Dipyrazolylphosphanes in Condensation and $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ Bond Metathesis Reactions

DISSERTATION

zur Erlangung des akademischen Grades
Doctor rerum naturalium
(Dr. rer. nat.)
\title{ vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden }
von
M.Sc. Robin Schoemaker

geboren am 05.07.1991 in Nordhorn

Eingereicht am 09.06.2020
Verteidigt am 04.09.2020

Gutachter:
Prof. Dr. Jan J. Weigand
Prof. Dr. Christian Müller

Die Dissertation wurde in der Zeit von $11 / 2015$ bis $06 / 2020$ in der Professur für Anorganische Molekülchemie der Technischen Universität Dresden angefertigt.

Content

1. Introduction 3
1.1. Pyrazolyl-substituted Phosphanes - Synthesis and Application in Condensation Reactions 4
1.2. Pyrazolyl-substituted Phosphorus Compounds in Scrambling Reactions 7
1.3. Polyphosphanes in Methylation Reactions 12
1.4. Classification of Pyrazolylphosphanes 14
2. Objectives 16
3. Synthesis of Pyrazolylphosphanes 18
3.1. Synthesis of Type II Phosphanes 18
3.2. Synthesis of Pyrazolyl-substituted Phosphorus Chlorides 21
4. Reactivity of Type II Phosphanes towards Secondary Phosphanes 24
4.1. P-P Bond Formation via Condensation Reactions 24
4.2. Coinage Metal Complexes of Triphosphane 48 26
4.3. P-P Bond Formation via $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ Bond Metathesis Reactions 31
4.4. Methylation Reactions of Triphosphane 48 and $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ Bond Metathesis Reaction 35
5. 1,4,2-Diazaphospholium Triflates - Synthesis and Reactivity 41
5.1. One-Pot Synthesis of 1,4,2-Diazaphospholium Triflate Salts 43
5.2. Halogenation Reactions of $\mathbf{6 1}$ [OTf] 49
5.3. Substitution Reactions of $61{ }^{\mathrm{Cl}}[\mathrm{OTf}]$ 53
6. Dipyrazolylphosphanes in Condensation Reactions with Primary Phosphanes 57
6.1. Synthesis of Mixed-substituted Tetraphosphetanes 58
6.2. Coinage Metal Complexes of Tetraphosphetane $\mathbf{7 2}$ 60
6.3. Methylation Reactions of Tetraphosphetanes $\mathbf{7 1}$ and $\mathbf{7 2}$ 64
7. Gold Chloride induced Cleavage of $\mathrm{P}-\mathrm{P}$ Bonds 71
8. Reactivity studies of Pyridyl-substituted Polyphosphanes towards PdCl_{2} and PtCl_{2} 79
9. Oxidation of $\mathbf{4 8}$ and Subsequent Deprotonation Studies 86
10. Summary 91
11. Prospect 96
12. Experimental Details 99
12.1. Materials and Methods 99
12.2. Syntheses and Characterization Data regarding Compounds in Chapter 3 101
12.3. Syntheses and Characterization Data regarding Compounds in Chapter 4 113
12.4. Syntheses and Characterization Data regarding Compounds in Chapter 5 126
12.5. Syntheses and Characterization Data regarding Compounds in Chapter 6 139
12.6. Syntheses and Characterization Data regarding Compounds in Chapter 7 149
12.7. Syntheses and Characterization Data regarding Compounds in Chapter 8 151
12.8. Syntheses and Characterization Data regarding Compounds in Chapter 9 154
13. Crystallographic Details 156
14. Abbreviations 179
15. References 180
16. Acknowledgement 193
17. Publications and Conference Contributions 194
20.1. Peer Reviewed Publications 194
20.2. Oral presentations 194
20.3. Poster presentations 194

1. Introduction

Phosphorus plays a crucial role in modern p-block chemistry. ${ }^{1}$ One reason for that is the diagonal relationship between phosphorus and carbon. ${ }^{2}$ Comparable to carbon and its chemistry, phosphorus tends to form homoatomic bonds, which is explainable by the relatively high P-P single bond energy (ca. $200 \mathrm{~kJ} / \mathrm{mol}$). ${ }^{3}$ Thus, a plethora of polyphosphorus compounds are reported in the last decades comprising of fascinating bonding motifs ${ }^{4}$ and interesting applications in coordination ${ }^{5-7}$ and synthetic ${ }^{8-11}$ chemistry, as well as in ligand design. ${ }^{12,13} \mathrm{~A}$ crucial point in the chemistry of polyphosphanes is of course the formation of P-P bonds. Numerous synthetic procedures are established and reviewed including salt metathesis, ${ }^{4,14}$ dehalosilylation ${ }^{15}$ and dehalostannylation ${ }^{16}$ reactions, base promoted dehydrohalogenation reactions ${ }^{17}$ and dehydrogenative coupling reactions mediated by main group compounds ${ }^{18}$ or catalysis by transition metals. ${ }^{5,19}$ Moreover, dialkylamino-substituted phosphanes are used in condensation reactions to form $\mathrm{P}-\mathrm{P}$ bonds since the early 1960 's. Yet these reactions need elevated temperatures, somewhat limiting the formation of polyphosphorus compounds as stated by the few examples reported. ${ }^{17 d, 20}$ The application of pyrazolyl-substituted phosphanes in $\mathrm{P}-\mathrm{P}$ bond formation reactions is a relatively young field of research. ${ }^{21}$ Their synthesis and general chemical behavior as well as advantages in comparison to dialkylamino-substituted phosphanes is discussed in the following chapter.

1.1. Pyrazolyl-substituted Phosphanes - Synthesis and Application in Condensation Reactions

Following the pioneering work by the group of Peterson, ${ }^{22}$ mainly three synthetic pathways are established for the synthesis of pyrazolyl-substituted phosphanes. ${ }^{23}$ Reacting 3,5dimethylpyrazole (1) with phosphorus trichloride in the presence of triethylamine in THF gives the desired tris(3,5-dimethylpyrazolyl)phosphane (2) in 96% yield next to triethylammonium chloride (Scheme 1; I). ${ }^{23 a}$

Scheme 1. Synthetic procedures towards pyrazolyl-substituted phosphanes; i) $3 \mathrm{NEt}_{3},-3\left[\mathrm{HNEt}_{3}\right] \mathrm{Cl}$, THF, r.t., 96%; ii) -3 NaCl , THF, $66^{\circ} \mathrm{C}, 90 \%$; iii) $-3 \mathrm{Me}_{3} \mathrm{SiCl}$, neat, r.t., 98%.

Sterically encumbered pyrazolyl-substituted phosphanes are accessible via the reaction of phosphorus trichloride with sodium pyrazolide $\mathbf{3}$ as shown by the synthesis of tris(3,5-di-tert-butylpyrazolyl)phosphane (4) (Scheme 1, II). ${ }^{23 b}$ Another convenient way for the formation of $\mathbf{2}$ is the reaction of PCl_{3} with 3,5-dimethyl-1-(trimethylsilyl)-pyrazole (5a) (Scheme 1, III). ${ }^{22,23 \mathrm{~b}}$ The solvent free reaction gives $\mathbf{2}$ in essentially quantitative yields after stirring at ambient temperature and subsequent evaporation of the co-produced trimethylsilylchloride in vacuo.
All reported tripyrazolyl-substituted phosphanes are colorless solids that are prone to hydrolysis, but are stable when stored under dry, inert gas, such as N_{2} or Ar. ${ }^{23}$ The necessary exclusion of moisture when working with pyrazolyl-substituted phosphanes indicates their higher reactivity compared to dialkylamino-substituted phosphanes. The latter hydrolyze in
the presence of water only slowly, ${ }^{24}$ and even dialkylamino-substituted phosphanes which are stable towards water, methanol and ethanol are reported. ${ }^{25}$

Peterson and co-workers further investigated the protolysis of $\mathbf{6}$ with water or methanol and could proof that it readily gives $1 H$-pyrazole and diphenyl phosphinous acid or methyl diphenylphosphinite, respectively (Scheme 2). ${ }^{22 b}$

Scheme 2. Protolysis of $\mathbf{6}$ with either water or methanol.

Accordingly, the reaction of $\mathbf{6}$ with sodium methoxide yields methyl diphenylphosphinite and sodium pyrazol-1-ide. In a similar fashion, reacting 6 with phenyllitihum yields $\mathrm{Ph}_{3} \mathrm{P}$ and lithium pyrazol-1-ide. ${ }^{22 b}$ Such exchange reactions are also observed for $\mathbf{2}$ with Grignard reagents ($\mathrm{RMgX}, \mathrm{R}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) yielding the corresponding tertiary phosphanes PR_{3} (Scheme 3). ${ }^{26}$ The salt metathesis reactions are feasible due to interaction of the free lone pair of the pyrazolyl moiety and the Lewis acidic metal atom in lithium organyles or Grignard reagents (Scheme 3).

Scheme 3. Reaction of 2 with a Grignard reagent; $\mathrm{R}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$.

Even though this remarkable synthetic potential is known since the mid 1970 's, ${ }^{22}$ pyrazolylsubstituted phosphanes were mainly used for coordination chemistry, ${ }^{27}$ due to their structural resemblance with the famous pyrazolylborate ligands. ${ }^{28}$ Yet, in 2012 our group reported on the facile synthesis of a triphosphane and an iso-tetraphosphane from tripyrazolylphosphane 2. ${ }^{21 \mathrm{~b}}$ Reacting 2 with $\mathrm{Cy}_{2} \mathrm{PH}$ yields either triphosphane $\mathbf{7}$ or iso-tetraphosphane 8, depending on the stoichiometry applied (Scheme 4).

Scheme 4. Synthesis of triphosphane 7 and iso-tetraphosphane 8; i) $2 \mathrm{Cy}_{2} \mathrm{PH},-2 \mathbf{1 a}, \mathrm{MeCN}$, r.t., 91%; ii) 3 $\mathrm{Cy}_{2} \mathrm{PH},-3 \mathbf{1 a}, \mathrm{MeCN}$, r.t., $95 \%{ }^{21 \mathrm{~b}}$

This condensation reaction gives only dimethylpyrazole $\mathbf{1 a}$ as the side product. Since both polyphosphanes $\mathbf{7}$ and $\mathbf{8}$ precipitate from the reaction mixture, they are conveniently isolated by filtration in yields above 90%. It is important to note that iso-tetraphosphane $\mathbf{8}$ was previously synthesized by metathesis of $\mathrm{K}\left[\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ with 3 equivalents $\mathrm{Cy}_{2} \mathrm{PCl}$ in yields of only $10 \%,{ }^{29}$ which furthermore points out the practicability of $\mathrm{P}-\mathrm{P}$ bond formation using pyrazolyl-substituted phosphanes as $\left[\mathrm{P}_{1}\right]$-precursors.

1.2. Pyrazolyl-substituted Phosphorus Compounds in Scrambling Reactions

Scrambling reactions are fairly well known in polyphosphorus chemistry. ${ }^{4 a}$ Mixtures of cyclic polyphosphanes $(R P)_{n}(R=$ alkyl, aryl; $n=3-5)$, obtained e.g. from the reduction of dichlorophosphanes RPCl_{2}, often form the thermodynamically favored ring size via a so called scrambling. ${ }^{30}$ Such reactions are also observed for unsymmetrically substituted diphosphanes and triphosphanes, which are often in a state of equilibrium. ${ }^{31}$ These equilibria are controllable as shown by Mills and co-workers. ${ }^{31 \mathrm{f}}$ Mixing tetrakis(trifluormethyl)diphosphane (9) and tetramethyldiphosphane (10) yields the asymmetric diphosphane 11 (Scheme 5; I). This exchange reaction is best understood as a $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction, with an exchange of the different $\mathrm{R}_{2} \mathrm{P}$ moieties driven by their unequal Lewis basicity.

I

II

Scheme 5. Formation of $\mathbf{1 1}$ via $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}(\mathbf{I})$ and $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ (II) bond metathesis; i) $\mathrm{C}_{6} \mathrm{D}_{6}$, r.t..

In the same contribution Mills et al. reported the formation of $\mathbf{1 1}$ which can be understood as a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis from $\mathbf{9}$ and dimethylamino-substituted phosphane $\mathbf{1 2}$ (Scheme 5; II). A similar exchange is observed in the reaction of $\mathbf{9}$ and $\mathrm{Me}_{2} \mathrm{As}-\mathrm{AsMe}_{2}{ }^{31 \mathrm{f}}$ This motivates to further research on controlled scrambling reactions within polypnictogen based derivatives and especially encourages the research on nitrogen-substituted phosphanes in that matter.

During the last years, pyrazolyl-substituted phosphorus compounds were shown to be very interesting starting materials for the synthesis of polyphosphorus compounds. ${ }^{32,33}$ Reacting the pyrazolyl-based diphosphorus trication $\mathbf{1 4 [O T f}]_{3}$ with a secondary phosphane such as $\mathrm{Cy}_{2} \mathrm{PH}$, gives bicyclic polyphosphorus compound $\mathbf{1 5}[\mathrm{OTf}]$ and $\left.\mathbf{1 6 [O T f}\right]$ (Scheme 6). ${ }^{32}$

Scheme 6. Reaction of $\mathbf{1 4}[\mathrm{OTf}]_{3}$ with $\mathrm{Cy}_{2} \mathrm{PH}$; i) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-\mathbf{1 7}[\mathrm{OTf}]$ (3,5-dimethylpyrazolium triflate), -1a, r.t., $45 \% 15[\mathrm{OTf}], 54 \% 16[\mathrm{OTf}] .{ }^{32}$

The formation of $\mathbf{1 5}[\mathrm{OTf}]$ was investigated by reacting $\mathbf{1 4 [O T f}]_{3}$ with various amounts of $\mathrm{Cy}_{2} \mathrm{PH}$ and subsequent multinuclear NMR spectroscopic studies. This revealed the formation of tetraphosphorus cation $\mathbf{2 2}^{+}$, which was isolated and fully characterized as its triflate salt. The formation of $\mathbf{2 2}^{+}$can be understood as a series of subsequent substitution steps, followed by a base-induced reduction (Scheme 7).

Scheme 7. Proposed mechanism for the stepwise formation of $\mathbf{2 2}^{+} .{ }^{32}$

In step one the intermediates $\mathbf{1 8}^{+}$and $\mathbf{1 9}^{2+}$ are formed via a protolysis reaction of $\mathbf{1 4}^{3+}$ and $\mathrm{Cy}_{2} \mathrm{PH} . \mathbf{1 8}^{+}$reacts than with $\mathbf{1 9}^{2+}$ by substituting one pyrazoliumyl moiety forming intermediate $\mathbf{2 0}^{+}$and $\mathbf{1 7}^{+}$after deprotonation (step 2). In a similar intramolecular substitution cation $\mathbf{2 0}^{2+}$ rearranges to $\mathbf{2 1}^{+}$(step 3), displayed by two resonance structures $\mathbf{2 1 a}^{+}$and $\mathbf{2 1 b}{ }^{+}$. Presence of $\mathbf{1 a}$ enables a base-induced redox reaction, rationalising formation of $\mathbf{2 2}^{+}$under release of $\mathbf{1 6}^{+}$(step 4). Cation $\mathbf{2 2}^{+}$is proven to be an intermediate in the formation of $\mathbf{1 5}$ [OTf] via a test reaction of $\mathbf{2 2}$ [OTf] with 0.5 equivalents of $\mathrm{Cy}_{2} \mathrm{PH}$. Formation of $\mathbf{2 3}$ is proposed by protolysis reaction of $\mathbf{2 2}{ }^{+}$with a secondary phosphane. By a nucleophilic attack of $\mathbf{2 3}$ on $\mathbf{2 2}^{+}$, formation of cation $\mathbf{1 5}^{+}$is initiated according to Scheme 8.

Scheme 8. Plausible mechanism for the formation of $\mathbf{1 5}^{+} .32$

Due to the nucleophilic attack of $\mathbf{2 3}$ on $\mathbf{2 2}^{+}$, intermediate $\mathbf{2 4}^{+}$is formed, which rearranges to $\mathbf{2 5}^{+}$via an intramolecular nucleophilic substitution. $\mathbf{2 5}^{+}$undergoes a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ metathesis to form $\mathbf{2 7}^{+}$under concomitant liberation of 1-(dicyclohexylphosphaneyl)-3,5-dimethyl-1 H pyrazole (26). Cation $\mathbf{2 7}^{+}$finally rearranges to $\mathbf{1 5}^{+}$, thus, the whole process is considered a $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis.

In total, eight $\mathrm{P}-\mathrm{P}$ bonds are formed from pyrazolyl-substituted phosphorus trication $\mathbf{1 4}^{3+}$ via a series of protolysis and base induced $\mathrm{P}-\mathrm{P}$ coupling reactions. The synthesis of $\mathbf{1 5}$ [OTf] is an example of the reactivity of pyrazolyl-stabilized phosphorus cations. Moreover, also neutral pyrazolyl-substituted phosphorus species were reported in the synthesis of polyphosphorus compounds. ${ }^{33}$

While tripyrazolylphosphane 2 reacts with secondary phosphane $\mathrm{Cy}_{2} \mathrm{PH}$ by means of a condensation reaction und release of $\mathbf{1 a}$ (vide supra), the reaction with the phosphane bis(phenylphosphaneyl)ethane yields hexaphosphane 28 and pyrazolylphosphane 29 (Scheme 9). ${ }^{33}$

Scheme 9. Synthesis of 28; i) - 10 1a, MeCN, r.t., $58 \% .{ }^{33}$

The formation of $\mathbf{1 a}$ indicates a protolysis reaction, while formation of the $\mathrm{P}-\mathrm{N}$ bonds in $\mathbf{2 9}$ and the central $\mathrm{P}-\mathrm{P}$ bond in $\mathbf{2 8}$ is a result of a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis. Thus, stepwise protolysis of 2 with bis(phenylphosphaneyl)ethane and subsequent $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis were assumed. This was verified by multinuclear NMR spectroscopic investigations.

III

Scheme 10. Formation of hexaphosphane 28 via three $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis steps; i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t..

Octaphosphane $\mathbf{3 0}$ is formed via condensation reaction of $\mathbf{2}$ and bis(phenylphosphaneyl)ethane in a $2: 3$ ratio under concomitant release of six equivalents 1a. 30 is then reacting with another equivalent of 2 forming three equivalents of triphospholane 31 via $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction (Scheme 10; I).

Triphospholane $\mathbf{3 1}$ reacts then with another equivalent of $\mathbf{3 0}$ yielding hexaphosphane $\mathbf{2 8}$ next to pyrazolyl-substituted pentaphosphane 32 (Scheme 10; II). The latter was observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy as a pair of diastereomers by two AMXYZ spin systems. $\mathbf{3 2}$ reacts with
another equivalent of triphospholane 31, exchanging another triphospholaneyl moiety for a pyrazolyl moiety. This final step yields another equivalent hexaphosphane $\mathbf{2 8}$ next to the side product 29 (Scheme 10, III). The synthesis of 28 starting from the [P_{1}]-building block 2 constitutes a novel synthetic approach towards P-P bond formation from conveniently accessible pyrazolyl-substituted phosphanes.

1.3. Polyphosphanes in Methylation Reactions

Interesting methylation reactions of polyphosphorus compounds with MeOTf were reported by Schmutzler and co-workers. They methylated dimethylurea bridged P_{2} compounds and characterized the products crystallographically. ${ }^{34}$ With a special interest in catenated polyphosphorus cations, Burford and co-workers investigated the methylation of diphosphanes and cyclo-polyphosphanes $\left((\mathrm{RP})_{\mathrm{n}} \mathrm{R}=\right.$ alky, aryl; $\left.\mathrm{n}=3-5\right)$, thus, a plethora of cationic polyphosphorus salts with intriguing structural motifs resulted. ${ }^{35}$ This led to examples intriguingly illustrating the diagonal relationship of phosphorus and carbon, like the hexamethyldiphosphanediium dication, resembling the phosphorus analogue of ethane. ${ }^{35 \mathrm{e}}$ Moreover, methylation of polyphosphanes has a tremendous impact on the reactivity of these compounds. Methylation of diphosphanes, for example, cause lower energies for the heterolytic cleavage of the $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$bond compared to neutral diphosphanes, as theoretical studies performed on diphosphane-1-ium cations indicate. ${ }^{36}$ These theoretical studies help to understand the reactivity of $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$bonds, which are conveniently obtained via methylation of polyphosphanes. Burford and co-workers further studied methylation reactions of cyclo-polyphosphanes and their reactivity. ${ }^{35}$

Scheme 11. Methylation of $(\mathrm{CyP})_{4}$ and phosphenium abstraction of $\mathbf{3 3}[\mathrm{OTf}]$; i) 1.5 eq. $\mathrm{MeOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 43%; ii) excess MeOTf, neat, r.t.; iii) 1.2 eq. $\mathrm{PMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $43 \%(\mathrm{CyP})_{3}$.

Treatment of $(\mathrm{CyP})_{4}$ with an excess MeOTf initially yields tetraphosphetanium triflate $\mathbf{3 3}$ [OTf], while further stirring for 17 h yields tetraphosphetandiium 34[OTf] ${ }_{2}$ (Scheme 11). ${ }^{35 \mathrm{c}}$ Further treatment of tetraphosphetanium triflate $\mathbf{3 3}[\mathrm{OTf}]$ with PMe_{3} yields tricylcohexyltriphosphirane and diphosphane-1-ium cation $\mathbf{3 5}^{+}$by an phosphenium abstraction reaction. ${ }^{35 a, d} \mathrm{As}(\mathrm{CyP})_{4}$ and PMe_{3} do not react with each other, the posphenium abstraction becomes only feasible after methylation of $(\mathrm{CyP})_{4}$ and, thus, causing a higher Lewis acidity
of the so generated λ^{4}-phosphorus atom. The same applies for the reactivity of $\left({ }^{(} \mathrm{BuP}\right)_{3}$ and PMe_{3}. Only the methylated triphosphiranium triflate salt $\mathbf{3 6}[\mathrm{OTf}]$ reacts with PMe_{3} (Scheme 12; I), yielding acyclic tetraphosphanium triflate salt $\mathbf{3 7 [O T f}] .{ }^{37}$ This nucleophilic ring opening reaction is discussed to resemble structurally and mechanistically the ring opening of an epoxide. ${ }^{37}$

Scheme 12. Synthesis of triphosphiranium triflate $\mathbf{3 6}[\mathrm{OTf}]$ and subsequent reaction to tetraphosphanium triflate $\mathbf{3 7}[\mathrm{OTf}]$ (top) or $\mathbf{3 8}[\mathrm{OTf}]$ (bottom); i) 2 eq. MeOTf, PhF , r.t., 87%; ii) 1.2 eq. $\mathrm{PMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 75%; iii) excess MeCN, $80^{\circ} \mathrm{C}, 88 \%$.

Refluxing 36[OTf] in MeCN yields azatriphospholium triflate salt 38[OTf] (Scheme 12; II). The formation of $\mathbf{3 8}[\mathrm{OTf}]$ is proposed via a sequential ring-opening/ring-closing mechanism with MeCN as the nucleophile. ${ }^{38}$ While $\left({ }^{(} \mathrm{BuP}\right)_{3}$ is stable in refluxing MeCN for $24 \mathrm{~h},{ }^{39} \mathrm{a}$ solution of $\left({ }^{\prime} \mathrm{BuP}\right)_{3}$ in PhF undergoes conversion to $\left({ }^{(} \mathrm{BuP}\right)_{4}$ in the presence of one equivalent of $\mathrm{Me}_{3} \mathrm{SiOTf}_{\mathrm{Si}}$ at ambient temperature over the course of $72 \mathrm{~h} .{ }^{40}$

Scheme 13. Lewis acid induced ring-opening/ring-closing reaction of ($\left.{ }^{t} \mathrm{BuP}\right)_{3}$; i) $15 \mathrm{~mol} \%$ Lewis acid, $\mathrm{MeCN} / \mathrm{PhMe}(1: 1), 9{ }^{\circ} \mathrm{C}$.

Furthermore, reacting $\left({ }^{t} \mathrm{BuP}\right)_{3}$ in a $1: 1$ mixture of MeCN and PhMe with catalytic amounts of a Lewis acid yields mixtures of azatriphospholane 39 and ($\left.{ }^{(} \mathrm{BuP}\right)_{4}$ with a ratio dependent on the Lewis acid used (Scheme 13). ${ }^{39}$ This $\mathrm{P}-\mathrm{P}$ bond association and dissociation behaviour of polyphosphorus compounds assisted by Lewis acids is of special interest with a regard to $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis (vide infra).

1.4. Classification of Pyrazolylphosphanes

In our effort to further control the aforementioned metathesis (vide supra) and driven by our general interest in azole- and azine-substituted phosphanes, our research group envisioned the synthesis of pyrazolyl-substituted phosphanes with additional substituents bound to phosphorus via the carbon atom. This limits the number of $\mathrm{P}-\mathrm{N}$ bound pyrazolyl-substituents and, therefore, the possible reaction pathways by $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis. For a better overview and in thought of a systematic approach, Chart 1 organizes the general types of phosphanes with respect to their number of $\mathrm{P}-\mathrm{N}$ bound substituents as $\boldsymbol{S y n} \boldsymbol{P}$ hos ${ }^{\text {a }}$ type I to type IV phosphanes.

Chart 1. Classification of N-heterocyclic-substituted phosphanes in type I to IV phosphanes (n is the number of $\mathrm{P}-\mathrm{N}$ bonds) and one example each for a $\mathrm{P}-\mathrm{N}$ bound substituent and a $\mathrm{P}-\mathrm{C}$ bound substituent.

Whereas in type I phosphanes all three substituents are bound via $\mathrm{P}-\mathrm{N}$ bonds, type II phosphanes are defined by two $\mathrm{P}-\mathrm{N}$ bonds and one $\mathrm{P}-\mathrm{C}$ bond. This order is maintained in type III phosphanes with one $\mathrm{P}-\mathrm{N}$ and two $\mathrm{P}-\mathrm{C}$ bonds and is finalized in type IV phosphanes featuring only $\mathrm{P}-\mathrm{C}$ bonds. Importantly, all substituents at the phosphorus atom exhibit an additional sp^{2} hybridized donor atom such as nitrogen, being essential as further reaction or coordination site and for the possible formation of resonance stabilized reaction intermediates. First results in the synthesis of type II phosphanes are reported in my master thesis. ${ }^{41}$ Starting with a new, salt-free synthesis of 2-pyridyl-dichlorophosphane 40 on a multi-gram scale, type II phosphanes 41a-f are conveniently prepared by the reaction of $\mathbf{4 0}$ with trimethylsilyl-substituted phosphanes 5a-f as mentioned before (Scheme 14). ${ }^{22,41,42}$

[^0]

Scheme 14. Synthesis of type II phosphanes 41a-f starting from 2-(trimethylsilyl)pyridine; i) 3 eq. PCl_{3}, $\mathrm{Me}_{3} \mathrm{SiCl}, 7{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 81 \%$; ii) 2.1 eq. 5a-f, $-2 \mathrm{Me}_{3} \mathrm{SiCl}$, r.t., $16 \mathrm{~h}, 97 \%\left(5 a / 41 \mathrm{a} \mathrm{R}=\mathrm{R}{ }^{\prime}=\mathrm{Me}\right), 64 \%(\mathbf{5 b} / \mathbf{4 1 b}$ $\left.\mathrm{R}=\mathrm{R}^{\prime}={ }^{i} \mathrm{Pr}\right), 67 \%\left(\mathbf{5 c} / \mathbf{4 1 c} \mathrm{R}=\mathrm{R}^{\prime}={ }^{t} \mathrm{Bu}\right), 91 \%\left(\mathbf{5 d} / \mathbf{4 1 d} \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ used as solvent), 71\% (5e/41e $\left.\mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{H}\right), 89 \%\left(\mathbf{5 f} / \mathbf{4 1 f} \mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{Me}\right)$.

Refluxing 2-(trimethylsilyl)-pyridine in a threefold excess of PCl_{3} gives 40 in good yields on a multi-gram scale. Further reaction with two equivalents of 5a-f yields type II phosphanes 41a-f (Scheme 14).

The thus synthesized phosphanes 41a-f have neither been characterized by X-ray analysis nor have they been studied in $\mathrm{P}-\mathrm{P}$ bond formation reactions. This is one objective of this work.

2. Objectives

The objective of this work is to explore new synthetic routes towards polyphosphanes via condensation and $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis of the aforementioned $S y \mathrm{y}$ Phos type II phosphanes. In the master thesis, the synthesis of 41a-f is described by reacting 2-(pyridyl)dichlorophosphane (40) with the corresponding 1-(trimethylsilyl)-pyrazoles 5a-f (vide supra). Next to synthesizing type II phosphanes with different $\mathrm{P}-\mathrm{C}$ bound heterocycles, especially the reactivity of type II phosphanes towards primary and secondary phosphanes is targeted, establishing the $\boldsymbol{S y n} \boldsymbol{P h o s}$ type II phosphanes as suitable $[\mathrm{R}-\mathrm{P}]$ building blocks in polyphosphorus chemistry (Chart 2).

Chart 2. $\boldsymbol{S y n}$ Phos type II phosphanes as [R-P] building blocks in condensation and $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reactions; $\mathrm{R}=$ pyridyl; R' = alkyl, aryl.

Similar to the synthesis of $\mathbf{7}$ and $\mathbf{8}, S \mathrm{yn} \mathbf{P h o s}$ type II phosphanes should allow for the stepwise substitution of the pyrazolyl moieties by dialkyl- or diarylphosphaneyl groups yielding diand triphosphanes. Furthermore, the type II phosphanes should serve as excellent educts in the synthesis of cyclo-phosphanes. Either in condensation reactions with primary phosphanes or in P-N/P-P bond metathesis reactions. Thus, the already known $\boldsymbol{S y n} \boldsymbol{P h o s}$ type II phosphanes 41a-f should conveniently enabe the introduction of pyridyl-substituents into polyphosphorus chemistry. Therefore, not only their synthesis is envisioned, but also the exploration of their chemistry.

Chart 3. Envisioned pyridyl-substituted triphosphane, bearing hard and soft Lewis basic sites.

Chart 3 exemplarily shows a pyridyl-substituted triphosphane, which should be accessible in analogy to triphosphane 7 (vide supra). Bearing multiple different Lewis basic sites, reactions with various electrophiles are a promising way to understand the chemical behavior of pyridyl-substituted polyphosphanes. This may be achieved by the reaction with the strong alkylation reagent MeOTf, envisioning a convenient way towards multiply-charged, highly reactive polyphosphorus cations. Next to methylation reactions, the coordination chemistry of pyridyl-substituted polyphosphanes is of interest. While phosphaneyl moieties for example are rather soft donors according to the HSAB concept, the pyridyl-substituent bears a harder donor site. This is best studied by coordination with selected coinage metal salts.

3. Synthesis of Pyrazolylphosphanes

3.1. Synthesis of Type II Phosphanes

To further extend the library of type II phosphanes 2-benzo[d]thiazolyl-dichlorophosphane 42 was synthesized and reacted with trimethylsilyl-substituted pyrazoles $\mathbf{5}$ in the same manner as mentioned before yielding type II phosphanes 43 (Scheme 15). ${ }^{43}$

Scheme 15. Synthesis of type II phosphanes 43a,b,d-f starting from 2-(trimethylsilyl)benzo[d]thiazole; i) 3 eq. $\mathrm{PCl}_{3},-\mathrm{Me}_{3} \mathrm{SiCl}, 7{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 67 \%$; ii) 2.1 eq. 5, $-2 \mathrm{Me}_{3} \mathrm{SiCl}, 96 \%\left(5 \mathbf{a} / \mathbf{4 3 a} \mathrm{R}=\mathrm{R}{ }^{\prime}=\mathrm{Me}\right), 85 \%(\mathbf{5 b} / \mathbf{4 1 b} \mathrm{R}=\mathrm{R}$ ' $\left.={ }^{i} \mathrm{Pr}\right), 73 \%\left(\mathbf{5 d} / \mathbf{4 3 d} \mathrm{R}=\mathrm{R}{ }^{\prime}=\mathrm{Ph}\right), 51 \%\left(5 \mathrm{e} / \mathbf{4 3 e} \mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}{ }^{\prime}=\mathrm{H}\right), 58 \%\left(\mathbf{5 f} / \mathbf{4 3 f} \mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}{ }^{\prime}=\mathrm{Me}\right)$.

Refluxing 2-(trimethylsilyl)-benzo[d]thiazole in a threefold excess of PCl_{3} gives an orange residue after evaporation off all volatiles in vacuo. From this residue $\mathbf{4 2}$ is obtained via sublimation as a colorless, crystalline solid in good yields of 67%. As $\mathbf{4 2}$ is a solid it is dissolved in $\mathrm{Et}_{2} \mathrm{O}$ before addition of $\mathbf{5}$ yielding phosphanes $\mathbf{4 3}$ in yields up to 96%. Each type II phosphane $\mathbf{4 3}$ shows a singlet resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum in the range of $\delta\left({ }^{31} \mathrm{P}\right)=38.0-54.1 \mathrm{ppm}$. Together with pyridyl-substituted phosphanes 41 a small library of eleven type II phosphanes is available which are fully characterized. The structural connectivity is confirmed for all eleven type II phosphanes by X-ray analysis. Suitable crystals can be obtained either by addition of n-pentane to saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the phosphane (41a, 41d, 41f, 43a, 43b, 43d) or by cooling a saturated solution of the phosphane in $\mathrm{Et}_{2} \mathrm{O}(\mathbf{4 3 e}, 43 f)$ or n-hexane (41b, 41c, 41e) from room temperature to $-30^{\circ} \mathrm{C}$. The molecular structures are depicted in Figure 1, with the geometrical parameters given in Table 1. All depiced phosphanes $\mathbf{4 1}$ and $\mathbf{4 3}$ show the typical pyramidal geometry of the phosphorus atom, known for $\mathrm{P}(\mathrm{III})$ compounds. The $\mathrm{P}-\mathrm{C}$ bond lengths of 41 (see Table 1) are comparable to the $\mathrm{P}-\mathrm{C}$ bond lengths reported for tris(2-pyridyl)phosphane (1.824(3)$1.834(3) \AA)^{44}$ and the $\mathrm{P}-\mathrm{C}$ bonds in $\mathbf{4 3}$ (see Table 1) are comparable to those in tris(2benzothiazolyl)phosphane ($\mathrm{P}-\mathrm{C} 1.820(2) \AA$). ${ }^{45}$ The $\mathrm{P}-\mathrm{N}$ bonds in $\mathbf{4 1}$ and 43 are slightly elongated compared to the $\mathrm{P}-\mathrm{N}$ bonds reported for tri(1H-pyrazol-1-yl)phosphane ($\mathrm{P}-\mathrm{N}$
$1.714(4) \AA) .{ }^{46}$ This might be caused by the $\mathrm{P}-\mathrm{C}$ bound aromatic substituent and its positive inductive effect.

41a

41e
41f

Figure 1. Molecular structures of type II phosphanes 41 and 43 (hydrogen atoms and solvate $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathbf{4 3 b} * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are omitted for clarity and thermal ellipsoids are displayed at 50% probability). Selected geometrical parameters are given in Table 1.

Table 1. Selected geometrical parameters of crystallographically characterized type II phosphanes 41 and 43.

	$\mathrm{P}-\mathrm{C}$ in \AA	$\mathrm{P}-\mathrm{N}$ in \AA^{a}	C-P-N in ${ }^{\text {oa }}$	$\mathrm{N}-\mathrm{P}-\mathrm{N}$
41a	$1.827(1)$	1.72	100.7	$103.26(5)$
41b	$1.829(1)$	1.73	101.4	$104.14(5)$
41c	$1.841(4)$	1.74	98.2	$100.29(6)$
41d	$1.830(1)$	1.74	101.2	$100.88(5)$
41e	$1.838(3)$	1.73	99.5	$100.7(1)$
41f	$1.824(1)$	1.73	101.3	$100.90(5)$
43a	$1.829(2)$	$1.719(1)^{\mathrm{b}}$	$101.26(5)^{\mathrm{b}}$	$103.84(7)$
43b	$1.822(9)$	$1.717(5)^{\mathrm{b}}$	$101.9(3)^{\mathrm{b}}$	$105.0(4)$
43d	$1.823(1)$	1.73	100.1	$101.85(6)$
43e	$1.832(2)$	1.73	98.8	$100.76(10)$
43f	$1.824(2)$	1.73	101.5	$100.26(6)$

a) Average bond lengths and angles are given; b) exact values due to symmetry.

3.2. Synthesis of Pyrazolyl-substituted Phosphorus Chlorides

Peterson and co-workers not only investigated on tripyrazolylphosphanes like 2 but also reported the synthesis of 1-(dichlorophosphaneyl)-3,5-dimethylpyrazole in 98% yield from 5 a and $\mathrm{PCl}_{3 .}{ }^{22}$ The product was solely characterized by mass spectrometry and the synthesis is not reproducible in our laboratories. Yet, changing the substituents on the pyrazole in 3,5position allows the synthesis of pyrazolyl-substituted chlorophosphanes. Reacting 5c and PCl_{3} yields pyrazolyldichlorophosphane $\mathbf{4 4}$ or dipyrazolylchlorophosphane $\mathbf{4 5}$ depending on the stoichiometry applied (Scheme 16; I).

Scheme 16. Synthesis of pyrazolylchlorophosphanes 44-47; i) $n=2, m=1,-\mathrm{Me}_{3} \mathrm{SiCl}$; ii) $\mathrm{n}=1, \mathrm{~m}=2,-2$ $\mathrm{Me}_{3} \mathrm{SiCl}$; iii) $-\mathrm{Me}_{3} \mathrm{SiCl}$, n-pentane.

Both phosphanes $\mathbf{4 4}$ and $\mathbf{4 5}$ are isolated as colorless solids after evaporation of all volatiles in vacuo in essentially quantitative yields on a multi-gram scale and show a singlet resonance each in the ${ }^{31} \mathrm{P}$ NMR spectrum $44: \delta\left({ }^{31} \mathrm{P}\right)=148.5 \mathrm{ppm}, 45: \delta\left({ }^{31} \mathrm{P}\right)=106.4 \mathrm{ppm}$. Moreover, one chloro-substituent of dichlorophosphanes $\mathbf{4 0}$ and $\mathbf{4 2}$ can be selectively exchanged with a pyrazolyl moiety by the reaction with $\mathbf{5 a}$ (Scheme 16; II). Reacting either $\mathbf{4 0}$ or $\mathbf{4 2}$ with one equivalent 5a in n-pentane gives a colorless precipitate of pyrazolyl-chlorophosphane 46 or $\mathbf{4 7}$ in very good yields of 84% and 95%, respectively. These phosphanes also show a singlet resonance each in the ${ }^{31} \mathrm{P}$ NMR spectrum 46: $\delta(\mathrm{P})=80.1 \mathrm{ppm}$ and $47: \delta(\mathrm{P})=76.1$ ppm. Crystals of 44-47 suitable for X-ray analysis are obtained by slow vapor diffusion of n-pentane into saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of each phosphane. The molecular structures are depicted in Figure 2.

Figure 2. Molecular structures of 44 (top left), 45 (top right), 46 (bottom left) and 47 (bottom right; hydrogen atoms are omitted for clarity and thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 44: $\mathrm{P} 1-\mathrm{Cl} 12.0577(11), \mathrm{P}-\mathrm{Cl} 22.0435(10), \mathrm{P} 1-\mathrm{N} 21.703(2)$, N1-P1-Cl1 100.50(9), Cl1-P1-Cl2 99.43(4), Cl2-P1-N1 99.75(8); 45: P1-Cl1 2.0633(4), P1-N1 1.7175(9), P1-N2 1.7183(10), Cl1-P1N1 98.67(3), N1-P1-N2 101.22(4), N2-P1-Cl1 101.40(4); 46: P1-Cl1 2.0728(5), P1-C1 1.8352(14), P1-N1 1.7155(12), Cl1-P1-C1 99.80(5), C1-P1-N1 99.62(6), N1-P1-Cl1 101.06(4); 47: P1-Cl1 2.0839(6), P1-C1 1.8227(17), P1-N1 1.7179(14), Cl1-P1-C1 98.37(7), C1-P1-N1 97.93(7), N1-P1-Cl1 100.51(5).

All four phosphanes show the pyramidal geometry expected for a P(III) compound. Due to a positive mesomeric effect of the pyrazole moieties on the phosphorus, the $\mathrm{P}-\mathrm{Cl}$ bonds in phosphanes $44(2.0577(11) \AA)$ and $45(2.0633(4) \AA)$ are slightly elongated compared to the $\mathrm{P}-\mathrm{Cl}$ bond length in $\mathrm{PCl}_{3}\left(2.043(3) \AA \AA^{47} \mathrm{An}\right.$ additional inductive effect of the $\mathrm{P}-\mathrm{C}$ bound aromatic substituents leads to a further elongation of the $\mathrm{P}-\mathrm{Cl}$ bonds in $\mathbf{4 6}(2.0728(5) \AA)$ and 47 (2.0839(6) \AA). The $\mathrm{P}-\mathrm{N}$ bond in 44 (1.703(2) \AA) is shortened compared to the $\mathrm{P}-\mathrm{N}$ bonds in 45 (1.7175(9) and $1.7183(10) \AA), 46$ (1.7155(12) $\AA), 47(1.7179(14) \AA)$ and tri($1 \mathrm{H}-$ pyrazol-1-yl)phosphane ($\mathrm{P}-\mathrm{N} 1.714(4) \AA$). ${ }^{46}$ This is best explained due to the presence of two instead of one electron withdrawing chloride-substituent in 44 . The $\mathrm{P}-\mathrm{C}$ bonds in 46 $(1.8352(14) \AA)$ and $\mathbf{4 7}(1.8227(17) \AA)$ are comparable to $\mathbf{4 1 a}(1.827(1) \AA)$ and $\mathbf{4 3 a}$ (1.829(2) A).

Figure 3. ${ }^{31} \mathrm{P}$ NMR spectra of 45 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ for 1 h (bottom) and after 6 h (top) $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

All phosphanes 44-47 are colorless solids that are stable when kept under inert conditions. Yet, in solution an exchange of the pyrazolyl- and chlorido-substituents is observed. Figure 3 shows the ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{4 5}$ after 1 h and after 6 h in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. A scrambling reaction is observed, forming dichlorophosphane 44 and tripyrazolylphosphane 4 (Scheme 17).

Scheme 17. Scrambling reaction of $\mathbf{4 5}, 44$ and 4 ; i) $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, r.t.

Similar $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{Cl}$ exchange reactions are known from dialkylamino-substituted phosphanes and widely used in the synthesis of chlorophosphanes. ${ }^{48}$ Yet, further investigations on pyrazolyl-substituted chlorophosphanes was abstained as a main focus of this thesis lies on the $\boldsymbol{S y n} \boldsymbol{P h o s}$ type II phosphanes and their use in $\mathrm{P}-\mathrm{P}$ bond formation reactions.

4. Reactivity of Type II Phosphanes towards Secondary Phosphanes

4.1. P-P Bond Formation via Condensation Reactions

In analogy to the synthesis of $\mathbf{7}$ and $\mathbf{8}$ starting from $\mathbf{S y n} \boldsymbol{P h o s}$ type I phosphane $\mathbf{2}$ (vide supra) the reaction of type II phosphanes 41a and 43a towards secondary phosphanes was investigated. Reacting 41a and 43a with secondary phosphanes $\mathrm{R}^{\prime}{ }_{2} \mathrm{PH}\left(\mathrm{R}^{\prime}=\mathrm{Cy},{ }^{t} \mathrm{Bu}\right.$ or $\left.\mathrm{R}^{\prime}{ }_{2} \mathrm{PH}=\mathrm{PhP}(\mathrm{H}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{P}(\mathrm{H}) \mathrm{Ph}\right)$ yields triphosphanes 48-50 and 1,2,3-triphospholane 51 under concomitant release of 3,5-dimethylpyrazole (Scheme 18).

Scheme 18. Synthesis of triphosphanes 48-50: i) 2 eq. $\mathrm{R}_{2}{ }_{2} \mathrm{PH},-21 \mathrm{a}, \mathrm{MeCN}$; and triphospholane 51: 1 eq . $\mathrm{PhPH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PHPh},-2$ 1a, MeCN .

Figure 4. ${ }^{31} \mathrm{P}$ NMR spectra of compounds 48-51.(all in $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$) 48: AX_{2} spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-57.3$ $(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-7.7(2 \mathrm{P}) \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-251 \mathrm{~Hz} ; 49: \mathrm{AX}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-58.1(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-0.7(2 \mathrm{P})$ ppm; ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-269 \mathrm{~Hz} ; 50: \mathrm{AX}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-44.1(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=37.0(2 \mathrm{P}) \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-307$ $\mathrm{Hz} ; 51: \mathrm{AX}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-12.1(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=14.5(2 \mathrm{P}) \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-261 \mathrm{~Hz}$.

Compounds 48-51 readily precipitate from the reaction mixture and are isolated by filtration. Subsequent washing with MeCN and drying in vacuo gives 48-51 as colorless solids in good to excellent yield (96% (48); 93% (49); 77% (50); $69 \%\left(\mathbf{5 1)}\right.$). The ${ }^{31} \mathrm{P}$ NMR spectra of all compounds give rise to AX_{2} spin systems which are characteristic for triphosphanes and 1,2,3-triphospholanes (Figure 4). Single crystals for X-ray analysis are obtained by slow vapor diffusion of n-pentane into saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of 48-51. The molecular structures of 48-51 are depicted in Figure 5. The structural parameters compare very well with similar triphosphanes ${ }^{49}$ and are thus not discussed in detail. Only the bond angle of the P-P-P moiety in compound $\mathbf{5 1}$ is approximately 10° wider which can be explained by the sterically demanding tert-butyl substituents.

Figure 5. Molecular structures of the triphosphanes 48 (top left), 49 (top right), 50 (bottom left) and triphospholane 51 (bottom right) (hydrogen atoms are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 48: P1-P2 2.2301(3), P1-P3 2.2371(3), P3-P1P2 97.389(12); 49: P1-P2 2.2377(5), P2-P3 2.2234(5), P1-P2-P3 98.112(19); (50) P1-P2 2.2181(3), P1-P3 2.2485(3), P2-P1-P3 107.642(14); 51: P1-P2 2.2703(16), P2-P3 2.1971(18), P1-P2-P3 97.16(6).

4.2. Coinage Metal Complexes of Triphosphane 48

In recent years numerous examples on the coordination chemistry of anionic ${ }^{50}$ and zwitterionic ${ }^{51}$ oligophosphorus compounds towards transition metals have been reported. Also few examples of neutral triphosphanes coordinated to transition metals are known, however, the triphosphane moiety was assembled while coordinated to at least one metal center. ${ }^{52}$ Yet, to the best of knowledge only two complexes of free triphosphanes coordinating to metal carbonyls have been structurally characterized (Scheme 19, top), ${ }^{11,53}$ while another example is described in solution. ${ }^{54}$ In complex I the triphosphane ligand chelates the $\mathrm{W}(\mathrm{CO})_{4}$ moiety while in complex II the coordination of the $\mathrm{Fe}(\mathrm{CO})_{4}$ moiety proceeds only via the free electron pair of one of the dicylcohexylphosphaneyl groups. Featuring an additional nitrogen-based donor site in 48-51 the formation of multi-dentate coinage metal complexes is of interest. Triphosphane 48 yielded the first triphosphane coordination complexes of $\mathrm{Cu}(\mathrm{I}), \mathrm{Ag}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I})$ (Scheme 19).

Known triphosphanes coordinating to metal carbonyls

Scheme 19. Known transition metal complexes featuring a neutral triphosphane ligand (top); Synthesis of coinage metal coordination complexes starting from triphosphane 48 (bottom); i) 2 eq. $\mathrm{Ag}[\mathrm{OTf}], \mathrm{PhF}(\mathrm{M}=$ $\mathrm{Ag}) ; 2$ eq. $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}],-8 \mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{M}=\mathrm{Cu})$; ii) 2 eq. (tht) $\mathrm{AuCl},-2$ tht, $-2 \mathrm{AgCl}, \mathrm{MeCN}$; iii) 1 eq. $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}],-4 \mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) 2 eq. (tht) $\mathrm{CuBr},-2$ tht, THF.

Reacting 48 with an equimolar amount of $\mathrm{Ag}[\mathrm{OTf}]$ in fluorobenzene at ambient temperature leads to the formation of a colorless precipitate, which is isolated by filtration to yield the dinuclear complex $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ in essentially quantitative yield. The corresponding reaction of $\mathbf{4 8}$ with $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives colorless plates upon slow vapor diffusion of n-pentane at $-30^{\circ} \mathrm{C}$ which can be isolated as $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}$ up to a yield of 94%. Further transmetallation reaction of $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ with (tht) AuCl in MeCN yields $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ in 64% yield by the concomitant precipitation of AgCl . Slow diffusion of n-pentane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{4 8}$ and $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}]$ in a $2: 1$ ratio yields 93% of crystalline $\left[(\mathbf{4 8})_{2} \mathrm{Cu}\right][\mathrm{OTf}]$. Formation of $(\mathbf{4 8 C u B r})_{2}$ is achieved by slow diffusion of n-pentane into a THF solution of equimolar amounts of $\mathbf{4 8}$ and (tht) CuBr . The molecular structures of the aforementioned coinage metal complexes are shown in Figure 6 and the structural parameters are summarized in Table 2. Different from the known coordination motifs for I and II, the molecular structures of $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2},\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ and $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ reveal dinuclear metal complexes featuring two triphosphane ligands. In addition to the terminal coordinating phosphorus atoms, the nitrogen atoms of the pyridylsubstituents are involved in the coordination resulting in an approximately tetrahedral coordination environment of the respective metal center.

Figure 6. Molecular structures of the coinage metal complexes $\left[(48 \mathrm{Cu})_{2}\right]^{2+}$ in $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2} * 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left[(48 \mathrm{Ag})_{2}\right]^{2+}$ in $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2} * \mathrm{MeCN},\left[(48 \mathrm{Au})_{2}\right]^{2+}$ in $\left[(\mathbf{4 8 A u})_{2}\right][\mathrm{OTf}]_{2},\left[(\mathbf{4 8})_{2} \mathrm{Cu}\right]^{+}$in $\left[(\mathbf{4 8})_{2} \mathrm{Cu}\right][\mathrm{OTf}]^{*} n-\mathrm{C}_{5} \mathrm{H}_{12}$ and $(48 \mathrm{CuBr})_{2}$ in $(48 \mathrm{CuBr})_{2} * n-\mathrm{C}_{5} \mathrm{H}_{12} * \mathrm{THF}$ (hydrogen atoms, anions and solvate molecules are omitted for clarity, cyclohexyl groups are represented only by their phosphorus bound carbon atoms, thermal ellipsoids are displayed at 50% probability). Selected geometrical parameters are given in Table 2.

Table 2: Selected geometrical parameters of crystallographically characterized coinage metal complexes depicted in Figure 6.

	$\left[(48 \mathrm{Cu})_{2}\right]^{2+}$	$\left[(48 \mathrm{Ag})_{2}\right]^{2+}$	$\left[(48 \mathrm{Au})_{2}\right]^{2+}$	$\left[(48){ }_{2} \mathrm{Cu}\right]^{+(\mathrm{a})}$	$(48 \mathrm{CuBr})_{2}{ }^{(\mathrm{a})}$
M1-M1' in \AA	2.8225(5)	2.9013(4)	2.880(3)	-	2.942
M1-P1 in \AA	2.2755(4)	$2.3818(8)$	2.3033(8)	2.243	2.191
$\mathrm{M} 1-\mathrm{P} 3 \text { ' in } \AA$	$2.2176(5)$	2.4468(7)	$2.3198(8)$		
$\mathrm{M}-\mathrm{N}$ in \AA	2.0485(14)	2.404(3)	2.948(3)	2.106	2.116
$\mathrm{P}-\mathrm{P}^{\text {a }}$ in \AA	2.225	2.176	2.226	2.212	2.214
P1-M1-P3 in ${ }^{\circ}$	136.520(18)	143.96(3)	171.52(3)	-	-
P-P-Pa in ${ }^{\circ}$	98.26(2)	100.16(4)	98.29(5)	104.43	102.43

(a) average bond lengths and angles are given.

While the molecular structures of the dinuclear complexes $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}$ and $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ reveal an anti-arrangement with inversion symmetry, the gold complex $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ crystallizes as centro-symmetrical syn-isomer. The inversion process within the complexes has been investigated by variable temperature NMR experiments and quantum mechanical calculations (vide infra). The difference in the arrangement in the solid state causes a widening of the P-M-P angles from the copper complex $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}(\mathrm{P} 3$ '-Cu1-P1 136.520(18) ${ }^{\circ}$) over the silver complex $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}\left(\mathrm{P} 1-\mathrm{Ag} 1-\mathrm{P} 3{ }^{\prime} 143.96(3)^{\circ}\right)$ to an almost linear geometry around the gold atoms in $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ ($\mathrm{P} 1-\mathrm{Au} 1-\mathrm{P} 3$ ' $\left.171.52(3)^{\circ}\right)$. The distances between the silver atoms in $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ and the gold atoms in $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ indicate the presence of argentophilic and aurophilic interactions, respectively. ${ }^{55}$ As the distance between the copper atoms in $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}$ is slightly larger than the sum of the van der Waals radii of two copper atoms $(2.80 \AA)^{56}$, intermetallic interactions can be excluded. The observed $\mathrm{P}-\mathrm{M}$ bond lengths in $\left[(48 \mathrm{M})_{2}\right][\mathrm{OTf}]_{2}$ as well as those in $\left[(\mathbf{4 8})_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ and $(\mathbf{4 8 C u B r})_{2}$ are in good agreement with bond lengths reported for the structurally similar $\left[\mathrm{M}_{2}(\mathrm{dcpm})_{2}\right]^{2+}$ cations $(\mathrm{M}=\mathrm{Cu}(\mathrm{I}), \operatorname{Ag}(\mathrm{I})$ or $\mathrm{Au}(\mathrm{I})$; dcpm $=$ bis(dicylcohexylphosphaneyl)methane). ${ }^{57}$ For $(\mathbf{4 8 C u B r})_{2}$ the formation of the typical $\mathrm{Cu}_{2} \mathrm{X}_{2}$ ($\mathrm{X}=$ halogenide) geometry is found, only marginally differing from the typical planar arrangement reported for many $\mathrm{Cu}_{2} \mathrm{X}_{2}$-type structures. ${ }^{58}$ Compared to the free ligand 48 the $\mathrm{P}-\mathrm{P}$ bond lengths and the P-P-P angles in the coinage metal complexes are only marginally altered.

The room temperature NMR spectra of the dinuclear complexes $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ and $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ give rise to broadened resonances due to dynamic processes in solution. ${ }^{59}$ The low temperature ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ shows two separate $A^{\prime}{ }^{\prime} X^{\prime} X^{\prime \prime} X^{\prime \prime}$ " spin systems at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-34.2 \mathrm{ppm}, \quad \delta\left(\mathrm{P}_{\mathrm{X}}\right)=52.6 \mathrm{ppm} \quad$ and $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-37.8 \mathrm{ppm}, \delta(\mathrm{P} \mathrm{x})=50.3 \mathrm{ppm}$ corresponding to the respective syn- and anti-isomers
(Figure 7). Details on the coupling constants are included in the experimental details (vide infra $)$. For $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ also two isomers are observed by two separate AA'XX'X' ${ }^{\prime}$ '" spin systems at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-48.5 \mathrm{ppm}, \quad \delta\left(\mathrm{P}_{\mathrm{x}}\right)=36.1 \mathrm{ppm} \quad$ and $\quad \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-51.5 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{x}}\right)=36.1 \mathrm{ppm}$ (Figure 7).

Figure 7. ${ }^{31} \mathrm{P}$ NMR spectra of compound $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 300 K and 263 K and of $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 300 K and 243 K ; insets show the two $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}{ }^{\prime}{ }^{\prime}$, spin systems of the experimental (upwards) and fitted spectra (downwards) for $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$ at 243 K .

Due to the existence of three isotopolouges for $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}$, as a result of the complexation to the ${ }^{107} \mathrm{Ag} /{ }^{109} \mathrm{Ag}$ nuclei, iteratively fitting the corresponding ${ }^{31} \mathrm{P}$ NMR spectrum was refrained from. The ${ }^{31} \mathrm{P}$ NMR spectrum of the dinuclear copper complex $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}$ shows only the resonances of one $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}{ }^{\prime}$, spin system at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-$ 39.1 ppm and $\delta\left(\mathrm{P}_{\mathrm{x}}\right)=15.4 \mathrm{ppm}$. An additional broadened AX_{2} spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-37.5\right.$ ppm, $\delta\left(\mathrm{P}_{\mathrm{X}}\right)=15.3 \mathrm{ppm}\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-168 \mathrm{~Hz}\right)$ gives rise to the formation of a monomeric
species in solution which was not further investigated. A comparable AX_{2} spin system is observed for $\left[(48){ }_{2} \mathrm{Cu}\right][\mathrm{OTf}]\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-44.8 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-8.9 \mathrm{ppm}\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-275 \mathrm{~Hz}\right)\right.$ as well as for $(48 \mathrm{CuBr})_{2}\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-46.6 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-6.2 \mathrm{ppm}\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-253 \mathrm{~Hz}\right)\right.$. For both mononuclear copper complexes, the resonances in the ${ }^{31} \mathrm{P}$ NMR spectrum are noticeably broadened due to the fast quadrupole relaxation of the ${ }^{63} \mathrm{Cu}$ nucleus. ${ }^{59}$
Theoretical calculations performed at the BP86-D3/def2-TZVP level of theory support the isomerization in the dinuclear metal complexes $\left[(\mathbf{4 8 M})_{2}\right]^{2+}$. For $\left[(\mathbf{4 8 C u})_{2}\right]^{2+}$ a relative energy difference between the syn- and the anti-isomer of $5.0 \mathrm{kcal} / \mathrm{mol}$ was found which explains that only one isomer is observed in the ${ }^{31} \mathrm{P}$ NMR spectrum. While the two isomers of $\left[(48 \mathrm{Ag})_{2}\right]^{2+}$ are isoenergetic with a difference of $0.1 \mathrm{kcal} / \mathrm{mol}$, the syn-isomer of $\left[(48 \mathrm{Au})_{2}\right]^{2+}$ is favored by $1.7 \mathrm{kcal} / \mathrm{mol}$ compared to its anti-isomer. The optimized geometries also show the different coordination behavior of the pyridyl-moieties in the three metal complexes $\left[(48 M)_{2}\right]^{2+}$. While the free electron pair of the pyridyl nitrogen atom is pointing towards the metal center in $\left[(48 \mathrm{Cu})_{2}\right]^{2+}$ and $\left[(48 \mathrm{Ag})_{2}\right]^{2+}$ it is pointing towards the middle of the $\mathrm{Au}-\mathrm{Au}$ bond in $\left[(48 \mathrm{Au})_{2}\right]^{2+}$ (Figure 8, top). The calculations furthermore indicate that the isomerization is not driven by rotation but proceeds via dissociation of the $\mathrm{M}(\mathrm{I})-\mathrm{N}$ coordination bond or pseudo-coordination in case of $\left[(48 \mathrm{Au})_{2}\right]^{2+}$ and subsequent association of the ligand on the opposite side (Figure 8). This interconversion is highest in energy for $\left[(48 \mathrm{Cu})_{2}\right]^{2+}(14.7 \mathrm{kcal} / \mathrm{mol})$, followed by $\left[(48 \mathrm{Ag})_{2}\right]^{2+}(13.2 \mathrm{kcal} / \mathrm{mol})$ and finally $\left[(48 \mathrm{Au})_{2}\right]^{2+}$ ($9.6 \mathrm{kcal} / \mathrm{mol}$).

