
Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /

This is a self-archiving document (published version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-728488

Martin Hahmann, Claudio Hartmann, Lars Kegel, Dirk Habich, Wolfgang Lehner

Big by blocks: modular analytics

Erstveröffentlichung in / First published in:

Information Technology. 2016, 58 (4), S. 176–185 [Zugriff am: 05.11.2020]. De Gruyter. ISSN
2196-7032

DOI: https://doi.org/10.1515/itit-2016-0003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/353951437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-728488
https://doi.org/10.1515/itit-2016-0003

it – Information Technology 2016; 58(4): 176–185 DE GRUYTER OLDENBOURG

Special Issue

Martin Hahmann*, Claudio Hartmann, Lars Kegel, Dirk Habich, and Wolfgang Lehner

Big by blocks: modular analytics
DOI 10.1515/itit-2016-0003
Received January 20, 2016; accepted May 9, 2016

Abstract: Big Data and Big Data analytics have attracted
major interest in research and industry and continue to do
so. The high demand for capable and scalable analytics
in combination with the ever increasing number and vol-
ume of application scenarios and data has lead to a large
and intransparent landscape full of versions, variants and
individual algorithms. As this zoo of methods lacks a sys-
tematic way of description, understanding is almost im-
possible which severely hinders effective application and
efficient development of analytic algorithms. To solve this
issue we propose our concept of modular analytics that
abstracts the essentials of an analytic domain and turns
them into a set of universal building blocks. As arbitrary
algorithms can be created from the same set of blocks,
understanding is eased and development benefits from
reusability.

Keywords: Data analysis, clustering, forecasting, algo-
rithm description.

ACM CCS: Theory of computation → Design and analy-
sis of algorithms → Algorithm design techniques, Theory
of computation → Theory and algorithms for application
domains →Machine learning theory

1 Introduction
Big Data has been “all the rage” in recent years and, as
a topic, has spawned amultitude of research and develop-
ment projects. Regarding analytics, these efforts have been
focused on improving the scalability as well as analysis
performance of algorithms, i.e., enabling them to process
and exploit the ever-growing mass of data. While scalabil-
ity is generally realized via parallelization and adaption

*Corresponding author: Martin Hahmann, Technische Universität
Dresden, Dep. of Computer Science, Nöthnitzer Str. 46,
D-01062 Dresden, Germany,
e-mail: martin.hahmann@tu-dresden.de
Claudio Hartmann, Lars Kegel, Dirk Habich, Wolfgang Lehner:
Technische Universität Dresden, Dep. of Computer Science,
Nöthnitzer Str. 46, D-01062 Dresden, Germany

to specific system architectures, analysis quality is opti-
mized by tightly fitting an algorithm to a specific applica-
tion scenario or domain. Due to this practice, a zoo of in-
dividual algorithms exists, which is continually expanded
with new members. While these new algorithms still con-
tain genuine novel approaches, the majority of them are
slightly modified variants, scenario specific adaptations or
scalable versions of existing methods. Utilizing this large
pool of algorithms is a considerable challenge that is fur-
ther complicated by a lack of systematic descriptions. In
general, algorithm descriptions, either in the form of pro-
gram code or text, focus on implementation specifics or
integration details of certain domain knowledge. Thus,
similarities and relationships between algorithms are ob-
scured, which makes it really hard to comprehend how
algorithms work. The resulting lack of understanding hin-
ders effective application of analytic algorithms as not
every method fits every scenario. Furthermore, efficient
modification of algorithms is complicated as optimization
potentials or correct implementations of changes might
not be recognized.

Recognizing potentials for improvement and finding
novel promising approaches for analysis are challenges of
algorithm design that actually predate the big data era.
However, the fast growth of data has acted like a catalyst
for the significance of tasks like algorithm adaptation and
optimization. Algorithmadaptation ismostly driven by the
Variety of big data that demands the inclusion ofmore and
more data sources into analysis in order to improve re-
sult quality. The ever increasing Volume of data and the
Velocity in which it is generated, pushes optimization in
order to ensure scalability and include concepts like par-
allelization, optimized data structures, and modern hard-
ware architectures into analytic algorithms. As big data ex-
pands, constantly and fast, the implementation of analytic
algorithms must be agile and happen in short-cycles in or-
der to keep pace with emerging data sources or execution
platforms.

Currently this is not the case, as we will illustrate in
the following by regarding the three existing general ap-
proaches for implementation of analytic algorithms. The
first one uses standard programming languages like C. It
allows the development of high-performance algorithms
that utilize customized execution models and data struc-

DE GRUYTER OLDENBOURG M. Hahmann et al., Big by blocks: modular analytics | 177

tures in order to exploit domain knowledge and specific
system architectures to the fullest. A slightly different ap-
proach is offered by analysis-specific development envi-
ronments like the R project [13] or SystemML [8]. While
not offering full customizability, these still provide spe-
cific data structures, execution models, and optimizers for
analytics in general. The most user-friendly approach are
workflow frameworks like KNIME [4] that offer prefabri-
cated operators which are connected to form analytical
processes. This offers a certain degree of reuse regarding
adaptations, but limits the potential for optimization. Fur-
thermore, major algorithm changes require the creation of
newoperators in anunderlyingprogramming language. In
general, implementation considers analytic algorithms as
individual monolithic entities that must be completely re-
made in order to be adapted or optimized. This, of course,
makes implementation costly and time intensive.

In this article, we break with this philosophy and
propose a contrasting view by interpreting algorithms as
combinations of general modules instead. Basically, we
want to achieve a user-experience similar to the opera-
tor combination of workflow frameworks like KNIME, but
with a finer granularity. We want to apply modifications
on a level that is more detailed than changing an opera-
tor/algorithm completely, but still not as detailed as the
specification using programming languages. For this, we
interpret an algorithm as a structured combination of in-
terchangeable components. The composition of an algo-
rithm is defined by a base templatewhich is equippedwith
components that capsule an abstract functionality rather
than a programming instruction. This approach enables
agile and user-friendly modifications, as developers can
simply change components in order to realize their desired
algorithm design. This shortens development cycles and
allows users to keep pace with the dynamics of big data.

