g,m) of this table
indicates that the object g has the attribute m [8].

From the language classification case study, we build a formal context of pro-
gramming languages G={Java, Ruby, C, C++, Python, PHP, Fortran, Perl,
COBOL, SQL, WS-BPEL, Lua, Smalltalk, Objective-C, ABAP, Erlang, F#,
Scala, M, Clojure} and their related characteristics M={Dynamic, Static, Gen-
eral, DSL, Purpose, Managed, Unmanaged, OO, Imperative, Declarative, Proce-
dural, Functional}. The corresponding formal context is depicted in Figure 2.2.

In addition, for a setX ⊆ G of objects, we define the setX ′ ⊆M of attributes,
which are common to the objects in X, as follows:

X ′ = {m ∈M |gIm, ∀g ∈ X}

2.4. Formal Concept Analysis 36

Analogously, we define for a set Y ⊆M of attributes, the set Y ′ ⊆ G of objects,
which have all the attributes in Y , as follows:

Y ′ = {g ∈ G|gIm, ∀m ∈ Y }

For the example, if we take the set X={C, PHP, Fortran} from Table 2.1,
the set of common attributes X ′ =({C, PHP, Fortran})’={General, Imperative,
Procedural}.

2.4.3 Formal Concept
A formal concept of the context K = (G,M, I) is a pair (X, Y), where X ⊆ G

is called the extent, Y ⊆ M is called the intent, X ′ = Y (or equivalently
Y ′ = X), meaning that a concept is a maximal collection of objects sharing a
maximal collection of attributes. The set of all concepts of the context K is
denoted as B(G,M, I), The closure operator of X is defined as X ′′ = X [8].

For instance, ({C, PHP, Fortran},{General, Imperative, Procedural}) is a
formal concept. However, ({Objective-C},{Static, General, Unmanaged, OO,
Imperative}) is not a concept, because ({Objective-C})’= {Static, General, Un-
managed, OO, Imperative} while ({Static, General, Unmanaged, OO, Impera-
tive})’= {Objective-C, C++}.

2.4.4 Object and attributes concepts
For an object g ∈ G, we define its object intent as g′ = { m ∈ M |gIm}.
Analogously, we define for an attribute m ∈ M its attribute extent as m′
={g ∈ G|gIm}. Hence, an object concept (g′′, g′) is denoted as γg and the
attribute concept(m′,m′′) is denoted µg.

For example, γ(SQL) is ((SQL)′′,(SQL)’)=({SQL, WS-BPEL}, {Dynamic,
DSL, Managed, Declarative}).

2.4.5 Subconcept and superconcept
If we have two concepts (X1,Y1) and (X2,Y2), we say that (X1,Y1) is a subcon-
cept (X2,Y2), when X1 ⊆ X2 (equivalently Y1 ⊆ Y2). Inversely, we say that
(X2,Y2) is a superconcept of (X1,Y1). The relation between the two concepts
is (X1,Y1) ≤ (X2,Y2), the relation ≤ is the order relation of the concepts [8].

2.4.6 Concept lattice
The B(G,M, I) provided with the order relation ≤ is a concept lattice and is
denoted as B(G,M, I).

2.4. Formal Concept Analysis 37

Figure 2.5: The Concept Lattice for the Context in Table 2.2

Figure 2.6: The resulted concept lattice focusing on one concept

2.5. Trust and Reputation 38

Figure 2.5 depicts the lattice built from the context language classification
context shown in Table 2.2. The lattice is generated using the concept Explorer
software [189]. Figure 2.6 represents the lattice when we focus on one of the
identified concepts.

2.4.7 FCA for web Services
In the context of web services, FCA has been successfully applied for web service
selection and classification, because it offers a formal classification and brows-
ing mechanism thereby allowing the organization of web services in groups that
share common characteristics (e.g. similarity values, keywords, QoS attributes,
operation signatures, and/or functionalities). In addition, FCA allows to visually
representing this classification by concept lattices that facilitate the navigation
and the browsing for needed services and their potential substitutes.

Technically, a concept in the web service context is modeled in a unit of two
parts:

1. Concept extension (G) which comprises all the considered web services. In
specific cases, the concept extension comprises parts of the web services
such as the operations, or even more input and output messages.

2. Concept intention (M) which holds the manipulated attributes that
could be keywords, operations, messages,functionalities, QoS attribute,
or only meaningful strings that represent any other web service (opera-
tion/message) characteristics.

During FCA application for the classification of web services, we build the
so-called square concepts. They are defined as concepts with equal intention
and extension sets ([8]); i.e. these concepts form square gatherings on the
binary context matrix. They allow the identification of groups of mutually related
objects (web services, operations, or messages). A better recognition of square
concepts is achieved by performing mutual column/line interchange in the binary
context matrix. Concrete examples about square concepts are provided during
the presentation of the identification process of service substitutes.

2.5 Trust and Reputation
The development of distributed software systems requires the interaction of en-
tities (e.g., agent, services) and the use of resources from diverse organizations
throughout a network. The concept of trust is crucial to ensure secure inter-
actions, especially when these entities surpass the boundaries of a community,
which has clear security preferences [3].

2.5. Trust and Reputation 39

2.5.1 Trust
Trust is a directional relationship between two parties that can be called trustor
and trustee. The trustor could be any "thinking entity" that has the ability
to make assessment and decision based on received information and experience.
The trustee can be any physical or abstract entity such as organization, person,
information, service, etc [79].

The literature uses the term trust with a variety of meanings [37]. Two
main interpretations are to view trust as the perceived reliability of something
or somebody, called "reliability trust", and to view trust as a decision to enter
into a situation of dependence, called "decision trust".

– Reliability trust: Trust is the subjective probability by which an indi-
vidual, A, expects that another individual, B, performs a given action on
which its welfare depends [80].

From this definition, trust is primarily defined as the trustor’s estimate of the
trustee’s reliability (e.g. expressed as probability) in the context of dependence
on the trustee.

– Decision Trust : Trust is the extent to which a given party is willing to
depend on something or somebody in a given situation with a feeling of
relative security, even though negative consequences are possible.

In this definition, trust is primarily defined as the willingness to rely on a
given object, and specifically includes the notions of dependence on the trustee,
and its reliability.

Both reliability trust and decision trust reflect a positive belief about some-
thing on which trustor depends for his welfare. Reliability trust is most naturally
measured as a discrete or continuous degree of reliability, whereas decision trust
is most naturally measured in terms of a binary decision

2.5.2 Reputation
The concept of reputation is related to that of trustworthiness. According to
Merriam-Webster’s online dictionary reputation is defined as follows:

– Reputation :The overall quality or character as seen or judged by people
in general.

2.5. Trust and Reputation 40

Reputation can be considered as a collective measure of trustworthiness (in
the sense of reliability) based on the referrals or ratings from members in a
community. An individual’s subjective trust can be derived from a combination
of received referrals and personal experience. In order to avoid dependence and
loops it is required that referrals be based on first hand experience only, and not
on other referrals. As a consequence, an individual should only give subjective
trust referral when it is based on first hand evidence or when second hand input
has been removed from its derivation base [80].

Reputation can relate to a group or to an individual. A group’s reputation can
for example be modeled as the average of all its members’ individual reputations,
or as the average of how the group is perceived as a whole by external parties.
The study of Tadelis et al. [159] have shown that belonging to a given group will
inherit an a priori reputation based on that group’s reputation. If the group is
reputable all its individual members will a priori be perceived as reputable and
vice versa.

2.5.3 Trust management systems
Trust Management Systems (TMS) are classified into three categories [156]:

– Credential-based TMS: In these systems, service provider and the pro-
vided service are both trusted, but service requesters are not. Service
provider use credentials to estimate the trustworthiness of service re-
questers, and based on the estimation the provider decide whether to grand
to service or not to its requesters.

– Social network-based TMS: These systems are based on social net-
works. Reputation is measured based on social relationships.

– Reputation-based TMS: in such systems, the service provider and its
service are both not trusted. Service requesters select services based on
the reputation values. Reputable service providers are selected to provide
requested services.

2.5.4 Reputation computation methods
Reputation of an entity is computed from users’ feedback ratings. In the litera-
ture, different computation methods have been introduced, including:

• Simple summation: The total reputation score of an entity is computed as
the total number of positive feedback ratings minus the total number of

2.6. Summary 41

negative feedback ratings. For instance eBay system 7 applies this method
for reputation computation [138].

• Average ratings: The total reputation score of an entity is calculated as the
average of feedback ratings. For instance, this method is used by Amazon8
and Epinions9 [100].

• Discrete trust models: In these models, feedback ratings are provided in
verbal form (e.g., high, medium, low, good ...), because humans are often
able to rate more successfully in discrete verbal measures [3].

• Bayesian systems: these systems (e.g., [55, 116, 117]) compute reputation
scores by statistical updates of beta probability density function. It takes
a binary input positive or negative, and computes reputation based on the
previous ratings and new ratings.

• Fuzzy models: in these models (e.g., [134,135,155]) trust and reputation is
represented as fuzzy concepts that measures the degree to which an entity
is trustworthy (reputable).

2.6 Summary
In this chapter, we presented fundamental concepts related to the subject of this
thesis. We started by presenting web services and some of its underlying tech-
nologies with the description of the issues related to web services composition. we
have seen that service composition can be achieved through service orchestration
and service choreography. Service orchestration is where a central element con-
trols all aspects of the implemented process. In fact, services orchestration is the
most adopted technique in the industry using PBMN and WS-PBEL languages.
We have seen that composition go through four phases during its life-cycle: (1)
Definition of requirement and abstract process, (2) selection of services to con-
certize the defined abstract process, (3) deployment of the solution by binding
services together, and (4) executing the services orchestration.

In the second section of this chapter, we described some information retrieval
techniques used in the literature for measuring the similarity between documents.
These techniques (e.g., TF-IDF, LSI) and similarity metrics (e.g., Jaccard, Eu-
clidean distance, Cosine similarity) have shown their efficiency in text analysis
and mining application. We have presented them because they are a key-elements

7http://www.ebay.com/
8http://www.amazon.com/
9http://www.epinions.com/

http://www.ebay.com/
http://www.amazon.com/
http://www.epinions.com/

2.6. Summary 42

in the similarity measurement approach that we will describe in depth in Chapter
5.

Besides, we presented the Formal Concept Analysis method that is used for
classifying objects and visualizing them into lattices. We illustrated the use of
FCA by giving a real example on how to classify programming language. We
limited the FCA presentation to the initial formal definitions, ignoring other
FCA aspects such as queries formulation and navigation algorithms. We gave
references for more detailed readings. FCA is one of the used techniques for the
classification and the identification of web service substitutes, as we will describe
in Chapter 6.

In the last section, we have seen that trust and reputation are crucial concepts
in building strong interactions between entities. Trust and reputation manage-
ment system have been proposed in the literature to evaluate trust and reputation
of elements (e.g., services, products, agents) by aggregating collected users feed-
backs. In the context of web service, reputation is an indicator about how users
are satisfied by functionality, reliability and QoS parameters of consumed web
service. Thus, reputation could be used as criterion in selecting reliable web ser-
vices. Therefore, we propose in Chapter 7 a reputation management framework
that evaluate reputation values of web services and their providers.

In the next Chapter, we present a literature review about methods and ap-
proaches related to subjects of this thesis.

Chapter 3

Literature Review

Contents
3.1 Overview . 43
3.2 Web service composition methods 44

3.2.1 Methods . 44
3.2.2 Discussion . 49

3.3 Reliable web service compositions methods 50
3.3.1 Methods . 50
3.3.2 Discussion . 54

3.4 Fault recovery in web service composition 55
3.4.1 Methods . 55
3.4.2 Discussion . 56

3.5 Similarity measurement for service discovery and selection 56
3.5.1 Methods . 56
3.5.2 Discussion . 58

3.6 Lattice-based web service classification 59
3.6.1 Methods . 59
3.6.2 Discussion . 60

3.7 Reputation management models 63
3.7.1 Methods . 63
3.7.2 Discussion . 66

3.8 Summary . 68

3.1 Overview
In this chapter, we discuss the most significant and recent advances in the areas
of web service composition that are central to the subject of this thesis. The first

3.2. Web service composition methods 44

section (Section 3.2) provides a survey about web service composition methods.
The second section (Section 3.3) presents an overview about reliable methods for
web service composition. The third section (Section 3.4) examines some fault
recovery methods for web service composition. The fourth section (Section 3.5)
lists the works conducted for measuring similarity between web services. The
fifth section (Section 3.6) reports some lattice-based web service classification
methods). The sixth section (Section 3.7) summarizes the methods that cover
the management of web service trustworthiness and reputation.

Each of these sections, contains a discussion subsection of similarities and
differences between related works and our contributions.

3.2 Web service composition methods

3.2.1 Methods
Web service Composition has gained a significant attention from researcher over
the past decade. Many methods (e.g., [5,20,28,31,37,46,58,66,82,85,91,104,106,
110, 114, 119, 123, 141, 144, 191]) have been proposed to cope with the different
composition challenges. Several surveys over-viewing these methods have been
published (e.g., [51,56,111,136,146,153,158,162,202]). In the following we report
some of these notable methods:

Casati et al. proposed a system, called e-Flow, that supports the specifica-
tion, enactment, and management of Composite services, modeled as processes
that are enacted by a service process engine [28]. Composite services are modeled
by a graph that defines the execution sequences among nodes in the process. The
graph defines the flow of service invocation, and it may include services, decision
and event nodes: services nodes represent the innovation of basic or composite
service; decision nodes specify alternatives and rules controlling the execution
flow, while event nodes enable services process to send and receive several types
of events. Arcs in the graph may be labeled with transition predicates defined
over process data, meaning that as a node is completed, nodes are connected to
outgoing arcs are executed only if the corresponding transition predicate eval-
uates to true. To cope with dynamic environments, e-Flow provides a number
of features that support adaptive service provisioning including dynamic service
selection, dynamic conversation selection, and generic nodes. Generic service
nodes are introduced to support personalized service composition. In eFlow, the
definition of a service node contains a search recipe represented in a query lan-
guage. When a service node is invoked, a search recipe is executed in order to
select a specific service. E-Flow focus on optimizing service selection at a task

3.2. Web service composition methods 45

level. However, the system do not explicitly support any QoS model.

Sheng et Al. proposed SELF-SERV: a platform for dynamic and peer-to-
peer provisioning of composite web services [144]. In SELF-SERV web services
are declaratively composed, and resulting composite services are executed in
peer-to-peer and dynamic environment. The platform distinguish three type of
services: (1) elementary services, (2) composite services and (3) service commu-
nities. An elementary web service (1) is an individual web accessible application
that does not explicitly rely on another web service. A composite service (2)
is an aggregation of multiple web services (components) specified in statecharts,
data conversion rules and set of selection policies. A service community (3) is
essentially a container of alternative services. It provides description of desired
services without referring to any actual provider. At runtime, when a community
receives a request for executing an operation, it dynamically selects one of its
current members and it delegates the request to it. In this platform, coordinators
control and monitor the execution of associated services. Based on routing table,
the control is passed from a coordinator to the next coordinator when the asso-
ciated service finishes its execution. In addition, SELF-SERV includes a quality
of service model that facilitate the specification of non-functional properties of
web services [194].

Keidl and Kemper present a context framework that facilitates the de-
velopment and deployment of context-aware adaptable Web services [85]. The
framework consists of two main parts: a distributed infrastructure, which trans-
mits context between clients and Web services and manages the context process-
ing, and the context types, which are the supported types of context information
and which are extensible at any time. This framework is implemented in an open
and distributed web service platform called ServiceGlobe [86,87]. This platform
proposes two approaches: dynamic service selection and dispatcher services. Dy-
namic service selection allows selecting Web service instances during runtime by
means of semantic classifications. The selection can be influenced by specifying
different constraints. The dispatcher service addresses load balancing and high
availability of services. The dispatcher service implements an automatic replica-
tion mechanism which allows to install new services on idle hosts on behalf of
the dispatcher. Moreover, the dispatcher forwards requests to different instances
and hence it reduces the risk of the unavailability of the service and accelerates
request processing because of load sharing.

Medjahid et Bouguettaya proposed a composability model for semantic
web services [106]. In this model, the composability is checked through a set of
rules organized into four levels: syntactic, static semantic, dynamique semantic

3.2. Web service composition methods 46

and qualitative level. Each rule compares a specific pair of attributes of inter-
acting web services. The notion of composability degree and s-composability
are introduced to cater for partial and total composability. The model is part
of the WebDG project which enables a semi-automated composition of services.
WebDG presents an ontology-based framework for organizing and describing se-
mantic web services. The concept of service community is also introduced in
WebDG, which is defined as an instance of an ontology called community on-
tology. The verification of composability between semantic web services id con-
ducted using the composability model. Moreover, the project defines a set of al-
gorithms that generate detailed descriptions of composite services from high-level
specifications of composition demands. These high-level specifications are writ-
ten using a language called Composite Service Specification Language (CSSL).
In addition, A Quality of Composition (QoC) model is also introduced to assess
the quality of the generated composite services, which allows the selection of an
optimal composite plan from possible existing composition plans.

Orrions et al. proposed a Business Collaboration Development Frame-
work (BCDF) [123]. The framework adopts a rule driven mechanism which as-
sists designer in the flexible development and adaptive management of business
collaborations. This development process is organized in four phases includ-
ing: (1) abstract definition, (2) scheduling, (3) construction, and (4) execution.
The framework is composed of two principal components: Service Composition
Repository which facilitates the management of composition elements and rules
that are employed for service composition. And, Service Composition Manager
which interacts with the first component to assist developing and executing com-
posite services.

Lécué et al. propose an integrated approach to service composition [91].
The approach is designed within the context of SOA4All project. The approach
consists of: (1) an automatic template process generator that is able to generate
abstract process templates and their hierarchy from past executions. (2) A novel
and scalable approach to AI parametric-design techniques using a multi agent
approach to configure and adapt services processes, relying on the latter set of ab-
stract process templates; (3) an optimization process that maximizes the overall
quality of final compositions. In fact, SOA4all is large scale integrating project
funded by the European framework Program. In SOA4All, available Web ser-
vices, including RESTful services and SOAP-based services, are annotated with
semantic information, intending to implement automated service discovery, me-
diation and composition. Contextual information, including local environmental
constraints, organizational policies and personal preferences are considered in
services composition. SOA4All uses a mashup-like way to assist end-users to

3.2. Web service composition methods 47

compose Web services.

Haddad et al. presented a transactional and QoS-aware selection algorithm
for web services composition [58]. This algorithm guarantees that each selected
component WS of a composite one is locally the best QoS WS among all the
WS fulfilling the global transaction requirement. Transactional requirement is
expressed by a risk notion that denotes if the results could be compensated or
not. Quality requirement is described as a set of weights over QoS criteria. The
authors also present and formally analyze the service selection algorithm based
on the workflow patterns and the transactional properties of the component
services.

Ardagna et al. presented a framework for specifying and managing flexible
and adaptive composite services [5]. The framework provides a set of tools to
support specification of all required information for runtime adaption of the
composite services. The service selection method proposed in this work is based
on mixed-integer linear programming model, which uses negotiation technique
to bargain QoS parameters with service providers when an end user has severe
QoS constraints and thus available solutions cannot be found. The framework
provides mediation support if the selected service’s interface differs from the
interface that the corresponding task definition requires. The framework also
provides supervision rules to monitor service execution and trigger corrective
actions if needed.

Michlmayr et al. propose an execution environment for web service com-
position [110]. This runtime environment is represented as an application server
containing (1) Query Engine, (2) a Notification Engine, (3) a Publishing/Meta-
data Service, (4) a Management Service and (5) a Composition Engine. The
environment support both Soap-based and RESTful web services. In addition,
it contains a QoS monitor that watches executed services performances, accu-
racy and availability. Moreover, Services versioning, dynamic QoS-based service
selection, binding and invocation, as well as service mediation are all supported
by the proposed solution.

Fujii et al. presented a semantics-based context-aware dynamic service com-
position framework that composes an application through combining distributed
components based on the semantics of components and user queries formulated
in natural language [66]. The framework is composed of (1) Component Ser-
vice Model with Semantics (CoSMoS), (2) Component Runtime Environment
(CoRE), and (3) Semantic Graph based Service Composition (SeGSeC). CoS-
MoS is a component model supporting function, semantic, and context repre-
sentation of services. CoRE is a middleware that supports CoSMoS on different

3.2. Web service composition methods 48

distributed computing technologies. SeGSeC provides a mechanism to construct
a composite service by synthesizing its process based on the semantics and con-
texts of component services. SeGSeC implements context-aware services com-
position based on specified rules or user preferences obtained through learning.
The proposed framework acquires user preferences from user-specified rules and
also via learning. The proposed framework also adapts to dynamic environments
by autonomously composing a new application upon detecting context change.

Colombo et al. proposed SCENE: a service composition execution envi-
ronment supporting dynamic changes disciplined through rules [37]. SCENE is a
part of a European project called SeCSE (Service Centric Systems Engineering)
aiming at providing methods, tools, and platform to support service oriented
engineering. In this work, composition of services are described using SCENE
language, through which composition is described in terms of two distinct parts:
(1) a process part, described using WS-BPEL that defines the main business
logic of the composition, and (2) a declarative part, described using ECA (Event
Condition Action) rules. Rules are used to associate a BPEL workflow with the
declaration of the policy to be used during (re)configuration. Rules can either be
defined at design time or later before the execution of the composition. Various
sets of rules can coexist and be activated depending on the preferences of the
system users. The implementation of SCENE integrates an off-the-shelf BPEL
executor engine called PXE, and a rule engine called Drools. A monitoring sys-
tem is also integrated to provide SCENE with the required monitoring feedbacks.

Moser et al. presented a system, called VieDAME, which allows moni-
toring service QoS attributes and dynamic adaptation of BPEL processes [114].
VieDAME allows the replacement of existing partner services based on various
(pluggable) replacement strategies, such as availability and response time. The
chosen replacement services can be syntactically or semantically equivalent to
the BPEL interface. Services can be automatically replaced at runtime with-
out any downtime of the overall system. The dynamic adaptation mechanism
is implemented with an aspect-oriented approach by intercepting messages be-
tween the composite service and participant services. The system is built from
a component Core (VieDAME), and engine adapters components (VieDAME
engine adapters). The core is responsible for monitoring, service selection and
message transformation. The engine adapters offer the aspect-oriented interfaces
to integrate different BPEL engines.

3.2. Web service composition methods 49

3.2.2 Discussion
In section 3.2, we presented a set of web service composition frameworks, meth-
ods and execution environments. Although these methods have contributed in
solving domain-related problems and challenges, some issues are still open for
research including:

• Reliable web service composition: Web services are normally distributed
and autonomously provided by different organizations. Therefor, provid-
ing reliable and dependable services composition still remains a significant
challenge [146, 199], especially for critical application; such as health-care,
stock trading, air traffic control applications.

• Adaptable and autonomous web services composition: nowadays, the de-
velopment and execution of composite web services is more open, dynamic
and ever changing. Thus, there is a need for more adaptable and flexible
approach for services composition [146]. Autonomous services composition
is a promising research effort to increase the adaptability of services com-
position, which includes several fundamental properties: self-configuring,
self-optimizing, self-healing, and self-adapting [128,145].

• QoS awareness: Often, Composite service consumers are not interested
only on the functionality of the service, they are interested also in the
quality and the behavior of the service. Hence, composite services should
be aware of their QoS aspects and those of the different elementary services
involved [126].

• Risk awareness: Since the QoS of the composite service can be affected by
the problems and QoS of its components, The service composition has to
be aware of risks raised in such cases. Thus, there must be a mechanism or
an action to mitigate it, for example, negotiating Quality of Service with
partners or invoking other services [48].

• Security: Web services enable users to interact with internal applications
and databases through the Internet, which represents a security risk. Ser-
vices should be concerned about security aspects including authentication,
authorization, confidentiality, and integrity to protect sensitive informa-
tion [48].

The architecture that we propose contributes in assisting stakeholders to en-
sure and maintain reliable web services compositions by facilitating the selection
of reliable services and reliables substitutes during different composition life-
cycle’s phase (See Chapter 6). Thus, in case of risks engendered by failure or

3.3. Reliable web service compositions methods 50

reliability degradation in the orchestration, the system can reconfigure itself, or
the stakeholder upgrade the flow and executes one of the recovery plans built
using the identified substitutes.

3.3 Reliable web service compositions methods

3.3.1 Methods
Many approaches and frameworks studied reliability for web services composi-
tion. Immonen et al. [73] presents a comprehensive survey about the following
methods.

Cortellessa and Grassi proposed an approach for reliability modeling and
analysis of service-oriented architectures [41]. They propose a methodology for
reliability modeling and analysis in SOA. The reliability model is a prediction
model presented as a probabilistic flow graph which contains statistical informa-
tion needed to support reliability prediction. The flow graph includes requests
from services to author services and information about the internal reliability
associated to each service in the flow graph. Transition between nodes in the
graph follow the Markov property. However, they extended it with other types
of control flows that allow more than one external service request to be specified
in each node.

The algorithm used for model evaluation takes in input the client perspective
on reliability, where service reliability could be expressed by multiplying the
probability (calculated using Markov process) of each node in the path to reach
the end state of the flow graph.

In addition, the authors present an architecture that implements this method-
ology in SOA environments. It is important to note, that composite service
provider has to publish information concerning the service internal structure,
that is how external service are exploited, how service are glued together, and
how frequency they are invoked. The methodology defines three service selection
policies based on the published information. The selection procedure is sup-
ported by this methodology by comparing reliability of the concrete services and
selecting the better reliable services.

Tari et al. Tari et al. proposed a framework for context-aware dynamic
service composition in ubiquitous environment [161]. The authors aim to en-
able effortless integration of smart objects in a ubiquitous space. The approach
that they propose provides a design architecture that includes a set of planning

3.3. Reliable web service compositions methods 51

algorithms and a mechanism for monitoring dynamic service composition. The
authors distinguish between the concept of abstract and concrete service. The
approach defines service composition architecture by mean of three plans: (1)
abstract template, (2) optimal plans, and (3) a concrete execution plan. The
template plan is constructed using rule-based techniques. This plan contains all
possible abstract services that could compose the service. The optimal plan is
created by selecting the best abstract services candidates according to their rep-
utation and the complementarity of the required parameters. The execution plan
is created by selecting concrete services based on their quality of user experience
(QoE) value, which is weighted according to user preferences, user’s context and
the environment context. This plan is monitored. In this approach, adaptations
enables substituting concrete services by other service, or even updating the op-
timal plan as whole. In this work, the authors introduce a QoS-based learning
mechanism, which rewards a concrete service after execution, and calculates its
new quality parameters and estimates the new reputation of its abstract service
accordingly.

Cardellini et al. The authors propose a run-time adaptation method of
service-oriented architectures [27]. This approach provides a methodology for
runtime adaptation of services system in order to meet its QoS requirements
in its operating environment. Two-level grammar is used to model the class of
SOA systems managed by MOSES framework (MOdel-based SElf-adaptation of
SOA systems): The first level specifies the structure of the composite service to
be used. The second level defines the production rules for each abstract service.
MOSES provides the idea of binding each abstract service to a set of functionally-
equivalent concrete services. Thus, it requires as an input a set of candidate
concrete services, and the description of the composite service written with a
workflow orchestration language (WS-BPEL for instance). Once the description
is verified, the behavioral model of the composite service is generated. The
monitoring activity should detects any relevant changes occur in the operating
environment. Therefore, the model is dynamically used to calculate possible
arrangement using the available concrete service.

The authors propose to calculate QoS parameters of composite service by
recursive rules using QoS parameter of the concrete services, in the way they are
orchestrated. a behavioral model is used to build a template of an optimization
problem, in which parameters are derived from the SLAs negotiated with the
composite service clients and providers, and from the monitoring activity. The
adaptation policy focuses on selecting the best possible implementation of the
composite service in a given scenario optimized within a given environment.
The framework can be applied to any composite service whose orchestration

3.3. Reliable web service compositions methods 52

pattern matches the first level of the grammar. A prototype of the MOSES
implementation is provided by the authors.

Wang et al. propose a hierarchical reliability model for service based soft-
ware system [175]. The approach focuses on analyzing reliability of (1) data, (2)
service, (3) service pool and (4) composition. In this framework, the composition
of services is specified as a workflow of processes. The reliability model is con-
structed of atomic, simple and composite processes that are connected by control
constructs and set of transition rules. There are two points of view for modeling
the overall system reliability: (1) The static model could be used before service
binding and execution for early stage quality prediction. This model is gener-
ated by transforming the service process model into discrete time Markov chain
(DTMC) model. (2) The dynamic DTMC model is dynamically constructed by
run-time monitoring of the service execution paths. Execution monitoring de-
tects occurred changes in system compositions, configurations and operational
profiles. Thus, it adjusts the reliability model accordingly. The authors use
what called service pool mechanism to provide runtime service redundancy, and
to maintain local indexes of the available backup services. The authors imple-
ment a prototype that can automatically establish and adjust reliability models.
The approach that they propose is generic and not specific for any particular
domain, but it requires that services are described with OWL-S language.

Chawla et al. propose a real-time reliability model for ontology-based dy-
namic Web service composition [32]. The authors propose a real-time reliability
model, in which reliability of a service is expressed using an OWL-S profile asso-
ciated to each service. The OWL-S profile contains two parameters one for the
desired reliability and the second for marginal reliability. The authors describe
services as processes using a Process Model Template (PMT) into which suitable
services are searched. The PMT is defined as a dynamic process model made of
structural components. The model is then instantiated into instantiated process
model (IPM) by binding components of PMT into concrete atomic or composite
services. IPM extends the PMT with a set of placeholders for the details how a
simple component can be bound to a selected Web service.

In this model, the atomic service reliability consists of the reliability of the
service and the reliability of the machine where the service is deployed. The
atomic service real-time reliability is calculated using the failure intensity and
execution time. The hardware reliability is estimated using the shape and scale
parameters. Parameters for calculating reliability are stored in the OWL-S pro-
file associated to the service. The reliability of a composite service depends on
its structure, the degree of independence between service components and the

3.3. Reliable web service compositions methods 53

availability of its constitutive Web services. Reliability model for each structural
component (sequence, parallel, choice and loop) is defined. The approach sup-
ports maintaining reliability at runtime by monitoring the service reliabilities in
real time. However, the reconfiguration of t he composite service requires human
interference. A prototype of service monitoring tool is provided.

Hwang et al. they propose a method for dynamic Web service selection for
reliable Web service composition [72]. The method is based on aggregated relia-
bility (AR) metrics which are used to measure the reliability of each configuration
in a WS composition. The method is also based on two dynamic strategies em-
ployed to computed ARs for dynamically selecting atomic Web services for web
service composition. The service composition is described using Markov chains
with added states, success, failure and transition probability. The aggregated
reliability of each configuration is defined recursively from the probability that
the services are successfully executed in the current configuration. Two Selec-
tion strategy are defined in this method: (1)AR-based selection strategy, and (2)
composability and AR (CAR)-based selection strategy. In AR-based selection
strategy, an atomic Web service is selected for each incoming operation of the
composite web service to achieve a maximum reliability. In composability and
AR (CAR)-based selection strategy, the ARs as well as the of configurations in
selecting atomic Web service are considered. The method uses an iterative ap-
proach to compute the vector of aggregated reliabilities considering the different
possible mappings in a Web Service composition to finally choose which sequence
of service delegation to use. This method could be implemented using current
web service standards and technologies. However, due to the nature of invocation
orders of operations, it is required to use one of the business process composition
language. The authors have developed a prototype using WS-BPEL.

Zeng et al. proposed an approach providing QoS-aware middle-ware that
supports quality driven Web service composition [195]. The approach proposes
a service quality model to evaluate the quality of atomic and composite web
services. In addition, it offers two alternative service selection schemes for exe-
cuting composite services. The quality model defines the QoS criteria for both
atomic services and composite services. In this approach, the user assists the
selection process by assigning wights to each selection criteria and assigning a
set of user-defined constraints.

In the local optimization scheme, the optimal service selection is performed
for each task in the service composition, without considering the global QoS. QoS
informations of each candidate service are collected. Then, the system compute
a quality vector for each service candidate. The service is selected basing on the

3.3. Reliable web service compositions methods 54

quality vectors applying a multiple criteria decision making technique.

In the global planning scheme, QoS constraints and preferences associated to
a composite service as a whole are considered for service selection. Every possible
execution plan associated with a given execution path is generated. Then, The
selection of the appropriate execution is made by relying to the Multiple Criteria
Decision Making technique. To select the optimal service or the optimal execu-
tion plan, the simple additive weighting technique is used in both approaches.

Moreover, the approach includes an adaptive execution engine, which reacts
to changes occurring during the execution of composite services (e.g., a service
become unavailable or its predicted QoS are changed) by re-planning the exe-
cution. The approach has been implemented as a platform providing tools for
defining service ontologies, specifying composite services with state charts, and
assigning services to handle tasks in service composition.

Ma and Chen proposed a reliability evaluation framework for composite
Web services [98]. The approach proposes a service reliability model for both
elementary Web services and composite services. In addition, the authors pro-
posed a feedback-based composite service approach. The reliability of elementary
services is calculated using time-dependent Markov model, with failure tensity,
failure locating and fixing time.

In this approach, the composite service structure is describes as graph of
nodes and relationships between nodes. Markov chain is used to evaluate the
backup services to ensures node’s reliability.

Finally, the aggregated composite service reliability is presented as reliability
of nodes and the operation relationships of subset of node set. The feedback-
based framework employs feedback mechanism to collect QoS from clients that
consumed the service. The automatic collected QOS are stored in UDDI registry.
The model uses this data for service reliability evaluation each time a change
happen in the service composition during its execution.

3.3.2 Discussion
In the previous section, we over-viewed a set of methods that supports reli-
able web services composition. These methods have addressed reliability during
design time. They proposed multiple technique for analyzing and verifying relia-
bility. However, none of these methods considered the means to verify reliability
during run-time and maintenance phases.

3.4. Fault recovery in web service composition 55

In addition, most of these methods do not include reputation management of
services and providers as an indicator factor about the service reliability. Rep-
utation indicates how services are experienced by users, and what is the level
of satisfaction of these users about service offered functionalities and qualities.
Thus, it is an important factor to be included for ensuing reliable web service
composition.

Moreover, our proposition is flexible when it identifies reliable substitutes and
allowing the built of recovery plans, which could be updated dynamically during
runtime when reliability informations are available or relevant new services have
discovered.

3.4 Fault recovery in web service composition

3.4.1 Methods
Different kinds of faults may occur during service composition execution, and
many strategies were proposed to repair the failed services.

In [65], authors present an approach for fault management in Web application.
The contribution is a self-healing system that holds all possible faults and their
repair actions in a special registry. Authors present reference architecture for
faults treatments and a set of strategies for recovery. Moreover, a classification
of faults have been studies and schematized. The core of the approach is based
on searching substitutive services for repairing compositions.

In [52], authors propose to transform a BPEL process into a fault tolerance
process using a fault tolerance patterns. The transformation is achieved by
adding redundant behavior to the application.

Baresi et al. in [16] present a supervision framework and a solution for self-
healing BPEL process based on Dynamo [15]. The framework lies on the use of
Aspect oriented programming techniques, separation of concerns principals and
rule engine (JBoss rules technology) in order to allow recovery of faults in service
composition.

WS-Diamond [40] is a project for self-healing web services. It is based on a
platform for observing symptoms in complex composed applications. It aims to
diagnosis occurring faults, and for selection and execution of repair plans.

In [148] and [147] propose a framework for performing runtime monitoring of
web services applications against behavioral correctness properties described as
finite-state automata. The set of verified properties specify forbidden and desired

3.5. Similarity measurement for service discovery and selection 56

interaction between services. The execution traces of web services applications
described in BPEL are checked for conformance at runtime. The framework
proposes different adaptation strategies in case of violation of properties.