Figure 8. Optimized geometries of $\left[(48 \mathrm{M})_{2}\right][\mathrm{OTf}]_{2}$ using the BP86-D3/def2-TZVP functional, showing the different coordination arrangement of the pyridyl-moieties towards the metal atoms $(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$; top) and interconversion mechanism of the syn- and anti-isomers of $\left[(48 \mathrm{M})_{2}\right]^{2+} ;(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$; bottom $)$.

4.3. P-P Bond Formation via $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ Bond Metathesis Reactions

Further reactivity studies on triphosphane 48 revealed that this compound readily rearranges in solution by means of a $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction. After 24 h the $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of 48 shows an additional singlet resonance at $\delta(\mathrm{P})=21.0 \mathrm{ppm}$, which is assigned to tetracyclohexyldiphosphane ${ }^{18 \mathrm{e}}$ and an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ spin system at $\delta(\mathrm{P})=14.0-25.2 \mathrm{ppm}$ being characteristic for pentaphospholanes of type $(\mathrm{RP})_{5}{ }^{18 e, 60}$ which is assigned to $(\mathrm{PyP})_{5} \mathbf{5 2}$ (Figure 9).

Figure 9. ${ }^{31} \mathrm{P}$ NMR spectra of 48 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ after 30 min (bottom) and 24 h (top) at ambient temperature $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

Moreover, the ${ }^{31} \mathrm{P}$ NMR spectroscopic investigation on the reaction of 52 with $\mathrm{Cy}_{4} \mathrm{P}_{2}$ yielding 48 illustrates that pentaphospholane $\mathbf{5 2}$ might be used as PyP-synthon as it inserts into the $\mathrm{P}-\mathrm{P}$ bond of $\mathrm{Cy}_{4} \mathrm{P}_{2}$ (Figure 10).

Figure 10. ${ }^{31} \mathrm{P}$ NMR spectra of a mixture of $(\mathrm{PyP})_{5}$ and $\mathrm{Cy}_{4} \mathrm{P}_{2}$ in a $1: 5$ ratio after 3 d at ambient temperature in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$.

As the scrambling reaction of $\mathbf{4 8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ is in a state of equilibrium, the isolation of $\mathbf{5 2}$ is hampered. The selective synthesis of pentaphospholane $\mathbf{5 2}$ is achieved by the equimolar reaction of 41a with $\mathrm{Cy}_{2} \mathrm{PH}$ in $\mathrm{Et}_{2} \mathrm{O}$ as non-polar solvent (Scheme 20).

Scheme 20. Chemical equilibrium of $\mathbf{4 8}, \mathrm{Cy}_{4} \mathrm{P}_{2}$ and $\mathbf{5 2}$ (left) and selective synthesis of $\mathbf{5 2}$ from $\mathbf{4 1 a}$ (right); i) 1 eq. $\mathrm{Cy}_{2} \mathrm{PH}, \mathbf{- 1 a}, \mathbf{- 2 6}, \mathrm{Et}_{2} \mathrm{O}$.

The formed precipitate is filtered off and dried in vacuo giving 52 in 98% yield as a colorless powder which shows an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ spin system in the ${ }^{31} \mathrm{P}$ NMR spectrum (Figure 12). 26 ($\mathrm{Cy}_{2} \mathrm{Ppyr}$) is identified as a side product in the supernatant by its singlet resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum $(\delta(P)=58.4 \mathrm{ppm}),{ }^{61}$ indicating a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction. ${ }^{21 \mathrm{~d}}$ To further understand the formation of $\mathbf{5 2}$, the reaction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ is studied by means of two dimensional ${ }^{31} \mathrm{P}$ NMR spectroscopic experiments (Figure 11). After 3 h compound 41a is still present in solution while $\mathrm{Cy}_{2} \mathrm{PH}$ is fully consumed by the condensation reaction with 41 a to form the triphosphane 48 (vide supra) and the diphosphane 53 which is identified by an AX spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=10.2 \mathrm{ppm}, \delta(\mathrm{Px})=33.4 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-281 \mathrm{~Hz}\right.$; cross peaks highlighted in green circles (Figure 11)). The AMX spin system at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-35.6 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{M}}\right)=-7.2 \mathrm{ppm}$ and $\delta(\mathrm{P})_{\mathrm{X}}=29.9 \mathrm{ppm}$ (cross peaks highlighted in red circles) is assigned to triphosphane 54 which is formed via a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction of two equivalents of 53 and via a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction of 41 a and 48 (Scheme 21). In both cases 26 is liberated. A further chain growth is proposed in which triphosphane 54 reacts with $\mathbf{5 3}$ under the release of $\mathbf{2 6}$ in a $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ oligomerization reaction which ultimately yields pentaphospholane 52. Furthermore, the formation of tetraphosphetane 55 $(\delta(\mathrm{P})=-49.4 \mathrm{ppm})$ is assumed, which can be formed via the reaction of two equivalents $\mathbf{5 4}$ under concomitant release of $\mathbf{2 6}$ (Scheme 21). Similar to the known ring expansion reactions of certain cyclophosphanes, ${ }^{30} 55$ might react to form pentaphospholane 52, being the thermodynamically favored product. In analogy to the synthesis of 52, isolation of the corresponding benzothiazolyl-substituted pentaphospholane 56 is achieved in yields of 72%. Crystals suitable for X-ray analysis are obtained for both compounds by the slow diffusion of n-pentane into saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at $-30^{\circ} \mathrm{C}$ (Figure 12).

Figure 11. ${ }^{31}{ }^{\mathrm{P}}{ }^{31}{ }^{\mathrm{P}}$ COSY NMR spectra of a mixture of 41 a and $\mathrm{Cy}_{2} \mathrm{PH}$ in a $1: 1$ ratio after 3 h in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}, 2 \mathrm{D}\right.$ cross peaks of 53 are highlighted in green circles, cross peaks of 54 are highlighted in red circles).

Scheme 21. Possible formation of $\mathbf{5 2}$ via $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reactions.

Figure 12. ${ }^{31} \mathrm{P}$ NMR spectra of 52 (bottom) and 56 (top) (Both: $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$, insets on the left show the corresponding $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ spin system of the experimental (upwards) and fitted spectra (downwards)). Molecular structure of 52 (bottom, right) and $\mathbf{5 6}$ in $\mathbf{5 6}^{* 1 / 2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (top, right) (hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 52: P1-P2 2.2222(4), P2-P3 2.2200(5); P3-P4 2.22200(5), P4-P5 2.2078(4), P1-P2-P3 97.254(15), P2-P3-P4 95.594(16), P3-P4-P5 102.27(2), P4-P5-P1 106.776(17), P5-P1-P2 97.144(19); 56: P1P2 2.2336(6), P2-P3 2.2232(6), P3-P4 2.338(6), P4-P5 2.2069(6), P5-P1 2.2288(6), P1-P2-P3 93.54(2), P2-P3-P4 100.29(2), P3-P4-P5 107.27(2), P4-P5-P1 96.32(2), P5-P1-P2 96.85(2).

Both compounds 52 and 56 reveal the typical envelope conformation of the P_{5}-ring featuring the substituents in all-trans position. The $\mathrm{P}-\mathrm{P}$ bond lengths observed for both pentaphospholanes 52 (av. P-P $2.218 \AA$) and 56 (av. P-P $2.2461 \AA$) are in a range known for pentaphospholanes such as $(\mathrm{PhP})_{5}$ (av. $2.217 \AA$); also the P-P-P angles are in good accordance with the reported data of $(\mathrm{PhP})_{5} .{ }^{49}$ As already indicated by the aforementioned scrambling reaction between 48, $\mathrm{Cy}_{4} \mathrm{P}_{2}$ and 52 (see Scheme 20), the use of 52 as PyP-synthon for insertion reactions into $\mathrm{P}-\mathrm{P}$ bonds is envisioned (vide infra).

4.4. Methylation Reactions of Triphosphane $\mathbf{4 8}$ and $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ Bond Metathesis Reaction

As scrambling reactions like those mentioned before might also be expected for triphosphanium and triphosphanediium salts, triphosphane $\mathbf{4 8}$ was methylated with different amounts of MeOTf. The ${ }^{31} \mathrm{P}$ NMR spectrum of the $1: 1$ reaction of $\mathbf{4 8}$ with MeOTf gives rise to an AMX spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-46.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.9 \mathrm{ppm}\right.$ and $\delta\left(\mathrm{P}_{\mathrm{x}}\right)=34.2 \mathrm{ppm}$ $\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-290 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-281 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=58 \mathrm{~Hz}\right)$, suggesting the methylation of a phosphorus atom rather than the nitrogen atom of the pyridyl-substituent. After removal of all volatiles in vacuo triphosphan-1-ium triflate salt 57[OTf] can be isolated in quantitative yield as colorless powder. A second methylation is achieved when 48 is reacted with an excess of MeOTf under solvent free conditions (Scheme 22).

Scheme 22. Methylation reactions of $\mathbf{4 8}$; i) MeOTf, Et ${ }_{2}$ O, r.t., 99%; ii) 5 eq. MeOTf, neat, r.t., 97%.

Similar to the mono-methylation reaction, only the dicyclohexyl-substituted phosphorus atoms are methylated giving triphosphane-1,3-diiumtriflate salt 58[OTf $]_{2}$. As both dicyclohexylphosphaneyl moieties are methylated, the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{4 8}[\mathrm{OTf}]_{2}$ shows an AX_{2} spin system with resonances at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-67.9 \mathrm{ppm}$ and $\delta(\mathrm{Px})=44.0 \mathrm{ppm}$ $\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-315 \mathrm{~Hz}\right)$. The molecular structures of cation $\mathbf{5 7}{ }^{+}$and dication $\mathbf{5 8}{ }^{2+}$ are depicted in Figure 13.

Figure 13. Molecular structures of $\mathbf{5 7}^{+}$in $\mathbf{5 7}[\mathrm{OTf}]$ (left) and $\mathbf{5 8}^{2+}$ in $\mathbf{5 8}[\mathrm{OTf}]_{2}$ (hydrogen atoms and anions are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles ${ }^{\circ}{ }^{\circ}$) for $\mathbf{5 7}^{+}$: P1-P2 2.1956(5), P2-P3 2.2362(5), P1-P2-P3 97.89(2); 58 ${ }^{2+}$: P1-P2 2.2152(4), P2-P3 2.2182(4), P1-P2-P3 107.439(13).

Note that only a small number of triphosphanediium salts are reported in the literature, ${ }^{62,63}$ however, compound $\mathbf{5 7}[\mathrm{OTf}]$ is the first structurally characterized triphosphan-1-ium salt and extents the library of cationic, catenated polyphosphorus compounds. ${ }^{62}$ The P1-P2 bond length in cation $\mathbf{5 7}^{+}$(P1-P2 2.1956(5) \AA) is shortened whereas the P2-P3 bond (P2-P3 $2.2362(5) \AA$) is comparable to those in 48 (P1-P2 2.2301(3) \AA, P1-P3 2.2371(3) \AA) or similar diphosphanium cations (compare $\left[\mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{3}\right]^{+}: 2.2302(13) \AA$). ${ }^{63}$ The P-P-P bond angle in $\mathbf{5 7 ^ { + }}\left(97.89(2)^{\circ}\right)$ is similar to that of compound $\mathbf{4 8}\left(97.16(6)^{\circ}\right)$. The $\mathrm{P}-\mathrm{P}$ bond lengths in $\mathbf{5 8}^{2+}(\mathrm{P} 1-\mathrm{P} 22.2152(4) \AA, \mathrm{P} 2-\mathrm{P} 32.2182(4) \AA)$ are marginally shorter compared to those in 48 but in accordance with bond lengths reported for similar triphosphane-1,3-diium cations (compare $\left[\mathrm{Me}_{3} \mathrm{P}-\mathrm{P}(\mathrm{Cy})-\mathrm{PMe}_{3}\right]^{2+}: 2.1979(5) \AA$ and $2.1976(6) \AA$)..62 The P-P-P bond angle in $\mathbf{5 8}^{2+}\left(107.439(13)^{\circ}\right)$ is significantly wider compared to $\mathbf{4 8}$ and $\left[\mathrm{Me} 3_{3} \mathrm{P}-\mathrm{P}(\mathrm{Cy})-\right.$ $\left.\mathrm{PMe}_{3}\right]^{2+}\left(103.11(2)^{\circ}\right)$. In order to investigate the envisioned $[\mathrm{Py}-\mathrm{P}]$ transfer into a $\mathrm{P}-\mathrm{P}$ bond, $\mathbf{5 2}$ is reacted with 5 equivalents $\mathbf{8 8}[\mathrm{OTf}]_{2}$ in MeCN (Scheme 23).

Scheme 23. Synthesis of tetraphosphane-1,4-diium triflate salt $\mathbf{5 9 [O T f}]_{2}$; i) MeCN, r.t., 51%.

Upon addition of $\mathbf{5 2}$ to a colorless MeCN solution of $\mathbf{5 8}[\mathrm{OTf}]_{2}$ the reaction mixture turns from a deep red color to pale yellow. The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture after 24 h shows two AA'XX' spin systems which are attributed to two isomers of tetraphosphane-1,4-diium cations $\mathbf{5 9}^{2+}$ (Figure 14), stating the successful [Py-P] transfer via $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction. The A part of the prominent AA' XX ' spin system at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-55.1 \mathrm{ppm}$ is assigned to the inner pyridyl-substituted P nuclei and the X part at $\delta(\mathrm{Px})=40.7 \mathrm{ppm}$ to the tetra-coordinate phosphorus atoms which is similar to known tetraphosphane-1,4-diium salts. ${ }^{64}$ The minor spin system resonates at $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-40.1 \mathrm{ppm}$ and $\delta(\mathrm{Px})=39.8 \mathrm{ppm}$, respectively. After work-up compound $49[\mathrm{OTf}]_{2}$ can be isolated analytically pure in 51% yield. X-ray analysis revealed that the centrosymmetric mesoisomer 49^{2+} crystallized showing central torsion angles of 180° (Figure 14). The $\mathrm{P}-\mathrm{P}$ bond lengths in $\mathbf{4 9}^{2+}\left(\mathrm{P} 1-\mathrm{P} 22.2347(12) \AA, \mathrm{P} 2-\mathrm{P} 2{ }^{\prime} 2.2327(16) \AA\right.$) are in good agreement with the reported data of comparable tetraphosphane-1,4-diium cations (compare $\left[\mathrm{Ph}_{3} \mathrm{P}-(\mathrm{PPh})_{2}-\right.$ $\left.\mathrm{PPh}_{3}\right]^{2+}$: $\mathrm{P} 1-\mathrm{P} 22.2583(10) \AA, \mathrm{P} 2-\mathrm{P} 2$ ' $2.2214(13) \AA$). ${ }^{64}$

Figure 14. ${ }^{31} \mathrm{P}$ NMR spectrum of dication $\mathbf{5 9}[\mathrm{OTf}]_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right.$, insets show the $\mathrm{AA}^{\prime} \mathrm{XX}$ ' spin system of the experimental (upwards) and fitted spectra (downwards) of the most prominent isomer of $\mathbf{5 9}[\mathrm{OTf}]_{2}$); centered: Molecular structure of $\mathbf{5 9}^{2+}$ in $\left.\mathbf{5 9 [O T f}\right]_{2}$ (hydrogen atoms and anions are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: P1-P2 2.2347(12), P2P2' 2.2327(16), P1-P2-P2' 97.60(6).

Similar to the reported $[\mathrm{Ph}-\mathrm{P}]$ transfer from $(\mathrm{PhP})_{5}$ to a $\mathrm{NHC},{ }^{65} 52$ can be used as a PyPsynthon, thus, featuring an additional reaction or coordination site. While keeping compound $\mathbf{5 9}[\mathrm{OTf}]_{2}$ in a $\mathrm{CD}_{3} \mathrm{CN}$ solution for 14 days, the ${ }^{31} \mathrm{P}$ NMR spectrum gives rise to three rearrangement products (Figure 15).

Figure 15. ${ }^{31} \mathrm{P}$ NMR spectrum of a solution of $\mathbf{5 9}[\mathrm{OTf}]_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ after 14 days.

Next to an AX_{2} spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-235.3 \mathrm{ppm}\right.$ and $\delta(\mathrm{Px})=38.8 \mathrm{ppm}\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)\right.$ $=-501 \mathrm{~Hz})$), a pseudo triplet resonance $\left(\delta(\mathrm{P})=153.1 \mathrm{ppm} ;{ }^{1} J(\mathrm{PN})=50 \mathrm{~Hz}\right)$ and an AMXY spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-208.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-30.0 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=31.1 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Y}}\right)=39.8 \mathrm{ppm}\right.$; ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{y}}\right)=-490 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}_{\mathrm{x}}\right)=-342 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-298 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{Y}}\right)=91 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=$ $\left.45 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Y}}\right)=34 \mathrm{~Hz}\right)$ are observed. The AX_{2} spin system can be attributed to a $3 \lambda^{5}$ -triphosph-2-en-1-ium cation $\mathbf{6 0}^{+}$, as the spectroscopic parameters are in the range for those observed for $\left[\mathrm{Ph}_{3} \mathrm{P}-\mathrm{P}-\mathrm{PPh}_{3}\right]^{+}\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-174 \mathrm{ppm}, \delta(\mathrm{Px})=30 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-500 \mathrm{~Hz}\right)$ which was first reported by Schmidpeter and co-workers. ${ }^{66}$ A variety of similar derivatives has been synthesized and reported by the group of Macdonald. ${ }^{67}$ Slow vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the $\mathrm{CD}_{3} \mathrm{CN}$ solution yielded crystals suitable for X-ray analysis confirming the structural connectivity of $\mathbf{6 0}$ (Figure 16).

Figure 16. Molecular structure of the $3 \lambda^{5}$-triphosph-2-en-1-ium $\mathbf{6 0}^{+}$in $\mathbf{6 0}[\mathrm{OTf}]$ (left) and 1,4,2diazaphospholium 61^{+}in $\mathbf{6 1}[\mathrm{OTf}]$ (right) (hydrogen atoms and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 60^{+}: P1-P2 2.134(4), P2-P3 2.1382(4), P1-P2-P3 103.859(19); 61+: P1-C1 1.7333(14), P1-N2 1.7413(13), C1-P1-N2 87.08(6).

The structural parameters of $\mathbf{6 0}{ }^{+}$are similar to those observed for cation $\left[\mathrm{Ph}_{3} \mathrm{P}-\mathrm{P}-\mathrm{PPh}_{3}\right]^{+}$, i.e. slightly shortened P-P bond lengths (P1-P2 2.134(4), P2-P3 2.1382(4) Å) and a P-P-P bond angle of $103.859(19)^{\circ} .{ }^{66}$ By co-crystallization, a further product was identified as the triflate salt of diazaphospholium cation $\mathbf{6 1}{ }^{+}$(Figure 16). This species is assigned to the pseudo triplet resonance observed in the ${ }^{31} \mathrm{P}$ NMR spectrum (Figure 15). The $\mathrm{P}-\mathrm{C}$ bond distance of $1.7333(14) \AA$ is slightly exceeding the upper limit of typical $\mathrm{P}=\mathrm{C}$ bond length (1.61-1.71 \AA), ${ }^{68}$ while the $\mathrm{P}-\mathrm{N}$ bond length of $\mathrm{P} 1-\mathrm{N} 21.7413(13) ~ \AA$ is indicating a $\mathrm{P}-\mathrm{N}$ single bond ($\mathrm{P}-$ $\mathrm{N}: 1.78 \AA) .{ }^{69}$ Furthermore, the structure of $\mathbf{6 1}{ }^{+}$reveals an acute angle around the P atom (C1-P1-N2 87.08(6) ${ }^{\circ}$) and a planar arrangement, suggesting a delocalized π-system. The AMXY spin system is assigned to asymmetric tetraphosphanediium dication $\mathbf{6 2}^{\mathbf{2 +}}$, most likely formed by an intramolecular aromatic substitution reaction of $\mathbf{5 9}^{\mathbf{2 +}}$. This can be attributed to be the first step of the rearrangement reaction of $\mathbf{5 9}^{2+}$ to form $\mathbf{6 0}^{+}$and $\mathbf{6 1}$. We further studied this rearrangement reaction using the TURBOMOLE 7.0 program at the

PB86-D3/def2-TZVP level of theory and taking into consideration solvent effects by using the Conductor-like Screening Model (COSMO). The calculations started from $\mathbf{6 2}^{+}$and show that the cleavage of $\mathrm{Cy}_{2} \mathrm{PMe}$ is energetically quite costly. This is in accordance with the ${ }^{31} \mathrm{P}$ NMR spectrum as $\mathrm{Cy}_{2} \mathrm{PMe}$ is not observable $(\delta(\mathrm{P})=-19.8 \mathrm{ppm}){ }^{70}$ More likely and energetically favored is a [1,2]-shift of the $\mathrm{Cy}_{2} \mathrm{PMe}$ group to form iso- $\mathbf{6 2}{ }^{2+}$ with a reaction barrier of $+22.0 \mathrm{kcal} / \mathrm{mol}$. Figure 17 is showing the optimized structures for this [1,2]$\mathrm{Cy}_{2} \mathrm{PMe}$ shift reaction.

Figure 17. Optimized structures of $\mathbf{6 2}^{2+}$, iso- $\mathbf{6 2}{ }^{2+}$ and the transition state; distances are given in \AA.

It is noteworthy, that similar [1,2]- and [1,3]-PR 3 shifts have been reported. ${ }^{71}$ Compared to $\mathbf{6 2}^{2+}$, iso- $\mathbf{6 2}^{2+}$ is almost isoenergetic and readily decomposes in an exergonic step (-31.9 $\mathrm{kcal} / \mathrm{mol}$) to form cations $\mathbf{6 0}^{+}$and $\mathbf{6 1}^{+}$with a low barrier of only $1.9 \mathrm{kcal} / \mathrm{mol}$ (Scheme 24).

Scheme 24. Rearrangement reaction from $\mathbf{6 2}^{2+}$ towards $\mathbf{6 0}^{+}$and $\mathbf{6 1}^{+}$calculated at the PB86-D3/def2-TZVP level of theory.

In contrast to the well-established chemistry of $3 \lambda^{5}$-triphosph-2-en-1-ium cations like $\mathbf{6 0}{ }^{+}$ the number of cationic, annulated diazaphospholium salts like 61[OTf] is scarce. This and the recent interest in Polycyclic Aromatic Hydrocarbons (PAHs), motivated investigations towards a general synthesis yielding 1,4,2-diazaphospholium cations like $\mathbf{6 1}^{+}$.

5. 1,4,2-Diazaphospholium Triflates - Synthesis and Reactivity

Polycyclic aromatic hydrocarbons have gathered considerable impact within the last two decades as they reveal diverse electronic and optoelectronic properties. ${ }^{72}$ The size of the π conjugated system and/or the choice of lateral aliphatic substituents has a tremendous impact. ${ }^{73}$ An alternative approach to modify the properties of extended π-conjugated systems involves the incorporation of heteroatoms ${ }^{74}$ such as boron, ${ }^{75}$ nitrogen, ${ }^{76}$ oxygen ${ }^{77}$ and sulfur ${ }^{78}$. In this regard, also phosphorus containing PAHs have been investigated in which the central scaffold is based on a phosphole skeleton featuring a $\sigma^{3}, \lambda^{3}-\mathbf{P}$ atom (\mathbf{I}; Chart 4). ${ }^{79,80}$

Chart 4. π-extended phosphole derivatives I and II and examples of annulated diazaphospholes IIIa,b and IV and asymmetric diannulated 1,4,2-diazaphospholium cations \mathbf{V}.

The electronic and optical properties of the latter can be further tuned by oxidation (II, E = $\mathrm{O}, \mathrm{S}, \mathrm{Se}),{ }^{81}$ alkylation $\left(\mathrm{II}, \mathrm{R}=\right.$ alkyl, aryl) ${ }^{82}$ or adduct formation $\left(\mathbf{I I}, \mathrm{E}=\right.$ e.g. BH_{3}, metal complexation) ${ }^{83}$ yielding a $\sigma^{4}, \lambda^{5}-\mathrm{P}$ atom which has a significant influence on the overall aromaticity of the conjugated system. ${ }^{84}$ Diazaphospholes featuring a dicoordinated $\sigma^{2}, \lambda^{3}-\mathrm{P}$ atom such as $1,4,2$-diazaphospholes (IIIa,b), ${ }^{85}$ represent interesting backbones for the construction of N,P-doped π-extended PAHs. ${ }^{2}$ However, the class of annulated 1,4,2diazaphospholes with an extended π-conjugated system (e.g. IIIa,b) are scarce due to limited synthetic protocols. Very few examples of annulated azaphospholes of type IIIb are e.g. reported by Karaghioshoff and co-workers and are accessible from cyclocondensation reactions of 1,2-disubstituted cycloiminium salts and PCl_{3} in the presence of NEt_{3} as base. ${ }^{85 \mathrm{e}}$ So far extension of the ring system is limited to a [2+4]-cycloaddition of 1,3-dienes with
certain phospholes of type III. ${ }^{85 a}$ Subsequent functionalization of the σ^{2}, λ^{3}-P atom mainly concentrates on the in situ alcoholysis and oxidation with S or Se to derivatives of type $\mathbf{I V}^{85}$ with a $\sigma^{4}, \lambda^{5}-\mathrm{P}$ atom. These generally appear to be non-planar, with only very few examples being discussed where the σ^{4}, λ^{5}-P system is forced into planarity. ${ }^{86}$ As diannulated 1,4,2diazaphospholium triflate salt $\mathbf{6 1}[\mathrm{OTf}]$ represents a prototypical N, P-doped π-extended PAH (\mathbf{V}), a systematic protocol towards these compounds is investigated.

5.1. One-Pot Synthesis of 1,4,2-Diazaphospholium Triflate Salts

The targeted synthesis of the diannulated 1,4,2-diazaphospholium triflate salts $\mathbf{6 1}[\mathrm{OTf}]$, $\mathbf{6 2}$ [OTf], $\mathbf{6 3}$ [OTf] and $\mathbf{6 4 [O T f}]$ is achieved by a $\mathrm{Me}_{3} \mathrm{SiOTf}-m e d i a t e d$ self-condensation of the respective dichlorophosphaneyl aza-(Poly)cyclic Aromatic Hydrocarbon (aza-(P)AHs; namely: pyridine (40), quinoline (65), phenanthridine (66) and benzo[d]thiazole(42)) along with the release of PCl_{3} (Table 3). The aforementioned synthesis of compounds $\mathbf{4 0}$ and $\mathbf{4 2}$ is also used for the synthesis of dichlorophosphanes $\mathbf{6 5}$ and 66 . Aside dichlorophosphaneylpyridine $\mathbf{4 2}$, which is a colorless oil best stored at $-30^{\circ} \mathrm{C}, \mathbf{4 2}, \mathbf{6 5}$ and $\mathbf{6 6}$ are obtained as air-sensitive solids. Suitable crystals for X-ray crystallography are obtained either from vacuum sublimation ($\mathbf{4 2}$ and $\mathbf{6 6}$) or recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n-pentane (65). The molecular structures are depicted in Figure 18, showing the expected pyramidal geometry for $\mathrm{P}($ III $)$ compounds.

Figure 18. Molecular structures of dichlorophosphanes 65 (left), $\mathbf{4 2}$ (middle) and $\mathbf{6 6}$ (right) (hydrogen atoms are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 65: P1-Cl1 2.0588(8), P1-Cl2 2.0675(8), P1-C1 1.835(2), Cl1-P1-Cl2 98.56(3), C1-P1-Cl1 101.39(7), C1-P1-Cl2 97.52(7); 42: P1-Cl1 2.0623(5), P1-Cl2 2.0697(5), P1-C1 1.8231(14), Cl1-P1-Cl2 99.727(19), C1-P1-Cl1 98.26(5), C1-P1-Cl2 98.23(4); 66: P1-Cl1 2.0723(4), P1-Cl2 2.0694(4), P1-C1 1.8419(12), Cl1-P1-Cl2 101.086(18), C1-P1-Cl1 101.13(4), C1-P1-Cl2 100.46(4).

The $\mathrm{P}-\mathrm{C}$ bond lengths of $\mathbf{6 5}$ and $\mathbf{6 6}$ (P1-C1 1.835(2) and P1-C1 1.8419(12) \AA) are slightly elongated compared to the $\mathrm{P}-\mathrm{C}$ bond lengths reported for tris(2-pyridyl)phosphane (1.824(3)-1.834(3) \AA). ${ }^{44}$ The $\mathrm{P}-\mathrm{C}$ bond in $\mathbf{4 2}$ is a little shorter (P1-C1 1.8231(14) \AA) and comparable to the $\mathrm{P}-\mathrm{C}$ bonds in tris(2-benzothiazolyl)phosphane ($\mathrm{P}-\mathrm{C} 1.820(2) \AA$) ${ }^{45}$ The $\mathrm{P}-\mathrm{Cl}$ bonds in $\mathbf{6 5}, \mathbf{4 2}$ and $\mathbf{6 6}$ are all within a range of $2.0588(8)-2.0723(4) \AA$ and thus comparable to the $\mathrm{P}-\mathrm{Cl}$ bonds in chlorophosphanes 44 and 45.
For the synthesis of 1,4,2-diazaphospholium triflates 61-64[OTf], mixtures of dichlorophosphanes $\mathbf{4 0}, \mathbf{4 2}, \mathbf{6 5}$ or $\mathbf{6 6}$ and two eq. of $\mathrm{Me}_{3} \mathrm{SiOTf}$ in 1,2-dichlorobenzene are heated to $110^{\circ} \mathrm{C}$ for 16 h , resulting in yellow to orange colored solutions. After cooling to ambient temperature, the products are isolated as analytically pure yellow to orange
($61-63[\mathrm{OTf}]$) or colorless ($64[\mathrm{OTf}]$) powders in good to very good yields after removal of all volatiles in vacuo (Table 3).

Table 3. Synthesis of the diazaphospholium triflate salts 61-64[OTf].

Educt	Product	Yield in \% ${ }^{\text {a }}$	$\delta\left({ }^{31} \mathrm{P}\right)$ in ppm
 40		86	152.9
 65		50	140.8
 66		79	146.3
 42		76	141.7

i) $-\mathrm{Me}_{3} \mathrm{SiCl},-\mathrm{PCl}_{3}, 1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, 110^{\circ} \mathrm{C}$; a) isolated yield.

All compounds show a good solubility in typical aprotic polar solvents (e.g. $\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, 1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}$) and can be readily crystallized by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into concentrated MeCN solutions at $-30^{\circ} \mathrm{C}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isolated materials show resonances ranging from $\delta(\mathrm{P})=141.7$ to 152.9 ppm (Table 3) which are significantly high-field shifted compared to known 1,4,2-diazaphospholes (e.g. IIIb: $\left.\delta(\mathrm{P})=195.0 \mathrm{ppm}^{85 \mathrm{a}}\right) .{ }^{85 \mathrm{a}, \mathrm{b}}$ Figure 19 shows the molecular structures of cations $\mathbf{6 1 - 6 4}{ }^{+}$. While cations $\mathbf{6 1}{ }^{+}$and $\mathbf{6 4}{ }^{+}$are completely planar, $\mathbf{6 2}^{+}$and $\mathbf{6 3}{ }^{+}$are significantly bent. ${ }^{74}$ The $\mathrm{P}-\mathrm{C}$ bond lengths (1.711(4)-1.7333(14) \AA) are slightly longer compared to a typical $\mathrm{P}=\mathrm{C}$ bond $(1.61-1.71 \AA)^{68}$ whereas the observed $\mathrm{P}-\mathrm{N}$ bond lengths (1.7413(13)-1.7811(15) \AA) are in the range of a typical $\mathrm{P}-\mathrm{N}$ single bond ($\mathrm{P}-\mathrm{N}: 1.78 \AA$; Table 4). ${ }^{69}$

Figure 19. Molecular structures of diazaphospholium cations $\mathbf{6 1 - 6 4}{ }^{+}$in $\mathbf{6 1}[\mathrm{OTf}]$ (top left), $\mathbf{6 2}[\mathrm{OTf}] * \mathrm{MeCN}$ (top right), $\mathbf{6 3}[\mathrm{OTf}]$ (bottom left) and $\mathbf{6 4}[\mathrm{OTf}] * \mathrm{MeCN}$ (bottom right), respectively (hydrogen atoms, solvate molecules and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 4.

Table 4. Selected geometrical parameters of crystallographically characterized diazaphospholium triflate salts 61-64[OTf].

	$\mathbf{6 1}[\mathrm{OTf}]$	$\mathbf{6 2}[\mathrm{OTf}]$	$\mathbf{6 3}[\mathrm{OTf}]$	$\mathbf{6 4 [\mathrm { OTf }]}$
$\mathrm{C} 1-\mathrm{P} 1$ in \AA	$1.7333(14)$	$1.7238(16)$	$1.711(4)$	$1.7281(19)$
$\mathrm{N} 2-\mathrm{P} 1$ in \AA	$1.7413(13)$	$1.7538(14)$	$1.740(3)$	$1.7811(15)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{N} 2{ }^{\prime}$ in $^{\circ}$	$87.08(6)$	$86.83(7)$	$87.14(12)$	$85.28(8)$

The N-P-C angles range from 85.28° to 87.14° and are unsurprisingly the smallest within the diazaphosphole rings. To verify the aromatic features of the diannulated 1,4,2diazaphospholium cations $\mathbf{6 1 - 6 4}{ }^{+}$, NICS values at $0.6 \AA$ and $1.0 \AA$ from the ring centroid are calculated using the B3LYP level of theory with the B3LYP/6-311+G* basis and are compared with the calculated values for benzene (Table 5). The NICS value of $\mathbf{6 1}{ }^{+}$shows an aromaticity comparable to that of benzene at $1.0 \AA$. Cations $\mathbf{6 2 - 6 4}{ }^{+}$are less aromatic, which is shown by the decreasing magnitude of their NICS values, yet they maintain a strong aromatic character at the five membered rings.

Table 5. Nucleus Independent Chemical Shifts (NICS) computed at the five-membered ring in compounds 61-64+ and benzene (COSMO B3LYP/6-311+G*).

	NICS $(0.0 \AA)$ in ppm	NICS $(0.6 \AA)$ in ppm	NICS $(1.0 \AA)$ in ppm
$\mathbf{6 1}^{+}$	-13.2	-13.0	-10.7
$\mathbf{6 2}^{+}$	-10.7	-10.2	-8.4
$\mathbf{6 3}^{+}$	-8.63	-8.8	-7.5
$\mathbf{6 4}^{+}$	-10.6	-9.8	-7.8
$\mathrm{C}_{6} \mathrm{H}_{6}$	-8.0	-10.2	-10.1

Salt 64[OTf] shows an interesting feature in the solid state. A fluorescence was detected with an emission maximum at 490 nm (excitation wave length 350 nm) and a fluorescence quantum yield of $\theta=14.0 \%$ (Figure 20). Complete quenching of the fluorescence is observed when dissolving $\mathbf{6 4}[\mathrm{OTf}]$ in MeCN or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure 20. Emission spectra of $\mathbf{6 4}[\mathrm{OTf}]$ with an excitation wavelength of 350 nm (left) and a sample of microcrystalline $\mathbf{6 4}[\mathrm{OTf}]$ under an UV lamp (365 nm).

Detailed DFT calculations (B3LYP/6-311+G*) helped to understand the mechanism towards the formation of cations $\mathbf{6 1 - 6 4}$. Initial investigations of the Molecular Electrostatic Potential (MEP) plotted onto the van der Waals surface of dichlorophosphane 40 were used to examine the electrophilic as well as the nucleophilic areas of the molecule (Figure 21).

Figure 21. MEP open surface of $\mathbf{4 0}$ at the B3LYP/6-311+G*. Isosurface 0.01 a.u. The MEP values at selected points are given in $\mathrm{kcal} / \mathrm{mol}$.

As expected, the most negative MEP value is located at the nitrogen atom of the pyridylsubstituent, while a σ-hole is observed at the phosphorus atom (a well-defined positively charged region in extension to the $\mathrm{P}-\mathrm{Cl}$ bond) indicating the most reactive site towards
suitable nucleophiles. ${ }^{18 e, 87}$ The optimized intermediates and the proposed mechanism were calculated at the BP86-D3/def2TZVP level of theory considering solvent effects using the COSMO continuum model (1,2-dichlorobenzene). Based on the aforementioned findings, formation of a homo dimeric, noncovalent complex \mathbf{A} is anticipated, which is stabilized by pnictogen bonding interactions involving the σ-hole at the P atom $(-6.1 \mathrm{kcal} / \mathrm{mol} ; \mathrm{N}-\mathrm{P} 2.80$ \AA; Figure 22).

Figure 22. Calculated mechanism of the formation of $\mathbf{6 1}[\mathrm{OTf}]$; distances are given in \AA.

The subsequent substitution reaction promoted by $\mathrm{Me}_{3} \mathrm{SiOTf}^{2}$ is thermodynamically favored $(-4.1 \mathrm{kcal} / \mathrm{mol})$ and gives intermediate \mathbf{B} which again shows an intramolecular pnictogen bonding interaction (N-P $2.41 \AA$). This preorganization of intermediate \mathbf{B} favors a nucleophilic attack of the N atom to the P -bound carbon atom yielding intermediate \mathbf{C}. This rate determining step is endergonic $(+10.4 \mathrm{kcal} / \mathrm{mol})$ due to the loss of aromaticity of the pyridine ring and differs only $+0.2 \mathrm{kcal} / \mathrm{mol}$ from the starting material 40. Intermediate \mathbf{C} reveals elongated $\mathrm{C}-\mathrm{P}(2.09 \AA)$ and $\mathrm{P}-\mathrm{Cl}(2.19 \AA)$ bond lengths and a comparatively close contact ($3.33 \AA$; sum of van der Waals radii of Cl and $\mathrm{P}(3.55 \AA))^{56}$ between the PCl_{2} moiety and the Cl atom, facilitating the formation of PCl_{3}. The final step is calculated to be highly exergonic with $-23.9 \mathrm{kcal} / \mathrm{mol}$ due to liberation of PCl_{3} via a 1,3 -elimination and aromatization of the molecule. The complete reaction sequence is summarized in Scheme 25 for the formation of $\mathbf{6 1}$ [OTf].

Scheme 25. Reaction of 2 eq. $\mathbf{4 0}$ with $\mathrm{Me}_{3} \mathrm{SiOTf}$ to $\mathbf{6 1}[\mathrm{OTf}]$ and PCl_{3}; i) 2 eq. $\mathrm{Me}_{3} \mathrm{SiOTf},-\mathrm{Me}_{3} \mathrm{SiCl},-\mathrm{PCl}_{3}$ $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, 110{ }^{\circ} \mathrm{C}$.

5.2. Halogenation Reactions of $\mathbf{6 1}$ [OTf]

The presence of a highly polarized $\mathrm{P}=\mathrm{C}$ double bond in the diannulated 1,4,2diazaphospholium salts motivates to investigate halogenation reactions of $\mathbf{6 1}[\mathrm{OTf}]$ using XeF_{2} or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ as readily available sources for F_{2} and Cl_{2}, respectively. $\mathbf{6 1}$ [OTf] reacts with either XeF_{2} or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ via a 1,1-additon to the corresponding phoshoranides $\mathbf{6 1}^{\mathrm{F}}$ [OTf], $61{ }^{\mathrm{Cl2}}[\mathrm{OTf}]$, and surprisingly also to phosphates $\mathbf{6 1}^{\mathrm{F4}}[\mathrm{OTf}], \mathbf{6 1}^{\mathrm{Cl} 4}[\mathrm{OTf}]$ depending on the applied reactant ratio (Scheme 26).

Scheme 26. Halogenation reactions 61 [OTf] with one eq. (left) and two eq. (right) XeF_{2} or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$; i) for $\mathrm{X}=$ F: $\mathrm{XeF}_{2},-\mathrm{Xe}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., not isolated; for $\mathrm{X}=\mathrm{Cl}: \mathrm{SO}_{2} \mathrm{Cl}_{2},-\mathrm{SO}_{2}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., 74% ii) for $\mathrm{X}=\mathrm{F}: 2 \mathrm{XeF}_{2},-2 \mathrm{Xe}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., quant; for $\mathrm{X}=\mathrm{Cl}: 2 \mathrm{SO}_{2} \mathrm{Cl}_{2},-2 \mathrm{SO}_{2}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., quant..

Figure 23. ${ }^{31} \mathrm{P}$ NMR spectrum (top) and ${ }^{19} \mathrm{~F}$ NMR spectrum (bottom) of the reaction mixture of $\mathbf{6 1}[\mathrm{OTf}]$ and XeF_{2} in a $1: 1$ ratio.

The $1: 1$ reaction of $\mathbf{6 1 a}[\mathrm{OTf}]$ and XeF_{2} in MeCN at $-40^{\circ} \mathrm{C}$ yields mainly cation $\mathbf{6 1}{ }^{\mathrm{F} 2+}$ as indicated by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic investigations $\left(\delta(\mathrm{F})=-91.4 \mathrm{ppm},\left(\mathrm{d},{ }^{1} J_{\mathrm{FP}}=\right.\right.$ $1135 \mathrm{~Hz}) ; \delta(\mathrm{P})=96.5\left(\mathrm{t},{ }^{1} J_{\mathrm{PF}}=1135 \mathrm{~Hz}\right)$). Small amounts of unidentified side-products as well as the presence of phosphate $\mathbf{6 1}{ }^{\mathrm{F} 4+}$ indicate the highly reactive nature of cation $\mathbf{6 1}{ }^{\mathrm{F} 2+}$ and explain the problems that encountered during attempts of isolation. Cation $\mathbf{6 1}{ }^{\mathrm{F} 2+}$ readily undergoes a disproportionation reaction to $\mathbf{6 1}[\mathrm{OTf}]$ and $\mathbf{6 1}{ }^{\mathrm{F} 4}[\mathrm{OTf}]$ (vide infra) during workup. The ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the reaction mixture (Figure 23) indicate two equivalent fluorine atoms for cation $61^{\mathrm{F} 2+}$ in solution, which follows the expected VSEPR model, placing the two fluoro-substituents in the axial position of the bisphenoidal bonding environment of the phosphorus atom (Chart 5, left). A slightly different outcome is observed, when $\mathbf{6 1}[\mathrm{OTf}]$ is reacted with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in MeCN at $-40^{\circ} \mathrm{C}$. From this reaction, phosphoranide derivative $\mathbf{6 1}{ }^{\mathrm{Cl2}}$ [OTf] is readily obtained as voluminous orange precipitate in a good yield of 74% after filtration of the reaction mixture and subsequent addition of $\mathrm{Et}_{2} \mathrm{O}$. Single crystals of $\mathbf{6 1}{ }^{\mathrm{Cl2}}$ [OTf] suitable for X-ray diffraction were obtained as bright orange plates from the filtrate of the reaction over the course of three days at $-30^{\circ} \mathrm{C}$. The molecular structure of $61{ }^{\mathrm{Cl} 2+}$ shows also the expected bisphenoidal geometry of the phosphorus atom (Chart 5, right).

Chart 5. Possible structural isomers of cations $61^{\mathrm{X} 2+}(\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ according to VSEPR and cation $\mathbf{6 7}{ }^{+}$as an example of a previously reported cationic phosphoranide (left); ${ }^{88}$ and molecular structure of cation $\mathbf{6 1}{ }^{\mathrm{Cl2+}}$ in $61{ }^{\mathrm{Cl}}$ [OTf] (right; hydrogen atoms and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability); selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: P1-Cl1 2.200(1), P1-Cl2 2.0717(9), P1-C1 1.870(3), P1-N1 2.110(3), C1-P1-N1 79.0(1), Cl1-P1-N1 173.41(8), C11-P1-Cl2 92.09(4).

However, one of the chloro-substituents and the nitrogen atom are now located in axial positions in accordance to the electronegativity of the donor atoms (Chart 5). The bond length between the pyridyl nitrogen atom and the P atom (P1-N1 2.110(3) \AA) is significantly elongated compared to $\mathbf{6 1}[\mathrm{OTf}]$ or $\mathbf{6 1}{ }^{\mathrm{Cl4}}[\mathrm{OTf}]$ (P1-N2 1.7413(13) \AA and P1-N1 1.930(4) \AA, vide infra) suggesting an intramolecular Lewis acid-base adduct. The ${ }^{31} \mathrm{P}$ NMR spectrum of dissolved $61{ }^{\mathrm{Cl2}}[\mathrm{OTf}]$ shows a singlet resonance at $\delta(\mathrm{P})=56.6 \mathrm{ppm}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$, which is
similar to cyclic phosphoranides ${ }^{89}$ and significantly shifted to lower field compared to related acyclic chloro-substituted phosphoranide derivatives. ${ }^{90,88}$ Our group reported on cationic phosphoranide $67^{+}(\operatorname{Dipp}=2,6 \text {-disopropylphenyl; Chart } 5)^{88 \mathrm{~b}}$ with a chemical shift of $\delta(\mathrm{P})=-98.9 \mathrm{ppm}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. The significant $\Delta \delta$ of $\sim 150 \mathrm{ppm}$ is explained by the chelating effect of the bidentate C, N-ligand in $\mathbf{6 1}{ }^{\mathrm{Cl2+}}$ causing a very acute $\mathrm{C} 1-\mathrm{P} 1-\mathrm{Cl} 2$ angle of $92.09(4)^{\circ} v s$. the corresponding much wider C-P-C angle of $113.47(7)^{\circ}$ in cation 67^{+}.

Fluorination of $\mathbf{6 1}[\mathrm{OTf}]$ with 2 eq. XeF_{2} in MeCN at $-40^{\circ} \mathrm{C}$ gives salt $\mathbf{6 1}{ }^{\mathrm{F4}}[\mathrm{OTf}]$ quantitatively as analytically pure, beige colored powder after removal of all volatiles in vacuo. The ${ }^{31} \mathrm{P}$ NMR spectrum of cation $\mathbf{6 1}{ }^{\mathrm{F4+}}$ shows at $\delta(\mathrm{P})=-138.7 \mathrm{ppm}$ a resonance with a ddt splitting due to the coupling with two chemically inequivalent fluorine atoms ($\mathrm{F}_{\text {eq. }}$) in the equatorial position and the two axial fluorine atoms ($\mathrm{Fax}_{\mathrm{ax}}$). Accordingly, the ${ }^{19} \mathrm{~F}$ NMR spectrum displays the expected ABM_{2} spin system $\left(\delta\left(\mathrm{F}_{\mathrm{M}}\right)=-55.6 \mathrm{ppm}, \delta\left(\mathrm{F}_{\mathrm{B}}\right)=-74.8 \mathrm{ppm}\right.$, $\delta\left(\mathrm{F}_{\mathrm{A}}\right)=-83.8 \mathrm{ppm}$), which matches literature reported assymetrically substitued tetrafluorophosphate salts. ${ }^{91}$ The iteratively fitted ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{6 1}{ }^{\mathrm{F4}}[\mathrm{OTf}]$ are depicted in Figure 24 including the coupling constants in the caption. Chlorination of 61[OTf] with two eq. of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in MeCN at $-40^{\circ} \mathrm{C}$ proceeds in the same manner and gives quantitatively $\mathbf{6 1}{ }^{\mathrm{Cl4}}[\mathrm{OTf}]$ as off-white powder after removing all volatiles in vacuo.

Figure 24. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{6 1}[\mathrm{OTf}]$ (top; $\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}$, insets show the ABM_{2} spin system of the experimental (upwards) and the fitted spectra (downwards); $\delta(\mathrm{F})$ in ppm $=-55.6$ (2 F , ddd, ${ }^{1} J_{\mathrm{FP}}=812 \mathrm{~Hz}$, $\left.{ }^{2} J_{\text {Fax.Feq. }}=52 \mathrm{~Hz},{ }^{2} J_{\text {Fax. Feq. }}=46 \mathrm{~Hz}, \mathrm{~F}_{\text {ax. }}.\right),-74.8\left(1 \mathrm{~F}, \mathrm{ddt},{ }^{1} J_{\mathrm{FP}}=806 \mathrm{~Hz},{ }^{2} \mathrm{JF}_{\text {eq.Feq. }}=65 \mathrm{~Hz},{ }^{2} J_{\text {Feq.Fax. }}=52 \mathrm{~Hz}, \mathrm{~F}_{\text {eq. }}\right)$, $-79.3\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-83.8\left(1 \mathrm{~F}, \mathrm{ddt},{ }^{1} J_{\mathrm{FP}}=838 \mathrm{~Hz},{ }^{2} J_{\mathrm{Feq} . \mathrm{Feq} .}=65 \mathrm{~Hz},{ }^{2} J_{\text {Feq.Fax. }}=46 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{eq}}\right.$.) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{6 1}{ }^{\mathrm{F} 4}[\mathrm{OTf}]$ (bottom; $\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}$, inset shows the doublet of triplet of doublet resonance of the experimental (upwards) and the fitted spectra (downwards); $\delta(\mathrm{P})$ in $\mathrm{ppm}=-138.7$ (1 P , dtd, ${ }^{1} J_{\text {PFeq. }}=838 \mathrm{~Hz}$, ${ }^{1} J_{\text {PFax. }}=812 \mathrm{~Hz},{ }^{1} J_{\text {PFeq. }}=806 \mathrm{~Hz}$), -144.6 (small impurities of $\mathrm{PF}_{6}{ }^{-}$, indicated as $*$).

The singlet resonance for $\mathbf{6 1}{ }^{\mathrm{Cl4+}}(\delta(\mathrm{P})=-208.9 \mathrm{ppm})$ is shifted to lower field compared to the related 2, ${ }^{\prime}$ '-bipyridinyl-tetrachlorophosphate ion (2,2-bipy) $\mathrm{PCl}_{4}{ }^{+}(\delta(\mathrm{P})=191.5 \mathrm{ppm}) .{ }^{92}$ Single crystals suitable for X-ray diffraction are obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into saturated MeCN solution of both triflate salts at $-30^{\circ} \mathrm{C}$. The molecular structures of the cations are depicted in Figure 25 displaying the expected distorted octahedral arrangment of the phosphorus centers.

Figure 25. Molecular structures of cations $61^{\mathrm{F4+}}$ in $61^{\mathrm{F} 4}[\mathrm{OTf}]$ (left) and $61^{\mathrm{Cl4+}}$ in 61^{Cl4} [OTf] (right) (hydrogen atoms and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability); selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $61^{\mathrm{F} 4+}$: P1-F1 1.6386(19), P1-F2 1.6088(17), P1-F3 1.5720(17), P1-F4 $1.5843(16), \mathrm{P} 1-\mathrm{N} 11.889(2), \mathrm{P} 1-\mathrm{C} 11.865(3), \mathrm{C} 1-\mathrm{P} 1-\mathrm{N} 285.53(10), \mathrm{F} 3-\mathrm{P} 1-\mathrm{F} 493.05(10)$, $\mathrm{F} 1-\mathrm{P} 1-\mathrm{F} 2176.90(9)$ and $61{ }^{\mathrm{Cl4+}}$: $\mathrm{P} 1-\mathrm{Cl} 12.1231(14), \mathrm{P} 1-\mathrm{Cl} 22.1447(14), \mathrm{P} 1-\mathrm{Cl} 32.0926(14), \mathrm{P} 1-\mathrm{Cl} 42.1044(14), \mathrm{P} 1-\mathrm{N} 11.930(4)$, P1-C1 1.896(4), C1-P1-N2 83.10(16), Cl3-P1-Cl4 91.14(6), Cl1-P1-Cl2 174.21(7).

In both cases angles $\mathrm{X}_{\text {ax. }}-\mathrm{P}-\mathrm{X}_{\text {ax. }}\left(\mathbf{6 1}^{\mathrm{F4+}}: 176.90(9)^{\circ}, \mathbf{6 1}^{\mathrm{Cl4+}}: 174.21(7)^{\circ}\right)$ and $\mathrm{X}_{\text {eq. }}-\mathrm{P}-\mathrm{X}_{\text {eq. }}\left(\mathbf{6 1}^{\mathrm{F4+}}\right.$: $\left.85.53(10)-93.05(10)^{\circ}, \mathbf{6 1}^{\mathrm{Cl4}+}: 83.10(6)-93.5(1)^{\circ}\right)$ are slightly distorted as a result of the chelating C, N -ligand. Compared to $\mathbf{6 1}^{+}(\mathrm{P}-\mathrm{N} 1.7413(13) \AA, \mathrm{P}-\mathrm{C} 1.7333(14) \AA$) the $\mathrm{P}-\mathrm{N}$ and the $\mathrm{P}-\mathrm{C}$ bonds are significantly elongated ($\mathbf{6 1}^{\mathrm{F4+}}: \mathrm{P}-\mathrm{N} 1.889(2) \AA, \mathrm{P}-\mathrm{C} 1.865(3) \AA$; $\mathbf{6 1}^{\mathrm{Cl4+}}: \mathrm{P}-\mathrm{N} 1.930(4) \AA, \mathrm{P}-\mathrm{C} 1.896(4) \AA$).

5.3. Substitution Reactions of $\mathbf{6 1}^{\mathrm{Cl2}}[\mathrm{OTf}]$

Particularly $61{ }^{\mathrm{C} 12}$ [OTf] is an interesting starting compound for the introduction of the cationic 2-(1,2'-bipyridin)-1-iumyl ligand (1,2'-bipyl) which represents the monocationic strucutral isomer of the prototypical 2,2'-bipyridine ligand (2,2'-bipy).

The $2,2^{\prime}$-bipy ligand offers relatively high basicity and oxidative resistance, making it an important ligand in main group and transition metal coordination chemistry. ${ }^{93}$ It has also been used to stabilize element triflates $\mathrm{E}(\mathrm{OTf})_{\mathrm{n}}$, which are widely used as Lewis acids, ${ }^{94}$ oxidizing agents ${ }^{95-97}$ and sources of E^{nt} cations. ${ }^{98-101}$ Thus, Burford and co-workers reported on the synthesis of the bis-2,2'-bipy complex $\mathbf{6 8}^{3+}$ of in situ generated $\mathrm{P}(\mathrm{OTf})_{3}$ from PCl_{3} and AgOTf (Scheme 27, I). ${ }^{102}$

Scheme 27. I: Synthesis of the bis-2,2'bipy complex 68[OTf $]_{3}$ according to reference [102]; i) $\mathrm{MeCN},-3 \mathrm{AgCl}$, r.t., 40%; II: Synthesis of the mixed bis-2, 2^{\prime} bipy $/ 1,2^{\prime}$ bipyl complex $\mathbf{6 9}[\mathrm{OTf}]_{3}$ from $\mathbf{6 1}{ }^{\mathrm{X} 2}$ [OTf]; ii) for $\mathrm{X}=\mathrm{F}$: in situ preparation of $\mathbf{6 1}{ }^{\mathrm{F} 2}[\mathrm{OTf}],+2 \mathrm{Me}_{3} \mathrm{SiOTf}^{2},-2 \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{MeCN}$, r.t., 46%; for $\mathrm{X}=\mathrm{Cl}:+2 \mathrm{Me}_{3} \mathrm{SiOTf},-2$ $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 99%.

The mixed $2,2^{\prime}$-bipy $/ 1,2^{\prime}$-bipyl complex $\left.\mathbf{6 9 [O T f}\right]_{3}$ forms quantitatively from the reaction of either in situ formed $\mathbf{6 1}^{\mathrm{F2}}[\mathrm{OTf}]$ or $\mathbf{6 1}^{\mathrm{Cl2}}[\mathrm{OTf}]$ with 1 eq. $2,2^{\prime}$-bipy and 2 eq. Me ${ }_{3} \operatorname{SiOTf}$ (Scheme 27, II). The switch from the N_{4} - to CN_{3}-coordination mode of the spirocyclic environment of cation 68^{3+} vs. 69^{3+} causes an upfield shift from $\delta(\mathrm{P})=33.9 \mathrm{ppm}^{102}$ to $\delta(\mathrm{P})$ $=20.5 \mathrm{ppm}$ as a result of the decreased electron density of the $1,2^{\prime}$-bipyl-backbone in $\mathbf{6 9}^{3+}$ resulting in a significant shielding of the P nucleus.

Figure 26. Molecular structure of $\mathbf{6 8}{ }^{3+}$ in $\mathbf{6 8}[\mathrm{OTf}]_{3} * 2 \mathrm{MeCN}$ (left) as reported by Burford et al. ${ }^{102}$ and molecular structure of cation $\mathbf{6 9}^{3+}$ in $\left.\mathbf{6 9 [O T f}\right]_{3} * 2 \mathrm{MeCN}$ (right) (hydrogen atoms, solvate molecules and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $68{ }^{3+}$: P1-N1 1.9389(16), P1-N2 1.8111(18), P1-N3 1.8157(18), P1-N4 1.9735(17), N1-P1-N4 173.09(8), N1-P1-N2 82.80(9), N3-P1-N4 82.03(9), N2-P1-N3 99.57(9) and 69^{3+} : P1-N1 1.992(3), P1-N3 1.942(3), P1-N4 1.836(3), P1-C1 1.852(3), N1-P1-N3 173.44(11), N1-P1-C1 81.83(12), N3-P1-N4 82.34(12), N4-P1-C1 98.41(11).