To create these modules, we examine different anal-
ysis techniques, abstract from their algorithms, extract
common similarities, and create sets of universal build-
ing blocks that can tackle the challenges mentioned ear-
lier. In doing so, a conceptual model is created, that al-
lows the formal and platform independent description
of algorithms for a specific analysis technique. Besides
description, our modular approach offers further poten-
tial benefits. As each building block formalizes a certain
functionality, understanding and comparing different al-
gorithms becomesmore structured. By exploiting this, tax-
onomies and systematic approaches for selecting the ap-
propriate method for a given use-case could be derived.
Furthermore, our approach could be used as a frontend
language for actual analytic systems like SystemML. By us-
ing system-specific compilers, our formal abstract descrip-

tions could be realized on a variety of systems, without
forcing users to be proficient in the target systems devel-
opment mechanisms.

In the following two sections, we illustrate our build-
ing blocks concept for the analytic domains of cluster-
ing and forecasting.We describe the respective conceptual
models with base templates, building blocks, and exam-
ple algorithms. The building blocks for clustering have al-
ready been proposed in [9]. By translating our modular-
ization concept to the domain of forecasting, we create
a novel set of building blocks, which shows the versatil-
ity of our approach. We conclude the paper by discussing
the future development of our concept and its potential for
implementation and application.

2 Clustering
Webegin the creation of a general set of building blocks for
clustering, by decomposing the corresponding algorithms
into their conceptual components. We concentrate only on
the core clustering procedure and do not consider pre- and
post-processing tasks like feature selection etc. As a start-
ing point, we assume a general definition of data cluster-
ing [10]: “Data clustering is the partitioning of a set of points
into groups– so called clusters – in away that similar points
are put in the same cluster, while dissimilar points are lo-
cated in different clusters.”

From this definition, we derive the essential steps and
components of a clustering algorithms in Section 2.1, turn
them into a formalism for building blocks in Section 2.2,
and show some algorithm examples in Section 2.3.

2.1 Base template

Based on the initial definition, we can identify three tasks,
which are observable in all clustering algorithms: measur-
ing the similarity of points, choosing the points that are
similar and should be grouped together, and actual group-
ing of these points. As result of this abstraction, we define
three phases of a clustering algorithm, that form a base
template which needs to be fitted with building blocks to
define an algorithm. In the following, we introduce each
phase and investigate its defining elements, in order to
find such blocks.

Evaluation Phase: During this first phase, the simi-
larity of points is measured. Similarity between objects is
determinedwith either a: (i) similarity functionor (ii) a dis-
tance function [10]. While the former expresses the de-

178 | M. Hahmann et al., Big by blocks: modular analytics DE GRUYTER OLDENBOURG

gree of equality, the latter points out the amount of dis-
agreement between objects. As both options are analo-
gous, we assume that similarity is expressed through dis-
tances. Based on this, the distance measure becomes the
first defining element of the evaluation phase.

A distance measure takes at least two input values
and produces one output value. One input contains the
points which are to be clustered, the second input is vari-
able. Algorithms like DBSCAN [6] calculate all point-to-
point distances and thus, reuse points as second input.
However, approaches like k-means [7] utilize a special set
of representatives as second input for the distance com-
putation. We unify both alternatives with the term refer-
ences for the second input of the distance measure. Refer-
ences can be (i) equal to points, (ii) a subset of points or
(iii) a set of objects from the same feature-space likepoints.
These two inputs and the calculated distances form the re-
maining defining elements of evaluation. Evaluation can
now be generally defined as the creation of point-distance-
reference relation-triples that explicitly express the simi-
larity between points and references.

Selection phase: In this phase, the points that are
eligible to be grouped together are selected according to
the algorithms specification. For this, the output gener-
ated by evaluation is checked for points which are simi-
lar and should pass selection in order to be clustered to-
gether. This requires the definition of conditions that de-
scribe the status “similar” and to test whether they are
fulfilled or not. For this, we propose filters, which repre-
sent the defining element of this phase. A set of these fil-
ters is used to test the input triples from evaluation and
passes on only those that fulfill the conditions. Regard k-
means as an example, that groups each point with the ref-
erence that is closest to it. Thus, one filter is needed to se-
lect only the minimum point-distance-reference triple for
each point and pass them to the grouping phase.

Associationphase:During this phase, the points that
passed selection are associated with a cluster to create
a clustering. This clustering represents the output and
a defining element of this phase. A clustering is made
up of relations, i.e., the affiliation between points and
clusters. Association transforms point-distance-reference
triples into point-cluster tuples. This is done using the
defining element association function.

Some algorithms directly create clusterings, e.g., the
association function of k-means takes a point-distance-
reference triple, removes the distance and adopts the ref-
erence as cluster. In contrast, DBSCAN [6] first associates
a core-object with its neighborhood – by creating point-

Figure 1:Mapping semantics to a formalism.

reference tuples – before the actual clusters are formed
from overlapping neighborhoods. This necessitates an in-
direction between association function and clustering,
which is given by the defining element: adjacencies. With
it, association is defined as follows: incoming triples from
selection are transformed into adjacencies from which the
clustering is derived.

Optimization phase: This optional phase exists in
several algorithms and implements optimizations aimed
at improving the results generated by the mandatory
phases evaluation, selection, and association. This gener-
ally leads to multiple iterations over the mandatory core
while parameters are adjusted, references are updated etc.