In [45], authors introduce Qos-driven self-healig method for reliable web ser-
vice composition. The method predicts Qos and performances during composi-
tion. It backups alternate web services during the selection step. Then, in case of
failure, it reselect from these backups based on Qos and performance predictions.
Moreover, authors use a Semi-Markov process to predict the data transmission
speed over the network where services are executing.

3.4.2 Discussion
In the previous section, we listed a set of methods that addressed the problem of
fault recovery in web services composition. Similarly to these methods, we have
proposed an approach that allows selection of substitutes based on similarity
measurement between a web service and a set of potential candidates. These
substitutes that could be simple or complex serve as backups for different part-
ners in services orchestration. Hence, designers can statically construct different
execution scenarios based on the identified substitutes, as well as these substi-
tutes are dynamically updated during runtime. These scenarios are recovery
plans used in case the orchestration fails.

3.5 Similarity measurement for service discov-
ery and selection

3.5.1 Methods
The similarity evaluation between web services has been studied by many re-
searchers for service discovery and selection. A survey with a comparative anal-
ysis between proposed approaches is found in [88] and [43]. Most of these works
uses Information retrieval (IR) techniques to increase web service discovery pre-
cision without involving any additional level of semantic mark-up [68].

In [47], authors present their tool ARTEMIS which calculates a set of simi-
larity coefficients to evaluate web service compatibility. The tool clusters similar
services based on the obtained similarity coefficients.

The paper of [53], presents a search engine called "Woogle". Based on simi-
larity search, Woogle returns similar Web services for a given query. The search
engine combines multiple techniques to evaluate similarity between the services

3.5. Similarity measurement for service discovery and selection 57

and their operations. These techniques focus on operation parameters as well as
operations and services description. The authors introduced a clustering algo-
rithm for grouping description terms in a set of concepts. After that, similarity
between concepts is measured using a simple information retrieval metric; the
TF/IDF metric.

The similarity evaluation in [88] is implemented through the combination if
lexical and structural matching. Likewise, in [133], the paper proposes a method
of Web service retrieval called URBE (Uddi Registry By Example). The retrieval
is based on the evaluation of similarity between Web service interfaces. The
algorithm used in URBE combines the analysis of Web services structure and
the terms used inside it.

Authors in [1] studied the similarity measurement between behavioral inter-
faces of web services by simulation. Both, structure and behavioral aspects of
service are considered in this study. Structure aspects are presented by service
operation, messages, and their schema within the interface description document.
And, the behavioral aspect, which is presented by finite state machine, is defined
by control flow and interdependencies between operations.

The approach presented in [42] proposes to discover the most relevant web
service to a given query. The approach is based on the representation of a web
service description and queries within classic space vectors. Then, it matches
between the vectors that represent services and the vector which represents the
query using the Cosine metric. It returns the nearest service to the given query.

In addition to the previous works, an approach for measuring the compati-
bility degree of services’ protocols is proposed in [124]. The approach relies on
formal comparison that is based on generic-flooding based-technique. Authors
provide a formal model for describing web service interface with interaction pro-
tocols.

Another approach is proposed in [68] for service selection. The approach com-
prises an assessment process for service interface compatibility. The assessment
process is based on structural scheme for service matching. The scheme is divided
into two main parts: automatic strong matching and semi-automatic potential
matching. The former involves similarity cases directly recognized from Java
interfaces of candidate services. The latter involves cases that could be solved
through a semi-automatic assistance. The whole information package gathered
from this process provides an important insight about candidate services and
their required adaptations for integration.

3.5. Similarity measurement for service discovery and selection 58

3.5.2 Discussion
The similarity evaluation between web services has been studied by many re-
searchers for service discovery and selection, as we have seen in section 3.5. We
compared these methods and ours using the following metrics :

z Syntactic: whether the work considers syntactic matchmaking or not.

z Semantic:whether the work considers semantic matchmaking or not.

z XML-Schema structure: whether the work analyses XML-schema or
convert them.

z Similarity Flooding: whether the work uses a similarity flooding tech-
nique.

z Similarity relationships: whether solution provides a detailed similarity
measurement between services elements.

z Composability relationships: whether the work identifies composability
relationships between operations or services.

z Clustering: whether the solution clusters services based on similarity.

z Formal method: whether the work uses formal methods to describe ser-
vices before matchmaking.

z Behavioral aspects: whether the work take in consideration behavioral
aspects of web services during similarity measurement.

Table 3.1 summarizes the similarity assessment approaches based on the cri-
teria fixed above, with a comparison with our similarity measurement approach.

Our approach uses different structure and semantic similarity metrics to con-
duct a similarity assessment between different WSDL parts of the compared
web services (operation, messages, parameters, type, etc.) It uses also a schema
matching technique to evaluate the similarity between input and output mes-
sages. The similarity function is parameterized by a set of weights to allow users
determine which parts of a WSDL document have more impact on the similarity
score. We adopt this approach in the current work for the similarity assessment
between web services. Nevertheless, the identification process of service substi-
tutes that we presented on Chapter 6, and which uses the similarity approach,
is a generic, and it is not limited by the use of a specific similarity measurement
approach. So, any other measurement approach, such as [68,88,133], could be in-
corporated during the similarity matrix construction between service candidates
(See Chapter 6).

3.6. Lattice-based web service classification 59

Table 3.1: Similarity methods comparison

Sy
nt
ac
tic

Se
m
an

tic

X
M
L
sc
he
m
a
St
ru
ct
ur
e

Si
m
ila

rit
y
flo

od
in
g

Tr
ee

ta
gg
in
g

Si
m
ila

rit
y
re
la
tio

ns
hi
ps

C
om

po
sa
bi
lit
y
re
la
tio

ns
hi
ps

C
lu
st
er
in
g

Fo
rm

al
m
et
ho

d

Be
ha

vi
or
al

as
pe

ct
s

De Antonellis et al. [47] X X X X X

Dong et al. [53] X X X X X

Kokash et al. [88] X X X X X

Plebani et Perenici [133] X X X X X

Aît Bachir et al. [1] X X X X

Crasso et al. [42] X X X

Ouderni et al. [124] X X X X X

Garriga et al. [68] X X X X

Our Similarity approach X X X X X X X X

3.6 Lattice-based web service classification

3.6.1 Methods
Many works have addressed the classification of web services using concept lat-
tices. In their paper [130], authors present a formal definition of web service
classification and retrieval using formal concept analysis. The essential of the
approach is to build lattices using formal concepts where object are web services
and attributes represent the operation of these services. Then, they retrieve
similar services using algorithms that navigate the elaborated lattices.

In order to understand relationships between web services, and among opera-
tions of complex services [7] propose an approach based on Formal Concept Anal-
ysis. The approach analyzes service interfaces and documentations to construct
lattices. Generated lattices allow analysts to clusters similar services, highlight
hierarchical relationships, and visualize, in general, similarities and differences
between the analyzed services.

Restructuring of services registry at runtime using Formal Concept Analysis
is studied in [35]. The purpose behind this approach, as authors claim, is to speed

3.6. Lattice-based web service classification 60

up the selection process of web services, and to improve decision making through
the building of concept lattice. The services registry is viewed as formal con-
text where services are objects and service types, functional, and non-functional
characteristics (security) are the context properties.

The work in [62] describes an approach for retrieving semantic web services,
taking in account user requirements and preferences. The approach exploits the
fuzzy formal concept analysis for modeling concepts and relationships extracted
from web service resources. User formulates its query as conceptual terms, the
system formulates the query and through a conceptual based mechanism it re-
turns the list of semantic web services that matches the introduced query.

Authors in [54] introduce a requirement-centric approach that allows model-
ing user requirements, discovering and selecting web services. Authors use formal
concept analysis only for selecting automatically relevant high QoS services.

In addition, authors in [11] elaborates a tool named WSPAB. The tool uses
formal concept analysis to allow automatic discovery, classification, and selection
of web services. The tool build formal concepts where objects are web services
and attributes are operation signatures. Then, it generates correspondent lattices
that classify studied web services. Same authors propose another approach to
classify web services by keywords elicited from their wsdl documents [12]. The
approach clusters similar services, so it is possible to identify relevant services
and their substitutes.

Moreover, a Rational Concept Analysis approach is proposed to select com-
posable web services driven by user requirements [9]. RCA is an extension of
formal concept analysis. The approach is based on four principal steps including:
Service Collecting, validity and compatibility filtering, Qos level calculation, and
RCA classification. The resulting lattices group services that have common QoS
and composition levels. User requirements are expressed as new services and are
classified in the corresponding lattices.

3.6.2 Discussion
In section 3.6, we presented different methods that use FCA, and RCA for classi-
fying and selecting web services. In this section, we made a comparison between
these methods based on the following criteria:

z Design phase: whether the method is used at design phase, or not.

z Runtime phase: whether the method is used at runtime phase, or not.

3.6. Lattice-based web service classification 61

z Maintenance phase: whether the method is used at maintenance phase,
or not.

z Global reliability and QoS analysis: whether the method analyses the
overall orchestration QoS and reliability, or not.

z Elemantry reliability and QoS analysis: whether the method analyses
QoS and reliability value of each atomic service in the orchestration, or not.

z Clustering: whether the method clusters web services or not.

z Composability relationships: whether the method is able to detect
composability relationships between web services or not.

z Similarity relationships: whether the method is able to detect similarity
relationships between web services or not.

z Simple Substitutes: whether the method is able to detect simple service
substitutes or not.

z Complex Substitutes: whether the method is able to detect complex
service substitutes or not.

z Semantic Web services: whether the method supports Semantic web
services or not.

z Lattice-based: whether it is a lattice-based web service classification
method or not.

Table 3.2 summarizes the presented lattice-based web service classification
methods, according to the criteria presented above.

As we can see, the propositions of Azmah et al. [10] are the nearest to our
second contribution (Chapter 6). In the work of Azmeh et al., the user has to
introduce a requirement document that specifies an abstract process with the
needed functionality and the expected QoS in each service, as well as the com-
posability between each pair of services. Then, the approach selects concrete web
services for each element in the abstract process. The selected services are simple
and composable with each other according to the composability modes described
initially in the requirement document. Certainly, this approach selects elements
for building compositions, but the selected services are all simple. Moreover, the
solution is static (number of services in the process is fixed) and totally guided
by the user. In the opposite, the solution that we propose is used at the main-
tenance phase. It is dynamic, i.e. the approach retrieves service substitutes
with a variable number of services in the composition for the same specification.

3.6. Lattice-based web service classification 62

Table 3.2: Lattice-based service classification methods comparison
Life-Cycle QoS Hierarchical substitutes

D
es
ig
n
Ph

as
e

Ru
n-
tim

e
ph

as
e

M
ai
nt
en
an

ce

G
lo
ba

lr
el
ia
bi
lit
y
an

d
Q
oS

an
al
ys
is

El
em

en
ta
ry

re
lia

bi
lit
y
an

d
Q
oS

an
al
ys
is

C
lu
st
er
in
g

C
om

po
sa
bi
lit
y
re
la
tio

ns
hi
ps

Si
m
ila

rit
y
re
la
tio

ns
hi
ps

Si
m
pl
e

C
om

pl
ex

Se
m
an

tic
W
eb

Se
rv
ic
e

La
tt
ic
e-
Ba

se
d

Peng et Chen [130] X X X X

Aversabo et al. [7] X X X X

Chollet et al. [35] X X X X

Fanza et Senator [62] X X X X X

Driss et al. [54] X X X X

Azmah et al., [9, 11, 12] X X X X X X

Our approach X X X X X X X X X

In addition, the approach does not need any abstract description to guide the
identification process; the approach browses automatically all composition pos-
sibilities and finds appropriate substitutes for a failed service described by its
WSDL document.

Technically, we have updated the selection and filtering phases by propos-
ing new similarity-based algorithms. Then, we used a more complex similarity
method to measure the similarity between web service candidates. We focus on
the similarity between input and output messages rather than the similarity be-
tween operations like Azmeh et al. did in their paper. The study of similarity
between service inputs and outputs can reveal both composition and similar-
ity relationships, but the similarity between operations reveals only similarity
relationships which leads to the discovery of simple substitutes only. We also
performed additional tasks for the classification of services (e.g. Group extend-
ing and the steps applied in this task and those applied during the interpretation
task). This refined process enabled us to construct lattices that cluster operations

3.7. Reputation management models 63

and show their potential simple and complex substitutes.

3.7 Reputation management models

3.7.1 Methods
Reputation management has been extensively studied in different computer sci-
ence areas including E-business (e.g. [64, 75, 95]), Multi-agent systems (e.g. [25,
76, 131]), Peer to peer (P2P) networks (e.g. [61, 198, 201]), grid systems
(e.g. [38,172]), mobile and ad-hoc networking (e.g., [34,137,157]). In this section,
we give an overview about some proposed reputation management approaches
in the context of web services. Comprehensive literature reviews are available
in [70,80,103,122,177].

Conner et al. introduced a reputation-based trust management framework
that supports the synthesis of trust-related feedback from many services on the
basis of previous interactions with clients [39]. The core of this framework is a
centralized reputation manager that allows services to compute their own cus-
tomized reputation scoring functions over the records of the collected feedback.
The framework provides a trust-evaluation caching mechanism using the Bloom
filter [23] and Bloom histograms in order to reduce the communication overhead
in the system. The main advantage of this approach is that it supports multi-
ple reputation measurement models which is adequate to multiple web service
environments. However, the approach does not offer a strong mechanism to find
malicious feedback ratings and to distinguish malicious users among other users.
Moreover, the approach suffers from getting accurate reputation values due to
the calculation of trustworthiness when good feedback users become bad or bad
users become good [176].

Bianucilli et al. proposed a generic and customizable reputation frame-
work to automatically and transparently monitor the execution of composite
web services [21], tacking into account both functional and non-functional prop-
erties. This framework is built upon a client server architecture. The server side
comprises three components; 1)an enhanced UDDI-based registry, 2)a reputation
manager to compute service reputation ranks based on collected QoS values, and
3)a subscription manager to notify subscribed service consumers about occurring
changes in service reputation. The client side comprises: 1) a monitor component
that monitors the behavior of partner links in BPEL orchestrations by verifying
some functional and quality assertions. 2) a reputation feeder which is respon-
sible for the collection of service feedbacks and reports them to the reputation
manager in the server side. 3) an event manager which provides functionalities

3.7. Reputation management models 64

to subscribe to reputation-related events and to react to such notifications. The
main component in this architecture is the reputation manager which has been
designed to support different methods for computing service reputation through
the installation of new reputation policies as plug-ins. However, we have to
mention that the default reputation assessment formula do not include the user
credibility nor the impact of the rating time on the assessment of reputation
scores.

Mokarizadeh et al. presented a selection framework for service orches-
trations based on the trustworthiness of services [113]. The approach measures
the trustworthiness using the reputation scores retrieved from users’ profiles.
The profiles are extracted and inferred from a social network which accumulates
users past experience with corresponding services. The approach applies a T-
index technique [193] to compute the trust values between users. in addition, it
employs a privacy inference model to protect sensitive information in social net-
work, when analysis its content to extract the corresponding reputation values.

Malik and Bouguettaya proposed RateWeb [101], a decentralized reputa-
tion system for web service orchestrations. The proposed architecture is based
on a peer to peer (P2P) service model where each peer (service) is a consumer
and a provider of services. The solution is characterized by the absence of central
reputation management entity. Thus, each peer in the system is responsible for
collecting, updating and calculating the reputation of the other peers. Hence,
each peer has its own view of the reputation of other services. RateWeb uses an
ontology-based community model. This community is viewed as a directory of
raters which allows consumers of services to get information about raters. When
consumer services decide to get reputation information about a certain service,
they directly ask the raters of these services. Moreover, the framework takes
into account the presence of malicious raters that may exhibit oscillating honest
and dishonest behavior. The temporal sensitivity is also considered in this work.
Hence the system fades the values of old ratings, so the system can consider
and give more weights to the newest service rates. One of the strengths of the
approach is that it is based on the inclusion of the different factors mentioned
above. However, the approach is not applicable as it is proposed for an open
recommender service system that can hold thousands of services which cannot
act as consumers and providers at the same time.

Limam and Boutaba [94] proposed a framework, derived from the ex-
pectancy dis-confirmation theory from market science, for reputation-aware ser-
vice selection and rating. The key characteristic of the proposed framework is to

3.7. Reputation management models 65

automate the selection and the rating of services. First, the authors have pro-
posed a rating function that makes use of quality monitoring results and service
cost to produce feedback. Second, they have introduced a reputation derivation
model that aggregates all of the feedbacks into a reputation value. Finally, the
authors have presented a selection function that derives a single selection metric
out of the reputation of the service as provided by the reputation system and
the offered quality and cost. However, it is still difficult to predict the accurate
feedback ratings in real web services environments, especially with the existence
of malicious and subjective feedback behavior.

Mekouar et al. proposed a trust and reputation management system for
peer-to-peer systems [108], and for web service environments (TrsutWs) [107].
TrustWs permits a selection of web service based on the feedback gathered from
past transactions. In this work, authors distinguish between feedbacks issued
from satisfactory transactions (positive feedbacks) and feedbacks issued from
unsatisfactory ones (negative feedbacks). Hence, the proposed reputation scheme
assesses the reputation of web service as the ratio of the difference between
positive and negative feedbacks, and the sum of all feedbacks. However, this
work do not provide any mechanism to deal with malicious users and subjective
ratings, which make the system vulnerable to the Sybil attack for instance.

Wang et al. propose a reputation measurement and malicious feedback
rating prevention approach for web service recommendation systems [176]. The
goal of this approach is to reduce the deviation of the reputation measurement
of web services, and to improve the success ratio of the service recommendation.
The approach passes through two phases before computing services’ reputation
scores; the malicious feedback rating detection phase and the feedback rating ad-
justment phase. In the first phase, authors apply the Commutative Sum Method
(called CUSUM) to detect all the malicious collected feedback ratings. In the
second phase, the authors deal with the computation of feedback similarity be-
tween different users using the Pearson correlation coefficient to adjust the feed-
back ratings. After the second phase, the system measures the reputation of
services based on the former ratings, and stores the calculated reputation scores
in the repositories to be used for service recommendation. Moreover, the authors
propose a Bloom filter-based prevention scheme to identify the IP addresses with
offending feedback ratings and filter them out. However, the temporal sensitivity
of feedback ratings is not addressed in this approach. The new feedback ratings
have to influence the most on the reputation assessment than the old ratings, be-
cause the performance of any service may change over time (from high to low and
vise versa), and only new feedback ratings can indicate its actual performance.

3.7. Reputation management models 66

3.7.2 Discussion
To compare the presented reputation management methods with our fourth con-
tribution, we use the following metrics:

z Time Sensitivity: whether the method considers the time of ratings in
the evaluation of reputation or not (i.e older ratings have less impact on
reputation than new ratings.)

z User Credibility: whether the method includes the credibility of users
(i.e., Honesty degree) in the calculation of service reputation.

z Reputation bootstrapping: whether the method provides a solution for
assigning initial reputation value to new-comer services or not.

z User rating history: whether the system includes all the ratings provided
from the same users in assessing the reputation of the same item.

z Penalization or punishment of malicious users: Whether the system
punishes malicious users or it does not.

z Feedback history: whether the method includes all the feedback history
for assessing the reputation of services or not.

z Personal experience/profile: whether the method uses personal profile
and experience information on the assessment of reputation or not.

z Cold Start problem: Whether the method proposes a solution to the
cold start problem or not.

z White Washing problem: Whether the method proposes a solution to
the white washing problem or not.

z Autmatic evaluation: whether the method is automatic or it needs a
manual intervention.

Table 3.3 summarizes the presented reputation management methods accord-
ing to the criteria presented above.

Although existing works have proposed some efficient and robust reputation
management models, most of them suffer from the following shortcomings:

• First, consideration of fair ratings: it is still difficult to ensure the purity
of users’ feedback ratings [176]. In some circumstances, feedback ratings
issued from unidentified malicious users have a negative impact on the
assessment of web service reputation if these ratings are not neglected.
Thus, the reputation assessment model has to successfully guard unfair
ratings.

3.7. Reputation management models 67

Table 3.3: Reputation management methods comparison

T
im

e
Se
ns
iti
vi
ty

U
se
r
cr
ed
ib
ili
ty

R
ep
ut
at
io
n
bo

ot
st
ra
pp

in
g

U
se
r
ra
tin

g
hi
st
or
y

Pe
na

liz
at
io
n
of

sp
ec
io
us

us
er
s

Fe
ed
ba

ck
hi
st
or
y

Pe
rs
on

al
ex
pe

rie
nc
e/

pr
ofi

le

C
ol
d
st
ar
t
pr
ob

le
m

W
hi
te

wa
sh
in
g
pr
ob

le
m

A
ut
om

at
ic

ev
al
ua

tio
n

Conner et al. [39] X X X X X

Bianucilli et al. [21] X X X

Mokarizadeh et al. [113] X X X X

Mailk et Bouguettaya [101] X X X X X X X X

Limam and Boutaba [94] X X X X X X

Mekouar et al. [108] X X X X

Wang et al. [176] X X X X X X

Our work X X X X X X X X X

• Second, consideration of user credibility: credibilities of raters have to be
carefully evaluated [121]. In open systems, participant users are unknown.
Some of them are honest and behave correctly during the feedback process.
Other users act maliciously and send unfair feedback ratings. A third type
of users have their subjective preferences which influence sometimes on
their judgments. Hence, an accurate model that assesses the credibility of
user, based on the probability that user’s feedback ratings are conformed
to the major user rating tendencies, have to be proposed.

• Third, recommendation dissemination: based on the survey conducted by
Mármol et al., the description of how to gather and store feedback informa-
tion is a commonly neglected factor [103]. Many authors are considering
that information is available, without explaining how to collect and store
them.

• Fourth, bootstrapping the system: most of reputation management frame-
works present the algorithm for the assessment of service reputation score,
obviating the bootstrapping of the system [102]. The attribution of ar-
bitrary initial reputation values to newcomer services may cause harmful
damages and make the system vulnerable to different threats (e.g., Sybil

3.8. Summary 68

attack) [103].

• Finally, considering reputation of web service orchestration: most reputa-
tion management proposition lack the consideration of reputation assess-
ment of web service orchestration. An approach on how to estimate the
overall reputation of web service orchestration would enhance the selection
of web services for composition during design time, and the recommenda-
tion of substitutes for orchestration maintenance in case of failure.

In this thesis, we propose a reputation management framework for web ser-
vice reputation that addresses the previous challenges. The assessment model
that we propose includes a penalization mechanism of suspicious users, to ensure
an efficient reputation measurement from pure feedback ratings. The assessment
model is built upon the distinction between positive and negative feedback rat-
ings, with the inclusion of time sensitivity and user credibility factors, where
the former is evaluated according to majority consensus. The bootstrapping
mechanism that we propose allows a better introduction of newly published web
services into the system, because efficient initial reputation values stabilize the
performance of the whole system. Finally, the approach is a centralized solution
which is appropriate for building web service recommendation systems.

3.8 Summary
In this chapter, we presented thesis related work. First, we started by providing
an over-view about web service composition methods. We have seen that provid-
ing reliable and dependable service composition still considered as a significant
challenge for the most of the proposed methods.

Then, we listed the methods and approaches that focus on reliability issues
during web services orchestrations. We have seen that these approaches have
different meanings for reliability, varying from a functional and available web
service to web service with high QoS parameters. However, most of these meth-
ods do not include reputation as a reliability factor during the selection of web
service.

After that, we presented methods and approaches proposed in the literature
for web service Selection, Similarity measurement, and FCA classification. All
these methods and approaches are close to our contributions that we will present
in next chapters. We have compared between our contributions and these works
based on different sets of criteria. We have discussed differences and reported
goals.

3.8. Summary 69

Finally, the chapter summarized the literature of web service reputation man-
agement by listing the notable proposed frameworks. We discussed the differ-
ences between these works and our reputation management framework. We used
a set of criteria on which the comparison was made.

In the following chapter, a description of the life cycle of reliable orchestration
is presented in the first section. Then a generic architecture is proposed for
assisting designers and developers to construct reliable web service orchestrations
and to maintain them.

Part II

Contributions

Chapter 4

Framework for Reliable Web
Services Orchestration

Contents
4.1 Overview . 71
4.2 Reliable WS orchestrations life-cycle 72

4.2.1 Phase 1: Requirement specification 73
4.2.2 Phase 2: Abstract process modeling 73
4.2.3 Phase 3: Service search, selection and contracting 73
4.2.4 Phase 4: Binding and business process execution 74
4.2.5 Run-time monitoring . 74
4.2.6 Reliability analysis . 75
4.2.7 Repair and reconfiguration 75
4.2.8 Web service recommendation 75

4.3 Architecture for reliable WS orchestrations 75
4.3.1 Service provider . 78
4.3.2 Designer . 79
4.3.3 Web Service Recommendation System 80

4.4 Summary . 83

4.1 Overview
The classical life-cycle of Web services orchestration (presented in Section 2.2.5)
does not cover reliability analysis and verification in its different phases. There-
fore, we refine the life-cycle to take in consideration reliability requirement, ver-
ification and analysis.

In addition, we propose in Section 4.3 an architecture that assists WS or-
chestration stakeholders (Designers, developers, maintainers ...) to build reliable

4.2. Reliable WS orchestrations life-cycle 72

Requirement
Specification

Abstract Process
Modeling

Service research
Selection & Contracting

Binding and Business
Process execution

Run-Time
monitoring

Reputation

Qos Data

List of services
(+substitutes)

Repaire/
Reconfiguration

Reliability
Analysis

Web service
Recommandation

Designer

Feeds Feedback ratings

SLA

Consumer

Enhanced Service
Registries

Figure 4.1: Reliable orchestration life-cycle

WS orchestration through the recommendation of reliable and reputable web
services.

4.2 Reliable WS orchestrations life-cycle
In this chapter, we extend the classical web service composition life-cycle pre-
sented in section 2.2.5 with new phases to ensure reliable web service composition
1. As depicted in Figure 4.1, to ensure a reliable web service orchestration, the
later should passes through multiple phases explained in next subsections.

1 In the rest of this manuscript, we will use the terms web services composition, composition,
web service orchestration and orchestration interchangeably

4.2. Reliable WS orchestrations life-cycle 73

4.2.1 Phase 1: Requirement specification
The design of service composition 2 starts by specifying functionalities and quali-
ties that the to-be service (i.e., the orchestration) has to ensure. The designer has
to write down a specification document that describes how and what does the to-
be service do. And, it measures both qualitative and quantitative requirements
ending with some design decisions.

Service Oriented Requirement Engineering (SORE) [57,170] methods should
be applied during this phase for capturing eliciting and managing these require-
ments [14]. Though many SORE methods have been proposed (e.g., [169] [6]
[182]), the adopted SORE method must allow the designer to express explic-
itly reliability requirements in form of metrics, which will be used to verify the
fulfillment of reliability requirement during service runtime.

4.2.2 Phase 2: Abstract process modeling
Based on the specification document established in phase 1, orchestration de-
signer establishes a service architecture that describes the to-be service in a form
of abstract process (Or, service template) into which conceptual services can be
searched in next phases and be replaced.

Reliability requirements specified as metrics in the previous phase have to
be expressed in the service architecture in a formal way (as proposed in [89] for
instance) as a design decision and a set of must-have qualities for some or all
services in the abstract process.

4.2.3 Phase 3: Service search, selection and contracting
The orchestration designer performs a deep analysis on the service architecture in
order to determine which parts from the abstract process could be implemented
using ready-made (i.e., available) web services. Several web services offered by
different providers could ensure the specified functionalities, and thus they can
be a search-result candidates for the abstract process elements. The designer has
to select among these candidates services that fulfill the non-functional require-
ments.

Generally, services repositories, from where the services are searched, contain
usually static and ideally dynamic QoS data advertised by service providers or
collected from service consumers. The designer conducts a reliability analysis

2For the rest of the document we use the words orchestration and composition interchange-
ably

4.2. Reliable WS orchestrations life-cycle 74

to select high reliable services, because any service with low reliability decreases
the reliability of the whole orchestration [73]. The designer has to be sure of the
used quality data. Moreover, she/he must consider the trustworthiness of the
services and their providers.

The selection of the principal services is achieved based on the reliability
analysis. Though, the reliability and QoS are important data for selection, they
are not enough because the weak reputation of a provider is a good reason not
to select certain services. In contrast, the reputation of a service itself is a
justification for selection since it indicates how well it has been experienced.
Thus, the designer consider both reliability analysis data and reputation for
principal service selection.

Eventually, The designer could establish contracts (e.g., SLA: Service Level
Agreement) with service providers. Typically, such contract contains numerous
service reliability metrics (i.e. qualities) which the provider has to guarantee.

Besides, the designer may select from the service candidate-list a set of backup
services; each backup service is a substitute for the principal service in case of
failure or the non-respect of the required reliability level. Moreover, she/he can
make different recovery-plans based on the available service substitutes. So, in
case of failure one of the recovery planes replaces the principal orchestration.

4.2.4 Phase 4: Binding and business process execution
In this phase, the service orchestration begins its execution. Selected services
are bound according to the protocol specified in the service description files.
The execution engine executes the interactions between services based on the
business process (i.e orchestration) described with one of the service composi-
tion languages such as the WS-BPEL for example. When the orchestration is
operational, consumers can start exploiting its capabilities.

4.2.5 Run-time monitoring
Since runtime failures of web services are inevitable, monitoring technique has
to be applied to watch the behavior of web services during execution. The
technique focuses on monitoring both functionalities (e.g., assertions) and QoS
of services at runtime. Monitored data should be stored in special database
for conducting farther reliability analysis. In addition to QoS information, the
database holds consumer feedback ratings that indicates their experience with the
executed services. The database has to hold the most recent monitored values,

4.3. Architecture for reliable WS orchestrations 75

and it should be available for anyone searching for dynamic Qos information
about services.

4.2.6 Reliability analysis
To maintain the required reliability during orchestration runtime, a regular re-
liability analysis must take place through orchestration life-cycle. The relia-
bility analysis uses monitored QoS information, assessed service similarity and
provider reputation values to calculate the actual orchestration reliability. The
SLA contract is monitored based on the reliability results. Thus, we can deter-
mine whether the SLA contract is preserved or its violation has occurred. In
the later case, or when one of the orchestrated services became unreliable, a
self/manual adaption and reconfiguration of the orchestration is needed.

4.2.7 Repair and reconfiguration
The result of the reliability analysis indicates which services are become un-
reliable or none functional. To ensure a self-adaptiveness and self-healing or-
chestrations, a special repair and reconfiguration unit has to take in charge the
replacement of defected services. First, it checks the list of substitute candidates
to inspect for relevant reliable services. Then, it reconfigures the business pro-
cess based on the recovery-plans established at the service search, selection and
contracting phase. Finally, the unit re-lunches (i.e., re-executes) the reconfigured
orchestration.

4.2.8 Web service recommendation
During orchestration runtime, new services with high reliability values may be
published or discovered by the special repositories. Hence, a continuous service
recommendation with reliable services can help in preserving the specified re-
liability. Ideally, a special service recommendation unit should check services
repositories and then updates the list of candidates with new reliable services.
Moreover, it can update periodically candidate reliability and reputation infor-
mation gathered from the monitoring and feedback databases.

4.3 Architecture for reliable WS orchestrations
In this section, we present an architecture for assisting stakeholders to design,
execute and maintain reliable web services orchestrations. The architecture re-
groups a set of methods and techniques that allow the selections and recommen-
dation of reliable web service and their substitutes. Both selection and recom-

4.3. Architecture for reliable WS orchestrations 76

mendation operations are ensured after the reliability analysis in which QoS and
reputation metrics are evaluated.

The architecture permit to manage of consumer feedback-ratings, which allow
evaluating reputation values of services and their providers. The reputation is an
aggregation of subjective opinions about the overall quality (including reliability)
of a used service.

Moreover, the architecture allows the notification of service providers by rep-
utation values of their offered services. Thus, service provider can enhance ser-
vices’ performances accordingly.

Figure 4.2 shows the proposed architecture. As we can see, the architecture
is composed from three main elements: (1) service provider, (2) service client
(Orchestration stakeholder), and (3) Web service recommendation system. In
the next subsections, we describe these components.

4.3.
A
rchitecture

for
reliable

W
S
orchestrations

77

WS Orchestration

BPEL Engine

M
o

n
it

o
r

Event Manager

Designer Interface

R
e

li
a

b
il
it

y
 C

h
e

c
k

e
r

a
n

d

Q
o

S
 f

e
e
d

e
r

SLA

Monitor

QoS Feeder

Web Service

GUI

S
u

b
s

c
ri

p
ti

o
n

M
a

n
a

g
e

r

S
e

rv
ic

e

R
e

c
o

m
m

e
n

d
e

r

S
im

il
a

ri
ty

 A
s

s
e

s
s

o
r

Q
o

S

C
o

ll
e

c
to

r

Q
o

S

C
o

ll
e

c
to

r

S
u

b
s

ti
tu

te
s

 I
d

e
n

ti
fi

e
r

Feedback

Collector

Event Manager

R
e

p
u

ta
ti

o
n

 M
a

n
a

g
e

r

Data Manager

RDB QoSDB WSDLDB
Feedback

DB
SimDB ProfDB

WS Recommended System

Service Provider
Service Designer

Provider Interface

Q
o

S
 a

n
d

 R
e

li
a

b
il
it

y

C
h

e
c

k
e

r

Subscribe, Search &

Selection Interface

Figure 4.2: Architecture for reliable orchestration

4.3. Architecture for reliable WS orchestrations 78

4.3.1 Service provider
The service provider plays a central role in providing and maintaining high re-
liable service. In a failure-prone environment, the qualities of services variate
according to many factors (e.g., deployment factors, network factors). In addi-
tion, the provider may need to follow reputation values (feedback)of its services,
especially if these services are dedicated to a large audience. Therefore, ser-
vice provider have to keep its service competitive by providing not only reliable
functionalities but also by providing the better QoS possible.

As it is shown in Figure 4.2, the provider has a lightweight application that
monitors deployed services. Ideally, monitoring results, which could be a vector
of QoS values, have to be sent automatically, by a QoS feeder component, to
the WS recommendation System. This should be done automatically once the
provider subscribes in the WS recommendation system and publishes its service.
The WS recommendation system permits to the provider to see how its service
is perceived by consumers, and what reputation value it merits. Moreover, the
system notifies providers when a violation occurred in the level of reliability of
elementary services.

We summarize the tasks of the provider as follows:

– Subscribes to the system: The provider should subscribe to the WS rec-
ommendation system. It may be identified by its domain, IP address, or a
identifier.

– Publishes a new Service: The provider may publish new services. He/She
has to enter the name of the services, a set of keywords that describe the
service, The URL of the service, she/he uploads its WSDL file, and provides
the initial QoS of the service.

– Monitors its Services: Using the monitoring component, the provider have
to keep watching the service that he provides.

– Updates its service quality report. The QoS feeder component, after config-
uration, could send automatically QoS reports to the WS recommendation
system which stores these values.

– Checks statistics (global and for each service): The provider is able to follow
its statistics by consulting its profile page on the recommender systems.
The statistic section in the profile page, contains information about the
reputation of services, its overall reputation, the number of requests (use)
to services, the detailed feedback about its services, etc.

4.3. Architecture for reliable WS orchestrations 79

– Gets notification: The provider may get notifications (messages, E-mail)
from the WS recommendation system when the reliability of one of its
services or its QoS parameters are low then expected.

4.3.2 Designer
The designer (or the stakeholder in general) of web services orchestration inter-
acts with the WS recommendation system, to select reliable web services. The
designer contributes on enhancing reputation evaluation by monitoring its run-
ning services orchestration, and then sending QoS and feedback ratings to the
WSR system. Thus, the WSR system can calculate reputation values of services
which enables better service recommendation.