The molecular structure of cation $\mathbf{6 9}{ }^{3+}$ in $\left.\mathbf{6 9 [O T f}\right]_{3} * 2 \mathrm{MeCN}$ is comparable to that of $\mathbf{6 8}^{3+}$ in $\mathbf{6 8}[\mathrm{OTf}]_{3} * 2 \mathrm{MeCN}$ with the presence of the stereochemical lone pair at the phosphorus atom in each case (Figure 26). As expected, the $\mathrm{P}-\mathrm{N}$ bond lengths to the axial N -substituents ($\mathrm{P} 1-$ N1 $1.992(3), \mathrm{P} 1-\mathrm{N} 31.942(3) \AA$) in $\mathbf{6 9}{ }^{3+}$ are elongated compared to the equatorial $\mathrm{P}-\mathrm{N}$ bond (P1-P4 1.836(3) A). Compared to $\mathbf{6 8}^{3+},{ }^{102}$ the $\mathrm{P}-\mathrm{N}$ bond lengths of $\mathbf{6 9}{ }^{3+}$ are slightly elongated (69 ${ }^{3+}$: P1-N1 1.992(3), P1-N3 1.942(3), P1-N4 1.836(3) Å; $\mathbf{6 8}^{3+}$: P1-N4 $1.9735(17), \mathrm{P} 1-\mathrm{N} 11.9389(16), \mathrm{P} 1-\mathrm{N} 21.8111(18), \mathrm{P} 1-\mathrm{N} 31.8157(18) \AA$), which is caused by the substitution of one nitrogen donor with a carbon donor. Furthermore, the $\mathrm{P}-\mathrm{N}$ bond in equatorial position in $69^{3+}(\mathrm{P} 1-\mathrm{N} 41.836(3) \AA)$ is clearly exceeding the length of a typical $\mathrm{P}-\mathrm{N}$ single bond $(\mathrm{P}-\mathrm{N}: 1.78 \AA),{ }^{69}$ indicating a rather coordinative character of this bond. In contrast, the $\mathrm{P}-\mathrm{C}$ bond ($\mathrm{P} 1-\mathrm{C} 11.852(3) \AA$) is slightly shortened compared to a typical $\mathrm{P}-\mathrm{C}$ single bond ($\mathrm{P}-\mathrm{C}: 1.87 \AA$). ${ }^{103}$
Compound $\mathbf{6 1}{ }^{\mathrm{Cl2}}$ [OTf] can also be used for the synthesis of 2-(1,2'-bipyridin)-1-iumylsubstituted dipyrazolylphosphanes 70a-d[OTf], a class of novel cationic ligands and examples of cationic $\boldsymbol{S y n} \boldsymbol{P}$ hos type II phosphanes (Scheme 28).

Scheme 28. Reaction of $\mathbf{6 1}{ }^{\mathrm{Cl} 2}[\mathrm{OTf}]$ with 2 eq. of $\mathbf{5 a - d}$; i) $-2 \mathrm{Me}_{3} \mathrm{SiCl}^{2} \mathrm{Et}_{2} \mathrm{O}$, r.t., $91-98 \%$.

Salts 70a-d[OTf] are synthesized by the reaction of $\mathbf{6 1}{ }^{\mathrm{Cl}}$ [OTf] with two equivalents of the respective 3,5-alky/aryl-1-(trimethylsilyl)pyrazole in $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature. The released chloro(trimethyl)silane can be removed under reduced pressure after 16-120 h and no further purification is necessary. All phosphanes 70a-d[OTf] are conveniently prepared in excellent yields (91-98\%). The ${ }^{31} \mathrm{P}$ NMR spectra of 70a-d[OTf] display singlet resonances (70a[OTf]: $\delta(\mathrm{P})=38.6 \mathrm{ppm} ; 70 \mathrm{~b}[\mathrm{OTf}]: \delta(\mathrm{P})=41.6 \mathrm{ppm} ; 70 \mathrm{c}[\mathrm{OTf}]: \delta(\mathrm{P})=61.4 \mathrm{ppm}$; 70d[OTf]: $\delta(\mathrm{P})=44.1 \mathrm{ppm}$), which are in good agreement with aforementioned dipyrazolylsubstituted phosphanes 41 and 43. All compounds can be readily re-crystallized from concentrated MeCN or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions via $\mathrm{Et}_{2} \mathrm{O}$ diffusion yielding X-ray quality single crystals. The molecular structures of $\mathbf{7 0 a}-\mathbf{d}^{+}$are depicted in Figure 27 with selected geometrical parameters presented in Table 6, stating that in all four cases the 1,2'-bipyl substituent is solely bound to the phosphorus via its carbon atom. The $\mathrm{P}-\mathrm{C}$ bond lengths in 70a-d ${ }^{+}$range from 1.862(2)-1.8684(13) \AA (Table 6) and are thus only slightly shorter than a typical $\mathrm{P}-\mathrm{C}$ single bond ($\mathrm{P}-\mathrm{C}: 1.87 \AA$). ${ }^{103}$ Yet, the neutral nitrogen (N2, see Figure 27) of the $1,2^{\prime}$-bipyl-moiety is still in close contact with the phosphorus atom in all cations 70a-d ${ }^{+}$, ranging from $2.3897(17)-2.8520(13) \AA$ (Table 6), being well inside the sum of the van der Waals radii of N and $\mathrm{P}(3.35 \AA)) .{ }^{56}$ This coordination of the N 2 atom towards P1 leads to an elongation of the P1-N4 bond compared to the P1-N3 bond in all 70a-d ${ }^{+}$(Table 6). This $\mathrm{P} 1-\mathrm{N} 4$ bond stretching is especially larger, when the observed torsion angle of the $1,2^{\prime}$ -bipyl-moiety (N2-C2-N1-C1) is smaller. Thus, in 70d ${ }^{+}$the smallest torsion angle (N2-C2-N1-C1 $\left.16.2(2)^{\circ}\right)$ and the largest P1-N4 bond (1.7787(17) \AA) are observed. On the other hand, shorter $\mathrm{P} 1-\mathrm{N} 4$ bonds are observed for $\mathbf{7 0 b}^{+}$and $\mathbf{7 0} \mathrm{c}^{+}$, which both show larger torsion angles (Table 6).

Figure 27. Molecular structures of 70a ${ }^{+}$in 70a[OTf] (top left), $\mathbf{7 0 b}^{+}$in $\mathbf{7 0 b}[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$ (top right), $\mathbf{7 0 c}^{+}$in $\mathbf{7 0 c}[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$ (bottom left) and $70 \mathrm{~d}^{+}$in 70d[OTf] (bottom right; hydrogen atoms, solvate molecules and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 6.

Table 6. Selected geometrical parameters of crystallographically characterized 70a-d[OTf].

	$\mathbf{7 0 a}[\mathrm{OTf}]$	$\mathbf{7 0 b}[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$	70c $[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$	70d[OTf]
$\mathrm{P} 1-\mathrm{C} 1$ in \AA	$1.8653(12)$	$1.862(2)$	$1.8684(13)$	$1.866(2)$
$\mathrm{P} 1-\mathrm{N} 3$ in \AA	$1.7276(10)$	$1.7188(17)$	$1.7183(12)$	$1.7493(17)$
$\mathrm{P} 1-\mathrm{N} 4$ in \AA	$1.7442(10)$	$1.7307(17)$	$1.7305(11)$	$1.7787(17)$
$\mathrm{P} 1-\mathrm{N} 2$ in \AA	$2.5096(9)$	$2.705(2)$	$2.8520(13)$	$2.3897(17)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$ in $^{\circ}{ }^{\circ}$	$25.15(14)$	$36.0(3)$	$48.84(17)$	$16.2(2)$

6. Dipyrazolylphosphanes in Condensation Reactions with Primary Phosphanes

In chapter 4 the versatile use of dipyrazolyl-substituted phosphanes as [P_{1}]-building block is described. The controlled reactions of dipyrazolylphosphanes 41a and 43a with secondary phosphanes yields triphosphanes $\mathbf{4 8 - 5 0}$ and triphospholane 51 via condensation or pentaphospholanes 52 and 56 via a P-N/P-P bond metathesis reaction. Extending this protocol towards primary phosphanes should allow the formation of cyclophosphanes, which are most commonly synthesized by chemical ${ }^{104}$ or electrochemical ${ }^{105}$ reduction of corresponding dihalophosphanes $\mathrm{RPX}_{2} \quad(\mathrm{X}=$ halogen $)$ yielding symmetrical, homosubstituted rings. ${ }^{4 a, 106}$ The obtained cyclophosphanes (RP) ${ }_{\mathrm{n}}$ typically undergo rearrangement to the respective more stable ring-sizes (typically four- of five-membered rings), depending on the substituents and the polarity of the used solvents. ${ }^{4 a, 106,107}$ Sterically demanding substituted dihalophosphanes give access to diphosphenes $\mathrm{RP}=\mathrm{PR}$ which under certain circumstances are isolatable ${ }^{108}$ but typically tend to dimerize to tetraphosphetanes. ${ }^{109}$ Thus, following the classical routes and using mixtures of dihalophosphanes allows the introduction of two different substituents yielding mixed-substituted tetraphosphetanes, however, very often unselective and in low yields. There are only a handful reports on mixed-substituted tetraphosphetanes using specialized synthetic protocols. ${ }^{14 a, 109-111}$ Therefore, a more general route with readily available P-precursors would certainly be beneficial for further exploration of the chemistry of this type of compounds.

6.1. Synthesis of Mixed-substituted Tetraphosphetanes

The mixed-substituted tetraphosphetanes $\left(\mathrm{RP}-\mathrm{P}^{t} \mathrm{Bu}\right)_{2} 71(\mathrm{R}=\mathrm{Ph})$ and $72(\mathrm{R}=\mathrm{Py})$ form readily from the reaction of ${ }^{t} \mathrm{BuPH}_{2}$ and the respective dipyrazolylphosphanes 41a or 73a when mixed in equimolar ratios in MeCN at $-30^{\circ} \mathrm{C}$ (Scheme 29).

$$
\begin{array}{ll}
\text { 73a }(R=P h) & 71(R=P h) \\
41 \mathrm{a}(\mathrm{R}=\mathrm{Py}) & 72(\mathrm{R}=\mathrm{Py})
\end{array}
$$

Scheme 29. Preparation of tetraphosphetanes 71 and 72; i) -2 1a, MeCN, $-30^{\circ} \mathrm{C}, 16 \mathrm{~h}, 69 \%$ (71), 53% (72).

After evaporating the solvent and subsequent sublimation of the by-product 3,5dimethylpyrazole (1a), both tetraphosphetanes 71 and $\mathbf{7 2}$ are obtained as colorless powders in quantitative yields and acceptable purities of $>90 \%$, deduced by the integral ratios in the ${ }^{31} \mathrm{P}$ NMR spectra. Washing of the crude products with cold MeCN gives analytically pure materials, however, reduces the isolated yield significantly (71: 69\%, 72: 53\%).

Figure 28. ${ }^{31} \mathrm{P}$ NMR spectra of 71 (bottom; $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$) and 72 (top; $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}$). Centred: Molecular structures of 71 (bottom) and 72 (top; hydrogen atoms and anions are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are listed in Table 9.

The formation of other ring sizes is not observed and for both compounds the observation of an $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system in the ${ }^{31} \mathrm{P}$ NMR spectrum $\left(71: \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-88.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=-15.5 \mathrm{ppm}\right.$; ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-130 \mathrm{~Hz} ; 72: \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-81.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-18.8 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-131 \mathrm{~Hz}$; Figure 28) confirms the $C_{2 v}$ symmetry of the molecules. The structural connectivity is moreover confirmed by single crystal X-ray analysis and the molecular structures of $\mathbf{7 1}$ and $\mathbf{7 2}$ are depicted in Figure 28. The structural parameters of the P_{4}-cores of $\mathbf{7 1}$ and 72 are listed in Table 9 (vide infra) and compare well with known symmetrically, homosubstituted tetraphosphetanes such as $(\mathrm{PhP})_{4}{ }^{112}$ and $(\mathrm{CyP}) 4^{113}$ which reasons abstaining from a detailed discussion.

6.2. Coinage Metal Complexes of Tetraphosphetane 72

While the coordination behavior of tetraphosphetanes of type $(\mathrm{RP})_{4}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph})$ has been extensively explored, ${ }^{114}$ corresponding investigations with mixed-substituted derivatives are scarce and, to the best of knowledge, did not involve derivatives with pyridylsubstituents. The additional nitrogen-based donor site of the pyridyl-units in $\mathbf{7 2}$ makes it a suitable multi-dentate ligand for metal coordination with selected $\mathrm{Cu}(\mathrm{I}), \mathrm{Ag}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I})$ triflate salts. Thus, $\mathbf{7 2}$ is reacted in a $2: 1$ ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right][\mathrm{OTf}]$ and $\mathrm{Ag}[\mathrm{OTf}]$ and in the case of $\mathrm{Au}(\mathrm{I})$, with the corresponding triflate salt which was in situ prepared from (tht) AuCl and MeSiOTf (Scheme 30).

Scheme 30. Reaction of $\mathbf{7 2}$ with selected coinage metal triflate salts " $\mathrm{M}(\mathrm{I})[\mathrm{OTf}]$ "; i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h ; $\mathrm{M}=\mathrm{Cu}$, $\mathrm{M}[\mathrm{OTf}]=\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right][\mathrm{OTf}],-4 \mathrm{MeCN}, 89 \% ; \mathrm{M}=\mathrm{Ag}, \mathrm{M}[\mathrm{OTf}]=\mathrm{Ag}[\mathrm{OTf}], 76 \% ; \mathrm{M}=\mathrm{Au}, \mathrm{M}[\mathrm{OTf}]=$ (tht) $\mathrm{AuCl}+\mathrm{Me}_{3} \mathrm{SiOTf}$, $-\mathrm{Me}_{3} \mathrm{SiCl}$, -tht, 74%.

Vapor diffusion of n-pentane into the reaction mixtures at $-30^{\circ} \mathrm{C}$ yields crystals of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2},\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in good to very good yields (74-89\%). Crystals of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are suitable for X-ray analysis, however, better quality crystals of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ are obtained as MeCN mono-solvate via recrystallization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$. The molecular structures are depicted in Figure 29 and structural parameters are summarized in Table 7. In all three cases the molecular structures reveal mononuclear metal complexes where the metal center $\mathrm{M}(\mathrm{I})$ is coordinated by two tetraphosphetanes via one ${ }^{t} \mathrm{BuP}-$ moiety and the nitrogen atom of one pyridyl-substituent each. The $\mathrm{P}-\mathrm{P}$ bond lengths in the complexes remain virtually unchanged compared to the free tetraphosphetane 72. The average $\mathrm{P}-\mathrm{M}$ contacts in $\left[(72)_{2} \mathrm{M}\right][\mathrm{OTf}](2.2621 \AA(\mathrm{Cu}), 2.4100 \AA(\mathrm{Ag})$ and $2.2982 \AA(\mathrm{Au}))$ are comparable to the coinage metal complexes of 48, mentioned in chapter 4.2. $\left[(72)_{2} \mathrm{Cu}\right]^{+}$ shows a distorted tetrahedral geometry around the copper atom with a $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle of $94.55(6)^{\circ}$ and a $\mathrm{P}-\mathrm{Cu}-\mathrm{P}$ angle of $127.26(2)^{\circ}$. This distortion causes a slight elongation of the $\mathrm{Cu}-\mathrm{N}$ bond lengths in $\left[(72)_{2} \mathrm{Cu}\right]^{+}$(av. $2.1124 \AA$) compared to tetrakis(pyridine)copper(I) hexafluorophosphate ($\mathrm{Cu}-\mathrm{N} 2.061(3) \AA$), which shows an almost perfect tetrahedral
coordination geometry. ${ }^{115}$ Cations $\left[(72)_{2} \mathrm{Ag}\right]^{+}$and $\left[(72)_{2} \mathrm{Au}\right]^{+}$show wider P-M-P angles $\left(\left[(72){ }_{2} \mathrm{Ag}\right]^{+}: 141.14(2)^{\circ}\right.$ and $\left.\left[(72)_{2} \mathrm{Au}\right]^{+}: 154.71(2)^{\circ}\right)$ and more acute $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles $\left(\left[(72)_{2} \mathrm{Ag}\right]^{+}: 85.18(5)^{\circ}\right.$ and $\left.\left[(72)_{2} \mathrm{Au}\right]^{+}: 75.42(6)^{\circ}\right)$, causing a further elongation of the $\mathrm{N}-\mathrm{M}$ distances $\left(\left[(72)_{2} \mathrm{Ag}\right]^{+}: 2.4458 \AA\right.$ and $\left[(72)_{2} \mathrm{Au}\right]^{+}: 2.6262 \AA$ (average values)). This states a decreasing participation of the pyridine nitrogen and vice versa an increasing involvement of the phosphorus in the coordination of silver and gold, which is in consistency with Pearsons' concept. ${ }^{116}$

Figure 29. Molecular structures of $\left[(72)_{2} \mathrm{Cu}\right]^{+}$in $\quad\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (left), $\left[(72)_{2} \mathrm{Ag}\right]^{+}$in $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}] * \mathrm{MeCN}$ (middle) and $\left[(\mathbf{7 2})_{2} \mathrm{Au}\right]^{+}$in $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (right) (hydrogen atoms, anions and solvate molecules are omitted for clarity, thermal ellipsoids are displayed at 50% probability); selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are given in Table 7.

Table 7. Selected geometrical parameters of crystallographically characterized coinage metal complexes $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2},\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}] * \mathrm{MeCN}$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

	$\left[(\mathbf{7 2})_{2} \mathrm{Cu}\right][\mathrm{OTf}]$	$\left[(\mathbf{7 2})_{2} \mathrm{Ag}\right][\mathrm{OTf}]$	$\left[(\mathbf{7 2})_{2} \mathrm{Au}\right][\mathrm{OTf}]$
$\mathrm{P}-\mathrm{Pa}^{\mathrm{a}}$ in \AA	2.2204	2.2183	2.2191
$\mathrm{P}-\mathrm{M}^{\mathrm{a}}$ in \AA	2.2621	2.4100	2.2982
$\mathrm{~N}-\mathrm{M}^{\mathrm{a}}$ in \AA	2.1124	2.4458	2.6262
$\mathrm{~N}-\mathrm{M}-\mathrm{N}$ in ${ }^{\circ}$	$94.55(6)$	$85.18(5)$	$75.42(6)$
$\mathrm{P}-\mathrm{M}-\mathrm{P}$ in ${ }^{\circ}$	$127.26(2)$	$141.14(2)$	$154.71(2)$

[a] average bond lengths and angles are given.
Coordination complexes $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}],\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ were further analyzed by multinuclear NMR spectroscopy at various temperatures. All three complexes $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}],\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ show a dynamic behavior in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
solution at 290 K . In the ${ }^{1} \mathrm{H}$ NMR spectra four resonances for the pyridyl moieties are observed in each case of the three coordination complexes, stating the fast exchange of the pyridyl moieties coordinating the respective metal cation. Upon cooling, this exchange is slowing down, leading to eight different resonances for the pyridyl moieties.

Figure 30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of $72\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$ and $\left[(\mathbf{7 2})_{2} \mathrm{Cu}\right][\mathrm{OTf}],\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ (form bottom to top; $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 190 \mathrm{~K}$); insets show the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{MM}^{\prime} \mathrm{XX}$ ' spin system of the experimental (upwards) and fitted spectra (downwards) of [(72) $\left.{ }_{2} \mathrm{Au}\right][\mathrm{OTf}]$.

Table 8. Chemical shifts of 72, $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}],\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ in ppm; entries with a grey background indicate resonances of the ${ }^{t} \mathrm{Bu}-\mathrm{P}$ moiety coordinating the metal (I) cation.

	$\mathbf{7 2}$	$\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$	$\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$	$\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$
$\delta\left(\mathrm{P}_{\mathrm{A}}\right)$	-81.9	-81.4	-87.6	-77.3
$\delta\left(\mathrm{P}_{\mathrm{B}}\right)$	-	-68.9	-82.4	-73.0
$\delta\left(\mathrm{P}_{\mathrm{M}}\right)$	-	-45.1	-32.5	-17.5
$\delta\left(\mathrm{P}_{\mathrm{X}}\right)$	-18.8	-12.4	19.2	

While two pyridyl groups are coordinating the metal cation, the other two are not, making them chemically inequivalent. The ${ }^{1} \mathrm{H}$ NMR spectra of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}],\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and [(72) $\left.)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ at temperatures from $290-190 \mathrm{~K}$ are depicted in chapter 12.5 , showing coalescence temperatures of 260 K for $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ and of 210 K for $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$. These findings are also observed in the ${ }^{31} \mathrm{P}$ NMR spectra (see chapter 12.5). $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ and $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ show three broadened resonances at 300 K due to
dynamic processes and additionally for $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ due to the fast quadrupole relaxation of the ${ }^{63} \mathrm{Cu}$ nucleus. ${ }^{59}$ For $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ two resonances are observed at 300 K . Measuring the ${ }^{31} \mathrm{P}$ NMR spectra at 190 K reveals an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{MM}^{\prime} \mathrm{XX}^{\prime}$ ' spin system for each coinage metal complex $\left[(72)_{2} \mathrm{M}\right][\mathrm{OTf}]$ (see Figure 30 and Table 8). Details on the coupling constants for $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$, acquired by iteratively fitting the spectrum, are reported in the experimental details (chapter 12.5.5). Severe line broadening in the spectra of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ due to the fast quadrupole relaxation of the ${ }^{63} \mathrm{Cu}$ nuclei, ${ }^{59}$ and further line splitting in the spectra of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ as a result of the complexation with the ${ }^{107} \mathrm{Ag} /{ }^{109} \mathrm{Ag}$ nuclei reasons refraining from iteratively fitting these spectra. It is noteworthy that the resonance of the ${ }^{t} \mathrm{Bu}-\mathrm{P}$ moiety in $\left[(72)_{2} \mathrm{M}\right][\mathrm{OTf}]$ coordinating the metal cation shows a significant shift compared to the ${ }^{t} \mathrm{Bu}-\mathrm{P}$ moiety of the free ligand 72. Coordination to $\mathrm{Cu}(\mathrm{I})$ and $\operatorname{Ag}(\mathrm{I})$ cause upfield shifts of $\Delta \delta=-26.3 \mathrm{ppm}$ and $\Delta \delta=-13.7 \mathrm{ppm}$, respectively. Yet coordination to $\mathrm{Au}(\mathrm{I})$ is observed by a downfield shift of $\Delta \delta=+38.0 \mathrm{ppm}$ (Figure 30; Table 8).

6.3. Methylation Reactions of Tetraphosphetanes $\mathbf{7 1}$ and $\mathbf{7 2}$

Further investigations on the donor ability of compounds $\mathbf{7 1}$ and $\mathbf{7 2}$ focused on methylation reactions with an equimolar ratio of MeOTf in $\mathrm{Et}_{2} \mathrm{O}$ (Scheme 31).

Scheme 31. Monomethylation reaction of 71 and 72; i) $+\mathrm{MeOTf}^{2} \mathrm{Et}_{2} \mathrm{O}$, r.t., 16 h, 87% ($74[\mathrm{OTf}]$), 91% (75[OTf]).

For both compounds, colorless precipitates are obtained, which after filtration and subsequent recrystallization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ were identified as tetraphosphetan-1-ium triflate salts $\mathbf{7 4}[\mathrm{OTf}]$ and $\mathbf{7 5}$ [OTf]. Both salts are obtained in very good yield (74[OTf]: 87\%; $\mathbf{7 5}[\mathrm{OTf}]: 91 \%$) and their ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra display an $\mathrm{A}_{2} \mathrm{MX}$ spin system each (74[OTf]: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-81.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-39.8 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=22.0 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-248 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-$ $127 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=23 \mathrm{~Hz} ; 75[\mathrm{OTf}]: \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-70.5 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-24.9 \mathrm{ppm}, \delta(\mathrm{Px})=24.2$ ppm; $\left.{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-225 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-132 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=15 \mathrm{~Hz}\right)$ as expected for the monomethylation of one of the ${ }^{t} \mathrm{Bu}$-P moieties. X-ray analysis of both salts confirms the structural connectivity of cations $\mathbf{7 4}^{+}$and $\mathbf{7 5}^{+}$as shown in Figure 31. Their structural parameters are in good agreement with those reported for related monomethylated tetraphosphetanium cations (Table 9). ${ }^{35 c, d}$

Figure 31. Molecular structures of $\mathbf{7 4}[\mathrm{OTf}]$ (left) and $\mathbf{7 5}[\mathrm{OTf}]$ (right) (hydrogen atoms and anions are omitted for clarity; thermal ellipsoids are displayed at 50% probability); selected bond lengths and angles are given in Table 9.

In thought of further methylation of $\mathbf{7 1}$ and $\mathbf{7 2}$ harsher reaction conditions are attempted by reacting them in a slurry of a fivefold excess of MeOTf, similarly to reports by Burford and co-workers. ${ }^{35 \mathrm{~d}}$ In case of 71, only the exclusive formation of the monomethylated salt
$74[\mathrm{OTf}]$ is observed with no indication for the formation of other compounds. However, in case of $\mathbf{7 2}$ the formation of two distinct different cations is observed as indicated by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the heterogeneous reaction mixture dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ (Figure 32). The presence of an $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system suggests the formation of the $C_{2 v}$ symmetric cation $76^{2+}\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-96.4 \mathrm{ppm}, \delta\left(\mathrm{Px}_{\mathrm{x}}\right)=-4.3 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-132 \mathrm{~Hz} ;\right.$ Figure 32$)$ and the observed $\mathrm{A}_{2} \mathrm{MX}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-89.8 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-17.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=42.6 \mathrm{ppm}\right.$; ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-249 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-129 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=22 \mathrm{~Hz}$; Figure 32, highlighted in red) is significantly different from that of the monomethylated cation $\mathbf{7 5}^{+}$suggesting the formation of tricationic 77^{3+} (Scheme 32).

Scheme 32. Reaction of $\mathbf{7 2}$ with excess MeOTf; i) 5 eq. MeOTf, neat, r.t., 16h; unbalanced equation.

Figure 32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of 72 with 5 eq. $\mathrm{MeOTf}\left(\mathrm{CD}_{3} \mathrm{NO}_{2} ; 300 \mathrm{~K}\right)$; small amounts of unidentified compounds are indicated by asterisks.

The findings are justified by the observed shifts of the $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system which are in the region of tri-coordinated phosphorus atoms, whereas the resonance at $\delta(\mathrm{Px})=42.6 \mathrm{ppm}$ for cation 77^{3+} is typical for a tetra-coordinated phosphorus atom. ${ }^{177}$ This assumption is confirmed by X-ray analysis since both salts could be crystallized, however, repeatedly as mixtures. After removal of the excess MeOTf from the reaction mixture, crystals of 76[OTf] 2
suitable for X-ray analysis grew from a MeCN solution by slow vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ at $-30^{\circ} \mathrm{C}$ next to the deposition of copious amounts of amorphous material. If the reaction mixture is dissolved with excess of MeOTf in MeNO_{2} followed by $\mathrm{Et}_{2} \mathrm{O}$ addition via slow vapor diffusion at $-30^{\circ} \mathrm{C}$, suitable crystals of $77[\mathrm{OTf}]_{3} * 2 \mathrm{MeNO}_{2}$ could be harvested. The separation of $\mathbf{7 6}[\mathrm{OTf}]_{2}$ from $77[\mathrm{OTf}]_{3}$ by fractional crystallization was not possible so far, thus, hampering the isolation of analytically pure salts. Figure 33 displays the molecular structures of the cations $\mathbf{7 6}^{2+}$ and $\mathbf{7 7}^{3+}$.

Figure 33. Molecular structures of $\mathbf{7 6}^{2+}$ in $\mathbf{7 6}[\mathrm{OTf}]_{2}$ (left) and $\mathbf{7 7}^{3+}$ in $77[\mathrm{OTf}]_{3} * 2 \mathrm{MeNO}_{2}$ (right; hydrogen atoms, anions and solvate molecules are omitted for clarity, thermal ellipsoids are displayed at 50% probability); selected bond lengths and angles are given in Table 9.

Table 9. Selected geometrical parameters of crystallographically characterized 71, 72, 74[OTf], 75[OTf],
 given in $\left({ }^{\circ}\right)$; entries with a grey background indicate $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$bond lengths and $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}-\lambda^{3} \mathrm{P}$ bond angles.

	71	72	74[OTf]	75[OTf]	76[OTf $]_{2}$	77[OTf] ${ }_{3}$	78[OTf $]_{3}$	$\mathbf{8 2}[\mathrm{OTf}]_{3}$
$\begin{aligned} & \text { P1 } \\ & \text { P2 } \end{aligned}$	2.2236(4)	2.2226(4)	2.1983(6)	$2.1899(6)$	2.2187(5)	2.2034(5)	2.247(2)	2.2398(7)
$\begin{aligned} & \text { P2 - } \\ & \text { P3 } \end{aligned}$	2.2222(4)	2.2232(5)	2.2341(6)	2.2419(6)	$\underset{a}{2.2345(5)}$	2.2120(5)	2.238(2)	2.2194(7)
$\begin{aligned} & \text { P3 } \\ & \text { P4 } \end{aligned}$	2.2198(4)	$2.2195(4)$	2.2333(5)	2.2397(6)	-	2.2420(5)	2.203(2)	2.2224(7)
$\begin{aligned} & \text { P4 } \\ & \text { P1 } \end{aligned}$	2.2313(4)	2.2191(4)	2.1938(6)	2.1861(6)	-	2.2351(5)	2.204(2)	2.2257(7)
$\begin{aligned} & \text { P1- } \\ & \text { P2-P3 } \end{aligned}$	87.87(1)	85.55(2)	83.97(2)	82.46(2)	86.30(2) ${ }^{\text {a }}$	90.33(2)	83.61(6)	82.92(3)
$\begin{aligned} & \text { P2- } \\ & \text { P3-P4 } \end{aligned}$	85.94(1)	85.14(2)	90.28(2)	85.89(2)	87.21(2) ${ }^{\text {a }}$	84.12(2)	81.51(6)	84.44(3)
$\begin{aligned} & \text { P3- } \\ & \text { P4-P1 } \end{aligned}$	87.73(1)	85.72(2)	84.09(2)	82.59(2)	-	88.76(2)	85.44(6)	83.17(9)
$\begin{aligned} & \text { P4- } \\ & \text { P1-P2 } \end{aligned}$	85.63(1)	85.16(2)	92.77(2)	88.49(2)	-	84.48(2)	81.29(5)	83.88(2)

The $\mathrm{P}-\mathrm{P}$ bond lengths in dicationic $\mathbf{7 6}^{2+}$ are comparable to those of tetraphosphetanes 71 and 72 (Table 9). The P-P-P angles differ only slightly indicating only a minor influence of the methylation of the pyridyl-substituents to the structural parameters of the P_{4}-core. Consistent
with our findings, the structural parameters of trication 77^{3+} are very similar to those of mono-methylated tetraphosphetanium cations $\mathbf{7 4}^{+}$and $\mathbf{7 5}^{+}$(Table 9).

Attempting to selectively synthesize $77[\mathrm{OTf}]_{3}, \mathbf{7 2}$ was stirred in a twenty-two-fold excess of MeOTf at elevated temperature $\left(80^{\circ} \mathrm{C}\right.$; microwave). After 4 h , a red-colored solution was obtained, and, although the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed a rather complex mixture of compounds, one very dominant $\mathrm{A}_{2} \mathrm{MX}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-73.5 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.0 \mathrm{ppm}\right.$, $\left.\delta\left(\mathrm{P}_{\mathrm{x}}\right)=19.9 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-228 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-118 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=31 \mathrm{~Hz}\right)$ indicated the formation of a new compound in high yields. After the addition of $\mathrm{Et}_{2} \mathrm{O}$ to the reaction mixture, copious amounts of a colorless precipitate are obtained. Washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives the analytically pure product in high yields (91\%) which was identified as $77[\mathrm{OTf}]_{3}$ after recrystallization from a MeNO_{2} solution and slow vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ (Figure 34).

Figure 34. Molecular structure of $\mathbf{7 8}^{3+}$ in $78[\mathrm{OTf}]_{3} * \mathrm{MeNO}_{2}$ (hydrogen atoms, solvate molecules and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability). Selected bond lengths and angles are given in Table 9.

The formation of cation $\mathbf{7 8}^{3+}$ is likely to proceed according to Scheme 33 via a series of alkylation and dealkylation reactions in which the first step is the formation of the trimethylated trication $\mathbf{7 7}^{3+}$. Due to the high charge of cation $\mathbf{7 7}^{\mathbf{3 +}}$, the nucleophilic attack of one triflate anion and elimination of ${ }^{t} \mathrm{BuOTf}$ is supported and leads to the formation of dication $\mathbf{7 9}^{2+}$. At temperatures above $-30^{\circ} \mathrm{C}{ }^{t} \mathrm{BuOTf}$ is known to decompose to ${ }^{i}$ butene and HOTf. ${ }^{118}$ The formation of the latter can be traced by multi-nuclear NMR spectroscopy of the reaction mixture $(\delta(\mathrm{H})=15.42 \mathrm{ppm}(\mathrm{br}), \delta(\mathrm{F})=-76.0 \mathrm{ppm}(\mathrm{s})) .{ }^{118 \mathrm{~b}}$ In the last step, dication $\mathbf{7 9}^{2+}$ is regioselectively methylated due to the excess of MeOTf to trication $\mathbf{7 8}^{3+}$.

Scheme 33. Proposed mechanism of the formation of $\mathbf{7 8}[\mathrm{OTf}]_{3}$ from the reaction of $\mathbf{7 2}$ with MeOTf at elevated temperatures; i) 22 eq. MeOTf, neat, $80^{\circ} \mathrm{C}, 4 \mathrm{~h},-{ }^{\text {i }}$ butene, $-\mathrm{HOTf}, 91 \%$.

The molecular structure of $\mathbf{7 8}^{3+}$ is shown in Figure 34. The $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$bond lengths in $\mathbf{7 8}^{3+}$ (P3-P4 2.203(2) \AA, P4-P1 2.204(2) \AA) are marginally shorter compared to the $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$ bond lengths in 77^{3+} (P1-P2 2.2034(5) \AA and P2-P3 2.2120(5) \AA). Moreover, they are considerably shorter than the other P-P bond lengths in $\mathbf{7 8}^{3+}$ (P1-P2 2.247(2) $\AA, \mathrm{P} 2-\mathrm{P} 3$ $2.238(2) \AA$) which is caused by the polarization in the $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}$bond. This leads to a large $\lambda^{3} \mathrm{P}-\lambda^{4} \mathrm{P}^{+}-\lambda^{3} \mathrm{P}$ bond angle (P3-P4-P1 85.44(6) ${ }^{\circ}$) compared to the smaller P-P-P angles in $\mathbf{7 8}^{3+}$ (P1-P2-P3 83.61(6) ${ }^{\circ}$, P2-P3-P4 81.51(6) ${ }^{\circ}$, P4-P1-P2 81.29(5) ${ }^{\circ}$), which is consistent with the findings for the tetraphosphetan-1-ium salts $\mathbf{7 4}[\mathrm{OTf}]$ and $\mathbf{7 5}[\mathrm{OTf}]$ (Table 9). Further investigations aimed to see, if ring contraction of $\mathbf{7 8}^{3+}$ by phosphenium abstraction gives access to the three-membered dication $\mathbf{8 0}^{\mathbf{2 +}}$. Related approaches have been demonstrated by the Burford group which reacted tetraphosphetanium salt $\mathbf{3 3}$ [OTf] with PMe_{3} and observed the formation of the respective ring contracted triphosphirane and diphosphanium salt $\mathbf{3 5}[\mathrm{OTf}]$ (Scheme 11). ${ }^{35 \mathrm{ad,d}}$ In this approach the more basic diphosphane $\mathrm{Me}_{2} \mathrm{P}-\mathrm{PMe}_{2}$ is chosen and an equimolar amount is added to a solution of $\mathbf{7 8}[\mathrm{OTf}]_{3}$ in MeCN . A deep redcolored reaction mixture is observed immediately which showed after a reaction time of 4 h at ambient temperature three main products as judged from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Hexamethyltriphosphan-2-ium cation $\mathbf{8 1}^{+}$can be identified by its characteristic $\mathrm{A}_{2} \mathrm{X}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-59.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=10.5 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=298 \mathrm{~Hz}\right)^{35 \mathrm{a}}$ and is the product of the successful phosphenium abstraction from $\mathbf{7 8}^{3+}$.

Scheme 34. Suggested mechanism of the formation of $\mathbf{8 2}[\mathrm{OTf}]_{3}$ from the reaction of $\mathbf{7 8}[\mathrm{OTf}]_{3}$ with $\mathrm{Me}_{2} \mathrm{PPMe}_{2}$ via $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis (\mathbf{I}) and a rearrangement reaction of the in situ generated triphosphirane $\mathbf{8 0}{ }^{2+}(\mathbf{I I})$; i) MeCN , r.t., $4 \mathrm{~h}, 45 \%$.

In addition, the presence of a known $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system identifies the formation of dicationic $76^{2+}\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-96.4 \mathrm{ppm}, \delta\left(\mathrm{Px}_{\mathrm{x}}\right)=-4.3 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}_{\mathrm{X}}\right)=-132 \mathrm{~Hz}\right)$ and a new $\mathrm{A}_{2} \mathrm{MX}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-68.3 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-51.1 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=2.7 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-123 \mathrm{~Hz}\right.$, $\left.{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-100 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=91 \mathrm{~Hz}\right)$ is assigned to tricationic $\mathbf{8 2}{ }^{3+}$ (Scheme 34). At first glance, these findings are different from the aforementioned assumption, which does not agree with the observation of cation $\mathbf{7 6}^{2+}$ and the new cation $\mathbf{8 2}{ }^{3+}$. In order to shed light on this outcome, the reaction was performed at $-30^{\circ} \mathrm{C}$ and the progress of the reaction was monitored NMR spectroscopically during the warm-up to room temperature (Figure 35). At $-30{ }^{\circ} \mathrm{C}$ the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows mainly the resonances for cation $\mathbf{8 1}{ }^{+}$and a characteristic $\mathrm{A}_{2} \mathrm{X}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-138.3 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-106.5 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-199\right.$ Hz) which is consistent with a triphosphirane, and thus, is assigned to dication $\mathbf{8 0}^{2+}$ (Scheme $34, \mathbf{I}$). During warm-up, the resonances for $\mathbf{8 0}^{2+}$ completely vanish and the resonances of cation $\mathbf{7 6}^{2+}$ and $\mathbf{8 2}^{3+}$ appear. It is known that cyclo-polyphosphanes can undergo interconversion reactions in protic solvents to give thermodynamically more favored ringsizes. ${ }^{104 \mathrm{~d}}$ Therefore ring-interconversion of $\mathbf{8 0}{ }^{2+}$ is assumed as a result of a $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis to form cations $\mathbf{8 2}^{3+}$ and $\mathbf{7 6}^{2+}$ (Scheme $34, \mathbf{I I}$). ${ }^{21 e, f}$ Salt $\left.\mathbf{8 2 [O T f}\right]_{3}$ could be separated from the reaction mixture in yields of 45% via slow vapor diffusion of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into the reaction mixture at $-30^{\circ} \mathrm{C}$. The obtained clear, yellow-colored crystals were suitable for X-ray analysis and the molecular structure of $\mathbf{8 2}^{3+}$ is depicted in Figure 36. The $\mathrm{P}-\mathrm{P}$ bond lengths in $\mathbf{8 2}^{3+}$ are in the expected range of $\mathrm{P}-\mathrm{P}$ single bonds and comparable to the $\mathrm{P}-\mathrm{P}$ bonds in 71, 72 and $\mathbf{7 6}^{2+}$ (Table 9).

Figure 35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of the reaction mixture of $78[\mathrm{OTf}]_{3}$ and $\mathrm{Me}_{2} \mathrm{P}-\mathrm{PMe}_{2}$ in MeCN measured at temperatures from 243-300 K. Identified resonances are assigned to the respective molecules by their spin systems in the same color as the phosphorus atoms in the molecules shown atop the spectra.

Compared to 76^{2+} (P1-P2-P1 $\left.86.30(2)^{\circ}, ~ P 2-P 1-P 2{ }^{\prime} 87.21(2)^{\circ}\right)$ the exchange of one tertbutyl moiety for one methylpyridiniumyl-substituent leads to smaller P-P-P angles in $\mathbf{8 2}^{3+}$ (P1-P2-P3 82.92(3) ${ }^{\circ}$, P2-P3-P4 84.44(3) ${ }^{\circ}$, P3-P4-P1 83.17(9) ${ }^{\circ}$, P4-P1-P3 83.88(2) $)^{\circ}$), as the methylpyridiniumyl group is sterically less demanding.

Figure 36. Molecular structure of $\mathbf{8 2}^{3+}$ in $\mathbf{8 2}[\mathrm{OTf}]_{3}$ (hydrogen atoms, solvate molecules and anions are omitted for clarity, thermal ellipsoids are displayed at 50% probability); selected bond lengths and angles are given in Table 9.

7. Gold Chloride induced Cleavage of $\mathrm{P}-\mathrm{P}$ Bonds

The coordination chemistry of triphosphane 48 towards coinage metal salts is presented in chapter 4.2., with regard to coinage metal triflate and bromide salts. Investigating its coordination chemistry towards chloride salt (tht) AuCl , a degradation reaction of the triphosphane 48 is observed. Reacting 48 with (tht) AuCl in THF in an equimolar ratio gives a clear, yellow solution. ${ }^{31} \mathrm{P}$ NMR spectroscopy indicates the formation of $\mathrm{Cy}_{2} \mathrm{PCl}$, observed by its singlet resonance at $\delta(\mathrm{P})=127.8 \mathrm{ppm},{ }^{119}$ next to an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-67.4 \mathrm{ppm}, \delta(\mathrm{Px})=58.1 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}_{\mathrm{x}}\right)=-356 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}\right)=-355 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)\right.$ $=131 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{X}}\right)=135 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}},\right)=0 \mathrm{~Hz}$; Figure 37) which is assigned to diphosphan-1-ide gold complex 83 (Scheme 35).

Scheme 35. Reaction of $\mathbf{4 8}$ with (tht)AuCl; i) -tht, THF, r.t., $\mathbf{8 3}$ is not isolated.

Figure 37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction described in Scheme 33. (THF, $\mathrm{C}_{6} \mathrm{D}_{6}$-capillary, 300 K); insets show the AA'XX' spin system of the experimental (upwards) and fitted spectra (downwards) of $\mathbf{8 3}$ in the reaction mixture.

Compound 83 forms via a chloride induced $\mathrm{P}-\mathrm{P}$ bond cleavage, which is known from similar $\mathrm{P}-\mathrm{P}$ bond cleavage reactions by hydrogen chloride, ${ }^{120}$ thionyl chloride, ${ }^{121}$ carbon tetrachloride, ${ }^{122}$ or other phosphorus chlorides, ${ }^{123}$ next to one very recently reported cleavage by (tht) AuCl . ${ }^{21 f}$ As of now $\mathbf{8 3}$ could not be isolated successfully, as various attempts lead to the formation of complex mixtures of products including $(\operatorname{PyP})_{n}(n=3-5)$ and $C_{4} P_{2}$. Further investigations on gold chloride induced $\mathrm{P}-\mathrm{P}$ bond cleavage reactions in polyphosphanes focused on the reaction of iso-tetraphosphane 8 and (tht) AuCl according to Scheme 36. Figure 38 shows the ${ }^{31} \mathrm{P}$ NMR spectrum of this reaction, showing the formation of two products. Next to the resonance of $\mathrm{Cy}_{2} \mathrm{PCl}$ a highly symmetric spin system of higher order is observed, which is assigned to dinuclear gold complex $\mathbf{8 4}$ which is isolated in very good yields of 89% as a beige-colored powder on a gram scale after a reaction time of 15 minutes.

Scheme 36. Reaction of $\mathbf{8}$ with (tht)AuCl; i) -tht, THF, r.t., 89%.

Figure 38. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8 4}$ (THF-d8, 300 K); insets show the $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}$ ', spin system of the experimental (upwards) and fitted spectra (downwards).

The spin system of $\mathbf{8 4}$ observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum was iteratively fitted to be an $A^{\prime}{ }^{\prime} X^{\prime} X^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}$ ' spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-172.0 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=49.0 \mathrm{ppm}\right.$; coupling constants are reported in chapter 12.6.1). Figure 38 shows the experimental as well as the fitted spectra. Crystals in X-ray quality of $\mathbf{8 4}$ are obtained by slow vapor diffusion of n-pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-30^{\circ} \mathrm{C}$. The molecular structure of $\mathbf{8 4}$ is depicted in Figure 39 .

Figure 39. Molecular structure of $\mathbf{8 4}$ (hydrogen atoms, solvate molecules and anions omitted for clarity, cyclohexyl groups are depicted by their $\mathrm{P}-\mathrm{C}$ bound carob atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: P1-P2 2.1481(17), P2-P3 2.1505(17), P4-P5 2.1454(17), P5-P6 2.1402(17), P1-Au1 2.3324(12), P6-Au1 2.3298(12), P3-Au2 2.3254(11), P4-Au2 2.3167(12), Au1-Au2 2.9048(2), P1-P2-P3 100.83(7), P4-P5-P6 103.22(7), P1-Au1-P6 168.72(4), P3-Au2-P4 171.65(4).

The $\mathrm{P}-\mathrm{P}$ bond lengths in $\mathbf{8 4}$ range from 2.1402(17)-2.1505(17) \AA, which is shorter than the P-P bonds observed for a similar diphosphanide gold complex (2.1900(14)-2.1958(13) $\AA)^{21 f}$ and comparable to the $\mathrm{P}-\mathrm{P}$ bond lengths reported for triphosphenium ion $\left[\mathrm{Ph}_{3} \mathrm{P}-\mathrm{P}-\mathrm{PPh}_{3}\right]^{+}$ (2.128(6)-2.141(6) $\AA) .{ }^{66}$ Also the P-P-P angles in $\mathbf{8 4}\left(100.83(7)\right.$ and $\left.103.22(7)^{\circ}\right)$ are in the range of the P-P-P angles reported for $\left[\mathrm{Ph}_{3} \mathrm{P}-\mathrm{P}-\mathrm{PPh}_{3}\right]^{+}\left(102.2(2)\right.$ and $\left.103.0(3)^{\circ}\right) .{ }^{66} \mathrm{The} \mathrm{P}-$ Au bond lengths and the P-Au-P angles in 84 (2.3167(12)-2.3324(12) \AA, 168.72(4) and $\left.171.65(4)^{\circ}\right)$ are in good comparison to the $\mathrm{P}-\mathrm{Au}$ bond lengths and the $\mathrm{P}-\mathrm{Au}-\mathrm{P}$ angle observed in $\left[(48 \mathrm{Au})_{2}\right]^{2+}\left(2.3033(8)\right.$ and $\left.2.3198(8) \AA, 171.52(3)^{\circ}\right)$. The distance of $2.9048(2) \AA$ between the gold atoms shows an aurophilic interaction. ${ }^{55}$

Mechanistically the formation of $\mathbf{8 4}$ is considered a result of a $\mathrm{P}-\mathrm{P}$ bond cleavage by nucleophilic attack of a chloride anion. Through chloride mediated cleavage of one $\mathrm{P}-\mathrm{P}$ bond in $\mathbf{8}, \mathrm{Cy}_{2} \mathrm{PCl}$ is formed next to anionic tetracyclohexyltriphosphan-1-ide $\mathbf{8 5}^{-}$which coordinates to a $\mathrm{Au}(\mathrm{I})$ cation followed by a dimerization (Scheme 37).

Scheme 37. Nucleophilic attack of a chloride on 8.

Interestingly the $\mathrm{Au}(\mathrm{I})$ cation in $\mathbf{8 4}$ is coordinated via the dicyclohexylphosphaneyl moieties of the in situ generated tetracyclohexyltriphosphan-1-ide $\mathbf{8 5}^{-}$and not via the phosphanide moiety. This is best described by Pearsons' concept. ${ }^{116}$ With two phosphanide moieties, $\mathbf{8 4}$ has two more coordination sites which should allow for further coordination. Reacting isotetraphosphane $\mathbf{8}$ with (tht) AuCl in the presence of tetracyclohexyldiphosphane yields tetranuclear gold complex 86 in an excellent yield of 96% (Scheme 38).

Scheme 38. Reaction of $\mathbf{8}$ with (tht) AuCl and $\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2} ; \mathrm{i}$) -4 tht, THF, r.t., 96%.

Two equivalents of iso-tetraphosphane $\mathbf{8}$ react with one equivalent of $\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2}$ and four equivalents of (tht) AuCl forming $\mathbf{8 6}$ by chloride mediated cleavage of one $\mathrm{P}-\mathrm{P}$ bond in $\mathbf{8}$ and the $\mathrm{P}-\mathrm{P}$ bond in $\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8 6}$ shows an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}$ ' Z spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-113.0 \mathrm{ppm}, \delta(\mathrm{Px})=36.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Z}}\right)=65.1 \mathrm{ppm} ;\right.$ coupling constants are reported in chapter 12.6.2.) and is depicted in Figure 40 together with the iteratively fitted resonances.

Figure 40. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8 6}$ (THF-d8, 300 K); insets show the $A A^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}{ }^{\prime}$ ' Z spin system of the experimental (upwards) and fitted spectra (downwards). Trace impurity is marked with an asterisk.

Figure 41. Molecular structure of $\mathbf{8 6}$ in $\mathbf{8 6}$ *2 THF (hydrogen atoms, solvate molecules and anions omitted for clarity, cyclohexyl groups are depicted by their $\mathrm{P}-\mathrm{C}$ bound carob atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$): P1-P2 2.201(2), P2-P3 2.2011(19), P4-P5 2.206(2), P5-P6 2.200(2), P1-Au1 2.3175(14), P4-Au1 2.3214(14), P3-Au2 2.3073(14), P6-Au2 2.3151(14), P7-Au4 2.3110(14), P7-Au3 2.3085(15), P5-Au4 2.3848(15), P2-Au3 2.3849(14), Au1-Au2 3.0036(3), Au1-Cl1 2.9154(16), Au2-Cl1 3.4512(17), P1-P2-P3 98.36(7), P4-P5-P6 98.41(8), P1-Au1-P4 164.47(5), P3-Au2-P6 171.86(5), P7-Au3-P2 172.35(5), P7-Au4-P5 171.45(5), Cl1-Au1-Au2 71.32(4), Au1-Au2-Cl1 53.15(3), Au1-Cl1-Au2 55.53(3).

Crystals suitable for X-Ray analysis grew from a saturated THF solution by slow vapor diffusion of n-pentane at $-30^{\circ} \mathrm{C}$ as $\mathbf{8 6} * 2$ THF. The molecular structure is depicted in Figure 41. The $\mathrm{P}-\mathrm{P}$ bond lengths observed for $\mathbf{8 6}$ (2.200(2)-2.206(2) \AA) are elongated compared to 84 and well within the range of a typical P-P single bond. ${ }^{124}$ The P-P-P angles (98.36(7) and $\left.98.41(8)^{\circ}\right)$ are comparable to the P-P-P angle observed for triphoshane gold complex $\left[(48 * A u)_{2}\right]^{2+}\left(98.29(5)^{\circ}\right)$. While the dicyclohexylphosphaneyl and dicyclohexylphosphanideyl P-Au bond lengths in $\mathbf{8 6}$ (2.3073(14)-2.3214(14) \AA) are comparable to those observed in 84 and cation $\left[(48 \mathrm{Au})_{2}\right]^{2+}$ (vide supra), the bis(dicyclohexylphosphaneyl)phosphanideyl $\mathrm{P}-\mathrm{Au}$ bond lengths are significantly elongated (P5-Au4: 2.3848(15) and P2Au3: $2.3849(14) \AA$). The P-Au-P angles in $\mathbf{8 6}$ all differ only slightly from the expected linear geometry around gold (P3-Au2-P6 171.86(5), P7-Au3-P2 172.35(5) and P7-Au4-P5 $\left.171.45(5)^{\circ}\right)$, with an exception of the P1-Au1-P4 angle which is more acute $\left(164.47(5)^{\circ}\right)$, due to the additional interaction of the chlorido-substituent with the gold atom (Au1-Cl1 $2.9154(16) \AA)$. This bond length is well inside the sum of the van der Waals radii of gold and chlorine $(3.41 \AA),{ }^{56}$ yet significantly elongated compared to the two $\mathrm{Au}-\mathrm{Cl}$ bonds observed for (tht) $\mathrm{AuCl}(2.274(8)$ and $2.292(13) \AA) .{ }^{125}$ The chloride in $\mathbf{8 6}$ is directing to the center of the Au1-Au2 bond (Cl1-Au1-Au2 71.32(4) ${ }^{\circ}$). Nevertheless a contact of the chloride with the Au 2 atom is to be excluded, as the distance between them (3.4512(17) \AA) is exceeding the sum of the van der Waals radii of gold and chlorine ($3.41 \AA$) ${ }^{56}$
Compound $\mathbf{8 6}$ is a stable solid when kept under inert gas like Ar or N_{2}, yet in solution formation of $\mathrm{Cy}_{2} \mathrm{PCl}$ is observed. This indicates a further nucleophilic attack of the chloride
in 86 in an intramolecular reaction. As this reaction is taking some time at room temperature, 86 is stirred in toluene for 24 h at $100^{\circ} \mathrm{C}$, yielding an orange-red-colored solution. Figure 42 is showing the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this reaction mixture.

Figure 42. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8 6}$ in toluene stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h ; asterisks indicate unidentified resonances; insets are showing the resonances of the AUVWXYZ spin system of $\mathbf{8 7}$.

Formation of $\mathrm{Cy}_{2} \mathrm{PCl}$ is observed according to the singlet resonance at $\delta(\mathrm{P})=127.8 \mathrm{ppm},{ }^{119}$ next to a small, broadened resonance at $\delta(\mathrm{P})=-21.0 \mathrm{ppm}$, indicating formation of trace amounts of $\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2} .{ }^{18 e}$ The two singlet resonances at $\delta(\mathrm{P})=46.3 \mathrm{ppm}$ and $\delta(\mathrm{P})=54.2$ ppm are assigned to cyclic compounds $\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{\mathrm{n}}$, with $\left(\mathrm{Cy} \mathbf{2}_{2} \mathrm{P}-\mathrm{Au}\right)_{6}$ being the major product at $\delta(\mathrm{P})=54.2 \mathrm{ppm} .{ }^{126}$ These compounds were first reported by Rheingold and coworkers, who synthezised them by treatment of $\left(\mathrm{Cy}_{2} \mathrm{PH}\right) \mathrm{AuCl}$ with ammonium hydroxide. ${ }^{126}$ Next to these singlet resonances more complex resonances at $\delta(\mathrm{P})=-101.1,64.4,66.1$ and 70.0-81.0 ppm are observed, which integrate in a $1: 1: 1: 4$ ratio, resembling a AUVWXYZ spin system. These resonances are assigned to compound 87 , which is proposed to be an intermediate in the reaction from 86 to $\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{n}$, with $\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{6}$ being the thermodynamically favoured ring size. Initially, 86 forms $87, \mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2}$ and ${ }^{1 / n} \mathrm{P}_{\mathrm{n}}$ of which the constitution of the latter is unknown. Compound 87 and $\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2}$ than react further to form $\mathrm{Cy}_{2} \mathrm{PCl}$ and $\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{\mathrm{n}}$ next to another equivalent of $1 / n \mathrm{P}_{\mathrm{n}}$ (Scheme 39). Since the formation of P_{4} is not observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy, the formation of amorphous red phosphorus P_{n} is conceivable and could be the reason of the orange-red-colored reaction
mixture. Compound $\mathbf{8 7}$ crystallizes from the reaction mixture upon addition of n-hexane via slow vapor diffusion at $-30^{\circ} \mathrm{C}$ in form of clear, colorless blocks that are suitable for X -Ray analysis, next to copious amounts of amorphous material, attributed to $\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{\mathrm{n}}$, hampering the isolation of pure 87. The molecular structure of $\mathbf{8 7}$ is depicted in Figure 43.

Scheme 39. Decomposition of $\mathbf{8 6}$ via formation of $\mathbf{8 7}$; i) $\mathrm{PhMe}, 100^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Figure 43. Molecular structure of 87 in $87 * n-\mathrm{C}_{6} \mathrm{H}_{14}$ (hydrogen atoms and solvate molecules are omitted for clarity, cyclohexyl groups are depicted by their $\mathrm{P}-\mathrm{C}$ bound carbon atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Au1-Au2 2.9980(3), Au1-Cl1 2.3080(13), Au1P1 2.2496(12), Au2-P3 2.3289(12), Au2-P4 2.3167(12), Au3-P4 2.3268(12), Au3-P5 2.3197(12), Au4-P5 2.3241(12), Au4-P6 2.3279(12), Au5-P6 2.3223(11), Au5-P7 2.3220(11), Au6-P7 2.3183(12), Au6-P2 $2.3552(12)$, P2-P3 2.1996(18), P2-P1 2.1967(17), P1-P2-P3 98.62(6), Cl1-Au1-Au2 92.35(3), P1-Au1-Cl1 177.06(5), P3-Au2-P4 166.47(4), P4-Au3-P5 170.91(4), P5-Au4-P6 173.25(4), P6-Au5-P7 174.20(4), P7-Au6-P2 178.16(4), P1-Au1-Au2 89.75(3), P3-Au2-Au1 86.21(3), P4-Au2-Au1 107.25(3), Au2-P4-Au3 103.72(5), Au3-P5-Au4 115.38(5), Au4-P6-Au5 118.31(5), Au5-P7-Au6 105.83(5).

The $\mathrm{P}-\mathrm{P}$ bond lengths observed for $\mathbf{8 7}$ (2.1967(17)-2.1996(18) \AA) are comparable to the $\mathrm{P}-$ P bond lengths observed for $\mathbf{8 6}$ (2.200(2)-2.206(2) \AA) as well as the P-P-P angle of $\mathbf{8 7}$ $\left(98.62(6)^{\circ}\right)$ is comparable to the P-P-P angles in 86 (98.36(7) and 98.41(8) ${ }^{\circ}$). The dicyclohexylphosphaneyl $\mathrm{P}-\mathrm{Au}$ bond lengths in 87 (2.3167(12)-2.3289(12) \AA) are
comparable to those observed in $\mathbf{8 4}, \mathbf{8 6}$ and $\left[(\mathbf{4 8 A u})_{2}\right]^{2+}$ (vide supra), with an exception of the P1-Aul bond, which is shorter in comparison (2.2496(12) \AA), likely due to a trans effect of the Cl 1 atom bound to Au1. Moreover, the bis(dicyclohexylphosphaneyl)phosphanideyl P-Au bond length in $\mathbf{8 7}$ is elongated (P2-Au6 2.3552(12) \AA), which is similarly observed for 86. The Au1-Cl1 bond in $87(2.3080(13) \AA)$ is significantly shortened compared to $\mathbf{8 6}$ (Au1-Cl1 2.9154(16) \AA), and thus comparable to the two $\mathrm{Au}-\mathrm{Cl}$ bonds in (tht) AuCl (2.274(8) and $2.292(13) \AA) .{ }^{125}$ The P-Au-P angles in $\mathbf{8 7}$ are in the expected range from 166.47(4)-178.16(4) ${ }^{\circ}$. The $\mathrm{Cl} 1-\mathrm{Au} 1-\mathrm{Au} 2$ in $87\left(92.35(3)^{\circ}\right)$ is significantly larger than the one observed in $86\left(\mathrm{Cl} 1-\mathrm{Au} 1-\mathrm{Au} 271.32(4)^{\circ}\right)$, thus an interaction between Cl 1 and Au 2 can be excluded.