2.2 Building blocks

Our defining elements occur in every clustering algorithm,
where they realize the same abstract functionality in dif-
ferent ways. In order to describe this variety of semantics
in a systematic way and create building blocks, we need
a minimal set of formal elements to which all individual
occurrences of our defining elements are mapped as il-
lustrated in Figure 1. For this, we utilize a mathematical
formalism that uses matrices for data containers like in-
puts and outputs, functions, and a small set of control flow
structures. Matrices are denoted with a single capital let-
ter, e.g.,𝐷 for the distances. Different versions of a matrix
are denoted in the superscript:𝐷𝐼 and𝐷𝐼𝐼 are versions of
𝐷 after 1 resp. 2 function applications, while𝐷𝑥 and𝐷𝑥+1

designate the versions of 𝐷 that are valid in the current
and next iteration of the algorithm. Subscripts, are used
to describe matrices in more detail, e.g., 𝐷

𝑅
denotes the

distances between all references 𝑅. In the following we il-

DE GRUYTER OLDENBOURG M. Hahmann et al., Big by blocks: modular analytics | 179

Figure 2:Mapping data to matrices.

lustrate the building blocks for the defining elements of
clustering. By adding additionalmatrix or function blocks,
arbitrary functionality can be added to a clustering algo-
rithm.

Matrices: Generally, datasets for clustering are repre-
sented using multi-dimensional vectors inside a feature-
space. Based on this procedure, points are defined as a set
𝑃 of 𝑓-dimensional vectors �⃗� = {𝑝

0
, . . . , 𝑝

𝑓
} where 𝑛 =

|𝑃|. This set is converted into a matrix 𝑃𝑛×𝑓 by interpret-
ing each vector ⃗𝑝

𝑖
as a row 𝑝

𝑖,∗
of said matrix. References

are defined accordingly as matrix 𝑅𝑘×𝑓 containing 𝑘 ref-
erence vectors. This dataset to matrix conversion is illus-
trated inFigure 2. In addition todatasets,matrices canalso
describe relations between objects, e.g., point-distance-
reference triples from evaluation, by using a row and col-
umn pair to address the matrix element holding the value
of the actual relation.Wedefinedistancesas amatrix𝐷𝑛×𝑘,
where 𝑛 = |𝑃| and 𝑘 = |𝑅|. Each element 𝑑

𝑖𝑗
of 𝐷 relates

a point/row 𝑝
𝑖,∗

of 𝑃 to a reference 𝑟
𝑗,∗

of 𝑅. Thus, 𝑑
𝑖𝑗
con-

tains the distance between 𝑝
𝑖,∗
and 𝑟
𝑗,∗
. This is adapted for

tuples like point-cluster from clustering, by using a binary
matrix to express an existing relation. A binary matrix el-
ement with value 1 at position (𝑖, 𝑗) states a relation be-
tween the objects referenced by 𝑖 and 𝑗. Accordingly, we
define adjacencies as binary matrix𝐴𝑛×𝑘 and clustering as
binary matrix 𝐶 with 𝑛 rows and a number of columns
matching the number of clusters.

Functions: The distance measure 𝑑𝑖𝑠𝑡, takes a pair of
rows (𝑝

𝑖,∗
, 𝑟
𝑗,∗
) from 𝑃 and 𝑅 and assigns a scalar value

to it, representing the distance between the corresponding
objects. The abstract function dist can be defined as:

𝑑𝑖𝑠𝑡 : (𝑃, 𝑅) → 𝐷

𝑑
𝑖𝑗
= 𝑓(𝑝

𝑖,∗
, 𝑟
𝑗,∗
)

A filter checks whether a matrix or one of its elements ful-
fills certain conditions and passes them on or sorts them
out accordingly. Thus a filter resembles an if-then state-
ment. To describe the if-part, we use a condition, which

is described as function with the co-domain (0, 1), repre-
senting the results false and true. A simple threshold con-
dition, that is satisfied by all numbers smaller 10 could be
defined as:

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : 𝑥

𝐼
= {

1, if 𝑥 < 10

0, otherwise.

To simplify notation, we only denote the condition leading
to true as the function name. Thus, notation of the preced-
ing definition is reduced to ⟨𝑥 < 10⟩.

The ’then’ part has to delete elements that fail the con-
dition while leaving all others alone. Actual deletion of
matrix elements cannot be modeled as a function, which
necessitates a workaround. To replace removal, we define
a neutral element to which all failing inputs are mapped.
For our scenario, we choose 0 as neutral element, which
allows us to define a minimum filter as:

𝑚𝑖𝑛𝐹𝑖𝑙𝑡𝑒𝑟 : (𝐷, ⟨𝑑
𝑖𝑗
= 𝑚𝑖𝑛(𝐷)⟩) → 𝐷

𝐼

𝑑

𝐼

𝑖𝑗
= ⟨𝑑
𝑖𝑗
= 𝑚𝑖𝑛(𝐷)⟩ ⋅ 𝑑

𝑖𝑗

Assuming𝑑
23
is theminimumof a distance vector 𝑑

2,∗
, the

filtered row becomes 𝑑𝐼
𝑖,∗
= (0, 0, 𝑑

23
, 0). Obviously, subse-

quent functions must be aware of the neutral element. By
executing filters, amodified version of the input is created,
e.g., the modified distance matrix𝐷𝐼, which is the output
of the selection phase.