To assist the provider in achieving the previous goal, we propose that she/he
set up a monitoring application with a ’Reliability Checker and QoS feeder’,
’Event manager’ and a designer interface(See figure 4.2). The ’Monitor’ com-
ponent permits an accurate watching of services orchestration. The ’Reliability
Checker and QoS feeder’ sends a detailed feedback about monitored QoS val-
ues to the WSR system. In addition it verifies the reliability and other QoS
parameters based on the SLA fixed initially.

The ’Event Manager’ handles incoming events. It should be configured to
receives WSRS events. These events are messages or notifications about the
presence of more reliable substitutes in the system. Thus, the orchestration
stakeholder

The orchestration stakeholder can send feedback ratings to the WSR system,
representing its satisfaction about services that she/he selected for constructing
the service orchestration.

Other interactions between the orchestration stakeholder and The WSR sys-
tem are summarized as follows:

– Subscribes to the system: the designer could subscribe to the WSR system
by introducing an identification ID, Email and a password.

– Creates a profile for new orchestration (i.e., defines the abstract process):
The WSR system allows the designer to create multiple profiles for each
orchestration that she/he wants to develop. The designer specifies the
abstract process of the orchestration, and details about functionalities and
QoS of each element (service) in the process. TheWSR system recommends
services in function of the introduced specifications.

4.3. Architecture for reliable WS orchestrations 80

– Searches and selects candidates: The designer is also able to search by key-
words for specific web services. In addition, it could search for substitutes
for a given service or for specific operations. The designer could include
these services in its orchestration profile.

– Compares between different selections: before orchestration binding, the
designer could evaluate the overall reliability and QoS of the WS orches-
tration that she/he designs. Using different concretization based on the
recommended services and their substitutes.

– Receives notifications: The designer can set up its profiles to get notifica-
tions when reliability of selected services is changed or when new service
substitutes with high QoS are introduced to the system.

4.3.3 Web Service Recommendation System
The Web Services Recommendation system (WSR system) is the principal ele-
ment in the proposed architecture. It assists stakeholders and service providers
to enhance the reliability of their web services and orchestrations by providing
the former by recommendations about reliable and reputable web services and
their candidates. It notifies the later (the service provider) by the opinion of
users on the quality of its services quantified in reputation scores. Therefore,
both of them can take action to enhance the reliability of their services.

The WSR system serves as a smart registry that organizes, clusters and iden-
tifies similarity and composability relationships between services. Thus, it simpli-
fies the selection of relevant web services by designers and developers. Moreover,
the system stores QoS values of services and tracks their updates in special reg-
istry. Therefore, it can conduct reliability analysis and QoS verification, and
offers these informations to its requesters.

In addition, the system manages completely reputation of web services. It
collects users’ feedback ratings and aggregates them into reputation scores. It
evaluates also the reputation of services provider. Thus, the system is able to
recommend trustful and reputable web services.

The WSR system is composed from many components that we describes in
the following subsections.

1- Subscription, search and selection interface

This interface permits to service provider and clients (designer, developer, etc.)
to: (1) subscribe to the system, (2) search for web services by keywords or

4.3. Architecture for reliable WS orchestrations 81

browsing the catalog of services, (3) allow the selection of web services. This
component provides informations about QoS and reputation of web services.

2- Provider interface

This component permits to service provider to check the QoS and reputation val-
ues of its web services. It provides also informations about QoS and Reputation
of concurrent web services.

3- Feedback collector

This component collects and organizes the feedback ratings of users. It tracks
the list of used services, and asks their users to provide feedback ratings on how
reliable was the service. The component sends collected feedbacks to the Data
Manager to store them in the correspondent Database.

4- QoS collector

This component listens to feeds of the provider’s and the designer’s applications.
It receives from their QoS feeders the results of monitored services. The compo-
nent sends the collected QoS to the data manager which stores these values in
the appropriate Database.

5- Event manager

This component notifies designers by the presence of new service substitutes
with better reputation and Qos values. The notifications are based on designers
specifications which are written in orchestration profiles.

In addition, the component notifies service providers by reliability values,
reputation values and QoS changes occurred on its published web services.

6- Subscription manager

The component is responsible for creating profiles for service providers and
clients. It manages their subscription and checks requirements for providing
better recommendation services.

7- Reputation manager

This component measures the reputation of web services, the credibility and the
reputation of their providers from the feedback rating collected from web service
clients. This component implements the reputation assessment model proposed
in Chapter 7.

4.3. Architecture for reliable WS orchestrations 82

This component continuously assesses reputations values of web services and
updates the Reputation Database (RDB) accordingly through the data manager
component.

8- Data manager

The Data manager component has an internal role in organizing data in ap-
propriate Databases. It is the interface of other components to get access to
data.

The data manager interacts with the following Databases:

1. Profile Database, or in short ProfDB: it holds data of users(clients,
providers, designers, developers) profiles.

2. Similarity Database, or in short SimDB: It holds similarity values be-
tween web services or their operations. Service substitutes are retrieved
from this database. In addition, it holds the composability relationships
between services or their operations.

3. WSDL Database or in short WSDLDB: it holds the WSDL files of the
published services.

4. QoS Database or in short QoSDB: it holds QoS values of web services
provided from different web service monitors.

5. Feedback ratings Database or in short FeedbackDB: it holds all the
feedback ratings collected from clients by the feedback collector. The sys-
tem keeps all the feedback ratings even those detected as malicious feed-
backs.

6. Reputation Database or in short RDB: This database holds the calcu-
lated reputation scores of web services and providers.

9- Service recommender

The role of the recommender component is to propose web services for clients
answering their search queries. The recommended service results are sorts based
on reputation and QoS parameters.

10- Similarity assessor

This component has an internal role; It evaluates the similarity and composabil-
ity relationships between web services. It stores similarity and composability
scores in the appropriate database through the data manager. Practically, this
component can integrates the tool described in Chapter 5.

4.4. Summary 83

11- Substitutes identifier

This component identifies simple and complex service substitutes (See Chapter
6). Thus, the WSR system be able to proposes replacement for defected services
or for services that do not guarantee a certain level of QoS and reputation.

12- QoS and reliability checker

This component checks that QoS and reliability requirements described in orches-
tration profiles are achieved by the selected services. If the component detects
any violation in these requirements, it asks the event manager to send notification
to the orchestration stakeholder.

4.4 Summary
In this chapter, we have presented a refined service orchestration life-cycle. We
have seen that reliability requirements have to be expressed explicitly at initial
phases. Therefore, orchestration stakeholder can manually or automatically con-
duct a reliability analysis. We have noted that runtime monitoring is an impor-
tant phase that is needed to detect any reliability or QoS requirement violations.
Moreover, a smart registry should recommend for orchestration stakeholder reli-
able service substitutes. Thus, orchestration stakeholder can update its service
compositions when it is needed.

In the second part of this chapter, we have proposed an architecture that as-
sists web service orchestration stakeholders in developing and maintaining more
reliable services. The architecture is composed of three participants: (1) Service
provider, (2) Orchestration designer or stakeholder and (3) Web service recom-
mendation system. The central role in this architecture is ensured by the WSR
system that assists in providing reliable services and their substitutes. We have
described the composition of each participant, as we have briefly described the
interactions between these elements to ensure reliable services orchestrations.

In next chapters, we present more details about similarity assessment, sub-
stitutes identification, and service reputation management which are the core
component of the proposed Web service recommendation system.

Chapter 5

An approach for web service
similarity assessment

Contents
5.1 Overview . 84
5.2 Similarity assessment approach 85

5.2.1 Identifiers similarity . 88
5.2.2 Documentation similarity 89
5.2.3 Grammatical tags for enhancing identifier similarity 90
5.2.4 Operations similarity . 91
5.2.5 Messages similarity . 92
5.2.6 Complex-type parameters similarity 93
5.2.7 Simple-type parameter similarity 94
5.2.8 Maximal score computation from the similarity matrix . . . 95

5.3 WSSim: a tool for measuring web service similarity . . . 96
5.3.1 Overview of WSSim Functionalities 96
5.3.2 Underlying Technologies . 97
5.3.3 WSSim as a Web Service 98

5.4 Experiments and validation 100
5.4.1 Tuning . 100
5.4.2 Case Study . 100

5.5 Summary . 103

5.1 Overview
Similarity measurement between web services is a key solution to benefit from
the reuse of the large number of web services freely available in the Internet. It is

5.2. Similarity assessment approach 85

also a considerable factor for building compositions and healing them by finding
relevant substitutes for failed web services.

In this chapter, We present a practical approach that enables an effective
measurement of web service similarity based on their interfaces described within
WSDL documents. The approach relies on the use of multiple matching tech-
niques and different semantic and structural similarity metrics. The measure-
ment of similarity determines the best substitute for a failed web service. So, it
serves as a good indicator of the substitutability relation and thus of the capacity
for reuse.

This chapter is organized as follows: Section 5.2 introduces the service
similarity-measurement approach. Section 5.3 describes WSSIM: a support tool
that implements the similarity measurement approach. Section 5.4 presents the
conducted experiments that validates the proposed approach.

5.2 Similarity assessment approach
The proposed approach to measure the similarity between Web services depends
on services WSDL interfaces. Thus, the elements of WSDL documents are con-
sidered by the measurement process. We limit the similarity measurement to a
subset of WSDL elements. This subset includes:

• Service: a service element consists of a set of nested operations. It is
described by a name and a textual documentation.

• Operation: an operation element is described by a name and a textual
documentation. It contains input and output messages.

• Message: a message element is described by a name and eventually a tex-
tual documentation. A set of parameters are held by each message.

• Parameter: a parameter is described by a name and eventually a textual
description. The parameter could be of simple or complex type.

• Types: a type element defines the data type of a parameter within a web
service using some type system such XSD.

A hierarchy of functions that deals with measuring similarity between pairs
of compared WSDL elements is defined as the core of the implemented approach.
Each function returns a similarity score that ranges between 0 and 1; 0 means
the elements are totally different, 1 means that they are totally similar. We
assign weights to theses scores. By default, the value 1 is assigned to all scores.

5.2. Similarity assessment approach 86

WS.OperationsList

WS.Name

Operation.Description

Input / Output Messages

WS.Name

WS.Description

Operation.Name

Message.Name

Message.Description

Message.ParameterList

Parameter.Name

Parameter.Type

WS.OperationsList

WS.Name

Operation.Description

Input / Output Messages

WS.Name

WS.Description

Operation.Name

Message.Name

Message.Description

Message.ParameterList

Parameter.Name

Parameter.Type

WSSIM Function

IdentifierSim Function

DocSim Function

OpsSim Function

IdentifierSim

DocSim Function

MessageSim /

SFASim Function

IdentifierSim

DocSim Function

ParsSim Function

IdentifierSim

TypeSim

Function

O
p

Sim
 Fu

n
ctio

n

P
arSim

 Fu
n

ctio
n

Sim
p

M
essage

Sim

Fu
n

ctio
n

Web Service 1 Web Service 2

Figure 5.1: Similarity Measurement Process

The final score is calculated depending on these weighted scores. It is possible
to customize the weights with different values based on the user’s experience.

To measure these scores, the process starts by evaluating the following func-
tion:

WsSim(Ws1, Ws2) = wSN × IdentifierSim(Ws1.Name,Ws2.Name)
+ wSO ×OpsSim(Ws1.OpList,Ws2.OpList)
+ wSD ×DocSim(Ws1.Doc,Ws2.Doc)
/ (wSN + wSO + wSD) :

where:

• WsSim is the main function which is called for measuring similarity between
two web services denotedWs1 andWs2. Every Service Wsi has a name, an
operation list, and a textual description denoted respectively, Wsi.Name,
Wsi.OpList, and Wsi.Doc.

• IdentifierSim measures similarity between identifiers that label web ser-
vices, operations, messages or parameter names.

• OpsSim measures similarity between two lists of operations that belong to
the compared services.

• DocSim evaluates the similarity between two textual documentations.

5.2. Similarity assessment approach 87

• wSN , wSO and wSD are respectively the assigned weights to IdentifierSim,
OpsSim and DocSim.

Additionally, these functions depend in their tasks on other sub-functions.
a list of sub-functions is presented bellow, and more details about these sub-
functions are covered in the next subsections.

• The OpSim function measures similarity between a single pair of operations
(subsection 5.2.4).

• The MessageSim function measures similarity of a single pair of messages
(Subsection 5.2.5), MessageSim is built upon SfaMessSim and SimpMessa-
geSim functions.

• The SfaMessSim function evaluates the similarity of a single pair of mes-
sage elements using the Similarity Flooding Algorithm proposed in [109]
(Subsection 5.2.5).

• The SimpMessageSim function measures the similarity between names, doc-
umentation and parameters of two compared message elements (Subsection
5.2.5).

• The ParsSim measures similarity between two sets of parameters. The
parameters are the input or the output parameters of a message.

• The ParSim function is called by ParsSim function. It measures the simi-
larity between two parameters of a simple type.

• The SimTypeSim function evaluates the similarity between two given simple
types (Subsection 5.2.7).

An illustration of the measurement process is depicted in Figure 5.1. The
process starts by the WsSim function. This function, as denoted previously, gets
the similarity scores between names, textual documentations of the compared
WSDL files by invoking IdentifierSim and DocSim functions respectively. Ad-
ditionally, WsSim evaluates the similarity between the services lists of operations
by calling the function OpsSim. WsSim assigns weights to these scores and returns
the final similarity score between two web services.

The function OpsSim gets two lists of operations as input. It compares ev-
ery pair of operations by calling the function OpSim. The similarity scores of
compared pairs are stored in a similarity matrix. The problem of getting the
maximum similarity score from the matrix is addressed as finding the maximum

5.2. Similarity assessment approach 88

weighted assignment in a bipartite graph. This later is implemented by the func-
tion HungarianMax which returns the maximum similarity score between the two
lists of compared operations (more details are covered in Subsection 5.2.8).

The function OpSim uses IdentifierSim, DocSim and MessageSim to calcu-
late similarity between two operations by comparing their names, descriptions,
input/output messages.

The measurement of similarity between messages (input messages with input
messages and output messages with output messages) is assigned to the func-
tion MessageSim. This function measures the similarity using two methods: 1)
Measuring the similarity using the algorithm proposed by SFA . 2) Measuring
the similarity based on message signature matching. The first method is im-
plemented by the function SfaMessSim, and the second one is implemented by
the function SimpMessageSim. The MessageSim function returns the maximum
score of the two results.

Likewise to OpsSim, ParsSim evaluates the similarity between two lists of
parameters (used in SimpMessageSim). The similarity between each pair is cal-
culated by the function ParSim. The results of all pairs are represented as a
similarity matrix. The HungarianMax function uses the similarity matrix to re-
turn the maximum similarity score between the two parameter lists.

5.2.1 Identifiers similarity
In WSDL document, an identifier is a unique or a sequence of concatenated
words that identifies a web service, an operation, a message or a parameter.
The function IdentifierSim deals with the measurement of similarity between
two identifiers. This function could even be used in the context of comparing
databases or XML schema, software models, or portion of codes.

The function IdentifierSim measures the similarity between two identifiers
in respect to the following steps :

1. Tokenization: tokenization is the task of chopping up an identifier into
pieces (words), called tokens. So, two sets of tokens are generated. Each
one corresponds to an identifier. Stop words are removed from the two
sets.

2. Tree Tagging: the tree tagging aims to annotate the extracted tokens
with their grammatical position in the whole identifier.

3. Similarity Matrix Generation: A similarity matrix is generated based

5.2. Similarity assessment approach 89

Algorithm 1 Word_similarity_assessment_algorithm
Input: Word1, Word1, WordNet, SemanticMetricSet, StructureMetricSet
Output: SimScore
Begin
1: if (Word1 ∈ WordNet) && (Word2 ∈ WordNet)) then
2: SumScores =

n∑
i=1

Sim(Word1, Word2, metrici), metrici ∈ SemanticMet-
ricSet;

3: SimScore = SumScores
n

;
4: else
5: for all metrici ∈ StructureMetricSet do
6: ASimScores[i]= Sim(Word1, Word2, metrici) ;
7: end for
8: DecendingSort (ASimScores) ;
9: SumScores =

m∑
i=1

AsimScores[i];

10: SimScore = SumScores
m

;
11: end if
12: Return SimScore ;
End

on the similarity of tokens-tuples. Each cell in the matrix holds a simi-
larity between two compared tokens. Where tokens are picked from the
two sets. So a line in the similarity matrix corresponds to the similarity
scores between a token from the first set with all tokens in the second set.
Structural and semantic metrics are involved in the computation of the
similarity scores stored in matrix cells. Algorithm 1 describes how appro-
priate metrics are selected to measure the similarity between two words
(tokens).

4. Maximum similarity score assessment: The first step in this task is
to select the best similarity scores between token-tuples from the similar-
ity matrix. Each token figures only once in the selected tuples. Then, the
average of these maximum scores is returned as the final similarity score be-
tween the compared identifiers. (Selection and computation are explained
in more details in Section 5.2.8).

5.2.2 Documentation similarity
As a matter of fact, available web services do not contain full descrip-
tion/documentation of all WSDL elements. Hence, we ignore evaluating sim-

5.2. Similarity assessment approach 90

Table 5.1: List of similarity metrics

Structure Metrics Semantic Metrics [132]
Stoilos [151] Jiang
ChapmanOrdName [29] Lin
Jaro [78] Pirro Seco
JaroWinkler [181] Resnik
Levenshtein [92]
NeedlemanWunch [118]
QGramsDistance [171]
SmithWatermanGotoh [149]

ilarity between documentations once they are missed from the WSDL files. Oth-
erwise, we compare the textual descriptions (documentations) using LSI [49] and
TF/IDF [13] measures which are widely used in information retrieval [184]. The
function DocSim based on these measures evaluates and returns the similarity
between two compared documentation elements.

5.2.3 Grammatical tags for enhancing identifier similarity
In order to consider grammatical aspects during the similarity assessment be-
tween identifiers, a second version of the function IdentifierSim has been de-
veloped. This later uses the Tree tagging technique. Tree-Tagging consists of
annotating text by part-of-speech (POS) and lemma information based on both
word definition, as well as word context.

In the identifiers similarity context, the generated tags (Noun, verb, Ad-
jective, Proposition, etc.) assigned to the identifiers-tokens are used to affect
similarity values which are stored in the similarity matrix. Therefore, the simi-
larity scores between tokens are kept as calculated if the tokens have the same
generated tag. And, similarity values are lessened to the half if their associated
POS tags are different. As an illustrative example, the similarity between the
identifier "GetWeatherByPlaceName" and "GiveWeatherByZipCode" is assessed
as follows:

1. Tokenization :

• GetWeatherByPlaceName : Get, Weather, By, Place, Name
• GiveWeatherByZipCode :give, Weather, By, Zip, Code

5.2. Similarity assessment approach 91

(a)

0,470,490,240,37Code

0,270,320,220,37Zip

0,230,2510,47Weather

0,220,160,250,58Give

NamePlaceWeather Get Tokens

(b)

0,470,490,240,18CodeNN

0,270,320,220,18ZipNN

0,230,2510,23WeatherNN

0,110,080,120,58GiveVB

NamePlaceWeather Get Tokens

NNNNNNVB

Figure 5.2: Identifier similarity matrix sample

During stop word removing the token "By" will be dropped from the two
sets.

2. Tree Tagging : the result of tree tagging is :

• get/VB weather/NN place/NN name/NN
• give/VB weather/NN zip/NN code/NN

3. Similarity matrix generation: Figure 5.2 depicts the similarity matrix of the
compared tokens. The initial matrix (a) groups similarity values between
tokens without taking into account their POS tags. And the final matrix
(b) is the transformation of (a) after including POS Tags.

4. The maximum similarity score between the two identifiers is AVER-
AGE(0.58+ 1+0.49+0.27) =0.59.

5.2.4 Operations similarity
Measuring similarity between two operations is based on similarities between
their names, descriptions and the input/output messages. The OpSim function
handles this task according to the following formula:

5.2. Similarity assessment approach 92

OpSim(Op1, Op2) = wON × IdentifierSim(Op1.Name,Op2.Name)
+ wOM ×MessageSim(Op1.InMessage,Op2.InMessage)
+ wOM ×MessageSim(Op1.OutMessage,Op2.OutMessage)
+ wOD ×DocSim(Op1.Doc,Op2.Doc)
/ (wON + 2× wOM + wOD) :

Where:

• Op1 and Op2 are the compared operations. Every operation Opi has a
name, description, input message and output message denoted respectively
Opi.Name, Opi.Doc, Opi.InMessage and Opi.OutMessage.

• wON ,wOM and wOD are weights associated respectively to IdentifierSim,
MessageSim and DocSim.

OpSim is also used by OperationsSim where it generates the score of all
operations. This is done by retrieving the maximum score from the operations
similarity matrix. Cells of the matrix hold the result of OpSim. The maximum
score is computed according to the function presented in Section 5.2.8.

5.2.5 Messages similarity
A SOAP message outlines the input or the output of an operation in a WSDL
file. The message is represented in the WSDL by a name, a short description and
a list of parameters. The parameters might have of a simple or a complex type.
To measure the similarity between two SOAP messages, two different methods
are used by the function MessageSim which returns the final similarity score.
The first method is implemented by the function SfaMessSim on the basis of
the similarity flooding algorithm [109], and the second method is implemented
by the function SimpMessageSim on basis of signature matching. The function
MessageSim returns the maximum score of the values returned by the previous
functions. The function MessageSim is defined as follows:

MessageSim = max(SfaMessSim(Message1,Message2),
SimpMessageSim (Message1,Message2))

where Message1 and Message2 are the compared messages.

• The function SfaMessSim is an implementation of the Similarity Flooding
Algorithm. The algorithm matches between labeled oriented graphs and
find similar nodes in the compared graphs. In our context, we transform a
message signature into labeled oriented graph (see the example illustrated

5.2. Similarity assessment approach 93

in Figure 5.3). Then, we write down initial mapping (similarities) values
between nodes. The algorithm works upon the graph and the initial map-
ping to compute final scores between graph nodes based on similarities
of their neighborhood. Finally, the score between the message nodes is
returned.

• The function SimpMessageSim is based on signature matching where the
similarity score is computed by their names, documentations, input and
output messages. SimpMessageSim is defined as follow :

SimpMessageSim(Message1, Message2) =
wMN × IdentifierSim(Message1.Name,Message2.Name)

+ wMP ×ParsSim(Message1.ParsList,Message2.ParsList)
+ wMD ×DocSim(Message1.Doc,Message2.Doc)
/(wMN + wMP + wMD)

Where:

• Message1 and Message2 are the compared messages. Every Messagei
has a name, documentation and a list of parameters denoted respectively
Messagei.Name, Messagei.Doc and Messagei.ParsList.

• wMN , wMP and wMD are weights assigned to the different used functions.

It is important to note that we can also study similarity between input mes-
sages with output messages in order to detect eventual composition possibilities.
This is out of the scope of this paper which deals with substitution and not
composition.

5.2.6 Complex-type parameters similarity
The measurement of similarity between complex parameters is a challenging
problem. In addition to the use of similarity flooding algorithm, we solve the
problem of complex-types comparison by breaking complex types into a set of
simple parameters (set of sub-elements). The following steps describe how to
measure similarity between complex-parameters:

1. Transform complex parameters to a set of simple parameters: In this step,
complex parameters are replaced by their simple-type parameters (sub-
elements). Where, the identifiers of the subelements are aggregated with
the identifier of the parent element.

5.2. Similarity assessment approach 94

PERSONNEL

Message

Parameter

Parameter Type

INT

PNO

PNAME

DEPT

STRING

XML TYPE

XML TYPE

XML TYPE

Personnel (Pno : Integer, Pname : String, Name : String)

&1 &4 &5

&2 &3

&6

name

na
m

e

name

type

ty
p

e

type

Parameter
name type

Parameter
name type

Parameter Type

name

type

Figure 5.3: An oriented labeled graph representation of a sample Message

2. Generate the matrix of parameters similarity: ParsSim takes the output of
the last step to generate a similarity matrix. The cells of the matrix contain
scores of each parameter tuple. These similarity scores are extracted using
ParSim (see section 5.2.7).

3. Calculate the maximum score from the similarity Matrix: see the algorithm
detailed in Section 5.2.8.

5.2.7 Simple-type parameter similarity
Considering similarity between simple types as the average between their name
and type similarities, Name similarity is calculated using identifierSim, while
Type similarity is implemented using the solution proposed in [152] and [133].
Similar types are grouped in five categories. Similarities between the groups is
presented in Table 5.2.

The function ParSim computes the similarity between two simple types. It
is defined as follows:

parSim (Parameter1, Parameter2)=
IdentifierSim(Parameter1.Name, Parameter2.Name)
+ TypeSim(Parameter1.T ype, Parameter2.T ype)/(2)

Where:

5.2. Similarity assessment approach 95

Table 5.2: Similarity table between dataType [133]

Integer Real String Date Boolean
Integer 1.0 0.5 0.3 0.1 0.1
Real 1.0 1.0 0.1 0.0 0.1
String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean 0.1 0.0 0.1 0.0 1.0

Table 5.3: Simple dataType groups [133]

Group simple XSD Data types
Integer Group Integer, byte, short, long
Real Group real, float, double, decimal
String Group string, normalizedString
Date Group date, dateTime, duration, Time
Boolean Group Boolean

• parameter1 and parameter2 are the compared parameters. Each parameter
Parameteri has a name and a type denoted respectively Parameteri.Name
and Parameteri.T ype.

• typeSim evaluates similarity between two simple data types. It is obvious
that the omitted weights in the function parSim are equal to 1. Because
we think that the name of a simple parameter and its type are equals in
importance for similarity scoring computation.

5.2.8 Maximal score computation from the similarity ma-
trix

In order to retrieve the maximum score from a similarity matrix, the
HungarianMax function deals with the problem as finding the maximum mean
of weighted assignment in a bipartite graph. Matrix cells are considered as the
edges of the graph. A match is a subset of edges where no two edges in the subset
share a common vertex. In other words, it is a set of values in the matrix where
no two values are from the same line or column. The assignment consists of find-
ing the best match in the graph where each node in the graph has an incident

5.3. WSSim: a tool for measuring web service similarity 96

Table 5.4: An excerpt of a similarity matrix

OP1’ OP2’ OP3’
OP1 0.3 0.7 0.9
OP2 0.4 0.2 0.3
OP3 0.1 0 0.4

edge in the match. In the matrix, the best assignment represents the maximum
average of each pair of scores (line-column). Since The hungarian method [90]
solves the assignment problem, it was implemented in HungarianMax to return
the similarity score from a similarity matrix.

To illustrate the logic of this function, let us suppose that we get a sim-
ilarity score between operations as depicted in Table 5.4. The maximization
function returns the maximum mean score. Thus, the better bipartite matching
is (OP1 - OP’2 [0.7]), (OP2 - OP’1 [0.4]) and (OP3 - OP’3 [0.4]), which equals to
(0.7+0.4+0.4/3)=0.5. Eventhough, the naive composition is (OP1-OP’3 [0.9]) ,
(OP2-OP’1 [0.4]) and (OP3-OP’2 [0]) with scores of ((0.9+0.4+0)/3)=0.433

5.3 WSSim: a tool for measuring web service
similarity

WSSim is a Java-based tool implementing the approach presented in the pre-
vious sections. WSSim is available as a stand-alone application, a Java API
and as a web service. When paths to the desired Web services are given to the
tool, it starts the assessment process by parsing the WSDL documents. Then,
it calculates similarities between WSDL elements. And finally, it returns the
final similarity score between the compared Web services. During the process
of assessment the tool keeps similarity scores between operations, messages, and
their parameters.

5.3.1 Overview of WSSim Functionalities
A screenshot of the tool is shown in Figure 5.4. In the left side, there is the list
of metrics used to calculate similarity. The application of these metrics is left
for manual selection. Weights are customized based upon the user experience
(for example, one can put 0 for the documentation similarity, because she/he
does not trust on the documentation provided in WSDL documents). There is a
manual evaluation of importance of some functions using weights (for example,

5.3. WSSim: a tool for measuring web service similarity 97

similarity between input/output messages of operations is more important than
similarity between names. In another case, one can consider parameter names
more important than their types or vice versa). There are different tabs for
viewing details about similarity scores once extracted (see the enlarged squares
in Figure 5.4).

The similarity for substitution is viewed by WSSim by giving some sugges-
tions of the operations of other web services that best much a given Web service
operation. This is illustrated in the bottom-left corner of the Figure.

5.3.2 Underlying Technologies
The following APIs have been used to develop this tool:
• SFA API [109]: This API is a Java implementation of the Similarity Flood-

ing Algorithm (found in: http://infolab.stanford.edu/\protect$\
relax\sim$melnik/mm/sfa/). In our tool, we use the SFA API to compute
similarity between two messages. The RDF model of the two messages is
generated by WSSim before calling the API.

• WordNet1: It is a lexical database for English words. Words in the database
are grouped into sets of synonyms called synsets. WSSim uses WordNet
to find semantic relations between compared words. It is also implicitly
used with the semantic metrics in order to evaluate the similarity between
names.

• SimMetrics2: It is an open source Java library of similarity metrics between
strings. All metrics in the library can work on a simple basis taking two
strings and returning a measure from 0.0 to 1.0. The library is used in
WSSim in order to evaluate structural similarity between words. The used
metrics are listed in Table 5.1.

• JDOM 3: It is a Java API for processing XML documents. It is used to
parse WSDL files. The parsing consists of extracting web service elements
and representing them as a basic object model.

• JWS : API library for semantic similarity measurement based on WordNet.
The library is developed by Pirro and Seco [132].

• Stanford PosTagger : a library for Part-Of-Speech Tagging4 developed by
1WordNet: http://wordnet.princeton.edu/
2Open source Similarity Measure Library: http://sourceforge.net/projects/

simmetrics
3JDOM: http://www.jdom.org
4Stanford POS Tagger API: http://nlp.stanford.edu/software/tagger.shtml

http://infolab.stanford.edu/\protect $\relax \sim $melnik/mm/sfa/
http://infolab.stanford.edu/\protect $\relax \sim $melnik/mm/sfa/
http://wordnet.princeton.edu/
http://sourceforge.net/projects/simmetrics
http://sourceforge.net/projects/simmetrics
http://www.jdom.org
http://nlp.stanford.edu/software/tagger.shtml

5.3. WSSim: a tool for measuring web service similarity 98

Stanford NLP group.

The tool offers an open-source user-friendly interface and an API. It is de-
signed to be flexible for both simple users and third-party developers. WSSim is
available on the following link: https://code.google.com/p/wssim/

5.3.3 WSSim as a Web Service
A version of WSSim is also available as web service in order to ease its use by
third-party developers. The web service groups three operations; (i) the getSer-
viceSimilarity operation which returns the overall similarity score between two
services, (ii) the getOperationPairInfo that returns information about similarity,
substitutability and composability between operation pairs, and (iii) getSubsti-
tutableOperations that returns the operation-pairs considered substitutable by
the tool.

https://code.google.com/p/wssim/

5.3.
W

SSim
:
a
tool

for
m
easuring

w
eb

service
sim

ilarity
99

Figure 5.4: Screenshot of the tool WSSim

5.4. Experiments and validation 100

5.4 Experiments and validation
The approach and its support tool have been experimented on real-world Web
services. Unfortunately, we were not able to test the implementation of similar
tools to compare their results against those generated by WSSim. Nevertheless,
we run several functional tests to obtain more consistent results according to a
human evaluation.

5.4.1 Tuning
At the beginning, we ran many tests to definitively fix the set of similarity
metrics used by WSSim (The final set is listed in table 5.1). In addition, we
compared results obtained when the identifier similarity function uses the tree
tagging technique with those obtained without using the tree tagging technique.
The collection of identifiers used for test was extracted from real web services.

Reported results were compared against a human evaluation of similarity of
the executed test cases. Figure 5.5 depicts an excerpt of compared identifiers
used during this first step.

As an example, WSSim returns 0.833 between two given Identifiers: GetU-
niversityName and GetCollegeName. Since we consider a similarity score that
ranges between 0.80 and 1 as high, the human evaluation of the test case has
confirmed it.

The results also had shown that the use of Tree Tagging enhances the sim-
ilarity between identifiers in some cases. But generally, the results obtained by
the function without Tree Tagging are close to those obtained by the use of Tree
Tagging.

5.4.2 Case Study
In order to check the effectiveness of the approach and its implementing tool, a
case study is conducted to evaluate similarity between a set of real web services,
and to find relevant substitutes for service operations depending uniquely on
similarity scores. The experiment has been conduction following these steps:

Collecting WSDLs

we were interested to study similarities between real web services offering IP
information, ZipCode Information and Weather Information. Thus, we used the
keywords "IP", "ZIP" and "Weather" to find corresponding WSDLs. We retrieve

5.4. Experiments and validation 101

With TreeTaggin
Without

TreeTagging

CurrencyExchange MoneyExchange 0,8979194 0,9063004 Very High

getMsgId getMessageIdentifier 0,91411704 0,91411704 Very High

getPersonIdentifier getHumanId 0,8641388 0,8641388 Very High

getWeatherByCityName getWeather 0,8614391 0,8614391 High

getWeatherInState getWeatherByCityName 0,6666667 0,51347536 High

getUniversityName getCollegeName 0,82418513 0,8332458 High

getWeatherByPlaceName getWeatherByZipCode 0,54157954 0,54157954 Medium

getFlightBySourceAndDestination getTravelByCityNames 0,52853566 0,56327814 Medium

getTempurature getWeatherByCityName 0,22764647 0,28714636 Low

getScore getScale 0.32280523 0,32280523 Low

getWeatherinState ConvertCurrency 0,39628065 0,23751307 Very Low

Identifier 1 Identifier 2

Similarity by the tool
Manually

evaluated

Figure 5.5: Similarity results between a set of compared identifiers

Keyword Number of Services File Suffix
ZIP 20 Z
Weather 20 W
IP adress 20 IP

Table 5.5: Number of retrieved web services

services from ServiceXplorer5, Service Repository6, XMethods7 and the service
collection of OWLS-TC 8. We selected 60 web services corresponding to the
previous keywords (see Table5.5).

First run and WSDL filtering

After grouping the WSDL files in the same directory, we run the first experiment
on that group. The tool detected 9 duplicate WSDL documents, even if these
WSDL have different names and different extensions (wsdl, asmx, xml) and
retrieved from different sources. The tool returned the similarity value 1 for the
totally similar services. We filtered these services and we kept one copy of each
service.

Second Run and System performances

WSSim offers the possibility to compare a group of WSDL documents and returns
the similarity matrix between all services. Additionally, it returns all similar

5ServiceXplorer: http://eil.cs.txstate.edu/ServiceXplorer/results.php
6Service Repository: http://www.service-repository.com
7XMethods: http://www.xmethods.com/ve2/index.po
8OWLS-TC: http://projects.semwebcentral.org/projects/owls-tc

5.4. Experiments and validation 102

Figure 5.6: Substitution results

operation-pairs with their similarity score, Input messages similarity and output
message similarity scores.

For substitution, the tool returns a list of substitutable operations as depicted
in Figure (5.6). The tool select all Operation-pairs with similarity score greater
than 0.7, and message similarity score greater or equal to 0.75. Operation pairs
that do not satisfy the previous criteria are considered not substitutable.

The machine used in the experiment run with Intel processor (I3-2100 CPU
3.10 GHZ), and RAM memory of 4 GB with Windows 7 as an operating system.
As depicted in Figure(5.6), The tool took only 88 seconds to parse 47 Web
services and measures similarities between 135 operation (135*134), and 270
messages (270*269) with 753 Parameters.