8. Reactivity studies of Pyridyl-substituted Polyphosphanes towards PdCl_{2} and PtCl_{2}

The coordination chemistry of pyridyl-substituted triphosphane $\mathbf{4 8}$ and tetraphosphetane $\mathbf{7 2}$ was comprehensively studied with respect to coinage metal salts $\mathrm{M}(\mathrm{I})(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au})$ (vide supra). Especially the $\mathrm{P}-\mathrm{P}$ bond cleavage reactions induced by metal chlorides in combination with the coordination of that metal by the in situ formed poly-phosphorus fragment as described in chapter 7 is an intriguing reaction pathway for the formation of a plethora of fascinating metal complexes of polyphosphanes. As there are already interesting reports on the coordination chemistry of polyphosphanes and platinum metals, ${ }^{127,128}$ further investigations focused on the reactivity of pyridyl-substituted polyphosphanes towards palladium(II) and platinum(II) chloride.

The following reactions were performed on a small scale and are unoptimized. They require further experimental work in thought of isolating analytically pure compounds in higher yields. However, some preliminary results are presented in the following.
Reaction of $\mathbf{4 8}$ with $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ at ambient temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reveals formation of at least three different compounds as observed ${ }^{31} \mathrm{P}$ NMR spectroscopy after 16 h (Figure 44).

Figure 44. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a mixture of 48 and $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ in an equimolar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after 16 h at ambient temperature.

The $\mathrm{A}_{2} \mathrm{M}$ spin system observed $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-32.5(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=5.2(1 \mathrm{P}) \mathrm{ppm},{ }^{1} J_{\mathrm{AM}}=168 \mathrm{~Hz}\right)$ indicates formation of the coordination complex $48 \mathrm{PtCl}_{2}$. The characteristic ${ }^{195} \mathrm{Pt}$ satellites of the A-part suggest coordination of $\mathrm{Pt}(\mathrm{II})$ by the two dicyclohexylphosphaneyl moieties. This is confirmed by X-Ray analysis of a few crystals of $\mathbf{4 8} \mathrm{PtCl}_{2} * \mathrm{PhMe}$, that grew from a concentrated toluene solution of an equimolar mixture of $\mathbf{4 8}$ and $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ cooled from ambient temperature to $-30^{\circ} \mathrm{C}$. The molecular structure of $48 \mathrm{PtCl}_{2}$ is shown in Figure 46 . The singlet resonance at $\delta(\mathrm{P})=118.5 \mathrm{ppm}$ with a set of ${ }^{195} \mathrm{Pt}$ satellites indicates formation of $\mathrm{Cy}_{2} \mathrm{PCl}$, which is coordinating $\operatorname{Pt}(\mathrm{II}) .{ }^{129}$ Moreover an $\mathrm{AA}^{\prime}{ }^{\prime} \mathrm{MM}^{\prime}$ spin system is observed $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-33.2(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=32.4(2 \mathrm{P}) \mathrm{ppm}\right)$. This $\mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$ ' spin system is attributed to $(\mathrm{PyP})_{2}\left(\mathrm{Cy}_{2} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2} \mathbf{8 8}$, which is most likely formed via a $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction. To further investigate on this behalf, $\mathbf{4 8}$ ist reacted with $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ in the presence of $\mathbf{5 2}$ in thought of a selective $[\mathrm{Py}-\mathrm{P}]$ transfer (Scheme 40). This reaction is giving a mixture of 88 and $48 \mathrm{PtCl}_{2}$ (see the experimental section for details). In order to increase formation of 88, the reaction mixture stirred in PhF at $100^{\circ} \mathrm{C}$ for 14 h (Scheme 40), giving a dark green solution.

Scheme 40. Reaction towards $\mathbf{8 8}$; i) - $2 \mathrm{PhCN}, \mathrm{PhF}, 100^{\circ} \mathrm{C}, 14 \mathrm{~h}$; equation is unbalanced.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this solution is depicted in Figure 45 and only shows the AA'MM' spin system of $\mathbf{8 8}$ next to the resonance of $\mathrm{Cy}_{2} \mathrm{PCl}(\delta(\mathrm{P})=127.8 \mathrm{ppm}) .{ }^{119}$

Figure 45. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction described in Scheme 47. Insets show the $\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}$ spin system of $\mathbf{8 8}$.

Upon addition of n-pentane a voluminous, green precipitate appears, which after collection is recrystallized. Thus, by slow vapor addition of $\mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the crude product a few crystals of $\mathbf{8 8} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are obtained as clear, colorless blocks. Figure 46 shows the molecular structure of $\mathbf{8 8}$, as well as that of the aforementioned $\mathbf{4 8} \mathrm{PtCl}_{2}$. Both complexes are square planar coordinated about their central platinum atom, as expected for $\mathrm{Pt}($ II $)$ complexes. In contrast to the coinage metal compexes of pyridyl-substituted polyphosphanes (vide supra), the pyridyl nitrogen is not taking part in the coordination of the metal ion. The $\mathrm{P}-\mathrm{P}$ bond lengths are in the typical range of $\mathrm{P}-\mathrm{P}$ single bonds for both complexes $\mathbf{4 8} \mathrm{PtCl}_{2}$ and $\mathbf{8 8}$. The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths observed for both compexes $\left(\mathbf{4 8} \mathrm{PtCl}_{2}\right.$: Pt1-Cl1 2.3701(5), Pt1-Cl2 2.3633(8); 88: Pt1-Cl1 2.3526(6), Pt1-Cl2 2.3647(6) Å) are only slightly elongated compared to those observed for cis $-\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}{ }^{130}$

Figure 46. Molecular structure of $\mathbf{4 8} \mathrm{PtCl}_{2}$ in $\mathbf{4 8} \mathrm{PtCl}_{2} * \mathrm{PhMe}$ (left) and $\mathbf{8 8}$ in $\mathbf{8 8} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (right; hydrogen atoms and solvate molecules are omitted for clarity, cyclohexyl groups are depicted by their $\mathrm{P}-\mathrm{C}$ bound carbon atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 48PtCl2: Pt1-Cl1 2.3701(5), Pt1-Cl2 2.3633(8), Pt1-P1 2.2409(6), Pt1-P3 2.2236(5), P1-P2 2.2281(8), P2P3 2.2114(8), P1-P2-P3 81.79(3), P2-P3-Pt1 98.11(3), Pt1-P1-P2 97.11(3), P3-Pt1-P1 81.23(2), P3-Pt1-Cl2 92.18(2), Cl2-Pt1-Cl1 89.37(2), Cl1-Pt1-P1 97.20(2); 88: Pt1-Cl1 2.3526(6), Pt1-Cl2 2.3647(6), Pt1-P1 $2.2410(6)$, Pt1-P4 2.2439(6), P1-P2 2.2196(8), P2-P3 2.2002(8), P3-P4 2.2180(8), Pt1-P1-P2 110.88(3), P1-P2-P3 96.34(3), P2-P3-P4 96.76(3), P3-P4-Pt1 109.48(3), P4-Pt1-P1 95.56(2), P1-Pt1-Cl2 88.00(2), Cl2-Pt1Cl1 87.73(2), Cl1-Pt1-P4 88.76(2).

Consequently in both cases the Pt-P bonds (48PtCl2: Pt1-P1 2.2409(6), Pt1-P3 2.2236(5); 88: Pt1-P1 2.2410(6), Pt1-P4 2.2439(6) Å) are slightly shorthened compared to those observed for cis- $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}{ }^{130}$ While the dicyclohexylphosphaneyl-phosphorus atoms show an almost ideal tetrahedral geometry in $\mathbf{8 8}$, a certain distortion is observed for the respective atoms in $\mathbf{4 8} \mathrm{PtCl}_{2}$. This is due to the ring contraction in $\mathbf{4 8} \mathrm{PtCl}_{2}$, which is also responsible for the almost 20° more acute $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angle in $48 \mathrm{PtCl}_{2}$ when compared to 48 .

Further studies were performed with respect to the reactivity of $\mathbf{4 8}$ towards $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$. ${ }^{31} \mathrm{P}$ NMR spectroscopic investigations on a solution containing of an equimolar mixture of 48 and $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ revealed an $\mathrm{A}_{2} \mathrm{M}$ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-25.8(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.8(1 \mathrm{P})\right.$
ppm, ${ }^{1} J_{\mathrm{AM}}=179 \mathrm{~Hz}$) which is assigned to $\mathbf{4 8} \mathrm{PdCl}_{2}$ (Scheme 41). Slow vapor diffusion of n-pentane into this reaction mixture gave crystals of $48 \mathrm{PdCl}_{2} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ confirming the structural connectivity. The molecular structure is depicted in Figure 47.

Scheme 41. Synthesis of $48 \mathrm{PdCl}_{2}$; i) - $2 \mathrm{PhCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.

After three weeks at $-30^{\circ} \mathrm{C}$ further crystals grew from the same mixture. These were identified to be crystals of $\mathbf{8 9} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} * 1 / 2 n$-pentane. The molecular structure of $\mathbf{8 9}$ is depicted in Figure 47.

Figure 47. Molecular structure of $\mathbf{4 8} \mathrm{PdCl}_{2}$ in $\mathbf{4 8} \mathrm{PdCl}_{2} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (left) and $\mathbf{8 9}$ in $\mathbf{8 9} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} * 1 / 2 n$-pentane (right; hydrogen atoms and solvate molecules are omitted for clarity, cyclohexyl groups are depicted by their P-C bound carbon atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 48 PdCl_{2} : $\mathrm{Pd} 1-\mathrm{Cl1} 2.3699(8)$, $\mathrm{Pd} 1-\mathrm{Cl} 22.3578(8)$, $\mathrm{Pd} 1-\mathrm{P} 22.2459(8), \mathrm{Pd} 1-\mathrm{P} 32.2332(8), \mathrm{P} 1-$ P2 2.2028(11), P1-P3 2.2026(11), P2-P1-P3 82.58(4), P1-P3-Pd1 95.39(4), P1-P2-Pd1 95.03(4), P3-Pd1-P2 80.93(3), P3-Pd1-Cl2 92.51(3), Cl2-Pd1-Cl1 94.50(3), Cl1-Pd1-P2 92.06(3); 89: Pd1-Cl1 2.3505(10), Pd1Cl2 2.3631(10), Pd1-P1 2.2566(10), Pd1-P4 2.2614(10), P1-P2 2.2180(14), P2-P3 2.2013(14), P3-P4 2.2191(14), Pd1-P1-P2 110.98(5), P1-P2-P3 96.00(5), P2-P3-P4 96.91(5), P3-P4-Pt1 109.45(5), P4-Pd1-P1 94.96(4), P1-Pd1-Cl2 87.00(3), Cl2-Pd1-Cl1 90.47(4), Cl1-Pd1-P4 87.58(4).

Both complexes 48 PdCl 2 and $\mathbf{8 9}$ show the expected square planar geometry of the central palladium atoms and are isostructural compared to their platinum derivatives $48 \mathrm{PtCl}_{2}$ and 88. Bond lengths and angles within the palladacyle of $\mathbf{4 8 P d C l}{ }_{2}$ and $\mathbf{8 9}$ are almost the same as in $48 \mathrm{PtCl}_{2}$ and $\mathbf{8 8}$, respectively, and therefore not discussed in detail. In thought of a selective synthesis of $\mathbf{8 9}$, the reaction of $\mathbf{4 8},(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ and 52 in a $1: 1: 1 / 5$ ratio in PhF is investigated. Figure 48 shows the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this reaction mixture after stirring for 16 h at ambient temperature. Formation of $\mathbf{8 9}$ is observed by an AA'MM' spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-23.8, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=54.2\right)$. This reaction is repeatedly giving mixtures of $\mathbf{4 8} \mathrm{PdCl}_{2}$ and $\mathbf{8 9}$, even if the reaction time is increased to five days.

Figure 48. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\mathbf{4 8},(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ and 52 in a $1: 1: 1 / 5$ ratio in PhF after 16 h at ambient temperature.

In thought of increasing the amount of $\mathbf{8 9}$, the reaction mixture is stirred for 3 h at $100{ }^{\circ} \mathrm{C}$ yielding a deep red-colored solution (Scheme 42).

Scheme 42. Synthesis of 90; i) $-2 \mathrm{PhCN}, \mathrm{PhF}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

Figure 49. ${ }^{31} \mathrm{P}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR spectrum of the reaction described in Scheme 42.
${ }^{31} \mathrm{P}$ NMR spectroscopy of this reaction mixture shows a dominant ACMNPQ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-35.4, \delta\left(\mathrm{P}_{\mathrm{C}}\right)=-10.7, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=47.4, \delta\left(\mathrm{P}_{\mathrm{N}}\right)=49.3, \delta\left(\mathrm{P}_{\mathrm{P}}\right)=64.9, \delta\left(\mathrm{P}_{\mathrm{Q}}\right)=78.5 \mathrm{ppm}\right)$ which is assigned to compound $\mathbf{9 0}$, next to $\mathrm{Cy}_{4} \mathrm{P}_{2}, \mathrm{Cy}_{2} \mathrm{PCl}$ and only small amounts of 89 (Figure 49). In this case formation of $\mathrm{Cy}_{2} \mathrm{PCl}$ is observed as it is the co-product in the formation of $\mathbf{9 0}$. While the isolation of $\mathbf{9 0}$ is hampered due to impurities of $\mathbf{8 9}$, few single crystals of 90 could be obtained from a $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}$ solution upon slow vapor addition of n-hexane in form of clear, yellow blocks of $90 * 3 / 21,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} * \frac{1}{2} n$-hexane. The molecular structure of $\mathbf{9 0}$ is depicted in Figure 50.

Figure 50. Molecular structure of $\mathbf{9 0}$ in $90 * 3 / 21,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} * 1 / 2 n$-hexane (hydrogen atoms and solvate molecules are omitted for clarity, cyclohexyl groups are depicted by their $\mathrm{P}-\mathrm{C}$ bound carbon atom only, thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-C11 2.3649(9), Pd1-P1 2.3531(10), Pd1-P3 2.2042(9), Pd1-P6 2.3703(10), Pd2-Cl2 2.3924(9), Pd2-P2 2.2617(10), Pd2-P3 2.2166(10), Pd2-N1 2.172(3), P1-P2 2.2038(14), P3-P4 2.1653(14), P4-P5 2.2049(14), P5-P6 2.2651(14), P1-Pd1-Cl1 93.91(3), C11-Pd1-P6 92.08(3), P6-Pd1-P3 89.60(3), P3-Pd1-P1 84.50(3), N1-Pd2-Cl2 93.17(10), Cl2-Pd2-P2 97.06(4), P2-Pd2-P3 86.42(4), P3-Pd2-N1 83.88(10), Pd1-P3-Pd2 131.87(4), Pd1-P3-P4 110.53(5), Pd2-P3-P4 94.03(5).

The molecular structure of $\mathbf{9 0}$ shows that the square planar geometry for Pd 1 and Pd 2 is slightly distorted, with angles of 84.50(3)-93.91(3) ${ }^{\circ}$ around Pd 1 and $83.88(10)-97.06(4)^{\circ}$ around Pd 2 . The $\mathrm{Pd}-\mathrm{Cl}$ bond lengths are comparable to those observed for $\mathbf{4 8} \mathrm{PdCl}_{2}$ and $\mathbf{9 0}$ and the $\mathrm{Pd}-\mathrm{N}$ bond length in $\mathbf{9 0}(\mathrm{Pd} 2-\mathrm{N} 12.172(3) \AA$) is slightly elongated compared to other $\mathrm{Pd}-\mathrm{N}$ bond lengths reported for pyridyl coordinated $\mathrm{Pd}(\mathrm{II})$ compounds. ${ }^{131}$ The $\mathrm{Pd} 2-\mathrm{P} 2$ and Pd2-P3 bond lengths (2.2617(10) and $2.2166(10) \AA$) are comparable to the $\mathrm{Pd}-\mathrm{P}$ bond lengths in $\mathbf{4 8} \mathrm{PdCl}_{2}$ and $\mathbf{8 9}$, as well as the Pd1-P3 bond length ($2.2042(9) \AA$), which is only marginally shortened. Yet the Pd1-P1 and Pd1-P3 bond lengths are significantly elongated (Pd1-P1 2.3531(10), Pd1-P6 2.3703(10) A).
Dipalladium complex 90 is formed via a chloride induced P-P bond cleavage reaction as described in chapter 7, observed by the co-produced $\mathrm{Cy}_{2} \mathrm{PCl}$. A similar chloride induced $\mathrm{P}-$ P bond cleavage is observed by reacting $\mathbf{7 2}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ (Scheme 43). When reacted in an equimolar ratio in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature a red-colored solution is formed.

Upon addition of $\mathrm{Et}_{2} \mathrm{O}$ a voluminous precipitate forms, which is isolated and recrystallized from MeCN and $\mathrm{Et}_{2} \mathrm{O}$, yielding a few crystals of 91*MeCN in X-Ray quality. The molecular structure of $\mathbf{9 1}$ is depicted in Figure 51.

Scheme 43. Reaction of $\mathbf{7 2}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$; i) $-2 \mathrm{PhCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t..

Figure 51. Molecular structure of $\mathbf{9 1}$ in $\mathbf{9 1 *} \mathrm{MeCN}$ (hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1Cl1 2.3782(11), Pd1-P1 2.1923(12), Pd1-N1 2.062(4), Pd1-N2 2.062(4), Pd2-Cl2 2.3509(11), Pd2-Cl3 $2.3635(13)$, Pd2-P2 2.2941(12), Pd2-P3 2.2163(11), P1-P2 2.1993(15), P3-P4 2.2507(16), P4-P1 2.1819(16), P1-Pd1-N1 84.57(12), N1-Pd1-Cl1 94.67(12), Cl1-Pd1-N2 93.92(12), N2-Pd1-P1 86.92(12), P2-Pd2-Cl2 83.16(4), Cl2-Pd2-Cl3 91.22(5), Cl3-Pd2-P3 91.61(4), P3-Pd2-P2 95.20(4).

Similarly to the structure of $\mathbf{9 0}$, the Pd atoms in $\mathbf{9 1}$ show a slightly disordered square planar geometry with angles of $84.57(12)-94.67(12)^{\circ}$ around Pd 1 and $83.16(4)-95.20(4)^{\circ}$ around Pd 2 . The two $\mathrm{Pd}-\mathrm{N}$ bond lengths $\mathrm{Pd} 1-\mathrm{N} 1$ and $\mathrm{Pd} 1-\mathrm{N} 2$ are equidistant (2.062(4) \AA) and in a good agreement with those reported for similar $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{131}$

9. Oxidation of $\mathbf{4 8}$ and Subsequent Deprotonation Studies

Next to the metathesis, methylation and coordination chemistry presented for 48, its chemistry towards oxidizing agents promises a rich and fascinating chemistry. First studies were performed by reacting 48 with the strong oxidizing agent $\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2}$ in MeCN . The results presented are preliminary and need to be finalized.
Addition of $\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2}$ to a suspension of $\mathbf{4 8}$ in MeCN gives a yellow-colored suspension that turns to a red-colored solution within one hour. Addition of $\mathrm{Et}_{2} \mathrm{O}$ gives a slightly yellowcolored precipitate of a mixture of imine $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and enamine $\mathbf{9 4}[\mathrm{OTf}]_{2}$. This mixture is isolated in 86% yield (Scheme 44). Mechanistically the one electron oxidation of each of the dicyclohexylphosphaneyl moieties of 48 is anticipated, forming dicationic triphosphiranediium $\mathbf{9 2}^{2+}$ intermediary. Dicationic $\mathbf{9 2}^{2+}$ is a highly reactive compound, which readily reacts with MeCN , similar to the reported reactivity of a triphosphirane with MeCN in the presence of a Lewis acid (Scheme 44). ${ }^{10}$

Scheme 44. Reaction towards $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$; i) $\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2},-\mathrm{Ph}_{3} \mathrm{As}$, MeCN, r.t. 1 h.

Crystals suitable for X-ray crystallography of $\mathbf{9 3}[\mathrm{OTf}]_{2} * 2 \mathrm{MeCN}$ grew via slow vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a saturated MeCN solution of the mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$ at $-30^{\circ} \mathrm{C}$. The molecular structure of $\mathbf{9 3}^{2+}$ is depicted in Figure 52. The $\mathrm{P}-\mathrm{P}$ bond lengths observed in $\mathbf{9 3}^{2+}$ (P1-P2 2.2318(5), P1-P3 2.2041(5) \AA) are in the typical range of P-P single bonds, as well as the endocyclic $\mathrm{P}-\mathrm{C}$ bond length ($\mathrm{P} 3-\mathrm{C} 301.8642(14) \AA$) is in the range of a P-C single bond. Yet the $\mathrm{P}-\mathrm{N}(\mathrm{P} 2-\mathrm{N} 21.6914(13) \AA$) lies in between the typical values for a $\mathrm{P}-\mathrm{N}$ single bond $(1.78 \AA)^{69}$ and for a $\mathrm{P}=\mathrm{N}$ double bond $(1.54 \AA) .{ }^{69}$ As expected C30 is sp^{2}-hybridized indicated by the angles around C30 (N2-C30-P3 119.47(11), N2-C30C31 122.01(13), C31-C30-P3 118.52(10) ${ }^{\circ}$) and the C30-C31 bond lengths (1.491(2) \AA), being marginally shorter than the ideal $\mathrm{sp}^{3}-\mathrm{sp}^{2} \mathrm{C}-\mathrm{C}$ bond length of $1.50 \AA .{ }^{132} \mathrm{The} \mathrm{C}-\mathrm{N}$ bond length ($\mathrm{C} 30-\mathrm{N} 21.2692(19) \AA$) is indicating strong double bond character. Thus, the imine tautomer $\mathbf{9 3}^{2+}$ crystallizes from the mixture of tautomers.

Figure 52. Molecular structure of $\mathbf{9 3}^{2+}$ in $\mathbf{9 3}[\mathrm{OTf}]_{2} * 2 \mathrm{MeCN}$ (hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles ${ }^{\circ}{ }^{\circ}$): P1-P2 2.2318(5), P1-P3 2.2041(5), P3-C30 1.8642(14), P2-N2 1.6914(13), C30-N2 1.2692(19), C30C31 1.491(2), P3-P1-P2 88.817(17), C30-N2-P2 122.55(10), N2-C30-P3 119.47(11), N2-C30-C31 122.01(13), C31-C30-P3 118.52(10).

Scheme 45. Tautomerism of imine $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and enamine $\mathbf{9 4}[\mathrm{OTf}]_{2}$.

However, multi-nuclear NMR spectroscopy reveals tautomerism of $\mathbf{9 3}^{\mathbf{2 +}}$ and $\mathbf{9 4}^{2+}$, with $\mathbf{9 3}^{\mathbf{2 +}}$ being the minor tautomer in $\mathrm{CD}_{3} \mathrm{CN}$ solution (Scheme 45). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{CD}_{3} \mathrm{CN}$ solution of the product obtained from the reaction described above, majorly shows the enamine form $\mathbf{9 4}[\mathrm{OTf}]_{2}$, as observed by the characteristic methylene protons $(\delta=5.51$ $\left.\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J_{\mathrm{HH}}=11.43 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.14 \mathrm{~Hz}\right), 6.17\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HP}}=34.04 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.14 \mathrm{~Hz}\right)\right)$ and the nitrogen bound proton $\left(\delta=8.53\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HP}}=23.36 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=11.43 \mathrm{~Hz}\right)\right.$) (Figure 53). The minor imine tautomer $\mathbf{9 3}[\mathrm{OTf}]_{2}$ is observed in the ${ }^{1} \mathrm{H}$ NMR spectrum by resonances of some of the pyridyl protons, while the resonance of the methyl protons is superimposed by the resonances of the cyclohexyl groups.

Figure 53. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 4}[\mathrm{OTf}]_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}\right)$, majorly showing the enamine form $\mathbf{9 4}[\mathrm{OTf}]_{2}$. Asterisks are marking resonances assigned to the imine form $\mathbf{9 3}[\mathrm{OTf}]_{2}$.

However, in the ${ }^{31} \mathrm{P}$ NMR spectrum both tautomers are clearly visible by an AXZ spin system each. The dominant AXZ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-84.3 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=44.1 \mathrm{ppm}\right.$, $\delta\left(\mathrm{P}_{\mathrm{Z}}\right)=77.4 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=\left({ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{Z}}\right)=-295 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Z}}\right)=7 \mathrm{~Hz}\right)$ is attributed to the enamine form $\mathbf{9 4}^{2+}$, while the minor AXZ spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-95.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=96.2 \mathrm{ppm}\right.$, $\left.\delta\left(\mathrm{P}_{\mathrm{Z}}\right)=119.2 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-350 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{z}}\right)=-330 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Z}}\right)=32 \mathrm{~Hz}\right)$ is attributed to the imine form $\mathbf{9 3}^{2+}$ (Figure 54).

Figure 54. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}\right)$.

Of both tautomers especially $\mathbf{9 4}[\mathrm{OTf}]_{2}$ should be conveniently deprotonated. Assuming that both tautomers are in a state of equilibrium in solution, a mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$ is reacted with one equivalent of $\mathrm{NaO}^{t} \mathrm{Bu}$ (Scheme 46; I). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this reaction mixture shows only one AXY spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-84.0 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=68.9\right.$ ppm, $\delta\left(\mathrm{P}_{\mathrm{Y}}\right)=72.3 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-306 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{Y}}\right)=-265 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Y}}\right)=44 \mathrm{~Hz}$; Figure 55 , top). Considering that the nitrogen bound proton of $94[\mathrm{OTf}]_{2}$ is most prone to deprotonation, this AXY spin system is assigned to compound $\mathbf{9 5}[\mathrm{OTf}]$ (Scheme 46; I).

I

Scheme 46. Deprotonation reactions of tautomeric mixtures of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$, displayed by the major tautomer $94[\mathrm{OTf}]_{2}$; i) $\mathrm{NaO}^{t} \mathrm{Bu},-\mathrm{Na}[\mathrm{OTf}],-\mathrm{HO}^{t} \mathrm{Bu}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) $\mathrm{NaH},-\mathrm{Na}[\mathrm{OTf}],-\mathrm{H}_{2}, \mathrm{Et}_{2} \mathrm{O}$.

In another reaction the mixture of tautomers $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$ was reacted with an equimolar amount of NaH (Scheme 46; II). The ${ }^{31} \mathrm{P}$ NMR spectrum of this reaction mixture shows an AMX spin system $\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-46.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=8.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=86.0 \mathrm{ppm} ;\right.$ ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}_{\mathrm{X}}\right)=-306 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=10 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{Y}}\right)=10 \mathrm{~Hz}$; Figure 55 , bottom), which is attributed to $\mathbf{9 6}[\mathrm{OTf}]$. Formation of $\mathbf{9 6}[\mathrm{OTf}]$ is proposed to proceed via deprotonation of the exocyclic methylene carbon atom of $\mathbf{9 4}[\mathrm{OTf}]_{2}$ forming $\mathbf{9 7}^{+}$, which undergoes a subsequent rearrangement reaction (Scheme 46; II), yielding dicyclophosphaneyl-substituted azadiphospholium triflate salt $\mathbf{9 6}[\mathrm{OTf}]$.

Figure 55. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture according to Scheme 46; I (top) and according to Scheme 46; II (bottom).

Filtration of the reaction mixture described in Scheme 46; II and subsequent evaporation of all volatiles in vacuo yields a colorless solid, which is recrystallized from PhF via slow vapor addition of n-pentane at $-30^{\circ} \mathrm{C}$ yielding X-ray quality crystals of $96[\mathrm{OTf}] * \mathrm{PhF}$.

Figure 56. Molecular structure of $\mathbf{9 6}^{+}$in $96[\mathrm{OTf}] * \mathrm{PhF}$ (hydrogen atoms and solvate molecules are omitted for clarity; thermal ellipsoids are displayed at 50% probability). Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$: P1-P2 $2.2092(8), \mathrm{P} 1-\mathrm{C} 311.815(3), \mathrm{P} 2-\mathrm{N} 21.662(2), \mathrm{C} 30-\mathrm{N} 21.410(3), \mathrm{C} 30-\mathrm{C} 311.350(4), \mathrm{C} 31-\mathrm{P} 1-\mathrm{P} 288.73(9)$, $\mathrm{P} 1-$ P2-N2 96.45(8), P2-N2-C30 117.07(8), N2-C30-C31 118.6(2), C30-C31-P1 118.3(2).

The molecular structure of $\mathbf{9 6}^{+}$is depicted in Figure 56 confirming the structural connectivity. The endocyclic P-C bond observed for $\mathbf{9 6}^{+}$(P1-C31 1.815(3) \AA) is slightly
shorter than the typical $\mathrm{P}-\mathrm{C}$ single bond $(1.83 \AA){ }^{133}$ while the $\mathrm{P}-\mathrm{N}$ bond ($\mathrm{P} 2-\mathrm{N} 2$ $1.662(2) \AA$) is elongated compared to a typical $\mathrm{P}=\mathrm{N}$ bond length $(\mathrm{P}=\mathrm{N} 1.54 \AA),{ }^{69}$ but still shorter than a $\mathrm{P}-\mathrm{N}$ single bond ($1.78 \AA$). Both endocyclic carbon atoms are sp^{2} hybridized as indicated by the $\mathrm{C} 30-\mathrm{C} 31$ bond length of $1.350(4) \AA$, typical for $\mathrm{C}=\mathrm{C}$ double bonds. ${ }^{132}$

10. Summary

SynPhos type II phosphanes 41a and 43a as well as dipyrazolylphosphane 73a could be established as useful and versatile [R-P] building blocks in polyphosphorus chemistry. Triphosphanes 48-50, triphospholane 51 and tetraphosphetanes $\mathbf{7 1}$ and $\mathbf{7 2}$ are conveniently prepared in high yields via condensation reactions, next to pentaphospholanes 52 and 56 which are the products of highly selective $\mathrm{P}-\mathrm{N} / \mathrm{P}-\mathrm{P}$ bond metathesis reactions (Scheme 47).

Scheme 47. Dipyrazolylphosphanes in $\mathrm{P}-\mathrm{P}$ bond formation reactions; i) 2 eq. R' ${ }_{2} \mathrm{PH},-2$ 1a, MeCN , r.t., 96% (48), 93% (49), 77% (50); ii) 1 eq. $\mathrm{PhPH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PHPh},-21 \mathrm{1a}, \mathrm{MeCN}$, r.t., 69% (51); iii) 1 eq. $\mathrm{Cy}_{2} \mathrm{PH}, \mathbf{- 1 a}, \mathbf{- 2 6}$, $\mathrm{Et}_{2} \mathrm{O}, 98 \%(\mathbf{5 2}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%$ (56); iv) 1 eq. ${ }^{\dagger} \mathrm{BuPH}_{2},-2 \mathbf{1 a}, \mathrm{MeCN},-30^{\circ} \mathrm{C}, 16 \mathrm{~h}, 69 \%$ (71), 53% (72).

Methylation reactions were performed with a focus on triphosphane 48 and tetraphosphetanes 71 and 72. Studying the behaviour of the latter two in methylation reactions revealed the fascinating properties introduced by the pyridyl-substituent. While both tetraphosphetanes $\mathbf{7 1}$ and $\mathbf{7 2}$ are forming $\mathbf{7 4}[\mathrm{OTf}]$ and $\mathbf{7 5}$ [OTf] via monomethylation, further methylation is only observed for 72. Stirring 72 in an excess of MeOTf gives repeatedly mixtures of dicationic $\mathbf{7 6}[\mathrm{OTf}]_{2}$ and tricationic $77[\mathrm{OTf}]_{3}$. By stirring 72 in a twenty-two-fold excess of MeOTf at elevated temperatures 78[OTf$]_{3}$ is feasible via elimination of ${ }^{i}$ butene and HOTf. Reacting $78[\mathrm{OTf}]_{3}$ with $\mathrm{Me}_{2} \mathrm{P}-\mathrm{PMe}_{2}$ gives rise to tricationic $\mathbf{8 2}[\mathrm{OTf}]_{3}$ in a series of $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reactions (Scheme 48).

Scheme 48. Methylation reactions of tetraphosphetanes 71 and 72 reactions; i) $+\mathrm{MeOTf}, \mathrm{Et}_{2} \mathrm{O}$, r.t., $16 \mathrm{~h}, 87 \%$ $(74[\mathrm{OTf}]), 91 \%(75[\mathrm{OTf}])$; ii) $\mathrm{R}=\mathrm{Py}, 5 \mathrm{eq} . \mathrm{MeOTf}$, neat, r.t., 16 h ; unbalanced equation $76[\mathrm{OTf}]_{2}$ and $77[\mathrm{OTf}]_{3}$ are isolated as mixtures; iii) 22 eq. MeOTf, neat, $80^{\circ} \mathrm{C}, 4 \mathrm{~h},-$ butene, $-\mathrm{HOTf}, 91 \%$; iv) $+\mathrm{Me}_{2} \mathrm{P}-\mathrm{PMe}, \mathbf{- 8 1}$ [OTf], $-1 / 476[\mathrm{OTf}]_{2}$, MeCN , r.t., 4 h, 45%.

Scheme 49. Methylation reactions of 48; i) MeOTf, Et ${ }_{2} \mathrm{O}$, r.t.., 99%; ii) 5 eq. MeOTf, neat, r.t., 97%; iii) ${ }^{1 / 5}$ eq. (PyP) 5 , MeCN , r.t., 51%; iv) $\mathrm{CD}_{3} \mathrm{CN}, 14 \mathrm{~d}$.

Methylation of triphosphane 48 readily gave triphosphanium 57[OTf] and triphosphanediium 58[OTf $]_{2}$ as triflate salt each in excellent yields. Reacting 58[OTf $]_{2}$ with $\mathbf{5 2}$ yields tetraphosphanediium triflate salts $\mathbf{5 9 [O T f}]$ via $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reaction
(Scheme 49). 59[OTf $]_{2}$ undergoes a rearrangement reaction via a [1,2]-Cy2 ${ }_{2} \mathrm{PMe}$ shift towards triphosphenium triflate salt $\mathbf{6 0}[\mathrm{OTf}]$ and diazaphospholium triflate salt $\mathbf{6 1}[\mathrm{OTf}]$. This interesting rearrangement was studied by ${ }^{31} \mathrm{P}$ NMR spectroscopy and theoretical investigations.
The following investigations focused on a more convenient and general synthesis of diazaphospholium salts like $\mathbf{6 1}[\mathrm{OTf}]$. This led to a $\mathrm{Me}_{3} \mathrm{SiOTf}$ mediated self-condensation reaction of dichlorophosphanes 40, 42, 65 and 66 to P, N-doped polycyclic aromatic hydrocarbons 61-64[OTf] in good to excellent yields (Chart 6).

Chart 6. P,N-doped polycyclic aromatic hydrocarbons 61-64[OTf].

Mechanistic insights into the formation of $\mathbf{6 1}$ [OTf] are derived from quantum mechanical calculations. Further reactivity studies included halogenation of $\mathbf{6 1}[\mathrm{OTf}]$ with XeF_{2} or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ yielding cationic dihalophosphoranes $\mathbf{6 1}^{\mathrm{X} 2}$ [OTf] and cationic tetrahalophosphate salts $61{ }^{\mathrm{X} 4}[\mathrm{OTf}]$ (Scheme 50). $61{ }^{\mathrm{Cl}}$ [OTf] is accessible on a multi-gram scale and was therefore investigated in substitution reactions. Reacting 61 ${ }^{\mathrm{Cl} 2}[\mathrm{OTf}]$ with $\mathbf{5 a - d}$ yields dipyrazolylphosphanes 70a-d[OTf], bearing the interesting, cationic 1,2'-bipyridiniumyl substituent, while the reaction of $61{ }^{\mathrm{Cl2}}[\mathrm{OTf}]$ with 2,2-bipyridine in the presence of $\mathrm{Me}_{3} \mathrm{SiOTf}$ yields the mixed 2, ''-bipy/1,2'-bipyl complex $\mathbf{6 9}[\mathrm{OTf}]_{3}$ quantitatively (Scheme 51).

Scheme 50. Halogenation reactions $\mathbf{6 1}$ [OTf] with one eq. (left) and two eq. (right) XeF_{2} or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$; i) for $\mathrm{X}=\mathrm{F}$: $\mathrm{XeF}_{2},-\mathrm{Xe}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., not isolated; for $\mathrm{X}=\mathrm{Cl}: \mathrm{SO}_{2} \mathrm{Cl}_{2},-\mathrm{SO}_{2}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., 74% ii) for $\mathrm{X}=\mathrm{F}: 2 \mathrm{XeF}_{2},-2 \mathrm{Xe}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., quant; for $\mathrm{X}=\mathrm{Cl}: 2 \mathrm{SO}_{2} \mathrm{Cl}_{2},-2 \mathrm{SO}_{2}, \mathrm{MeCN},-40^{\circ} \mathrm{C}$ to r.t., quant.

Scheme 51. Substitution reactions of $61{ }^{\mathrm{Cl} 2}[\mathrm{OTf}]$; i) 2 eq. 5a-d, $-2 \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Et}_{2} \mathrm{O}$, r.t., $91-98 \%$; ii) $+2,2^{\text {' }}$-bipy, $+2 \mathrm{Me}_{3} \mathrm{SiOTf},-2 \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 99%.

Aside methylation reactions, triphosphane 48 and tetraphosphetane $\mathbf{7 2}$ were studied with respect to their coordination chemistry towards coinage metal salts. This led to a small library of coordination complexes with pyridyl-substituted polyphosphanes as ligands (Scheme 52).

Scheme 52. Synthesis of coinage metal coordination complexes starting from triphosphane 48 (top); i) 2 eq. $\mathrm{Ag}[\mathrm{OTf}], \mathrm{PhF}(\mathrm{M}=\mathrm{Ag}), 99 \% ; 2$ eq. $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}],-8 \mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{M}=\mathrm{Cu}), 94 \%$; ii) 2 eq. (tht) AuCl , -2 tht, $-2 \mathrm{AgCl}, \mathrm{MeCN}, 64 \%$; iii) 1 eq. [(MeCN) $\left.)_{4} \mathrm{Cu}\right][\mathrm{OTf}],-4 \mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; iv) 2 eq. (tht) $\mathrm{CuBr},-2$ tht, THF, 93%; Reaction of $\mathbf{7 2}$ with selected coinage metal triflate salts "M(I)[OTf]" (bottom); v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h; $\mathrm{M}=\mathrm{Cu}, \mathrm{M}[\mathrm{OTf}]=\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right][\mathrm{OTf}],-4 \mathrm{MeCN}, 89 \% ; \mathrm{M}=\mathrm{Ag}, \mathrm{M}[\mathrm{OTf}]=\mathrm{Ag}[\mathrm{OTf}], 76 \% ; \mathrm{M}=\mathrm{Au}, \mathrm{M}[\mathrm{OTf}]$ $=($ tht $) \mathrm{AuCl}+\mathrm{Me}_{3} \mathrm{SiOTf},-\mathrm{Me}_{3} \mathrm{SiCl},-$ tht, 74%.

All coinage metal complexes depicted in Scheme 52 were isolated in good to excellent yields and are fully characterized by X-ray analysis and multi-nuclear NMR spectroscopy at various temperatures.
While investigating the coordination chemistry of polyphosphanes on coinage metal salts, complexes 84 and 86 were isolated in excellent yields via an unprecedented chloride mediated $\mathrm{P}-\mathrm{P}$ bond cleavage reaction starting from iso-tetraphosphane $\mathbf{8}$ and (tht) AuCl (Scheme 53).

Scheme 53. Synthesis of gold complexes $\mathbf{8 4}$ and 86; i) $+($ (tht $) \mathrm{AuCl}$, - tht, $-\mathrm{Cy}_{2} \mathrm{PCl}$, THF, r.t., 89%; ii) +4 (tht) $\mathrm{AuCl},+\mathrm{Cy}_{2} \mathrm{P}-\mathrm{PCy}_{2},-4$ tht, $-3 \mathrm{Cy}_{2} \mathrm{PCl}$, THF, r.t., 96%.

Both coordination complexes $\mathbf{8 4}$ and $\mathbf{8 6}$ are formed quantitatively within minutes at ambient temperature.

Moreover, preliminary studies showed the intriguing chemistry of pyridyl-substituted polyphosphanes towards PdCl_{2} and PtCl_{2}. Asides chloride mediated $\mathrm{P}-\mathrm{P}$ bond cleavage reactions also $\mathrm{P}-\mathrm{P} / \mathrm{P}-\mathrm{P}$ bond metathesis reactions are observed in the formation of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ complexes of polyphosphanes.

Further initial studies on triphoshane $\mathbf{4 8}$ stated its promising chemistry in oxidation reactions as shown by the reaction of 48 with $\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2}$ in MeCN giving a mixture of tautomers $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$ (Scheme 54).

Scheme 54. Reaction towards $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}$; i) $\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2},-\mathrm{Ph}_{3} \mathrm{As}, \mathrm{MeCN}$, r.t. 1 h.

11. Prospect

The application of $\boldsymbol{S y n} \boldsymbol{P}$ hos type II phosphanes as [R-P] building blocks in P-P bond formation reactions towards triphosphanes, tetraphosphetanes and phospholanes is demonstrated in chapters 4 and 6 of this thesis. Following this work the synthesis of the still unknown $\boldsymbol{S y n} \boldsymbol{P h o s}$ type III phosphanes is highly desirable, as these are promising $\left[\mathrm{R}_{2} \mathrm{P}\right]$ building blocks. As the reaction of dichlorophosphane like 40 and 2-pyridylmagnesiumhalides might yield a mixture of $\boldsymbol{S y n} \boldsymbol{P}$ hos type III and type IV phosphanes a more selective synthesis is desirable. Starting from pyrazolylphosphane 46 or 47 and selectively addressing the chloro-substituent in a substitution reaction is a promising way towards $\boldsymbol{S y n}$ Phos type III phosphanes like $\mathbf{9 8}$ or $\mathbf{9 9}$ (Scheme 55).

Scheme 55. Possible reaction towards 98 and 99 ; i) $-\mathrm{Me}_{3} \mathrm{SnCl}$.

As lithium organyls and Grignard reagents are known to react not only with the chloro- but also with the pyrazolyl-substituent a milder pyridyl source like 2-(trimethylstannyl)-pyridine might be used. This way $\boldsymbol{S y n} P$ hos type III phosphanes bearing different carbon bound heterocycles might be accessible.
Moreover the protonation of $\boldsymbol{S y n} \boldsymbol{P}$ hos type II phosphanes might offer a promising chemistry.

Scheme 56. Possible protonation reactions from 41a; i) $2 / 3$ HOTf, $-2 / 3$ 1a; ii) HOTf, MeCN, -1a.

Reacting two equivalents of 41a with three equivalent HOTf in an aprotic solvent such as PhF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ might give diphosphorus trication $\mathbf{1 0 0}[\mathrm{OTf}]_{3}$ and three equivalents pyrazole 1a (Scheme 56). On the other hand, protonation of 41a in MeCN might yield diazaphospholium salt $\mathbf{1 0 1}[\mathrm{OTf}]$ via formation of phosphenium cation $\mathbf{1 0 2}^{+}$which is reacting with MeCN in a 1,3-dipolar cycloaddition reaction. Formation of pyrazolylsubtituted diazaphospholium salts like $\mathbf{1 0 2}[\mathrm{OTf}]$ is of special interest with the diazaphospholium cations described in chapter 5.

The self condensation towards P, N-doped PAHs presented in chapter 5 itself also allows for further modification. Reacting dichlorophosphanes like $\mathbf{1 0 3}$ in this self condensation reaction opens up new possibilities to funcionalized diazaphospholium triflate salts like 104[OTf] (Scheme 57).

Scheme 57. Reaction towards functionalized diazaphospholium triflate salt and possible follow up reactions; i) $\mathrm{Me}_{3} \mathrm{SiOTf},-\mathrm{Me}_{3} \mathrm{SiCl}^{2},-\mathrm{PCl}_{3}$; ii) 1-(trialkylstannyl)-isoquinoline, Stille-coupling.

Such a functionalized diazaphospholium salt $\mathbf{1 0 4}[\mathrm{OTf}]$ could then be reacted, e.g. in a Stille coupling reaction to $\mathbf{1 0 5}[\mathrm{OTf}]$. Starting from $\mathbf{1 0 5}[\mathrm{OTf}]$ multiply charged P, N-doped helical nanographenes like $\left.\mathbf{1 0 6}^{\mathbf{1 0 T f}}\right]_{3}$ might be accessible via Rhodium catalyzed annulation reactions (Scheme 58).

Scheme 58. Conceivable Rh-catalyzed annulation towards P, N-doped helical nanographenes; i) diphenylethyne, $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$, AgOTf.

These fundamental new derivatives combine the chemistry of π-extended PAHs and other intriguing carbon-based systems such as helicenes with new synthetic strategies in
phosphorus chemistry to allow the introduction of heteroatoms such as phosphorus and nitrogen. The results expected will therefore have a scientific impact on several areas (helicenes, P, N-doped π-extended PAHs, emissive π-conjugated systems, asymmetric catalysis, et cetera). Strongly improved performances in luminescence and CPL activity are expectable due to the presence of the heteroatoms in addition to possible donor sites for metal coordination. Thus, also a conception of chiral optoelectronic devices based on the resulting systems would be possible, which results in a high added value. In addition, the development of efficient methods in asymmetric catalysis using new, chiral complexes based on P , N -doped π-extended PAHs ligands will not only be an important proof of concept but will also be a breakthrough in applied chemistry ultimately give impetus maybe for conception of new chiral multifunctional devices.

12. Experimental Details

12.1. Materials and Methods

12.1.1. General Remarks

All manipulations were performed in a Glovebox MB Unilab or using Schlenk techniques under an atmosphere of purified argon or nitrogen. Dry, oxygen-free solvents were distilled either from molecular sieves $3 \AA\left(\mathrm{MeNO}_{2}\right)$, from $\mathrm{CaH}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$, from potassium/benzophenone ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{PhMe}$) or from potassium (n-pentane, n hexane). Deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ was purchased from Sigma-Aldrich and distilled from potassium/benzophenone. Anhydrous $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{3} \mathrm{NO}_{2}, \mathrm{CDCl}_{3}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were purchased from Sigma-Aldrich. With the exception of MeNO_{2} and $\mathrm{CD}_{3} \mathrm{NO}_{2}$ all distilled and deuterated solvents were stored over molecular sieves ($4 \AA$: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, THF, n hexane, n-pentane, $\left.\mathrm{Et}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2} ; 3 \AA: \mathrm{CD}_{3} \mathrm{CN}, \mathrm{MeCN}\right)$. All glassware was ovendried at $160^{\circ} \mathrm{C}$ prior to use. Quinoline, 2-(dimethylamino)ethanol and 2-Bromopyridine were purchased from TCI and distilled under inert conditions prior to use. 2,2'-bipyridine was purchased from TCI and sublimated prior to use. $\mathrm{PCl}_{3}, \mathrm{Et}_{3} \mathrm{SiH}$, and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ were purchased from Sigma Aldrich and distilled under inert conditions prior to use. MeOTf and $\mathrm{Me}_{3} \mathrm{SiOTf}$ were purchased from Manchester Organics and distilled under inert conditions prior to use. $\mathrm{Me}_{3} \mathrm{SiCl}$ (purified by redistillation, 99%), n-butyl lithium (2.5 M in hexanes), $\mathrm{Ag}[\mathrm{OTf}]$ and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right][\mathrm{OTf}]$ were purchased by Sigma Aldrich and used as received. Di-tert-butylphosphine was purchased from Cytec Solvay Group and used as received. Dicyclohexylphosphine was purchased from Strem Chemicals and used as received. 2-Isocyano-1,1'-biphenyl, ${ }^{134} \quad$ 2-(Trimethylsilyl)benzo[d]thiazol, ${ }^{135} \quad$ 1,2-Bis(phenylphosphaneyl)ethane, ${ }^{136}$ tert-butylphosphane, ${ }^{137}$ tetramethyldiphosphane, ${ }^{138}$, (tht) $\mathrm{AuCl},{ }^{125}$ $\mathrm{P}\left(\mathrm{PCy}_{2}\right)_{3}{ }^{21 b}$ were prepared as described in the literature. NMR spectra were measured on a Bruker AVANCE III HD Nanobay 400 MHz UltraShield (${ }^{1} \mathrm{H}: 400.13 \mathrm{MHz},{ }^{13} \mathrm{C}$: $100.61 \mathrm{MHz},{ }^{31} \mathrm{P}: 161.98 \mathrm{MHz},{ }^{19} \mathrm{~F}: 376.50 \mathrm{MHz},{ }^{77} \mathrm{Se}: 76.31 \mathrm{~Hz}$), or on a Bruker AVANCE III HDX, 500 MHz Ascend $\left({ }^{1} \mathrm{H}: 500.13 \mathrm{MHz},{ }^{13} \mathrm{C}: 125.75 \mathrm{MHz},{ }^{31} \mathrm{P}: 202.45 \mathrm{MHz},{ }^{19} \mathrm{~F}\right.$: $470.59 \mathrm{MHz})$. Reported numbers assigning atoms in the ${ }^{13} \mathrm{C}$ spectra were indirectly deduced from the cross-peaks in 2D correlation experiments (HMBC, HSQC). Chemical shifts are referenced to $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=0.00 \mathrm{ppm}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, externally), $\delta\left(\mathrm{CFCl}_{3}\right)=0.00 \mathrm{ppm}$ (externally) and $\delta\left(\mathrm{H}_{3} \mathrm{PO}_{4}, 85 \%\right)=0.00 \mathrm{ppm}$ (externally). Unless stated otherwise, all NMR spectra were measured at 300 K . Chemical shifts (δ) are reported in ppm. Coupling constants (J) are
reported in Hz . The designation of the spin systems is performed by convention. The furthest downfield resonance is denoted by the latest letter in the alphabet and the furthest upfield by the earliest letter. Melting points were recorded on an electrothermal melting point apparatus (Büchi Switzerland, Melting point M-560) in sealed capillaries under Nitrogen atmosphere and are uncorrected. Infrared (IR) and Raman spectra were recorded at ambient temperature using a Bruker Vertex 70 instrument equipped with a RAM II module (Nd: YAG laser, $1064 \mathrm{~nm})$. The Raman intensities are reported in percent relative to the most intense peak and are given in parenthesis. An ATR unit (diamond) was used for recording IR spectra. The intensities are reported relative to the most intense peak and are given in parenthesis using the following abbreviations: $\mathrm{vw}=$ very weak, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{vs}=$ very strong. Elemental analyses were performed on a Vario MICRO cube Elemental Analyzer by Elementar Analysatorsysteme GmbH in CHNS modus.

12.1.2. X-ray Diffraction Refinements

Suitable single crystals were coated with Paratone-N oil or Fomblin Y25 PFPE oil, mounted using either a glass fiber or a nylon loop and frozen in the cold nitrogen stream. Crystals were measured at low temperature on several diffractometers. Crystal and data collection details are given in Tables 10-32, including information about the used diffractometer. Data reduction and absorption correction was performed either with CrysaAlisPro ${ }^{139}$ software or Bruker SMART ${ }^{140}$ or Bruker SADABS ${ }^{141}$. Using Olex2, ${ }^{142}$ the structures were solved with SHELXS/T ${ }^{143}$ by direct methods and refined with SHELXL ${ }^{144}$ by least-square minimization against F^{2} using first isotropic and later anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms bonded to carbon atoms were added to the structure models on calculated positions using the riding model. All other hydrogen atoms were localized in the difference Fourier map. Images of the structures were produced with Olex 2^{142} software. Crystals of compounds $\mathbf{6 1}{ }^{\mathrm{Cl2}}$ [OTf], $\mathbf{6 3}[\mathrm{OTf}]$ and $\mathbf{7 0 b}[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$ were integrated and refined as twins with component ratios of $60: 40,63: 37$ and 52:48, respectively.

12.1.3. Details on the computational methods for quantum chemical calculations

Concerning chapter 4. The geometry optimization has been performed at the BP86-D3/def2TZVP level of theory without symmetry constrains by means of the Turbomole version 7.0 program. ${ }^{145}$ The minimum nature or transition state condition of the compounds has been checked by using frequency analysis. Solvent effects have been taken into consideration by using Conductor-like Screening Model (COSMO). ${ }^{146}$

Concerning chapter 5 . The geometries and energies of all systems included in this study were fully optimized at the BP86-D3/def2-TZVP level of theory. The calculations have been performed by using the program TURBOMOLE version 7.0. ${ }^{145}$ For the calculations the BP86 functional with the latest available correction for dispersion (D3) was used. ${ }^{147}$ The NICS (Nucleus Independent Chemical Shift) calculations ${ }^{148}$ were computed at the B3LYP/6$311+\mathrm{G}^{*}$ level of theory using the Gaussian 09^{149} calculation package. In order to reproduce solvent effects, we have used the conductor-like screening model COSMO, ${ }^{146}$ which is a variant of the dielectric continuum solvation models. ${ }^{150}$ We have used dichlorobenzene as solvent. The molecular electrostatic potential surface has been calculated using the Spartan' 10, v. 1.10 software at the B3LYP/6-311+G* level of theory.

12.2. Syntheses and Characterization Data regarding Compounds in

Chapter 3

The syntheses and characterization data of 40 and dipyrazolylphosphanes 41a-f are mentioned in addition and completion to the syntheses and characterization data presented in my master's thesis. ${ }^{41}$

12.2.1. Preparation of 2-(Trimethylsilylpyridine)

A solution of 2-Bromopyridine ($24.4 \mathrm{ml}, 250 \mathrm{mmol}$) in THF (300 ml) is cooled
 to $-78{ }^{\circ} \mathrm{C}$. A solution of n-butyllithium in hexanes $(100 \mathrm{ml}, 250 \mathrm{mmol})$ is added dropwise and the reaction mixture is stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$ to form a dark red suspension. To this suspension Trimethylsilylchloride ($31.8 \mathrm{ml}, 250 \mathrm{mmol}$) is added dropwise and the reaction mixture is allowed to rise to room temperature. After evaporating all volatile compounds, the crude product is distilled ($\mathrm{T}=75^{\circ} \mathrm{C} ; \mathrm{p}=30 \mathrm{mbar}$) from the residue to obtain the product as a clear, colorless oil. The spectral data are in accordance with the ones reported in the literature. ${ }^{151}$

Yield: 22.4 g (59 \%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=0.39$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{H}$), 7.05$7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.47-7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.48-7.49(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.77-8.78$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 5-\mathrm{H}) .{ }^{\mathbf{2 9}} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in $\left.\mathbf{~ p p m}\right): ~ \delta=-5.8(1 \mathrm{Si}, \mathrm{s})$.

12.2.2. Preparation of 40

2-(Trimethylsilyl)pyridine ($22.4 \mathrm{~g}, 148 \mathrm{mmol}$) and $\mathrm{PCl}_{3}(38.8 \mathrm{ml}, 444 \mathrm{mmol})$ are placed in a Schlenk flask and heated under reflux for 48 h . After evaporation of all volatiles the crude product is distilled $\left(T=48^{\circ} \mathrm{C}, \mathrm{p}=1.1 \mathrm{x}\right.$
10^{-2} mbar) to afford the product as a clear, colorless oil that turns yellow upon standing at room temperature within 20-30 minutes. Hence, 2-(dichlorophosphaneyl)pyridine (40) is stored at $-30^{\circ} \mathrm{C}$ under an inert atmosphere.
Yield: 21.5 g (81%); Raman ($\mathbf{1 0 0} \mathbf{m W}$, $298 \mathbf{K}$, in $\mathbf{c m}^{\mathbf{- 1}}$): $v=3128$ (12), 3064 (58), 3052 (61), 2988 (9), 2972 (8), 2899 (10), 1572 (36), 1564 (38), 1447 (7), 1276 (11), 1243 (6), 1154 (21), 1126 (12), 1086 (8), 1044 (78), 989 (100), 723 (18), 617 (15), 503 (61), 462 (27), 420 (9), 285 (31), 243 (15), 188 (31), 149 (38); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=2361$ (vw), 1572 (vw), 1446 (vw), 1424 (vw), 1202 (vs), 1147 (vs), 1044 (vw), 988 (vw), 850 (vw), 764 (vw), 739 (vw), 722 (vw), 638 (m), 626 (m), 554 (m), 498 (vs), 422 (vw); ${ }^{1} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}$, 300 K , in ppm): $\delta=7.42-7.45(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.88-7.93(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.10-8.12(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 2-\mathrm{H}), 8.73-8.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=126.1(1 \mathrm{C}$, d, $\left.{ }^{2} J_{\mathrm{CP}}=15.0 \mathrm{~Hz}, \mathrm{C} 2\right), 126.3\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.2 \mathrm{~Hz}, \mathrm{C} 4\right), 138.78(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 150.24(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=18.4 \mathrm{~Hz}, \mathrm{C} 5\right), 163.44\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=31.7 \mathrm{~Hz}, \mathrm{C} 1\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$):$ $\delta=138.7(1 \mathrm{P}, \mathrm{s})$.

12.2.3. Preparation of $41 \boldsymbol{a}$

To dichlorophosphane $\mathbf{4 0}(4.4 \mathrm{~g}, 24.4 \mathrm{mmol}) \mathbf{5 a}(8.4 \mathrm{~g}, 50.1 \mathrm{mmol})$ is added while cooling with an ice bath. The suspension is stirred for 16 h at room temperature. After evaporation of all volatiles in vacuo the product is obtained as an off-white solid.

Yield: $7.08 \mathrm{~g}(97 \%)$; m.p.: $109^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, 298 \mathrm{~K}$, in $\mathbf{c m}^{-1}$): $v=3132(18)$, 3101(22), 3071(26), 3054(29), 3039(37), 2988(31), 2921(100), 2860(16), 2729(8), 1572(62), 1464(33), 1439(43), 1380(17), 1274(9), 1158(19), 1139(24), 1088(11), 1046(43), 1020(26), 991(86), 960(9), 741(10), 721(18), 635(11), 618(16), 588(58), 558(10), 477(17), 463(15), 399(16), 374(14), 358(9), 305(10), 237(24), 220(17), 196(25), 156(25), 125(54); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3134(\mathrm{vw}), 3038(\mathrm{vw}), 2920(\mathrm{vw}), 1564(\mathrm{~m}), 1446(\mathrm{w})$, 1425(w), 1406(w), 1366(vw), 1323(vw), 1309(w), 1291(m), 1155(w), 1131(m), 1087(vw), 1079(vw), 1043(vw), 1021(w), 990(w), 960(w), 895(vw), 847(vw), 806(m), 776(w), 761(w), 747(m), 720(vw), 659(vw), 633(vw), 617(vw), 600(vw), 588(w), 556(m), 491(s), 473(s), 446(m); ${ }^{1} \mathbf{H}$ NMR (CD3Cl, $300 \mathbf{K}$, in ppm): $\delta=2.20(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 10-\mathrm{H}), 2.41(6 \mathrm{H}, \mathrm{s}$, C7-H), 5.89 ($2 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{H}$), 7.20-7.23 (1H, m, C2-H), 7.40-7.42 (1H, m, C4-H), 7.63-7.68 $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.68-8.70(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{3}} \mathbf{C l}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): \delta=12.5$ (2C, d, 3JCP = $13.8 \mathrm{~Hz}, \mathrm{C} 7$), 13.9 (2C, s, C10), 108.6 (2C, s, C8), 132.2 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 127.5 $(1 \mathrm{C}, \mathrm{d}, 2 \mathrm{JCP}=16.9 \mathrm{~Hz}, \mathrm{C} 4), 135.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 148.4(2 \mathrm{C}, \mathrm{d}, 2 \mathrm{JCP}=17.2 \mathrm{~Hz}, \mathrm{C} 6), 150.0$ $(1 \mathrm{C}, \mathrm{d}, 3 \mathrm{JCP}=14.4 \mathrm{~Hz}, \mathrm{C} 1), 153.7(2 \mathrm{C}, \mathrm{d}, 3 \mathrm{JCP}=5.8 \mathrm{~Hz}, \mathrm{C} 9), 159.6(1 \mathrm{C}, \mathrm{d}, 1 \mathrm{JCP}=23.1$
$\mathrm{Hz}, \mathrm{C} 5) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{C D}_{3} \mathbf{C l}, \mathbf{3 0 0} \mathbf{K , p p m}\right): \delta=44.8(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{P}: \mathrm{C}: 60.19, \mathrm{H}: 6.06, \mathrm{~N}: 23.40$; found: C: 60.13, H: 6.34, N 22.91.