After filtering, the association function has to trans-
form the remaining distances into adjacencies, i.e., point-
distance-reference triples from selection must be con-
verted into point-reference tuples. This turns the filtered
distance matrix𝐷𝐼 into a binary matrix, where a value of
1 represents an existing adjacency. Non-existent adjacen-
cies are already mapped to 0, which means the remaining
non-zero values must be mapped to 1. For this, the sign
function sgn() can be used. As distances cannot be nega-
tive it fits our requirements perfectly. With it, the associa-

180 | M.Hahmann et al., Big by blocks: modular analytics DE GRUYTER OLDENBOURG

tion function assoc is defined as:

𝑎𝑠𝑠𝑜𝑐 : 𝐷

𝐼
→ 𝐴

𝑎
𝑖𝑗
= 𝑠𝑔𝑛(𝑑

𝐼

𝑖𝑗
)

Control flow: Loops are a vital element of almost ev-
ery clustering algorithm, but can hardly bemodeledmath-
ematically. Thus we define them outside the mathemati-
cal domain. Two loop types are essential: a for-each loop
for element-wise traversal of datasets or clusterings and
a repeat-until loop for conditioned iterations, e.g., during
optimization.

For the for-each loop, the traversed matrix𝑀 and the
element/granularity of traversal, i.e., row, column or com-
ponent are specified in the head. In our case, element-
wise traversal is done by splitting up the source matrix
into element-matrices at the beginning of the loop, pro-
cessing the individual elements according to the instruc-
tions in the loop body, and re-assembling them into com-
plete matrices at the end of the loop. Loop output is de-
noted after the end for term. Furthermore, we use for-each
loops to remove rows and columns of zeros from matri-
ces. This is needed when algorithms delete references or
filters empty whole clusters during optimization. By in-
serting a condition at the end of the loop we prevent zero
element-matrices from being reassembled into the output
matrix.

The repeat-until loop is used to represent conditioned
loop for controlling algorithm iterations. Its stopping con-
dition is specified after the closing until statement. The in-
put matrices of a repeat-until loop are denoted in the head
statement and are processed continuously until the loop
stops. The output matrix of this loop type can be either
a processed version of the input or an assembly of element-
matrices generated during the loop.

2.3 Example algorithms

In the following, we demonstrate how clustering algo-
rithms are described with our building blocks. We tran-
scribe two prominent clustering algorithms: k-means [7]
and DBSCAN [6]. Both belong to different classes, with
k-means being part partitioning algorithm class and DB-
SCANbeing a density-basedmethod. Our descriptionswill
be kept brief due to page constraints. For more details,
please refer to [9].

K-means creates clusters based on a given number
of centroids by assigning points to their nearest centroid.
Its description in Algorithm 1 begins with the evaluation

phase where three matrix building blocks are placed: 𝑃
contains the data points, 𝑅𝑥 contains the 𝑘 initial cen-
troids, and 𝐷 contains the distances between 𝑃 and 𝑅𝑥.
The superscript of 𝑅𝑥 denotes that references will be up-
dated during iterations of the algorithm. The fourth block
is the euclidean distance, denoted as 𝑑𝑖𝑠𝑡.𝐿

2
, that calcu-

lates𝐷. The distancematrix𝐷 is passed on to the selection
phase, where it is traversed row-wise using a for-each loop
(3). Each row 𝑑

𝑖,∗
contains all distances between a point

𝑝
𝑖,∗

and 𝑅 and is subjected to a filter. In accordance with
the target function of k-means, this filter only keeps the
minimumelement 𝑑

𝑖𝑗
per row andmaps all other elements

to 0. At the end of the loop, the processed rows are re-
assembled into the filtered matrix𝐷𝐼(5), that is passed on
to the association phase. There, the assoc function gen-
erates the binary adjacency matrix 𝐴 (6). As k-means di-
rectly uses adjacencies as cluster assignments,𝐴 is simply
adopted as result 𝐶 (7).

Algorithm 1 k-means

1: repeat with 𝑅𝑥
phase Evaluation
2: 𝑑𝑖𝑠𝑡.𝐿

2
(𝑃, 𝑅
𝑥
) →𝐷

phase Selection
3: for each 𝑑

𝑖,∗
of𝐷 do

4: 𝑓𝑖𝑙𝑡𝑒𝑟(𝑑
𝑖,∗
, ⟨𝑑
𝑖𝑗
= 𝑚𝑖𝑛(𝑑

𝑖,∗
)⟩)

5: end for→𝐷
𝐼

phase Association
6: 𝑎𝑠𝑠𝑜𝑐(𝐷

𝐼
) →𝐴

7: 𝐴→𝐶

phase Optimization
8: 𝑢𝑝𝑑𝑡(𝐶

𝑇
, 𝑃)→ 𝑅

𝑥+1

9: until 𝑅𝑥 = 𝑅
𝑥+1 output→𝐶

With the core phases finished and a clustering result
generated, k-means enters its optimization phase. There,
centroids (references) are updated to the arithmetic aver-
age of all their assigned points and are passed on as refer-
ences to the next iteration. This update procedure is real-
izedwith thematrix-multiplication of𝐶 and𝑃. Binaryma-
trix 𝐶 contains all point-cluster assignments and has the
dimensions 𝑛 × 𝑘 with 𝑘 being the number of centroids.
As 𝑃 has the dimension 𝑛 × 𝑓, with 𝑛 being the number of
points and 𝑓 being the number of features of the dataset,
we have to transpose𝐶 to attain the required column-row-
match for multiplication. Multiplying 𝐶𝑇 and𝑃 creates an
updated version of𝑅𝑥 with the correct dimension of 𝑘×𝑓.
During matrix multiplication, each cluster represented by
a binary row of 𝐶𝑇 is used to select its assigned points

DE GRUYTER OLDENBOURG M. Hahmann et al., Big by blocks: modular analytics | 181

𝑝
∗,𝑗

from the dataset 𝑃. The selection is summed up and
divided by the number of cluster members, i.e., the sum
of binary 𝑐

𝑖,∗
. This realizes our desired update mechanism

𝑢𝑝𝑑𝑡() (8) which creates the centroids 𝑅𝑥+1 for the next
iteration. The core of k-means is surrounded by a repeat-
until loop that describes the iterative update of references
𝑅
𝑥 and stops when 𝑅𝑥 = 𝑅

𝑥+1
(9). That means, optimiza-

tion stops when the updated references no longer change.