Human evaluation of operations pairs

To check the accuracy and the effectiveness of the automatic selection of
operation-substitutes resulted by the tool, we conduct a manual evaluation of the
similarity between operations. All operation-pairs with similarity score greater
or equal to 0.5 were verified. We consider two operations as substitutable if
they have a similar identifier and they have the same input and the same output
messages even with some adaptation (ex. parameter casting).

5.5. Summary 103

>=0,7

>=0,75

>=075

TP (true positive) FP (false positive) Accuracy 0,961

33 14 Precision 0,702

FN (false negative) TN (true negative) Recall 0,647

18 756 F1-Score 0,673

Criteria

Operation Similarity

Input Message Similarity

Output Message similarity

Figure 5.7: Experiment Results

Result analysis

The results of the manual annotation (substitutable or not substitutable) were
compared against WSSim results. Figure (5.7) depicts experiment results with
the associated Precision, Recall, Accuracy and F-Score.

The number of False Negatives Influenced the System Recall. False Nega-
tives in this experiment are the operation-pairs considered by the tool as non-
substitutable, and the human evaluation shows that these pairs can be considered
as substitutable after adaptation at the output message level. After a manual
checking we observed that the tool failed in detecting the similarity between
these pairs because of the comparison between a simple parameter type (String)
in the output message of one of the operations, and the complex parameter type
in the output message of the other operation.

Also, the number of true negatives is important and this is natural because
most operations in different services are not similar.

5.5 Summary
In this Chapter, we have proposed a practical approach for measuring the sim-
ilarity between Web services by comparing their interface descriptions (WSDL
documents). The approach is based on the use of a set of existing lexical and
semantic metrics. The measurement process is parametrized by a collection of
weights associated to the different levels of web service description. The challenge
of measuring the similarity between complex types, which are generally repre-
sented by XML schema, is handled by using different techniques for getting the

5.5. Summary 104

best scores as described previously. Obviously, the need for similarity assessment
is generally adapted for composition and substitution; by finding similar services
or similar operations, we can replace failed services/ failed operations by similar
ones. Also, it is possible to compose from several operations, which have similar
input-output messages, an equivalent failed operation (Opfailed=Op1+...+Opn).

In addition, we have presented a prototype tool (coined WSSIM) that imple-
ments the similarity measurement approach. The tool is developed using Java
programming language and a set of APIs. It can measure the similarity between
pair of web services, as it can measure the similarity between a collection of web
services. The tool is customized by different weights, and it can evaluate the
similarity between each pair of WSDL elements.

The tool has been experimented on a set of real-world Web services to show
its accuracy, efficiency and practicability.

In the following chapter, we present an approach that includes the proposed
similarity technique in a process that identifies services substitutes.

Chapter 6

Web Service Substitutes
Identification Approach

Contents
6.1 Overview . 106
6.2 Case study . 106
6.3 Architecture’s overview . 106
6.4 Components description . 109

6.4.1 Keyword and Signature extractor 109
6.4.2 Service retriever . 110
6.4.3 Service filterer . 113
6.4.4 Similarity assessor . 114
6.4.5 Context builder and FCA classifier 116
6.4.6 Lattice interpreter . 123
6.4.7 Reliability Analyzer . 125

6.5 Experiment and validation 126
6.5.1 Methodology . 127
6.5.2 Data selection . 127
6.5.3 Orchestration extraction . 127
6.5.4 Substitute extraction . 128
6.5.5 System performances . 129
6.5.6 Result measurement . 130
6.5.7 Threats to validity . 132

6.6 Summary . 133

6.1. Overview 106

6.1 Overview
This chapter covers the proposed process for substitute identification. First, we
give an overview about the proposed process. Then, we present an example that
we use for illustrating the application of the identification process. Finally, we de-
scribe in full details, within the remaining subsections, the different components
of the process.

6.2 Case study
We use for illustrating the substitute identification process, a weather widget
example. The widget uses an orchestration of web services to show weather
information of the user’s region based on its IP address. The widget interacts
mainly with the web service WWS (WidgetWeatherService). This web service
itself invokes an orchestration of two services GWP (GettingWeatherProcess);
the WU (WsUsers) web service that affords IP information, and the FW (Fast-
Weather) web service that returns weather information.

Figure 6.1 shows the BPEL abstract description associated to this example.
Now, let us assume that the invocation of the operation marked with a red cross
in Figure 6.1 (getWeatherByIP operation) initiates an error due to the unavail-
ability of the service FW. This situation directly leads to the defection of the
orchestration GWP. One possible solution, to heal this orchestration, is to find a
substitute for the failed service (FW). Then, we reconstruct the orchestration us-
ing the identified substitute. In the next subsections, we use the weather widget
as a running example for illustrating our process’ components.

6.3 Architecture’s overview
The substitute identification approach is built upon two techniques; the first is
the similarity assessment between web services that enables to evaluate similar-
ity and composability relationships between a set of web service candidates; and
the second technique is FCA, which is used for classifying the compared services
to retrieve substitutes. The identification process is depicted in Figure 6.2. It
starts by analyzing the WSDL document of the failed web service by the first
component (Component 1 in Figure 6.2). This component extracts, from the
WSDL specification a set of representative keywords and the signature of the
concerned operation. Then, the service retriever (Component 2 in Figure 6.2)
uses the set of keywords to select from a web service pool, all possible similar
services, i.e. it selects web services that hold at least one of the keywords and
may offer the same or related functionalities. Next, the service filterer (Com-

6.3. Architecture’s overview 107

Figure 6.1: Abstract BPEL description for the weather widget example

ponent 3 in Figure 6.2) analyses the retrieved service candidates. It compares,
trough similarity assessment, the operation signatures of these services with the
signature of the failed one. The component keeps in the filtered service set only
services that have operations which are similar to the failed service, or services
that have a composability relationship with the similar services.

The next step is the construction of the similarity matrix between the ele-
ments of the filtered set and the failed service. Hence, Component 4 in Figure
6.2 assesses the similarity scores between all operation inputs and outputs (mes-
sages). The generated similarity matrix allows the identification of similarity
relationships between all operations. Indeed, the similarity matrix can reveal
simple substitutes. Nonetheless, the classification of operations in related groups
can reveal also hidden similarity dependencies between these operations, which
enables an identification of complex substitutes. For this end, the approach uses
the FCA technique.

The context builder and the FCA classifier (Component 5 in Figure 6.2)
transforms the similarity matrix into a formal concept after many adjustments
on the matrix itself. First, it groups similar operations in clusters, which reduces
the size of the matrix and enhances, at the end of the FCA classification, the

6.3. Architecture’s overview 108

on object intent and extents occur in order to obtain the final context. The analysis and the
interpretation of the object’s intent (object that represent the failed service) reveal the
possible substitutes.
Figure 3 outlines the general schema of the approach. The role of each component in the
identification process of service substitutes is detailed in the following subsections.

Figure 3: Global schema

Keyword and Signature extractor

At the beginning of the identification process, the keyword and signature extractor
component starts by analyzing the WSDL document of the failed service. The analysis aims
to extract: a) a set of keywords that describe the service and its failed operation, and b) the
signature of the concerned operation including the information about its input and output
messages.

Keyword & Signature
Extractor Service Retriever

Failed Service
 (Operation)
 Web Services

Ressource Pool

Service Filterer
Similarity Assessor

(WSSIM Tool)

Keyword
s

+ Signature

Context builder & FCA Classifier

Substitute
(Service Or
Orchestration
of Services)

1 2

3

5

4

Signatures

Lattice interpreter

6

Operation
Clustering

Similarity Matrix
Reconstruction

Scaling and Context
Matrix Building

Square Concept
Extraction

Operation-Group
Context Building

Group
Extending

Final Concept
Building

Lattice
Generation

Similarity
matrix

Lattice

WSDLs

WSDLs

Reliability Analyser

7

Figure 6.2: Global schema of the substitute identification process

visualization and the interpretation of the generated lattice. Second, it rebuilds
the similarity matrix based on the identified groups. Next, the component builds
the context matrix corresponding to the reconstructed similarity matrix. After
that, the FCA classifier analyses the context matrix to select square concepts.
In fact, square concepts are concepts with equal intention (operations input and
output messages) and extension (operations input and output messages) sets.
These concepts allow the component to construct another context called the
operation-group context. In this context, the extensions are the service opera-
tions (or clusters representatives), and the intentions are groups of operations
identified as square concepts. Afterwards, the component extends these inten-
tions by adding similarity relationships to the elements of each group. Finally,

6.4. Components description 109

the component builds the final concept matrix and generates its corresponding
operation lattice.

The lattice interpreter (Component 6 in Figure 6.2) browses the lattice and
interprets its content. It focuses on analyzing the extension of the failed operation
to extract the list of simple and complex substitutes.

The Reliability Analyzer (Component 7 in Figure 6.2) evaluates the reliability
of the identified substitutes, and then selects the more appropriate substitutes.

6.4 Components description
This section describes functionalities and roles of each component in the archi-
tecture depicted in figure 6.2.

6.4.1 Keyword and Signature extractor
The identification process starts from Component 1 in Figure 6.2. The com-
ponent parses and analyses the WSDL interface description of the failed web
service to extract a set of keywords. These keywords represent semantically the
functionalities implemented by the web service. The set of keywords are used
as criteria for the selection of web service candidates that may offer equivalent
functionalities. Moreover, the component extracts the signature of the failed
operation. Later, this signature is used for similarity evaluation and candidate
filtering, where the system removes all candidates, which do not hold similar
operations or do not have similarity relationships with similar operations.

Keyword Extraction

Technically, the keyword and signature extractor component retrieves the repre-
sentative keyword set from the parsed WSDL document through the following
steps:

• The component retrieves all the identifiers from the WSDL file. Then, it
adds them to an identifier set (IdSet).

• The component tokenizes the identifiers of the IdSet. It adds the extracted
tokens to the Keyword Set (KeywordSet).

• The component treats the KeywordSet as follows :

– It removes all redundant words.
– It removes all stop words.

6.4. Components description 110

– It stems words.
– Finally, it enriches the set by adding words synonyms.

Thus, the component produces a set of keyword (KeywordSet) that represents
the failed web service.

Signature extraction

Component 1 extracts also the signature of the failed operation after parsing
the whole WSDL document. The signature is produced in textual format that
includes operations identifier and the signature of its input and output messages.
By its turn, the signature of messages holds their identifiers and a list of simple
and complex parameters.

6.4.2 Service retriever
The service retriever (Component 2 in Figure 6.2) uses the elements of the key-
word set to search for web service candidates that may offer the same function-
alities of the failed service. The component retrieves these candidate services by
either seeking available resource pool using Algorithm 2, or directly by requesting
web service engines such as Service Xplorer1.

Algorithm 2 takes as input the initial keywordSet (extracted from the failed
service by Component 1), and a set of available services in the service pool (Re-
sPoolSet). The algorithm analyzes each web service in the pool. If an analyzed
service do not hold any keyword similar to those in the keywordSet, the service is
shifted to the analyzed service set (examinedServSet). Otherwise, the service is
shifted to the selected service set (selectedServSet), and its keywords are added
to the keywordSet (lines 14-16). A re-analysis of the previously analyzed but not
selected services is necessary, because the new added keywords could belong to
one of the analyzed services. Consequently, the elements of the examinedServSet
are shifted back to the ResPoolSet (lines 18-22). Finally, the algorithm returns
a set of selected service candidates.

Note that within the returned service set, we have at least one service that
shares some keywords with the failed web service. The other services share key-
words between each other, which is interpreted by the existence of dependencies
(similarity or composability relationships) between them. Component 3 and 4
check and evaluate respectively these dependencies.

1Service Xplorer: http://eil.cs.txstate.edu/ServiceXplorer/

http://eil.cs.txstate.edu/ServiceXplorer/

6.4. Components description 111

Algorithm 2 Candidate_Selection
Input: KeywordSet, ResPoolSet
Output: SelectedServSet
Begin
1: Boolean matches ;
2: Create wordSet’ ;
3: Create examinedServSet;
4: while (ResPoolSet!=φ) do
5: wsdl = getElement(ResPoolSet);
6: wordSet’ = Keyword_Extraction(wsdl);
7: matches = false;
8: for all (String word in wordSet’) do
9: if (Contains(KeywordSet, word)) then

10: matches = true; break;
11: end if
12: end for
13: if (matches) then
14: for all (String w in wordSet’) do
15: Add w To KeywordSet;
16: end for
17: Add wsdl To SelectedServSet;
18: while (examinedServSet!=φ) do
19: wsdl’ = getElement(examinedServSet);
20: Add wsdl’ To resPoolSet;
21: DeleteElement wsdl’ from examinedServSet ;
22: end while
23: else
24: Add wsdl To examinedServSet;
25: end if
26: DeleteElement wsdl from ResPoolSet ;
27: end while
End

6.4. Components description 112

Algorithm 3 Operation_Filtration
Input: Signature, selectedServSet, similarity Threshold θ

Output: FiltredServiceSet
Begin
1: Boolean matches ;
2: Create examinedServSet;
3: while (selectedServSet!=φ) do
4: wsdl = getElement(selectedServSet);
5: parsedWsdl = wsdlParser(wsdl);
6: matches = false;
7: for (int i=0; i <parsedWsdl.operationCount; i++) do
8: operationInfo = parsedWsdl.getOperation(i);
9: if (Sim(signature.InputMessage, operationInfo.InputMessage)≥
θ‖ Sim(signature.InputMessage, operationInfo.OutputMessage)≥ θ‖
Sim(signature.OutputMessage, operationInfo.InputMessage)≥ θ‖ Sim(signature. Out-
putMessage, operationInfo. OutputMessage)≥ θ) then

10: matches= true ; break;
11: end if
12: end for
13: if (matches) then
14: Add wsdl To FiltredServiceSet;
15: Boolean matches’ ;
16: Create examinedServSet’ ;
17: examinedServSet’ = Duplicates(examinedServSet);
18: while (examinedServSet’ !=φ) do
19: wsdl’ = getElement(examinedServSet’);
20: parsedWsdl’ = wsdlParser(wsdl’);
21: matches’= false;
22: for (int i=0; i <parsedWsdl.operationCount; i++) do
23: for (int j=0; j <parsedWsdl’.operationCount; j++) do
24: operationInfo= parsedWsdl.getOperation(i);
25: operationInfo’ = parsedWsdl’.getOperation(j);
26: if (Sim(operationInfo.InMessage, operationInfo’.InMessage)≥

θ‖Sim(operationInfo.InMessage, operationInfo’.OutMessage)≥
θ‖Sim(operationInfo.OutMessage, operationInfo’.InMessage)≥ θ‖Sim(signature. Out-
putMessage, operationInfo. OutputMessage)≥ θ) then

27: matches’= true ; break;
28: end if
29: end for
30: end for
31: if (matches’) then
32: Add wsdl’ To FiltredServiceSet;
33: DeleteElement wsdl’ from examinedServSet ;
34: end if
35: DeleteElement wsdl’ from examinedServSet’ ;
36: end while
37: else
38: Add wsdl To examinedServSet;
39: end if
40: DeleteElement wsdl from selectedServSet ;
41: end while
End

6.4. Components description 113

File
Service
Name

Input Output

Name Parameter Name Parameter

IP02.xml
(IP2Geo)

IP2Geo ResolveIp
IpAdress :String
Licence : String

ResolveIp City : String

IP07.xml
(GeometryInfo)

Geometry IPQuery
Ip : String
key : String

IPQuery Code : String

IP15.wsdl
(p2LocationWebService)

IP2Loc IP2Location
IpAdress :String
Licence : String

IP2Location City : String

W02.wsdl
(WeatherByZip)

Weather GetWeatherByZip Zip : String GetWeatherByZip
CityTo1ZipResult
: String

w03.wsdl
(Weather)

Weather GetWeather Zip : String getWeatherforZipCode
getWeatherfor-
ZipCodeResponse
: String Array

w06.WSDL
(WeatherService)

Weather GetWeather Zip : String getWeatherReturn
getWeatherReturn
: String Array

Z23.asmx
(ZIP)

ZIPCode CityToZipCode City : String CityToZipCode
CityToZipCode
: String

Figure 6.3: Filtered web services information

6.4.3 Service filterer
The filterer component refines the set of web service candidates. It removes
services that do not have a similarity relationship with the failed service ac-
cording to the signature provided by component 1. The similarity relation is
interpreted by the fact that a given service holds an operation that is similar
by its input or output message to the input or the output message of the failed
operation/service. Or, it is similar by its input or output message to the input
or the output message of an operation/service already evaluated as similar to
the failed one.

The component uses the filtration algorithm (Algorithm 3). This algorithm
takes as input the signature of the failed operation (extracted by Component 1),
the selected service set (retrieved by Component 2) and a similarity threshold
that represents the accepted lower limit to consider two operations as similar.
The algorithm keeps in the filtered services set (filteredServiceSet) all services
that hold an operation that is similar to the failed one, or services that hold
operations that are similar to operations that are similar, by their turn, to the
failed one.

In order to illustrate the remaining steps, we use the weather widget example.
The service selector component retrieves a set of 142 services from a total of 3792
web services including 15927 operations in the resource service pool. Then, the
service filterer component reduces the number of selected services to 7. Figure
6.3 summarizes the information about the concerned operations in the filtered

6.4. Components description 114

𝐎𝐩𝟏 𝐎𝐩𝟐 … 𝐎𝐩𝒏

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

…

In
p

u
t

O
u

tp
u

t
𝐎𝐩𝟏

Input 1 𝐒𝑰𝟏_𝑰𝟐 𝐒𝑰𝟏_𝑶𝟐 … 𝐒𝑰𝟏_𝑰𝒏 𝐒𝑰𝟏_𝑶𝒏

output 1 𝐒𝑶𝟏_𝑰𝟐 𝐒𝑶𝟏_𝑶𝟐 … 𝐒𝑶𝟏_𝑰𝒏 𝐒𝑶𝟏_𝑶𝒏

𝐎𝐩𝟐
Input 𝐒𝑰𝟐_𝑰𝟏 𝐒𝑰𝟐_𝑶𝟏 1 … 𝐒𝑰𝟐_𝑰𝒏 𝐒𝑰𝟐_𝑶𝒏

Output 𝐒𝑶𝟐_𝑰𝟏 𝐒𝑶𝟐_𝑶𝟏 1 … 𝐒𝑶𝟐_𝑰𝒏 𝐒𝑶𝟐_𝑶𝒏

…

…

…

…

…

…

…

…

…

𝐎𝐩𝒏

Input 𝐒𝑰𝒏_𝑰𝟏 𝐒𝑰𝒏_𝑶𝟏 𝐒𝑰𝒏_𝑰𝟐 𝐒𝑰𝒏_𝑶𝟐 … 1

output 𝐒𝑶𝒏_𝑰𝟏 𝐒𝑶𝒏_𝑶𝟏 𝐒𝑶𝒏_𝑰𝟐 𝐒𝑶𝒏_𝑶𝟐 … 1

Figure 6.4: A generic form for the similarity matrix (SimMatrix)

services while the non-similar operations are ignored. The failed service in the
example is "FastWeather" service (the file W15 is not included in Figure 6.3),
and the failed operation in the orchestration is "GetWeatherByIp".

6.4.4 Similarity assessor
The role of the similarity assessor component is to measure the similarity values
between input and output messages that belong to the operations in the filtered
service candidates. The component arranges these values in a similarity matrix.
Figure 6.4 depicts the generic form of this matrix. Practically, the component
uses WsSim tool2 for the similarity measurement. However, the component is
generic, and any other similarity assessment approach can be integrated.

Actually, the elements to consider for the interpretation of the similarity
matrix (Figure 6.4) are the following:

• WS = {Wsy|1 ≤ y ≤ l}. WS is the filtered Web service set (filtered-
ServSet). Wsi is the service number i in the filtered service set.

• OP = {Opx|1 ≤ x ≤ n}. OP is the operation set. ∀Opx, Opx ∈ Wsy|1 ≤
y ≤ l; i.e. all the operations in the operation set are belonging to a service
in the Web Service Set.

• The function Sim(A,B) evaluates the similarity between messages A and
B where :

2Available online: https://code.google.com/p/wssim/

https://code.google.com/p/wssim/

6.4. Components description 115

– A,B ∈ MS; MS = { Opi.InputMessage⋃
Opi.OutputMessage|Opi ∈ OP }. MS is the message set that

groups the input and output messages of the operations.
– ∀ A∈ MS,∀ B ∈ MS, A = B ⇒ Sim(A,B)=1.
– ∀ A∈ MS,∀ B ∈ MS, A , B ⇒ Sim(A,B)∈ [0, 1].

• Opj ∈ OP and Opk ∈ OP are the compared operations and both belong to
the operation Set.

• SIj_Ik = Sim(Opj.InputMessage,Opk.InputMessage), SIj_Ik is the sim-
ilarity score between the input message of operation Opj and the input
message of operation Opk.

• SOj_Ik=Sim(Opj.OutputMessage, Opk.InputMessage), SOj_Ik is the sim-
ilarity score between the output message of operation Opj and the input
message of operation Opk.

• SIj_Ok=Sim(Opj.InputMessage, Opk.OutputMessage), SIj_Ok is the sim-
ilarity score between the input message of operation Opj and the output
message of operation Opk.

• SOj_Ok=Sim(Opj.OutputMessage, Opk.OutputMessage), SOj_Ok is the
similarity score between the output message of operation Opj and the out-
put message of operation Opk.

Moreover, we give the following definitions to figure out similarity and sub-
stitutability relations between operations from the similarity matrix.

Definition 1 (Similar Operations): we consider two operations as similar
if and only if the similarity value between operation inputs and the similarity
value between operation outputs; both are greater than or equal to a threshold
θ′. θ′ is fixed experimentally. Mathematically, ∀Opx ∈ OP, ∀Opy ∈ OP , and x ,
y, Sim(Opx.inputMessage, Opy.inputMessage)≥ θ’, and Sim(Opx.inputMessage,
Opy.inputMessage)≥ θ’ ⇔ Opx ≡ Opy. Opx is similar (equivalent) to Opy.

Definition 2 (1-to-1 substitute): from Definition 1, similar operations to
a failed operation are 1-to-1 substitute to this operation; If Opf is the failed
operation, ∀ Opx ∈ OP ,f , x and Opf ≡ Opx then Opx is 1-to-1 substitute
to Opf . These two definitions allow operation clustering and similarity matrix
reconstruction which are explained in the next subsections.

For Illustration, Figure 6.5 shows the similarity matrix (SimMat) between the
input and the output messages of the operations presented in Figure 6.3, and

6.4. Components description 116

W15.I W15.O IP02.I IP02.O IP07.I IP07.O IP15.I IP15.O W02.I W02.O W03.I W03.O W06.I W06.O Z23.I Z23.O

W15.I 1 0,935 0,579 0,702 0,192 0,65 0,103 0,381 0,577 0,577 0,172 0,577 0,172 0,491 0,362

W15.O 1 0,108 0,423 0,551 0,184 0,511 0,519 0,611 0,684 0,612 0,966 0,612 0,739 0,254 0,119

IP02.I 0,935 0,108 1 0,65 0,116 0,65 0,113 0,362 0,095 0,376 0,571 0,376 0,571 0,119 0,502

IP02.O 0,579 0,423 1 0,544 0,758 0,507 0,687 0,095 0,121 0,093 0,395 0,093 0,571 0,901 0,124

IP07.I 0,702 0,551 0,65 0,544 1 0,68 0,304 0,435 0,263 0,447 0,27 0,447 0,286 0,565 0,565

IP07.O 0,192 0,184 0,116 0,758 1 0,582 0,681 0,252 0,604 0,277 0,248 0,277 0,212 0,895 0,121

IP15.I 0,65 0,511 0,65 0,507 0,68 0,582 1 0,472 0,378 0,472 0,262 0,472 0,279 0,128 0,312

IP15.O 0,103 0,519 0,113 0,687 0,304 0,681 1 0,227 0,373 0,277 0,492 0,277 0,549 0,912 0,135

W02.I 0,381 0,611 0,362 0,095 0,435 0,252 0,472 0,227 1 0,983 0,417 0,983 0,463 0,547 0,789

W02.O 0,577 0,684 0,095 0,121 0,263 0,604 0,378 0,373 1 0,64 0,683 0,64 0,683 0,535 0,483

W03.I 0,577 0,612 0,376 0,093 0,447 0,277 0,472 0,277 0,983 0,64 1 1 0,465 0,382 0,756

W03.O 0,172 0,966 0,571 0,395 0,27 0,248 0,262 0,492 0,417 0,683 1 0,51 0,769 0,246 0,176

W06.I 0,577 0,612 0,376 0,093 0,447 0,277 0,472 0,277 0,983 0,64 1 0,51 1 0,382 0,756

W06.O 0,172 0,739 0,571 0,571 0,286 0,212 0,279 0,549 0,463 0,683 0,465 0,769 1 0,246 0,321

Z23.I 0,491 0,254 0,119 0,901 0,565 0,895 0,128 0,912 0,547 0,535 0,382 0,246 0,382 0,246 1

Z23.O 0,362 0,119 0,502 0,124 0,565 0,121 0,312 0,135 0,789 0,483 0,756 0,176 0,756 0,321 1

Figure 6.5: Case study similarity matrix (SimMat))

the input and output messages of the failed operation (getWeatherByIp) in the
service (W15). The matrix SimMat is an instance of the generic matrix depicted
in Figure 6.4. Lines and columns in SimMat represent inputs and outputs of the
concerned operations (each service is represented by one operation in this exam-
ple). The cells of SimMat hold the similarity values between lines and columns
(operation’s input/output, input/input, output/input or output/output).

6.4.5 Context builder and FCA classifier
The context builder and FCA classifier is Component 5 in Figure 6.2. This com-
ponent classifies and visualizes the operations that belong to service candidates
in a lattice. This organization exploits the similarity matrix to reveal substi-
tution relationships between operations, in a navigable way within a generated
lattice. The context builder and the FCA classifier conduct many transforma-
tions depicted inside the component (Component 5, Figure 6.2). It starts by
grouping similar operations in clusters, which directly identifies simple (1-to-1)
substitutes because operations in the same cluster represent substitutes for each
other.

Next, the component reduces the lines and columns number in the similarity
matrix based on the constructed clusters, which reduces consequently the lattice
size, and hence the complexity of its interpretation. Then, the component uses
the reduced similarity matrix for building its associated context matrix that
includes the input and output messages in addition to their operations.

6.4. Components description 117

Afterwards, the classifier analyses the context matrix to recognize the square
concepts, i.e. the maximal collections of messages (intentions) that share the
same similarity relationships with other messages (extensions). Then, the com-
ponent forms groups of similar messages. Each group holds the objects (input and
output messages) of the corresponding square concept. These groups maintain
the similarity relationships between messages of the same group, which represent
possible compositions between operation output (output message) and another
operation input (input message).

In order to show these composition relationships, the component builds what
we call Operation-Group context matrix. The objects in this context matrix are
the operations and the attributes are the groups of messages extracted from the
square concepts. In the next step, the component extends the groups of messages
(the attributes of the last context matrix) by adding for each input message its
output message, and for each output message its similar messages. This step
is crucial before building the final context because it identifies all composition
sequences (which operation could be composable with another). These com-
position sequences present, during the visualization of the lattice, the complex
(N-to-1) substitutes.

After that, the component builds the final concepts based on the extended
groups. These concepts hold the relationships between operations and their pos-
sible substitutes. Finally, the classifier generates the lattice that corresponds to
the final context. This lattice classifies operations in groups that share common
attributes. In this case, the attributes hold the possible substitutes for each
operation. Component 6 interprets the lattice and extracts complex (N-to-1)
substitutes.

In the following subsections, we detail each transformation step using our
illustrative example.

Operation clustering

In this step, the component groups operations in a set of clusters using Algo-
rithm 4. This algorithm analyzes the similarity matrix for constructing clusters
of similar operations. The operations are grouped in the same cluster if their
similarity values are greater than or equal to a given similarity threshold (Lines
15-16 of Algorithm 4). The threshold is fixed experimentally. It represents the
lower accepted limit for the similarity value to consider two compared objects
(messages), in the matrix, as similar.

On the one hand, the identification of clusters reduces the complexity of the
computation in the next steps. On the other hand, it reveals simple (1-to-1)

6.4. Components description 118

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑰𝑷) *𝐼𝑃0 𝐼𝑃07 𝐼𝑃 5+

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝑾) *𝑊 𝑊4 𝑊6+

𝐶𝑙𝑢𝑠𝑡𝑒𝑟3(𝒁𝟐𝟑) *𝑍 3+

Figure 6.6: Clusters identified from SimMat

W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O

W15.I 1 0,935 0,579 0,381 0,577 0,491 0,362

W15.O 1 0,108 0,423 0,611 0,684 0,254 0,119

IP.I 0,935 0,108 1 0,362 0,095 0,119 0,502

IP.O 0,579 0,423 1 0,095 0,121 0,901 0,124

W.I 0,381 0,611 0,362 0,095 1 0,547 0,789

W.O 0,577 0,684 0,095 0,121 1 0,535 0,483

Z23.I 0,491 0,254 0,119 0,901 0,547 0,535 1

Z23.O 0,362 0,119 0,502 0,124 0,789 0,483 1

Figure 6.7: Clusters similarity matrix (CLSimMat)

substitutes; i.e. operations in the same cluster which are simple substitutes for
each other.

For instance, if we consider the operation clustering for our example using
this algorithm, the similarity matrix (depicted in Figure 6.5), with a similarity
threshold θ’ that is equal to 0.65 (θ’=0.65), produces the 3 clusters (IP, W, and
Z23) shown in Figure 6.6.

Afterwards, the similarity matrix has to be reconstructed based on the iden-
tified clusters as we will explain in the following subsection.

Similarity matrix reconstruction

The component reconstructs the original similarity matrix (SimMat) based on
the identification clusters. The new generated matrix is the Cluster Similarity
Matrix (CLSimMat). The component reduces the number of lines and rows in
the original matrix (SimMat). Thus, it keeps one operation from each cluster,
and it removes the remaining operations. Note that each operation is represented
by two lines (two columns) in the matrix. The first line (column) represents its
input message and the second its output message.

For instance, Figure 6.7 shows the cluster similarity matrix (CLSimMat)
which resulted from the reconstruction of the similarity matrix SimMat depicted

6.4. Components description 119

Algorithm 4 Operation_Clustering
Input: OP, SimMatrix, similarity Threshold θ’
Output: Clusters
Begin
1: Boolean Added ;
2: int nbc = 0 ;
3: while (OP!=φ) do
4: op = getElement(OP);
5: Added = false ;
6: DeleteElement op from OP ;
7: if (nbc==0) then
8: nbc ++ ;
9: Create clusternbc ;

10: Add op To clusternbc ;
11: else
12: int i ; Added = false;
13: while (i ≤ nbc) do
14: op’ = getElement(clusteri) ;
15: if (GetSimScore(SimMatrix, op.InputMessage,

op’.InputMessage)≥ θ’ && GetSimScore(SimMatrix, op.OutputMessage,
op’.OutputMessage)≥ θ’) then

16: Add op To clusteri;
17: Added = true;
18: break;
19: else
20: i++ ;
21: end if
22: if (!Added) then
23: nbc++;
24: Create Clusternbc;
25: Add op To Clusternbc;
26: end if
27: end while
28: end if
29: end while
End

6.4. Components description 120

W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O W15.I W15.O IP.I IP.O W.I W.O Z23.I Z23.O

W15.I 1 0,935 W15.I x x

W15.O 1 0,684 W15.O x x

IP.I 0,935 1 IP.I x x

IP.O 1 0,901 IP.O x x

W.I 1 0,789 W.I x x

W.O 0,684 1 W.O x x

Z23.I 0,901 1 Z23.I x x

Z23.O 0,789 1 Z23.O x x

(a) The scaled Matrix (b) The Context matrix (ContextMat)

Figure 6.8: Scaled and context matrix

in Figure 6.5, based on the identified clusters presented in Figure 6.6.

Scaling and context matrix building

In this step, the component scales the matrix according to a given similarity
threshold θ’. The component removes, from the cluster similarity matrix (CLSim-
Matrix), all the values that are less or equal to the threshold θ’. The removed
values are presented by blank cells in the similarity matrix (e.g., matrix (a) in
Figure 6.8). The deletion of these values represents the elimination of all rela-
tionships between the messages that are not considered as similar. Thus, they
will not appear in the context matrix nor in the generated lattice later.

Then, the component replaces all the remaining values in the matrix which
are replaced by ’x’ to obtain the context matrix (ContextMat). For illustration,
Figure 6.8 shows in (a) the scaled version of the CLSimMatrix presented in Figure
6.7, and in (b) its context version based on the similarity threshold θ’ that is
equal to 0.65.

We recall that both objects and attributes of the built context (presented
by ContextMat) are input and output messages, and the relationship between
objects and attributes is the similarity relationship.

Square concepts extraction

In this step, the component analyses the context matrix (ContextMat) to extract
groups of messages that have mutual similarity relationships. These groups of
messages are used by the component for detecting composability relationships
between operations. These groups are presented in the context matrix by square
concepts. By definition, a square concept is a collection of objects with equal
extension and intention sets. They are better viewed in the context matrix

6.4. Components description 121

W15.I IP.I W15.O W.O IP.O Z23.I W.I Z23.O

W15.I x x

IP.I x x

W15.O x x

W.O x x

IP.O x x G1 =

Z23.I x x G2 =

W.I x x G3 =

Z23.O x x G4 =

(a) The Interchanged Context Matrix (IContextMat) (b) The Identified groups

{���. �	, ��. �}

{���. �	,�.�}

{��.�	, ���. �}

{�. �	, ���. �	}

Figure 6.9: Square Concepts, Interchanged Context Matrix and identified groups

{W15.I , IP.I} {W15.O , W.O} {IP.O , Z23.I} {W.I , Z23.O}

W15 x x

IP x x

W x x

Z23 x x

Figure 6.10: Operation-group context matrix (OPGContextMat)

by interchanging lines and columns. For instance, Figure 6.9 shows the square
concepts marked by the blue squares in the interchanged context matrix (a). In
addition, the component forms four corresponding groups as it is depicted in
part (b) of the figure.

Operation-Group Context building

According to the groups identified in the previous step, the component builds
a new context matrix called the Operation-Group Context Matrix (OPGCon-
textMat). The objects of the new context are the operations. The attributes
are the groups of mutually similar messages (objects of the square concepts)
identified previously. The relationships between the objects and the attributes
are the membership of at least one message in the attribute to one operation.
Figure 6.10 shows the OPGContextMat constructed for our example based on
the groups identified in part (b) of Figure 6.9.

6.4. Components description 122

Iteration 0 : (Initial groups)

G1={W��.I , IP.I}
G2={	W��.O, W.O}
G3={IP.O, Z��.I}
G4={W.I, ���.O}

Iteration 1 :

G1’={���.I-���.O , ��.I-	��.O }
G2’={	���.O, �.O}
G3’={��.O, ���.I- ���.O }
G4’={W.I - W.O , ���.O}

Iteration 2 :

G1’={���.I-���.O , ��.I-	��.O=>���.I }
G2’={	���.O, �.O}
G3’={��.O, ���.I- ���.O => W.I }
G4’={W.I - W.O , ���.O}

………

Iteration 4 :

G1’={W15.I - W15.O , IP.I - IP.O => Z23.I - Z23.O =>W.I - W.O}
G2’{W15.O , W.O}
G3’ {IP.O , Z23.I - Z23.O =>W.I - W.O}
G4’= {W.I - W.O , Z23.O}

Figure 6.11: Extended groups

Group Extending

In this step, the component extends the attributes of theOPGContextMat to hold
composition sequences. These consequences show the composition relationships
between the operations (e.g., operation 1 is composed with operation 2 and the
latter is composed with operation 4 and so on). These consequences are built
based on the similarity between messages identified from the square concepts
identified in Section 6.4.5.