12.2.4. Preparation of $\mathbf{4 1 b}$

To dichlorophosphane $\mathbf{4 0}(0.500 \mathrm{~g}, 2.78 \mathrm{mmol}) \mathbf{5 b}(1.31 \mathrm{~g}, 5.83 \mathrm{mmol})$ is added. The reaction mixture is stirred for 16 h at room temperature. After evaporation of all volatiles in vacuo a colorless oil is obtained. This oil is dissolved in n-hexane (2 ml) and cooled to $-30^{\circ} \mathrm{C}$. After 16 h colorless crystals grow which are isolated and washed with chilled n-hexane to afford the product after evaporation of all volatiles in vacuo.

Yield: $730 \mathrm{mg}\left(64 \%\right.$); m.p.: $54^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{~ c m}^{-1}$): $v=3132(16)$, 3097(9), 3067(25), 3049(30), 2967(100), 2938(51), 2911(73), 2884(81), 2865(70), 2755(7), 2712(10), 1574(39), 1560(27), 1477(31), 1464(31), 1447(43), 1424(24), 1383(9), 1346(12), 1303(24), 1280(13), 1237(6), 1154(12), 1131(18), 1107(24), 1049(36), 1035(12), 990(60), $960(15), 922(9), 878(39), 724(13), 706(9), 686(9), 619(12), 585(10), 541(6), 519(7)$, 474(12), 424(6), 397(7), 250(18), 218(13), 182(16), 140(28); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3086(\mathrm{vw}), 3043(\mathrm{vw}), 2964(\mathrm{w}), 2927(\mathrm{vw}), 2887(\mathrm{vw}), 2865(\mathrm{vw}), 1573(\mathrm{w}), 1556(\mathrm{w})$, 1468(w), 1447(w), 1422(w), 1381(w), 1362(w), 1345(w), 1300(w), 1269(w), 1246(w), 1180(vw), 1162(vw), 1143(w), 1127(m), 1104(w), 1065(w), 1049(w), 1031(w), 983(m), 960(vw), $921(\mathrm{vw}), 876(\mathrm{vw}), 798(\mathrm{~m}), 771(\mathrm{w}), 742(\mathrm{w}), 724(\mathrm{w}), 705(\mathrm{w}), 683(\mathrm{vw}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.12\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}\right), 1.23\left(12 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.9\right.$ $\mathrm{Hz}, \mathrm{C} 13 / \mathrm{C} 14-\mathrm{H}), 1.24\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}\right), 2.94\left(2 \mathrm{H}\right.$, sept., ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{C} 12-$ H), $3.52\left(2 \mathrm{H}\right.$, sept.d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{JHP}_{\mathrm{HP}}=3.4 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}\right), 6.05(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 10-\mathrm{H}), 7.24-7.28$ (1H, m, C2-H), 7.36-7.38 (1H, m, C4-H), 7.66-7.71 (1H, m, C3-H), 8.67-8.69 (1H, m, C1H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=22.8$ ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 13 / \mathrm{C} 14$), 23.0 (2C, s, C13/C14), 23.4 (2C, s, C7), 24.6 (2C, d, $\left.J_{\mathrm{CP}}=2.3 \mathrm{~Hz}, \mathrm{C} 6\right), 27.0\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=12.1 \mathrm{~Hz}, \mathrm{C} 8\right)$, 28.8 (2C, s, C12), $102.1\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=0.5 \mathrm{~Hz}, \mathrm{C} 10\right), 132.9\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, \mathrm{C} 2\right), 127.9$ $\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=16.2 \mathrm{~Hz}, \mathrm{C} 4\right), 136.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 150.4\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=14.9 \mathrm{~Hz}, \mathrm{C} 1\right), 160.6(2 \mathrm{C}$, d, $\left.{ }^{2} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}, \mathrm{C} 9\right), 160.9\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=20.1 \mathrm{~Hz}, \mathrm{C} 5\right), 164.0\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{C} 11\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}, \mathbf{p p m}\right): \delta=45.9(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{P}: \mathrm{C}: 67.13, \mathrm{H}: 8.33, \mathrm{~N}: 17.02$; found: C: 66.82, H: 8.49, N 16.67.

To dichlorophosphane $40(0.500 \mathrm{~g}, 2.78 \mathrm{mmol}) \mathbf{5 c}(1.47 \mathrm{~g}, 5.83 \mathrm{mmol})$ is added. The suspension is stirred for 16 h at room temperature, filtered and the residue is washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{ml})$. After evaporation of all volatiles in vacuo the product is obtained as a colorless solid.
Yield: 870 mg (67 \%); m.p.: $171^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, 298 K , in $\mathbf{c m}^{-1}$): $v=3128(16), 3071(18), 3050(34), 2967(100), 2928(68), 2904(85), 2859(34), 2775(8)$, 2713(15), 1577(29), 1562(19), 1535(10), 1486(21), 1465(34), 1446(45), 1420(27), 1392(15), 1364(10), 1307(10), 1291(11), 1276(16), 1251(11), 1227(14), 1204(41), 1154(14), 1135(18), 1089(14), 1048(38), 1029(12), 991(49), 931(29), 840(14), 824(51), 725(19), 618(15), 566(37), 522(12), 506(16), 416(12), 373(15), 260(29), 223(26), 204(19), 168(29), 139(30); IR (ATR, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=2966(\mathrm{~s}), 2955(\mathrm{vs}), 2927(\mathrm{~s}), 2902(\mathrm{~s})$, 2868(s), 1576(s), 1559(s), 1535(s), 1476(s), 1453(s), 1423(s), 1393(s), 1361(s), 1307(s), 1291(s), 1275(s), 1250(s), 1225(s), 1203(s), 1193(s), 1125(vs), 1108(vs), 1087(s), 1048(s), 1019(s), 984(vs), 932(s), 800(vs), 764(vs), 739(s), 723(s), 693(s), 655(s), 617(s); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=11.14(18 \mathrm{H}, \mathrm{s}, \mathrm{C} 12-\mathrm{H}), 1.39(18 \mathrm{H}, \mathrm{s}, \mathrm{C} 6-\mathrm{H}), 5.99(2 \mathrm{H}, \mathrm{d}$, $\left.{ }^{4} J_{\mathrm{PH}}=1.9 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}\right), 7.20-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 / \mathrm{C} 4-\mathrm{H}), 7.59-7.64(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.60-8.62$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=30.5(6 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 31.5(6 \mathrm{C}$, d, $\left.{ }^{4} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}, \mathrm{C} 6\right), 32.6(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 11), 32.8$ (2C, bs, C7), 103.1 (2C, s, C9), 123.8 (1C, s, $\mathrm{C} 2), 129.5\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=8.8 \mathrm{~Hz}, \mathrm{C} 1\right), 135.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 149.1\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=20.9 \mathrm{~Hz}, \mathrm{C} 4\right)$, $160.5\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, \mathrm{C} 8\right), 163.1\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=22.2 \mathrm{~Hz}, \mathrm{C} 5\right), 164.0(2 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=0.8 \mathrm{~Hz}, \mathrm{C} 10\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}, \mathbf{p p m}\right): \delta=63.9(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{P}: \mathrm{C}: 69.35, \mathrm{H}: 9.05, \mathrm{~N}: 14.98$; found: C: 69.18, H: 8.88, N 14.69.

12.2.6. Preparation of 41 d

To dichlorophosphane $\mathbf{4 0}(0.500 \mathrm{~g}, 2.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{5 d}(1.71 \mathrm{~g}, 5.83$ mmol) is added. After stirring for 16 h at room temperature all volatiles are evaporated in vacuo. The residue is recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane and washed with n-hexane. After evaporating all volatiles in vacuo the product is obtained as a colorless solid.

Yield: 1.39 g (91 \%); m.p.: $191^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}$, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3129(3)$, 3064(24), 1605(100), 1576(9), 1551(15), 1512(38), 1448(13), 1430(44), 1400(13), 1223(5), 1179(5), 1158(8), 1126(3), 1051(6), 1029(8), 1001(47), 980(12), 951(22), 846(4), 770(3), 714(4), 668(4), 619(5), 536(5), 405(4), 286(4), 250(8), 236(7), 211(7), 186(7), 150(13); IR
(ATR, 298 K, in cm ${ }^{-1}$): $v=3057(\mathrm{vw}), 3042(\mathrm{vw}), 1574(\mathrm{vw}), 1550(\mathrm{w}), 1483(\mathrm{w}), 1455(\mathrm{w})$, 1446(w), 1423(w), 1399(w), 1334(vw), 1318(w), 1294(vw), 1269(w), 1221(vw), 1141(w), 1123(m), 1071(w), 1054(w), 1026(w), 1001(vw), 978(w), 950(w), 916(w), 820(w), 808(w), 759(s), 740(w), 714(w), 698(m), 688(m), 669(w), 619(vw); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD $\mathbf{D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm $): \delta=6.78\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{PH}}=2.2 \mathrm{~Hz}, \mathrm{C} 11-\mathrm{H}\right), 7.29-7.46(17 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 15 / \mathrm{C} 16-$ H), 7.76-7.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 7.86-7.88 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} 14-\mathrm{H}$), 8.07-8.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}$), 8.70$\left.8.71(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{\{}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=106.4\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.4\right.$ Hz, C11), 124.6, (1C, s, C2), 126.8 (4C, s, C14), 128.8 (4C, s, C15), 128.9 (2C, s, C16), 129.2 (4C, s, C7), 129.4 (2C, s, C6), 129.5 ($1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=13.7 \mathrm{~Hz}, \mathrm{C} 4$), 130.3 (4C, d, $\left.{ }^{4} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}, \mathrm{C} 8\right), 130.8\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{C} 9\right), 133.6\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=0.7 \mathrm{~Hz}, \mathrm{C} 13\right), 136.4$ (1C, s, C3), $150.2\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=18.8 \mathrm{~Hz}, \mathrm{C} 1\right), 154.4\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=22.6 \mathrm{~Hz}, \mathrm{C} 10\right), 156.4$ (2C, $\left.\mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}, \mathrm{C} 12\right), 160.1\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=22.7 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}, \mathbf{p p m}\right):$ $\delta=52.3(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{P}: \mathrm{C}: 76.77, \mathrm{H}: 4.79, \mathrm{~N}: 12.79$; found: C: 76.20, H: 4.80, N: 12.56 .

12.2.7. Preparation of $41 e$

To dichlorophosphane $\mathbf{4 0}(0.500 \mathrm{~g}, 2.78 \mathrm{mmol}) \mathbf{5 e}(1.22 \mathrm{~g}, 5.83 \mathrm{mmol})$ is added. The suspension is stirred for 16 h at room temperature. After evaporation of all volatiles in vacuo a colorless oil is obtained. This oil is dissolved in n-hexane (2 ml) and cooled to $-30^{\circ} \mathrm{C}$. After 16 h colorless crystals grow which are isolated and washed with chilled n-hexane to afford the product after evaporation of all volatiles in vacuo.
Yield: $747 \mathrm{mg}\left(71\right.$ \%); m.p.: $51^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{~ K , ~ i n ~} \mathbf{c m}^{-1}$): $v=3159(29)$, 3142(20), 3118(24), 3078(22), 3060(49), 3043(53), 3016(8), 2992(12), 2976(8), 2862(12), 1575(61), 1536(22), 1474(33), 1455(10), 1429(10), 1391(59), 1341(16), 1286(12), 1245(8), 1233(8), 1159(27), 1137(29), 1092(12), 1046(63), 990(92), 972(100), 956(24), 744(47), 720(24), 618(29), 544(14), 523(10), 501(12), 437(10), 421(10), 400(16), 353(20), 306(29), 273(20), 251(39), 239(20), 208(24), 196(22), 139(84); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3160(\mathrm{vw}), 3141(\mathrm{vw}), 3117(\mathrm{vw}), 3042(\mathrm{vw}), 1574(\mathrm{w}), 1563(\mathrm{vw}), 1536(\mathrm{vw}), 1471(\mathrm{w})$, 1454(vw), 1428(w), 1390(m), 1339(w), 1286(vw), 1231(m), 1179(w), 1161(s), 1135(vs), 1114(vs), 1041(s), 988(w), 970(m), 957(s), 872(w), 768(s), 741(s), 724(w), 639(w), 623(w); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=6.72\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=2.6 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}\right), 7.30-7.32(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.40-7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.78-7.83(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.11-8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H})$, 8.73-8.75 (1H, m, C1-H); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): 107.4 (2C, pseudo-
quint., C7), $121.5\left(2 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=269.4 \mathrm{~Hz}, \mathrm{C} 9\right), 125.8(1 \mathrm{C}, \mathrm{bs}, \mathrm{C} 2), 127.9\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=22.6\right.$ $\mathrm{Hz}, \mathrm{C} 4), 137.3\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.8 \mathrm{~Hz}, \mathrm{C} 3\right), 139.7\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=11.9 \mathrm{~Hz}, \mathrm{C} 6\right), 148.5$ (2C, qd, $\left.{ }^{2} J_{\mathrm{CF}}=38.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=8.1 \mathrm{~Hz}, \mathrm{C} 8\right), 151.4\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=13.5 \mathrm{~Hz}, \mathrm{C} 1\right), 157.5(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-62.9(6 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=64.2(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}$: C: 41.18, H: 2.13, N: 18.47; found: C: 40.99, H: 2.11, N 17.90 .

12.2.8. Preparation of $41 f$

To dichlorophosphane $\mathbf{4 0}(\mathbf{2 8 0} \mathrm{mg}, 1.57 \mathrm{mmol}) \mathbf{5 f}(730 \mathrm{mg}, 3.3 \mathrm{mmol})$ is added. The suspension is stirred for 16 h at room temperature, filtered and the residue is washed with n-hexane ($3 \times 2 \mathrm{ml}$). After evaporation of all volatiles in vacuo the product is obtained as a colorless solid.
Yield: $567 \mathrm{mg}\left(89\right.$ \%); m.p.: $116^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, 298 \mathbf{K}$, in $\mathbf{~ c m}^{-1}$): $v=3147(9)$, 3097(11), 3081(17), 3052(12), 3001(12), 2958(9), 2936(18), 2919(17), 1578(24), 1566(26), 1484(25), 1458(16), 1438(17), 1386(7), 1282(8), 1238(7), 1164(9), 1143(12), 1128(14), 1090(11), 1050(26), 991(58), 960(20), 723(7), 688(32), 621(11), 495(7), 462(7), 327(26), 291(7), 269(7), 243(9), 216(21), 200(20), 178(11), 129(100); IR (ATR, $298 \mathbf{K , ~ i n ~} \mathbf{c m}^{-1}$): $v=3124(\mathrm{vs}), 3094(\mathrm{vs}), 3052(\mathrm{vs}), 2996(\mathrm{vs}), 1577(\mathrm{vs}), 1564(\mathrm{vs}), 1483(\mathrm{vs}), 1452(\mathrm{vs})$, $1430(\mathrm{vs}), 1325(\mathrm{vs}), 1309(\mathrm{vs}), 1234(\mathrm{vs}), 1172(\mathrm{vs}), 1140(\mathrm{vs}), 1124(\mathrm{vs}), 1101(\mathrm{vs}), 1082(\mathrm{vs})$, 1039(vs), 988(vs), $957(\mathrm{vs}), 896(\mathrm{vs}), 850(\mathrm{vs}), 802(\mathrm{vs}), 757(\mathrm{vs}), 741(\mathrm{vs}), 725(\mathrm{vs}), 684(\mathrm{vs}) ;$ ${ }^{1} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=2.41(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{H}), 6.42(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{H}), 7.38-7.41$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), $7.43-7.45(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.77-7.82(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.73-8.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-$ H); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l} \mathbf{l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $13.0\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.1 \mathrm{~Hz}, \mathrm{C} 7\right), 106.9(2 \mathrm{C}$, $\left.\mathrm{q},{ }^{3} J_{\mathrm{CF}}=1.8 \mathrm{~Hz}, \mathrm{C} 8\right), 121.6\left(2 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=269.8 \mathrm{~Hz}, \mathrm{C} 10\right), 125.3\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.3 \mathrm{~Hz}, \mathrm{C} 2\right)$, $128.3\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=17.1 \mathrm{~Hz}, \mathrm{C} 4\right), 137.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 151.2\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=12.9 \mathrm{~Hz}, \mathrm{C} 1\right), 157.3$ (1C, d, $\left.{ }^{1} J_{\mathrm{CP}}=19.1 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-63.3$ ($6 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=56.5(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}$: C : 44.24, H: 2.97, N: 17.20; found: C: 44.13, H: 2.84, N 16.80 .

12.2.9. Preparation of $\mathbf{4 2}$

2-(Trimethylsilyl)benzo[d]thiazol ($1.060 \mathrm{~g}, 5.112 \mathrm{mmol}$) and $\mathrm{PCl}_{3}(1.3 \mathrm{ml}$, 15.336 mmol) are placed in a Schlenk flask and heated under reflux for 48 h . After evaporation of all volatiles the residue is sublimed $\left(\mathrm{T}=55^{\circ} \mathrm{C}, \mathrm{p}=9 \times 10^{-3} \mathrm{mbar}\right)$ to yield the product as colorless crystals. The spectral data are in accordance with the ones reported in the literature. ${ }^{43}$

Yield: $808 \mathrm{mg}(67 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{6},} \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=6.90-6.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H})$, 7.01-7.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}$), 7.23-7.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}$), 7.93-7.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=122.0$ (1C, s, C6), 125.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 127.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 127.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 137.7 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{C} 7$), 155.1 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=15.8 \mathrm{~Hz}, \mathrm{C} 2$), 173.1 $\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=63.4 \mathrm{~Hz}, \mathrm{C} 1\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=132.0$ ($1 \mathrm{P}, \mathrm{s}$).

12.2.10. Preparation of $\mathbf{4 3 a}$

To a suspension of dichlorophospane $42(2.500 \mathrm{~g}, 10.59 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $5 \mathbf{5 a}(3.740 \mathrm{~g}, 22.24 \mathrm{mmol})$ is added. After stirring for 16 h all volatiles are evaporated in vacuo to yield the product as a light-yellow powder.
Yield: 3.620 g (96%); m.p.: $102{ }^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}$, 298 K , in $\mathbf{c m}^{-}$ ${ }^{1}$): $v=3097$ (12), 3055 (33), 3009 (7), 2970 (15), 2928 (37), 1589 (7), 1571 (9), 1550 (32), 1467 (14), 1452 (28), 1441 (27), 1400 (100), 1384 (12), 1375 (8), 1314 (13), 1272 (23), 1232 (52), 1158 (7), 1125 (12), 1016 (15), 1006 (37), 853 (13), 762 (7), 707 (20), 631 (6), 590 (19), 579 (5), 516 (5), 507 (15), 459 (11), 419 (5), 366 (10), 219 (9), 203 (10), 175 (17); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3071$ (w), 3053 (w), 2976 (w), 2926 (w), 1569 (s), 1455 (m), 1440 (m), 1398 (s$), 1367$ (m), 1305 (m), 1284 (s$), 1230$ (m), 1154 (m), 1129 (vs), 1085 (m), 1068 (m), 1035 (w), 1016 (s), 1005 (m), 956 (vs), 852 (m), 813 (s), 773 (vs), 759 (s), 738 (s), 706 (m), 675 (w), $659(\mathrm{~m}), 604(\mathrm{w}), 577(\mathrm{~m}), 534(\mathrm{~s}), 516(\mathrm{~s}), 486(\mathrm{vs}), 458(\mathrm{vs}), 431$ (vs), 417 (vs); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=2.25(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 12-\mathrm{H}), 2.50(6 \mathrm{H}, \mathrm{s}$, $\mathrm{C} 8-\mathrm{H}), 5.98(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 10-\mathrm{H}), 7.44-7.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.50-7.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.98-$ $8.00(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 8.10-8.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=12.8\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=14.9 \mathrm{~Hz}, \mathrm{C} 8\right), 14.1(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 109.5\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.8 \mathrm{~Hz}, \mathrm{C} 10\right)$, 122.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 124.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 126.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 126.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 138.5 (1 C , d, $\left.{ }^{3} J_{\mathrm{CP}}=1.7 \mathrm{~Hz}, \mathrm{C} 1\right), 149.9\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=20.8 \mathrm{~Hz}, \mathrm{C} 9\right), 154.7\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, \mathrm{C} 11\right)$, $154.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=19.1 \mathrm{~Hz}, \mathrm{C} 6\right), 168.6\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{C} 7\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0}\right.$ K, in ppm): $\delta=38.0(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{PS}: \mathrm{C}: 57.45, \mathrm{H}: 5.11$, N: 19.71, S: 9.02; found: C: 57.70, H: 5.11, N: 19.25, S: 9.33.

12.2.11. Preparation of $\mathbf{4 3 b}$

To a suspension of dichlorophospane $42(236 \mathrm{mg}, 1.000 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\mathbf{5 b}(471 \mathrm{mg}, 2.100 \mathrm{mmol})$ is added. After stirring for 16 h all volatiles are evaporated in vacuo to yield a light-yellow oil. After addition of n pentane the oil solidifies. The colorless solid is filtered off, washed with n-pentane and dried in vacuo to yield the product.

Yield: $397 \mathrm{mg}(85 \%)$; m.p.: $109^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $\mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3111$ (5), 3081 (7), 3062 (25), 3028 (6), 2968 (40), 2923 (29), 2868 (34), 2711 (5), 1591 (13), 1554 (29), 1474 (17), 1450 (52), 1410 (100), 1382 (8), 1368 (7), 1314 (18), 1274 (35), 1237 (53), 1162 (5), 1126 (22), 1109 (10), 1049 (7), 1002 (31), 989 (10), 959 (6), 878 (19), 853 (9), 707 (18), 670 (5), 504 (18), 443 (5), 377 (7), 214 (8), 174 (15), 124 (33); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=2964(\mathrm{~s}), 2928(\mathrm{~m}), 2868(\mathrm{~m}), 2324(\mathrm{w}), 1555(\mathrm{~m}), 1448(\mathrm{~m}), 1409(\mathrm{~m}), 1381$ (w), 1364 (m), 1313 (m), 1297 (w), 1248 (s), 1207 (w), 1181 (w), 1164 (m), 1144 (s), 1117 (s), 1089 (w), 1067 (s), 1043 (m), 1016 (m), 1002 (w), 982 (s), 942 (w), 924 (w), 877 (w), 852 (m), 813 (m), 803 (m), 763 (vs), 731 ($), 703$ (m), 682 (w), $670(\mathrm{w}), 616(\mathrm{~m}), 578(\mathrm{~m})$, 558 (w), 526 (s), 508 (vs), 495 (vs), 435 (s), 421 (vs); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.04\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.82 \mathrm{~Hz}, \mathrm{C} 8 / \mathrm{C} 10-\mathrm{H}\right), 1.16\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.82 \mathrm{~Hz}, \mathrm{C} 8 / \mathrm{C} 10-\mathrm{H}\right), 1.26$ $\left(12 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.03 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}\right), 2.95\left(2 \mathrm{H}\right.$, sept., $\left.{ }^{3} J_{\mathrm{HH}}=7.03 \mathrm{~Hz}, \mathrm{C} 15-\mathrm{H}\right), 3.68(2 \mathrm{H}$, sept. d, $\left.{ }^{3} J_{\mathrm{HH}}=6.82 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=3.09 \mathrm{~Hz}, \mathrm{C} 9\right), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 12-\mathrm{H}), 6.93-6.97(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}) 7.04-$ $7.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.42-7.44(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 7.99-8.02(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathrm{K}$, in ppm): $\delta=22.8\left(4 \mathrm{C}, \mathrm{d},{ }^{5} \mathrm{~J}_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{C} 14 / \mathrm{C} 16\right), 23.6(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 10)$, $24.5\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=3.2 \mathrm{~Hz}, \mathrm{C} 8\right), 27.1\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.6 \mathrm{~Hz}, \mathrm{C} 9\right), 29.1$ (2C, s, C15), 103.0 (2C, d, C12), 121.9 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 124.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 126.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 126.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 139.1 $(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 1), 155.3\left(1 \mathrm{C}, \mathrm{d}, 3 J_{\mathrm{CP}}=19.4 \mathrm{~Hz}, \mathrm{C} 6\right), 160.0\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}, \mathrm{C} 11\right), 163.9$ $\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{C} 13\right), 169.5(1 \mathrm{C}, \mathrm{s} \mathrm{C} 7) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR (CD2 $\mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=39.3$ (1P, s); elemental analysis: calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{PS}: \mathrm{C}: 64.21, \mathrm{H}: 7.33$, $\mathrm{N}: 14.98$, S: 6.86; found: C: 64.33, H: 7.11, N: 14.75, S: 6.63.

12.2.12. Preparation of $43 \boldsymbol{d}$

To a suspension of dichlorophospane $42(236 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\mathbf{5 d}(614 \mathrm{mg}, 2.10 \mathrm{mmol})$ is added. After stirring for 16 h the resulting suspension is filtered. The residue is washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{ml})$. All volatiles are evaporated in vacuo to yield the product as a colorless powder.
Yield: 442 mg (73%); m.p.: $169^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3097$ (12), 3055 (33), 3009 (7), 2970 (15), 2928 (37), 1589 (7), 1571 (9), 1550 (32), 1467 (14), 1452 (28), 1441 (27), 1400 (100), 1384 (12), 1375 (8), 1314 (13), 1272 (23), 1232 (52), 1158 (7), 1125 (12), 1016 (15), 1006 (37), 853 (13), 762 (7), 707 (20), 631 (6), 590 (19), 579 (5), 516 (5), 507 (15), 459 (11), 419 (5), 366 (10), 219 (9), 203 (10), 175 (17); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3071$ (w), 3053 (w), 2976 (w), 2926 (w), 1569 (s), 1455 (m), 1440 (m), 1398 (s), 1367 (m), 1305 (m), 1284 (s), 1230 (m), 1154 (m), 1129 (vs), 1085 (m), 1068 (m), 1035 (w),

1016 (s), 1005 (m), 956 (vs), 852 (m), 813 (s), 773 (vs), 759 (s), 738 (s), 706 (m), 675 (w), 659 (m), 604 (w), 577 (m), 534 (s), 516 (s), 486 (vs), 458 (vs), 431 (vs), 417 (vs); ¹H NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=6.76\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{HP}}=2.42 \mathrm{~Hz}, \mathrm{C} 13-\mathrm{H}\right), 7.29-7.33(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-$ H), 7.36-7.42 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C} 8 / \mathrm{C} 10 / \mathrm{C} 18-\mathrm{H}), 7.44-7.48(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 17-\mathrm{H}), 7.48-7.54(2 \mathrm{H}, \mathrm{m}$, C3/C4-H), 7.96-7.99 (4H, m, C16-H), 8.05-8.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.13-8.15(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CD $\mathbf{D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=106.6\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.7 \mathrm{~Hz}, \mathrm{C} 13\right), 122.2(1 \mathrm{C}$, s, C2), 124.6 (1C, s, C5), 126.6 (1C, s, C3), 126.8 (5C, s, C4/C16), 129.0 (4C, s, C9), 129.2 (2C, s, C18), 129.3 (4C, s, C17), 129.6 (2C, s, C8), 130.2 (2C, d, ${ }^{3} J_{\mathrm{CP}}=3.1 \mathrm{~Hz}, \mathrm{C} 11$), 130.3 $\left(4 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, \mathrm{C} 10\right), 133.2(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 15), 139.5(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 1), 153.9\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=23.8\right.$ $\mathrm{Hz}, \mathrm{C} 12), 154.2\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=24.4 \mathrm{~Hz}, \mathrm{C} 6\right), 156.5(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 14), 168.3\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right.$, C7); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{~ p p m}$): $\delta=43.4(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{PS} \times 0.15 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}: 72.39, \mathrm{H}: 4.30, \mathrm{~N}: 11.36, \mathrm{~S}: 5.20$; found: C: 72.45, H: 4.39, N: 11.42, S: 5.09.

12.2.13. Preparation of $43 \boldsymbol{e}$

To a suspension of dichlorophospane $42(236 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\mathbf{5 e}(437 \mathrm{~g}, 2.10 \mathrm{mmol})$ is added. After stirring for 16 h all volatiles are evaporated in vacuo to yield a colorless oil. After addition of n-pentane the oil solidifies. The colorless solid is filtered off, washed with n pentane and dried in vacuo to yield the product as a colorless powder.
Yield: $224 \mathrm{mg}(51 \%) ; \mathbf{m} . \mathbf{p} .: 111^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}$, in cm ${ }^{-1}$): $v=3161$ (167), 3144 (33), 3115 (83), 3074 (250), 3061 (17), 3033 (50), 1592 (117), 1555 (317), 1535 (33), 1464 (883), 1423 (600), 1399 (183), 1388 (67), 1346 (67), 1316 (117), 1275 (283), 1236 (783), 1158 (50), 1124 (217), 1074 (33), 1046 (67), 1014 (167), 972 (600), 851 (100), 761 (33), 742 (233), 726 (17), 709 (217), 676 (50), 635 (17), 623 (17), 610 (83), 586 (33), 541 (83), 526 (17), 503 (233), 457 (17), 433 (17), 418 (50), 401 (50), 373 (83), 347 (100), 308 (100), 282 (67), 248 (17), 241 (150); IR (ATR, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3160$ (vw), 3143 (vw), 3115 (vw), 1466 (w), 1399 (w), 1389 (w), 1344 (vw), 1316 (vw), 1225 (m), 1147 (vs), 1130 (vs), 1116 (vs), 1035 (s), 970 (m), 958 (s$), 886$ (vw), 868 (vw), 851 (vw), 784 (m), 759 (s), 741 (m), 729 (m), 709 (vw), 676 (w), 635 (w), 623 (w), 609 (w), 591 (w), 543 (m), 524 (m), 502 (m), 456 (m), 432 (w), 417 (w), 406 (vw); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=6.75$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{HP}}=2.60 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}\right), 7.53-7.58(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.58-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.02-$ $8.08(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.16-8.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 8.24(2 \mathrm{H}, \mathrm{bs}, \mathrm{C} 8-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=107.9$ (2C, pseudo $\left.\mathrm{t}, \mathrm{C} 9\right), 121.3\left(2 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=267.5 \mathrm{~Hz}\right.$,

C11), 122.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 125.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 127.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 127.8 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 138.0 (1 C , $\mathrm{s}, \mathrm{C} 1), 139.7\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=13.3 \mathrm{~Hz}, \mathrm{C} 8\right), 148.9\left(2 \mathrm{C}, \mathrm{qd},{ }^{2} J_{\mathrm{CF}}=38.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=8.3 \mathrm{~Hz}, \mathrm{C} 10\right)$, $155.1\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=17.1 \mathrm{~Hz}, \mathrm{C} 6\right), 165.1\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=3.3 \mathrm{~Hz}, \mathrm{C} 7\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0}\right.$ \mathbf{K}, in ppm): $\delta=54.1(1 \mathrm{P}, \mathrm{s}) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{~ p p m}$): $\delta=-63.0(3 \mathrm{~F}, \mathrm{~s})$; elemental analysis: calcd. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{PS}: \mathrm{C}: 41.39, \mathrm{H}: 1.85, \mathrm{~N}: 16.09, \mathrm{~S}: 7.37$; found: C : 41.13, H: 1.86, N: 15.88, S: 7.50.

12.2.14. Preparation of $43 f$

To a suspension of dichlorophospane $42(236 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ 5f $(467 \mathrm{~g}, 2.10 \mathrm{mmol})$ is added. After stirring for 16 h all volatiles are evaporated in vacuo to yield a colorless oil. After addition of n-pentane the oil solidifies. The colorless solid is filtered off, washed with n pentane and dried in vacuo to yield the product as a colorless powder.
Yield: 267 mg (58\%); m.p.: $133{ }^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $\mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3146$ (9), 3111 (5), 3071 (25), 3005 (6), 2978 (6), 2935 (21), 1594 (12), 1554 (29), 1483 (16), 1456 (37), 1410 (100), 1388 (10), 1322 (15), 1277 (30), 1240 (58), 1174 (5), 1127 (19), 1088 (7), 1026 (14), 1010 (45), 987 (6), 960 (12), 854 (9), 709 (23), 688 (17), 675 (10), 644 (5), 579 (7), 504 (16), 479 (8), 413 (6), 329 (15), 266 (5), 199 (13), 164 (10), 150 (13), 132 (22); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3147$ (vw), 3070 (vw), 3005 (vw), 1615 (vw), 1560 (vw), 1484 (m), 1446 (w), 1410 (vw), 1386 (vw), 1362 (vw), 1313 (w), 1234 (s$), 1173$ (vs), 1131 (vs), 1102 (vs), 1083 (s), 1040 (w), 1025 (w), 1010 (w), 986 (w), 957 (m), 873 (vw), 855 (w), 808 (m), 760 (s), 731 (w), 723 (w), 708 (vw), 686 (vw), 675 (vw), $644(\mathrm{vw}), 603(\mathrm{w}), 578(\mathrm{w})$, $529(\mathrm{~m}), 507(\mathrm{~m}), 497(\mathrm{~s}), 477(\mathrm{~s}), 433(\mathrm{w}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{~ K}\right.$, in ppm): $\delta=2.52$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{H}), 6.45(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 10-\mathrm{H}), 7.51-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.55-7.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H})$, 8.02-8.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.14-8.16(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD $\mathbf{D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=12.9\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.5 \mathrm{~Hz}, \mathrm{C} 8\right), 107.2\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}, \mathrm{C} 10\right), 121.5(2 \mathrm{C}, \mathrm{q}$, $\left.{ }^{1} J_{\mathrm{CF}}=268.9 \mathrm{~Hz}, \mathrm{C} 12\right), 122.5(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 124.7(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5), 127.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 127.4(1 \mathrm{C}, \mathrm{s}$, C4), $138.5\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.7 \mathrm{~Hz}, \mathrm{C} 1\right), 148.1\left(2 \mathrm{C}, \mathrm{qd},{ }^{2} J_{\mathrm{CF}}=38.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=6.2 \mathrm{~Hz}, \mathrm{C} 11\right)$, $150.9\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=16.2 \mathrm{~Hz}, \mathrm{C} 9\right), 154.9\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=19.7 \mathrm{~Hz}, \mathrm{C} 6\right), 165.2\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=2.3\right.$ $\mathrm{Hz}, \mathrm{C} 7$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=49.0(1 \mathrm{P}, \mathrm{s}) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=-63.4(3 \mathrm{~F}, \mathrm{~s})$; elemental analysis: calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{PS}: \mathrm{C}: 44.07, \mathrm{H}: 2.61$, N: 15.12, S: 6.92; found: C: 44.19, H: 2.65, N: 14.74, S: 7.00.

12.2.15. Preparation of 44

To $\mathrm{PCl}_{3}(2.0 \mathrm{ml}, 22.86 \mathrm{mmol}) \mathbf{5 c}(2.90 \mathrm{~g}, 11.43 \mathrm{mmol})$ is added. The reaction mixture is stirred at r.t. for 16 h resulting in a thick, colorless suspension. After evaporation of all volatiles the product is obtained as colorless solid.
Yield: 3.18 g (99 \%); m.p.: $80^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3139$ (100), 3107 (99), 2972 (95), 2928 (93), 2906 (93), 2864 (91), 2784 (89), 2717 (87), 1563 (50), 1485 (47), 1464 (47), 1442 (46), 1415 (45), 1395 (44), 1368 (44), 1286 (41), 1251 (40), 1221 (39), 1203 (38), 1040 (33), 1029 (33), 1013 (32), 974 (31), 931 (30), 837 (27), 823 (26), 687 (22), 657 (21), 570 (18), 505 (16), 477 (15), 442 (14), 416 (13), 376 (12), 331 (11), 286 (9), 262 (8), 242 (8), 177 (6); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=2962$ (m), 2930 (w), 2904 (w), 2866 (vw), 1561 (m), 1462 (w), 1413 (vw), 1398 (w), 1364 (m), 1284 (m), 1250 (m), 1221 (w), 1188 (m), 1128 (s), 1107 (m), 1039 (vw), 1012 (w), 972 (m), 931 (vw), 822 (m), 725 (vw), 686 (vw), 656 (w), 568 (m), 501 (vs), 471 (vs), 440 (s); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~}$ $\delta=1.31(9 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{H}), 1.43(9 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{H}), 6.02\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{HP}}=2.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}\right) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD2 $\mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=30.3$ (3C, s, C1), $31.7\left(3 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, \mathrm{C} 7\right), 32.6$ (1C, s, C6), 33.5 (1C, s, C2), 104.9 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, \mathrm{C} 4$), 161.7 ($1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=16.7 \mathrm{~Hz}$, C5), 168.9 ($1 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=2.6 \mathrm{~Hz}, \mathrm{C} 3$); ${ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K}, \mathbf{p p m}\right): \delta=148.5(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}: \mathrm{C}: 46.99, \mathrm{H}: 6.81, \mathrm{~N}: 9.96$; found: $\mathrm{C}: 46.97$, H: 6.39, N 9.62.

12.2.16. Preparation of $\mathbf{4 5}$

To $5 \mathbf{c}(2.30 \mathrm{~g}, 9.10 \mathrm{mmol}) \mathrm{PCl}_{3}(0.4 \mathrm{ml}, 4.55 \mathrm{mmol})$ is added. The reaction mixture is stirred at r.t. for 72 h resulting in a thick, colorless suspension. After evaporation of all volatiles the product is obtained as colorless solid.

Yield: 1.91 g (99 \%); m.p.: $135^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W , 2 9 8 ~ K , ~ i n ~ c m}{ }^{-1}$): $v=3136$ (14), 2971 (100), 2926 (87), 2906 (76), 2864 (32), 2782 (7), 2714 (13), 1558 (10), 1485 (19), 1463 (41), 1449 (53), 1414 (10), 1403 (11), 1366 (5), 1291 (5), 1278 (6), 1250 (10), 1219 (15), 1204 (41), 1181 (11), 1127 (5), 1038 (12), 1026 (15), 981 (19), 928 (33), 837 (19), 822 (59), 688 (5), 656 (11), 578 (15), 564 (38), 503 (38), 486 (31), 452 (9), 414 (7), 372 (14), 328 (11), 288 (21), 262 (24), 245 (16), 225 (14), 196 (18), 175 (24); IR (ATR, 298 K, in cm ${ }^{-1}$): $\mathrm{v}=3231$ (vw), 2965 (m), 2928 (w), 2904 (w), 2867 (w), 1557 (m), 1475 (vw), 1460 (w), 1400 (vw), 1361 (m), 1289 (w), 1278 (w), 1249 (m), 1220 (w), 1194 (w), 1178 (w), 1122 (s), 1106 (s), 1038 (vw), 1011 (w), 975 (s), 928 (vw), 848 (vw), 811 (m), 722 (w), 686 (vw),

652 (m), 578 (w), 551 (w), 501 (vs), 484 (vs), 451 (m), 432 (w); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~}$ in ppm): $\delta=1.25(18 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{H}), 1.42(18 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-\mathrm{H}), 6.03\left(2 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{HP}}=2.08 \mathrm{~Hz}, \mathrm{C} 4-\right.$ H); 13C\{1H\} NMR (CD3Cl, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=30.4$ ($6 \mathrm{C}, \mathrm{s}, \mathrm{C} 1$), $31.6\left(6 \mathrm{C}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=10.5\right.$ $\mathrm{Hz}, \mathrm{C} 7$), 32.7 (2C, s, C6), 33.0 (2C, s, C2), 104.7 (2C, d, ${ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{C} 4$), 160.7 (2C, d, $\left.{ }^{2} J_{\mathrm{CP}}=16.7 \mathrm{~Hz}, \mathrm{C} 5\right), 165.6\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.74 \mathrm{~Hz}, \mathrm{C} 3\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K}, \mathbf{p p m}\right):$ $\delta=106.4(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{P}: \mathrm{C}: 62.17, \mathrm{H}: 9.01, \mathrm{~N}: 13.18$; found: C: 61.92, H: 8.59, N 13.00 .

12.2.17. Preparation of 46

To a solution of dichlorophosphane $40(3.60 \mathrm{~g}, 20.0 \mathrm{mmol})$ in n-pentane (10 $\mathrm{ml})$ a solution of $5 \mathbf{5 a}(3.20 \mathrm{~g}, 19.0 \mathrm{mmol})$ in n-pentane $(10 \mathrm{ml})$ is added at $-30^{\circ} \mathrm{C}$. After that the reaction mixture is stirred at r.t. for 16 h . The resulting colorless precipitate is filtered off and washed with n-pentane ($2 \times 5 \mathrm{ml}$). After evaporation of all volatiles the product is obtained as colorless solid.
Yield: $3.81 \mathrm{~g}(84 \%)$; m.p.: $69^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}$, in cm $\mathbf{c m}^{-1}$): $v=3131$ (12), 3101 (13), 3088 (13), 3070 (38), 3040 (45), 2975 (15), 2923 (55), 2858 (9), 1575 (34), 1567 (48), 1446 (38), 1384 (11), 1375 (11), 1304 (11), 1278 (14), 1250 (11), 1163 (21), 1136 (16), 1087 (15), 1046 (52), 1017 (15), 991 (100), 966 (12), 774 (12), 759 (10), 721 (18), 635 (11), 617 (21), 591 (37), 519 (18), 492 (29), 473 (61), 447 (18), 408 (28), 374 (15), 286 (45), 235 (29), 214 (23), 197 (20); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3038$ (vw), 2921 (vw), 1563 (m), 1445 (w), 1427 (w), 1402 (w), 1370 (w), 1322 (w), 1300 (m), 1277 (w), 1155 (w), 1132 (m), 1081 (w), 1044 (vw), 1015 (w), 989 (w), 963 (w), 897 (vw), 860 (vw), 802 (m), 777 (m), 760 (m), 721 (vw), 660 (vw), 634 (vw), 616 (vw), 590 (vw), 557 (vw), 520 (s), 489 (vs), 467 (vs), $440(\mathrm{~s}), 408(\mathrm{~m}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m}\right): ~ \delta=2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 10-\mathrm{H}), 2.38(3 \mathrm{H}, \mathrm{s}$, C7-H), $5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{H}), 7.34-7.38(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.83-7.88(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.08-8.14$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 8.67-8.69 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=12.7(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7), 14.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 10), 109.8(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8), 124.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 126.9(1 \mathrm{C}, \mathrm{s}$, C4), 136.9 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 149.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6$), 150.3 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=16.8 \mathrm{~Hz}, \mathrm{C} 1$), 155.6 ($1 \mathrm{C}, \mathrm{s}$, C9), 160.6 (1C, s, C5); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}, \mathbf{p p m}\right): \delta=80.1$ ($1 \mathrm{P}, \mathrm{s}$); elemental analysis: calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{P}$: $\mathrm{C}: 50.12, \mathrm{H}: 4.63, \mathrm{~N}: 17.53$; found: $\mathrm{C}: 50.44, \mathrm{H}: 4.31, \mathrm{~N}$ 17.45 .

To a suspension of dichlorophosphane $42(250 \mathrm{mg}, 1.06 \mathrm{mmol})$ in n-pentane $5 \mathbf{5}(178 \mathrm{mg}, 1.06 \mathrm{mmol})$ is added. After 16 h the resulting thick, colorless suspension is filtered. The residue is washed with n-pentane ($3 \times 1 \mathrm{ml}$) and dried in vacuo to yield the product as a colorless solid.
Yield: $297 \mathrm{mg}(95 \%)$; m.p.: $104{ }^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{~ K , ~ i n ~ c m}{ }^{-1}$): $v=3107$ (20), 3065 (70), 2982 (15), 2961 (22), 2924 (73), 1593 (18), 1575 (17), 1554 (46), 1457 (75), 1436 (28), 1415 (100), 1384 (14), 1317 (22), 1281 (18), 1238 (96), 1126 (30), 1021 (30), 1011 (60), 852 (16), 763 (22), 709 (51), 601 (13), 587 (31), 504 (25), 483 (53), 477 (66), 460 (45), 402 (14), 371 (25), 243 (35), 189 (30); IR (ATR, 298 K, in cm ${ }^{-1}$): v=3063 (w), 2979 (w), 2956 (w), 2923 (w), 2656 (w), 2363 (w), 1574 (m), 1553 (w), 1454 (m), 1399 (m), 1368 (w), 1315 (m), 1295 (s), 1237 (w), 1167 (w), 1153 (m), 1129 (s), 1090 (m), 1078 (w), 1034 (w), 1016 (m), 957 (m), 940 (w), 861 (w), 850 (w), 801 (s), 758 (vs), 727 (s), 707 (w), 673 (w), 657 (w), 634 (w), 599 (m), 586 (w), 574 (m), 526 (m), 483 (), 472 (vs), 454 (vs), 424 (vs); ${ }^{1} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 12-\mathrm{H}), 2.47(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{H}), 6.00(1 \mathrm{H}$, s, C10-H), 7.48-7.53 (1H, m, C3-H), 7.53-7.58 (1H, m, C4-H), 8.02-8.05 (1H, m, C5-H), 8.11-8.14 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K}\right.$, in ppm): $\delta=12.5(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=14.9 \mathrm{~Hz}, \mathrm{C} 8\right), 14.2(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 110.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 10), 122.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5), 124.7(1 \mathrm{C}, \mathrm{s}$, $\mathrm{C} 2), 127.1$ ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 3 / \mathrm{C} 4$), 138.4 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 1$), 149.3 ($1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=21.7 \mathrm{~Hz}, \mathrm{C} 9$), 155.1 (1 C , $\left.\mathrm{d},{ }^{3} J_{\mathrm{CP}}=17.8 \mathrm{~Hz}, \mathrm{C} 6\right), 156.7\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{C} 11\right), 171.0\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=27.9 \mathrm{~Hz}, \mathrm{C} 7\right)$; ${ }^{31} \mathbf{P}$ NMR ($\left.\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}, \mathbf{p p m}\right): \delta=76.1(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{PS}: \mathrm{C}: 48.74, \mathrm{H}: 3.75, \mathrm{~N}: 14.21, \mathrm{~S}: 10.84$; found: C: 48.65, H: 3.36, N 13.84, S: 11.34 .

12.3. Syntheses and Characterization Data regarding Compounds in
 Chapter 4

12.3.1. Preparation of $\mathbf{4 8}$

To a solution of dipyrazolylphosphane $41 \mathrm{a}(2.00 \mathrm{~g}, 6.682 \mathrm{mmol})$ in 20 ml of MeCN dicyclohexylphosphane $(2.9 \mathrm{ml}, 13.364 \mathrm{mmol})$ is added while stirring vigorously. After a few moments a colorless precipitate forms. The reaction mixture is stirred for 16 h . After that the precipitate is filtered off and washed with $\mathrm{MeCN}(3 \times 10 \mathrm{ml})$. Evaporation of all volatiles in vacuo yields the product as a colorless powder.

Yield: $3.239 \mathrm{~g}(96 \%)$; m.p.: $122^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3057$ (13), 3033 (18), 2928 (80), 2916 (79), 2890 (45), 2848 (100), 2649 (6), 1569 (30), 1460 (5), 1443 (30), 1420 (5), 1343 (8), 1328 (9), 1298 (10), 1274 (20), 1189 (8), 1179 (6), 1153 (5), 1122 (11), 1080 (5), 1043 (21), 1025 (21), 986 (22), 848 (9), 815 (17), 735 (8), 714 (10), 697 (6), 505 (6), 464 (10), 444 (5), 401 (5), 364 (5), 211 (11), 160 (9), 132 (16), 122 (19); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3056(\mathrm{w}), 3032(\mathrm{w}), 2916(\mathrm{vs}), 2847(\mathrm{~s}), 1568(\mathrm{~m}), 1558(\mathrm{w}), 1443(\mathrm{vs})$, 1420 (m), 1339 (w), 1293 (w), 1262 (w), 1212 (vw), 1188 (w), 1177 (w), 1169 (w), 1153 (w), 1121 (w), 1080 (w), 1045 (w), 1028 (vw), 997 (m), 953 (vw), 914 (vw), 902 (vw), 884 (w), 849 (w), 814 (vw), 763 (s), 747 (w), 735 (vw), 714 (w), 621 (w), 504 (w), 484 (w), 464 (w), 454 (vw), 438 (vw); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.08-1.42\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.59-1.65 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.65-1.78 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.78-1.89 (8H, m, CH, CH2), 7.07-7.11 $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.51-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.81-7.83(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.57-8.59(1 \mathrm{H}, \mathrm{m} \mathrm{C} 1-$ $\mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): ~ \delta=27.0\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 31.8(\mathrm{~m}$, CH_{2}), $32.7\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 33.9(4 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 121.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 130.3\left(1 \mathrm{C}, \mathrm{dt},{ }^{2} J_{\mathrm{CP}}=18.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C} 4\right), 134.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}, \mathrm{C} 3\right), 150.0\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{C} 1\right), 163.6$ (1C, dt, $\left.{ }^{1} J_{\mathrm{CP}}=22.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=8.1 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): AX_{2} spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-57.3(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-7.7(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-251.3 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{NP}_{3}: \mathrm{C}: 69.16, \mathrm{H}: 9.61, \mathrm{~N}: 2.78$; found: $\mathrm{C}: 68.85, \mathrm{H}: 9.33, \mathrm{~N}: 2.80$.

12.3.2. Preparation of 49

To a solution of dipyrazolylphosphane $\mathbf{4 3 a}(500 \mathrm{mg}, 1.407 \mathrm{mmol})$ in 10 ml of MeCN dicyclohexylphosphane ($0.57 \mathrm{ml}, 2.814 \mathrm{mmol}$) is added while stirring vigorously. After a few moments a slightly yellow oil forms which solidifies over the course of approximately five minutes; this can be supported by means of ultra sonification. The suspension is then stirred for 16 h . After that the precipitate is filtered off and washed with MeCN ($3 \times 5 \mathrm{ml}$). Evaporation of all volatiles in vacuo yields the product as a pale-yellow powder.
Yield: 731 mg (93\%); m.p.: $99^{\circ} \mathrm{C}$; $\boldsymbol{\operatorname { R a m a n }}\left(\mathbf{1 0 0} \mathbf{~ m W}, 298 \mathbf{K}, \mathbf{i n ~ c m}^{-1}\right.$): $v=3058$ (29), 2931 (100), 2882 (7), 2848 (61), 1557 (7), 1448 (18), 1408 (61), 1268 (11), 1231 (18), 1022 (11), 961 (11), 501 (7); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=2919$ (vs), 2846 (s$), 1446$ (m), 1413 (m), 1314 (w), 1301 (w), 1265 (w), 1241 (w), 1192 (w), 1181 (w), 1158 (w), 1015 (w), 997 (m), 964 (s), 884 (w), 847 (m), 757 (vs), 726 (s), 652 (w), 599 (w), 510 (w), 453 (w), 433 (w); ¹H NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.11-1.30\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.34-1.47\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.60-1.66 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.68-1.76 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.76-1.82 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.88-1.95 (4H, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.98-2.07(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.32-7.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.42-7.46(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.86-$
$7.89(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.98-8.00(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K}\right.$, in ppm): $\delta=26.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.0\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 31.7\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 32.6\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 34.2(4 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 121.6$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 123.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), $125.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4), 126.2(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 137.8\left(1 \mathrm{C}, \mathrm{dt},{ }^{3} J_{\mathrm{CP}}=5.1\right.$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{CP}}=2.1 \mathrm{~Hz}, \mathrm{C} 6\right), 155.9\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.7 \mathrm{~Hz}, \mathrm{C} 1\right), 173.6\left(1 \mathrm{C}, \mathrm{dt},{ }^{1} J_{\mathrm{CP}}=50.2 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{CP}}=15.2 \mathrm{~Hz}, \mathrm{C} 7\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{p p m}$): $\mathrm{AX} \mathrm{X}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-58.1$ $(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-0.7(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-268.8 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{NP}_{3} \mathrm{~S}$: C: 66.52, H: 8.64, N: 2.50. S: 5.73; found: C: 66.16, H: 8.20, N: 2.45, S: 5.36.

12.3.3. Preparation of $\mathbf{5 0}$

To a solution of dipyrazolylphosphane $41 \mathrm{a}(485 \mathrm{mg}, 1.62 \mathrm{mmol})$ in 3 ml of MeCN di-tert-butylphosphane ($0.6 \mathrm{ml}, 3.24 \mathrm{mmol}$) is added while stirring. After stirring for 5 h the solution is stored at $-30 \mathrm{C}{ }^{\circ} \mathrm{C}$ for five days.
During this time large colorless crystals of $\mathbf{5 0}$ are growing. These crystals are isolated by decantation, washed with $\mathrm{MeCN}(2 \times 1 \mathrm{ml})$ and dried in vacuo to afford $\mathbf{5 0}$. The mother liquor is again stored at $-30^{\circ} \mathrm{C}$ for a second crop of crystals to grow which are isolated as described.

Yield: 501 mg (77%); m.p.: $142^{\circ} \mathrm{C}$; $\boldsymbol{\operatorname { R a m a n }}\left(\mathbf{1 0 0} \mathbf{m W}, 298 \mathbf{K}, \mathbf{i n ~ c m}^{-1}\right.$): $v=3114$ (5), 3081 (6), 3056 (20), 3044 (24), 2986 (31), 2941 (59), 2892 (100), 2861 (70), 2766 (9), 2701 (12), 1569 (51), 1557 (19), 1472 (28), 1459 (31), 1445 (30), 1413 (10), 1389 (7), 1362 (7), 1278 (10), 1202 (22), 1190 (22), 1172 (33), 1145 (18), 1114 (17), 1079 (7), 1046 (36), 1015 (10), 989 (50), 932 (25), 808 (59), 707 (10), 620 (9), 569 (43), 509 (13), 481 (16), 395 (15), 379 (10), 361 (9), 257 (27), 237 (23), 190 (20); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=2992$ (m), 2940 (s), 2889 (s), 2857 (s), 2703 (w), 1567 (s), 1556 (m), 1466 (s), 1450 (s), 1412 (s), 1384 (s), 1360 (vs), 1272 (w), 1201 (w), 1169 (vs), 1144 (m), 1111 (m), 1079 (w), 1044 (m), 1015 (m), 987 (m), 930 (m), 806 (s), 760 (vs), 742 (s$), 705$ (m), 621 (m); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0}$ K, in ppm): $\delta=1.26\left(36 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HP}}=11.1 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}\right), 7.07-7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.46-7.51$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.17-8.20(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.53-8.55(1 \mathrm{H}, \mathrm{m} \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=32.2(12 \mathrm{C}, \mathrm{m}, \mathrm{C} 7), 36.5\left(4 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{2}\right), 122.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2)$, $132.6\left(1 \mathrm{C}, \mathrm{dt},{ }^{2} J_{\mathrm{CP}}=20.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}, \mathrm{C} 4\right), 135.0\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=4.7 \mathrm{~Hz}, \mathrm{C} 3\right), 149.7$ $\left(1 \mathrm{C}, \mathrm{dt},{ }^{3} J_{\mathrm{CP}}=12.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=0.9 \mathrm{~Hz}, \mathrm{C} 1\right), 164.9\left(1 \mathrm{C}, \mathrm{dt},{ }^{1} J_{\mathrm{CP}}=22.5 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=9.3 \mathrm{~Hz}, \mathrm{C} 5\right)$; ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): AX_{2} spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-44.1(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=37.0(2 \mathrm{P})$; ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-307.4 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{21} \mathrm{H}_{48} \mathrm{NP}_{3}: \mathrm{C}: 63.14, \mathrm{H}: 10.09, \mathrm{~N}$: 3.51; found: C: 62.98, H: 10.13, N: 3.56.

12.3.4. Preparation of $\mathbf{5 1}$

To a solution of dipyrazolylphosphane 41a ($599 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 3 ml of MeCN 1,2-bis(phenylphosphaneyl)ethane ($492 \mathrm{mg}, 0.2 \mathrm{mmol}$) is added while stirring. After stirring for 5 min the solution is stored at $-30^{\circ} \mathrm{C}$ for 24 h . During this time colorless crystals of $\mathbf{5 1}$ are growing. These crystals are isolated by decantation, washed with $\mathrm{MeCN}(2 \times 1 \mathrm{ml})$ and dried in vacuo to
afford 51. The mother liquor is again stored at $-30^{\circ} \mathrm{C}$ for a second crop of crystals to grow which are isolated as described.