DBSCAN defines clusters as dense regions separated
by regions of lower density. The algorithm uses two pa-
rameters 𝜀 and𝑚𝑖𝑛𝑃𝑡𝑠 to define a density threshold. With
𝜀 a neighborhood is defined around each point 𝑝. If this
neighborhood contains at least𝑚𝑖𝑛𝑃𝑡𝑠 additional points,
𝑝 is considered as member of a dense area, i.e., a cluster
and is named core-object. Sets of core-objects with over-
lapping 𝜀-neighborhoods are merged in order to create
clusters. This is done recursively, i.e., if 𝑝 is a core-object
eachmember of its 𝜀-neighborhood is checked for the den-
sity condition.

The transcribed version of DBSCAN is shown in Algo-
rithm 2. In contrast to k-means, DBSCANcalculates the dis-
tances between all points during evaluation, whichmeans
𝑅 = 𝑃. Selection traverses𝐷 row-wise and applies two fil-
ters. The first removes all distances that are bigger than
the 𝜀-neighborhood(3). The second filter utilizes sgn() to
check if the number of remaining points in the neighbor-
hood exceeds minPts (4).

Algorithm 2 DBSCAN

phase Evaluation
1: 𝑑𝑖𝑠𝑡.𝐿

2
(𝑃, 𝑃)→𝐷

phase Selection
2: for each 𝑑

𝑖,∗
of𝐷 do

3: 𝑓𝑖𝑙𝑡𝑒𝑟(𝑑
𝑖,∗
, ⟨𝑑
𝑖𝑗
< 𝜀⟩)

4: 𝑓𝑖𝑙𝑡𝑒𝑟(𝑑
𝐼

𝑖,∗
, ⟨∑

𝑛

𝑗=0
𝑠𝑔𝑛(𝑑

𝑖𝑗
) ≥ 𝑚𝑖𝑛𝑃𝑡𝑠⟩)

5: end for→𝐷
𝐼

phase Association
6: 𝑎𝑠𝑠𝑜𝑐(𝐷

𝐼
) →𝐴

7: 𝑚𝑒𝑟𝑔𝑒(𝐴)→𝐶

8: 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝐶) →𝐶
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

Following selection, association startswith theknown
application of 𝑎𝑠𝑠𝑜𝑐() (6). This time, 𝑎𝑠𝑠𝑜𝑐() does not
create final clusters, but associates each core-object with
the members of its 𝜀-neighborhood only. To determine
the final clusters, overlapping 𝜀-neighborhoods have to be
merged. As our building blocks do not support recursion
as proposed in [6], we use the 𝑚𝑒𝑟𝑔𝑒() function (7). It

uses a repeat-until loop to continuously multiply binary
𝐴
𝑥 with itself andmake the resulting𝐴𝑥+1 binary again. In

doing so, transitive cluster assignments are resolved and
adjacencies are made explicit, i.e., eachmember of a clus-
ter is associated with all other members. 𝑀𝑒𝑟𝑔𝑒() stops
when𝐴𝑥+1 does not change anymore. The resulting𝐶 con-
tains the final clusters but also duplicates due to𝑚𝑒𝑟𝑔𝑒(),
e.g., a cluster with 4members leads to 4 identical rows in
the binary matrix𝐶.

We apply the function distinct (8), that uses multi-
plications with binary matrices, filters and our loop con-
structs to select distinct clusters and eliminate their dupli-
cates, creating the final clustering𝐶

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
. Amore detailed

definition of this function is given in [9].

Summary: Our building blocks allow the systematic
description of arbitrary clustering algorithms. In order to
translate existingmethods into building blocks, theymust
be examined, decomposed, and re-thought. By following
this process understanding is improved as our proposed
base template and consistent building blocks offer struc-
ture and guidance. Furthermore, algorithms can be com-
pared in more detail by examining identical and dissimi-
lar buildingblocks in their descriptions. This also supports
the development of novel algorithms, as building blocks
can be easily re-combined. To illustrate this feature, we re-
gard our example clustering algorithms k-means and DB-
SCAN again. We described k-means as a partitioning algo-
rithm that assigns each point to its nearest reference. The
corresponding pairs are selected using a minimum filter.
While this keeps selection and association simple, it also
makes the algorithm susceptible to noise. K-means assigns
each point to a reference, and thus to a cluster, regard-
less of how far away it is from the references in general.
In doing so, outliers can compromise cluster homogene-
ity. To tackle this issue, selection must be expanded with
a filter that checks whether there are references in a cer-
tain neighborhood around a point. This functionality is al-
ready present in DBSCAN and can be added to the selec-
tion phase of k-means by simply placing the correspond-
ing building block. Just like this, design and adaptation of
algorithms becomes more agile and user-friendly.

3 Forecasting
Like with clustering, we first look for the essential concep-
tual components of forecasting to create a set of building
blocks for this domain. We start by examining the basic
idea of forecasting, which can be described as the process
of making predictions of the future based on the analysis

182 | M.Hahmann et al., Big by blocks: modular analytics DE GRUYTER OLDENBOURG

of historic and current data. For this, data is represented
as a sequence of values ordered by time (time series). In
more detail, forecasting analyses time series data in order
to create a model that represents the time series as close
as possible. An optimal fitting to the time series can be
achieved by adapting one of the different available mod-
els with individual sets of parameters. Fitting is generally
done iteratively by an optimizer that creates different pa-
rameterizations. For each set of parameters the fit between
model and time series is evaluated with an error measure.
When the best parameterization is found, themodel is exe-
cuted and extrapolates a forecasting value at a time stamp
in the future.