The component extends the attributes (extension of the OPGContextMat)
by applying the following steps:

• Step 1: for every operation input, add its output (e.g. Op1.In becomes
Op1.In−Op1.Out).

• Step 2: for every operation output, add its similar inputs by looking at
the initial groups (e.g. Op5.Out becomes Op5.Out⇒ Op1.Out).

• Step 3: repeat step 1 and step 2 until no change occurs.

The application of these steps on the groups, depicted in part (b) of Figure
6.9, is illustrated in Figure 6.11. The component produces 4 extended groups

6.4. Components description 123

{W15.I-W15.O , IP.I-IP.O => Z23.I-Z23.O =>W.I-W.O} {W15.O , W.O} {IP.O , Z23.I-Z23.O => W.I-W.O} {W.I - W.O , Z23.O}

W15 x x

IP x x

W x x x x

Z23 x x x

Figure 6.12: Final Concept Matrix

(shown in Figure 6.11). These groups contain different composition sequences
such as "Z23.I- Z23.O => W.I-W.O" in group G3’.

Final Context Building

In this step, the Context Builder and the FCA Classifier component uses the ex-
tended groups as attributes for building the final context matrix (FinContMat).
The objects of FinContMat are the same operation candidates. Crosses are added
in this context if one operation has at least one message in the corresponding
attribute.

For instance, Figure 6.12 shows the final context of the illustrative example.

FCA classification and lattice generation

In the final transformation step, Component 5 uses Concept Explorer ([190]) to
generate the operation lattice corresponding to the final formal context elabo-
rated previously. The lattice classifies operations in related groups. Each group
has common attributes (intention). In this lattice, the attributes contain the
possible substitutes for each operation. Component 6 interprets the lattice and
extracts complex (N-to-1) substitutes for the failed operation in the defected web
service. Figure 6.13 depicts the operation lattice associated to the final context
shown in Figure 6.12.

6.4.6 Lattice interpreter
The Lattice Interpreter (Component 6 in Figure 6.1) queries the generated lat-
tice for determining the substitutes of the failed operation. More precisely, the
component parses the intent label of the failed operation to extract composi-
tion sequences that could be appropriate substitutes. The component uses the
following steps for the interpretation of the intent label:

• Step 1: operation input and its output separated by the minus sign (-) are
replaced by the name of the operation itself (e.g. Op1.In-Op1.Out becomes
Op1.)

6.4. Components description 124

Figure 6.13: Final Lattice

• Step 2: the sign (⇒) between operations means composability between
them (e.g. Op1 ⇒ Op2 means Op1 can be composed with Op2).

• Step 3: if the intent holds an orchestration (⇒ sign) and all the elements
in that orchestration are operations (but not only the input or the output
of operation as Op.In or Op.Out), then the sequence of operations (orches-
tration) is a potential substitute (N-to-1 substitute) for the selected object
(failed operation).

For our example, if we select the object labeled W15 in the lattice (the failed
operation), and we look at its intent (see Figure 6.14), we obtain the following:

• W15.O, W.O: means that the output message of operationW15 is similar
(equivalent) to the output message of operations in cluster2(W). This does
not offer any valuable information.

• W15.I-W15.O, IP.I-IP.O⇒Z23.I-Z23.O⇒W.I-W.O: if we follow step
1 we obtain W15, IP⇒Z23⇒W. The first part (parts are separated
by semicolons) does not offer any valuable information because operation
W15 is similar to itself. For the second part, if we follow steps 2 and 3 we
get an orchestration of three operations IP⇒Z23⇒W. This orchestration
is a substitute for the failed operation W15.

Additionally, IP and W represent Cluster1 and Cluster2. So, elements in
the same cluster can be used interchangeably. Consequently, we obtain a set of
substitutes (6 orchestrations), as illustrated in Figure 6.15.

6.4. Components description 125

Figure 6.14: Final lattice interpretation

The lattice interpreter component returns a set of substitutes for the failed
operation. These substitutes are simple operations (1-to-1 substitutes), and sets
of operations that form composite sequences which are considered as complex
(N-to-1) substitutes.

6.4.7 Reliability Analyzer
Now that we have a set of relevant substitutes, the reliability analyzer selects
among the identified substitutes those who satisfy the minimum requirement of
QoS attributes. That is, the services that has greater of equal QoS value than
the QoS value of the failed service.

Let Sf be the failed service, and QSf
=< qf,1, qf,2, .., qf,k > be its associated

QoS vector. Note that vectors values could be the minimum QoS values requested
in the Service Level Agreement.

Let Si, i = 1, ..,m be the identified substitutes (simple and/or complex),
where a complex Substitute Sj = Sj,1, Sj,2, .., Sj,t where t is the number of ele-
mentary services in service Sj. Each service Si has a QoS vector QSi

defined as
follows:

QSi
=< qi,1, qi,2, ..., qi,k >, i = 1, 2, ...m

where, k is the number of the QoS parameters, and m is the number of sub-

6.5. Experiment and validation 126

��������	(��) = {����, ����, ����}

��������(�) = {��,��,��}

��������(���) = {���}

��� = IP +	���+ W

x

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

��� = ����+���+ ��

Figure 6.15: List of (N-to-1) substitutes

stitutes. In case of complex substitutes, each qi,j, j = 1, ..k is evaluated as
follows:

qi,j = f(qi,j,S1 , qi,j,S2 , .., qi,j,St)

Where, f is the QoS aggregation function. It calculates the QoS of a composition
from the QoS values of its elementary services.

Once all QoS vectors are generated, the services are selected based on the
following formula :

max(Π(S1, Sf),Π(S2, Sf), ..,Π(Sm, Sf))

Where, the utility function Π is evaluated as follows :

Π(Sj, Sf) =
√

(qj,1
qf,1

)2 + (qj,2
qf,2

)2 + ...+ (qj,k
qf,k

)2

The max Π(Sj, Sf) indicates that service Sj is the most reliables substitutes for
Sfamong the identified substitutes.

6.5 Experiment and validation
According to the previous descriptions, the key concept of the approach is the
similarity between a web service orchestration and single web service candidates
(similarity between the input/output of the orchestration with the input/output

6.5. Experiment and validation 127

of the substitute). So, starting from a given similarity degree (threshold), we
consider the service as equivalent/substitute to the orchestration. Thus, if any
of these substitutes fails, it effortlessly could be replaced by its equivalent orches-
tration (1-to-N substitution) and vice-versa (N-to-1 substitution). We performed
some experiments on a set of real web services to evaluate the approach efficiency
and effectiveness. The experiments are conducted following four steps: data set
selection, orchestration extraction, substitute extraction, and finally experiment
evaluation.

6.5.1 Methodology
We have conducted the experimental process on following these steps:

• Select a set of web services (dataset),

• Extract possible combinations that could be considered as service orches-
trations,

• Manually check the obtained combinations to define the set of orchestra-
tions,

• Extract possible substitutes for each orchestration,

• Manually check the obtained substitutes,

• Measure results in terms of well know metrics (recall, precision, accuracy
and F1-score).

6.5.2 Data selection
In this experiment, we have selected 64 web service WSDL documents from the
WS-Dream dataset ([197]. In fact, the data set hold 3792 web services, but
we limited the number of used services to 64 in order to be able to check man-
ually the obtained results in reasonable time. The first service is a weather
service, and the remaining services are selected among the others using the
selection and filtration algorithms presented previously. The list of used ser-
vices and experiment results are accessible for download at the following address:
https://sites.google.com/site/wservicesubstitues/

6.5.3 Orchestration extraction
From the dataset, we extracted all possible orchestrations from the web services.
We assessed the similarity values between these web services, more precisely

6.5. Experiment and validation 128

Figure 6.16: Number of obtained substitutes

between their operations. We fixed the composability threshold (θ) at 0.95;
which means that two operations are considered composable if the similarity be-
tween the output of the first operation and the input of the second operation
is greater or equal to 0.95. We selected this score after several experiments to
obtain a reduced number of orchestrations. Using this composability threshold
(θ= 0.95) we obtained 113 orchestrations. The manual verification of these ex-
tracted orchestrations validated the composability between these combinations.
Lower thresholds allowed the selection of a larger number of combinations. But
a manual adaptation between inputs and outputs is needed to consider these
combinations as acceptable.

6.5.4 Substitute extraction
In the next set of experiments, we used different similarity thresholds to auto-
matically extract possible substitutes for each element in the orchestration set.
Figure 6.16 shows the values of the extracted substitutes according to different
similarity threshold values (θ’). Obviously, we obtain a larger selection once we
use relaxed similarity threshold values (θ’ ≤ 0.70 and θ’ ≥ 0.60). Nevertheless,
the manual examination shows that relaxed threshold values leads to obtain a
lot of substitutes that need a manual adaptation (parameters of complex type to
adapt). Consequently, we fixed the threshold value (θ’) to 0.75.

6.5. Experiment and validation 129

Figure 6.17: Experiments Execution time

6.5.5 System performances
The machine used for this experiment is running with an Intel processor (I3-2100
CPU 3.10 GHZ) and RAM of 4 GB under Windows 7 Operating System (64 bits).
Figure 6.17 summarizes the execution times for each run depending on the chosen
similarity threshold value. Execution times in part (a) of Figure 6.17 include
execution times for WSDL parsing, similarity measurement between services,
similarity matrix reconstruction, combination of operation extraction, and finally
matrix analysis and substitute identification. Part (b) of the same figure depicts
the obtained values for the WSDL parsing and substitute extraction times.

The WSDL document parsing time ranges from 0.3 to 0.4 seconds for the
same number of WSDL files. The analysis of the similarity matrix to identify
substitutes ranges from 0.07 to 1.4 seconds. These values depend on the matrix
size which is correlated with the number of operations selected based on the
used similarity threshold. The values depicted in part (a) of Figure 6.17 are the
execution times of the experiment runs. In each run, the WSDL documents are
parsed, the possible combinations (orchestration) are extracted, the similarity
matrix is constructed and then it is analyzed and the substitutes are identified
based on the fixed similarity threshold. These execution times range from 360 to
372 seconds. They are inversely proportional with the similarity threshold, thus,
with the number of selected operations.

6.5. Experiment and validation 130

Number of
orchestrations

Number of substitutes

By Tool
Manually
checked

Ɵ=0.95
Ɵ’=0.75

113
605 442

Ɵ=0.95
Ɵ’=0.73

645 452

 (a)

TP (True Positive) FP (False Positive)

442 163

FN (False negative) TN (True Negative)

10 30

 (b)

Figure 6.18: Result of manual verification of extracted substitutes

6.5.6 Result measurement
Finally, we measure the effectiveness of the approach by calculating some infor-
mation retrieval metrics such as recall, accuracy and precision. These metrics
have been broadly used in the context of web service discovery and selection
([68], [139]).

In Figure 6.18, table (a) shows the number of extracted substitutes according
to the fixed thresholds. Column "By tool" depicts the number of the substitutes
that are extracted automatically; that are considered by the tool as correct sub-
stitutes for the orchestrations. Column "Manually checked" contains the number
of substitutes that are manually verified. These values are used to identify:

• The number of true positives (number of substitutes that are identified by
the tool and that are correct),

• The number of the false positives (number of substitutes that are identified
by the tool and that are incorrect),

• The number of false negatives (number of substitutes that are correct but
that are not identified by the tool),

• The number of true negatives (number of substitutes that are incorrect and
that are not identified by the tool).

Values summarized in table (b) Figure 6.18 are used to calculate the following
IR metrics:

6.5. Experiment and validation 131

• Precision: is the number of true results divided by the number of all
returned results.
Precision (P) = TP

TP+FP = 0.731

• Accuracy: is the number of true results (both true positives and true
negatives) in the obtained results.
Accuracy (A) = TP+TN

TP+FP+FN+TN = 0.732

• Recall: is the number of correct results divided by the number of results
that should be returned.
Recall (R) = TP

TP+FN = 0.98.

• F1-Score: is a measure of test accuracy. It can be interpreted as a
weighted average of both precision and recall.
F1-Score= 2× P×R

P+R = 0.836.

The experiment shows that the precision rate is relatively low because of the
number of the false positives. These false positives are the operations that are
identified by the tool and considered as substitutes for some orchestrations. The
manual verification shows that these operations are semantically different than
the orchestration, but the tool selected them as substitutes because their input
or output messages are syntactically similar to the input of the first operation
in the orchestration or, respectively, the output of the last operation in the
orchestration. However, the experiment shows that the accuracy rate is very
high, and this is very important in the case of identification of substitutes.

In summary, the metric values obtained from this experiment on the one
hand, and the case example that illustrated the section presenting the approach
on the other hand, both show the practicability of the approach. Therefore,
we can effectively retrieve (1-to-1) and (N-to-1) substitutes for failed services.
Nevertheless, this experiment showed some drawbacks that we could avoid by
taking into account the following:

• The better we measure the similarity and we fix its threshold the better
results we obtain.

• Relaxed thresholds have to be avoided for substitutes identification.

• In case we choose medium thresholds, some substitutes need an adaptation
(casting, complex type conversion, etc.) to replace failed operations. These
service adaptations can be addressed at protocol level [115].

6.5. Experiment and validation 132

6.5.7 Threats to validity
Conclusion, construct, internal and external threats are the four categories of
threats to validity proposed in [185]. An extension of this framework to cover
Search-Based Software Engineering (SBSE) experiments is proposed by Barros
and Dias-Neto [17]. In this section, we discuss the threats to validity of the
conducted experiment according to the former extension.

Conclusion validity threats have a concern with the relationship between the
treatment and the outcome. The empirical design must make sure that there is a
statistical relationship between the involved parts. The main conclusion threats
include the non-consideration of random variation, the lack of good descriptive
statistics and the luck of the use of a meaningful baseline [17]. In this experiment,
we addressed the first threat by having many runs for each fixed threshold to
measure the execution time. We note here that the number of experiment runs
did not affect the number of obtained substitutes. Moreover, we cope with
the remaining conclusion threats by comparing the obtained results with the
manually identified ones, which is considered as a solid comparison baseline.

Construct validity threats are concerned with the relation between theory and
observation, ensuring that the treatment reflects the construct of the cause and
that the outcome reflects the construct of the effect. In SBSE experiments, con-
struct threats involve using invalid efficiency and effectiveness measures and not
discussing the underlying model subject to optimization [17]. We coped with
these threats by discussing the cost measures of the experiments (the execution
time). In addition, we addressed the validity of the effectiveness measures us-
ing the recall, precision and accuracy metrics, which are widely used in such
experiments.

Internal validity threats are concerned with the evaluation of the causality
of the relationship between the treatment and the outcome in an experimental
study, or the result of a factor upon which the researcher has no control. In-
ternal threats may include: 1) poor parameter settings, 2) luck of discussion
on code instrumentation, 3) luck of clear data collection procedures, and finally
4) the luck of a real problem instance [17]. In this experiment, we cope with
these threats by presenting the most important parameter (similarity and com-
posability thresholds) used in the experiment, by providing the source code of
the similarity assessor used in the approach, by conducting the experiment using
a set of real web services, and finally by describing the data collection procedure.

External validity threats are concerned with theg generalization of the ob-
served results to a larger population, outside the sample instances used in the

6.6. Summary 133

experiment. Specifically, these threats include the lack of a clear definition of
target instances, the lack of clear instance selection strategy, and the fact of not
having enough diversity in instance size and complexity [17]. In this experiment,
the external threats come from the limited number of instances of selected web
services used in the experiment. Even if we have selected these services from a
large collection of (almost 3800) real web services, it is still difficult to generalize
these results because they depend on the studied set of web services. Neverthe-
less, the goal of this experiment is to show the practicability and efficiency of the
proposed substitute identification process on real-world data.

6.6 Summary
In this chapter, we proposed an approach for identifying relevant web service
substitutes. The approach relies on measuring the similarity between web service
interfaces. We presented the necessary algorithms and techniques for selecting,
filtering, and clustering web service candidates. We used a similarity matrix to
determine the relation between services. We described the steps that aim to
find simple substitutes (1-to-1) and complex (N-to-1). We incorporated FCA to
classify and visualize the relevant results. We have shown the practicability of
the approach using a case example. In addition, we validated the approach via
a set of experiments conducted on a collection of real web services.

In the next chapter, we propose a framework for evaluating reputation scores
of web services and their providers. Therefore, reputation scores could be em-
ployed during reliability analysis and verification.

Chapter 7

Web Service Reputation
Management Framework

Contents
7.1 Overview . 135
7.2 Reputation management framework 135

7.2.1 Framework architecture . 135
7.2.2 Feedback collector . 136
7.2.3 Reputation manager . 137
7.2.4 Search and selection interface 138
7.2.5 Service recommender . 138

7.3 Reputation assessment model 139
7.3.1 Evaluation metrics . 139
7.3.2 Assessment formula . 140
7.3.3 Reputation . 141
7.3.4 Honesty factor . 141
7.3.5 Suspicious user penalization 143
7.3.6 Provider reputation . 143
7.3.7 WS Orchestration reputation assessment 143

7.4 Reputation bootstrapping Model 145
7.4.1 Provider reputation-based estimation 148
7.4.2 Reputation estimation from similar services 148
7.4.3 Regression-based Reputation estimation 151
7.4.4 Evaluation of the bootstrapping Model 152

7.5 Experiments . 157
7.5.1 Description . 157
7.5.2 Reputation with varying maliciousness density 164
7.5.3 Impact of time sensitivity factor 166

7.1. Overview 135

7.5.4 Effect of the penalization mechanism 167
7.5.5 Execution time performance 168
7.5.6 Performance comparison . 169
7.5.7 Limitations . 175

7.6 Summary . 176

7.1 Overview
Reputation of web services and trustworthiness of its provider is important cri-
terion when selecting reliable atomic services. Because reputation indicates how
the service is perceived from users after consummation and experimentation.
Evaluating reputation is challenging issue due to the points presented in (section
intro). In this chapter, we introduce a reputation management framework for
web service and web service orchestration. This solution provides some solutions
to the deficiencies and limitations discussed in (Section).

7.2 Reputation management framework
In this section, we present first the reputation management framework for trustful
web service recommendation. Then, we describe the main components and their
roles for acquiring, storing, and aggregating user feedback ratings.

7.2.1 Framework architecture
Figure 7.1 depicts the architecture of the reputation Management Framework.
The framework permits to users the search for web services by providing search
queries or by direct browsing of registries via Search and Selection Interface
(Component 1). After service consumption, the user could send a feedback about
her/his satisfaction to the system via the Feedback Collector (Component 2).
Collected feedback ratings are then stored in the feedback database.

The Reputation Manager (component 3) reassesses periodically the reputa-
tion of the web services based on new modifications in the feedback database,
using the assessment model presented in Section 7.3. Component 3 updates the
Reputation Database by new assessed values.

The Search and Selection Interface recommends for users sorted sets of web
services that correspond to the provided search queries. These services are pro-
cessed by the Service Recommender (Component 4) which: 1) retrieves services

7.2. Reputation management framework 136

2. Background

2.1 Web Service Orchestration

2.2 Reputation and Trust

2.3 Reputation-based web service selection

3. WS Reputation Management Framework for Service
Selection

We propose in this section a reputation management Framework for trustful web service selection. We

focus on reputation assessment for services and orchestrations. The framework is built upon a new

reputation evaluation model that combines different evaluation factors in order to cope with some

limitations in the existing models (section Metrics). First, we describe the architecture of the proposed

framework. Then, we present the proposed reputation assessment model.

Figure 1: Architecture of the reputation-based service selection framework

F
eed

back
s co

llector

Reputation
Manager

Service 1 ….

Save feedbacks

Reputation
evaluation

S
earch

 &
 S

electio
n

In
terface

Service
Registries

Service
Recommender

S
ave results

Feedback Database

Reputation
 Database

Browsing

Retrieve
Services

Retrieve
Reputation

Query

Result

Service 2 Service k

Figure 7.1: Architecture of the Reputation Manager

from registries, 2) extracts reputation scores from the reputation database, 3)
sorts services based on their reputation scores, and 4) delivers results to Com-
ponent 1 which recommends them to users.

7.2.2 Feedback collector
The role of the Feedback Collector is to provide a human-interface for service
users that enables them to submit their feedbacks. User feedback is a quantifica-
tion of user’s opinion about the consumed service. In the proposed architecture,
feedbacks are user ratings that range in a scale of 10, where 0 represents a com-
plete dissatisfaction and 10 a total satisfaction. Every web service has a unique
identifier. Therefore, during feedback submission the user has to provide the ser-
vice ID and the attributed feedback rating. During each feedback transaction,
the component stores in the feedback database the following information:

• Feedback_ID: represents the identifier of the current feedback record.

• User_ID: represents the user identifier. In order to avoid user subscription.
The system considers the IP address of the user as its identifier.

• Service_ID: represents the identifier of the consumed web service.

7.2. Reputation management framework 137

• Rating: represents the rate assigned by the user to the consumed service.
As mentioned previously, rates are unsigned integers that range between 0
and 10.

• Timestamp: represents the time of feedback reception.

• Modification_Nbr: represents the number of update of the record. Initially
it takes the value 1.

Due to performance issues, for the same service and the same user, the feed-
back collector stores in the database only one record during an amount of time
T’ (for example T’=24 hours). This record is updated each time a new rating is
introduced (feedback from the same user for the same service) within that time
interval. The feedback collector ignores additional updates on the same record
once the number of modifications reaches N (for example N=5).

7.2.3 Reputation manager
The Reputation Manager reassesses the reputation of web services by aggregating
feedbacks stored in the feedback database. We can summarize the functionality
of this component as follows:

• It retrieves new feedback records since the last assessment round from the
feedback database.

• It selects, from the retrieved records, the services that their reputations
have to be assessed or updated.

• It reevaluates the credibility (honesty factor) of the raters in respect to the
model proposed in subsection 7.3.4

• It extracts all past ratings of each selected service, and assesses its reputa-
tion following the assessment model presented in Section 7.3.

• The assessment results are stored in the reputation database. The stored
records have the following structure:

1. Service_ID: represents the identifier of the web service in the system.
2. Reputation: represents the assessed reputation value for the service.
3. Timestamp: represents the time of the last assessment round.

• The reputation manager starts new assessment round every time slot T.
T by default is 24 hours, but it could be fixed in regard to system perfor-
mances.

7.2. Reputation management framework 138

7.2.4 Search and selection interface
The Search and Selection interface enables users to interact with the system
for selecting web services. The user via this component can browse directly
the services registries. Moreover, it can handle search queries. These queries
are generally a set of keywords describing the sought services. The interface
transfers the query to the service selector component which analyzes the query
and searches for the appropriate services that match the query. The selector
return a sorted list of web services to the interface, which by its turn, returns it
as result to users.

7.2.5 Service recommender
The service recommender component processes user queries through the following
three steps:

• Step 1: Query preparation: the component analyses and prepares the
query by removing stop words, stemming the remaining keywords, and
adding synonyms to the query. The result of this step is a bag of words
that represents the initial search query.

• Step 2: Service retrieval: the selector component searches for services
that hold at least one element in the bag of words. We suppose that services
in the registries are tagged using one of the techniques proposed by Azemh
et al. [10] and Falleri et al. [60]. We assume that similarity values between
web services are assessed using the approach presented by Tibermacine
et al. [165]. This information has to be stored in a database where two
relations are defined as follows:

1. Services Relation: this relation holds the keyword of each service. It
has three named attributes represented in Table 7.1.

2. Similarity Relation: this relation holds similarity values between web
services. It holds the attributes grouped in Table 7.2.

• Step 3: Reputation-based sorting: After selecting web services, the
component retrieves the reputation value of each service in the result set
from the reputation database. Then, the component groups and sorts
services based on their reputation and similarity values. Recommended
results are sent back to the interface component.

7.3. Reputation assessment model 139

Table 7.1: Attributes of the service relation
Attributes Description
Service_ID The identifier of the web

service
WSDL_Path The relative path of the

WSDL document of the ser-
vice

TagList A list of keywords associ-
ated with the service

EntryDate The date of the entry of the
service in the registry

Table 7.2: Attributes of the similarity relation
Attribute Description
Service1_ID The identifier of the first

web service
Service2_ID The identifier of the second

web service
Similarity_Score The similarity score be-

tween web service 1 and web
service 2

7.3 Reputation assessment model
Reputation is assessed by aggregating previous user feedback ratings. In this
section, we propose a model for assessing web service reputation scores based
on collected feedback ratings. First, we discuss the considered metrics and we
provide the reputation assessment formulas. Besides, we present a bootstrap-
ping mechanism for evaluating the reputation of newcomer services. in addition,
we show how to evaluate the reputation of service providers and web service
orchestration.

7.3.1 Evaluation metrics
We enclose different metrics to evaluate web service reputation by aggregating
user feedback ratings. Some of these metrics are already taken in related work
such as in [101,108,187]. However, these propositions are using some metrics and
neglecting others. We build our reputation assessment model upon the following
metrics:

1. User honesty (credibility): The credibility of user has its impact on

7.3. Reputation assessment model 140

provided feedback ratings; a dishonest user can dramatically decrease the
reputation of good service or increase the reputation of a poor service.
Therefore, it is essential for accurate reputation measurement to consider
the level of user credibility during reputation assessment.

2. User rating history: Users may behave maliciously; they can start as
an honest users, then they change their behavior by time. In consequence,
the assessment framework has to estimate and update the honesty level of
users in function of their rating history.

3. Penalization of suspicious users: We consider a user as suspicious user
when its estimated credibility is less than a fixed threshold. The model
neutralize feedback ratings of all suspicious users. This mechanism permits
to ensure the purity of feedback ratings used during the assessment of web
service reputation.

4. Feedback History: The reputation assessment model handles all feedback
ratings stored in the database.

5. Temporal sensitivity: We include this factor (written λ) in the assess-
ment model to address the temporal sensitivity of ratings, where new feed-
backs has more impacts on the assessed reputation than older ones. We
adopt this metric from [187] and [183].

7.3.2 Assessment formula
Let δ(i,k) be the feedback rate of user (i) for service (k). The rating values
range between 0 and 10, where 0 represents a total dissatisfaction about the
functionalities and QoS of the used web service, and 10 represents its total sat-
isfaction. More precisely, let δ(i,k) ∈ {δ−(i,k), δ

+
(i,k)} , where δ

−
(i,k) ∈ {0, 1, 2, 3, 4, 5}

and δ+
(i,k) ∈ {6, 7, 8, 9, 10}. We assume that δ−(i,k) is a negative feedback, and δ+

(i,k)
is a positive one.

Let Φ(Sk) be the sum of all rates weighted by the time sensitivity (aging)
factor λ and the rater’s honesty score H. Mathematically, we define Φ(Sk) as
follows:

Φ(Sk) = (
n∑
i=1

δ+
(i,k) × λ

di ×Hi) + (
m∑
j=1

δ−(j,k) × λ
dj ×Hj) (7.1)

Where:

• δ+
(i,k) is the i-th positive rating, and n is the number of positive rates for
service (Sk).

7.3. Reputation assessment model 141

• δ−(j,k) is the j-th negative rating, and m is the number of negative rates for
service (Sk).

• n+m is the number of all rates for service Sk.

• λ is the aging factor, where 0 ≤ λ ≤ 1.

• di is the age of the rate assigned by user i for service Sk in terms of number
of days.

• Hi is the honesty score assessed for user i.

In addition, we define the function Ω(Sk) of web service Sk as the fraction
of the difference between positive and negative feedbacks (weighted by their
corresponding aging and honesty factors) to the sum of all feedbacks (Φ(Sk)).
We write:

Ω(Sk) =

(
∑n

i=1 δ
+
(i,k)×λ

di×Hi)−(
∑m

j=1 δ
−
(j,k)×λ

dj×Hj)
Φ(Sk) ifΦ(Sk) , 0

−1 otherwise
(7.2)

The range (co-domain) of the Ω function is in the interval [−1, 1]. If all the
rates of service Sk are positive, Ω(Sk) equates 1. Conversely, if all rates are
negative, Ω(Sk) is equal to -1.

7.3.3 Reputation
The reputation of service Sk (R(Sk)) is calculated as the fraction of the mean of
feedbacks at the rating scale (10) if all feedbacks are either positive or negative.
Otherwise, the reputation is the normalized value of the Ω function at the interval
[0,1]. Formally, we write:

R(Sk) =

(
∑n

i=1 δ
+
(i,k)×λ

di×Hi)
10×n if Ω(Sk) = 1

(
∑m

j=1 δ
−
(j,k)×λ

dj×Hj)
10×m if Ω(Sk) = −1

Ω(Sk)+1
2 Otherwise

(7.3)

7.3.4 Honesty factor
The honesty factor is the probability that the user gives a honest feedback. By
default, a new user is assigned the value (1

2). This value means that the user
is neither honest nor dishonest. So, feedbacks provided from new users do not
affect dramatically the reputation of the ranked services. In the next ranking
experiences, we calculate the honesty factor for user i based on its previous
experiences as follows:

7.3. Reputation assessment model 142

Rated
Services

Other’s feedbacks User (i)
feedback

Probability
Positive (+) Negative (-)

𝑊𝑆7 12 3 -
4

16
=
1

4

𝑊𝑆12 1 10 -
11

12

𝑊𝑆19 5 1 +
6

7

𝑊𝑆58 16 0 + 1

𝑊𝑆62 6 3 -
2

5

 𝐻𝑖 0,66

Figure 7.2: Example of the assessment of the Honesty Factor

Hi =
∑t
s=1(Ψ(s)

Ψ+(s)+Ψ−(s))
t

such as: Ψ(s) =
{

Ψ+(s) if(δi,s = δ+
i,s)

Ψ−(s) if(δi,s = δ−i,s)
(7.4)

where,

• t: is the number of services rated by user (i)

• Ψ+(s): denotes the number of positive ratings for service s

• Ψ−(s): denotes the number of negative ratings for service s

An illustrative example of the calculation of the honesty factor of a user
who sends feedback ratings for the services WS7, WS12, WS19, WS58, WS62
is presented in Fig. 7.2. We can observe that this user rated the first service
negatively and belongs to the quarter of users that rated negatively this service.
In addition, she/he rated negatively the last service like a minority of users
(2

5). These values lower her/his honesty. However she/he evaluated the other
services like a majority of users. For instance, she/he has rated the second service
negatively, like 10 other users (among 11). And this increases her/his honesty.
The overall honesty factor for this user has been evaluated to 0.66, which means
that, for the moment, this user is likely to be honest.

7.3. Reputation assessment model 143

7.3.5 Suspicious user penalization
In this paper, we consider a user with a honesty factor less than a fixed threshold
as a suspicious user. Consequently, the effect of feedback ratings provided by this
user has to be neutralized. Thus, we penalize suspicious users by setting their
honesty factors to zero. In this way, we ensure that web service reputation is
assessed from fair feedback ratings. The honesty of a user is subject to change.
This depends on her/his future behavior. The model reevaluates user honesty
every time the system gathers new feedback ratings from that user. The aging
factor reduces the impact of old malicious feedback ratings in case the suspicious
user has enhanced her/his behavior and has provided recent new fair ratings.

7.3.6 Provider reputation
The reputation of the provider mainly depends on the quality of its offered ser-
vices thus on their reputation. Consequently, we assess the reputation of a
provider as the mean of the reputations scores of its services. Given the pro-
vide Prx, let Services(Prx) = S1, S2, ..., Sn be the set of services provided by
Prx. The reputation of this provider is assessed as follows :

RP (Prx) =
{ (Σn

i=1R(Si))
n

if Services(Prx) , φ
1
2 Otherwise

(7.5)

where,

• R(Si) is the reputation of service Si that belongs to provider’s service set
(Si ∈ services(Prx)).

• φ denotes the empty set.

The reputation of a new provider, in case of the introduction of new service, is
set to 1

2 . This value means that the provider is neither trusted nor untrusted.
The reputation of the provider is updated automatically once the reputation of
one of its services has been modified.

7.3.7 WS Orchestration reputation assessment
Several existing reputation models focus on the selection of single services and
neglect pure WS orchestrations [103]. Ideally, advanced WS selection systems
have to allow to their users to select WS orchestrations among different possibil-
ities, based on reputation and service similarity. Therefore, a user can start by
selecting a set of services to construct her/his orchestration. The system assesses
the reputation of this orchestration based on the reputation of single services.

7.3. Reputation assessment model 144

Table 7.3: Web service candidate information of the hypothetical WS orchestra-
tion

Task Invocation Web service Reputation

T1 3
S11 0.89
S12 0.77
S13 0.93

T2 1

S21 0.65
S22 0.25
S23 0.82
S24 0.37

T3 2 S31 0.72
S32 0.68

Then, it suggests similar orchestrations with better reputation values based on
possible service substitutes (similar services that can replace initial ones in the
orchestration).

We complete the proposed model for allowing reputation-based selection of
WS orchestrations. Let us suppose that we have a generic orchestration where n
web services {Si | i ∈ [1, n]} are involved. Each service has a reputation value
assessed and stored separately in the reputation database (RDB). In addition,
the user has to provide the number of invocations for each service in the orches-
tration. In case the number of invocations is missed, the system will consider
that each service is invoked once.

Each service Si is invoked Xi times in the orchestration, and Ri represents
the reputation of the single web service Si.

Accordingly, we propose to assess the reputation of the orchestration Rep
(Cs) as follows:

Rep(CS) =

n∑
i=1

Xi ×Ri

n∑
i=1

Xi

(7.6)

where,

• Xi is the number of invocations of service Si in the orchestration CS. By
default, it takes the value 1.

• Ri is the reputation of the service Si.

We believe that, the most invoked service in the orchestration is the service
that its reputation value influences the most the overall orchestration reputation.

7.4. Reputation bootstrapping Model 145

Table 7.4: The first ten recommended web service combinations for the orches-
tration based on the estimated reputation values

Rank Recommended Combination Estimated
Reputation

1 {S13, S23, S31} 0.842
2 {S13, S23, S32} 0.828
3 {S11, S23, S31} 0.822
4 {S13, S21, S31} 0.813
5 {S11, S23, S32} 0.808
6 {S13, S21, S32} 0.800
7 {S11, S21, S31} 0.793
8 {S11, S21, S32} 0.780
9 {S13, S24, S31} 0.767
10 {S12, S23, S31} 0.762

For illustration, let us suppose that we have a hypothetical orchestration (CS)
of three tasks T1,T2, T3. Initially, the system has found a set of service candidates
for each task: {S11, S12, S13} for T1, {S21, S22, S23, S24} for T2, and {S31, S32}
for T3. Table 7.3 shows the number of invocations and the reputation score
of each service candidate. The best recommended combination to achieve this
orchestration is S13,S23, and S31. These services have the maximal reputation
scores. We assess the overall reputation of this orchestration as follows:

Rep(Cs) = (3× 0.93) + 0.82 + (2× 0.72)
6 = 0.84.

Table 7.4 lists the first ten recommended combinations for maintaining CS
orchestration.

7.4 Reputation bootstrapping Model
Rather than assigning a default initial reputation value to newly posted web
services, we propose a reputation bootstrapping model that assigns appropriate
reputation values depending on their initial QoS. Thereby, the assigned reputa-
tion values give more chances for these services to be recommended and selected.
Moreover, the bootstrapping model offers a solution for the “cold start” and the
“whitewashing” problems. So, from the one hand we avoid fixed initial values,
and from the other hand, even if a service leaves the system and comes back
later with another identity (Name, URL, Provider Domain, etc.), it will get a

7.4. Reputation bootstrapping Model 146

reputation value that approximates to its reputation value before leaving the
system.

At the initial phase, when a new Web service Si arrives to the system, we as-
sume that it comes with a set of initial QoS vector Qinit

Si
=< Qi,1, Qi,2, ..., Qi,k >.