Yield: $489 \mathrm{mg}\left(69 \%\right.$); m.p.: $101^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3054$ (68), 3037 (29), 3001 (5), 2955 (11), 2941 (17), 2896 (77), 1584 (71), 1570 (40), 1407 (12), 1276 (7), 1185 (8), 1152 (13), 1116 (17), 1099 (36), 1045 (26), 1027 (44), 1000 (100), 874 (5), 714 (8), 690 (7), 650 (15), 639 (18), 619 (17), 509 (8), 488 (20), 459 (39), 423 (46), 398 (8), 381 (10), 303 (8), 282 (17), 244 (11), 225 (33), 205 (35), 179 (28); IR (ATR, 298 K, in cmº ${ }^{1}$): $v=3063$ (w), 3045 (w), 3035 (w), 3014 (w), 2982 (w), 2953 (w), 2940 (w), 2895 (w), 1984 (w), 1952 (w), 1892 (w), 1821 (w), 1757 (w), 1657 (w), 1583 (w), 1567 (m), 1558 (w), 1473 (w), 1444 (w), 1429 (m), 1413 (m), 1326 (w), 1304 (w), 1273 (w), 1224 (w), 1181 (w), 1146 (w), 1110 (w), 1096 (w), 1080 (w), 1069 (w), 1044 (w), 1023 (w), 998 (w), 987 (w), 974 (w), 921 (w), 910 (w), 893 (w), 873 (w), 854 (w), 781 (m), 759 (m), 740 (s), 694 (s); ${ }^{1} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=2.69-2.79(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 10-\mathrm{H}), 7.15-7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H})$, 7.19-7.22 (6H, m, C6/C7-H), 7.34-7.38 (4H, m, C8-H), 7.59-7.63 (1H, m, C3-H), 7.86$7.89(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.63-8.65(1 \mathrm{H}, \mathrm{m} \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=33.0(2 \mathrm{C}, \mathrm{m}, \mathrm{C} 10), 122.5(1 \mathrm{C}, \mathrm{bs}, \mathrm{C} 2), 128.2(2 \mathrm{C}, \mathrm{m}, \mathrm{C} 6), 128.8(4 \mathrm{C}, \mathrm{m}, \mathrm{C} 7), 129.3$ (1 C , $\left.\mathrm{dt},{ }^{2} J_{\mathrm{CP}}=27.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}, \mathrm{C} 4\right), 132.5(4 \mathrm{C}, \mathrm{m}, \mathrm{C} 8), 135.9\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=6.2 \mathrm{~Hz}, \mathrm{C} 3\right)$, $137.5(2 \mathrm{C}, \mathrm{m}, \mathrm{C} 9), 150.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=7.2 \mathrm{~Hz}, \mathrm{C} 1\right), 163.6\left(1 \mathrm{C}, \mathrm{dt},{ }^{1} J_{\mathrm{CP}}=8.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=14.7\right.$ $\mathrm{Hz}, \mathrm{C} 5) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in $\left.\mathbf{p p m}\right): \mathrm{AX}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-12.1$ (1P), $\delta(\mathrm{Px})=14.5(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-260.7 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NP}_{3}: \mathrm{C}$: 64.60, H: 5.14, N: 3.96; found: C: 64.47, H: 5.05, N: 4.02.

syn-[(48Ag) $)_{2}[0 T f]_{2}$

To triphosphane 48 ($1007 \mathrm{mg}, 2.00 \mathrm{mmol}$) in PhF (5 ml) $\mathrm{Ag}[\mathrm{OTf}](513.9 \mathrm{mg}, 2 \mathrm{mmol})$ is added. After stirring for 16 h the colorless suspension is filtered and the residue is washed with $\operatorname{PhF}(1 \times 2 \mathrm{ml})$ and n-pentane ($2 \times 2 \mathrm{ml}$). The precipitate is subsequently dried in vacuo to afford the product as a colorless powder.

Yield: 1504 mg (99\%); m.p.: $263{ }^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, 50 scans, 298 K, in $\mathbf{c m}^{-1}$): $v=3073$ (25), 3058 (24), 3046 (19), 2955 (80), 2935 (91), 2923 (94), 2893 (51), 2881 (56), 2854 (78), 1603 (17), 1592 (15), 1574 (32), 1560 (33), 1445 (65), 1350 (26), 1329 (24), 1294 (31), 1266 (38), 1213 (29), 1200 (26), 1176 (21), 1159 (19), 1110 (24), 1085 (23), 1050 (42), 1030 (100), 999 (76), 851 (40), 816 (41), 752 (28), 734 (19), 710 (31), 573 (18), 512 (31), 457 (15), 437 (16), 426 (15), 388 (16), 348 (26), 315 (26), 233 (36), 192 (22), 168 (62); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3069$ (vw), 2920 (m), 2847 (w), 1590 (vw), 1573 (w), 1486 (vw), 1446 (w), 1424 (vw), 1348 (vw), 1327 (vw), 1292 (w), 1282 (m), 1258 (vs), 1219 (m), 1196 (w), 1177 (vw), 1147 (s), 1122 (vw), 1084 (vw), 1070 (vw), 1045 (vw), 1029 (vs), 997 (w), 916 (vw), 888 (vw), 853 (vw), 806 (w), 778 (w), 762 (m), 752 (w), 734 (vw), 705 (vw), 690 (vw), 633 (vs), 572 (w), 516 (m), 466 (m), 438 (vw), 419 (vw), 409 (vw); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}$, 263 K, in ppm): $\delta=0.85-1.16$ (m, $\left.\mathrm{CH} / \mathrm{CH}_{2}\right), 1.18-1.36\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.36-1.46\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.46-1.56\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.58-$ $1.66\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, 1.66-1.88 (m, CH/ CH_{2}), $2.00-2.07\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 2.07-2.17(\mathrm{~m}$, $\mathrm{CH} / \mathrm{CH}_{2}$), 7.09-7.14 (m, C2-H), 7.17-7.21 (m, C2-H), 7.37-7.43 (m, C3-H), 7.60-7.64 (m, C3-H), 7.73-7.78 (m, C3-H), 8.01-8.08 (m, C4-H), 8.11-8.16 (m, C4/C1-H), 8.83-8.87 (m, C1-H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{2 6 3} \mathbf{K}\right.$, in ppm): $\delta=25.9\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 26.1\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.2\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 32.6(\mathrm{~m}$, $\left.\mathrm{CH} / \mathrm{CH}_{2}\right), 32.8\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 33.5\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 33.7\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 34.6\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 34.9$ $\left(\mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 36.2\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 36.9\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 116.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=21 \mathrm{~Hz}, \mathrm{C} 2\right), 122.1(2 \mathrm{C}$, q, $\left.{ }^{1} J_{\mathrm{CF}}=320 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C} 2\right)$, $128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=40 \mathrm{~Hz}, \mathrm{C} 3\right), 131.4(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C} 3\right), 137.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{CP}}=51 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=17 \mathrm{~Hz}, \mathrm{C} 4\right), 140.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{CP}}=64 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{CP}}=13 \mathrm{~Hz}, \mathrm{C} 4\right), 153.9(\mathrm{~s}, \mathrm{C} 1), 154.8(\mathrm{~s}, \mathrm{C} 1), 155.8\left(\mathrm{dt},{ }^{1} J_{\mathrm{CP}}=98 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=30 \mathrm{~Hz}, \mathrm{C} 5\right)$; ${ }^{19}$ F NMR ($C_{3} \mathbf{C N}, 263 \mathrm{~K}$, in ppm): $\delta=-78.5$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathrm{CD}_{3} \mathbf{C N}, 263 \mathrm{~K}$, in ppm): isomer 1: AA' $\mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}$ " spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-48.5(2 \mathrm{P}), \delta(\mathrm{P} \mathrm{X})=29.3(4 \mathrm{P})$; isomer 2 $A^{\prime}{ }^{\prime} X^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}$, spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-51.5(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=36.1(4 \mathrm{P})$; coupling constants
could not be determined; elemental analysis: calcd. for $\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2}$: $\mathrm{C}: 47.38$, H : 6.36, N: 1.84, S: 4.22; found: C: 47.59, H: 6.14, N: 1.96, S: 3.75.

12.3.6. Preparation of $\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2}$

To triphosphane 48a ($100 \mathrm{mg}, 0.199 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 ml) $\left[(\mathrm{MeCN})_{4} \mathrm{Cu}\right][\mathrm{OTf}](75 \mathrm{mg}, 0.199 \mathrm{mmol})$ is added to form a yellow solution. After stirring for 1 h all volatiles are evaporated in vacuo. The yellow residue is recrystallized by slow vapor diffusion of n-pentane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-30^{\circ} \mathrm{C}$. This yields the product as light-yellow crystals which are isolated by filtration, washing with n-pentane ($2 \times 1 \mathrm{ml}$) and subsequent evaporation of all volatiles.
Yield: 134 mg (94%); m.p.: $266^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}$, $\mathbf{5 0}$ scans, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3127$ (5), 3063 (17), 2933 (100), 2857 (98), 2660 (6), 1579 (14), 1560 (13), 1446 (37), 1356 (10), 1343 (10), 1292 (13), 1267 (25), 1224 (10), 1200 (14), 1174 (11), 1111 (7), 1083 (8), 1045 (16), 1031 (43), 1005 (52), 850 (15), 815 (19), 754 (12), 707 (20), 640 (7), 572 (7), 520 (19), 462 (6), 437 (7), 372 (6), 347 (10), 311 (9), 286 (5), 235 (10), 216 (10), 192 (16); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=2926$ (w), 2853 (w), 1578 (w), 1448 (w), 1420 (vw), 1355 (vw), 1326 (vw), 1257 (vs), 1221 (m), 1154 (s), 1088 (vw), 1053 (vw), 1028 (s), 1002 (m), 917 (vw), 891 (w), 850 (vw), 816 (vw), 782 (w), 753 (vw), 733 (w), 703 (vw), 635 (vs); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=0.96-1.14\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28-1.49\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53-$ $1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.62-1.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.73-1.82\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.90-2.02(8 \mathrm{H}, \mathrm{m}$, CH_{2}), 2.03-2.25 (8H, m, CH), 8.17-8.27 (2H, m, C2-H), 8.29-8.40 (4H, m, C3/C4-H), 8.93$8.96(2 \mathrm{H}, \mathrm{m} \mathrm{C1}-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=25.2\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 27.6$ ($\mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}$), $32.7\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 36.1\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 120.9\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $128.8\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=13 \mathrm{~Hz}, \mathrm{C} 2\right), 135.6$ (2C, m, C4), 141.7 (2C, m, C3), 153.1 (2C, s, C1), $158.1\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=39 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=-78.8(6 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, 300 \mathbf{K}$, in $\mathbf{p p m}$): $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}{ }^{\prime \prime}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-39.1$ (2P), $\delta\left(\mathrm{P}_{\mathrm{X}}\right)=15.4(4 \mathrm{P})$; coupling constants could not be determined; elemental analysis: calcd. for $\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{Cu}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2} * 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}: 49.27, \mathrm{H}: 6.63, \mathrm{~N}: 1.90, \mathrm{~S}: 4.35$; found: $\mathrm{C}: 49.09$, H: 6.76, N: 1.98, S: 4.26.

To silver complex $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2}(456 \mathrm{mg}, 0.30 \mathrm{mmol})$ in MeCN $(3 \mathrm{ml})($ tht $) \mathrm{AuCl}(192 \mathrm{mg}, 0.60 \mathrm{mmol})$ is added. The occurring precipitate is filtered off. To the filtrate $\mathrm{Et}_{2} \mathrm{O}$ is added until the formation of a faint mist. The mixture is stored at $-30^{\circ} \mathrm{C}$. After 16 h colorless crystals of the product are formed which are isolated by filtration and subsequent washing with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 2 ml). After evaporation of all volatiles in vacuo the product is obtained as a colorless, crystalline solid.
Yield: 327 mg (64\%); m.p.: $266{ }^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, 50 scans, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3076$ (9), 3045 (17), 2944 (100), 2918 (67), 2851 (74), 2666 (6), 1560 (22), 1444 (35), 1351 (14), 1328 (12), 1293 (22), 1270 (31), 1224 (11), 1209 (16), 1178 (14), 1160 (6), 1110 (21), 1080 (10), 1044 (40), 1030 (62), 1003 (21), 986 (38), 851 (21), 816 (30), 754 (16), 742 (12), 707 (22), 620 (7), 572 (8), 542 (15), 519 (9), 437 (9), 396 (11), 373 (5), 348 (14), 334 (12), 313 (15), 220 (19); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3043$ (vw), 2921 (w), 2848 (w), 1565 (w), 1444 (w), 1422 (w), 1352 (vw), 1326 (vw), 1260 (vs), 1221 (m), 1177 (w), 1148 (vs), 1076 (w), 1043 (w), 1028 (s), 1000 (w), 985 (w), 918 (w), 891 (w), 851 (w), 820 (vw), 777 (m), 752 (w), 635 (vs), 571 (w), 516 (m), 466 (m), 420 (vw); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, 243 \mathbf{K}$, in ppm): $\delta=0.90-1.05\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.08-1.19\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.22-1.42\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.49-1.56(\mathrm{~m}$, $\left.\mathrm{CH} / \mathrm{CH}_{2}\right), 1.56-1.65\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.65-1.73\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.76-1.86\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, 1.94$2.02\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, 2.04-2.14 (m, CH/CH2), 2.14-2.22 (m, CH/CH2), 2.28-2.37 (m, $\mathrm{CH} / \mathrm{CH}_{2}$), 7.60-7.64 (m, C2-H), 7.65-7.69 (m, C2-H), 7.90-7.95 (m, C3-H), 7.97-8.02 (m, C4-H), 8.02-8.07 (m, C3/C4-H), 8.47-8.50 (m, C1-H), 8.74-8.77 (m, C1-H); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$, 243 K , in ppm): $\delta=25.2\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 25.5\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 31.1\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 31.5\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 32.7\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 33.1(\mathrm{~m}$, $\left.\mathrm{CH} / \mathrm{CH}_{2}\right), 33.6\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 36.9\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 37.1\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 121.0\left(2 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=321\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 126.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C} 2\right), 127.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C} 2\right), 134.0(\mathrm{~m}, \mathrm{C} 3), 135.1(\mathrm{~m}$, C3), 138.8 (m, C4), 139.2 (m, C4), 151.8 (bs, C1), 152.1 ($\mathrm{d},{ }^{1} J_{\mathrm{CP}}=22 \mathrm{~Hz}$); ${ }^{19}$ F NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$, $\mathbf{2 4 3} \mathbf{K}$, in ppm): $\delta=-79.0(6 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{2 4 3} \mathbf{~ K}$, in ppm): Isomer 1: $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}$, spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=\delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=-34.2, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=\delta\left(\mathrm{P}_{\mathrm{X}}\right)=52.5, \delta\left(\mathrm{P}_{\mathrm{X}}{ }^{\prime}\right)=$ $\delta\left(\mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=52.6,{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-5.9 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-232.0 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-188.3 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}{ }^{\prime}\right)$ $=-23.8 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{PX}^{\prime}, "\right)=-23.9 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{Px}_{\mathrm{X}}\right)=-3.0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}}\right)=50.7 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{PX}_{\mathrm{X}},{ }^{\prime}\right)=-$ $270.6 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{X}} \times \prime\right)=-245.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}\right)=40.4 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}, \prime\right)=-11.7 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}} \times \prime\right)=$
$244.5 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}} \times\right)=261.5 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}} \times{ }^{\prime \prime}\right)=33.4 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}} \times{ }^{\prime \prime}\right)=7.5 \mathrm{~Hz}$; isomer 2: $A^{\prime} X^{\prime} X^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}$ " spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=\delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=-37.8, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=\delta\left(\mathrm{P}_{\mathrm{X}},\right)=\delta\left(\mathrm{P}_{\mathrm{X}}\right.$ ") $=\delta\left(\mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=$ $50.3,{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=0.1 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-250.4 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}} \cdot\right)=-262.3 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{X^{\prime}}\right)=12.4 \mathrm{~Hz}$, ${ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}} \times{ }^{\prime \prime}\right)=-8.0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}\right)=29.5 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}} \cdot\right)=-22.7 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{X}}, \prime\right)=-241.2 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=-283.2 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}} \cdot\right)=26.2 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}} \times\right)=1.5 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=261.0 \mathrm{~Hz}$, ${ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}},{ }^{\prime}\right)=251.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}, "\right)=16.1 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}, "\right)=23.7 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2}$: C: 42.41 , $\mathrm{H}: 5.69$, $\mathrm{N}: 1.65$, $\mathrm{S}: 3.77$, found: $\mathrm{C}: 42.51, \mathrm{H}:$ 5.67, N: 1.70, S: 3.76.
12.3.8. Preparation of $\left[(\mathbf{4 8})_{2} \mathrm{Cu}\right][\mathrm{OTf}]$

To triphosphane $48(200 \mathrm{mg}, 0.397 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ $\left[(\mathrm{MeCN}){ }_{4} \mathrm{Cu}\right][\mathrm{OTf}](75 \mathrm{mg}, 0.199 \mathrm{mmol})$ is added to form a yellow solution. Slow vapor diffusion of n-pentane into the reaction mixture at $-30^{\circ} \mathrm{C}$ over the course of three days leads to the formation of colorless crystals. These are isolated by filtration, washing with n-pentane ($2 \times 1 \mathrm{ml}$) and evaporation of all volatiles.
Yield: 225 mg (93%); m.p.: $189^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}$, $\mathbf{5 0}$ scans, $\mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3112$ (7), 3068 (13), 3044 (9), 2934 (99), 2891 (45), 2850 (100), 2659 (7), 1580 (44), 1551 (34), 1443 (44), 1416 (8), 1338 (12), 1293 (18), 1271 (23), 1201 (11), 1169 (6), 1156 (7), 1121 (33), 1087 (10), 1048 (27), 1027 (35), 1000 (46), 850 (15), 817 (20), 751 (6), 736 (10), 722 (11), 710 (15), 633 (6), 510 (5), 470 (11), 433 (9), 379 (6), 347 (6), 313 (8), 227 (13), 207 (13), 179 (12); IR (ATR, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=2920(\mathrm{~s}), 2848(\mathrm{~m}), 1579(\mathrm{~m}), 1551$ (w), 1446 (s), 1414 (m), 1340 (w), 1265 (vs), 1221 (m), 1198 (w), 1179 (w), 1143 (s), 1119 (m), 1086 (w), 1048 (w), 1030 (vs), 998 (m), 915 (w), 887 (w), 849 (m), 815 (w), 760 (m), 735 (w), 722 (w), 710 (w), 636 (vs); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=1.06-1.53(44 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right)$, 1.62-1.73 (20H, m, CH_{2}), 1.77-1.90 ($16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.00-2.11 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 7.11$7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.65-7.70(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.72-7.78(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.35-8.38(2 \mathrm{H}, \mathrm{m}$ $\mathrm{C} 1-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): ~ \delta=26.6\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 32.3\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 34.0(8 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 121.7\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.1(2 \mathrm{C}$, $\mathrm{s}, \mathrm{C} 2), 130.9\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=38 \mathrm{~Hz}, \mathrm{C} 4\right), 137.0\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C} 3\right), 151.8(2 \mathrm{C}, \mathrm{bs}, \mathrm{C} 1)$, $161.4\left(2 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=32 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\left.\mathbf{~ p p m}\right): ~ \mathrm{AX}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-44.8 \mathrm{ppm}(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-8.9 \mathrm{ppm}(4 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-275 \mathrm{~Hz} ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}\right.$, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-78.9(3 \mathrm{~F}, \mathrm{~s})$; elemental analysis: calcd. for $\mathrm{C}_{59} \mathrm{H}_{96} \mathrm{CuF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{~S}$: C : 58.09, H: 7.93, N: 2.30, S: 2.63; found: C: 57.67, H: 7.55, N: 2.61, S: 2.54 .

To triphosphane 48 ($100 \mathrm{mg}, 0.199 \mathrm{mmol})$ in THF (0.5 ml) (tht) CuBr $(46 \mathrm{mg}, 0.199 \mathrm{mmol})$ is added to form a yellow solution. Slow vapor diffusion of n-pentane into the reaction mixture at $-30^{\circ} \mathrm{C}$ over the course of three days leads to the formation of colorless crystals. These are isolated by filtration, washing with n-pentane ($2 \times 1 \mathrm{ml}$) and evaporation of all volatiles.
Yield: 120 mg (93%); m.p.: $154^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}$, $\mathbf{5 0}$ scans, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3051$ (17), 2934 (100), 2894 (39), 2850 (95), 2657 (6), 1575 (23), 1556 (14), 1462 (6), 1443 (27), 1343 (7), 1330 (8), 1298 (9), 1268 (12), 1206 (6), 1187 (8), 1175 (7), 1153 (6), 1118 (9), 1086 (6), 1047 (19), 1027 (18), 1000 (42), 850 (10), 815 (15), 742 (6), 705 (10), 634 (5), 516 (5), 477 (6), 437 (5), 423 (7), 358 (5), 329 (5), 229 (6), 182 (11); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=2919$ (vs), 2846 (vs), 1574 (m), 1555 (w), 1460 (w), 1445 (s$), 1416$ (m), 1339 (w), 1290 (w), 1267 (w), 1222 (w), 1174 (w), 1152 (w), 1116 (w), 1069 (w), 1046 (w), 1029 (w), 998 (m), 914 (w), 886 (w), 850 (m), 815 (w), 755 (vs), 711 (w), 633 (w); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, 300 \mathrm{~K}$, in ppm): $\delta=1.10-1.44\left(44 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.60-1.78\left(36 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.93-2.05 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 7.23-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), 7.66-7.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 7.74-7.76 (2 H , $\mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.80-9.00(2 \mathrm{H}, \mathrm{m} \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l} \mathbf{I}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in $\left.\mathbf{~ p p m}\right): \delta=26.6(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 27.7\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 31.4\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 32.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 33.9(8 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 123.7(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 2)$, $131.4\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=43 \mathrm{~Hz}, \mathrm{C} 4\right), 137.3\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=10.4 \mathrm{~Hz}, \mathrm{C} 3\right), 151.3(2 \mathrm{C}, \mathrm{bs}, \mathrm{C} 1), 160.3$ (2C, bs, C5); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{~ p p m}$): AX_{2} spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-46.6 \mathrm{ppm}(2$ $\mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-6.2 \mathrm{ppm}(4 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-253 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{58} \mathrm{H}_{96} \mathrm{Cu}_{2} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{P}_{6}$: C: 53.83, H: 7.48, N: 2.16; found: C:54.12, H: 7.65, N: 1.98.

12.3.10. Preparation of $\mathbf{5 2}$

To a solution of dipyrazolylphosphane $\mathbf{4 1 a}(2.275 \mathrm{~g}, 7.600 \mathrm{mmol})$ in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ dicyclohexylphosphane $(1.5 \mathrm{ml}, 7.600 \mathrm{mmol})$ is added while stirring. After a few moments a colorless precipitate forms. The reaction mixture is stirred for 16 h . After that the precipitate is filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{ml}$). Evaporation of all volatiles in vacuo yields the product as a colorless powder.
Yield: 810 mg (98%); m.p.: $197^{\circ} \mathrm{C}$; $\boldsymbol{R a m a n}\left(\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}\right.$, in cm${ }^{-1}$): $v=3133$ (7), 3114 (10), 3042 (76), 2977 (11), 2954 (7), 1571 (69), 1555 (27), 1446 (8), 1417 (15), 1271 (11), 1151 (13), 1129 (31), 1083 (8), 1052 (31), 1044 (41), 986 (100), 712 (14), 619 (13), 517 (8), 493 (7), 439 (42), 417 (15), 408 (15), 399 (15), 383 (20), 290 (7), 271 (14), 243 (11), 230
(13), 203 (25), 161 (35), 133 (41); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3035$ (w), 2919 (s), 2844 (s), 1569 (s), 1553 (m), 1444 (s), 1413 (s), 1333 (w), 1267 (m), 1191 (w), 1179 (w), 1147 (m), 1120 (w), 1043 (w), 1000 (w), 987 (m), 885 (m), 851 (w), 755 (vs), 739 (s$), 711$ (m), 618 (m), 514 (w), 483 (s$), 463$ (w); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}$, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=6.98-7.02(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.14-7.17(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.17-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.25-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H})$, 7.33-7.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 7.58-7.67 (3H, m, C3-H), 7.99-8.03 (3H, m, C4-H), 8.04-8.07 $(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}), 8.44-8.46(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}), 8.46-8.49(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD3CN, 300 K , in ppm): $\delta=123.0$ (1C, s, C2), 123.6 (2C, s, C2), 123.7 (2C, s, C2), 127.8 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 4$), 129.5 ($4 \mathrm{C}, \mathrm{m}, \mathrm{C} 4$), 136.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 136.6 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 137.0 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), $150.3(2 \mathrm{C}, \mathrm{m}, \mathrm{C} 1), 150.6$ ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 1$), 150.9 (2C, m, C1), 162.0 (2C, m, C5), 164.5 (2C, m, C5), 165.2 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 5$); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{~ p p m}$): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=\delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=14.1(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{B}}\right)=\delta\left(\mathrm{P}_{\mathrm{B}^{\prime}}\right)=20.3(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{C}}\right)=25.1(1 \mathrm{P}) ;{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-2.59$ $\mathrm{Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)={ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \mathrm{P}_{\mathrm{B}}\right)=-242.59 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{B}}\right)=-6.74 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)=$ ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{C}}\right)=-275.37 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}\right)=-327.59 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{C}}\right)=28.00 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{~N}_{5} \mathrm{P}_{5}$: $\mathrm{C}: 55.06, \mathrm{H}: 3.70, \mathrm{~N}: 12.84$; found: $\mathrm{C}: 54.87, \mathrm{H}: 3.67, \mathrm{~N}$: 12.60 .
12.3.11. Preparation of $\mathbf{5 6}$

To a solution of dipyrazolylphosphane 43a ($2.00 \mathrm{~g}, 5.627 \mathrm{mmol}$) in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dicyclohexylphosphane ($1.14 \mathrm{ml}, 5.627 \mathrm{mmol}$) is added while stirring. After stirring for 16 h the reaction mixture is reduced to half of its volume in vacuo. $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ is added and the reaction mixture is stored at $-30^{\circ} \mathrm{C}$ for 16 h to form a colorless precipitate. The precipitate is filtered off, washed with n-pentane ($2 \times 5 \mathrm{ml}$) and dried in vacuo to yield the product as a colorless solid.
Yield: $669 \mathrm{mg}(72 \%)$; m.p.: $188^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3059$ (15), 3026 (5), 1589 (15), 1555 (22), 1454 (45), 1447 (40), 1412 (100), 1312 (8), 1272 (27), 1236 (54), 1124 (20), 1015 (10), 986 (28), 849 (16), 708 (18), 504 (17), 485 (7), 467 (6), 440 (9), 412 (37), 396 (12), 371 (16), 354 (7), 280 (6), 248 (6), 229 (5), 194 (12), 160 (12), 136 (20), 126 (24); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3058$ (w), 2920 (w), 1555 (vw), 1447 (w), 1412 (m), 1311 (w), 1272 (w), 1234 (w), 1157 (w), 1122 (w), 1073 (w), 1014 (w), 979 (m), 940 (w), 848 (w), 757 (vs), 727 (s), 706 (w), 668 (m), 594 (w), 579 (w), 532 (w), 523 (w), 504 (vw), 458 (vw), 430 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD2Cl2, $\mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=7.12-7.16$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), 7.17-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}$), 7.27-7.31 (1H, m, C5-H), 7.35-7.38 (2H, m, C4-H), 7.39-7.41 (2H, m, C5-H), 7.41-7.42 (1H, m, C2-H), 7.43-7.47 (2H, m, C2-H), 7.63-7.69 (3H, m, C3-
H), 7.83-7.86 (1H, m, C4-H), 7.86-7.89 (2H, m, C3-H), 7.90-7.93 (2H, m, C4-H); ${ }^{13} \mathbf{C}\left\{{ }^{〔} \mathbf{H}\right\}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=121.6$ (2C, s, C3), 121.7 (1C, s, C3), 122.1 (2C, s, C3), 123.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 123.3 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 123.6 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 125.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 126.1 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 126.3 (2C, s, C5), 126.6 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 126.8 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 127.0 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 137.8 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 1$), 138.4 (2C, m, C1), 138.5 (2C, m, C1), 154.5 (2C, m, C6), 155.6 (3C, m, C6), 169.9 (2C, m, C7), 168.5 ($2 \mathrm{C}, \mathrm{m}, \mathrm{C} 7$), 165.4 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 7$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=\delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=24.8(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{B}}\right)=\delta\left(\mathrm{P}_{\mathrm{B}}\right)=31.6(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{C}}\right)=38.3$ (1P); ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=2.35 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)={ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{B}}{ }^{\prime}\right)=-240.58 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \mathrm{P}_{\mathrm{B}}\right)=-2.59 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{C}}\right)={ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{C}}\right)=-274.52 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}\right)=-335.67 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{C}}\right)=32.07$ Hz ; elemental analysis: calcd. for $\mathrm{C}_{35} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{P}_{5} \mathrm{~S}_{5}$: $\mathrm{C}: 50.91, \mathrm{H}: 2.44, \mathrm{~N}: 8.48$. $\mathrm{S}: 19.41$; found: C: $50.99, \mathrm{H}: 2.62, \mathrm{~N}: 8.30, \mathrm{~S}: 18.98$.

12.3.12. Preparation of $\mathbf{5 7}$ [OTf]

To a solution of $48(504 \mathrm{mg}, 1 \mathrm{mmol})$ in 3 ml of $\mathrm{Et}_{2} \mathrm{O} \operatorname{MeOTf}(164$ $\mathrm{mg}, 1 \mathrm{mmol}$) is added while stirring. After 16 h a colorless suspension is formed. The precipitate is filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 3 \mathrm{ml}$). Evaporation of all volatiles in vacuo yields the product as a colorless powder.

Yield: 658 mg (99\%); m.p.: $127^{\circ} \mathrm{C}$ dec.; Raman ($\mathbf{1 0 0} \mathbf{~ m W , 2 9 8 ~ K , ~ i n ~ c m ~}{ }^{-1}$): $v=3058$ (23), 3019 (6), 2987 (20), 2942 (85), 2923 (77), 2875 (50), 2853 (100), 2680 (5), 2658 (6), 1571 (30), 1561 (21), 1445 (33), 1419 (7), 1330 (9), 1302 (14), 1293 (12), 1274 (22), 1220 (11), 1205 (7), 1191 (7), 1181 (8), 1155 (9), 1122 (19), 1085 (10), 1047 (34), 1029 (45), 991 (33), 973 (5), 849 (13), 819 (23), 752 (13), 734 (8), 715 (15), 700 (11), 623 (6), 572 (8), 517 (6), 481 (12), 468 (13), 455 (10), 433 (8), 401 (11); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3056$ (w), 3032 (w), 2916 (vs), 2847 (s), 1568 (m), 1558 (w), 1443 (vs), 1420 (m), 1339 (w), 1293 (w), 1262 (w), 1212 (vw), 1188 (w), 1177 (w), 1169 (w), 1153 (w), 1121 (w), 1080 (w), 1045 (w), 1028 (vw), 997 (m), 953 (vw), 914 (vw), 902 (vw), 884 (w), 849 (w), 814 (vw), 763 (s), 747 (w), 735 (vw), 714 (w), 621 (w), 504 (w), 484 (w), 464 (w), 454 (vw), 438 (vw); ¹H NMR (CD3 $\mathbf{C N}_{3} \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.10-1.40\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.43-1.56\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.61-1.75 (9H, m, CH2), 1.80-1.88 (7H, m, CH_{2}), 1.99-2.09 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2}$), 2.59-2.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 7.41-7.45 (1H, m, C2-H), 7.65-7.69 (1H, m, C4-H), 7.85-7.90 (1H, m, C3H), 8.63-8.65 ($1 \mathrm{H}, \mathrm{m} \mathrm{C1}-\mathrm{H}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD ${ }_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=4.7$ (1 C , ddd, $\left.{ }^{1} J_{\mathrm{CP}}=39.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=7.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 26.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.8(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 32.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 33.2(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 35.4(2 \mathrm{C}, \mathrm{m}, \mathrm{CH})$,
$122.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=321.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 131.9\left(1 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{CP}}=46.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{CP}}=9.2 \mathrm{~Hz}, \mathrm{C} 4\right), 138.6\left(1 \mathrm{C}, \mathrm{dd},{ }^{3} J_{\mathrm{CP}}=11.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=2.2, \mathrm{C} 3\right), 152.0\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.2\right.$ $\mathrm{Hz}, \mathrm{C} 1), 155.3\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{CP}}=19.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{C} 5\right) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in $\mathbf{p p m}): \delta=-79.3(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): AMX spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-$ $46.2(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.9(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=34.2(1 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-290.3 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-281.0$ $\mathrm{Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=58.5 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}_{3} \mathrm{~S}: \mathrm{C}: 55.76, \mathrm{H}: 7.70$, $\mathrm{N}: 2.10, \mathrm{~S}: 4.80$; found: C: 55.83, H: 7.83, N: 2.16, S: 4.96 .

12.3.13. Preparation of $\mathbf{5 8 [O T f]} 2$

Yield: 401 mg (97\%); m.p.: $161^{\circ} \mathrm{C}$ dec.; Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} 298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3068$ (34), 3009 (21), 2940 (100), 2910 (76), 2864 (96), 1614 (23), 1562 (31), 1449 (40), 1356 (27), 1328 (23), 1301 (28), 1278 (33), 1250 (24), 1222 (27), 1180 (24), 1083 (21), 1044 (28), 1030 (56), 992 (27), 849 (24), 816 (29), 757 (27), 702 (24), 574 (21), 520 (19), 444 (20), 431 (20), 348 (19), 313 (17), 212 (21), 136 (19); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3010$ (vw), 2935 (w), 2861 (w), 1571 (vw), 1561 (vw), 1447 (w), 1424 (vw), 1308 (w), 1260 (vs), 1246 (vs), 1223 (m), 1152 (vs), 1085 (vw), 1029 (vs), 1005 (w), 991 (w), 923 (w), 909 (w), 923 (w), 909 (w), 893 (w), 884 (w), 869 (m), 850 (w), 816 (vw), 774 (w), 757 (w), 701 (vw), 636 (vs), 573 (m), 517 (s), 466 (w), 443 (vw), 432 (vw), 407(vw); ${ }^{1} \mathbf{H}$ NMR (CD3 $\mathbf{C N}, 300$ K, in ppm): $\delta=0.86-0.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.98-1.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.20-1.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.34-$ $1.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.47-1.55\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.57-1.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.62-1.69(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.71-1.82\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.90-2.06\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.07-2.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30-2.37$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.39-2.42\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.57-2.67(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.75-7.79(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H})$, 8.06-8.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 8.23-8.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.93-8.95(1 \mathrm{H}, \mathrm{m} \mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CD3 $\mathbf{C N}, 300 \mathrm{~K}$, in ppm): $\delta=6.23\left(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{3}\right), 25.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 26.0\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.2\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 37.0(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 38.0(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 122.5\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=321.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 129.7$ (1C, bs, C2), $137.6\left(1 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{CP}}=54.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C} 4\right), 141.1\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=15.5 \mathrm{~Hz}\right.$, C3), 145.9 ($1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{CP}}=10.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{C} 5$), $154.9\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{C} 1\right) ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathrm{~K}$, in ppm): $\delta=-79.2$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): AX_{2} spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-67.9(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=44.0(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-315.4 \mathrm{~Hz}$; elemental
analysis: calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{P}_{3} \mathrm{~S}_{2}: \mathrm{C}: 47.65, \mathrm{H}: 6.54, \mathrm{~N}: 1.68, \mathrm{~S}: 7.71$; found: $\mathrm{C}: 47.13$, H: 6.28, N: 1.69, S: 8.23.

12.3.14. Preparation of $\mathbf{5 9 [O T f}]_{2}$

To $\mathbf{5 8}[\mathrm{OTf}]_{2}(500 \mathrm{mg}, \quad 0.60 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{ml})$ pentaphospholane 52 ($66 \mathrm{mg}, 0.12 \mathrm{mmol}$) is added. After stirring for 24 h the solvent is evaporated in vacuo. The residue is washed with $\mathrm{PhF}(3 \times 4 \mathrm{ml})$ and recrystallized from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ to yield the product as colorless crystals after filtration and evaporation of
all volatiles in vacuo.
Yield: 287 mg (51\%); m.p.: $181{ }^{\circ} \mathrm{C}$ dec.; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3063$ (43), 2982 (24), 2946 (89), 2915 (75), 2895 (57), 2856 (75), 1620 (21), 1573 (53), 1562 (35), 1522 (19), 1451 (52), 1350 (25), 1334 (25), 1308 (58), 1299 (39), 1283 (39), 1255 (21), 1223 (22), 1209 (25), 1185 (19), 1176 (20), 1120 (27), 1093 (20), 1080 (27), 1048 (61), 1032 (100), 991 (66), 851 (25), 821 (42), 770 (25), 753 (39), 724 (20), 706 (39), 625 (25), 572 (29), 530 (25), 518 (26), 500 (48), 479 (31), 436 (27), 426 (43), 410 (35), 356 (38), 347 (44); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3063$ (vw), 2981 (vw), 2936 (w), 2858 (w), 1572 (w), 1558 (vw), 1449 (w), 1426 (vw), 1351 (vw), 1307 (vw), 1299 (w), 1268 (s), 1253 (vs), 1222 (m), 1184 (vw), 1176 (w), 1139 (s), 1079 (vw), 1030 (vs), 1007 (w), 989 (w), 930 (w), 918 (w), 906 (m), 886 (w), 869 (vw), 849 (vw), 820 (vw), 776 (m), 752 (w), 703 (vw), 635 (vs), 571 (w), 516 (s), 492 (w), 466 (w), 441 (vw), 427 (vw), 405 (vw); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=$ 0.94-1.14 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.17-1.24 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.31-1.44 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.54-1.75 (12H, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.80-1.88\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.00-2.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.09-2.23\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.23-$ $2.32(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.40-2.44\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.81-2.89(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.28-7.32(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-$ H), 7.82-7.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 7.97-7.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}$), 8.20-8.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=4.5\left(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{3}\right), 25.6\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 25.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 28.7\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 35.2$ $(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 35.7(2 \mathrm{C}, \mathrm{m}, \mathrm{CH}), 121.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=322.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2)$, 135.9 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 4$), 138.6 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 3$), 150.3 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 5$), 151.3 ($1 \mathrm{C}, \mathrm{bs}, \mathrm{C} 1$); ${ }^{19}$ F NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathrm{~K}$, in ppm): $\delta=-79.2(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): AA' ${ }^{\prime} \mathrm{XX}^{\prime}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-55.1(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=40.7(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-298.7 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-287.0$ $\mathrm{Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=58.6 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}\right)=38.9 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{~S}_{2}: \mathrm{C}: 48.51, \mathrm{H}: 6.21, \mathrm{~N}: 2.98$, $\mathrm{S}: 6.81$; found: C: 48.50, H: 5.83, N: 3.13, S: 6.99 .

12.4. Syntheses and Characterization Data regarding Compounds in
 Chapter 5

12.4.1. Preparation of 2-(Trimethylsilyl)quinoline

Synthesized according to a modified literature procedure. ${ }^{152}$ A Solution of n-butyllithium in hexanes $(100 \mathrm{ml}, 250 \mathrm{mmol})$ is cooled to $0^{\circ} \mathrm{C}$. To this dimethylaminoethanol ($12.5 \mathrm{ml}, 125 \mathrm{mmol}$) in n-hexane $(80 \mathrm{ml})$ is added dropwise while keeping the temperature at $0^{\circ} \mathrm{C}$. Then the mixture is cooled to $-100^{\circ} \mathrm{C}$ and a solution of quinoline ($3.7 \mathrm{ml}, 31.25 \mathrm{mmol}$) in n-hexane (50 ml) is added dropwise. The so obtained crimson solution is stirred for 30 min at $-100^{\circ} \mathrm{C}$ before adding a solution of trimethylsilylchloride ($20 \mathrm{ml}, 156.3 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ dropwise. The reaction mixture is allowed to rise to room temperature and is carefully diluted with water (250 ml). The aqueous phase is extracted with pentane three times. The combined organic layers are dried over MgSO_{4} and concentrated in vacuo after filtration. The obtained yellow oil is distilled ($\mathrm{T}=49^{\circ} \mathrm{C} ; \mathrm{p}=8 \times 10^{-3} \mathrm{mbar}$) to obtain the product as a pale-yellow oil. The spectral data are in accordance with the ones reported in the literature. ${ }^{152}$

Yield: 1.717 g (27 \%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right): \delta=0.44(9 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{H}), 7.48-7.53$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 7.60-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.67-7.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 7.75-7.78(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-$ H), 8.03-8.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.18-8.21(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}) .{ }^{\mathbf{2 9}} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{K}\right.$, $[\mathbf{p p m}]): \delta=-5.0(1 \mathrm{Si}, \mathrm{s})$.

12.4.2. Preparation of 6 -(Triethylsilyl)phenanthridine

Synthesized according to a modified literature procedure. ${ }^{153}$ A Suspension of 2-isocyano-1,1'-biphenyl ($2.00 \mathrm{~g}, 11.16 \mathrm{mmol}$), triethylsilane $(8.9 \mathrm{ml}$, 55.80 mmol), tert-butyl hydroperoxide ($10.7 \mathrm{ml}, 78.12 \mathrm{mmol}, 70 \%$ in water), p-benzoquinone ($362 \mathrm{mg}, 3.348 \mathrm{mmol}$) and caesium carbonate $(10.91 \mathrm{~g}, 33.48 \mathrm{mmol})$ in propionitrile is refluxed for 16 h under nitrogen.
The reaction mixture is then filtrated through a pad of silica gel and concentrated in vacuo to yield the crude product as an orange-red oil. After column chromatography (100% petrol ether 40/60; $\mathrm{R}_{\mathrm{f}}=0.7$) and subsequent evaporation of all volatiles the product is obtained as a pale-yellow oil. The spectral data are in accordance with the ones reported in the literature. ${ }^{153}$

Yield: $784 \mathrm{mg}(24 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{\mathbf{3}}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right): \delta=1.04-1.10(9 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H})$, 1.13-1.18 ($6 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), 7.63-7.75 (3H, m), 7.78-7.83 (1H, m), 8.23-8.27 (1H, m), 8.29-
$8.34(1 \mathrm{H}, \mathrm{m}), 8.56-8.59(1 \mathrm{H}, \mathrm{m}), 8.64-8.68(1 \mathrm{H}, \mathrm{m}) .{ }^{\mathbf{2 9}} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right):$ $\delta=2.9(1 \mathrm{Si}, \mathrm{s})$.

12.4.3. Preparation of $\mathbf{6 5}$

2-(Trimethylsilyl)quinoline $(1.717 \mathrm{~g}, 8.528 \mathrm{mmol})$ and $\mathrm{PCl}_{3}(2.2 \mathrm{ml}, 25.58$ $\mathrm{mmol})$ are placed in a Schlenk flask and heated under reflux for 48 h . After evaporation of all volatiles, the residue is recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane to afford the product as a red, crystalline solid.

Yield: 760 mg (39 \%); m.p.: $135^{\circ} \mathrm{C}$; Raman: Due to fluorescence a suitable Raman spectra could not be obtained; IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3070$ (vw), 2957 (vw), 2899 (vw), 2318 (w), 2001 (w), 1639 (vw), 1593 (w), 1491 (w), 1418 (w), 1385 (w), 1325 (w), 1298 (w), 1250 (w), 1239 (w), 1223 (w), 1151 (vw), 1137 (w), 1015 (w), 948 (w), 870 (vs), 859 (vs), 835 (vs), 825 (vs), 763 (vs), 711 (w), 640 (m), 617 (w), 590 (vw), 524 (w), 475 (s), 442 (w); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=7.66-7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 7.80-7.84(1 \mathrm{H}, \mathrm{m}$, C7-H), 7.89-7.92 (1H, m, C5-H), 8.14-8.17 (1H, m, C8-H), 8.18-8.20 (1H, m, C2-H), 8.35$8.38(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): \delta=120.5\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=10.9\right.$ $\mathrm{Hz}, \mathrm{C} 2), 128.5$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 129.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 129.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6$), 130.3 (1C, s, C8), 131.2 (1C, s, C7), 138.2 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 147.6 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=22.8 \mathrm{~Hz}, \mathrm{C} 9$), $164.4\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=30.0\right.$ $\mathrm{Hz}, \mathrm{C} 1) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{p p m}$): $\delta=136.0(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NPCl}_{2}: \mathrm{C}: 46.99, \mathrm{H}: 2.63, \mathrm{~N}: 6.09$; found: $\mathrm{C}: 47.49, \mathrm{H}: 2.50, \mathrm{~N} 6.04$.

12.4.4. Preparation of 66

6-(Triethylsilyl)phenanthridine ($784 \mathrm{mg}, 2.671 \mathrm{mmol}$) and $\mathrm{PCl}_{3}(0.7 \mathrm{ml}$, 8.014 mmol) are placed in a Schlenk flask and heated under reflux for 48 h . After evaporation of all volatiles the residue is sublimated $\left(\mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{p}=\right.$ $8 \times 10^{-3} \mathrm{mbar}$) to yield the product as colorless crystals.

Yield: 532 mg (71 \%); m.p.: $191^{\circ} \mathrm{C}$; Raman ($\mathbf{8 0} \mathbf{~ m W}, \mathbf{2 5 0}$ scans, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3099$ (17), 3088 (42), 3077 (58), 3065 (100), 3036 (50), 3017 (21), 1614 (17), 1608 (29), 1578 (21), 1571 (25), 1443 (17), 1436 (25), 1406 (38), 1399 (38), 1357 (83), 1351 (92), 1344 (21), 1294 (13), 1287 (8), 1243 (13), 1236 (13), 1048 (8), 1038 (13), 751 (13), 715 (38), 707 (8), 481 (67), 473 (33), 420 (67), 413 (13), 255 (38), 237 (25), 162 (75), 129 (33); IR (ATR, 298 \mathbf{K}, in $\mathbf{c m}^{-1}$): $v=3064$ (w), 3036 (w), 2955 (w), 2922 (w), 2853 (w), 1609 (w), 1573 (w), 1553 (w), 1518 (w), 1482 (w), 1455 (m), 1438 (m), 1417 (w), 1401 (w), 1346 (m), 1283 (w), 1202 (w), 1157 (w), 1136 (w), 1032 (w), 1004 (w), 979 (w), 951 (w), 872 (w), 757 (vs), 721 (s), 709 (m), 609 (m), 550 (m), 463 (vs), 433 (s$), 416$ (s$) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in
ppm): $\delta=7.78-7.84(3 H, m, C 6 / C 11 / \mathrm{C} 12-H), 7.92-7.96(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), 8.25-8.27(1 \mathrm{H}, \mathrm{m}$, C10-H), 8.60-8.63 (1H, m, C9-H), 8.71-8.74 (1H, m, C4-H), 8.96-8.99 (1H, m, C3-H); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l} \mathbf{2}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): ~ \delta=122.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 9), 123.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4), 125.2$ $\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=12.7 \mathrm{~Hz}, \mathrm{C} 2\right), 125.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8), 127.5\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=9.6 \mathrm{~Hz}, \mathrm{C} 3\right), 128.2(1 \mathrm{C}$, s, C6), 129.9 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 11$), 130.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 12$), 131.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 10$), 132.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 133.7 (1C, s, C7), $143.1\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=23.9 \mathrm{~Hz}, \mathrm{C} 13\right), 163.0\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=44.9 \mathrm{~Hz}, \mathrm{C} 1\right) ;{ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=143.6(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{NPCl}_{2}$: C : $55.75, \mathrm{H}: 2.88, \mathrm{~N}: 5.00$; found: C: 56.34, H: 2.87, N 5.03.

12.4.5. Preparation of $\mathbf{6 1}$ [OTf]

Dichlorophosphane $40(3.908 \mathrm{~g}, 21.714 \mathrm{mmol})$ is dissolved in o $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(20 \mathrm{ml})$. To this solution is added $\mathrm{Me}_{3} \operatorname{SiOTf}(3.90 \mathrm{ml}$, 21.714 mmol) while stirring. The reaction mixture is stirred at $110^{\circ} \mathrm{C}$ for 16 h to obtain a bright yellow precipitate. After cooling to $\mathrm{r} . \mathrm{t}$. $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ is added to the reaction mixture for further precipitation of the product, which is then filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$ and dried in vacuo to afford the product as a bright yellow crystalline solid.

Yield: $3.650 \mathrm{~g}(86 \%)$; m.p.: $177-180^{\circ} \mathrm{C}$; Raman ($\mathbf{7 5} \mathbf{m W}$, 128 scans, 298 K , in $\mathbf{c m}^{-1}$): $v=3115(4), 3089(7), 1620(28), 1552(19), 1522(19), 1477(16), 1460(35), 1336(13)$, 1309(100), 1280(9), 1254(13), 1125(5), 1078(27), 1058(12), 1031(13), 1017(7), 988(18), $776(8), 755(6), 723(14), 694(15), 519(6), 500(35), 424(26), 402(10), 349(5), 315(5), 260(5)$, 234(13); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3117(\mathrm{w}), 3038(\mathrm{vw}), 1624(\mathrm{w}), 1550(\mathrm{vw}), 1520(\mathrm{w})$, 1476(w), 1457(w), 1444(w), 1352(vw), 1308(vw), 1278(w), 1266(m), 1252(m), 1223(m), 1156(m), 1137(m), 1096(w), 1076(w), 1056(w), 1030(m), 986(w), 787(w), 747(m), 731(w), 692(w), 635(m), 622(m); ${ }^{1} \mathbf{H}$ NMR (CD3 $\mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=7.28-7.32(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-$ H), 7.45-7.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 7.66-7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.18-8.23(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.27-$ $8.30(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 8.66-8.68(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 9.06-9.08(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 9.16-9.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 1-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=115.7\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{C} 2\right)$, $118.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7), 121.6\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{C} 4\right), 122.8\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $124.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=17.3 \mathrm{~Hz}, \mathrm{C} 8\right), 129.3\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=20.4 \mathrm{~Hz}, \mathrm{C} 9\right), 129.5(1 \mathrm{C}, \mathrm{bs}, \mathrm{C} 6), 137.0$ $\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.7 \mathrm{~Hz}, \mathrm{C} 3\right), 138.5\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=19.3 \mathrm{~Hz}, \mathrm{C} 1\right), 167.7\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=59.1 \mathrm{~Hz}\right.$, C10); ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathrm{K}$, in ppm): $\delta=-79.2(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathrm{K}$, in ppm): $\delta=152.9$ (1 P , pseudo $\mathrm{t},{ }^{1} J_{\mathrm{PN}}=42.8 \mathrm{~Hz}$); elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 39.30, \mathrm{H}: 2.40, \mathrm{~N}: 8.33, \mathrm{~S}: 9.54$; found: C: $38.85, \mathrm{H}: 2.14, \mathrm{~N}: 8.10, \mathrm{~S}:$ 8.94 .

Dichlorophosphane $\mathbf{6 5}$ ($200 \mathrm{mg}, 0.869 \mathrm{mmol}$) is dissolved in o $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(5 \mathrm{ml})$. To this solution is added $\mathrm{Me}_{3} \operatorname{SiOTf}(0.16 \mathrm{ml}$, 0.869 mmol) while stirring. The reaction mixture is stirred at $110^{\circ} \mathrm{C}$ for 16 h . To the reaction mixture is added n-pentane (10 ml) to precipitate the crude product, which is filtered off, washed with n-pentane ($2 \times 5 \mathrm{ml}$) and dried in vacuo. The crude product is recrystallized from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ to afford the product as an orange solid.

Yield: 94 mg (50 \%); m.p.: $171^{\circ} \mathrm{C}$; Raman ($\mathbf{8 0} \mathbf{~ m W}$, 250 scans, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=1609$ (56), 1554 (63), 1516 (49), 1449 (88), 1429 (50), 1376 (60), 1355 (92), 1324 (96), 1283 (56), 1232 (58), 1191 (69), 1159 (62), 1113 (65), 1052 (63), 861 (74), 474 (86), 398 (87), 375 (100), 340 (92), 312 (90), 283 (92), 224 (91), 174 (90), 151 (93); IR (ATR, 298 K, in cmº ${ }^{1}$): $v=3057$ (w), 1606 (m), 1562 (m), 1515 (w), 1446 (w$), 1427$ (w$), 1386$ (w$), 1372(\mathrm{w})$, 1352 (w), 1256 (vs), 1220 (s), 1140 (vs), 1026 (vs), 875 (m), 805 (s), 778 (s), 754 (s), 738 (m), 633 (vs), 571 (s), 539 (m), 514 (vs), 492 (s$), 471$ (m), 406 (m); ${ }^{1} \mathbf{H}$ NMR (CD3 $\mathbf{C N}, 300$ K, in ppm): $\delta=7.75-7.78(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 7.79-7.83(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 12-\mathrm{H}), 7.89-7.92(1 \mathrm{H}, \mathrm{m}$, C2-H), 7.94-7.96 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}$), 8.05-8.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 3 / \mathrm{C} 4-\mathrm{H}$), 8.12-8.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 16-$ H), 8.29-8.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 14-\mathrm{H}), 8.63-8.68(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7 / 17-\mathrm{H}), 8.70-8.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 13-\mathrm{H})$, 8.91-8.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=115.8\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=\right.$ $4.6 \mathrm{~Hz}, \mathrm{C} 5), 120.3\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=24.4 \mathrm{~Hz}, \mathrm{C} 17\right), 120.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 13), 121.2\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=20.0\right.$ $\mathrm{Hz}, \mathrm{C} 16), 122.4\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.5\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{C} 15\right), 128.2(1 \mathrm{C}$, d, $\left.{ }^{3} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{C} 10\right), 130.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8), 130.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 131.0(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 11), 131.1(1 \mathrm{C}$, d, $\left.{ }^{3} J_{\mathrm{CP}}=2.7 \mathrm{~Hz}, \mathrm{C} 2\right), 131.6\left(1 \mathrm{C}, \mathrm{d},{ }^{5} J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, \mathrm{C} 4\right), 131.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 14), 134.6\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=\right.$ $3.3 \mathrm{~Hz}, \mathrm{C} 3), 135.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6), 138.6\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=9.6 \mathrm{~Hz}, \mathrm{C} 1\right), 139.4\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.5 \mathrm{~Hz}\right.$, C7), $147.8\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=4.4 \mathrm{~Hz}, \mathrm{C} 9\right), 168.3\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=50.0 \mathrm{~Hz}, \mathrm{C} 18\right) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}\right.$, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=140.8(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 52.30, \mathrm{H}: 2.77, \mathrm{~N}: 6.42, \mathrm{~S}: 7.35$; found: C: 51.75, H: 2.81, N: 6.47, S: 7.97.

Dichlorophosphane $66(400 \mathrm{mg}, 1.428 \mathrm{mmol})$ is suspended in $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(6 \mathrm{ml})$. To this suspension is added $\mathrm{Me}_{3} \operatorname{SiOTf}(0.26$ $\mathrm{ml}, 1.428 \mathrm{mmol}$) while stirring. The reaction mixture is stirred at $110{ }^{\circ} \mathrm{C}$ for 16 h . To this suspension is added $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ to precipitate more product, which is filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{ml})$ and dried in vacuo to obtain the product as a yellow solid.
Yield: 304 mg (79%); m.p.: $317-318^{\circ} \mathrm{C}$; Raman ($\mathbf{8 0} \mathbf{~ m W}$, 500 scans, 298 K , in $\mathbf{c m}^{-1}$): $v=1606$ (81), 1589 (33), 1560 (30), 1513 (30), 1495 (37), 1468 (22), 1458 (22), 1438 (63), 1421 (59), 1403 (100), 1362 (59), 1352 (56), 1342 (52), 1333 (56), 1280 (48), 1227 (22), 1173 (26), 1160 (22), 1093 (15), 1053 (41), 1034 (22), 1010 (15), 896 (19), 757 (22), 666 (26), 409 (30), 299 (19), 152 (22), 127 (30); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3064$ (w), 1603 (w), 1561 (w), 1492 (m), 1464 (w), 1456 (w), 1439 (w), 1419 (m), 1401 (w), 1262 (vs), 1223 (s), 1171 (m), 1142 (s), 1049 (w), 1029 (vs), 960 (w), 873 (w), 815 (w), 784 (w), 754 (vs), 720 (s ,, 706 (m), $689(\mathrm{~m}), 666(\mathrm{w}), 634(\mathrm{vs}), 611(\mathrm{~m}), 601(\mathrm{~m}), 593(\mathrm{~m}), 571(\mathrm{~m}), 515(\mathrm{~s})$,
 $\mathrm{m}, \mathrm{C} 17-\mathrm{H}), 7.65-7.69(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 7.74-7.81(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 3 / \mathrm{C} 11-\mathrm{H}), 7.89-7.93(1 \mathrm{H}, \mathrm{m}$, C24-H), 7.95-8.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5 / \mathrm{C} 21-\mathrm{H}$), 8.04-8.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 22-\mathrm{H}$), 8.07-8.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-$ H), 8.40-8.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 10 / \mathrm{C} 16-\mathrm{H}$), $8.55-8.59(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 / \mathrm{C} 15 / 18-\mathrm{H}), 8.81-8.84(1 \mathrm{H}, \mathrm{m}$, C4-H), 8.85-8.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 23-\mathrm{H}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right): \delta=120.7(1 \mathrm{C}$, d, $\left.{ }^{3} J_{\mathrm{CP}}=25.7 \mathrm{~Hz}, \mathrm{C} 2\right), 120.7\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, \mathrm{C} 12\right), 122.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.4 \mathrm{~Hz}\right.$, CF_{3}), 123.3 ($1 \mathrm{C}, \mathrm{d}, \mathrm{C} 22$), $124.4\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.0 \mathrm{~Hz}, \mathrm{C} 6\right), 125.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 18), 125.8(1 \mathrm{C}, \mathrm{s}$, C8), 126.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 23$), 126.7 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.5 \mathrm{~Hz}, \mathrm{C} 20$), 127.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 14$), 127.1 (1 C , $\mathrm{s}, \mathrm{C} 15), 127.3$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 10$), 127.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 16$), 128.1 ($1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=11.6 \mathrm{~Hz}, \mathrm{C} 25$), 129.3 (1C, s, C8), 129.5 (1C, s, C17), 131.2 (1C, s, C11), 131.2 (1C, s, C5), 131.6 (1C, s, C3), 133.0 $\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=2.5 \mathrm{~Hz}, \mathrm{C} 21\right), 133.8(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7), 134.2\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.8 \mathrm{~Hz}, \mathrm{C} 19\right), 134.8(1 \mathrm{C}$, d, $\left.{ }^{3} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{C} 24\right), 135.1\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=9.7 \mathrm{~Hz}, \mathrm{C} 1\right), 136.0(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 9), 149.1(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{2} J_{\mathrm{CP}}=4.1 \mathrm{~Hz}, \mathrm{C} 13\right), 173.3\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=49.3 \mathrm{~Hz}, \mathrm{C} 26\right) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=-79.3$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=146.3$ (1P); elemental analysis: calcd. for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 60.45, \mathrm{H}: 3.01, \mathrm{~N}: 5.22, \mathrm{~S}: 5.98$; found: C: 59.87, H: 3.06, N: 5.14, S: 6.24.

Dichlorophosphane $42(300 \mathrm{mg}, 1.271 \mathrm{mmol})$ is dissolved in $o-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(5 \mathrm{ml})$. To this solution is added $\mathrm{Me}_{3} \operatorname{SiOTf}(0.23 \mathrm{ml}$, 1.271 mmol) while stirring. The reaction mixture is stirred at $110^{\circ} \mathrm{C}$ for 16 h . The so obtained suspension is filtered. The residue is washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{ml})$ and dried in vacuo to obtain the product as an offwhite solid.