From this definition, we derive the essential steps and
components of a forecasting algorithms in Section 3.1, turn
them into a formalism for building blocks in Section 3.2,
and show algorithm examples in Section 3.3.

3.1 Base template

We derive the fundamental phases of forecasting as fol-
lows: First, the available data is analyzed and the parts
for modeling are selected. Second, the selected parts are
incorporated into a parameterized model that represents
the time series. Third, the model is fitted to the data us-
ing an optimization technique that creates sets of param-
eters and an error measure that evaluates their quality.
Finally, the fitted model is used to extrapolate a forecast
value. Unlike the phases of clustering, our four forecast-
ing phases are not independent and follow a less linear se-
quence of execution. Furthermore, they are more straight
forward and less complex. While each phase of clustering
cancontaindifferent kindsof buildingblocks, the forecast-
ing phases are very homogeneous and are quite similar to
building blocks themselves. In the following, we describe
each phase and its basic tasks. We ignore the fourth as it is
just plain application of the fitted model. Out of the three
remaining phases, the fitting phase is optional.

Window generation: During this first phase, the ex-
isting data of a time series is partitioned and extracted for
the forecast model. For this, data markers are defined that
we call windows. Windows can have different lengths, can
span one or more time series, can be overlapping or dis-
tinct, and can occur in different numbers. Furthermore,
their placement can be regular or irregular. All this infor-
mation is contained in a window definition that forms the
defining element of this phase. Window generation con-
tains all window definitions that are needed by the fore-
cast model.

Modeling: In this phase, the model for the represen-
tation of the time series is described. Equations and for-
mulas are the defining elements of modeling that incor-
porate data from the time series via the definitions from
window generation. Furthermore, the parameters for fit-
ting are added to the model. All equations are specified
such that the whole model outputs one result, the forecast
value.

Fitting: The fitting phase has two defining elements:
the optimizer and the error measure. Both are specified as
black box building blocks meaning that they are not mod-
ularly defined within the scope of forecasting but refer-
enced as closed operators. In order to realize such modu-
larity, additional specific sets of building blocks would be
required. The feasibility of such sets remains doubtful due
to the many degrees of freedom found in their definition.

3.2 Building blocks

Similar to clustering, we need formal elements to system-
atically describe the semantics of forecasting algorithms.
We regard time series data as an ordered sequence of val-
ues like an array or vector. Each value is referenced via its
time stamp resp. index. Parameters are denotedwith greek
letters. There are no specific control flow elements. We as-
sume that the fitting phase is executed iteratively inside
a repeat-until loop that stops when the optimal parame-
ters are found. In the following, we describe the building
blocks for the defining elements of forecasting.

Window definition: Each window is defined using
the following schema:

{ label(pnum, length, scope) ⋅ ⋅ ⋅ }# (offset, nwindows)

The part before the hashtag describes the window shape,
while the part after describes its number and placement.
More complex windows can be defined by adding multi-
ple shape descriptions in the curly braces. This canbe nec-
essary if different characteristics of the time series, e.g.,
a certain season and the near past, should be considered
in the model. Label is used to uniquely identify each win-
dow and reference it in the forecast model. Pnum defines
the number periods used by the window.When referenced
by the model, only the first value of the period is used.
For algorithms that work with a growing number of peri-
ods the marker 𝑔(𝑠) is used and indicates that the num-
ber of periods is constantly incremented by one. The ar-
gument 𝑠 specifies the initial number of periods. Length
defines how many time stamps are contained in one pe-
riod. In combination with pnum this is used to realize in-
tervals between considered values, e.g., for capturing sea-

DE GRUYTER OLDENBOURG M. Hahmann et al., Big by blocks: modular analytics | 183

sonal behavior. For illustration, regard the following ex-
amples assuming a monthly time granularity: To consider
the last three months pnum is 3 and length equals 1. To
consider the data for the current month in the last two
years, pnum becomes 2while length is set to 12. Scope de-
scribes how many times series a model considers and can
only have two values: 1 for a single time series or 𝑘 for a set
of 𝑘 time series. For sliding windows, offset defines how
many time stamps the window is moved, while nwindows
specifies the number ofwindows that are considered in the
model.

Model, optimizer, error measure: These building
blocks are straightforward equations and functions. As
a convention, the result of the forecastmodel, i.e., the fore-
cast value is denoted as ̂𝑥

𝑡+1
.

3.3 Example algorithms

In the following, we describe two example forecasting al-
gorithms with our building blocks. We start with an au-
toregressive integrated moving average (ARIMA)model [3],
which is one of themost common forecastingmodels. Sec-
ond, we describe the Holt-Winters algorithm [3] as an ex-
ample for exponential smoothing approaches.

ARIMA is exemplified, using the description of a non-
seasonal AR3 model, which represents a time series value
as the weighted sum of its 3 predecessors. For this, sliding
windows of respective width are generated over the time
series and optimization is used to find the three weights
𝛼
1
, 𝛼
2
, 𝛼
3
that represent the time series values as best as

possible. After this is done, the optimized weights are ap-
plied to the last three time series values to calculate the
forecast value ̂𝑥

𝑡+1
(2). This leads to the description in Al-

gorithm 3.

Algorithm 3 ARIMA - AR3

phase Window Generation
1: {𝑥(3, 1, 1)} # (1, |𝑡| − (3 ⋅ 1))
phase Modeling
2: ̂𝑥
𝑡+1

= 𝛼
1
𝑥
𝑡
+ 𝛼
2
𝑥
𝑡−1

+ 𝛼
3
𝑥
𝑡−2

phase Fitting
3: optimizer: NelderMead(𝛼

1
, 𝛼
2
, 𝛼
3
)

4: error measure: SSE()

Ourwindowdefinition (2) is illustrated in Figure 3 and
describes the necessary three periods of length 1 aswell as
the offset for the sliding window. The term |𝑡| − (3 ⋅ 1) de-
scribes the number of windows that are created, whereas
the number of available time stamps |𝑡| is reduced by the

Figure 3:Windows for AR3.

last window which is used for calculating the forecast
value. In the fitting phase, the downhill simplex method
NelderMead [12] is used for the optimization of 𝛼

1
, 𝛼
2
, and

𝛼
3
. Another common choice would be LBFGS [11]. For the

error measure we use the error-sum-of-squares SSE, which
is a common error measure that sums up the squared
differences between predicted values and observed val-
ues. Other examples of such measures are SMAPE and
RMSE [5].