These QoS values are provided during publication time by the service provider
(Pr(Si)) as advertised QoS. They can be established by the system after a short
period of service testing and monitoring (The system can use one of the ap-
proaches proposed in this survey [?]). Then, to bootstrap the reputation of the
new service Si, the system goes through three phases: i) provider reputation
evaluation, which is explained in Section 7.4.1, ii) reputation estimation from
similar services, which is described in Section 7.4.2, and iii) reputation estima-
tion from multiple regression models built from QoS and reputation values of
long-standing services, which is detailed in Section 7.4.3.

In Algorithm 5, we present the process that covers the three phases to esti-
mate the reputation of the new web services Si. First, the system checks whether
the provider of the service is known by the system (Line 1 in Algorithm 5), that
is, the service provider belongs to the list of providers ProviderList that have
previously published services in the system. In the positive case, the system
computes the reputation of this provider, denoted prReputation, based on the
reputation of its long-standing services (Line 2). We present details on how we
calculate the reputation of the provider in Section 7.4.1.

Afterwards, the system seeks for long-standing services that provide similar
functionalities to the new web service (Line 3). To evaluate the similarity be-
tween web services, we use the approach proposed by Tibermacine et al. [165].
If the simServiceSet, which denotes the set of similar service, is not empty, the
system builds an equation model from the QoS vectors and reputation values of
similar services (Line 5 in the Algorithm), as it is detailed in Section 7.4.2. The
system estimates from the built model a reputation value, denoted mReputation,
for the newcomer service based on its initial QoS vector. The maximum value
between the provider reputation and the estimated reputation (mReputation) is
assigned to the newcomer service. The choice of the maximum value (an opti-
mistic strategy) is motivated by the fact that if a provider has a good reputation,
it is likely that its new service will have a good reputation too. If the estimated
reputation is better, then we give a chance to this service to be selected and
evaluated by users, independently of its provider reputation.

Besides, when the provider of the service is also new to the system, we check if
it is a whitewashing situation (lines 12-17 in Algorithm 1). The system retrieves
all similar long-standing services and compares their similarity scores with the

7.4. Reputation bootstrapping Model 147

Algorithm 5 Reputation bootstrapping algorithm
Input: Si new service
Output: Reputation
Begin

if (Provider(Si) ∈ ProviderList) then
prReputation = providerReputation(Provider(Si));
simServiceSet = getSimilarServices(Si,ServiceList);
if (simServiceSet, Φ) then

eModel = buildEquationalModel(simServiceSet);
mReputation = estimateReputation(Qos(Si),eModel);
reputation= Max(prReputation,mReputation);

else
reputation= prReputation;

end if
else

simServiceSet = getSimilarServices(Si,ServiceList);
if (simServiceSet, Φ) then

SimVector = Similarities(Si, simServiceSet);
aService =HighestScoreService(SimVector);
if (Max(simVector)==1 && hasLeft(aService)) then

reputation =getReputation(aService);
else

eModel = buildEquationalModel(simServiceSet);
reputation = estimateReputation(Qos(Si),eModel);

end if
else

rModel = BuildRegressionModel(serviceList);
reputation = estimateReputation(Qos(Si),rModel);

end if
end if

End

7.4. Reputation bootstrapping Model 148

new service (similarity scores range between 0 and 1, where 1 means that services
are totally similar and 0 otherwise). If the highest similarity score equates to one,
and the similar service has left the system, then, the provider of the new service
becomes suspicious, and we assign the (old) reputation of the service that has
left to the new service (line 17 in the algorithm). Otherwise, we go to phase two,
where the system builds an equation model from QoS and reputation values of
similar services. The estimated reputation is assigned to the newcomer service.

When the newcomer service and its provider are both new, and there are no
similar services in the system, we go to phase three (detailed in Section 7.4.3).
The system builds a multiple linear regression model from QoS vectors and rep-
utation values of all long-standing web services in the system (line 23 in the
algorithm). Likewise to phase two, the model gives also an estimation of service
reputation based on the service initial QoS. The estimated value is assigned to
the newcomer web service.

7.4.1 Provider reputation-based estimation
The reputation of a given provider mainly depends on the quality of its offered
services, thus on their reputation. In this phase, we assess the reputation of a
provider as the average of the reputation scores of its services. Given a provide
Prx, let Services(Prx) = S1, S2, ..., Sn be the set of web services provided by
Prx. The reputation of this provider is assessed as follows:

RP (Prx) =
{ (Σn

i=1R(Si))
n

if Services(Prx) , φ
0 Otherwise

(7.7)

where,

• R(Si) is the reputation of service Si that belongs to the provider’s service
set (Si ∈ services(Prx)).

• φ denotes the empty set.

The reputation of a new provider, in case of the introduction of a new service, is
set to 0. This value means that the provider is by default not trusted. However
the reputation of the provider is updated automatically once the reputation of
one of its services has been modified.

7.4.2 Reputation estimation from similar services
Since a user rates similar web services based on the same criteria, it could be
possible to estimate the reputation of newcomer web service based on reputation

7.4. Reputation bootstrapping Model 149

Service Response
Time (T)

Availability
(A)

Price
(P)

Reputation
(R)

S1 T1 A1 P1 R1
S2 T2 A2 P2 R2
...

...
...

...
...

Sm Tm Am Pm Rm

Table 7.5: Generic form of service QoS vectors and reputation

values of its similar services, which are the aggregations of user feedback ratings.
In this phase, we present how to estimate, according to QoS values, the reputation
of a newcomer service Si. For illustration, we suppose that service Si comes with
three initial QoS values: i) response time, denoted Ti or in general form Qi,1;
ii) availability, denoted Ai or Qi,2; and iii) price, denoted Pi or Qi,3.

To estimate the reputation of service Si, we follow the next steps:

1. Selecting similar services: First, the system selects from its database long-
standing services that are similar to service Si. We use the approach pro-
posed by Tibermacine et al. [165] to assess the similarity between the new
web service and the long-standing services. The approach assesses the sim-
ilarity between two services by comparing their WSDL files using several
lexical and semantic metrics. The results of the similarity assessment are
scores that range between 0 and 1, where 0 represents a total dissimilar-
ity and 1 a total similarity. Compared web services with a similarity score
greater or equal than a fixed threshold (e.g., 0.75) are considered as similar.
The result of this step is a set of similar services denoted by simServiceSet.

2. Preparing QoS data: Second, the system retrieves QoS and reputation val-
ues of each service in simServiceSet. Let Sj ∈ simServiceSet (j=1,..,m)
be a similar service. Each similar service Sj has a QoS vector QSj

=<
Tj, Aj, Pj, Rj >. Where Rj denotes the reputation of service Sj calculated
from user feedback ratings. Table 7.5 groups the collected data. Besides,
the newcomer service Si has the vector Qinit

Si
=< Ti, Ai, Pi, R̂i >. Where

Ti, Ai and Pi represent the initial QoS values, and R̂i is the unknown
reputation value.
Afterwards, the system scales all QoS values in the interval [0, 1]. Thus,
each QoS value (QosV al),which is Tj, Aj, or Pj (j=1,..,m) in Table 7.5, is
replaced by NewQosV al as follows :

NewQosV al = QosV al −MinV al

MaxV al −MinV al
(7.8)

7.4. Reputation bootstrapping Model 150

Sτ Si

Response Time (T) Tτ = Σm
i=1Ti

m
Ti

Availability (A) Aτ = Σm
i=1Ai

m
Ai

Price (P) Pτ = Σm
i=1Pi

m
Pi

Reputation (R) Rτ = Σm
i=1Ri

m
Ri?

Table 7.6: Mean QoS values

where, MinV al andMaxV al are respectively the minimum and maximum
recorded value in the system for that QoS metric. Note that, some of the
QoS metrics have values which are interpreted inversely, i.e. the higher is
the value, the lower is the quality. This includes execution time and price.
Thus, the scaled value NewQosV al, for these type of QoS, is calculated as
follows:

NewQosV al = 1− (QosV al −MinV al

MaxV al −MinV al
) (7.9)

3. Solving an equation system: We assume that reputation and QoS are
collinear. Thus, from the scaled data of Table 7.5, we define the equa-
tion system of m equations with 3 variables (QoS attributes) as follows:

R(Sk) =

T1.X1 + A1.X2 + P1.X3 = R1
T2.X1 + A2.X2 + P2.X3 = R2
T3.X1 + A3.X2 + P3.X3 = R3

...
...

Tm.X1 + Am.X2 + Pm.X3 = Rm

(7.10)

where, X1, X2 and X3 are the variables, the coefficients Ti, Ai and Pi are
the QoS values, and Ri is the reputation value (R(Si)). Each equation in
the system represents the relation between QoS values and the reputation
of each service. Finally, we solve the equation system to find values of X1,
X2 and X3.

4. Evaluating reputation: Finally, Once the equation system is solved, we can
find the reputation of the newcomer service R̂i by direct application of the
values of X1, X2 and X3 in the following equation:

R̂i = Ti.X1 + Ai.X2 + Pi.X3 (7.11)

7.4. Reputation bootstrapping Model 151

In case the equation system has no solution for the m equations, we eliminate
from the system one equation, which includes the oldest assessed value of repu-
tation, and we solve the equation-system again. We keep eliminating equations
and solving the system till we find a solution, and m is still greater or equals
3. In case we could not get a solution for the equation system, we assess the
reputation of the new web service as follows:

• Construct the mean vector of similar-services’ QoS : For instance, column
Sτ in Table 7.6 represents the mean vector for the QoS values in Table 7.5.
And, column Si represents the vector that holds QoS data of the new
service.

• Compute the reputation R̂i of the new service Si by applying the following
formula:

R̂i = Rτ

3 × (Ti
Tτ

+ Ai
Aτ

+ Pi
Pτ

) (7.12)

This formula stipulates that the ratio of the newcomer service reputation to
the reputation of its similar services is equal to the average of the ratios of the
QoS attributes of the newcomer service to those of its similar services.

7.4.3 Regression-based Reputation estimation
The third phase in the reputation bootstrapping technique is the construction of
a multiple regression model, using QoS and reputation data of all long-standing
web services. This model serves as an estimation of reputation for new services
that has no previous interactions, nor they have known providers.

By definition, multiple regressions are statistical techniques used for predict-
ing unknown Y values (dependent variable) corresponding to a set of X values
(independent variables). In our study, the multiple regression is expected to give
a model that could relate the reputation value of long-standing services to their
QoS metrics, that is, we consider the dependent variable Y to represent the repu-
tation of services as a function of multiple QoS attributes (independent variables)
such as response time, availability, throughput, latency, price, etc. So, if we have
n long-standing services in the system (Sj , j = 1, 2, ..., n), and each service Sj
has a QoS vector QSj

=< Qj,1, Qj,2, ..., Qj,k > that holds k QoS metrics, and each
service Sj has a reputation value R(Sj) denoted Rj. The relationships between
reputation (dependent variable) and QoS metrics (independent variables) can be
expressed by the following equation:

7.4. Reputation bootstrapping Model 152

Q1,1 Q1,2 · · · Q1,k

Q2,1 Q2,2 · · · Q2,k
...

...
. . .

...

Qn,1 Qn,2 · · · Qn,k

︸ ︷︷ ︸

X

β1

β2
...

βk

︸ ︷︷ ︸

β

+

ε1

ε2
...

εn

︸ ︷︷ ︸

ε

=

R1

R2
...

Rn

︸ ︷︷ ︸

Y

(7.13)

Where :

• X is the design matrix that packs all regressors (predictors) Qi,j, i = 1, ..., n
and j = 1, ..., k.

• β is the regression coefficient vector (called also slop vector).

• ε is the error vector. Error terms εi, i = 1, .., n capture all the factors which
influence the dependent variable (Ri, i = 1, ..., n) other than regressors
(Xi,j, i = 1, ..., n and j = 1, ..., k).

The multiple regression of the model can be simplified to:

Ri = β1Qi,1 + β2Qi,2 + ...+ βkQi,k + εi, i = 1, ..., n (7.14)

Where,

• yi is the response (estimated reputation) of the linear combination of the
model terms.

• βi (i = 1, ..., k) represents the unknown coefficients.

• ε is the error term.

At the end of phase three, the system uses solved values of the unknown
coefficients (βi (i = 1, ..., k), and the error term (ε), to estimate the reputation
of the new comer services based on its initial QoS vector.

7.4.4 Evaluation of the bootstrapping Model
To evaluate the proposed bootstrapping technique, we conducted our experiment
on a set of real web services data extracted from WSDream [200] and QWS [2]
datasets. The aim of the experiment is to study the feasibility of the proposed
technique, and to guarantee its efficiency in estimating reputation values of new-
comer Web services. We focused on phase three (the construction of the multiple
regression model), which is the worst (and somehow the most general) case. We
evaluated the regression model regarding to its coefficient of determination (R2)

7.4. Reputation bootstrapping Model 153

Number Quality Description Unit

1 Response time Time taken to send a request and receive a response ms

2 Availability Number of successful invocations / total invocations %

3 Throughput Total Number of invocations for a given period of time invocations/second

4 Successability Number of response messages / number of request messages %

5 Reliability Number of error messages / total messages %

6 Compliance The extent to which a WSDL document follows WSDL specification %

7 Best Practices The extent to which a Web service follows WS-I Basic Profile %

8 Latency Time taken for the server to process a given request ms

9 Documentation Measure of documentation (i.e. description tags) in WSDL %

Table 7.7: QoS metrics selected from QWS dataset

and its F-significance. Moreover, we tested the performance of the model by
comparing estimated reputation values and reputation values assessed during
a simulation, where we pretend that newcomer services are old in the system,
and they have received feedback ratings from different users (both honest and
malicious users are considered). Comparison results are reported by the Mean
Absolute Error (MAE), and the Percentage-Error metrics.

Data description and preparation

WSDream dataset holds 5825 web service QoS data evaluated by 339 users in
different geographical locations (we have chosen the dataset 2 in WSDream).
The dataset holds 339*5825*2 (2: response time and throughput). QWS dataset
holds 365 web services with 9 QoS metrics listed in Table 7.7.

To use a maximum number of QoS metrics with different monitored values
of response time and throughput, we selected the services that belong to the two
datasets. We matched web services based on their URIs, Names, and WSDL file
size. We obtained 409 services that constitute the intersection set. Each service
in this set has 7 fixed QoS metrics from QWS, and 2 QoS metrics (response time
and throughput) that vary based on the observation of 339 users from WSDream.
This final web service set is used for experimentation.

Feedback rating simulation

Due to the current limited availability of feedback rating data, many web service
reputation management approaches (e.g., [101,102,120]) have used simulation for
generating user feedback ratings for assessing service reputation values. Likewise,

7.4. Reputation bootstrapping Model 154

Regression Statistics

Multiple R 0.886815467

R Square 0.786441673

Adjusted R Square 0.781072888

Standard Error 0.272880252

Observations 368

ANOVA df SS MS F Significance F

Regression 9 98.16965139 10.90773904 146.4841128 2.8767E-114

Residual 358 26.6579802 0.074463632

Total 367 124.8276316

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept (ε) 2.374640371 0.219162569 10.83506359 7.52464E-24 1.943632519 2.805648222 1.943632519 2.805648222

Response Time -0.000346194 0.00529994 -0.065320349 0.09479554 -0.010769122 0.010076734 -0.010769122 0.010076734

Throughput -0.000396292 0.000137447 -2.883247406 0.004173789 -0.000666596 -0.000125988 -0.000666596 -0.000125988

Availability 0.009825812 0.005457871 1.800301188 0.072654752 -0.000907706 0.02055933 -0.000907706 0.02055933

Successability 0.013471355 0.005074587 2.654670304 0.008292994 0.003491609 0.0234511 0.003491609 0.0234511

Reliability -0.000504619 0.002832241 -0.178169433 0.85869069 -0.00607454 0.005065303 -0.00607454 0.005065303

Compliance 0.020737736 0.001661812 12.47899235 6.38821E-30 0.017469597 0.024005876 0.017469597 0.024005876

Best Practice -0.005847026 0.002303954 -2.537822196 0.011577834 -0.010378011 -0.001316041 -0.010378011 -0.001316041

Latency -0.000348913 9.14902E-05 -3.813661459 0.000161212 -0.000528838 -0.000168987 -0.000528838 -0.000168987

Documentation 0.007401319 0.000420714 17.59226209 2.2905E-50 0.006573936 0.008228701 0.006573936 0.008228701

 * Best Practice) - (0.000348913 * Latency) + (0.007401319 * Documentation)
 + (0.013471355 * successability) - (0.000504619 * Reliability) + (0.020737736 * Compliance) - (0.005847026

Estimated = 2.374640371 - (0.000346194 * Response Time) - (0.00396292 * Throughput) + (0.009825812 * Availability) reputation

Figure 7.3: Output from the regression data analysis tool
we have built a Java program that simulates the interaction between the selected
(409) web services and (339) users.

Each service has an actual performance (overall quality) level (from 1 to 10),
denoted PerfVal, that represents in a scale of 10 how good is the overall quality
provided by the service. PerfVal is calculated based on a utility function (i.e.,
a single scalar metric to quantify quality perception) of the delivered service,
as suggested in [94]. However, in our work, we propose to calculate the utility
function with the root mean square, which is a measure of the magnitude, of the
scaled QoS metrics. Thus, PerfVal of service Si is assessed as follows:

PerfV al(Si) = 10×

√√√√√√
k∑
j=1

Scal(Qi,j)2

k
(7.15)

Where, k is the number of used QoS metrics (Qj, j = 1, .., k). And, Scal(Qi,j) is
the scaling function, which is defined by Eq. 7.16, if the quality is positive (i.e.,
the higher is the value the higher is the quality), and by 1 - the same formula
otherwise.

Scal(Qi,j) = Qi,j −Min(Qj)
Max(Qi)−Min(Qj)

(7.16)

where, Min(Qj) and Max(Qj) are respectively the minimum and maximum
recorded values of the quality Qj.

The program simulates two kinds of users: honest and malicious users.
Honest users randomly rate a service based on its PerfVal within the interval

7.4. Reputation bootstrapping Model 155

[Max(0,PerfVal− 2),Min(PerfVal + 2, 10)], e.g, if PerfVal=7, honest feedback
ratings could be 5, 6, 7, 8, and 9. the deviation with ±2 from PerfVal repre-
sents natural variation between user opinions. Malicious users randomly rate the
same service outside the previous interval, always on scale of 10. For instance,
if PerfVal=7, malicious feedback ratings could be 0, 1 ,2, 3, 4, and 10.

In this simulation, we consider 10% of users are malicious users. Finally, the
reputation of web services are calculated as the mean of collected feedback rat-
ings. The final reputation values are the average of 10 round-simulation results.

Multiple regression model building

We build the regression model using the QoS and reputation data of 90% of
web services (Training set). The remaining 10% of services are used as service-
test set (i.e., services considered as newcomers). We have used Microsoft Excel
Regression data analysis tool to build our multiple regression model, because it
provides a detailed analysis results about the regression model as it is shown in
Figure 7.3. The same model is also generated by our Java program to estimate
the reputation of the elements of the test set.

As we can see from Figure 7.3, the correlation coefficient (Multiple R=0.8869)
indicates a positive relationship between reputation value and QoS data (where,
1 indicates a perfect positive relationship). We see also that R2 = 0.7864 which
means that 78.64% of the values fit the model.

Finally, since the significance-F (p-value) = 2.8767e-114 < 0.05, we conclude
that the regression model is a significantly good fit (i.e, the calculated linear
equation fits our data). For estimating web service reputation, we use the formula
depicted in the bottom of Figure 7.3.

Reputation estimation and evaluation

We test the efficiency of the multiple regression model in the estimation of web
service reputation, using test web services data (the remaining 10% of web ser-
vices). We compare the estimation reputation value of each service obtained
from the model, with the reputation value calculated from user feedback ratings
collected during multi-round simulation. The Mean Absolute Error (MAE)
between the estimated and calculated reputation values of the 41 test web services
is equal to 0.2651, with a Percentage Error (PE) of 4.656%. A comparison
between estimated and calculated reputation values of a sample of test services
is shown in Figure 7.4. We have run multiple experiment rounds by varying
the density of malicious users (i.e., rate of malicious users in the system). We
have built regression models from the obtained results using the same training

7.4. Reputation bootstrapping Model 156

Malicious

Density
R2 MAE Percentage Error

10% 0.776797 0.29042 5.06319

20% 0.760624 0.29270 5.04946

30% 0.75072 0.26922 4.57920

Table 7.8: R2, MEA and PE comparison by varying malicious density

set (90% of services). Moreover, we tested regression models using the same test
service set. Table 7.8 lists the recorded R2, MAE and Percentage Errors. As
we can see, with the variation of malicious density, the regression models pro-
vide good results (e.g., R2= 0.7507 with Malicious density = 30%). In addition,
the obtained MAE and PE values indicate that there is a slight variation of the
estimated reputation values. This variation is caused by the generated models.

Finally, we may safely use the estimated reputation value from the built
regression model for bootstrapping the reputation of the newcomer web services.
Because, even with greater deviation, the use of these bootstrapped reputation
values is still better than assigning initial high (maximum), low (minimal), or
any fixed (e.g., average) reputation values.

Services

S1 S4 S7 S10 S13 S16 S19 S22 S25 S28 S31 S34 S37 S40

R
e
p
u
ta

ti
o
n

2

4

6

8

Reputation

Estimated Reputation

Figure 7.4: Calculated and estimated reputation of a sample of test services

7.5. Experiments 157

7.5 Experiments
In this section, a series of experiments are conducted to evaluate the reliability
of the proposed Reputation Management Model, and to show its effectiveness
and performance. Firstly, we study the impact of users’ subjective and mali-
cious feedback ratings on the accuracy of the proposed model. Secondly, we
investigate the impact of the included parameters on the performance of the as-
sessment model. Finally, we conduct a comparison between the proposed model
and different existing approaches.

7.5.1 Description
Due to the current limited availability of feedback rating data, many reputa-
tion management approaches such as [99, 101, 102, 176, 186] use simulation for
model verification and performance evaluation. Likewise, we evaluate the per-
formance of the proposed assessment model through simulation. We have built a
concurrent Java application that simulates the interactions between Users, Web
services and the Reputation Manager. The application is designed in a way that
the behavior of web services is monitored, yet accurately captured. Hence, the
application can simulate the behavior and feedback ratings of honest and ma-
licious users accordingly. It assesses the reputation of web services according
to the collected feedback ratings, aging factor and user’s honesty (credibility).
The variance between the assessed reputation scores of web services and their
ideal (expected) reputation (represented numerically in the interval of [0, 1]) is
a determinant factor for the validation of the proposed Reputation Management
Model.

Table 7.9: Classes of simulated web services
WS Class Reputation Execution time (ms) Description

C1 [0.8 - 1] [20-60] Continuous high per-
formance

C2 [0-0.2] [100-150] Continuous low per-
formance

C3 [0.8 - 1] ↘ [0 - 0.2] [30-60] ↘ [100-150] High Performance
then a degradation

C4 [0 - 0.2] ↗ [0.8 - 1] [100-150] ↗ [30-60] Low performance then
an enhancement

C5 [0-1] [20-150] Oscillate performance

7.5. Experiments 158

Table 7.10: Honest User Rates
WS class Rating Description

C1 [6-10]

Users rate randomly

in the interval of ± 1

of the RefVal

C2 [0-4]

C3 [6-10] [0-4]

C4 [0-4] [6-10]

C5 [0-10] (±2)

The programmed application holds a number of web service (#Services), and
a number of users (#Users). We have simulated the interaction between these el-
ements and the reputation manager during time slots. Each time slot is simulated
as one day (#Day). A number of feedback rating transactions (#Transaction-
sPerDay) are issued from interactions between users and web services in each
day. At the end of each time slot, the reputation manager calculates and up-
dates the credibility factor of each user. Then, it assesses the reputation score of
web services using the model presented in Section 7.3. For accurate results, the
application uses a multi-round run (#Rounds) of simulation. The program lists
the average of the assessed reputation scores of services in each class along with
their ideal reputation values. The simulation classes of web services are described
in Subsection 7.5.1. Then, user classes are presented in Subsection 7.5.1. After
that, parameter tuning and the basic simulation algorithm are explained in Sub-
section 7.5.1. At last, performance evaluation metrics are detailed in Subsection
7.5.1 .

Web service classes

The quality of web service varies over time due to its existence in a dynamic
environment where changes occur constantly [73]. We can distinguish five dif-
ferent classes of service behaviors [101]: a first class of services that maintain a
high level of performance, a second class of services that maintain a low level
of performance, a third class of “cheating” services that start with good perfor-
mances then after a period of time, they degrade their performances. A forth
class of services is composed of services which start with low performances and
then they upgrade their performances. A fifth class includes services that have
performances that oscillate.

We have implemented the five classes using Java’s Randomization. In each

7.5. Experiments 159

Table 7.11: Malicious User Rates
WS class Rating Description

C1 [0-6]
Users rate randomly

by value that are

»or «than the

RefValue

C2 [5-10]

C3 [0-6] [5-10]

C4 [5-10] [0-6]

C5 [0-10] (±3)

class, the performance attribute value (PerfVal) represents the ideal reputation
that correspond to the actual behavior of the web service. PerfVal ranges in the
interval [0-1], where 0 denotes the lowest QoS level, and 1 represents a highest
Qos level. The Response Time attribute (ResT) indicates web service’s maxi-
mum response time. Table 7.9 lists the expected parameters (Ideal reputation
(PerfVal), and Execution time (ResT)) of each class, where:

• Class C1: The first class simulates the behavior of services that exhibit and
maintain a continuous high performance (High Qos). The ideal reputation
of such service ranges between 0.8 and 1. The response time of an instance
ranges between 20 and 60 milliseconds.

• Class C2: The second class simulates the behavior of services that exhibit
and maintain a continuous low performance (Low Qos). The ideal repu-
tation of an instance varies between 0 and 0.2. The response time of an
instance ranges between 100 to 150 milliseconds.

• Class C3: The third class simulates the behavior of services that exhibit a
continuous high performance during the first half of the simulation time,
with a response time that ranges between 20 and 60 milliseconds. Then,
these services exhibit low performances (i.e. a performance degradation
occurs) during the second half of the simulation time, with a response time
that ranges between 100 and 150 milliseconds. The ideal reputation values
of these services range accordingly in two intervals; between 0.8 and 1 in
the first half of simulation time, and between 0 and 0.2 in the second half.

• Class C4: This class simulates the behavior of services that exhibit a low
performance during the first half of the simulation time with a response
time that ranges between 100 and 150 milliseconds. Then, these services
exhibit a high performance in the second half of the simulation time with a

7.5. Experiments 160

Table 7.12: Simulation parameters
Parameter Values

#Services 500 (100 per class)

#Users 1000

#Days 100

#TransactionsPerDay 10000 (2000 per class)

#Rounds 10

#HUserDensity ?% (variable)

response time that ranges between 20 and 60 milliseconds. The ideal repu-
tation values of these services range accordingly in two intervals; between
0 and 0.2 in the first half of simulation time, and between 0.8 and 1 in the
remaining period.

• Class C5:This class simulates web services with an oscillating performance.
The response time ranges between 20 and 150 milliseconds. The ideal
reputation of an instance varies between 0 and 1.

These classes group all possible service behaviors from providers [101], which
ensures that experiment samples are representative to real world environment.

Users Classes

To study the effect of users’ credibility on the reputation assessment model, we
developed two classes that imitate honest and malicious (dishonest) users; each
class simulates the behavior of a user during her/his interaction with the web
services and the reputation manager. Instances of honest users send a feedback
that is approximate by ±2 from the expected reputation value (i.e, a honest user
sends a rating feedback which is equal to the ideal value or close to it). Instances
of malicious user class produce feedback rating that differ at least by ±3 from
the expected value (i.e subjective feedback rates are always far from the expected
(ideal) value). Tables 7.10 and 7.11 respectively summarize the feedback ratings
generated by honest and malicious users for each class of service.

Tuning

The pseudo code in Algorithm 6 represents the basic flow of one round of the
conducted simulation. We simulate a system with 500 web services. We create

7.5. Experiments 161

Algorithm 6 Pseudo code of the conducted simulation
Input: #HUserDencity
Begin
1: #Days = 100 ;
2: #services = 500;
3: #TransactionsPerDay = 10000 ;
4: Create services(#Services);
5: Create users(#HUserDenity);
6: for simDay = 1 TO #Days do
7: Generate_Ideal_Reputation_for_Services();
8: for (class = 1 TO 5) do
9: for (i=0 TO (#TransactionsPerDay/5)) do
10: user = Select_random_user();
11: service = Select_random_service_in_class(class);
12: simulate_user_service_interactions(user, service);
13: add_new_feedback_rating(user, service, simDay);
14: end for
15: evaluate_users_credibility();
16: evaluate_daily_ideal_service_reputation();
17: assess_daily_reputation_from_feedback_ratings();
18: save_data();
19: end for
20: end for
21: evaluate_results();
End

100 instances from each class of service. Then we create 1000 honest and mali-
cious users according to the honest user density (#HUserDensity). For each time
slot, which varies from 1 to the total number of simulated time slots (#Days),
we generate the ideal reputation of each service instance according to its ser-
vice class. Then, we simulate the transactions (interactions) between randomly
selected users and randomly selected services. Transactions are conducted si-
multaneously. After each transaction, the program stores the feedback rating
generated by the involved user. At the end of each time slot, the program up-
dates user credibility scores, and it assesses daily the reputation score of each
web service. The program at the end of all the transaction, measures the perfor-
mance and prints results. Table 7.12 summarizes the parameters applied during
the simulation.

7.5. Experiments 162

Performance metrics

Performance metrics can be classified into statistical accuracy and decision-
support accuracy metrics [26, 71]. We adopt one metric from each class to eval-
uate the performance of the proposed reputation assessment model. Mean Ab-
solute Error (MAE) is a representative metric of a statistical accuracy measure.
The MAE metric is defined as follows:

MAE =

n∑
k=1
|Repa(WSk)−Repi(WSk)|

N
(7.17)

where, Repa(WSk) and Repi(WSk) are the assessed reputation score and the
ideal reputation score of service WSk respectively, and N is the number of web
services.

F-Measure is the second used metric. It is a representative metric of the
decision-support accuracy measure. FMeasure (or F-score) combines precision
and recall metrics into a single value that determines how effectively the Repu-
tation Management Model assesses precisely the reputation of web services, and
handles correctly subjectivity and maliciousness of users’ activity. First, Preci-
sion is defined in this context via Normalized Mean Absolute Error (NMAE) as
follows :

precision = 1−NMAE (7.18)

where
NMAE = MAE

rmax − rmin
(7.19)

where rmax and rmin are the maximum and the minimum rates respectively.
Precision values range between 0 and 1, and decrease with the increase in
NMAE. Recall is defined as the ratio of correctly evaluated services denoted
Nbrcs to total number of services (N). Recall represents the probability that a
service reputation is correctly evaluated. It is defined as follows:

Recall = Nbrcs
N

(7.20)

F-Measure is defined based on precision and recall as follows:

F-Measure = 2× recall × precision
recall + precision

(7.21)

7.5.
E
xperim

ents
163

(b) Class 2

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,1

0,2

0,3

0,4

0,5

0,6
(a) Class 1

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0
(c) Class 3

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0

Ideality

25% of malicious users

70% of Malicious users

95% of malicious users

(d) Class 4

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0
(e) Class 5

TimeSlot (day)

0 20 40 60 80 100

R
e

p
u

ta
ti
o

n

0,30

0,35

0,40

0,45

0,50

0,55

0,60

Figure 7.5: Ideal and assessed reputations with 25%, 70% and 95% of malicious user density

7.5. Experiments 164

Java-based simulator application

Figure 7.6 depicts the graphical user interface of the implemented simulator.
The user can set different simulation parameters, and then run the simulation.
Results of each class are depicted in a separate graph. Considered metrics are
plotted in separate graphs. Moreover, generated data are stored in specific files.

Figure 7.6: Graphical used interface of the Java-based simulator

7.5.2 Reputation with varying maliciousness density
The ultimate goal of this approach is to accurately assess the reputation of web
services even though unfair feedback ratings collected from malicious users are

7.5. Experiments 165

considerable. In this section, we show results of first instances of our experiment.
We fixed simulation parameters to the values listed in Table 7.12, with a variation
of maliciousness density. This density represents the rate (i.e., percentage) of
malicious users in the system.

Figure 7.5 shows the ideal versus the assessed reputation scores obtained
with three instances of maliciousness density (labeled 25%, 70% and 95%). In
that figure, plots (a) through (e) are associated to the five web service classes
described previously (Subsection 7.5.1). For each class, we obtain the plotted
reputation values as the geometric mean of its service reputation scores (100
service per class). Yet, each service reputation score is the geometric mean of 10
simulation-round values.

First, we can see that with 25% of maliciousness density, the assessed repu-
tation values in the five classes are almost equal to the ideal reputation values
(showed by the solid line). These results are explained by the fact that honest
users outnumber dishonest users, which permitted a successful user credibility
evaluation and reputation assessment. The slightly deviation occurred between
the assessed and ideal reputation is natural, because it reflects the differences in
opinions between honest users.

Second, we observe that, with malicious user density that equates to 70%, the
assessed reputation is below the ideal reputation in the first third of evaluation
period (for time slot 1 to 30). Then, for the rest of the evaluation period, the
assessed reputation becomes fairly and close to the ideal reputation (i.e., the
assessed reputations converge to the ideal values). We note here that dishonest
users outnumber honest users, which influences negatively on the number of fair
feedback ratings, the evaluation of user credibility, and hence on the assessed
reputation at the beginning of the evaluation. However, by the accumulation of
fair and unfair feedback ratings, the model becomes able to distinguish between
malicious and honest users based on their credibilities. Therefore, the system
neutralizes the effect of unfair feedback ratings on the assessed reputation by
penalizing suspicious users with a credibility lower than 0.5.

Third, experiments with malicious density equal to 95% shows that the as-
sessed reputations are significantly deviating from the original reputation values.
The model is unable to assess correctly reputation due the very high number of
malicious users. However, Whitby et al. [178] and Malik et al. [101] claim that
such high number of malicious user density in real world is unrealistic and much
lower rate in real world applications should be expected.

Subsequently, we may conclude that the proposed assessment model is able

7.5. Experiments 166

TSF (Time Sensitivity Factor)

0.0 0.2 0.4 0.6 0.8 1.0

F
-M

e
a
s
u
re

 (
%

)

70

75

80

85

90

95

100

TSF Vs Fmeasure

Figure 7.7: Effect of Time Sensitivity Factor on the F-Measure

to accurately assess the reputation of web services even with the presence of high
malicious rates (up to 70%) in the reputation management system.

7.5.3 Impact of time sensitivity factor
In the second instance of simulation runs, we have studied the impact of the Time
Sensitivity Factor (TSF or λ) on the performance of the proposed assessment
model. We have varied the value of λ from 0.1 to 1 with a step value of 0.1. We
fixed the number of time-slots to 1000 (#days = 1000).

Figure 7.7 depicts the effect of λ on the global F-Measure. Values of global F-
Measure are geometric means of the F-measure values of the five classes which are
assessed using Eq.7.21. Note that all used scores are the mean of 10 simulation
round values.

The figure shows that: (i) F-measure is slightly increased when λ varies from
0.1 to 0.3. (ii) F-measure is steady with the top value when λ varies from 0.3 to
0.9. (iii) However, F-measure considerably decreases when λ varies from 0.9 to
1. In conclusion, The best performances of our reputation assessment model is
when λ ranges in the interval [0.3, 0.9].