Yield: 218 mg (76 \%); m.p.: $230^{\circ} \mathrm{C}$; Raman ($\mathbf{8 0} \mathbf{~ m W}$, 250 scans, $298 \mathbf{K ,}\left[\mathbf{c m}^{-1}\right]$): $v=3081$ (22), 3063 (22), 1599 (22), 1581 (39), 1502 (26), 1465 (48), 1384 (52), 1370 (13), 1338 (100), 1309 (43), 1286 (17), 1270 (17), 1238 (13), 1189 (26), 1180 (17), 1142 (43), 1134 (39), 1030 (39), 756 (13), 699 (13), 659 (26), 594 (13), 512 (17), 444 (26), 429 (17), 389 (17), 375 (48), 351 (13), 314 (26), 290 (13), 240 (17), 232 (13), 164 (22), 152 (13); IR (ATR, 298 K, $\left.\left[\mathbf{c m}^{-1}\right]\right): v=3088(\mathrm{w}), 3060(\mathrm{w}), 1497(\mathrm{~m}), 1456$ (w), 1381 (w), 1281 (s$), 1247$ (vs), 1221 (vs), 1162 (s), 1146 (s), 1128 (s), 1068 (w), 1028 (vs), 980 (m), 946 (w), 931 (w), 910 (w), 794 (m), 759 (vs), 741 (vs), 712 (m), 695 (w), 631 (vs), 592 (w), 572 (m), 513 (s), 495 (m), 443 (w), 425 (s); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD3 $\mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K , ~ [p p m]) : ~} \delta=7.72-7.75(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H})$, 7.77-7.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5 / 10-\mathrm{H}$), 7.82-7.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 8.05-8.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 12-\mathrm{H}$), 8.08$8.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 11-\mathrm{H}), 8.23-8.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.29-8.31(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($\left.\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K , ~ [p p m]}\right): \delta=116.1$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 11$), $117.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{C} 2\right), 122.5$ $\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=322.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.7(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 126.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 9), 129.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 10)$, 130.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 9$), 130.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 130.4 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6$), 130.5 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 134.3 (1C, d, $\left.{ }^{3} J_{\mathrm{CP}}=2.3 \mathrm{~Hz}, \mathrm{C} 8\right), 134.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, \mathrm{C} 13\right), 137.6\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=7.2 \mathrm{~Hz}, \mathrm{C} 1\right), 149.7$ (1C, bs, C7), $178.8\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=92.7 \mathrm{~Hz}, \mathrm{C} 14\right) ;{ }^{19}$ F NMR (CD3 $\left.\mathbf{C N}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right): \delta=-$ 79.2 ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1} \mathbf{P}} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K},[\mathbf{p p m}]\right): \delta=141.7$ ($1 \mathrm{P}, \mathrm{s}$); elemental analysis: calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}_{3}: \mathrm{C}: 40.18, \mathrm{H}: 1.80, \mathrm{~N}: 6.25, \mathrm{~S}: 21.45$; found: C: 39.92, H: 1.56, N: 6.21, S: 21.62.

12.4.9. Preparation of $\mathbf{6 1}{ }^{\text {Cl2 }}$ [OTf]

 To a solution of diazaphospholium triflate $\mathbf{6 1}[\mathrm{OTf}](3.000 \mathrm{~g}, 8.923$ $\mathrm{mmol})$ in $\mathrm{MeCN} \mathrm{SO} 2 \mathrm{Cl}_{2}(0.72 \mathrm{ml}, 8.923 \mathrm{mmol})$ is added dropwise at $-40^{\circ} \mathrm{C}$ while stirring. After 5 min of stirring all volatiles are evaporated in vacuo. $\mathrm{MeCN}(10 \mathrm{ml})$ is added to the residue and the resulting suspension is filtered. To the orange filtrate $\mathrm{Et}_{2} \mathrm{O}$ is added until a voluminous orange precipitate appears.

This precipitate is filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$ and dried in vacuo to yield the product as a bright orange powder.
Yield: 2.705 g (74%); m.p.: $168^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} 298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3104$ (15), 3078 (22), 1620 (63), 1602 (69), 1579 (85), 1477 (70), 1456 (64), 1308 (75), 1298 (85), 1268 (86), 1174 (65), 1079 (73), 1062 (100), 1029 (82), 1018 (68), 769 (63), 759 (65), 501 (65), 471 (66), 423 (65), 406 (63), 385 (64), 348 (66), 313 (65), 280 (66), 262 (65), 221 (68); IR (ATR, 298 K, in cm${ }^{-1}$): $v=3123$ (w), 3079 (w), 3032 (vw), 1617 (m), 1603 (w), 1577 (vw), 1486 (w), 1477 (w), 1440 (w), 1329 (vw), 1295 (w), 1269 (s), 1248 (vs), 1222 (s), 1163 (vs), 1114 (m), 1083 (w), 1062 (w), 1027 (vs), 1017 (vs), 909 (vw), 893 (vw), 788 (vs), 768 (m), 735 (w), 715 (vw), 693 (vw), 638 (vs), 575 (m), 516 (s), 505 (vs), 465 (s$), 431$ (w), $410(\mathrm{~m}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=7.98-8.01(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.40-8.44(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 7-\mathrm{H}), 8.51-8.56(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 1 / \mathrm{C} 3-\mathrm{H}), 8.87-8.91(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4 / \mathrm{C} 6-\mathrm{H}), 9.53-9.56(1 \mathrm{H}, \mathrm{m}$, C9-H), 9.70-9.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{C D} \mathbf{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=117.4(1 \mathrm{C}$, d, $\left.{ }^{4} J_{\mathrm{CP}}=2.6 \mathrm{~Hz}, \mathrm{C} 3\right), 122.4\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=319.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 129.8\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, \mathrm{C} 2\right)$, $131.0(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7), 135.2\left(1 \mathrm{C},{ }^{2} J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{C} 9\right), 143.4\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{C} 8\right), 144.7(1 \mathrm{C}$, d, $\left.{ }^{3} J_{\mathrm{CP}}=2.5 \mathrm{~Hz}, \mathrm{C} 4\right), 146.0\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, \mathrm{C} 1\right), 148.0\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=4.7 \mathrm{~Hz}, \mathrm{C} 5\right)$, $158.4\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=97.2 \mathrm{~Hz}, \mathrm{C} 10\right) ;{ }^{19} \mathbf{F}$ NMR (CD ${ }_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=-79.3(3 \mathrm{~F}, \mathrm{~s})$; ${ }^{31} \mathbf{P}$ NMR ($\mathrm{CD}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=56.6(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 32.45, \mathrm{H}: 1.98, \mathrm{~N}: 6.88$, S: 7.87; found: C: 32.51, H: 1.90, N: 6.90, S: 8.04.

12.4.10. Preparation of $\mathbf{6 I}^{F 4}$ [OTf])

To a solution of diazaphospholium triflate salt 61[OTf] (300 mg , $0.892 \mathrm{mmol})$ in MeCN a solution of $\mathrm{XeF}_{2}(317 \mathrm{mg}, 1.874 \mathrm{mmol})$ in MeCN is added dropwise at $-30^{\circ} \mathrm{C}$ while stirring. The reaction mixture is allowed to reach r.t.. After that all volatiles are evaporated in vacuo to yield the product as a beige colored solid.
Yield: quant.; m.p.: $269^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in cm ${ }^{-1}$): $v=3108$ (17), 1637 (41), 1617 (70), 1581 (81), 1493 (55), 1450 (36), 1335 (39), 1307 (100), 1276 (43), 1263 (43), 1228 (32), 1166 (40), 1132 (40), 1109 (37), 1079 (31), 1052 (60), 1031 (56), 774 (32), 762 (35), 704 (41), 662 (27), 637 (28), 625 (31), 577 (29), 414 (27), 370 (30), 349 (35), 315 (37), 292 (30), 264 (27), 171 (37); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3136$ (vw), 3105 (vw), 3087 (vw), 3048 (vw), 1635 (w), 1616 (w), 1580 (w), 1491 (w), 1450 (w), 1334 (vw), 1306 (vw), 1252 (vs), 1227 (m), 1160 (vs), 1131 (w), 1108 (w), 1083 (w), 1071 (vw), 1051 (w), 1029 (vs), 978 (vw), 855 (m), 832 (vs), 806 (vs), 776 (vs), 740 (m), 702 (vw), 662 (vw), 635
(vs), 625 (s); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD3 $\mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=8.25-8.29(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}), 8.38-8.41$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 8.48-8.52(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 8.87-8.91(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 / \mathrm{C} 4-\mathrm{H}), 8.92-8.98(1 \mathrm{H}, \mathrm{m}$, C8-H), 9.18-9.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 9.74-9.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0}$ \mathbf{K}, in ppm): $\delta=117.9\left(1 \mathrm{C}, \mathrm{dd},{ }^{3} J_{\mathrm{CP}}=3.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{CF}}=1.4 \mathrm{~Hz}, \mathrm{C} 2\right), 122.4\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.5\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), $128.2\left(1 \mathrm{C}, \mathrm{ddt},{ }^{2} J_{\mathrm{CP}}=11.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{CF}}=3.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{CF}}=1.6 \mathrm{~Hz}, \mathrm{C} 9\right), 130.5(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{4} J_{\mathrm{CP}}=2.0 \mathrm{~Hz}, \mathrm{C} 7\right), 131.1\left(1 \mathrm{C}, \mathrm{dd},{ }^{2} J_{\mathrm{CP}}=2.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{CF}}=1.0 \mathrm{~Hz}, \mathrm{C} 1\right), 140.0\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=9.2\right.$ $\mathrm{Hz}, \mathrm{C} 6), 142.1\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=14.7 \mathrm{~Hz}, \mathrm{C} 5\right), 144.7\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=14.3 \mathrm{~Hz}, \mathrm{C} 3\right), 150.9(1 \mathrm{C}$, bs, C4), 151.7 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 10$), $154.1\left(1 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{C} 8\right) ;{ }^{19}$ F NMR (CD3CN, $\mathbf{3 0 0} \mathbf{K}$, in ppm $): \mathrm{ABM}_{2}$ spin system: $\delta=-83.8\left(1 \mathrm{~F}, \mathrm{ddt},{ }^{1} J_{\mathrm{FP}}=838.0 \mathrm{~Hz},{ }^{2} J_{\text {Feq.Feq. }}=65.4 \mathrm{~Hz},{ }^{2} J_{\text {Feq.Fax. }}\right.$. $=46.1 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{eq} .}$), $-79.3\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-74.8\left(1 \mathrm{~F}, \mathrm{ddt},{ }^{1} J_{\mathrm{FP}}=805.7 \mathrm{~Hz},{ }^{2} J_{\text {Feq.Feq. }}=65.4 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\text {Feq.Fax. }}=52.4 \mathrm{~Hz}, \mathrm{~F}_{\text {eq. }}\right),-55.6\left(2 \mathrm{~F}, \mathrm{ddd},{ }^{1} J_{\mathrm{FP}}=811.8 \mathrm{~Hz},{ }^{2} J_{\text {Fax.Feq. }}=52.4 \mathrm{~Hz},{ }^{2} J_{\text {Fax. Feq. }}=46.1\right.$ $\mathrm{Hz}, \mathrm{F}_{\text {ax }}$); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}$, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-138.7$ ($1 \mathrm{P}, \mathrm{dtd},{ }^{1} J_{\text {PFeq. }}=838.0 \mathrm{~Hz},{ }^{1} J_{\text {PFax }}$. $=811.8 \mathrm{~Hz},{ }^{1} J_{\text {PFeq. }}=805.7 \mathrm{~Hz}$); elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS} \times 0.25$ MeCN: C: 32.69, H: 2.09, N: 7.46, S: 7.59; found: C: 32.84, H: 1.90, N: 7.39, S: 7.83.

12.4.11. Preparation of $\mathbf{6 1}{ }^{\text {Cl4 }}$ [OTf]

To a solution of diazaphospholium triflate salt $61[0 T f]$ (1.000 g , $2.974 \mathrm{mmol})$ in $\mathrm{MeCN} \mathrm{SO} 2 \mathrm{Cl}_{2}(0.48 \mathrm{ml}, 5.948 \mathrm{mmol})$ is added dropwise at $-40^{\circ} \mathrm{C}$ while stirring. The reaction mixture is allowed to reach room temperature. After that, all volatiles are evaporated in vacuo to yield the product as an off-white solid.

Yield: quant.; m.p.: $176^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W}, 298 \mathbf{K ,}$ in $\mathbf{~ c m}^{-1}$): $v=3113$ (16), 3100 (21), 3085 (18), 1625 (31), 1606 (45), 1575 (72), 1482 (27), 1439 (14), 1328 (41), 1299 (52), 1275 (26), 1224 (12), 1170 (19), 1150 (16), 1128 (19), 1093 (36), 1079 (22), 1062 (34), 1037 (31), 1028 (52), 770 (20), 758 (19), 705 (11), 655 (10), 634 (11), 573 (11), 501 (12), 457 (11), 405 (18), 351 (100), 313 (21), 299 (29), 284 (34), 241 (16), 213 (42), 161 (13), 134 (25); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3128$ (vs), 3100 (vs), 3076 (vs), 3037 (vs), 1624 (vs), 1606 (vs), 1573 (vs), 1483 (vs), 1440 (vs), 1327 (vs), 1271 (vs), 1252 (vs), 1222 (vs), 1156 (vs), 1127 (vs), 1092 (vs), 1079 (vs), 1064 (vs), 1027 (vs), 968 (vs), 771 (vs), 758 (vs), 731 (vs), 704 (vs), 655 (vs), 633 (vs), 573 (vs), 517 (vs), 499 (vs), 456 (vs), 438 (vs), 412 (vs); ${ }^{1} \mathbf{H}$ NMR (CD $\mathbf{H}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=8.37-8.43(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 / \mathrm{C} 7-\mathrm{H}), 8.88-8.98(2 \mathrm{H}, \mathrm{m}$, C4/C6-H), 9.04-9.10 (1H, m, C1-H), 9.20-9.26 (1H, m, C9-H), 9.63-9.67 (1H, m, C3-H), 10.40-10.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD3 $\mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=118.9(1 \mathrm{C}, \mathrm{s}$, C6), $122.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.9\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=17.5 \mathrm{~Hz}, \mathrm{C} 9\right), 130.3(1 \mathrm{C}, \mathrm{d}$,
$\left.{ }^{4} J_{\mathrm{CP}}=2.8 \mathrm{~Hz}, \mathrm{C} 7\right), 131.5\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, \mathrm{C} 2\right), 138.9\left(1 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=5.5 \mathrm{~Hz}, \mathrm{C} 3\right), 142.5$ (1C, bs, C8), $151.0\left(1 \mathrm{C}, \mathrm{d},{ }^{5} J_{\mathrm{CP}}=1.0 \mathrm{~Hz}, \mathrm{C} 4\right), 156.0\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=14.0 \mathrm{~Hz}, \mathrm{C} 1\right), 160.0(1 \mathrm{C}$, s, C10), 162.0 (1C, s, C5); ${ }^{19}$ F NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}$, 300 K , in $\mathbf{p p m}$): $\delta=-208.9(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 27.64, \mathrm{H}: 1.69, \mathrm{~N}: 5.86, \mathrm{~S}: 6.71$; found: C: $27.89, \mathrm{H}: 1.66, \mathrm{~N}: 5.79$, S: 6.86.

12.4.12. Preparation of $\mathbf{6 9 [O T f]} 3$

Starting from diazaphospholium triflate 61[OTf]. To a solution of 61[OTf] ($300 \mathrm{mg}, 0.892$ $\mathrm{mmol})$ in MeCN a solution of $\mathrm{XeF}_{2}(152 \mathrm{mg}, 0.892 \mathrm{mmol})$ in MeCN is added dropwise at $40^{\circ} \mathrm{C}$ while stirring. After stirring for 30 min at $-40^{\circ} \mathrm{C}$ a solution of 2-2'bipyridine (139 mg , $0.892 \mathrm{mmol})$ in MeCN is added dropwise. Subsequent addition of $\mathrm{Me}_{3} \operatorname{SiOTf}(0.32 \mathrm{ml}, 1.784$ mmol) leads to a yellowish precipitate. The supernatant is filtered off by means of a cannula and the precipitate is washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{ml})$. After that, all volatiles are removed in vacuo, to yield the product as a yellow powder (yield: 324mg, 46\%).
Starting from $61{ }^{\text {Cl2 }}$ [OTf]. To a suspension of $61^{C 12}$ [OTf] ($407 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2-$ 2 'bipyridine ($156 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.362 \mathrm{ml}, 2 \mathrm{mmol})$ are added in that order. Stirring for 2 h the suspension changes its color from orange to yellow. Subsequent filtration, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{ml})$ and evaporation of all volatiles in vacuo yields the product quantitatively. Crystals suitable for X-ray analysis grow from concentrated MeCN solutions upon slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ at $-30^{\circ} \mathrm{C}$.

M.p.: $281{ }^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}, 298 \mathbf{K}$, in $\mathbf{c m}^{\mathbf{- 1}}$): $v=3105$ (16), 3076 (25), 2943 (15), 2251 (11), 1618 (100), 1606 (29), 1574 (49), 1566 (51), 1510 (53), 1481 (22), 1436 (11), 1340 (45), 1303 (36), 1276 (27), 1228 (11), 1176 (11), 1143 (11), 1114 (15), 1098 (15), 1060 (35), 1039 (98), 1013 (20), 770 (27), 756 (22), 647 (9), 573 (13), 518 (13), 403 (15), 372 (13), 348 (15), 313 (13), 288 (9);IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3104$ (vw), 3071 (vw), 3033 (vw), 2251 (vw), 1620 (w), 1574 (vw), 1509 (vw), 1489 (vw), 1474 (w), 1455 (w), 1445 (w), 1330 (vw), 1244 (vs), 1225 (s), 1143 (s), 1099 (w), 1080 (w), 1029 (vs), 1012 (s), 891 (vw), 769 (m), 757 (w), 740 (vw), 720 (w), 710 (w), 680 (vw), 658 (w), 636 (vs), 573 (m), 536 (vw), 516 (vs), 461 (w), 451 (w), 426 (m), 407 (m); ${ }^{1} \mathbf{H}$ NMR (CD3CN, 300 K, in ppm): $\delta=7.88-7.93(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 12-\mathrm{H}), 8.09-8.15(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 19-\mathrm{H}), 8.34-8.37(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 4-\mathrm{H}), 8.38-8.44(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 14-\mathrm{H}), 8.68-8.73(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 17-\mathrm{H}), 8.87-8.94(4 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 7 / \mathrm{C} 9-\mathrm{H}), 9.02-9.16(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 11 / \mathrm{C} 13 / \mathrm{C} 18-\mathrm{H}), 9.26-9.29(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}), 9.33-$ $9.39(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 20-\mathrm{H}), 9.97-10.01(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(\mathbf{C D} \mathbf{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm$):$
$\delta=119.3\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, \mathrm{C} 9\right), 122.1\left(3 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 126.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 13)$, 128.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 18$), 131.8 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 19$), 132.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 132.8 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 8 / \mathrm{C} 14$), 134.8 (1 C , $\left.\mathrm{d},{ }^{2} J_{\mathrm{CP}}=4.6 \mathrm{~Hz}, \mathrm{C} 12\right), 144.5(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 20), 144.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6), 146.7\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right.$, C1), 147.1 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C} 15 / \mathrm{C} 16$), 147.2 ($1 \mathrm{C}, \mathrm{bs}, \mathrm{C} 5$), $148.0\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=22.0 \mathrm{~Hz}, \mathrm{C} 10\right), 149.0$ (1C, bs, C11), 149.2 (1C, s, C2), 149.8 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7$), 151.0 (1C, s, C3), 151.9 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 17$); ${ }^{19}$ F NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathrm{~K}$, in ppm): $\delta=-79.3(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathrm{~K}$, in ppm): $\delta=20.5(1 \mathrm{P}, \mathrm{s})$; elemental analysis: calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{PS}_{3} \times 1 \mathrm{MeCN}: \mathrm{C}: 36.11, \mathrm{H}$: 2.30, N: 8.42, S: 11.57; found: C: 35.82, H: 2.34, N: 8.75, S: 11.42.

12.4.13. Preparation of 70a[OTf]

 $(87 \mathrm{mg}, 0.518 \mathrm{mmol}$) is added. After stirring for 16 h the suspension is filtered. The residue is recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to yield the product as a light-yellow powder after evaporation of all volatiles in vacuo.
Yield: 118 mg (91%); m.p.: $151^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} \mathbf{2 9 8} \mathbf{~ K , ~ i n ~} \mathbf{c m}^{-1}$): $v=3141$ (12), 3094 (20), 3069 (26), 2975 (23), 2930 (34), 1606 (63), 1574 (70), 1473 (60), 1461 (55), 1438 (60), 1308 (51), 1295 (55), 1277 (50), 1245 (100), 1166 (49), 1143 (50), 1092 (50), 1068 (76), 1030 (74), 1006 (59), 768 (48), 756 (52), 626 (50), 589 (55), 574 (49), 535 (50), 498 (50), 425 (48), 405 (51), 348 (55), 338 (51), 313 (52), 277 (49), 234 (50), 208 (57), 172 (51); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3125$ (vw), 3101 (vw), 3069 (vw), 1606 (w), 1567 (m), 1487 (w), 1472 (w), 1442 (w), 1410 (w), 1381 (vw), 1318 (w), 1292 (m), 1268 (vs), 1256 (vs), 1243 (s), 1222 (m), 1162 (vs), 1139 (m), 1121 (s), 1104 (w), 1061 (vw), 1024 (vs), 1005 (m), 965 (m), 830 (w), 804 (w), 790 (w), 775 (s), 765 (m), 747 (w), 722 (vw), 694 (vw), 634 (vs), 591 (vw), 573 (m), 547 (w), 534 (s), 515 (vs), 489 (vs), 449 (w), 426 (s), 418 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=2.08(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 15-\mathrm{H}), 2.34(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 12-\mathrm{H}), 5.84$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{C} 13-\mathrm{H}$), 7.51-7.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7 / \mathrm{C} 9-\mathrm{H}), 7.88-7.90(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.04-8.08(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 1-\mathrm{H}), 8.32-8.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.46-8.48(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.55-8.60(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 9.49-$ $9.53(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): \delta=12.5\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=16.0\right.$ $\mathrm{Hz}, \mathrm{C} 12), 14.0(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 15), 109.8(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 13), 119.5(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 121.5\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.4\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 127.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 129.4 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7$), $134.1\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=9.2 \mathrm{~Hz}, \mathrm{C} 9\right), 141.8(1 \mathrm{C}$, $\mathrm{s}, \mathrm{C} 1), 146.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8), 147.7(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4), 147.8(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6), 148.8\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=26.0 \mathrm{~Hz}\right.$, C11), 153.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 156.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 14$), 156.4 ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=25.5, \mathrm{C} 10$); ${ }^{19}$ F NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-78.9$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=38.6$
(1P, s); elemental analysis: calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PS} \times 0.15 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C: 47.11, H: 4.17, N: 15.59. S: 5.95; found: C: 47.07, H: 4.07, N: 15.47, S: 5.95.

12.4.14. Preparation of $\mathbf{7 0 b}$ [OTf]

Yield: 144 mg (92\%); m.p.: $141^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3111$ (5), 3081 (7), 3062 (25), 3028 (6), 2968 (40), 2923 (29), 2868 (34), 2711 (5), 1591 (13), 1554 (29), 1474 (17), 1450 (52), 1410 (100), 1382 (8), 1368 (7), 1314 (18), 1274 (35), 1237 (53), 1162 (5), 1126 (22), 1109 (10), 1049 (7), 1002 (31), 989 (10), 959 (6), 878 (19), 853 (9), 707 (18), 670 (5), 504 (18), 443 (5), 377 (7), 214 (8), 174 (15), 124 (33); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3125$ (vw), 3090 (vw), 2966 (w), 2933 (vw), 2871 (vw), 1602 (w), 1557 (w), 1487 (w), 1470 (w), 1439 (w), 1384 (vw), 1365 (w), 1294 (w), 1262 (vs), 1225 (m), 1158 (s), 1110 (w), 1068 (w), 1031 (vs), 999 (w), 985 (m), 800 (w), 781 (m), 756 (vw), 746 (vw), 722 (vw), 701 (vw), 638 (vs), 623 (w), 587 (vw), 573 (m), 517 (vs), 493 (m), 435 (w), 416 (w); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{p p m}$): $\delta=1.06-1.12(24 \mathrm{H}, \mathrm{m}, \mathrm{C} 13 / \mathrm{C} 17-\mathrm{H}), 2.77$ (2 H , sept., ${ }^{3} J_{\mathrm{HH}}=6.87 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}$), 3.18-3.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 12-\mathrm{H}$), $5.94(2 \mathrm{H}, \mathrm{s}, \mathrm{C} 14-\mathrm{H}), 7.33-$ $7.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 7.49-7.53(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.95-7.98(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.02-8.06(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} 3-\mathrm{H}), 8.37-8.40(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 1 / \mathrm{C} 7-\mathrm{H}), 8.50-8.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), 9.64-9.66(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=22.5\left(4 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=26.4 \mathrm{~Hz}, \mathrm{C} 13\right), 23.5(4 \mathrm{C}$, d, $\left.{ }^{4} J_{\mathrm{CP}}=17.4 \mathrm{~Hz}, \mathrm{C} 17\right), 26.9\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, \mathrm{C} 12\right), 28.6(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 16), 103.2(2 \mathrm{C}, \mathrm{s}$, $\mathrm{C} 14), 119.4$ ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 4$), 121.5 ($1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), 127.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2$), 129.5 (1 C , $\mathrm{s}, \mathrm{C} 7), 133.4\left(1 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{C} 9\right), 141.9(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3), 146.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8), 147.6$ (1C, s, $\mathrm{C} 1), 147.7\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.8 \mathrm{~Hz}, \mathrm{C} 6\right), 153.1\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, \mathrm{C} 5\right), 157.1\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=\right.$ $36.0 \mathrm{~Hz}, \mathrm{C} 10), 159.7\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=18.8 \mathrm{~Hz}, \mathrm{C} 11\right), 165.4\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=4.4, \mathrm{C} 15\right) ;{ }^{19}$ F NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-78.9(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=41.6$ (1P, s); elemental analysis: calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PS} \times 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C: 53.24, H: 5.88, N: 12.73 S: 4.86; found: C: $53.58, \mathrm{H}: 5.61, \mathrm{~N}: 12.65, \mathrm{~S}: 4.86$.

\rceil [OTf To a suspension of $\mathbf{6 1}{ }^{\mathrm{Cl2}}[\mathrm{OTf}](100 \mathrm{mg}, 0.264 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O} \mathbf{5 c}$ $(155 \mathrm{mg}, 0.614 \mathrm{mmol})$ is added. After stirring for five days the suspension is filtered. The residue is washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{ml})$. Evaporating all volatiles in vacuo yields the product as a lightyellow powder.

Yield: 157 mg (92\%); m.p.: $174^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W , ~} 298 \mathrm{~K}$, in cm${ }^{-1}$): $v=3140$ (24), 3098 (36), 3086 (40), 3068 (52), 2971 (100), 2927 (96), 2910 (92), 2877 (60), 2715 (36), 1911 (36), 1877 (36), 1798 (36), 1759 (36), 1742 (36), 1717 (36), 1704 (36), 1674 (36), 1606 (48), 1569 (48), 1487 (40), 1450 (52), 1309 (36), 1263 (44), 1236 (48), 1202 (40), 1149 (32), 1099 (32), 1068 (44), 1056 (40), 1029 (48), 997 (36), 930 (32), 822 (40), 563 (32); IR (ATR, 298 K, in $\mathbf{~ c m}^{-1}$): $v=3127$ (vw), 3087 (vw), 2960 (w), 2871 (vw), 1600 (vw), 1547 (vw), 1487 (w), 1466 (w), 1438 (w), 1407 (vw), 1364 (w), 1295 (vw), 1265 (vs), 1237 (m), 1225 (m), 1200 (w), 1185 (w), 1153 (vs), 1125 (m), 1107 (m), 1031 (vs), 1015 (w), 997 (w), 986 (w), 977 (w), 804 (w), 787 (m), 766 (vw), 757 (vw), 727 (vw), 694 (vw), 651 (w), 637 (vs), 581 (w), 574 (w), 554 (w), 517 (vs), 503 (m), 487 (m), 443 (w), 423 (w); ¹H NMR (CD3 CN, 300 K , in ppm): $\delta=1.08$ ($18 \mathrm{H}, \mathrm{s}, \mathrm{C} 17-\mathrm{H}$), $1.26(18 \mathrm{H}, \mathrm{s}, \mathrm{C} 13-\mathrm{H}), 6.10(2 \mathrm{H}, \mathrm{d}$, $\left.{ }^{4} J_{\mathrm{HP}}=2.40 \mathrm{~Hz}, \mathrm{C} 14-\mathrm{H}\right), 7.26-7.29(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 7.53-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H})$, $7.65-$ $7.69(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.05-8.10(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.16-8.20(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 8.54-8.60(1 \mathrm{H}, \mathrm{m}$, C8-H), 8.60-8.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}$), 9.01-9.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}$), ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{C D} \mathbf{D}_{3} \mathbf{C N}, 300$ K, in ppm): $\delta=30.5(6 \mathrm{C}, \mathrm{s}, \mathrm{C} 17), 31.7\left(6 \mathrm{C}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=8.8 \mathrm{~Hz}, \mathrm{C} 13\right), 33.2(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 16), 33.4$ (2C, s, C12), $105.5\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=3.1 \mathrm{~Hz}, \mathrm{C} 14\right), 121.3\left(1 \mathrm{C},{ }^{4} J_{\mathrm{CP}}=2.1 \mathrm{~Hz}, \mathrm{C} 4\right), 122.6(1 \mathrm{C}, \mathrm{q}$, ${ }^{1} J_{\mathrm{CF}}=319.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), $128.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 129.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 7), 134.2\left(1 \mathrm{C},{ }^{2} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}, \mathrm{C} 9\right)$, 142.6 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 147.1 ($1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=2.3 \mathrm{~Hz}, \mathrm{C} 6$), 147.6 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8$), 150.7 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 1$), 154.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 5$), 159.4 ($1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=31.6, \mathrm{C} 10$), 162.2 ($2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=15.9, \mathrm{C} 11$), 166.9 (2C, s, C15); ${ }^{19}$ F NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathrm{~K}$, in $\mathbf{~ p p m}$): $\delta=-79.3$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{31} \mathbf{P} \mathbf{~ N M R ~ (C D} \mathbf{3} \mathbf{C N}$, $300 \mathbf{K}$, in ppm): $\delta=61.4$ (1 P, s); elemental analysis: calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$: C: 57.05, H: 6.67, N: 12.10, S: 4.61; found: C: 56.66, H: 6.46, N: 11.86, S: 5.06.

To a suspension of 61^{Cl2} [OTf] ($110 \mathrm{mg}, 0.270 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ a solution of $\mathbf{5 d}(158 \mathrm{mg}, 0.540 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ is added. After stirring for 16 h the suspension is filtered. The residue is washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{ml})$. Evaporating all volatiles in vacuo yields the product as a light-yellow powder.
Yield: 205 mg (98\%); m.p.: $172{ }^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3071$ (16), 1604 (100), 1576 (37), 1548 (32), 1515 (53), 1477 (26), 1430 (68), 1397 (32), 1297 (26), 1250 (42), 1224 (26), 1182 (26), 1160 (26), 1141 (26), 1094 (32), 1067 (42), 1031 (37), 1002 (58), 984 (32), 953 (42), 769 (26), 698 (26), 618 (32), 544 (32), 279 (32), 249 (32), 200 (32); IR (ATR, $298 \mathbf{K}$, in cm $\mathbf{c m}^{-1}$): $v=3123$ (vw), 3108 (vw), 3070 (vw), 3032 (vw), 1610 (vw), 1576 (vw), 1548 (vw), 1484 (w), 1459 (vw), 1442 (vw), 1434 (vw), 1398 (vw), 1318 (vw), 1283 (m), 1276 (m), 1250 (m), 1242 (m), 1224 (w), 1171 (w), 1149 (w), 1131 (w), 1110 (w), 1074 (w), 1056 (vw), 1027 (m), 1010 (w), 980 (vw), 951 (vw), 929 (vw), 902 (vw), 847 (vw), 811 (vw), 802 (vw), 771 (m), 760 (s), 726 (vw), 716 (w), 697 (m), 686 (m), 668 (vw), 636 (m), 579 (w), 543 (w), $515(\mathrm{~m}), 482(\mathrm{w}), 469(\mathrm{~m}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (CD $\mathbf{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K}$, in ppm): $\delta=6.86\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{HP}}=2.93\right.$ $\mathrm{Hz}, \mathrm{C} 16-\mathrm{H}), 7.22-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 13-\mathrm{H}), 7.35-7.46(12 \mathrm{H}, \mathrm{m}, \mathrm{C} 14 / \mathrm{C} 15 / \mathrm{C} 20 / \mathrm{C} 21-\mathrm{H}), 7.53-$ $7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.66-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 19-\mathrm{H}), 7.90-7.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.99-8.03(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.13-8.15(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 1-\mathrm{H}), 8.30-8.33(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 8.33-8.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, 8.70-8.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}), ~ 9.34-9.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C D} \mathbf{D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=107.8(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 16), 119.4(1 \mathrm{C}, \mathrm{C} 4), 122.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 127.4$ (4C, s, C19), 128.5 (1C, s, C2), 130.2 (10C, 2s, C14/C20/C21), 130.3 (1C, s, C7), 130.6 (4C, d, $\left.{ }^{4} J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, \mathrm{C} 13\right), 130.7(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 12), 133.2(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 18), 136.0\left(1 \mathrm{C} \mathrm{d},{ }^{2} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right.$, C9), 143.0 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 3$), 147.3 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 6$), 148.2 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 1$), 148.6 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C} 8$), 152.9 ($1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=3.4 \mathrm{~Hz}, \mathrm{C} 5\right), 155.8\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=33.1, \mathrm{C} 10\right), 154.8\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CP}}=15.9, \mathrm{C} 11\right), 158.0$ (2C, s, C17); ${ }^{19}$ F NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}$, 300 K , in ppm): $\delta=44.1$ ($1 \mathrm{P}, \mathrm{s}$); elemental analysis: calcd. for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}: 61.74$, H: 3.85, N: 10.45, S: 3.99; found: C: 62.00, H: 3.57, N: 10.70, S: 4.02 .

12.5. Syntheses and Characterization Data regarding Compounds in

Chapter 6

12.5.1. Preparation of 71

To a solution of $t \mathrm{BuPH}_{2}(700 \mathrm{mg}, 7.77 \mathrm{mmol}, 1.00 \mathrm{ml})$ in 10 ml of MeCN phenyldipyrazolylphosphane 73a ($2.213 \mathrm{~g}, 7.77 \mathrm{mmol}$) in 10 ml of MeCN is added at $-45^{\circ} \mathrm{C}$. The reaction mixture is stored at $-30^{\circ} \mathrm{C}$ for 16 h to give a colorless suspension. All volatiles of this suspension are evaporated in vacuo to give a colorless residue. After sublimation of 3,5-dimethylpyrazole from the residue $\left(80^{\circ} \mathrm{C} ; 6 \times 10^{-3} \mathrm{mbar}\right)$ compound 71 is obtained quantitatively in a purity of $>95 \%$. Analytically pure 71 is obtained by washing the crude product with cold $\mathrm{MeCN}\left(-30{ }^{\circ} \mathrm{C} ; 3\right.$ x 2 ml) and subsequent evaporation of all volatiles in vacuo.
Yield: $1.113 \mathrm{~g}(69 \%)$; m.p.: $96^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}, 298 \mathbf{K}$, in $\mathbf{c m}^{\mathbf{- 1}}$): $v=3058$ (32), 3046 (36), 2962 (25), 2944 (24), 2930 (25), 2915 (31), 2889 (39), 2854 (25), 1582 (61), 1455 (19), 1443 (14), 1283 (5), 1272 (8), 1199 (8), 1180 (18), 1157 (14), 1085 (20), 1064 (9), 1026 (33), 1014 (6), 999 (100), 936 (14), 806 (18), 691 (8), 618 (11), 575 (18), 486 (23), 471 (44), 241 (17), 207 (32), 178 (45), 167 (38), 130 (74); IR (ATR, $298 \mathbf{K}$, in cm $^{\mathbf{- 1}}$): $v=3059$ (w), 2943 (m), 2929 (m), 2887 (w), 2852 (m), 1580 (w), 1520 (w), 1469 (m), 1455 (m), 1433 (m), 1400 (w), 1387 (w), 1359 (s), 1323 (w), 1300 (w), 1282 (m), 1168 (s), 1155 (s), 1099 (w), 1081 (w), 1064 (m), 1024 (s), 998 (m), 934 (m), 911 (w), 805 (m), 742 (vs), 691 (vs), $610(\mathrm{~m}), 573(\mathrm{~m}), 541(\mathrm{~m}), 508(\mathrm{~s}), 480(\mathrm{~m}), 440(\mathrm{~m}), 428(\mathrm{~m}), 406(\mathrm{~m}),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}\right.$, 300 K , in ppm): $\delta=1.28-1.31(18 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 7.28-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.33-7.37(4 \mathrm{H}$, m, C3-H), 7.72-7.76 (4H, m, C2-H); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l} \mathbf{2}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=28.4-$ 28.6 (6C, m, C6), 31.5-31.9 (2C, m, C5), 128.7 (2C, m, C4), 128.9 (4C, m, C3), 133.8-134.1 (4C, m, C2), 140.3-141.2 (2C, m, C1); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\mathrm{A}_{2} \mathrm{X}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-88.4(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-15.5(2 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-130 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{P}_{4}$: C: 61.23, H: 7.19; found: C: $60.80, \mathrm{H}: 7.23$.

12.5.2. Preparation of $\mathbf{7 2}$

To a solution of $t \mathrm{BuPH}_{2}(700 \mathrm{mg}, 7.77 \mathrm{mmol}, 1.00 \mathrm{ml})$ in 10 ml of MeCN Pyridyldipyrazolylphosphane 41a ($2.326 \mathrm{~g}, 7.77 \mathrm{mmol}$) in 20 ml of MeCN is added at $-45^{\circ} \mathrm{C}$. The reaction mixture is stored at $-30^{\circ} \mathrm{C}$ for 16 h to give a colorless suspension. All volatiles of this suspension are evaporated in vacuo to give a colorless residue. After sublimation of 3,5-dimethylpyrazole from the residue ($80^{\circ} \mathrm{C} ; 6 \times 10^{-3} \mathrm{mbar}$) compound $\mathbf{7 2}$ is obtained quantitatively in a purity
of $>95 \%$. Analytically pure 72 is obtained by washing the crude product with cold MeCN ($30^{\circ} \mathrm{C} ; 3 \times 2 \mathrm{ml}$) and subsequent evaporation of all volatiles in vacuo.
Yield: $860 \mathrm{mg}(53 \%)$; m.p.: $173{ }^{\circ} \mathrm{C}$; $\boldsymbol{\operatorname { R a m a n }}\left(\mathbf{1 0 0} \mathbf{~ m W}, \mathbf{2 9 8} \mathbf{K}, \mathbf{i n ~ c m}^{-1}\right.$): $v=3134(5), 3119$ (9), 3060 (23), 3039 (63), 2950 (66), 2927 (53), 2918 (54), 2890 (90), 2855 (53), 2769 (8), 2704 (10), 1571 (74), 1559 (34), 1458 (29), 1440 (21), 1419 (15), 1389 (6), 1276 (10), 1201 (12), 1174 (15), 1158 (16), 1127 (25), 1084 (7), 1048 (58), 987 (100), 936 (17), 807 (31), 714 (15), 619 (12), 579 (30), 500 (28), 479 (24), 468 (41), 424 (10), 397 (14), 384 (11), 247 (16), 204 (42), 174 (28), 164 (37), 124 (49); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3036$ (w), 2943 (m), 2927 (m), 2888 (m), 2853 (m), 2709 (w), 1569 (vs), 1556 (s$), 1470$ (m), 1447 (vs), 1416 (vs), 1388 (m), 1360 (vs), 1268 (m), 1227 (m), 1202 (m), 1167 (s$), 1149$ (s$), 1082$ (m), 1046 (m), 1008 (m), $986(\mathrm{~m}), 934(\mathrm{w}), 887(\mathrm{w}), 804(\mathrm{~m}), 768(\mathrm{~s}), 757(\mathrm{vs}), 740(\mathrm{~s}), 712(\mathrm{~m}), 639$ (w), 618 (s), 574 (m), 554 (w), 517 (m), 500 (s$), 467(\mathrm{~m}), 407(\mathrm{~m}) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0}$ K, in ppm): $\delta=1.36-1.40(18 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 7.06-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.53-7.58(2 \mathrm{H}, \mathrm{m}$, C3-H), 7.72-7.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}$), 8.53-8.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0}\right.$ K, in ppm): $\delta=28.4-28.7(6 \mathrm{C}, \mathrm{m}, \mathrm{C} 7), 30.9-31.8$ ($2 \mathrm{C}, \mathrm{m}, \mathrm{C} 6$), 121.9 (2C, s, C4), 127.5127.8 (2C, m, C2), 135.8 (2C, m, C3), 150.3-150.4 (2C, m, C5), 167.4-167.8 (2C, m, C1); ${ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in $\left.\mathbf{~ p p m}\right): \mathrm{A}_{2} \mathrm{X}_{2}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-81.9(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=-18.8$ (2P); ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-131 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{P}_{4}: \mathrm{C}: 54.83, \mathrm{H}: 6.65, \mathrm{~N}$: 7.10; found: C: 54.60, H: 6.59, N: 7.21.

12.5.3. Preparation of $\left[(72)_{2} \mathrm{Cu}\right][O T f]$

 in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right][\mathrm{OTf}](24 \mathrm{mg}, 0.065$ mmol) dissolved in $0.5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added. The reaction mixture is stirred for 1 h at room temperature. Vapor diffusion of n-pentane into this solution at $-30^{\circ} \mathrm{C}$ yields yellow crystals of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$. These are isolated by decantation, washing with n-pentane ($3 \times 1 \mathrm{ml}$) and evaporation of all volatiles in vacuo.
Yield: 56 mg (89%); m.p.: 273 (dec.) ${ }^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in cm ${ }^{-1}$): $v=3120$ (15), 3066 (43), 3048 (49), 2992 (23), 2957 (71), 2934 (78), 2919 (69), 2893 (100), 2857 (59), 2775 (11), 2711 (16), 1579 (30), 1572 (39), 1558 (35), 1456 (26), 1445 (25), 1421 (14), 1393 (8), 1275 (9), 1224 (9), 1199 (13), 1158 (15), 1120 (21), 1090 (13), 1052 (25), 1043 (23), 1030 (20), 1006 (51), 986 (33), 935 (9), 805 (21), 755 (9), 714 (13), 702 (9), 588 (19), 513 (43), 498 (16), 487 (10), 471 (26), 447 (14), 398 (11), 364 (8); IR (ATR, 298 K, in cm ${ }^{-}$ ${ }^{1}$): $v=3066(\mathrm{w}), 3035(\mathrm{w}), 2984(\mathrm{w}), 2950(\mathrm{w}), 2931(\mathrm{w}), 2892(\mathrm{w}), 2857(\mathrm{w}), 1577(\mathrm{~m})$,

1572 (m), 1557 (w), 1455 (s$), 1449$ (m), 1419 (m), 1390 (w), 1362 (m), 1260 (vs), 1223 (m), 1148 (vs), 1090 (w), 1051 (w), 1042 (w), 1028 (vs), 1004 (m), 985 (m), 912 (w), 883 (w), 804 (w), 784 (m), 768 (m), 758 (vs), 738 (s), 715 (w), 700 (m), 636 (vs), 618 (m); ${ }^{1}$ H NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.57\left(36 \mathrm{H}, \mathrm{d},{ }^{1} J_{\mathrm{HP}}=15.1 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}\right), 6.68-6.72(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-$ H), 7.38-7.45 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}$), 7.52-7.56 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.98-8.02(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=27.3\left(12 \mathrm{C}, \mathrm{dt},{ }^{1} J_{\mathrm{CP}}=11.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C} 7\right), 32.2-$ 32.7 (4C, m, C6), 121.1 ($1 \mathrm{C}, \mathrm{q}^{1} J_{\mathrm{CF}}=321.1 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.6 ($4 \mathrm{C}, \mathrm{br}, \mathrm{C} 4$), 127.0-127.6 (4C, m, C2), 136.3 (4C, br, C3), 150.7-151.2 (4C, m, C5), 162.0-162.6 (4C, m, C1); ${ }^{19}$ F NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in $\mathbf{p p m}$): $\delta=-78.9$ ($3 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$, $\mathbf{1 9 0} \mathbf{K}$, in $\mathbf{p p m}$): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{MM}^{\prime} \mathrm{XX}$ ' spin system $\delta(\mathrm{P})=\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-81.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{B}}\right)=-68.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-45.1$ ppm, $\delta\left(\mathrm{P}_{\mathrm{x}}\right)=-15.4 \mathrm{ppm}$; elemental analysis: calcd. for $\mathrm{C}_{3} 7 \mathrm{H}_{52} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S} \times 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C: 42.58, H: 5.06, N: 5.26, S: 3.01; found: C: 42.66, H: 4.93, N: 5.30, S: 3.17.

Figure 57. ${ }^{1} \mathrm{H}$ spectra of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from $190-290 \mathrm{~K}$.

Figure 58. ${ }^{31} \mathrm{P}$ spectra of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from 190-290 K .

12.5.4. Preparation of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$

\square [отf To a solution of tetraphosphetane $72(79 \mathrm{mg}, 0.2 \mathrm{mmol})$ into this solution at $-30^{\circ} \mathrm{C}$ yields colorless crystals of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$. These are isolated by decantation, washing with n-pentane ($3 \times 1 \mathrm{ml}$) and evaporation of all volatiles in vacuo. Crystals suitable for X-ray analysis are obtained by recrystallization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}$.

Yield: $79 \mathrm{mg}(76 \%) ; \mathbf{m . p . :} 247^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3119$ (13), 3061 (43), 3042 (34), 2955 (74), 2933 (75), 2919 (62), 2894 (100), 2857 (62), 2775 (13), 2711 (21), 1572 (75), 1559 (47), 1458 (38), 1443 (34), 1422 (19), 1392 (13), 1364 (9), 1274 (13), 1225 (15), 1201 (19), 1171 (26), 1129 (26), 1114 (28), 1087 (21), 1046 (72), 1032 (40), 1014 (13), 998 (72), 985 (62), 936 (19), 805 (42), 768 (9), 755 (19), 740 (9), 712 (23), 629 (13), 618 (13), 594 (30), 576 (28), 515 (55), 497 (40), 489 (26), 471 (57), 446 (28); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3066$ (w), 3037 (vw), 2950 (w), 2930 (w), 2891 (w), 2856 (w), 1572 (m), 1558 (w), 1458 (m), 1448 (m), 1418 (m), 1391 (w), 1362 (w), 1262 (vs), 1223 (m), 1150 (s), 1088 (w), 1045 (w), 1029 (vs), 997 (m), 985 (w), 883 (vw), 804 (w), 783 (m), 759 (vs), 739 (m), 713 (w), 701 (w), 637 (vs), 628 (s); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.43-1.48(36 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}), 6.82-6.87(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.47-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.61-$ $7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 7.98-8.02(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD2Cl2, $\mathbf{3 0 0} \mathbf{~ K}$, in ppm):
$\delta=27.4-27.6(12 \mathrm{C}, \mathrm{m}, \mathrm{C} 7), 32.1-32.4(4 \mathrm{C}, \mathrm{m}, \mathrm{C} 6), 121.1\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=321.2 \mathrm{~Hz}\right), 123.0$ (4C, s, C4), 128.0-128.9 (4C, m, C2), 136.4 (4C, pseudo-t. $\left.J_{\mathrm{CP}}=4.4 \mathrm{~Hz}, \mathrm{C} 3\right), 151.3$ (4C, br, C5), 161.2-161.7 (4C, m, C1); ${ }^{19}$ F NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-78.9(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{31} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, 190 \mathbf{K}$, in ppm): AA'BB'MM'XX' spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-87.6 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{B}}\right)$ $=-82.4 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-32.5 \mathrm{ppm}, \delta\left(\mathrm{Px}_{\mathrm{X}}\right)=-12.4 \mathrm{ppm}$; elemental analysis: calcd. for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{AgF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S} \times 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C: 40.37, H: 4.81, N: 4.96, S: 2.84; found: C: 40.32, H: 4.53, N: 5.10, S: 3.20.

Figure 59. ${ }^{1} \mathrm{H}$ spectra of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from $190-290 \mathrm{~K}$.

Figure 60. ${ }^{31} \mathrm{P}$ spectra of $\left[(72)_{2} \mathrm{Ag}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from 190-290 K.

\square [отן To a solution of tetraphosphetane $72(87 \mathrm{mg}, 0.22 \mathrm{mmol})$ in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (tht) $\mathrm{AuCl}(35 \mathrm{mg}, 0.11 \mathrm{mmol})$ dissolved in $0.5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added, followed by the addition of $\mathrm{Me}_{3} \mathrm{SiOTf}(20 \mu \mathrm{l}, 0.11 \mathrm{mmol})$. The reaction mixture is stirred for 1 h at room temperature. Vapor diffusion of n-pentane into this solution at $-30^{\circ} \mathrm{C}$ yields colorless crystals of $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$. These are isolated by decantation, washing with n-pentane ($3 \times 1 \mathrm{ml}$) and evaporation of all volatiles in vacuo.

Yield: 93 mg (74%); m.p.: 217 (dec.) ${ }^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in cm ${ }^{-1}$): $v=3120$ (19), 3062 (46), 3040 (41), 2957 (80), 2934 (74), 2919 (70), 2894 (100), 2857 (64), 2775 (26), 2711 (31), 1570 (80), 1559 (69), 1458 (58), 1443 (52), 1423 (36), 1275 (34), 1200 (36), 1172 (43), 1113 (49), 1086 (39), 1044 (98), 1031 (57), 991 (82), 986 (86), 936 (32), 805 (52), 755 (34), 713 (39), 702 (33), 624 (30), 598 (43), 576 (45), 537 (63), 496 (47), 486 (37), 473 (61), 445 (42), 436 (39), 391 (43), 364 (34), 347 (35), 313 (42); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3063$ (w), 3037 (w), 2953 (w), 2930 (w), 2891 (w), 2856 (w), 1569 (m), 1458 (m), 1445 (m), 1419 (m), 1391 (w), 1362 (m), 1262 (vs), 1223 (m), 1149 (vs), 1086 (w), 1042 (w), 1029 (vs), 988 (m), 937 (w), 883 (w), 804 (w), 782 (m), 759 (vs), 738 (s), 714 (w), 700 (w), 637 (vs), 623 (s); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.35-1.40(36 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-$ H), 6.94-6.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 7.45-7.50(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 7.55-7.59(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.23-$ $8.25(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}{ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=27.9-28.3$ (12C, m, C7), $33.6-35.8(4 \mathrm{C}, \mathrm{m}, \mathrm{C} 6), 121.7\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF}}=320.1 \mathrm{~Hz}\right), 123.7(4 \mathrm{C}, \mathrm{s}, \mathrm{C} 4), 128.3-129.1(4 \mathrm{C}$, m, C2), 136.8 (4C, pseudo-t. $J_{\mathrm{CP}}=3.2 \mathrm{~Hz}, \mathrm{C} 3$), 151.5 (4C, br, C5), 161.3-161.7 (4C, m, C1); ${ }^{19}$ F NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-78.8(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{1 9 0} \mathbf{K}$, in ppm): $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{MM}^{\prime} \mathrm{XX}$ ' spin system $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-77.3, \delta\left(\mathrm{P}_{\mathrm{B}}\right)=-73.0, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-17.5, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=19.2$; ${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-0.01 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=3.95 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \cdot\right)=20.96 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-135.52 \mathrm{~Hz}$, ${ }^{5} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-2.35 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=165.95 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{PX}^{\prime}\right)=-0.92 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{B}}\right)=26.27 \mathrm{~Hz}$, ${ }^{2} J\left(\mathrm{P}_{A^{\prime}} \cdot \mathrm{P}_{\mathrm{B}},\right)=-4.31 \mathrm{~Hz},{ }^{5} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{M}}\right)=2.64 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{M}} \cdot\right)=-134.40 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{X}}\right)=0.87 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{X}^{\prime}}\right)=167.77 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}^{\prime}}\right)=-1.19 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{M}}\right)=-121.33 \mathrm{~Hz},{ }^{5} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{M}^{\prime}}\right)=0.18 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{Px}_{\mathrm{X}}\right)=153.18 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{PX}^{\prime}\right)=-5.67 \mathrm{~Hz},{ }^{5} J\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{M}}\right)=-0.03 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{M}}\right)=-121.46 \mathrm{~Hz}$, ${ }^{3} J\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{x}}\right)=5.18 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \cdot \mathrm{P}_{\mathrm{X}}\right)=142.87 \mathrm{~Hz},{ }^{6} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{M}} \cdot\right)=4.55 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=7.50 \mathrm{~Hz}$, ${ }^{4} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{P}_{\mathrm{X}^{\prime}}\right)=-20.44 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{M}^{\prime}} \cdot \mathrm{P}_{\mathrm{x}}\right)=-25.96 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \cdot \mathrm{P}_{\mathrm{X}^{\prime}}\right)=-0.55 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}^{\prime}}\right)=250.91$ Hz; elemental analysis: calcd. for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{AuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S} \times 1.0 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}: 37.42, \mathrm{H}: 4.46, \mathrm{~N}$: 4.59, S: 2.63; found: C: $37.51, \mathrm{H}: 4.50, \mathrm{~N}: 4.50, \mathrm{~S}: 2.74$.

Figure 61. ${ }^{1} \mathrm{H}$ spectra of $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from $190-290 \mathrm{~K}$; asterisks indicate small amounts of impurities.

Figure 62. ${ }^{31} \mathrm{P}$ spectra of $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from $190-290 \mathrm{~K}$.

12.5.6. Preparation of 74 [OTf]

$\left.\left.{ }^{3}{ }_{5}^{6}\right]^{7}\right][$ OTf] To tetraphosphetane $\mathbf{7 1}(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 2 ml Et 2 O MeOTf ($41 \mathrm{mg}, 0.25 \mathrm{mmol}$) is added yielding a colorless suspension. After stirring for 16 h at r.t. the suspension is filtered and the residue is washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{ml})$. Subsequent recrystallization of the residue from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ yields crystals of $\mathbf{7 4}[\mathrm{OTf}]$ which are isolated.
Yield: $124 \mathrm{mg}(87 \%)$; m.p.: $185^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}$, $\mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3057$ (46),
(14), 1165 (22), 1083 (31), 1025 (60), 1000 (100), 944 (14), 804 (26), 753 (22), 694 (14), 610 (16), 574 (27), 475 (43), 454 (19), 426 (17), 398 (17), 375 (19), 346 (21), 310 (23), 293 (20), 233 (35), 208 (27), 177 (40); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3059$ (w), 2943 (m), 2929 (m), 2887 (w), 2852 (m), 1580 (w), 1520 (w), 1469 (m), 1455 (m), 1433 (m), 1400 (w), 1387 (w), 1359 (s), 1323 (w), 1300 (w), 1282 (m), 1168 (s), 1155 (s), 1099 (w), 1081 (w), 1064 (m), 1024 (s$), 998(\mathrm{~m}), 934(\mathrm{~m}), 911(\mathrm{w}), 805(\mathrm{~m}), 742(\mathrm{vs}), 691(\mathrm{vs}), 610(\mathrm{~m}), 573(\mathrm{~m}), 541$ (m), 508 (s , $480(\mathrm{~m}), 440(\mathrm{~m}), 428(\mathrm{~m}), 406(\mathrm{~m}) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{C D}_{2} \mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.26\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HP}}=12.11 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 1.40(9 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 1.42-1.44(9 \mathrm{H}, \mathrm{m}, \mathrm{C} 9-\mathrm{H}), 7.60-$ $7.64(6 \mathrm{H}, \mathrm{m}, \mathrm{C} 6 / \mathrm{C} 7-\mathrm{H}), 7.80-7.85(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CD2 $\mathbf{C l}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=3.2-3.4(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 1), 24.5(3 \mathrm{C}, \mathrm{m}, \mathrm{C} 3), 28.6\left(3 \mathrm{C}, \mathrm{dt},{ }^{2} J_{\mathrm{CP}}=15.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}\right.$, C9), 32.6-33.2 ($1 \mathrm{C}, \mathrm{m}, \mathrm{C} 8$), $35.8-36.1(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 2), 121.5\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=320.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 123.7-124.2 (2C, m, C4), 131.0-131.1 (4C, m, C6), 132.6-132.7 (2C, m, C7), 135.5-135.8 (4C, m, C5); ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.5(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{3 0 0}$ \mathbf{K}, in ppm): $\mathrm{A}_{2} \mathrm{MX}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-81.2(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-39.8(1 \mathrm{P}), \delta(\mathrm{Px})=22.0(1 \mathrm{P}) ;$ ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-248 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-127 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=23 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}_{4} \mathrm{~S}: \mathrm{C}: 47.49, \mathrm{H}: 5.62, \mathrm{~S}: 5.76$; found: C: 47.28 , H: 5.39, S: 6.16 .

12.5.7. Preparation of $\mathbf{7 5}$ [OTf]

To tetraphosphetane $72(360 \mathrm{mg}, 0.91 \mathrm{mmol})$ in 3 ml of $\mathrm{Et}_{2} \mathrm{O} \mathrm{MeOTf}$ $(150 \mathrm{mg}, 0.91 \mathrm{mmol})$ is added yielding a colorless suspension. After stirring for 16 h at r. . the suspension is filtered and the residue is washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{ml})$. Subsequent recrystallization of the residue from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ yields crystals of $\mathbf{7 5}[\mathrm{OTf}]$ which are isolated.

Yield: $466 \mathrm{mg}(91 \%)$; m.p.: $121^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{m W}, \mathbf{2 9 8} \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3122$ (15), 3056 (43), 2964 (57), 2942 (70), 2904 (100), 2783 (9), 1570 (72), 1560 (48), 1464 (26), 1442 (22), 1276 (15), 1223 (15), 1175 (17), 1113 (20), 1044 (61), 1031 (61), 987 (93), 938 (11), 804 (28), 753 (24), 715 (13), 617 (15), 608 (15), 574 (26), 498 (17), 476 (37), 422 (13), 397 (15), 368 (15), 347 (15), 312 (20), 223 (20), 198 (41); IR (ATR, $298 \mathbf{K , ~ i n ~ c m}{ }^{-1}$): $v=3036$ (w), 2943 (m), 2927 (m), 2888 (m), 2853 (m), 2709 (w), 1569 (vs), 1556 ($), 1470$ (m), 1447 (vs), 1416 (vs), 1388 (m), 1360 (vs), 1268 (m), 1227 (m), 1202 (m), 1167 (s$), 1149$ (s$), 1082$ (m), 1046 (m), 1008 (m), 986 (m), 934 (w), 887 (w), 804 (m), 768 (s), 757 (vs), 740 (s), 712 (m), 639 (w), 618 (s), 574 (m), 554 (w), 517 (m), 500 (s$), 467$ (m), 407 (m); ${ }^{1}$ H NMR
 H), 1.51-1.54 (9H, m, C3-H), 7.39-7.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}$), 7.84-7.91 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} 5 / \mathrm{C} 6-\mathrm{H}$), 8.66$8.68(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 8-\mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm$): \delta=5.6-5.8(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 1)$,
25.0-25.1 (3C, m, C3), 28.9 (3C, dt, $\left.{ }^{2} J_{\mathrm{CP}}=15.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C} 10\right), 32.7-33.2(1 \mathrm{C}, \mathrm{m}$, C9), 36.2-36.6 (1C, m, C2), $122.6\left(1 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=321.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.7\left(2 \mathrm{C}, \mathrm{d},{ }^{4} J_{\mathrm{CP}}=1.8\right.$ Hz, C7), 130.5-130.7 (2C, m, C5), 139.1 (2C, m, C6), 152.4-152.5 (2C, m, C8), 155.2-155.6 (2C, m, C4); ${ }^{19}$ F NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{~ N M R}\left(\mathbf{C D}_{3} \mathbf{C N}\right.$, $300 \mathbf{K}$, in ppm): $\mathrm{A}_{2} \mathrm{MX}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-70.5(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-24.9(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=24.2$ (1P); ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-225 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-132 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=15 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{4} \mathrm{~S}: \mathrm{C}: 43.02, \mathrm{H}: 5.23$, $\mathrm{N}: 5.02$, $\mathrm{S}: 5.74$; found: C: 42.56, H: 4.89, N: 5.04, S: 5.96.