Holt-Winters is also called triple exponential smooth-
ing and incorporates the time series, a trend component,
and a seasonality into the forecast. Seasonality is used
to describe a certain behavior of the time series that re-
peatedly occurs every 𝐿 periods. The basic working prin-
ciple of exponential smoothing is recursion. Simply put,
a smoothed value 𝑎∗

𝑡
is the weighted average of the current

time stamp 𝑎
𝑡
and the previous smoothed value 𝑎∗

𝑡−1
. With

Holt-Winters, this smoothing is applied to the observed
time series, a trend component defined as difference be-
tween subsequent time stamps, and a recurring season.
Each of these components has an individual smoothing
factor, all of which are subject to parameter optimization.
The forecasting value is calculated by applying the opti-
mized smoothingparameters to thewhole time series. This
leads to the description shown in Algorithm 4.

Algorithm 4 Holt-Winters

phase Window Generation
1: {𝑥(𝑔(𝐿), 1, 1)} # (0, |𝑡| − 𝐿)
phase Modeling
2: 𝑎
∗

𝑡
= 𝛼 ⋅

𝑥
𝑡

𝑐
∗

𝑡−𝐿

+ (1 − 𝛼) ⋅ (𝑎
∗

𝑡−1
+ 𝑏
∗

𝑡−1
)

3: 𝑏
∗

𝑡
= 𝛽 ⋅ (𝑎

∗

𝑡
− 𝑎
∗

𝑡−1
) + (1 − 𝛽) ⋅ (𝑏

∗

𝑡−1
)

4: 𝑐
∗

𝑡
= 𝛾 ⋅

𝑥
𝑡

𝑎
∗

𝑡

⋅ (1 − 𝛾) ⋅ (𝑐
∗

𝑡−𝐿
)

5: ̂𝑥
𝑡+1

= (𝑎
∗

𝑡
+ 𝑏
∗

𝑡
) ⋅ 𝑐
∗

𝑡

phase Fitting
6: optimizer: NelderMead(𝛼, 𝛽, 𝛾)
7: error measure: SSE()

184 | M. Hahmann et al., Big by blocks: modular analytics DE GRUYTER OLDENBOURG

Window definition is quite different from ARIMA due
to the recursive character of Holt-Winters that necessitates
the use of 𝑔(𝐿) to define a growing number of periods. 𝐿
defines the length of a season and must be used as initial
number of periods in order to provide seasonal informa-
tion from the beginning. No sliding window is used so the
offset is set to 0, while the number of windows results from
the incrementally growing periods. Modeling is quite com-
plex and contains the smoothing equations for time series
𝑎
∗

𝑡
, trend 𝑏∗

𝑡
, and season 𝑐∗

𝑡
as well as their respective pa-

rameters 𝛼, 𝛽, 𝛾. The last equation shows how the compo-
nents are combined to create the forecast value. The fitting
phase is the same as used in ARIMA.

Summary: While we introduced only autoregressive
methods as examples, i.e., methods that calculate a fore-
cast value as a function of its previous values, our building
blocks can also describe regressive approaches or meth-
ods based onmachine learning likeMARS [1] and SVR [14].
These methods generally take the whole time series into
account as one and then apply a single optimization to it.
For our descriptions, this means that window definition
uses 𝑝𝑛𝑢𝑚 = |𝑡| to encompass all data and optimization
functionality ismigrated into themodeling phase,making
fitting somewhat obsolete.

4 Perspectives
With our modular building blocks concept, we approach
Big Data analytics at a fundamental level. By offering
a structured and systematic way to describe analytic algo-
rithms we also change and improve how they are under-
stood. In addition to the offered utility of our concept for
describing, comparing, and organizing algorithms, it also
offers significant benefits for their adaption and design.
Due to the modularity of our approach, not only build-
ing blocks but also whole phases can be interchanged
and recombined to form new analytic algorithms. With
this, our approach realizes reusability in algorithm devel-
opment as each additional building block or phase pro-
vides new combination options. These different modular
algorithms, phases, and building blocks can be collected
and organized in extensive repositories. By adding perfor-
mancemeasures and case-based reasoning to these repos-
itories, recommenders for algorithm selection could be
developed.

We also see potential for cross-domain usage of our
building blocks as similarities can be found between clus-
tering an forecasting. Both domains show variations of
the basic pattern: evaluate data, asses elements, com-
bine certain elements, and optimize. This pattern has also

emerged in our ongoing development of building blocks
for compression algorithms. Cross-domain combination of
building blocks offers further interesting options for algo-
rithmdesign, e.g., putting window generation before eval-
uation in clustering could be used to create algorithms for
time series clustering.

Besides its descriptive potential, our building blocks
will also be used as the core of a system for developing
and running modular algorithms. For this, the analysis-
specific development environments like SystemML, we
mentioned in the introduction, seem to be a promising
startingpoint. Bydeveloping specific compilers, our build-
ing blocks can provide user-friendly frontends for design-
ing specific types of analysis techniques in these systems.
This allowsus to takeadvantageof assets like efficientdata
structures and optimizers, without giving up on high-level
algorithm specification. In addition, systems like Mahout-
Samsara [2] that offer optimized processing of matrices,
could be used to realize our building blocks for clus-
tering and ensure the efficient execution of modular al-
gorithms. Such a system setup would be similar to SQL
query processing with sets of logical building blocks that
aremapped toplatform-specific physical implementations
and a huge potential for application and optimization.