7.5. Experiments 167

Malicious user density (%)

0 20 40 60 80 100

F
-M

e
a

s
u
re

 (
%

)

0

20

40

60

80

100

Without penalization

With penalization

Figure 7.8: Effect of penalization mechanism on F-Measure performances

7.5.4 Effect of the penalization mechanism
In the third instance of simulation runs, we investigated how the penalization
mechanism affects the assessment of reputation scores. We fixed the simulation
parameter with the values listed in Table 7.12, and varying maliciousness den-
sity from 0% to 100%. In each run, we assess service reputation scores in two
manners: (i) applying the penalization mechanism, and (ii) without application
of the penalization mechanism. Figure 7.8 shows the obtained results for F-
measure. From the figure, we observe that: First, when malicious user density
varies from 0% to 20%, The performance of the model with the application of
the penalization mechanism are approximately equal to the performances of the
model without application of the penalization mechanism. This is interpreted by
the low impact of unfair feedback ratings (low number of malicious users) on the
assessed reputation scores (i.e., the value of unfair feedback ratings multiplied
by their user credibilities is neglected in comparison to the value of fair feedback
ratings multiplied by their user credibilities).

Second, when malicious user density varies from 20% to 90%, the perfor-
mances of the model with penalization application are enhanced (up to 20%
when malicious density are in the interval [50%-70%]) relatively to the perfor-
mances of the model without penalization application. Thus, the model neutral-
izes effectively the impact of unfair feedback ratings from the assessed reputation
scores.

7.5. Experiments 168

Number of transactions

10 100 1000 10000 100000 1000000

E
xe

c
u
ti
o

n
 t
im

e
 (

s
e

c
)

0

20

40

60

80

100

Transactions vs Execution Time

0.0822 0.0984 0.9633

10.9395

100.1126

0.0063

 Figure 7.9: Execution time versus variation of transaction numbers

Third, the model with and without penalization application is unable to
effectively assess the web service reputation scores when the number of malicious
users is important, thus the number of unfair feedback ratings. Fortunately,
according to Whitby et al. [178], these malicious densities is unrealistic in real
world settings and much lower densities are expected.

Finally, we draw the conclusion that the application of the penalization mech-
anism significantly increases the performances of the proposed reputation assess-
ment model.

7.5.5 Execution time performance
We present in this section our measurement of the execution time for processing
user-service transactions, with the assessment and updating of service reputation
values. User-service transactions represent the interaction between a user and
a web service. It represents the process of selecting, consuming and sending a
feedback rating the web service.

Figure 7.9 shows the execution time taken by the system to process different
numbers of transactions. For these measurements, we started different runs on
a single machine, Intel(R) Core(TM) i7-3537 CPU @ 2.00GHz With 8 GB RAM
running under windows 8. We removed unnecessary processes from the operating
system as much as possible to ensure reliable measurement. The experiments
are repeated 10 times under the same settings. The values shown in the figure

7.5. Experiments 169

represent the geometric means of the 10 trials.

For instance, the system can assess 100 times the reputation scores of 500
services from 10000 feedback transactions per time slot in 11 seconds. This value
is good indicator about the performance of the model in term of processing time.

7.5.6 Performance comparison
In this section, we compare the performance of our proposed model with the
following centralized reputation assessment approaches:

1. The normal approach (labeled Normal): This is the conventional approach
where the reputation is assessed as the mean of collected feedback ratings,
without considering any coefficient such as the time sensitivity factor and
the user credibility factor.

2. The approach proposed by Wang et al. [176] (labeled Wang et al): The
approach assesses the reputation score q(sj) of service Sj as follows:

q(sj) = 1
n

n∑
i=1

ri

where ri represents the i-th feedback rating, n (n=1,2, ...) is the number of
feedback ratings. Note the approach assesses reputation values using only
pure feedback ratings (fair ratings or adjusted malicious ratings), because
the approach applies a malicious feedback ratings prevention scheme based
on the Cumulative Sum Method (CUSUM). The CUSUM monitors n feed-
back ratings sample interval. For each sample interval, they assign a score
Z(yi) which is assessed as follows :

Z(yi) = µ1 − µ0

σ2 (yi −
µ1 − µ0

2)

where, rating feedback sample intervals represented by {y1, y2, ...} the vari-
able yi(yi = ∑m

i=1 ri) (i ≤ j ≤ n) (m = 1, 2, ...), and µ0 and µ1 represent the
mean feedback rating traffic before and after the change. When a sample
interval is available, the CUSUM fi is updated as follows :

fi = max(fi−1 + Z(yi), 0)

if fi ≥ h then a positive shift occurs in the n-th sample which means
that there is an abnormal detection point (presence of malicious feedback
rating). In our implementation of this scheme we set h to 0.7 based on the
authors experiment settings.

7.5. Experiments 170

3. The approach proposed by Mekouar et al. [107] (labeled TrustWS): the
authors propose to assess the reputation of web services as the difference
between positive and negative feedback ratings divided by the sum of both.
Reputation is set to 0 when the sum of feedback ratings equates to 0. This
approach do not include time sensitivity factor nor the credibility of users
for reputation assessment.

Performance comparison with a fixed density of malicious users

We present in Figure 7.10 a comparison between the reputation scores assessed
by our model and reputations scores obtained by the three approaches cited
above, using 25 % as malicious user density parameter. The reference baseline
of this comparison is the ideal reputation scores that are presented by a simple
solid line in the different plots (a-e).

Form the figure, we can see that our reputation scores are closer to the ideal
reputation than scores obtained by the other approaches for the five different
service classes.

It is also worth mentioning that reputation scores assessed by the approach
of Wang et al. are also steady and fairly close to the ideal reputation scores
for the first, second and the fifth class of services. However, the "prevention
scheme" considers fair ratings received after an abrupt change of service QoS as
malicious feedback rating, since they produce positive shifts detected by CUSUM.
Therefore, the approach shows a significant deviation from the ideal reputation
in the third and fourth service classes, during the second half of evaluation period
as depicted in graph (c) and (d). This limitation is highlighted by the authors
in their paper [176] (Section 5.4).

Moreover, TrustWS successfully assesses the reputation of services that main-
tain steady high Qos as it is depicted in Figure 7.10-(a), in the first half of graph
(c), and the second half of graph (d).

In addition, reputation values assessed by the normal method converge to
the ideal reputation for services with steady low Qos as we can see in graph
(b). Unfortunately, the non-inclusion of credibility and time sensitivity factors
affects the performance of TrustWS and the normal method to assess correctly
reputation scores in the other cases.

7.5.
E
xperim

ents
171

(b) Class 2

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0
(c) Class 3

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0

(d) Class 4

TimeSlot (day)

0 20 40 60 80 100

R
e

p
u

ta
ti
o

n

0,0

0,2

0,4

0,6

0,8

1,0
(e) Class 5

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

TimeSlot (day)

0 20 40 60 80 100

R
e

p
u
ta

ti
o

n

0,0

0,2

0,4

0,6

0,8

1,0

Ideal

Our method

Normal

TrustWS

Wang et Al

(a) Class 1

Figure 7.10: Ideal and compared assessed reputations with 25% of malicious user density

7.5.
E
xperim

ents
172

(f) Global - MEA

Malicious Density

20 40 60 80 100

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

0.0

0.2

0.4

0.6

0.8

1.0

(a) Class 1

Malicious Density

20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0

(b) Class 2

Malicious Density

20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0
(c) Class 3

Malicious Density
20 40 60 80 100

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

0.0

0.2

0.4

0.6

0.8

1.0

Our Method

Normal

TrustWs

Wang et Al.

(e) Class 5

Malicious Density
20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0
(d) Class 4

Malicious Density
20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.11: Mean Absolute Error comparison with the alteration of malicious users density (a smaller MAE means a
better performance)

7.5. Experiments 173

Table 7.13: Mean Absolute Error and F-Measure values comparison
Malicious

density
Method

Mean Absolute Error F-Measure

Class 1 Class 2 Class 3 Class 4 Class 5 Global Class 1 Class 2 Class 3 Class 4 Class 5 Global

1 %

Our Method 0.067 0,034 0,055 0,055 0,052 0,052 96.543 98.294 97.177 97.153 97.077 97.249

Normal 0.536 0,090 0,300 0,473 0,437 0,367 39.987 95.274 54.414 45.996 35.706 54.276

TrustWs 0.128 0,105 0,465 0,105 0,230 0,207 89.785 94.467 46.202 93.348 64.553 77.671

Wang et Al. 0.144 0,067 0,307 0,358 0,371 0,249 83.580 96.537 48.467 22.198 41.800 58.516

10 %

Our Method 0,067 0,034 0,054 0,055 0,052 0,052 96.560 98.269 97.188 97.140 97.011 97.234

Normal 0,753 0,084 0,399 0,467 0,462 0,433 6.314 95.631 54.104 46.107 34.409 47.313

TrustWs 0,111 0,177 0,415 0,100 0,212 0,203 93.369 79.173 47.042 90.939 69.324 75.969

Wang et Al. 0,139 0,080 0,440 0,350 0,367 0,275 85.843 95.489 47.336 11.365 44.764 56.959

20%

Our Method 0,066 0,035 0,054 0,056 0,052 0,053 96.568 98.226 97.187 97.116 96.877 97.195

Normal 0,753 0,094 0,415 0,466 0,462 0,438 6.382 95.083 50.878 46.150 34.474 46.593

TrustWs 0,094 0,305 0,384 0,153 0,203 0,228 94.835 44.269 47.939 79.794 70.332 67.434

Wang et Al. 0,109 0,105 0,419 0,351 0,327 0,262 91.768 93.130 48.113 11.606 47.534 58.430

30%

Our Method 0,066 0,036 0,054 0,057 0,053 0,053 96.561 98.153 97.191 97.067 96.720 97.138

Normal 0,746 0,118 0,413 0,466 0,463 0,441 8.156 93.024 52.263 46.079 34.396 46.784

TrustWs 0,080 0,392 0,358 0,207 0,203 0,248 95.725 15.022 48.603 66.496 68.898 58.949

Wang et Al. 0,097 0,140 0,388 0,352 0,302 0,256 93.617 90.160 48.142 14.043 50.213 59.235

40%

Our method 0,067 0,038 0,055 0,058 0,053 0,054 96.549 98.058 97.162 96.986 96.540 97.059

Normal 0,731 0,144 0,411 0,467 0,459 0,442 11.348 85.683 53.144 45.944 34.696 46.163

TrustWs 0,079 0,454 0,341 0,254 0,219 0,269 95.719 7.592 48.689 56.830 63.965 54.559

Wang et Al. 0,116 0,190 0,366 0,354 0,280 0,261 90.427 76.879 47.150 22.196 50.429 57.416

50%

Our method 0,068 0,041 0,056 0,060 0,054 0,056 96.461 97.870 97.084 96.858 96.184 96.892

Normal 0,708 0,169 0,413 0,464 0,455 0,442 12.272 83.693 50.786 45.231 34.816 45.359

TrustWs 0,094 0,501 0,335 0,297 0,233 0,292 94.044 3.483 48.095 48.754 60.002 50.876

Wang et Al. 0,157 0,239 0,361 0,356 0,263 0,275 81.880 69.816 42.922 25.423 49.428 53.894

60%

Our method 0,070 0,046 0,059 0,065 0,058 0,060 95.659 87.075 96.418 96.197 93.122 93.694

Normal 0,710 0,182 0,412 0,444 0,444 0,438 10.325 57.172 47.809 40.710 21.832 35.569

TrustWs 0,128 0,536 0,343 0,331 0,247 0,317 87.440 1.515 45.344 43.182 52.415 45.979

Wang et Al. 0,195 0,286 0,356 0,354 0,249 0,288 72.752 28.901 33.093 21.946 43.023 39.943

70%

Our method 0,079 0,057 0,069 0,075 0,065 0,069 94.440 86.751 95.076 95.129 91.351 92.550

Normal 0,711 0,201 0,411 0,423 0,436 0,436 6.353 57.238 40.423 36.380 21.702 32.419

TrustWs 0,182 0,564 0,359 0,357 0,268 0,346 76.037 0.703 38.591 40.505 48.411 40.849

Wang et Al. 0,246 0,343 0,355 0,354 0,249 0,309 58.988 22.771 18.616 20.644 42.297 32.663

80%

Our method 0,302 0,293 0,298 0,295 0,183 0,274 41.380 48.066 41.706 43.369 66.896 48.283

Normal 0,724 0,192 0,421 0,440 0,428 0,441 2.678 70.761 40.732 34.201 36.214 36.917

TrustWs 0,251 0,585 0,383 0,379 0,286 0,377 58.903 0.370 23.020 36.491 48.170 33.391

Wang et Al. 0,275 0,389 0,358 0,360 0,246 0,326 50.355 4.816 9.786 8.817 45.534 23.861

90%

Our method 0,459 0,446 0,459 0,459 0,268 0,418 23.864 4.316 3.138 3.222 50.600 17.028

Normal 0,758 0,205 0,433 0,456 0,436 0,458 0.710 69.930 43.658 34.829 35.700 36.965

TrustWs 0,341 0,607 0,419 0,401 0,308 0,415 39.217 0.113 6.145 33.303 44.996 24.755

Wang et Al. 0,289 0,439 0,361 0,362 0,249 0,340 47.745 0.211 20.415 15.443 45.300 25.823

7.5.
E
xperim

ents
174

(a) Class 1

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(b) Class 2

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100
(c) Class 3

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(d) Class 4

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(e) Class 5

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(f) Global - FMeasure

Malicious Density (%)
20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

Our Method

Normal

TrustWs

Wang et Al.

Figure 7.12: F-Measure performance comparison with the alteration of malicious users density

7.5. Experiments 175

Performance comparison with alteration of malicious user density

For farther performances comparison between the four approaches, we conducted
other simulation runs, using the parameters of Table 7.12 and varying the mali-
cious user density. Table 7.13 shows the MAE and F-Measure results of different
reputation approaches. Each experiment is run 10 times and the averages of
MEA and F-Measure are reported. For better visibility, we plotted MEA and
F-Measure results, respectively, in Figures 7.11 and 7.12 . Experimental results
show the following:

• Under different settings, our reputation assessment model obtains the
smaller MAE and the higher F-Measure values (up to 97%) consistently,
within the interval [0%, 70%] of malicious user density. These results indi-
cate a better accuracy of the reputation assessment.

• The approach of Wang et al. obtains smaller MAE and higher F-Measure
values when services maintain stable QoS. However, reputation scores di-
verge from the ideal values when service QoS is quickly and significantly
upgraded or degraded (when services suddenly change from good to bad
or inversely). This divergence is presented by the increase of MAE and
the decrease of F-Measure as with services of class 3 and 4. Hence, the
global MEA and the global F-Measure are negatively influenced by this
divergence, as it is depicted respectively in Figures 7.11-(f) and 7.12-(f).

• Even that it does not include credibility and time sensitivity factors,
TrustWS measures accurately the reputation of services in the first class
(services with consistent high QoS), as depicted by high F-Measure scores
in Figure 7.12-(a). Nevertheless, for the same reason, it fails to assess ac-
curate reputation scores for the remaining classes, as it is shown in plots
(b-f) in Figure 7.12.

• Likewise to TrustWS, the Normal approach assesses correctly the reputa-
tion of the second class services (i.e., service with steady low Qos), as the
associated MAE and F-Measure indicate in the figures. However, this naive
method fails for the other classes.

7.5.7 Limitations
The experiment shows that the proposed reputation assessment model provides
sound and accurate measurement of web service reputation. Nonetheless, there
are few limitations that we list below:

• Our model is not adequate for assessing reputation of old services with a
very low number of feedback ratings, or services with a long discontinuous

7.6. Summary 176

feedback rating. The more feedback ratings the system collects, the more
accurate results the system provides.

• The use of IP addresses to identify users raises a problem when dynamic
IP addresses are used. This means that feedbacks sent by the same user
with different IP addresses are not recognized to belong to the same user,
and hence, threats to evaluate user credibilities and reputation scores are
raised.

However, to guarantee, with our reputation assessment model, a better accu-
racy and efficiency, it is recommended that first feedback ratings in the system
have to be collected from trusted users.

7.6 Summary
In this chapter, we have presented a framework for the management of web ser-
vice reputation. The framework describes how users feedbacks are collected, pro-
cessed and aggregated. We have described the proposed reputation assessment
model. The model include many factors such as user credibility, time sensitivity
and majority rating for instance.

One of the novel contributions of this model, is the inclusion of the penal-
ization factor, which discards unfair feedback rating from been included in the
reputation assessment.

In addition, we have introduced a reputation bootstrapping model, which
estimates reputation values of newcomer web services based on their initial QoS.
This model is built upon three phases: (1) estimating reputation from service
provider, (2) estimating reputation from similar services, and (3) estimating rep-
utation using a regression-based model that evaluates reputation from the whole
service pool. We have partially validated the proposed reputation bootstrapping
mechanism.

Moreover, have conducted two extensive experiments to validate the proposed
reputation bootstrapping and assessment models. We have reported experiment
results, demonstrating the performance and effectiveness of these contributions.

Chapter 8

Conclusion and Future Work

Contents
8.1 Summary . 177
8.2 Future Work . 180

8.2.1 Improvement on the proposed approaches 180
8.2.2 Formal Requirement Engineering Method 180
8.2.3 Web services monitoring approach 181

This chapter summarizes the contribution made in this thesis, and outlines
directions for future work.

8.1 Summary
This thesis addressed some challenges related to the orchestration of reliable web
services. We mean by reliability the ability that the system (Web services and
the whole orchestration) can complete its tasks whenever it is invoked. In the
web service context, reliability for service designers can be considered as the
ability to trust that services offered by other providers fulfills functional and
non-functional requirements and work as expected.

Based on several researcher opinions (e.g., [73]), the reliability of the whole
web services orchestration depends mainly on reliabilities of its atomic web ser-
vices. Therefore, the selection of reliable web services is a key solution to ensure
reliability of the whole service orchestration. However, faults and incidents are
inevitable in failure-prone environments, and initial selected services may ob-
struct the execution of the orchestration if one of these services get defected.
Thus, the selection of service substitutes and the design of recovery plans is also
a crucial topic to ensure reliability in web services orchestration. In addition, a
reliability analysis has to be conducted over different phases in the orchestration’s
life-cycle, which allow a permanent control of reliability and QoS satisfaction.

8.1. Summary 178

Moreover, when selecting services, either at design time or as substitutes
at maintenance phase, trust and reputation may be considered as an overall
reliability indicator for web services and their providers, because often a reputable
service and a trustworthy provider are experienced to complete their tasks and
achieves a certain level of reliability.

In this thesis, we addressed some issues related to these points by proposing
the following :

Firstly, we presented in Chapter 4 the life cycle of a web service composition
that supports reliability. We have mentioned that a continuous reliability anal-
ysis and verification is required during different life-cycle phases. Moreover, a
dynamic web service list have to be provided by a smart registry (web service
recommendation system) for performing adaptation and self reconfiguration. In
the second section of Chapter 4, we proposed a generic architecture for con-
ducting reliable web service orchestrations. The architecture assists in ensuring
reliable web services orchestrations. We described the main components of this
architecture, and we explained the interactions between these elements during
different orchestration design and execution phases.

Secondly, in chapter 5, we proposed an approach for the measurement of web
services similarity based on their WSDL interfaces. In fact, the study of simi-
larity was a necessary step before proposing any service and substitute selection
approach, because the study of similarity between web services reveals similarity,
substitutability and composability relationships between services. In addition, it
provides a practical solution that allows the reuse of large number of web services
freely available on the Internet by facilitating the matchmaking process between
service description and seekers’ queries.

In general, the proposed approach is parameterized (customized) by different
kinds of weighted scores and the use of multiple metrics that have been suc-
cessfully applied in information retrieval’s problems. Weighted scores are mea-
sured by analyzing WSDL descriptions of Web services interfaces. The proposed
similarity measurement process starts by calculating similarity between service
names, operations, input/output messages, parameters, and at last compares
the documentation. It addresses at the same time the lexical and semantic sim-
ilarities between identifiers. It makes schema matching for comparing message
structures and complex XML schema types. The similarity scores issued from
the measurement process can determine whether the compared web service are
substitutes to each other, or only a subset of operations which are substitutes to
each other, or even more, the two web services are completely different.

8.1. Summary 179

We implemented this approach by developing a prototype, that we coin WS-
SIM, that assesses the similarity between two services, or a collection of services.
The prototype could be used by designers as a standalone application, as it could
be integrated in more capable softwares as it is provided also as a java API. The
approach was experimented and validated using a collection or real web services.

Thirdly, we proposed in chapter 6 an approach for the identification of web
service substitutes. The approach uses the WSDL (Web Service Description
Language) interface description of the failed web service (partner link) to dis-
cover, from a service pool, a set of web service candidates that offer the same
or related functionalities. The set is then refined using a filtering algorithm that
exploits the similarity assessment technique proposed in Chapter 5 in order to
keep only web services that have similarity relationships between them. Using
the same similarity assessment technique, a similarity matrix between the input
and the output of web service operations is built, and then it is exploited to cre-
ate a concept lattice using Formal Concept Analysis. A process of refinements is
applied on the similarity matrix and its associated formal concepts to build the
final concepts and lattices. The navigation and interpretation mechanism is used
to identify, from the resulted lattices, all simple (1-to-1) and complex (N-to-1)
substitutes for the failed operations in the defected service.

Although the approach is dedicated to the selection of service substitutes, it
could be used at design time to select services from abstract service descriptions.

Finally, in chapter 7, we proposed a reputation management framework for
web services and their providers. Reputation scores can be used as a reliability-
indicator metric for selecting web services. Beside the architecture of the reputa-
tion managers, and the description of how users’ feedback ratings are collected,
managed and stored, we provided a reputation assessment model. The latter
includes a penalization mechanism of suspicious users, to ensure an efficient
reputation measurement from pure feedback ratings. The assessment model is
built upon the distinction between positive and negative feedback ratings, with
the inclusion of time sensitivity and user credibility factors, where the former
is evaluated according to majority consensus. Moreover, we proposed a repu-
tation bootstrapping mechanism to cope with the cold start and whitewashing
problems. The mechanism allows a better introduction of newly published web
services into the system, because efficient initial reputation values stabilize the
performance of the whole system. We conducted a large experiment to investi-
gate the feasibility and the practicability of the proposed model.

8.2. Future Work 180

8.2 Future Work
The work presented in this thesis suggests various future research directions
related to the orchestration of reliable web services. In this section, we outline
some of these directions.

8.2.1 Improvement on the proposed approaches
• Firstly, we plan to automatically crawl, parse, index and compute sim-

iliarity between web services available in publication websites, such as
ProgrammableWeb1, WSindex2, WebserviceX3, WebserviceList4 and ser-
viceRepository 5. The similarity scores between operations and services,
with composability relationships are expected to be stored in relational
databases. Thus, simple substitutes can be directly extracted using SQL
commands. WSSIM have to integrate crawling capabilities, and have to
manage storing and retrieving similarity scores.

• Secondly, we aim to study the similarity and composability relationships
between stateful web services. In fact, the current work focuses on con-
ventional Web services, which are stateless in nature as they use request
and response messages for communication, without keeping any state be-
tween requests. However, some web services applications require services
to record their communication. These stateful services require a precise in-
teraction protocol for session management, which makes the investigation
for substitution between such services a hard task.

• Thirdly, we plan to apply a machine learning algorithm for reputation
and QoS prediction. Besides, we will focus on the study of trust and
reputation of cloud services where significant challenges, due to the highly
dynamic, distributed and non-transparent nature of cloud services, have to
be addressed.

8.2.2 Formal Requirement Engineering Method
Many formal requirement engineering methods have been proposed in the domain
of software engineering. Nevertheless, only few propositions could be applied in
the context of Service-Oriented applications. Hence, there is a crucial need for

1www.programmableweb.com
2www.wsindex.org
3http://www.webservicex.net/ws/wscatlist.aspx
4www.webservicelist.com
5http://www.service-repository.com/

www.programmableweb.com
www.wsindex.org
http://www.webservicex.net/ws/wscatlist.aspx
www.webservicelist.com
http://www.service-repository.com/

8.2. Future Work 181

a formal requirement engineering method that assists developer to specify and
document functional and non-functional requirements in web services orchestra-
tions.

Such method allows the build of Use-case tools that support an automatic
verification of desired qualities in different phases of orchestration’s life-cycle.

8.2.3 Web services monitoring approach
One of the persistent challenges in service composition is quality awareness [128],
which is achieved by service monitoring. Although, several methods have been
proposed to standardize web service monitoring, none of these methods have
been commonly adopted.

In addition, the available monitoring tools are dedicated for research purpose
only, and they show their limitation with regards to the accuracy, overhead
and scalability that is required by such tools [73]. Moreover, there is still a
great demand for runtime-level quality verification. Therefore, runtime service
monitoring with quality verification and adaptation is an open room for farther
research and improvements, especially for providing dynamic lists of services with
regular monitored QoS data updates.

Bibliography

[1] Ali Ait-Bachir. Measuring similarity of service interfaces. In ICSOC PhD
Symposium 2008, page 59, 2008. (Cited on pages 57 and 59.)

[2] Eyhab Al-Masri and Qusay H Mahmoud. Qos-based discovery and rank-
ing of web services. In Computer Communications and Networks, 2007.
ICCCN 2007. Proceedings of 16th International Conference on, pages 529–
534. IEEE, 2007. (Cited on page 152.)

[3] Zainab Mohammed Aljazzaf. Trust-based service selection. PhD thesis,
The University of Western Ontario, 2011. (Cited on pages 38 and 41.)

[4] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,
Satish Thatte, et al. Business process execution language for web services,
2003. (Cited on pages 21 and 23.)

[5] Danilo Ardagna, Luciano Baresi, Sara Comai, Marco Comuzzi, and Bar-
bara Pernici. A service-based framework for flexible business processes.
IEEE software, 28(2):61–67, 2011. (Cited on pages 44 and 47.)

[6] Ali Arsanjani. Service-oriented modeling and architecture. IBM developer
works, pages 1–15, 2004. (Cited on page 73.)

[7] Lerina Aversano, Marcello Bruno, Gerardo Canfora, Massimiliano
Di Penta, and Damiano Distante. Using concept lattices to support ser-
vice selection. International Journal of Web Services Research (IJWSR),
3(4):32–51, 2006. (Cited on pages 59 and 62.)

[8] Zeina Azmeh. A Web service selection framework for an assisted SOA.
PhD thesis, Montpellier 2, 2011. (Cited on pages 18, 35, 36 and 38.)

[9] Zeina Azmeh, Maha Driss, Fady Hamoui, Marianne Huchard, Naouel
Moha, and Chouki Tibermacine. Selection of composable web services
driven by user requirements. In IEEE International Conference on Web
Services (ICWS), pages 395–402. IEEE, 2011. (Cited on pages 60 and 62.)

[10] Zeina Azmeh, Jean-Rémy Falleri, Marianne Huchard, and Chouki Tiber-
macine. Automatic web service tagging using machine learning and word-
net synsets. In Web Information Systems and Technologies, pages 46–59.
Springer, 2011. (Cited on pages 61 and 138.)

Bibliography 183

[11] Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado,
and Sylvain Vauttier. Wspab: A tool for automatic classification & selec-
tion of web services using formal concept analysis. In IEEE Sixth Euro-
pean Conference on Web Services(ECOWS’08)., pages 31–40. IEEE, 2008.
(Cited on pages 60 and 62.)

[12] Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado,
and Sylvain Vauttier. Using concept lattices to support web service compo-
sitions with backup services. In Fifth International Conference on Internet
and Web Applications and Services (ICIW), pages 363–368. IEEE, 2010.
(Cited on pages 60 and 62.)

[13] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999. (Cited on page 90.)

[14] Muneera Bano and Naveed Ikram. Issues and challenges of requirement
engineering in service oriented software development. In Software Engi-
neering Advances (ICSEA), 2010 Fifth International Conference on, pages
64–69. IEEE, 2010. (Cited on page 73.)

[15] Luciano Baresi and Sam Guinea. Dynamo: Dynamic monitoring of WS-
BPEL processes, pages 478–483. Springer, 2005. (Cited on page 55.)

[16] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Self-healing bpel pro-
cesses with dynamo and the jboss rule engine. In International workshop
on Engineering of software services for pervasive environments: in con-
junction with the 6th ESEC/FSE joint meeting, pages 11–20. ACM, 2007.
(Cited on page 55.)

[17] Márcio de Oliveira Barros and Arilo Claudio Dias Neto. Threats to va-
lidity in search-based software engineering empirical studies. techreport
0006/2011, UNIRIO - Universidade Federal do Estado do Rio de Janeiro,
2011. (Cited on pages 132 and 133.)

[18] Tom Bellwood, S Capell, L Clement, J Colgrave, MJ Dovey, D Feygin,
AHR Kochman, P Macias, M Novotny, M Paolucci, et al. Universal
description, discovery and integration specification (uddi) 3.0. Online:
http://uddi. org/pubs/uddi-v3. 00-published-20020719. htm, 2005. (Cited
on pages 2 and 17.)

[19] Boualem Benatallah, Marlon Dumas, and Quan Z Sheng. Facilitating the
rapid development and scalable orchestration of composite web services.

Bibliography 184

Distributed and Parallel Databases, 17(1):5–37, 2005. (Cited on pages 2
and 20.)

[20] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Pa-
trizi. Automatic service composition via simulation. International Jour-
nal of Foundations of Computer Science, 19(02):429–451, 2008. (Cited on
page 44.)

[21] Domenico Bianculli, Walter Binder, Luigi Drago, and Carlo Ghezzi. Trans-
parent reputation management for composite web services. In Web Ser-
vices, 2008. ICWS’08. IEEE International Conference on, pages 621–628.
IEEE, 2008. (Cited on pages 63 and 67.)

[22] Ben Bloch, Francisco Curbera, Y Goland, Neelakantan Kartha, CK Liu,
S Thatte, and P Yendluri. Web services business process execution lan-
guage. OASIS Open Inc, 2003. (Cited on page 21.)

[23] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970. (Cited on
page 63.)

[24] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Sim-
ple object access protocol (soap) 1.1, 2000. (Cited on pages 2 and 17.)

[25] Francesco Buccafurri, Antonello Comi, Gianluca Lax, and Domenico
Rosaci. A trust-based approach to clustering agents on the basis of their
expertise. In Agent and Multi-Agent Systems: Technologies and Applica-
tions, pages 47–56. Springer, 2014. (Cited on page 63.)

[26] Jie Cao, Zhiang Wu, Youquan Wang, and Yi Zhuang. Hybrid collaborative
filtering algorithm for bidirectional web service recommendation. Knowl-
edge and information systems, 36(3):607–627, 2013. (Cited on page 162.)

[27] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco
Lo Presti, and Raffaela Mirandola. Qos-driven runtime adaptation of ser-
vice oriented architectures. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 131–140.
ACM, 2009. (Cited on page 51.)

[28] Fabio Casati and Ming-Chien Shan. Dynamic and adaptive composition of
e-services. Information systems, 26(3):143–163, 2001. (Cited on pages 2,
20 and 44.)

Bibliography 185

[29] Sam Chapman, Barry Norton, and Fabio Ciravegna. Armadillo: Integrat-
ing knowledge for the semantic web. In Proceedings of the Dagstuhl Semi-
nar in Machine Learning for the Semantic Web, February 2005. (Cited on
page 90.)

[30] David A Chappell and Tyler Jewell. Java web services. Tecniche Nuove,
2002. (Cited on page 13.)

[31] Anis Charfi and Mira Mezini. Ao4bpel: An aspect-oriented extension to
bpel. World Wide Web, 10(3):309–344, 2007. (Cited on page 44.)

[32] Harmeet Chawla, Haiping Xu, and MengChu Zhou. A real-time reliability
model for ontology-based dynamic web service composition. In SEKE,
pages 153–158, 2011. (Cited on page 52.)

[33] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web services description language (wsdl) version 2.0 part
1: Core language. World Wide Web Consortium, Recommendation REC-
wsdl20-20070626, June 2007. (Cited on pages 2 and 16.)

[34] Jin-Hee Cho, Ananthram Swami, and Ray Chen. A survey on trust man-
agement for mobile ad hoc networks. Communications Surveys & Tutorials,
IEEE, 13(4):562–583, 2011. (Cited on page 63.)

[35] Stéphani Chollet, Vincent Lestideau, Philippe Lalanda, Diana Moreno-
Garcia, and Pierre Colomb. Heterogeneous service selection based on for-
mal concept analysis. In 6th World Congress on Services (SERVICES-1),
pages 367–374. IEEE, 2010. (Cited on pages 59 and 62.)

[36] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison
of string metrics for matching names and records. In KDD Workshop on
Data Cleaning and Object Consolidation, volume 3, pages 73–78, 2003.
(Cited on page 32.)

[37] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. Scene: A
service composition execution environment supporting dynamic changes
disciplined through rules. In Service-Oriented Computing–ICSOC 2006,
pages 191–202. Springer, 2006. (Cited on pages 44 and 48.)

[38] Antonello Comi, Lidia Fotia, Fabrizio Messina, Domenico Rosaci, and
Giuseppe ML Sarnè. A qos-aware, trust-based aggregation model for grid
federations. In On the Move to Meaningful Internet Systems: OTM 2014
Conferences, pages 277–294. Springer, 2014. (Cited on page 63.)

Bibliography 186

[39] William Conner, Arun Iyengar, Thomas Mikalsen, Isabelle Rouvellou, and
Klara Nahrstedt. A trust management framework for service-oriented en-
vironments. In Proceedings of the 18th international conference on World
wide web, pages 891–900. ACM, 2009. (Cited on pages 63 and 67.)

[40] Luca Console and WS-Diamond Team. Ws-diamond: An approach to
web services-diagnosability, monitoring and diagnosis. In International
e-Challenges Conference, The Hague (October 2007), 2007. (Cited on
page 55.)

[41] Vittorio Cortellessa and Vincenzo Grassi. Reliability modeling and analysis
of service-oriented architectures. In Test and analysis of web services, pages
339–362. Springer, 2007. (Cited on page 50.)

[42] Marco Crasso, Alejandro Zunino, and Marcelo Campo. Query by example
for web services. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 2376–2380. ACM, 2008. (Cited on pages 57 and 59.)

[43] Marco Crasso, Alejandro Zunino, and Marcelo Campo. A survey of ap-
proaches to web service discovery in service-oriented architectures. Journal
of Database Management (JDM), 22(1):102–132, 2011. (Cited on page 56.)

[44] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, Nirmal Mukhi, and S. Weer-
awarana. Unraveling the web services web: an introduction to soap, wsdl,
and uddi. Internet Computing, IEEE, 6(2):86–93, March 2002. (Cited on
page 17.)

[45] Yu Dai, Lei Yang, and Bin Zhang. Qos-driven self-healing web service com-
position based on performance prediction. Journal of Computer Science
and Technology, 24(2):250–261, 2009. (Cited on pages 18, 20 and 56.)

[46] Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan.
Hosted universal composition: Models, languages and infrastructure in
mashart. In Conceptual Modeling-ER 2009, pages 428–443. Springer, 2009.
(Cited on page 44.)

[47] Valeria De Antonellis, Michele Melchiori, and Pierluigi Plebani. An
approach to web service compatibility in cooperative processes. In
International Symposium on Applications and the Internet Workshops
(SAINTW’06), pages 95–95. IEEE Computer Society, 2006. (Cited on
pages 56 and 59.)

[48] Silvana De Gyvés Avila. QoS awareness and adaptation in service compo-
sition. PhD thesis, University of Leeds, 2014. (Cited on page 49.)

Bibliography 187

[49] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis. jour-
nal of the american society for information scinece, 41(6):391–407, 1990.
(Cited on pages 29 and 90.)

[50] Alexander Dekhtyar. Lectures on knowledge discovery from data (course
given at california polytechnic state university). http://users.csc.
calpoly.edu/~dekhtyar/466-Spring2012/, 2012. Accessed: 2014-04-08.
(Cited on page 30.)

[51] Demian Antony DŠMello, VS Ananthanarayana, and Supriya Salian. A
review of dynamic web service composition techniques. In Advanced Com-
puting, pages 85–97. Springer, 2011. (Cited on page 44.)