Acknowledgement: This work was, in part, funded by
the German Federal Ministry of Education and Research
(BMBF) in the context of the project “ScaDS – Compe-
tenceCenter for ScalableData Services andSolutionsDres-
den/Leipzig” (01IS14014A).

References
1. Jerome H. Friedman. Multivariate Adaptive Regression Splines.

The Annals of Statistics, 19(1):1–67, 1991.
2. Apache Mahout, http://mahout.apache.org.
3. J. Scott Armstrong. Principles of forecasting: A handbook for

researchers and practitioners. Kluwer Academic Publishers,
Norwell, 2001.

4. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R.
Gabriel, Tobias Kötter, Thorsten Meinl, Peter Ohl, Christoph
Sieb, Kilian Thiel, and Bernd Wiswedel. KNIME: The Konstanz
Information Miner. In Studies in Classification, Data Analysis,
and Knowledge Organization (GfKL 2007). Springer, 2007.

5. Zhuo Chen and Y Yang. Assessing forecast accuracy measures.
Technical report, 2004.

6. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spa-
tial databases with noise. In Proc. of KDD, 1996.

7. E. W. Forgy. Cluster analysis of multivariate data: Efficiency ver-
sus interpretability of classification. Biometrics, 21, 1965.

8. Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault,
Berthold Reinwald, Vikas Sindhwani, Shirish Tatikonda,

http://mahout.apache.org

DE GRUYTER OLDENBOURG M. Hahmann et al., Big by blocks: modular analytics | 185

Yuanyuan Tian, and Shivakumar Vaithyanathan. SystemML:
Declarative machine learning on mapreduce. In Proceedings of
the 2011 IEEE 27th International Conference on Data Engineering,
pages 231–242, Washington, DC, USA, 2011.

9. Martin Hahmann, Dirk Habich, and Wolfgang Lehner. Modu-
lar data clustering – algorithm design beyond mapreduce. In
Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Con-
ference (EDBT/ICDT 2014), Athens, Greece, March 28, 2014.,
pages 50–59, 2014.

10. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Comput. Surv., 31(3), 1999.

11. Dong C Liu and Jorge Nocedal. On the limited memory BFGS
method for large scale optimization.Mathematical program-
ming, 45:503–528, 1989.

12. J. A. Nelder and R. Mead. A simplex method for function mini-
mization. The computer journal, 7(4):308–313, 1965.

13. R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2008. ISBN 3-900051-07-0.

14. N. Sapankevych and Ravi Sankar. Time series prediction using
support vector machines: a survey. Computational Intelligence
Magazine, IEEE, 4(2):24–38, 2009.

Bionotes
Dr.-Ing. Martin Hahmann
Technische Universität Dresden, Dep. of Computer Science,
D-01062 Dresden, Germany
martin.hahmann@tu-dresden.de

Dr.-Ing. Martin Hahmann studied Computer Science at Technische
Universität Dresden. He finished his diploma in 2007 and received
his Phd in 2013. He is a member of the scientific staff of Prof. Dr.
Wolfgang Lehner and the Competence Center for Scalable Data
Services and Solutions. His research focuses on analytic processes,
clustering and visualization.

Claudio Hartmann
Technische Universität Dresden, Dep. of Computer Science,
Nöthnitzer Str. 46, D-01062 Dresden, Germany

Claudio Hartmann studied Computer Science at Technische Uni-
versität Dresden. He received his diploma in 2013. He is a member
of the scientific staff of Prof. Dr. Wolfgang Lehner. His research fo-
cuses on time series analysis and forecasting.

Lars Kegel
Technische Universität Dresden, Dep. of Computer Science,
Nöthnitzer Str. 46, D-01062 Dresden, Germany

Lars Kegel studied Computer Science at Technische Universität
Dresden where he received his diploma in 2014. He is a member
of the scientific staff of Prof. Dr. Wolfgang Lehner. His research
focuses on time series modeling and model maintenance.

Dr.-Ing. Dirk Habich
Technische Universität Dresden, Dep. of Computer Science,
Nöthnitzer Str. 46, D-01062 Dresden, Germany

Dr.-Ing. Dirk Habich studied Computer Science at the University
of Halle-Wittenberg where he received his diploma in 2006. He
received his Phd in 2008 from the Technische Universität Dresden,
where he is a member of the scientific staff of Prof. Dr. Wolfgang
Lehner. His research interest focuses on Database support for Data
Mining, in-memory databases, and modern system architectures.

Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden, Dep. of Computer Science,
Nöthnitzer Str. 46, D-01062 Dresden, Germany

Prof. Dr.-Ing. Wolfgang Lehner studied Computer Science at the Uni-
versity of Erlangen-Nürnberg where he also received his Phd and
habilitation. Since 2002 Wolfgang Lehner leads the Database Sys-
tems Group at Technische Universität Dresden. He has been a vis-
iting Researcher at multiple institutions including IBM Almaden,
Microsoft Research Redmond and SAP Walldorf. His work focuses
on real-time analysis in data-warehouse-systems, in-memory
databases for analytic and transactional query processing and
support for advanced analytics in databases.

	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Martin Hahmann, Claudio Hartmann, Lars Kegel, Dirk Habich, Wolfgang Lehner
	Big by blocks: modular analytics
	Lehner_Big by Blocks.pdf
	Big by blocks: modular analytics
	1 Introduction
	2 Clustering
	2.1 Base template
	2.2 Building blocks
	2.3 Example algorithms

	3 Forecasting
	3.1 Base template
	3.2 Building blocks
	3.3 Example algorithms

	4 Perspectives