[52] Glen Dobson. Using ws-bpel to implement software fault tolerance for
web services. In 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications, 2006. SEAA’06., pages 126–133. IEEE, 2006.
(Cited on page 55.)

[53] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang.
Similarity search for web services. In Proceedings of the Thirtieth interna-
tional conference on Very large data bases - Volume 30, VLDB ’04, pages
372–383. VLDB Endowment, 2004. (Cited on pages 56 and 59.)

[54] Maha Driss, Naouel Moha, Yassine Jamoussi, Jean-Marc Jézéquel, and
Henda Hajjami Ben Ghézala. A requirement-centric approach to web ser-
vice modeling, discovery, and selection. In Service-Oriented Computing,
pages 258–272. Springer, 2010. (Cited on pages 60 and 62.)

[55] Jigyasu Dubey and V Tokekar. Bayesian network based trust model with
time window for pure p2p computing systems. In Wireless Computing and
Networking (GCWCN), 2014 IEEE Global Conference on, pages 219–223.
IEEE, 2014. (Cited on page 41.)

[56] Schahram Dustdar and Wolfgang Schreiner. A survey on web services
composition. International journal of web and grid services, 1(1):1–30,
2005. (Cited on page 44.)

[57] Pascal Eck and Roel Wieringa. Requirements engineering for service-
oriented computing: a position paper. 2003. (Cited on page 73.)

[58] Joyce El Hadad, Maude Manouvrier, and Marta Rukoz. Tqos: Transac-
tional and qos-aware selection algorithm for automatic web service com-
position. Services Computing, IEEE Transactions on, 3(1):73–85, 2010.
(Cited on pages 44 and 47.)

http://users.csc.calpoly.edu/~dekhtyar/466-Spring2012/
http://users.csc.calpoly.edu/~dekhtyar/466-Spring2012/

Bibliography 188

[59] Thomas Erl. Service-oriented architecture: concepts, technology, and de-
sign. Pearson Education India, 2006. (Cited on page 1.)

[60] Jean-Rémy Falleri, Zeina Azmeh, Marianne Huchard, Chouki Tiberma-
cine, et al. Automatic tag identification in web service descriptions. In
WEBIST’10: The International Conference on Web Information Systems
and Technology, 2010. (Cited on page 138.)

[61] Xinxin Fan, Mingchu Li, Jianhua Ma, Yizhi Ren, Hui Zhao, and Zhiyuan
Su. Behavior-based reputation management in p2p file-sharing networks.
Journal of Computer and System Sciences, 78(6):1737–1750, 2012. (Cited
on page 63.)

[62] Giuseppe Fenza and Sabrina Senatore. Friendly web services selection
exploiting fuzzy formal concept analysis. Soft Computing, 14(8):811–819,
2010. (Cited on pages 60 and 62.)

[63] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, Irvine, 2000.
(Cited on page 14.)

[64] Panayotis Fouliras. A novel reputation-based model for e-commerce. Op-
erational research, pages 1–26, 2013. (Cited on page 63.)

[65] Maria Grazia Fugini and Enrico Mussi. Recovery of faulty web applications
through service discovery. In Proceedings of the 1st SMR-VLDB Workshop,
Matchmaking and Approximate Semantic-based Retrieval: Issues and Per-
spectives, 32nd International Conference on Very Large Databases, pages
67–80, 2006. (Cited on page 55.)

[66] Keita Fujii and Tatsuya Suda. Semantics-based context-aware dynamic
service composition. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), 4(2):12, 2009. (Cited on pages 44 and 47.)

[67] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal Concept Anal-
ysis: foundations and applications, volume 3626. springer, 2005. (Cited on
page 33.)

[68] Martin Garriga, Andres Flores, Cristian Mateos, Alejandro Zunino, and
Alejandra Cechich. Service selection based on a practical interface assess-
ment scheme. International Journal of Web and Grid Services, 9(4):369–
393, 2013. (Cited on pages 56, 57, 58, 59 and 130.)

[69] W3CWorking Group et al. Qos for web services: requirements and possible
approaches, 2003. (Cited on pages 18 and 20.)

Bibliography 189

[70] Ferry Hendrikx, Kris Bubendorfer, and Ryan Chard. Reputation systems:
A survey and taxonomy. Journal of Parallel and Distributed Computing,
75:184–197, 2015. (Cited on page 63.)

[71] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T
Riedl. Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems (TOIS), 22(1):5–53, 2004. (Cited
on page 162.)

[72] San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen.
Dynamic web service selection for reliable web service composition. Services
Computing, IEEE Transactions on, 1(2):104–116, 2008. (Cited on page 53.)

[73] Anne Immonen and Daniel Pakkala. A survey of methods and approaches
for reliable dynamic service compositions. Service Oriented Computing and
Applications, 3:17–24, 2014. (Cited on pages 2, 3, 50, 74, 158, 177 and 181.)

[74] Diana Inkpen. Csi4107: Information retrieval and the internet (course
given at ottawa university, canada). http://www.site.uottawa.ca/
~diana/csi4107/, 2015. Accessed: 2015-03-10. (Cited on pages 28 and 29.)

[75] Donovan Isherwood and Marijke Coetzee. Trust cv: Reputation-based
trust for collectivist digital business ecosystems. In Privacy, Security and
Trust (PST), 2014 Twelfth Annual International Conference on, pages
420–424. IEEE, 2014. (Cited on page 63.)

[76] Wassim Itani, Cesar Ghali, Ayman Kayssi, and Ali Chehab. Reputation
as a service: A system for ranking service providers in cloud systems. In
Security, Privacy and Trust in Cloud Systems, pages 375–406. Springer,
2014. (Cited on page 63.)

[77] Paul Jaccard. Etude comparative de la distribution florale dans une portion
des Alpes et du Jura. Impr. Corbaz, 1901. (Cited on page 31.)

[78] M. A. Jaro. Probabilistic linkage of large public health data file. In Statis-
tics in Medicine, volume 14, pages 491–498, 1995. (Cited on pages 32
and 90.)

[79] Audun Jøsang. Trust and reputation systems. In Foundations of security
analysis and design IV, pages 209–245. Springer, 2007. (Cited on page 39.)

[80] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and
reputation systems for online service provision. Decision support systems,
43(2):618–644, 2007. (Cited on pages 39, 40 and 63.)

http://www.site.uottawa.ca/~diana/csi4107/
http://www.site.uottawa.ca/~diana/csi4107/

Bibliography 190

[81] Matjaz B Juric. A hands-on introduction to bpel. Oracle (white paper),
2006. (Cited on page 21.)

[82] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Dynamic service
composition in pervasive computing. Parallel and Distributed Systems,
IEEE Transactions on, 18(7):907–918, 2007. (Cited on page 44.)

[83] Sravanthi Kalepu, Shonali Krishnaswamy, and Seng Wai Loke. Verity: a
qos metric for selecting web services and providers. In Web Information
Systems Engineering Workshops, 2003. Proceedings. Fourth International
Conference on, pages 131–139. IEEE, 2003. (Cited on page 18.)

[84] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography description
language version 1.0. W3C candidate recommendation, 9, 2005. (Cited on
pages 21 and 24.)

[85] Markus Keidl and Alfons Kemper. Towards context-aware adaptable web
services. In Proceedings of the 13th international World Wide Web confer-
ence on Alternate track papers & posters, pages 55–65. ACM, 2004. (Cited
on pages 44 and 45.)

[86] Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Flexible and reliable
web service execution. In Proc. of the 1st Workshop on Entwicklung von
Anwendungen auf der Basis der XML Web-Service Technologie, pages 17–
30, 2002. (Cited on page 45.)

[87] Markus Keidl, Stefan Seltzsam, Konrad Stocker, and Alfons Kemper. Ser-
viceglobe: distributing e-services across the internet. In Proceedings of the
28th international conference on Very Large Data Bases, pages 1047–1050.
VLDB Endowment, 2002. (Cited on page 45.)

[88] Natallia Kokash. A comparison of web service interface similarity measures.
Frontiers in Artificial Intelligence and Applications, 142:220, 2006. (Cited
on pages 56, 57, 58 and 59.)

[89] Kyriakos Kritikos and Dimitris Plexousakis. Requirements for qos-based
web service description and discovery. Services Computing, IEEE Trans-
actions on, 2(4):320–337, 2009. (Cited on page 73.)

[90] Harold W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955. (Cited on page 96.)

Bibliography 191

[91] Freddy Lécué, Yosu Gorronogoitia, Rafael Gonzalez, Mateusz Radzimski,
and Matteo Villa. Soa4all: An innovative integrated approach to services
composition. In Web Services (ICWS), 2010 IEEE International Confer-
ence on, pages 58–67. IEEE, 2010. (Cited on pages 44 and 46.)

[92] VI Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10:707, 1966. (Cited on pages 32
and 90.)

[93] Yingmin Li, Tarek Melliti, and Philippe Dague. Modeling BPel web ser-
vices for diagnosis: Towards self-healing web services. In WEBIST (1),
pages 297–304, 2007. (Cited on page 5.)

[94] Noura Limam and Raouf Boutaba. Assessing software service quality and
trustworthiness at selection time. IEEE Transactions on Software Engi-
neering,, 36(4):559–574, 2010. (Cited on pages 64, 67 and 154.)

[95] Xin Liu, Anwitaman Datta, and Krzysztof Rzadca. Trust beyond reputa-
tion: A computational trust model based on stereotypes. Electronic Com-
merce Research and Applications, 12(1):24–39, 2013. (Cited on page 63.)

[96] Miodrag Lovric. International encyclopedia of statistical science. Springer
London, 2011. (Cited on page 26.)

[97] Michael R Lyu et al. Handbook of software reliability engineering, volume
222. IEEE computer society press CA, 1996. (Cited on page 2.)

[98] Jiang Ma and Hao-peng Chen. A reliability evaluation framework on
composite web service. In Service-Oriented System Engineering, 2008.
SOSE’08. IEEE International Symposium on, pages 123–128. IEEE, 2008.
(Cited on page 54.)

[99] Ismat Maarouf, Uthman Baroudi, and Abdurahim R Naseer. Efficient
monitoring approach for reputation system-based trust-aware routing in
wireless sensor networks. IET communications, 3(5):846–858, 2009. (Cited
on page 157.)

[100] Ross A Malaga. Web-based reputation management systems: Problems
and suggested solutions. Electronic Commerce Research, 1(4):403–417,
2001. (Cited on page 41.)

[101] Zaki Malik and Athman Bouguettaya. Rateweb: Reputation assessment for
trust establishment among web services. The VLDB JournalâĂŤThe Inter-
national Journal on Very Large Data Bases, 18(4):885–911, 2009. (Cited
on pages 64, 67, 139, 153, 157, 158, 160 and 165.)

Bibliography 192

[102] Zaki Malik and Athman Bouguettaya. Reputation bootstrapping for trust
establishment among web services. Internet Computing, IEEE, 13(1):40–
47, 2009. (Cited on pages 67, 153 and 157.)

[103] Félix Gómez Mármol and Marcus Quintino Kuhnen. Reputation-based
web service orchestration in cloud computing: A survey. Concurrency and
Computation: Practice and Experience, 2013. (Cited on pages 63, 67, 68
and 143.)

[104] Andrea Maurino, Enrico Mussi, Stefano Modafferi, and Barbara Pernici.
The MAIS framework for composite web services. IBIS, 6:32–64, 2007.
(Cited on page 44.)

[105] E Michael Maximilien and Munindar P Singh. Conceptual model of web
service reputation. Acm Sigmod Record, 31(4):36–41, 2002. (Cited on
page 6.)

[106] Brahim Medjahed and Athman Bouguettaya. A multilevel composability
model for semantic web services. Knowledge and Data Engineering, IEEE
Transactions on, 17(7):954–968, 2005. (Cited on pages 44 and 45.)

[107] Loubna Mekouar and Youssef Iraqi. Trustws: A trust management system
for web services. In International Symposium on Web Services, At Dubai,
UAE, 2010. (Cited on pages 65 and 170.)

[108] Loubna Mekouar, Youssef Iraqi, and Raouf Boutaba. Incorporating trust
in network virtualization. In 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), pages 942–947. IEEE, 2010.
(Cited on pages 65, 67 and 139.)

[109] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm and its application to schema
matching. In Proceedings of the 18th International Conference on Data
Engineering, ICDE ’02, pages 117–, Washington, DC, USA, 2002. IEEE
Computer Society. (Cited on pages 87, 92 and 97.)

[110] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram
Dustdar. End-to-end support for qos-aware service selection, binding, and
mediation in vresco. Services Computing, IEEE Transactions on, 3(3):193–
205, 2010. (Cited on pages 44 and 47.)

[111] Nikola Milanovic and Miroslaw Malek. Current solutions for web ser-
vice composition. IEEE Internet Computing, 8(6):51–59, 2004. (Cited
on page 44.)

Bibliography 193

[112] C Mohan. Dynamic e-business: Trends in web services. In Technologies
for E-Services, pages 1–5. Springer, 2002. (Cited on page 13.)

[113] Shahab Mokarizadeh, Nima Dokoohaki, Mihhail Matskin, and Peep Kün-
gas. Trust and privacy enabled service composition using social experience.
In Software Services for e-World, pages 226–236. Springer, 2010. (Cited on
pages 64 and 67.)

[114] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive
monitoring and service adaptation for ws-bpel. In Proceedings of the 17th
international conference on World Wide Web, pages 815–824. ACM, 2008.
(Cited on pages 44 and 48.)

[115] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Fran-
cisco Curbera, and Fabio Casati. Semi-automated adaptation of service
interactions. In Proceedings of the 16th international conference on World
Wide Web, pages 993–1002. ACM, 2007. (Cited on page 131.)

[116] Lik Mui, Mojdeh Mohtashemi, Cheewee Ang, Peter Szolovits, and Ari
Halberstadt. Ratings in distributed systems: A bayesian approach. (Cited
on page 41.)

[117] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A computational
model of trust and reputation. In System Sciences, 2002. HICSS. Pro-
ceedings of the 35th Annual Hawaii International Conference on, pages
2431–2439. IEEE, 2002. (Cited on page 41.)

[118] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, March 1970. (Cited on page 90.)

[119] Anne HH Ngu, Michael Pierre Carlson, Quan Z Sheng, and Hye-young
Paik. Semantic-based mashup of composite applications. Services Com-
puting, IEEE Transactions on, 3(1):2–15, 2010. (Cited on page 44.)

[120] Hien Trang Nguyen, Jian Yang, and Weiliang Zhao. Bootstrapping trust
and reputation for web services. In Commerce and Enterprise Computing
(CEC), 2012 IEEE 14th International Conference on, pages 41–48. IEEE,
2012. (Cited on page 153.)

[121] Hien Trang Nguyen, Weiliang Zhao, and Jian Yang. A trust and reputa-
tion model based on bayesian network for web services. In Web Services
(ICWS), 2010 IEEE International Conference on, pages 251–258. IEEE,
2010. (Cited on pages 6 and 67.)

Bibliography 194

[122] Talal H Noor, Quan Z Sheng, Sherali Zeadally, and Jian Yu. Trust man-
agement of services in cloud environments: Obstacles and solutions. ACM
Computing Surveys (CSUR), 46(1):12, 2013. (Cited on page 63.)

[123] Bart Orriens and Jian Yang. A rule driven approach for developing adap-
tive service oriented business collaboration. In Services Computing, 2006.
SCC’06. IEEE International Conference on, pages 182–189. IEEE, 2006.
(Cited on pages 44 and 46.)

[124] Meriem Ouederni, Gwen Salaün, and Ernesto Pimentel. Measuring the
compatibility of service interaction protocols. In Proceedings of the 2011
ACM Symposium on Applied Computing, SAC ’11, pages 1560–1567, New
York, NY, USA, 2011. ACM. (Cited on pages 57 and 59.)

[125] Michael Papazoglou. Web services: principles and technology. Pearson
Education, 2008. (Cited on pages 14, 17, 18 and 20.)

[126] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: a research roadmap. International
Journal of Cooperative Information Systems, 17(02):223–255, 2008. (Cited
on page 49.)

[127] Mike P Papazoglou and Willem-Jan Van Den Heuvel. Service oriented
architectures: approaches, technologies and research issues. The VLDB
journal, 16(3):389–415, 2007. (Cited on page 1.)

[128] MP Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service oriented computing: State of the art and research challenges. Com-
puter, 40(11):38–45, 2007. (Cited on pages 1, 49 and 181.)

[129] Chris Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003. (Cited on page 20.)

[130] Dunlu Peng and Qingkui Chen. An efficient approach for managing re-
placeability of web services. In Proceedings of the 2008 Fourth International
Conference on Semantics, Knowledge and Grid, SKG ’08, pages 388–391,
Washington, DC, USA, 2008. IEEE Computer Society. (Cited on pages 59
and 62.)

[131] Isaac Pinyol and Jordi Sabater-Mir. Computational trust and reputation
models for open multi-agent systems: a review. Artificial Intelligence Re-
view, 40(1):1–25, 2013. (Cited on page 63.)

Bibliography 195

[132] Giuseppe Pirró. A semantic similarity metric combining features and in-
trinsic information content. Data Knowl. Eng., 68:1289–1308, November
2009. (Cited on pages 90 and 97.)

[133] Pierluigi Plebani and Barbara Pernici. Urbe: Web service retrieval based
on similarity evaluation. IEEE Trans. on Knowl. and Data Eng., 21:1629–
1642, November 2009. (Cited on pages ix, 57, 58, 59, 94 and 95.)

[134] Edy Portmann, Andreas Meier, Philippe Cudré-Mauroux, and Witold
Pedrycz. Fora–a fuzzy set based framework for online reputation man-
agement. Fuzzy Sets and Systems, 2014. (Cited on page 41.)

[135] Edy Portmann and Witold Pedrycz. Fuzzy web knowledge aggregation,
representation, and reasoning for online privacy and reputation manage-
ment. In Fuzzy Cognitive Maps for Applied Sciences and Engineering, pages
89–105. Springer, 2014. (Cited on page 41.)

[136] Jinghai Rao and Xiaomeng Su. A survey of automated web service compo-
sition methods, pages 43–54. Springer, 2005. (Cited on page 44.)

[137] M Tamer Refaei, Luiz A DaSilva, Mohamed Eltoweissy, and Tamer
Nadeem. Adaptation of reputation management systems to dynamic net-
work conditions in ad hoc networks. Computers, IEEE Transactions on,
59(5):707–719, 2010. (Cited on page 63.)

[138] Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lockwood.
The value of reputation on ebay: A controlled experiment. Experimental
Economics, 9(2):79–101, 2006. (Cited on page 41.)

[139] Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo
Campo. Improving web service descriptions for effective service discovery.
Science of Computer Programming, 75(11):1001–1021, 2010. (Cited on
page 130.)

[140] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model
for automatic indexing. Communications of the ACM, 18(11):613–620,
1975. (Cited on page 27.)

[141] A Lazcano G Alonso H Schuldt and C Schuler. The wise approach to elec-
tronic commerce. Int’l J. Computer Systems Science and Eng, 15(5):343–
355, 2000. (Cited on page 44.)

[142] Toby Segaran. Programming collective intelligence: building smart web 2.0
applications. " O’Reilly Media, Inc.", 2007. (Cited on page 30.)

Bibliography 196

[143] Ali Shaikh Ali, Shalil Majithia, Omer F Rana, and David W Walker.
Reputation-based semantic service discovery. Concurrency and Compu-
tation: Practice and Experience, 18(8):817–826, 2006. (Cited on page 6.)

[144] Quan Z Sheng, Boualem Benatallah, Marlon Dumas, and Eileen Oi-Yan
Mak. Self-serv: a platform for rapid composition of web services in a peer-
to-peer environment. In Proceedings of the 28th international conference
on Very Large Data Bases, pages 1051–1054. VLDB Endowment, 2002.
(Cited on pages 20, 44 and 45.)

[145] Quan Z Sheng, Boualem Benatallah, Zakaria Maamar, and Anne HH Ngu.
Configurable composition and adaptive provisioning of web services. Ser-
vices Computing, IEEE Transactions on, 2(1):34–49, 2009. (Cited on
page 49.)

[146] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia Szabo,
Scott Bourne, and Xiaofei Xu. Web services composition: A decade’s
overview. Information Sciences, 280:218–238, 2014. (Cited on pages vii, 2,
20, 21, 22, 23, 24, 25, 26, 44 and 49.)

[147] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Guided re-
covery for web service applications. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineer-
ing, pages 247–256. ACM, 2010. (Cited on page 55.)

[148] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Monitoring
and recovery of web service applications, pages 250–288. Springer, 2010.
(Cited on page 55.)

[149] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. In Journal of Molecular Biology, volume 147(1), pages 195–
197, 1981. (Cited on page 90.)

[150] Karen Spärck Jones. Idf term weighting and ir research lessons. Journal
of Documentation, 60(5):521–523, 2004. (Cited on page 27.)

[151] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for
ontology alignment. In Yolanda Gil, Enrico Motta, V. Richard Benjamins,
and Mark A. Musen, editors, Proceedings of the 4rd International Semantic
Web Conference (ISWC), pages 624–637, Berlin, Heidelberg, November
2005. Springer. (Cited on page 90.)

[152] Eleni Stroulia and Yiqiao Wang. Structural and semantic matching for
assessing web-service similarity. International Journal of Cooperative In-
formation Systems, 14:407–437, 2005. (Cited on page 94.)

Bibliography 197

[153] K Adlin Suji and S Sujatha. A comprehensive survey of web service chore-
ography, orchestration and workflow building. International Journal of
Computer Applications, 88(13):18–23, 2014. (Cited on page 44.)

[154] Rajesh Sumra and D Arulazi. Quality of service for web services-
demystification, limitations, and best practices. Retrieved February,
10:2006, 2003. (Cited on pages 18 and 20.)

[155] Hua Sun, Jiong Yu, Zhen Yu Zhang, Li Li, and Bin Liao. Evaluation of
trustworthiness based on fuzzy set theory. International Journal of Future
Generation Communication & Networking, 7(2), 2014. (Cited on page 41.)

[156] Girish Suryanarayana and Richard N Taylor. A survey of trust man-
agement and resource discovery technologies in peer-to-peer applications.
2004. (Cited on page 40.)

[157] Suhas Sutariya and Prashant Modi. A review of different reputation
schemes to thwart the misbehaving nodes in mobile ad hoc network. Inter-
national Journal of Computer Science & Information Technologies, 5(3),
2014. (Cited on page 63.)

[158] Yang Syu, Shang-Pin Ma, Jong-Yin Kuo, and Yong-Yi FanJiang. A survey
on automated service composition methods and related techniques. In
Services Computing (SCC), 2012 IEEE Ninth International Conference
on, pages 290–297. IEEE, 2012. (Cited on page 44.)

[159] Steven Tadelis. Firm reputation with hidden information. Economic The-
ory, 21(2-3):635–651, 2003. (Cited on page 40.)

[160] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining, (First Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005. (Cited on page 31.)

[161] Karim Tari, Yacine Amirat, Abdelghani Chibani, Ali Yachir, and Abdel-
hamid Mellouk. Context-aware dynamic service composition in ubiquitous
environment. In Communications (ICC), 2010 IEEE International Con-
ference on, pages 1–6. IEEE, 2010. (Cited on page 50.)

[162] Maurice Ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service
composition approaches: From industrial standards to formal methods.
In Internet and Web Applications and Services, 2007. ICIW’07. Second
International Conference on, pages 15–15. IEEE, 2007. (Cited on page 44.)

[163] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition,
Fourth Edition. Academic Press, 4th edition, 2008. (Cited on page 30.)

Bibliography 198

[164] Okba Tibermacine, Chouki Tibermacine, and Foudil Cherif. Wssim: a tool
for the measurement of web service interface similarity. In French-speaking
Conference on Software Architectures (CAL’13), 2013. (Cited on page 7.)

[165] Okba Tibermacine, Chouki Tibermacine, and Foudil Cherif. A practi-
cal approach to the measurement of similarity between wsdl-based web
services. Revue des Nouvelles Technologies de l’Information, 6th French-
speaking Conference on Software Architectures, RNTI-L-7:03–18, 2014.
(Cited on pages 7, 138, 146 and 149.)

[166] Okba Tibermacine, Chouki Tibermacine, and Foudil Cherif. A process to
identify relevant substitutes for healing failed ws-* orchestrations. Journal
of Systems and Software, 104(0):1 – 16, 2015. (Cited on page 7.)

[167] Okba Tibermacine, Chouki Tibermacine, and Foudil Cherif. Regression-
based bootstrapping of web service reputation measurement. In to appear
in Proceedings of the 13th IEEE International Conference on Web Services
(ICWS’15), Application Track. IEEE Computer Society, June July 2015.
(Cited on page 8.)

[168] Hong-Linh Truong, Robert Samborski, and Thomas Fahringer. Towards
a framework for monitoring and analyzing qos metrics of grid services. In
e-Science and Grid Computing, 2006. e-Science’06. Second IEEE Interna-
tional Conference on, pages 65–65. IEEE, 2006. (Cited on pages vii, 18
and 19.)

[169] Wei-Tek Tsai. Service-oriented system engineering: a new paradigm. In
Service-oriented system engineering, 2005. sose 2005. IEEE International
Workshop, pages 3–6. IEEE, 2005. (Cited on page 73.)

[170] W.T. Tsai, Z. Jin, P. Wang, and B. Wu. Requirement engineering in
service-oriented system engineering. In e-Business Engineering, 2007.
ICEBE 2007. IEEE International Conference on, pages 661–668, Oct 2007.
(Cited on page 73.)

[171] Esko Ukkonen. Approximate string-matching with q-grams and maximal
matches. In Theoretical Computer Science, volume 92, pages 191–211,
1992. (Cited on page 90.)

[172] VRSD Vijayakumar, RSD Wahida Banu, and Jemal H Abawajy. An effi-
cient approach based on trust and reputation for secured selection of grid
resources. International journal of parallel, emergent and distributed sys-
tems, 27(1):1–17, 2012. (Cited on page 63.)

Bibliography 199

[173] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service
selection and ranking with trust and reputation management. In On the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
pages 466–483. Springer, 2005. (Cited on page 6.)

[174] Web Services Architecture Working Group W3C et al. Web services archi-
tecture requirements. W3C Working Draft, 2002. (Cited on page 14.)

[175] Lijun Wang, Xiaoying Bai, Lizhu Zhou, and Yinong Chen. A hierarchical
reliability model of service-based software system. In Computer Software
and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE In-
ternational, volume 1, pages 199–208. IEEE, 2009. (Cited on page 52.)

[176] S. Wang, Z. Zheng, Z. Wu, M. Lyu, and F. Yang. Reputation measurement
and malicious feedback rating prevention in web service recommendation
systems. IEEE Transactions on Services Computing, PP(99):1–1, 2014.
(Cited on pages 6, 63, 65, 66, 67, 157, 169 and 170.)

[177] Yao Wang and Julita Vassileva. Toward trust and reputation based web
service selection: A survey. International Transactions on Systems Science
and Applications, 3(2):118–132, 2007. (Cited on pages 6 and 63.)

[178] AndrewWhitby, Audun Jøsang, and Jadwiga Indulska. Filtering out unfair
ratings in bayesian reputation systems. In Proc. 7th Int. Workshop on Trust
in Agent Societies, volume 6, 2004. (Cited on pages 165 and 168.)

[179] Stephen A White et al. Business process modeling notation. Specification,
BPMI. org, 2004. (Cited on page 21.)

[180] Rudolf Wille. Restructuring lattice theory: an approach based on hierar-
chies of concepts. Springer, 2009. (Cited on page 33.)

[181] William E. Winkler. String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage. In Proceedings of the Section
on Survey Research, pages 354–359, 1990. (Cited on pages 32 and 90.)

[182] Martin Wirsing and Matthias Hölzl. Rigorous Software Engineering for
Service-oriented Systems: Results of the SENSORIA Project on Software
Engineering for Service-oriented Computing, volume 6582. Springer Sci-
ence & Business Media, 2011. (Cited on page 73.)

[183] Ryan Wishart, Ricky Robinson, Jadwiga Indulska, and Audun Jøsang.
Superstringrep: reputation-enhanced service discovery. In Proceedings of
the Twenty-eighth Australasian conference on Computer Science-Volume

Bibliography 200

38, pages 49–57. Australian Computer Society, Inc., 2005. (Cited on pages 6
and 140.)

[184] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999. (Cited on page 90.)

[185] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
(Cited on page 132.)

[186] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for
peer-to-peer electronic communities. IEEE Transactions on Knowledge and
Data Engineering,, 16(7):843–857, 2004. (Cited on page 157.)

[187] Ziqiang Xu, Patrick Martin, Wendy Powley, and Farhana Zulkernine.
Reputation-enhanced qos-based web services discovery. In IEEE Inter-
national Conference on Web Services (ICWS 2007), pages 249–256. IEEE,
2007. (Cited on pages 139 and 140.)

[188] Xinfeng Ye, Jupeng Zheng, and Bakh Khoussainov. A robust service rec-
ommendation scheme. In Services Computing (SCC), 2013 IEEE Interna-
tional Conference on, pages 73–80. IEEE, 2013. (Cited on page 6.)

[189] Serhiy A Yevtushenko. System of data analysis Şconcept explorerŤ. In
Proceedings of the 7th national conference on Artificial Intelligence KII,
volume 2000, 2000. (Cited on page 38.)

[190] Serhiy A Yevtushenko. System of data analysis “concept explorer”. In
Proceedings of the 7th national conference on Artificial Intelligence KII,
volume 2000, 2000. (Cited on page 123.)

[191] Jian Yu, Jun Han, Quan Z Sheng, and Steven O Gunarso. Percas: an
approach to enabling dynamic and personalized adaptation for context-
aware services. In Service-Oriented Computing, pages 173–190. Springer,
2012. (Cited on page 44.)

[192] Qi Yu and Athman Bouguettaya. Foundations for efficient web service
selection. Springer Science & Business Media, 2009. (Cited on pages 14
and 20.)

[193] Alireza Zarghami, Soude Fazeli, Nima Dokoohaki, and Mihhail Matskin.
Social trust-aware recommendation system: A t-index approach. In Pro-
ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on

Bibliography 201

Web Intelligence and Intelligent Agent Technology-Volume 03, pages 85–90.
IEEE Computer Society, 2009. (Cited on page 64.)

[194] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, and Quan Z Sheng. Quality driven web services com-
position. In Proceedings of the 12th international conference on World
Wide Web, pages 411–421. ACM, 2003. (Cited on page 45.)

[195] Liangzhao Zeng, Boualem Benatallah, Anne HH Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. Qos-aware middleware for
web services composition. Software Engineering, IEEE Transactions on,
30(5):311–327, 2004. (Cited on page 53.)

[196] Wen Zhang, Taketoshi Yoshida, and Xijin Tang. Tfidf, lsi and multi-word
in information retrieval and text categorization. In Systems, Man and
Cybernetics, 2008. SMC 2008. IEEE International Conference on, pages
108–113. IEEE, 2008. (Cited on page 27.)

[197] Yilei Zhang, Zibin Zheng, and Michael R Lyu. Wspred: A time-aware
personalized qos prediction framework for web services. In IEEE 22nd In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages
210–219. IEEE, 2011. (Cited on page 127.)

[198] Huanyu Zhao and Xiaolin Li. Vectortrust: trust vector aggregation scheme
for trust management in peer-to-peer networks. The Journal of Supercom-
puting, 64(3):805–829, 2013. (Cited on page 63.)

[199] Zibin Zheng and Michael R Lyu. Personalized reliability prediction of web
services. ACM Transactions on Software Engineering and Methodology
(TOSEM), 22(2):12, 2013. (Cited on page 49.)

[200] Zibin Zheng, Yilei Zhang, and Michael R Lyu. Distributed qos evaluation
for real-world web services. In Proc. of ICWS’10, pages 83–90. IEEE, 2010.
(Cited on page 152.)

[201] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable repu-
tation system for trusted peer-to-peer computing. IEEE Transactions on
Parallel and Distributed Systems, 18(4):460–473, 2007. (Cited on page 63.)

[202] Alejandro Zunino and Marcelo Campo. A survey of approaches to web ser-
vice discovery in serviceŮoriented architectures. Innovations in Database
Design, Web Applications, and Information Systems Management, page
107, 2012. (Cited on page 44.)

	Introduction
	Context
	Problem Statement
	Reliable web service orchestration
	Web service interface similarity measurement
	Web service substitutes selection
	Web service reputation management

	Contributions and main results
	Thesis outline

	I State of the Art
	Background
	Overview
	Web service fundamentals
	Web Services
	Web service model and its underlying technologies
	Quality of Service
	Web services composition
	Web services composition life cycle
	Web service composition languages

	Similarity measurement schemes
	Vector space model
	Term Frequency - Inverse Document Frequency
	Latent Semantic Indexing
	Similarity and Distance Measures

	Formal Concept Analysis
	Case study
	Formal Context
	Formal Concept
	Object and attributes concepts
	Subconcept and superconcept
	Concept lattice
	FCA for web Services

	Trust and Reputation
	Trust
	Reputation
	Trust management systems
	Reputation computation methods

	Summary

	Literature Review
	Overview
	Web service composition methods
	Methods
	Discussion

	Reliable web service compositions methods
	Methods
	Discussion

	Fault recovery in web service composition
	Methods
	Discussion

	Similarity measurement for service discovery and selection
	Methods
	Discussion

	Lattice-based web service classification
	Methods
	Discussion

	Reputation management models
	Methods
	Discussion

	Summary

	II Contributions
	Framework for Reliable Web Services Orchestration
	Overview
	Reliable WS orchestrations life-cycle
	Phase 1: Requirement specification
	Phase 2: Abstract process modeling
	Phase 3: Service search, selection and contracting
	Phase 4: Binding and business process execution
	Run-time monitoring
	Reliability analysis
	Repair and reconfiguration
	Web service recommendation

	Architecture for reliable WS orchestrations
	Service provider
	Designer
	Web Service Recommendation System

	Summary

	An approach for web service similarity assessment
	Overview
	Similarity assessment approach
	Identifiers similarity
	Documentation similarity
	Grammatical tags for enhancing identifier similarity
	Operations similarity
	Messages similarity
	Complex-type parameters similarity
	Simple-type parameter similarity
	Maximal score computation from the similarity matrix

	WSSim: a tool for measuring web service similarity
	Overview of WSSim Functionalities
	Underlying Technologies
	WSSim as a Web Service

	Experiments and validation
	Tuning
	Case Study

	Summary

	Web Service Substitutes Identification Approach
	Overview
	Case study
	Architecture's overview
	Components description
	Keyword and Signature extractor
	Service retriever
	Service filterer
	Similarity assessor
	Context builder and FCA classifier
	Lattice interpreter
	Reliability Analyzer

	Experiment and validation
	Methodology
	Data selection
	Orchestration extraction
	Substitute extraction
	System performances
	Result measurement
	Threats to validity

	Summary

	Web Service Reputation Management Framework
	Overview
	Reputation management framework
	Framework architecture
	Feedback collector
	Reputation manager
	Search and selection interface
	Service recommender

	Reputation assessment model
	Evaluation metrics
	Assessment formula
	Reputation
	Honesty factor
	Suspicious user penalization
	Provider reputation
	WS Orchestration reputation assessment

	Reputation bootstrapping Model
	Provider reputation-based estimation
	Reputation estimation from similar services
	Regression-based Reputation estimation
	Evaluation of the bootstrapping Model

	Experiments
	Description
	Reputation with varying maliciousness density
	Impact of time sensitivity factor
	Effect of the penalization mechanism
	Execution time performance
	Performance comparison
	Limitations

	Summary

	Conclusion and Future Work
	Summary
	Future Work
	Improvement on the proposed approaches
	Formal Requirement Engineering Method
	Web services monitoring approach

	Bibliography