12.5.8. Preparation of $78[O T f]_{3}$

To tetraphosphetane $72(100 \mathrm{mg}, 0.25 \mathrm{mmol}) \mathrm{MeOTf}(600 \mu \mathrm{l}, 5.5$ $\mathrm{mmol})$ is added. After stirring this mixture for 4 h at $80^{\circ} \mathrm{C}$ a red solution is obtained. Upon adding $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ a colorless precipitate forms which is filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}$ $2 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 2 \mathrm{ml})$. Subsequent evaporation of all volatiles in vacuo yields the product as a colorless solid.

Yield: 195 mg (91%); m.p.: $212^{\circ} \mathrm{C}$; Raman ($\mathbf{1 0 0} \mathbf{~ m W}$, $298 \mathbf{K}$, in $\mathbf{c m}^{-1}$): $v=3093$ (22), 3037 (11), 2963 (52), 2943 (29), 2906 (67), 2864 (18), 1606 (59), 1575 (29), 1491 (19), 1467 (20), 1443 (19), 1400 (15), 1315 (19), 1278 (25), 1227 (25), 1186 (27), 1156 (25), 1091 (22), 1062 (67), 1033 (100), 799 (34), 758 (47), 721 (15), 711 (16), 692 (19), 574 (41), 563 (35), 519 (14), 489 (29), 448 (38), 433 (31), 409 (16), 393 (19), 375 (18), 349 (39), 315 (32), 274 (21), 225 (34), 176 (32); IR (ATR, 298 K, in $\mathbf{c m}^{-1}$): $v=3082$ (vs), 2986 (vs), 2905 (vs), 1606 (vs), 1575 (vs), 1490 (vs), 1467 (vs), 1445 (vs), 1403 (vs), 1371 (vs), 1248 (vs), 1224 (vs), 1149 (vs), 1090 (vs), 1064 (vs), 1027 (vs), 961 (vs), 912 (vs), 865 (vs), 781 (vs), 758 (vs), 720 (vs), 692 (vs), 635 (vs), 573 (vs), 516 (vs), 499 (vs), 436 (vs), 409 (vs); ${ }^{1} \mathbf{H}$ NMR (CD3NO $\mathbf{N O}_{2}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.48\left(9 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HP}}=16.64 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 2.26\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HP}}=\right.$ $13.67 \mathrm{~Hz}, \mathrm{C} 9 / \mathrm{C} 10-\mathrm{H}), 2.83\left(3 \mathrm{H}, \mathrm{dt},{ }^{2} J_{\mathrm{HP}}=14.31 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=7.10 \mathrm{~Hz}, \mathrm{C} 9 / \mathrm{C} 10-\mathrm{H}\right), 4.80(6 \mathrm{H}$, $\mathrm{s}, \mathrm{C} 8-\mathrm{H}), 8.27-8.31(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 6-\mathrm{H}), 8.78-8.83(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 5-\mathrm{H}), ~ 9.07-9.10(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H})$, 9.10-9.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{3}} \mathbf{N O}_{\mathbf{2}}, \mathbf{3 0 0} \mathbf{K}\right.$, in ppm): $\delta=10.2\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}\right.$ $=21.2 \mathrm{~Hz}, \mathrm{C} 9 / \mathrm{C} 10), 17.8\left(1 \mathrm{C}, \mathrm{dtd},{ }^{1} J_{\mathrm{CP}}=31.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=13.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=3.3 \mathrm{~Hz}, \mathrm{C} 9 / \mathrm{C} 10\right)$, $28.9\left(3 \mathrm{C}, \mathrm{dt},{ }^{2} J_{\mathrm{CP}}=15.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.0 \mathrm{~Hz}, \mathrm{C} 1\right), 35.8-36.4(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 2), 51.4(2 \mathrm{C}$, pseudo-t, $\left.J_{\mathrm{CP}}=11.7 \mathrm{~Hz}, \mathrm{C} 8\right), 122.6\left(3 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=320.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 131.6(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 6), 139.9(2 \mathrm{C}, \mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{CP}}=22.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=4.1 \mathrm{~Hz}, \mathrm{C} 4\right), 147.2(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 5), 148.6$ (2C, m, C3), 152.7 (2C, s, C7);

ppm): $\mathrm{A}_{2} \mathrm{MX}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-73.5(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.0(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=19.9$ (1P); ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-228 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-118 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=31 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{~S}_{3}: \mathrm{C}: 29.87, \mathrm{H}: 3.46, \mathrm{~N}: 3.32$, S: 11.39 ; found: $\mathrm{C}: 30.31, \mathrm{H}: 3.70, \mathrm{~N}: 3.12$, S: 11.57.

12.5.9. Preparation of $\mathbf{8 2 [O T f]} 3$

$\square\left[\mathrm{OTf}_{3}\right.$ To tetraphosphetanium tristriflate $\mathbf{7 8}[\mathrm{OTf}]_{3}(109 \mathrm{mg}, 0.129$ $\mathrm{mmol})$ in 1 ml of $\mathrm{MeCN} \mathrm{Me}_{2} \mathrm{PPMe}_{2}(15.8 \mathrm{mg}, 0.129 \mathrm{mmol})$ in 0.2 ml of MeCN is added. The deep red reaction mixture is stirred at r.t. for 4 h . Upon addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via vapor diffusion at $30^{\circ} \mathrm{C}$ colorless crystals of tetraphosphetane $\left.\mathbf{8 2 [O T f}\right]_{3}$ are obtained over the course of 36 h . The mother liquor is decanted of and the crystals are washed

Yield: 26 mg (45%); m.p.: $275^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}, 298 \mathbf{K}$, in cm ${ }^{-1}$): $v=3091$ (22), 2965 (30), 2935 (20), 2897 (24), 2861 (10), 2721 (5), 1610 (47), 1571 (31), 1496 (18), 1442 (17), 1276 (19), 1228 (22), 1181 (46), 1156 (33), 1095 (34), 1068 (80), 1032 (100), 798 (42), 758 (41), 692 (26), 576 (36), 564 (43), 498 (72), 443 (34), 428 (33), 399 (24), 350 (39), 316 (35), 279 (23), 242 (24), 206 (23), 171 (60); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=3126$ (vw), 3089 (vw), 3043 (vw), 2956 (vw), 1608 (vw), 1570 (vw), 1495 (w), 1444 (vw), 1367 (vw), 1313 (vw), 1274 (s), 1245 (vs), 1224 (s), 1176 (m), 1150 (s), 1026 (vs), 896 (vw), 798 (vw), 775 (m), 756 (w), 718 (w), 691 (vw), 635 (vs), 572 (m), 516 (s), 456 (w), 431 (m); ${ }^{1} \mathbf{H}$ NMR (CD $\mathbf{B H}_{\mathbf{C N}} \mathbf{C N} \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.41\left(9 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HP}}=15.26 \mathrm{~Hz}, \mathrm{C} 1-\mathrm{H}\right), 4.36\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{HP}}\right.$ $=3.23 \mathrm{~Hz}, \mathrm{C} 14-\mathrm{H}), 4.43(6 \mathrm{H}, \mathrm{bs}, \mathrm{C} 8-\mathrm{H}), 8.01-8.07(3 \mathrm{H}, \mathrm{m}, \mathrm{C} 6 / \mathrm{C} 12-\mathrm{H}), 8.56-8.62(3 \mathrm{H}, \mathrm{m}$, C5/C11-H), 8.64-8.68 (1H, m, C10-H), 8.69-8.73 (1H, m, C13-H), 8.75-8.78 (2H, m, C7H), 8.83-8.87 (2H, m, C4-H); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CD $\mathbf{3}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{~ K , ~ i n ~ p p m) : ~} \delta=29.1$ (3C, dt, $\left.{ }^{2} J_{\mathrm{CP}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.2 \mathrm{~Hz}, \mathrm{C} 1\right), 34.8-35.0(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 2), 50.2(2 \mathrm{C}, \mathrm{bs}, \mathrm{C} 8), 50.4(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=11.9 \mathrm{~Hz}, \mathrm{C} 14\right), 122.1\left(3 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=322.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 129.6(2 \mathrm{C}, \mathrm{s}, \mathrm{C} 6), 129.8(1 \mathrm{C}, \mathrm{s}$, C12), 138.8-139.2 (1C, m, C10), 139.2-139.6 (2C, m, C4), 145.7 (2C, s, C5), 145.9 (1C, s, C11), 149.9 (1C, s, C13), 149.6 (2C, m, C7), 158.3-158.8 (1C, m, C9), 159.7-160.1 (2C, m, C3); ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3$ ($9 \mathrm{~F}, \mathrm{~s}$); ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathrm{K}$, in ppm): $\mathrm{A}_{2} \mathrm{MX}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-68.3(2 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{M}}\right)=-51.1(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{x}}\right)=2.7(1 \mathrm{P}) ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}_{\mathrm{x}}\right)$ $=-123 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=-100 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{Px}\right)=91 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{~S}_{3}: \mathrm{C}: 33.09, \mathrm{H}: 3.33, \mathrm{~N}: 4.63, \mathrm{~S}: 10.60$; found: $\mathrm{C}: 32.78, \mathrm{H}: 3.27, \mathrm{~N}: 4.61$, S: 10.52.

12.6. Syntheses and Characterization Data regarding Compounds in

Chapter 7

12.6.1. Preparation of 84

To iso-tetraphosphane $\mathbf{8}(1245 \mathrm{mg}, 2.00 \mathrm{mmol})$ and (tht) $\mathrm{AuCl}(641 \mathrm{mg}, 2.00$ mmol) THF (20 ml) is added. The mixture is stirred for 15 minutes to form an orange solution. After that all volatiles are evaporated in vacuo. The residue is washed with n-pentane ($3 \times 10 \mathrm{ml}$) and subsequently dried in vacuo to yield the product as a beige powder.

Yield: 1108mg (89\%); m.p.: $199^{\circ} \mathrm{C}$ (dec.); Raman ($\mathbf{1 0 0} \mathbf{m W}, 50$ scans, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=2934$ (90), 2885 (46), 2862 (94), 2847 (100), 1462 (20), 1443 (47), 1329 (22), 1291 (28), 1267 (34), 1190 (27), 1169 (15), 1105 (14), 1077 (14), 1042 (24), 1026 (41), 999 (18), 851 (22), 818 (35), 733 (33), 549 (18), 516 (14), 441 (22), 422 (19), 335 (16), 257 (34), 236 (29), 198 (38), 170 (43); IR (ATR, 298 K, in cm ${ }^{-1}$): $v=2915$ (vs), 2845 (vs), 1443 (s), 1336 (m), 1291 (w), 1262 (w), 1189 (w), 1175 (m), 1168 (m), 1104 (w), 1074 (w), 1048 (w), 1026 (w), 1001 (m), 918 (w), 884 (m), 848 (m), 816 (w), 727 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (THF-d8, $\mathbf{3 0 0}$ K, in ppm): $\delta=1.16-1.26\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.27-1.37\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50-1.60\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.67-1.72$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.73-1.79 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.80-1.86 ($16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.90-1.98 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), 2.00-2.06 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.13-2.20 (8H, m, CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (THF-d8, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=27.6\left(8 \mathrm{C}, \mathrm{s}, \mathrm{CH}_{2}\right), 28.1-28.3\left(16 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{2}\right), 30.4-30.5\left(8 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{2}\right), 32.2\left(8 \mathrm{C}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 39.4-39.8 (8C, m, CH); ${ }^{31} \mathbf{P}$ NMR (THF-d8, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AA' $\mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime \prime}{ }^{\prime \prime}$ spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-172.0 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=-172.0 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{X}}\right)=49.0 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{x}}\right)=49.0 \quad(1 \mathrm{P})$, $\delta\left(\mathrm{P}_{\mathrm{X}},\right)=49.0 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{X}} \times\right)=49.0 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{X}} \cdots\right)=49.0 \quad(1 \mathrm{P}) ;{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-1.66 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)=-406.15 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-417.84 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}} \times\right)=8.37 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}} \times\right)=-4.66 \mathrm{~Hz}$, ${ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}\right)=9.64 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}} \cdot\right)=-8.50 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}},{ }^{\prime}\right)=-405.61 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}},{ }^{\prime}\right)=-416.90$ $\mathrm{Hz}, \quad{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}\right)=41.89 \mathrm{~Hz}, \quad{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}} \times\right)=18.18 \mathrm{~Hz}, \quad{ }^{4} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}} \times{ }^{\prime}\right)=252.48 \mathrm{~Hz}$, ${ }^{4} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}},{ }^{\prime}\right)=256.88 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}} \times{ }^{\prime \prime}\right)=20.48 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}} \times{ }^{\prime \prime}\right)=41.79 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Au}_{2} \mathrm{P}_{6}$: $\mathrm{C}: 46.31, \mathrm{H}: 7.12$; found: $\mathrm{C}: 46.21, \mathrm{H}: 6.89$.

12.6.2. Preparation of 86

To iso-tetraphosphane 8 ($622 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathrm{Cy}_{4} \mathrm{P}_{2}(197 \mathrm{mg}, 0.5$ $\mathrm{mmol})$ in THF (10 ml) (tht) $\mathrm{AuCl}(641 \mathrm{mg}, 2.00 \mathrm{mmol})$ is added. The mixture is stirred for 30 minutes. After that all volatiles are evaporated in vacuo. The residue is washed with n-pentane ($3 \times 10 \mathrm{ml}$) and subsequently dried in vacuo to yield the product as a beige powder.
 $v=2932$ (100), 2893 (43), 2852 (71), 2657 (17), 1460 (9), 1444 (20), 1345 (9), 1334 (9), 1327 (9), 1294 (11), 1265 (11), 1196 (8), 1175 (7), 1047 (8), 1028 (14), 1000 (8), 850 (9), 817 (11), 740 (8), 710 (9), 542 (5), 516 (6), 440 (5), 401 (5), 313 (6), 287 (7), 175 (9), 152 (9), 130 (5); IR (ATR, $298 \mathbf{K}$, in cm ${ }^{-1}$): $v=2918$ (vs), 2845 (s), 1444 (s , 1335 (w$), 1291$ (m), 1264 (m), 1221 (w), 1194 (w), 1174 (m), 1120 (m), 1070 (w), 1043 (w), 1026 (w), 998 (m), 914 (w), 888 (m), 849 (m), 815 (w), 740 (w), 708 (w); ¹H NMR (THF-d8, 300 K, in ppm): $\delta=1.17-1.41\left(32 \mathrm{H}, \mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.47-1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 1.64-1.75(32 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH} / \mathrm{CH}_{2}\right), 1.80-1.91\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 2.11-2.24\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 2.24-2.34(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} / \mathrm{CH}_{2}$), 2.69-2.78 (3H, m, $\mathrm{CH} / \mathrm{CH}_{2}$), 2.82-2.97 (3H, m, CH/CH2); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (THFd8, $\mathbf{3 0 0} \mathrm{K}$, in ppm): $\delta=27.2-27.3\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.5-28.6\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.7\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 28.8-30.0\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right), 29.3\left(\mathrm{bs}, \mathrm{CH} / \mathrm{CH}_{2}\right), 29.7-29.8$ ($\mathrm{m}, \mathrm{CH} / \mathrm{CH}_{2}$), $33.5\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 33.7\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 33.8\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 35.1-35.2(\mathrm{~m}$, $\mathrm{CH} / \mathrm{CH}_{2}$), $37.2\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 39.3\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 39.4\left(\mathrm{~s}, \mathrm{CH} / \mathrm{CH}_{2}\right), 39.5-39.8\left(\mathrm{~m}, \mathrm{CH} / \mathrm{CH}_{2}\right)$, 44.4-44.5 (m, CH/ CH_{2}); ${ }^{31} \mathbf{P}$ NMR (THF-d8, $300 \mathbf{K}$, in ppm): AA' $\mathrm{XX}^{\prime} \mathrm{X}^{\prime}{ }^{\prime} \mathrm{X}^{\prime}{ }^{\prime}$ ' Z spin system: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-113.0(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{A}^{\prime}}\right)=-113.0(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=36.4(1 \mathrm{P}), \delta\left(\mathrm{P}_{\mathrm{X}}\right)=36.4(1 \mathrm{P})$, $\delta\left(\mathrm{P}_{\mathrm{X}}{ }^{\prime}\right)=36.4 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=36.4 \quad(1 \mathrm{P}), \quad \delta\left(\mathrm{P}_{\mathrm{z}}\right)=65.1 \quad(1 \mathrm{P}) ;{ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}^{\prime}}\right)=-1.84 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-257.00 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-260.92 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}{ }^{\prime}\right)=0.14 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}{ }^{\prime \prime}\right)=-2.59 \mathrm{~Hz}$, ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{z}}\right)=71.69 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}\right)=-2.08 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}}\right)=2.87 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}^{\prime}} \cdot \mathrm{P}_{\mathrm{X}},\right)=-264.17 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{X}} \times{ }^{\prime}\right)=-256.32 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{\mathrm{Z}}\right)=71.66 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}\right)=32.44 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}{ }^{\prime}\right)=6.26 \mathrm{~Hz}$, ${ }^{4} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{X}}, "\right)=293.91 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Z}}\right)=6.38 \mathrm{~Hz},{ }^{4} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}},{ }^{\prime}\right)=292.09 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}, "\right)=-3.39$ $\mathrm{Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{z}}\right)=7.07 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}},{ }_{\mathrm{P}} \times{ }^{\prime}\right)=32.97 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}},{ }^{\prime} \mathrm{P}_{\mathrm{Z}}\right)=6.63 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{X}} \times{ }^{\prime} \mathrm{P}_{\mathrm{Z}}\right)=7.20 \mathrm{~Hz}$; elemental analysis: calcd. for $\mathrm{C}_{60} \mathrm{H}_{110} \mathrm{Au}_{4} \mathrm{ClP}_{7} \times 0.85 \mathrm{THF}: \mathrm{C}: 39.40, \mathrm{H}: 6.09$; found: C : 39.47, H: 5.99.

12.6.3. Degradation reaction of 86

A solution of $\mathbf{8 6}(100 \mathrm{mg}, 0.05 \mathrm{mmol})$ is stirred in PhMe at $100^{\circ} \mathrm{C}$ for 24 h , giving an orange-red-colored reaction mixture. Slow vapor addition of n-hexane to the reaction mixture gives X-ray quality crystals of $\mathbf{8 7}$ next to copious amounts of amorphous material, thus hampering isolation of analytically pure $\mathbf{8 7}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 42.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AUVWXYZ spin system (87) : $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-101.1$, $\delta\left(\mathrm{P}_{\mathrm{U}}\right)=64.4, \delta\left(\mathrm{P}_{\mathrm{V}}\right)=66.1, \delta\left(\mathrm{P}_{\mathrm{W}}\right)=\delta\left(\mathrm{P}_{\mathrm{X}}\right)=\delta\left(\mathrm{P}_{\mathrm{Y}}\right)=\delta\left(\mathrm{P}_{\mathrm{Z}}\right)=70.0-81.0 \mathrm{ppm} ; \delta(\mathrm{P})=46.3$ $\operatorname{ppm}\left(\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{\mathrm{n}}\right), \delta(\mathrm{P})=54.2 \mathrm{ppm}\left(\left(\mathrm{Cy}_{2} \mathrm{P}-\mathrm{Au}\right)_{6}\right) ; \delta(\mathrm{P})=127.3 \mathrm{ppm}\left(\mathrm{Cy}_{2} \mathrm{PCl}\right)$.

12.7. Syntheses and Characterization Data regarding Compounds in

Chapter 8

12.7.1. Reaction of 48 with $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$

To triphosphane $48(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})\left(\mathrm{PhCN}_{2}\right)_{2} \mathrm{PtCl}_{2}(47 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ is added. The initially yellow-colored solution turns to dark green over the course of 16 h . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 44.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AX_{2} spin system (48): $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-57.3, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=$ $7.7,{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-251.3 \mathrm{~Hz}$; AA'MM' spin system (88) : $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-33.2, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=32.4 \mathrm{ppm}$; $\mathrm{A}_{2} \mathrm{M}$ spin system $\left(48 \mathrm{PtCl}_{2}\right): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-32.5, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=5.2 \mathrm{ppm} ;{ }^{1} J_{\mathrm{AM}}=168 \mathrm{~Hz} ; \delta(\mathrm{P})=118.5$ ppm ("Cy2 $\mathrm{P}(\mathrm{Cl}) \mathrm{Pt} ")$.

To a suspension of $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}(25 \mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{PhMe}(1 \mathrm{ml})$ a solution of 48 (27 $\mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{PhMe}(1 \mathrm{ml})$ is added. The suspension turns into a clear, lightly yellowcolored solution after 16 h . Cooling this solution to $-30^{\circ} \mathrm{C}$ gives crystals of $\mathbf{4 8} \mathrm{PtCl}_{2} * \mathrm{PhMe}$ in X-ray quality.

12.7.2. Reaction of $\mathbf{4 8}$ with $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ and $\mathbf{5 2}$ at ambient temperature

Triphosphane $48(50 \mathrm{mg}, 0.10 \mathrm{mmol}),(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}(47 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $52(11 \mathrm{mg}$, 0.02 mmol) are stirred in $\mathrm{PhF}(2 \mathrm{ml})$ for 16 h , giving a dark yellow-colored solution. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 63.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AX_{2} spin system (48): $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-57.3, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=$ $7.7,{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}\right)=-251.3 \mathrm{~Hz} ; \mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$ spin system $(88): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-33.2, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=32.4 \mathrm{ppm}$; $\mathrm{A}_{2} \mathrm{M}$ spin system $\left(48 \mathrm{PtCl}_{2}\right): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-32.5, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=5.2 \mathrm{ppm} ;{ }^{1} J_{\mathrm{AM}}=168 \mathrm{~Hz} ; \delta(\mathrm{P})=118.5$

Figure 63. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a mixture of $\mathbf{4 8},(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ and ${ }^{1 / 5}$ eq. of $\mathbf{5 2}$ in PhF after 16 h at ambient temperature.

12.7.3. Reaction of 48 with $(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}$ and $\mathbf{5 2}$ at elevated temperature

Triphosphane $48(27 \mathrm{mg}, 0.05 \mathrm{mmol}),(\mathrm{PhCN})_{2} \mathrm{PtCl}_{2}(25 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $52(6 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ are stirred in $\mathrm{PhF}(2 \mathrm{ml})$ for 14 h at $100^{\circ} \mathrm{C}$, giving a dark green-colored solution. Upon addition of n-pentane (2 ml) a voluminous, green precipitate appears, which is filtered off, washed with n-penaten $(2 \times 1 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{ml})$ and dried in vacuo. This crude product is recrystallized by slow vapor addition of $\mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution giving a few crystals of $\mathbf{8 8} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ next to copious amounts of a green-colored oil, which was not further investigated. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 45.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in $\mathbf{~ p p m}$): AA'MM' spin system (88): $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-33.2$, $\delta\left(\mathrm{P}_{\mathrm{M}}\right)=32.4 \mathrm{ppm} ; \delta(\mathrm{P})=127.5 \mathrm{ppm}\left(\mathrm{Cy}_{2} \mathrm{PCl}\right)$.
12.7.4. Reaction of $\mathbf{4 8}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$

To triphosphane $48(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})\left(\mathrm{PhCN}_{2} \mathrm{PtCl}_{2}(38 \mathrm{mg}, 0.1 \mathrm{mmol})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ is added to form a clear, orange-colored solution. Slow vapor addition of n-pentane gives crystal of $\mathbf{4 8} \mathrm{PdCl}_{2} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ after 2 days. Crystals of $\mathbf{8 9} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} * 1 / 2 n$ pentane grew after three weeks in the same vial.
12.7.5. Reaction of $\mathbf{4 8}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ and $\mathbf{5 2}$ at ambient temperature

Triphosphane $48(53 \mathrm{mg}, 0.1 \mathrm{mmol}),(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(40 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $52(11 \mathrm{mg}, 0.02$ mmol) are stirred in $\mathrm{PhF}(2 \mathrm{ml})$ for 16 h at ambient temperature, giving an orange-colored solution. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 48.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): $\mathrm{A}_{2} \mathrm{M}$ spin system ($\left.\mathbf{4 8} \mathrm{PdCl}_{2}\right):\left(\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-25.8\right.$, $\delta\left(\mathrm{P}_{\mathrm{M}}\right)=-12.8 \mathrm{ppm},{ }^{1} J_{\mathrm{AM}}=179 \mathrm{~Hz} ; \mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$ 'spin system $(89): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-23.9, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=54.2$ ppm; $\delta(\mathrm{P})=127.3 \mathrm{ppm}\left(\mathrm{Cy}_{2} \mathrm{PCl}\right)$.

12.7.6. Reaction of $\mathbf{4 8}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$ and $\mathbf{5 2}$ at elevated temperature

Triphosphane $48(66 \mathrm{mg}, 0.13 \mathrm{mmol}),(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $52(14 \mathrm{mg}$, $0.026 \mathrm{mmol})$ are stirred in $\mathrm{PhF}(2 \mathrm{ml})$ for 3 h at $100^{\circ} \mathrm{C}$, giving a dark red-colored solution. Addition of n-pentane gives a fine, orange-colored precipitate, which is filtered off, washed with n-pentane ($3 \times 1 \mathrm{ml}$) and dried in vacuo. Recrystallization from a $1,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}$ solution by slow vapor addition of n-hexane yields few crystals of $\mathbf{9 0} * 3 / 21,2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} * 1 / 2 n$-hexane next to crystals of $\mathbf{8 9}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in Figure 49.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): ACMNPQ spin system (90): $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-35.4$, $\delta\left(\mathrm{P}_{\mathrm{C}}\right)=-10.7, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=47.4, \delta\left(\mathrm{P}_{\mathrm{N}}\right)=49.3, \delta\left(\mathrm{P}_{\mathrm{P}}\right)=64.9, \delta\left(\mathrm{P}_{\mathrm{Q}}\right)=78.5 \mathrm{ppm} ; \mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$ spin system (89) : $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-23.8, \delta\left(\mathrm{P}_{\mathrm{M}}\right)=54.2 \mathrm{ppm} ; \delta(\mathrm{P})=21 . \mathrm{ppm}\left(\mathrm{Cy}_{4} \mathrm{P}_{2}\right) ; \delta(\mathrm{P})=127.3 \mathrm{ppm}$ $\left(\mathrm{Cy}_{2} \mathrm{PCl}\right)$.
12.7.7. Reaction of $\mathbf{7 2}$ with $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}$

Tetraphosphetane $72(41 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $(\mathrm{PhCN})_{2} \mathrm{PdCl}_{2}(40 \mathrm{mg}, 0.1 \mathrm{mmol})$ are stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, giving a red-colored solution. Addition of $\mathrm{Et}_{2} \mathrm{O}$ gives a voluminous, orange-colored precipitate, which is filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{ml})$ and dried in vacuo. Recrystallization from a MeCN solution by slow vapor addition of $\mathrm{Et}_{2} \mathrm{O}$ yields few crystals of $\mathbf{9 1 *}$ MeCN next to an orange-colored oil, which was not further investigated.

12.8. Syntheses and Characterization Data regarding Compounds in

Chapter 9

12.8.1. Preparation of a tautomeric mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}_{[O T f]_{2}}$

$93[O T f]_{2}$

$\mathrm{Cy}_{2} \stackrel{\oplus}{\mathrm{P}}-\mathrm{NH} \quad \mathrm{H}_{7 \mathrm{a}}[\mathrm{OTf}]_{2}$

$94[\mathrm{OTf}]_{2}$

To a solution of triphosphane $48(252 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 2 ml of $\mathrm{MeCN}\left[\mathrm{Ph}_{3} \mathrm{As}\right][\mathrm{OTf}]_{2}(302 \mathrm{mg}, 0.5 \mathrm{mmol})$ is added while stirring. The initially colorless suspension turns yellow and forms a redcolored solution after 1 h of stirring at ambient temperature. Addition of $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ gives a light-yellow precipitate, which is filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{ml})$. Evaporation of all volatiles in vacuo yields the product as a light-yellow powder. The product is obtained as a mixture of the tautomers $\mathbf{9 3}[\mathrm{OTf}]_{2}$ (imine form) and $\mathbf{9 4}[\mathrm{OTf}]_{2}$ (enamine form). In a $\mathrm{CD}_{3} \mathrm{CN}$ solution the enamine form $\mathbf{9 4}[\mathrm{OTf}]_{2}$ is observed as the major tautomer (85% by integration in the ${ }^{31} \mathrm{P}$ NMR spectrum). Thus, resonances in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are only assignable to $\mathbf{9 4}[\mathrm{OTf}]_{2}$. The ${ }^{31} \mathrm{P}$ NMR data allows assignement to $\mathbf{9 3}^{\mathbf{2 +}}$ and $\mathbf{9 4}^{2+}$.

Yield: 364 mg (86%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=1.15-1.51\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.51-1.69 (8H, m, CH2), 1.69-1.98 (10H, m, CH2), 1.98-2.18 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.98-3.11 (3H, $\mathrm{m}, \mathrm{CH}), 3.16-3.27(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.51\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} J_{\mathrm{HH}}=11.43 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.14 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 6.17$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HP}}=34.04 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.14 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}\right), 7.66-7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{H}), 8.00-8.05(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 3-\mathrm{H}), 8.19-8.24(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}), 8.53\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HP}}=23.36 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=11.43 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}\right)$, 8.84-8.86 ($1 \mathrm{H}, \mathrm{m} \mathrm{C1}-\mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{C D}_{3} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=26.0\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 26.9\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.4\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.5\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 27.7$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{ddd},{ }^{1} J_{\mathrm{CP}}=29.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=15.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=2.3 \mathrm{~Hz}, \mathrm{CH}\right)$, $36.3\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{CP}}=15.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}, \mathrm{CH}\right), 37.3\left(1 \mathrm{C}, \mathrm{ddd},{ }^{1} J_{\mathrm{CP}}=34.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=12.5\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{CP}}=1.4 \mathrm{~Hz}, \mathrm{CH}\right), 40.7\left(1 \mathrm{C}, \mathrm{dd},{ }^{1} J_{\mathrm{CP}}=24.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 117.3(1 \mathrm{C}, \mathrm{m}, \mathrm{C} 7)$, $122.5\left(2 \mathrm{C}, \mathrm{q},{ }^{1} J_{\mathrm{CF} 3}=321.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 129.2(1 \mathrm{C}, \mathrm{s}, \mathrm{C} 2), 129.5\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J_{\mathrm{CP}}=63.9 \mathrm{~Hz}, \mathrm{C} 6\right)$, $137.7\left(1 \mathrm{C}\right.$, ddd, $\left.{ }^{2} J_{\mathrm{CP}}=57.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, \mathrm{C} 4\right), 140.4\left(1 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}=15.3\right.$ $\mathrm{Hz}, \mathrm{C} 3), 144.9\left(1 \mathrm{C}, \mathrm{ddd},{ }^{1} J_{\mathrm{CP}}=19.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=5.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=4.7 \mathrm{~Hz}, \mathrm{C} 5\right), 163.6(1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}}=5.9 \mathrm{~Hz}\right) ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, \mathbf{3 0 0} \mathbf{K}$, in ppm): $\delta=-79.3(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{~ N M R ~ (C D} \mathbf{3} \mathbf{C N}$, 300 K, in ppm): AXZ spin system $\left(\mathbf{9 4}^{2+}\right): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-84.3 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{X}}\right)=44.1 \mathrm{ppm}$, $\left.\delta\left(\mathrm{P}_{\mathrm{Z}}\right)=77.4 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{x}}\right)={ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{z}}\right)=-295 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{x}} \mathrm{P}_{\mathrm{z}}\right)=7 \mathrm{~Hz}\right)$; AXZ spin system $\left(93^{2+}\right): \delta\left(\mathrm{P}_{\mathrm{A}}\right)=-95.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{x}}\right)=96.2 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Z}}\right)=119.2 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-350 \mathrm{~Hz}$, ${ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{Z}}\right)=-330 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Z}}\right)=32 \mathrm{~Hz}$.

12.8.2. Deprotonation of a tautomeric mixture of $\mathbf{9 3}[O T f]_{2}$ and $\mathbf{9 4 [O T f}_{2}$ with $\mathrm{NaO}^{t} \mathrm{Bu}$

To a tautomeric mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}(42 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ $\mathrm{NaO}^{t} \mathrm{Bu}\left(5 \mathrm{mg}, 0.5 \mathrm{mmol}\right.$) is added giving a orange-colored solution. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is depicted in figure 55.
${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AXZ spin system $\left(\mathbf{9 5}^{+}\right)$: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-84.0 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{X}}\right)=68.9 \mathrm{ppm}, \delta\left(\mathrm{P}_{\mathrm{Y}}\right)=72.3 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{X}}\right)=-306 \mathrm{~Hz},{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{Y}}\right)=-265 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\mathrm{X}} \mathrm{P}_{\mathrm{Y}}\right)=$ 44 Hz.
12.8.3. Deprotonation of a tautomeric mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4 [O T f}_{2}$ with NaH

To a tautomeric mixture of $\mathbf{9 3}[\mathrm{OTf}]_{2}$ and $\mathbf{9 4}[\mathrm{OTf}]_{2}(176 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ solid NaH is added. After stirring for 16 h at ambient temperature all volatiles are evaporated in vacuo. The residue is dissolved in PhF and filtered. Slow vapor addition of n-pentane to the filtrate at $-30^{\circ} \mathrm{C}$ gives crystals of $\mathbf{9 6}[\mathrm{OTf}]$ in X-ray quality. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture is depicted in figure 55.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$-capillary, $\mathbf{3 0 0} \mathbf{K}$, in ppm): AXZ spin system $\left(\mathbf{9 6}^{+}\right)$: $\delta\left(\mathrm{P}_{\mathrm{A}}\right)=-46.2 \mathrm{ppm}$, $\delta\left(\mathrm{P}_{\mathrm{M}}\right)=8.9 \mathrm{ppm}, \delta\left(\mathrm{Px}_{\mathrm{x}}\right)=86.0 \mathrm{ppm} ;{ }^{1} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{Px}_{\mathrm{x}}\right)=-306 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{M}}\right)=10 \mathrm{~Hz},{ }^{3} J\left(\mathrm{P}_{\mathrm{M}} \mathrm{PY}_{\mathrm{Y}}\right)=10$ Hz.

13. Crystallographic Details

Table 10. Crystallographic data and details of the structure refinements of 41a, 41b and 41c.

	41a	41b	41c
formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{P}$	$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{P}$	$\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{P}$
Mr in $\mathrm{g} \mathrm{mol}^{-1}$	299.31	411.52	476.62
color, habit	Clear colorless, block	Colorless, block	Colorless, block
crystal system	Triclinic	Triclinic	Orthorhombic
space group	P-1	P-1	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a in \AA	8.4080(3)	9.46068(16)	13.12839(14)
b in \AA	8.7414(2)	10.82752(18)	14.61308(14)
c in \AA A	24.3551(7)	12.98312(18)	14.66829(16)
α in ${ }^{\circ}$	89.776(2)	106.2183(13)	90
β in ${ }^{\circ}$	85.729(3)	94.1178(12)	90
γ in ${ }^{\circ}$	61.439(3)	113.5005(16)	90
V in $\AA 3$	1566.81(9)	1145.47(3)	2814.05(5)
Z	4	2	4
T in K	100.01(10)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.623 \times 0.575 \times 0.278$	$0.186 \times 0.171 \times 0.132$	$0.351 \times 0.196 \times 0.167$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.269	1.193	1.104
$\mathrm{F}(000)$	632.0	444.0	1016.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\mathrm{X}=\mathrm{Cu} 1.54184$	$\mathrm{X}=\mathrm{Cu} 1.54184$	$\mathrm{X}=\mathrm{Cu} 1.54184$
$\begin{aligned} & \theta \min \text { in }^{\circ} \\ & \theta \max \text { in } \end{aligned}$	$\begin{aligned} & 7.284 \\ & 153.212 \end{aligned}$	$\begin{aligned} & 7.25 \\ & 153.226 \end{aligned}$	$\begin{aligned} & 8.541 \\ & 153.21 \end{aligned}$
index range	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10 \\ & -10 \leq \mathrm{k} \leq 10 \\ & -30 \leq 1 \leq 29 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -13 \leq \mathrm{k} \leq 13 \\ & -11 \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} & -16 \leq \mathrm{h} \leq 15 \\ & -12 \leq \mathrm{k} \leq 18 \\ & -15 \leq 1 \leq 18 \end{aligned}$
μ in mm-1	1.559	1.193	1.023
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	14923	10831	15438
reflections unique	6482	4729	5859
Rint	0.0200	0.0231	0.0199
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	6309	4423	5813
residual density in e \AA^{-3}	0.31, -0.42	0.38, -0.40	0.19, -0.24
parameters	523	270	341
GOOF	1.054	1.031	1.014
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0325	0.0357	0.0273
wR2 (all data)	0.0859	0.0918	0.0726
CCDC	1950469	-	-

Table 11. Crystallographic data and details of the structure refinements of 41d, 41e and 41f.

	41d	41e	41f
formula	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{P}$	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}$	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{P}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	547.58	379.21	407.27
color, habit	Clear colorless, block	Clear colorless, block	Clear colorless, block
crystal system	Triclinic	Monoclinic	Monoclinic
space group	P-1	C2/c	P2 $1^{\prime} \mathrm{c}$
a in \AA	9.5823(3)	22.824(3)	9.43191(9)
b in \AA	10.5764(4)	5.9836(6)	$22.65308(17)$
c in \AA	14.0230(5)	24.269(3)	8.31139(7)
α in ${ }^{\circ}$	84.512(3)	90	90
β in ${ }^{\circ}$	76.246(3)	113.859(14)	104.6093(9)
γ in ${ }^{\circ}$	79.321(3)	90	90
V in \AA^{3}	1354.53(8)	3031.2(6)	1718.41(3)
Z	2	8	4
T in K	100.0(4)	100.01(10)	100.0
crystal size in mm^{3}	$0.147 \times 0.115 \times 0.078$	$0.097 \times 0.063 \times 0.026$	$0.429 \times 0.235 \times 0.169$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.343	1.662	1.574
$\mathrm{F}(000)$	572.0	1520.0	824.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 6.498 \\ & 153.38 \end{aligned}$	$\begin{aligned} & 7.966 \\ & 152.91 \end{aligned}$	$\begin{aligned} & 7.806 \\ & 153.226 \end{aligned}$
index range	$\begin{aligned} & -12 \leq \mathrm{h} \leq 11 \\ & -13 \leq \mathrm{k} \leq 13 \\ & -15 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -26 \leq \mathrm{h} \leq 28 \\ & -7 \leq \mathrm{k} \leq 7 \\ & -30 \leq 1 \leq 30 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -27 \leq \mathrm{k} \leq 28 \\ & -10 \leq 1 \leq 10 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	1.168	2.351	2.116
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	12878	7354	22517
reflections unique	5619	3126	3605
$\mathrm{R}_{\text {int }}$	0.0252	0.0377	0.0206
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	5175	2595	3504
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.41, -0.39	0.47, -0.45	0.28, -0.29
parameters	370	226	320
GOOF	1.031	1.042	1.038
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0356	0.0534	0.0280
wR_{2} (all data)	0.0925	0.1502	0.0713
CCDC	-	-	-

Table 12. Crystallographic data and details of the structure refinements of 43a, 43b* $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{4 3 d}$.

	43a	43b $* \mathrm{CH}_{2} \mathrm{Cl}_{2}$	43d
formula	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{PS}$	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{Cl}_{2} \mathrm{PS}$	$\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	355.39	552.32	603.66
color, habit	colorless, block	Clear colorless, irregular	colorless, block
crystal system	Monoclinic	Orthorombic	Triclinic
space group	P2 1_{1} m	Pmn 1_{1}	P-1
a in \AA	7.03718(11)	13.5782(2)	11.16832(18)
b in \AA	13.3782(2)	10.05519(15)	12.2836(2)
c in \AA	8.85308(16)	10.21819(16)	$24.26706(18)$
α in ${ }^{\circ}$	90	90	87.2749(9)
β in ${ }^{\circ}$	98.7503(16)	90	82.1736(10)
γ in ${ }^{\circ}$	90	90	65.4642(16)
V in \AA^{3}	823.77(2)	1395.10(4)	3000.15(8)
Z	2	2	4
T in K	100.00(10)	99.97(11)	100.0(2)
crystal size in mm^{3}	$0.123 \times 0.074 \times 0.023$	$0.204 \times 0.182 \times 0.074$	$0.165 \times 0.125 \times 0.064$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.433	1.315	1.336
F(000)	372.0	584.0	1256.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 10.11 \\ & 152.746 \end{aligned}$	$\begin{aligned} & 8.794 \\ & 136.29 \end{aligned}$	$\begin{aligned} & 7.354 \\ & 153.254 \end{aligned}$
index range	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8 \\ & -14 \leq \mathrm{k} \leq 16 \\ & -9 \leq 1 \leq 11 \end{aligned}$	$\begin{aligned} & -16 \leq \mathrm{h} \leq 15 \\ & -10 \leq \mathrm{k} \leq 12 \\ & -11 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -30 \leq 1 \leq 25 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	2.733	3.520	1.741
abs. correction	Gaussian	Gaussian	Multi-scan
reflections collected	3923	11974	32293
reflections unique	1774	2531	12463
$\mathrm{R}_{\text {int }}$	0.0201	0.0325	0.0193
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	1676	2528	11807
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.47, -0.32	0.36, -0.53	0.35, -0.33
parameters	126	183	793
GOOF	1.111	1.221	1.016
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0284	0.0515	0.0311
wR_{2} (all data)	0.0748	0.1272	0.0805
CCDC	1950473	-	-

Table 13. Crystallographic data and details of the structure refinements of 43e, 43f and 44.

	43e	43f	44
formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{PS}$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{PS}$	$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	435.29	463.35	281.15
color, habit	colorless, plate	colorless, block	Colorless, needles
crystal system	Monoclinic	Monoclinic	Orthorhombic
space group	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$	Pca_{1}
a in \AA	10.05493(2)	6.87272(8)	18.2868(3)
b in \AA	16.1596(2)	13.65367(15)	5.85565(9)
c in \AA	10.74083(18)	20.6837(3)	13.82911(18)
α in ${ }^{\circ}$	90	90	90
β in ${ }^{\circ}$	103.1222(17)	99.4243(12)	90
γ in ${ }^{\circ}$	90	90	90
V in \AA^{3}	1699.64(5)	1914.72(4)	1480.84(4)
Z	4	4	4
T in K	100.01(10)	100.00(10)	101(1)
crystal size in mm^{3}	$0.311 \times 0.144 \times 0.019$	$0.184 \times 0.082 \times 0.055$	$0.382 \times 0.056 \times 0.043$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.701	1.607	1.261
$\mathrm{F}(000)$	872.0	936.0	592.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\text {max }} \text { in } \end{aligned}$	$\begin{aligned} & 9.03 \\ & 152.672 \end{aligned}$	$\begin{aligned} & 7.792 \\ & 153.222 \end{aligned}$	$\begin{aligned} & 9.674 \\ & 153.246 \end{aligned}$
index range	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12 \\ & -16 \leq \mathrm{k} \leq 20 \\ & -13 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8 \\ & -17 \leq \mathrm{k} \leq 14 \\ & -25 \leq 1 \leq 25 \end{aligned}$	$\begin{aligned} & -22 \leq \mathrm{h} \leq 22 \\ & -5 \leq \mathrm{k} \leq 7 \\ & -17 \leq 1 \leq 14 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	3.308	2.975	4.783
abs. correction	Multi-scan	Gaussian	Gaussian
reflections collected	8993	9471	8607
reflections unique	3534	3956	2751
$\mathrm{R}_{\text {int }}$	0.0284	0.0189	0.0244
reflections obs. [$\mathrm{F}>2 \sigma$ (F)]	3239	3781	2714
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.10, -0.81	0.35, -0.40	0.24, -0.31
parameters	253	301	151
GOOF	1.039	1.044	1.052
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0524	0.0315	0.0267
wR_{2} (all data)	0.1424	0.0824	0.0698
CCDC	-	-	-

Table 14. Crystallographic data and details of the structure refinements of 45,46 and 47.

	45	46	47
formula	$\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{P}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{P}$	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	424.98	239.64	295.72
color, habit	Clear colorless, block	Clear colorless, block	Clear colorless, block
crystal system	Monoclinic	Triclinic	Triclinic
space group	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1	P-1
a in \AA	10.33914(7)	7.9469(8)	6.4220(4)
b in \AA	16.91847(13)	8.5872(9)	7.7832(4)
c in \AA	13.96335(10)	8.6205(7)	14.1341(6)
α in ${ }^{\circ}$	90	89.430(8)	99.979(4)
β in ${ }^{\circ}$	93.5163(6)	74.167(8)	94.001(4)
γ in ${ }^{\circ}$	90	81.021(9)	110.048(5)
V in \AA^{3}	2437.91(3)	558.69(9)	647.22(6)
Z	4	2	2
T in K	99.98(14)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.17 \times 0.158 \times 0.047$	$0.289 \times 0.24 \times 0.163$	$0.191 \times 0.151 \times 0.078$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.158	1.424	1.517
$\mathrm{F}(000)$	920.0	248.0	304.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 8.22 \\ & 153.446 \end{aligned}$	$\begin{aligned} & 10.436 \\ & 153.44 \end{aligned}$	$\begin{aligned} & 6.412 \\ & 152.722 \end{aligned}$
index range	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12 \\ & -21 \leq \mathrm{k} \leq 19 \\ & -17 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9 \\ & -6 \leq \mathrm{k} \leq 10 \\ & -10 \leq 1 \leq 9 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8 \\ & -9 \leq \mathrm{k} \leq 9 \\ & -16 \leq 1 \leq 17 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	2.103	4.133	5.159
abs. correction	Multi-scan	Gaussian	Gaussian
reflections collected	24428	4416	6419
reflections unique	5100	2297	2674
$\mathrm{R}_{\text {int }}$	0.0204	0.0139	0.0224
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	4964	2258	2455
residual density in e \AA^{-3}	0.52, -0.34	0.26, -0.47	0.33, -0.30
parameters	265	139	165
GOOF	1.050	1.077	1.059
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0289	0.0287	0.0281
wR_{2} (all data)	0.0763	0.0759	0.0749
CCDC	-	-	-

Table 15. Crystallographic data and details of the structure refinements of $\mathbf{4 8}, \mathbf{4 9}$ and $\mathbf{5 0}$.

	48	49	50
formula	$\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{NP}_{3}$	$\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{NP}_{3} \mathrm{~S}$	$\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NP}_{3}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	503.59	559.67	399.45
color, habit	Colorless, needle	Yellow, plate	Clear, colorless, block
crystal system	Monoclinic	Triclinic	Triclinic
space group	$\mathrm{P} 21 / \mathrm{c}$	P-1	P-1
a in \AA	11.06652(11)	16.0052(2)	7.9088(3)
b in \AA	23.6010(3)	17.2802(2)	11.2925(4)
c in \AA	10.85205(11)	23.3958(3)	14.4882(6)
α in ${ }^{\circ}$	90	104.8628(12)	73.202(3)
β in ${ }^{\circ}$	99.7411(10)	100.6013(12)	86.167(3)
γ in $^{\circ}$	90	90.2605(12)	72.923(3)
V in \AA^{3}	2793.48(5)	6138.29(16)	1183.90(8)
Z	4	8	2
T in K	100.01(10)	100.00(10)	100.01(10)
crystal size in mm^{3}	$0.292 \times 0.065 \times 0.05$	$0.136 \times 0.08 \times 0.039$	$0.397 \times 0.18 \times 0.081$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.197	1.211	1.121
$\mathrm{F}(000)$	1096.0	2416.0	436.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\mathrm{X}=\mathrm{Cu} 1.54184$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 7.492 \\ & 152.996 \end{aligned}$	$\begin{aligned} & 3.982 \\ & 153.556 \end{aligned}$	$\begin{aligned} & 6.374 \\ & 153.842 \end{aligned}$
index range	$\begin{aligned} & -13 \leq \mathrm{h} \leq 7 \\ & -29 \leq \mathrm{k} \leq 29 \\ & -13 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -19 \leq \mathrm{h} \leq 20 \\ & -17 \leq \mathrm{k} \leq 21 \\ & -29 \leq 1 \leq 29 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9 \\ & -14 \leq \mathrm{k} \leq 13 \\ & -17 \leq 1 \leq 18 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	2.069	2.555	2.319
abs. correction	Gaussian	Multi-scan	Gaussian
reflections collected	14711	72032	14550
reflections unique	5806	25591	4930
$\mathrm{R}_{\text {int }}$	0.0243	0.0333	0.0125
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	5416	21917	4861
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.33, -0.26	0.47, -0.55	0.35, -0.26
parameters	490	1380	238
GOOF	1.039	1.012	1.057
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0277	0.0336	0.0265
wR_{2} (all data)	0.0688	0.0858	0.0692
CCDC	1950471	1950484	1950474

Table 16. Crystallographic data and details of the structure refinements of $\mathbf{5 1},\left[(48 \mathrm{Cu})_{2}\right][\mathrm{OTf}]_{2} * \mathrm{MeCN}$ and $\left[(48 \mathrm{Ag})_{2}\right][\mathrm{OTf}]_{2} * \mathrm{MeCN}$.

	51	$\left[(\mathbf{4 8 C u})_{2}\right][\mathrm{OTf}]_{2} * \mathrm{MeCN}$	$\left[(\mathbf{4 8 A g})_{2}\right][\mathrm{OTf}]_{2} * \mathrm{MeCN}$
formula	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NP}_{3}$	$\mathrm{C}_{64} \mathrm{H}_{104} \mathrm{Cl}_{8} \mathrm{Cu}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{102} \mathrm{Ag}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	353.25	1772.11	1603.17
color, habit	Clear, colorless, block	Clear colorless, plate	Colorless, block
crystal system	Orthorombic	Triclinic	Monoclinic
space group	Pna2 ${ }_{1}$	P-1	$\mathrm{P} 21 / \mathrm{c}$
a in \AA	26.5691(4)	12.3686(3)	12.1473(3)
b in \AA	10.80809(17)	13.7415(3)	15.0565(4)
c in \AA A	5.99320 (10)	13.9572(3)	20.4248(7)
α in ${ }^{\circ}$	90	113.879(2)	90
β in ${ }^{\circ}$	90	109.229(2)	102.677(3)
γ in ${ }^{\circ}$	90	93.1122(18)	90
V in \AA^{3}	1721.01(5)	1999.20(9)	3644.55(18)
Z	4	1	2
T in K	100.01(10)	100.01(10)	99.97(13)
crystal size in mm^{3}	$0.408 \times 0.301 \times 0.115$	$0.307 \times 0.194 \times 0.047$	$0.095 \times 0.035 \times 0.022$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.363	1.472	1.461
$\mathrm{F}(000)$	736.0	920.0	1664.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 6.654 \\ & 154.09 \end{aligned}$	$\begin{aligned} & 7.208 \\ & 153.02 \end{aligned}$	$\begin{aligned} & 7.358 \\ & 144.254 \end{aligned}$
index range	$\begin{aligned} & -33 \leq \mathrm{h} \leq 32 \\ & -13 \leq \mathrm{k} \leq 13 \\ & -7 \leq 1 \leq 7 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 15 \\ & -17 \leq \mathrm{k} \leq 16 \\ & -14 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -14 \leq \mathrm{h} \leq 14 \\ & -10 \leq \mathrm{k} \leq 10 \\ & -25 \leq 1 \leq 25 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	3.145	5.255	6.637
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	20567	19879	23315
reflections unique	3535	8310	7033
$\mathrm{R}_{\text {int }}$	0.0280	0.0231	0.0464
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	3531	7795	6108
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.84, -0.39	0.88, -0.82	1.33, -0.88
parameters	209	470	407
GOOF	1.116	1.063	1.026
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0479	0.0323	0.0393
wR_{2} (all data)	0.1291	0.0835	0.1065
CCDC	1950481	1950472	1950476

Table 17. Crystallographic data and details of the structure refinements of $\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$, $\left[(48)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * n-\mathrm{C}_{5} \mathrm{H}_{12}$ and $(48 \mathrm{CuBr})_{2} * \mathrm{THF} * n-\mathrm{C}_{5} \mathrm{H}_{12}$.

	$\left[(48 \mathrm{Au})_{2}\right][\mathrm{OTf}]_{2}$	$\left.[(48))_{2} \mathrm{Cu}\right][\mathrm{OTf}]^{*} n-\mathrm{C}_{5} \mathrm{H}_{12}$	$(48 \mathrm{CuBr})_{2} * \mathrm{THF}^{*} n-\mathrm{C}_{5} \mathrm{H}_{12}$
formula	$\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{~S}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{108} \mathrm{CuF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{~S}$	$\mathrm{C}_{65.92} \mathrm{H}_{113.69} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{0.82} \mathrm{P}_{6}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	1699.26	1191.94	1420.29
color, habit	Clear colorless, irregular	Clear colorless, block	Clear colorless, block
crystal system	Monoclinic	Monoclinic	Triclinic
space group	C2/c	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1
a in \AA	21.8614(6)	10.16325(10)	10.85215(11)
b in \AA	16.4069(4)	25.8990(2)	17.65905(19)
c in \AA	26.8718(6)	26.5556(3)	19.63512(16)
α in ${ }^{\circ}$	90	90	102.4758(8)
β in ${ }^{\circ}$	115.147(3)	99.3487(10)	101.6435(8)
γ in ${ }^{\circ}$	90	90	98.8895(9)
V in \AA^{3}	8724.8(4)	6897.07(12)	3520.31(5)
Z	4	4	2
T in K	100.00(11)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.318 \times 0.27 \times 0.192$	$0.36 \times 0.208 \times 0.144$	$0.221 \times 0.067 \times 0.042$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.294	1.244	1.340
F(000)	3408.0	2768.0	1496.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 6.956 \\ & 153.546 \end{aligned}$	$\begin{aligned} & 6.746 \\ & 153.264 \end{aligned}$	$\begin{aligned} & 4.752 \\ & 153.292 \end{aligned}$
index range	$\begin{aligned} & -26 \leq \mathrm{h} \leq 26 \\ & -16 \leq \mathrm{k} \leq 20 \\ & -29 \leq 1 \leq 33 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12 \\ & -32 \leq \mathrm{k} \leq 32 \\ & -33 \leq 1 \leq 31 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 8 \\ & -22 \leq \mathrm{k} \leq 22 \\ & -24 \leq 1 \leq 24 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	8.144	2.453	3.660
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	23941	41516	38405
reflections unique	9046	14152	14673
$\mathrm{R}_{\text {int }}$	0.0240	0.0247	0.0289
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	8619	13572	13137
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.41, -2.51	0.89, -0.58	0.90, -0.59
parameters	379	843	814
GOOF	1.104	1.12	1.025
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0353	0.0529	0.0353
wR_{2} (all data)	0.0926	0.1311	0.0970
CCDC	1950485	1950479	1950470

Table 18. Crystallographic data and details of the structure refinements of $\mathbf{5 2 , 5 6} \mathbf{5 6} 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{5 7}$ [OTf].

	52	56*0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	57[OTf]
formula	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{P}_{5}$	$\mathrm{C}_{35.5} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{P}_{5} \mathrm{~S}_{5}$	$\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{P}_{3} \mathrm{~S}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	545.31	868.17	667.69
color, habit	Colorless, block	Colorless, block	Yellow, block
crystal system	Monoclinic	Triclinic	Triclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	P-1	P-1
a in \AA	8.88106(6)	10.2485(3)	10.9026(4)
b in \AA	19.32439(15)	12.3713(3)	12.5147(3)
c in \AA	14.68865(11)	15.6969(4)	14.0376(4)
α in ${ }^{\circ}$	90	112.462(2)	74.779(3)
β in ${ }^{\circ}$	92.3033(7)	90.355(2)	67.319(3)
γ in $^{\circ}$	90	99.439(2)	84.620(2)
V in \AA^{3}	2518.84(3)	1809.09(8)	1705.17(10)
Z	4	2	2
T in K	100.01(10)	100.00(10)	100.00(10)
crystal size in mm^{3}	$0.265 \times 0.202 \times 0.101$	$0.135 \times 0.081 \times 0.052$	$0.192 \times 0.118 \times 0.054$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.438	1.594	1.300
$\mathrm{F}(000)$	1120.0	882.0	712.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\text {max }}^{\text {in }}{ }^{\circ} \end{aligned}$	$\begin{aligned} & 7.564 \\ & 153.066 \end{aligned}$	$\begin{aligned} & 6.11 \\ & 153.416 \end{aligned}$	$\begin{aligned} & 7.042 \\ & 153.3 \end{aligned}$
index range	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -22 \leq \mathrm{k} \leq 24 \\ & -18 \leq 1 \leq 18 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 10 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -19 \leq 1 \leq 19 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -15 \leq 1 \leq 17 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	3.577	6.032	2.581
abs. correction	Gaussian	Multi-scan	Gaussian
reflections collected	14356	22889	16998
reflections unique	5232	7537	7087
$\mathrm{R}_{\text {int }}$	0.0206	0.0229	0.0252
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	5073	7164	6566
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.30, -0.27	0.89, -0.48	0.75, -0.47
parameters	396	478	380
GOOF	1.038	1.025	1.018
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0258	0.0333	0.0365
wR_{2} (all data)	0.0677	0.0884	0.1003
CCDC	1950478	1950477	1950475

Table 19. Crystallographic data and details of the structure refinements of $\mathbf{5 8}[\mathrm{OTf}]_{2}, \mathbf{5 9}[\mathrm{OTf}]_{2}$ and $\mathbf{6 0}[\mathrm{OTf}]$.

	58[OTf] ${ }_{2}$	$\mathbf{5 9} \mathrm{OTfl}_{2}$	60[OTf]
formula	$\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{P}_{3} \mathrm{~S}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{~N}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	831.80	940.86	604.64
color, habit	Colorless, block	Clear colorless, needle	Clear yellow, block
crystal system	Monoclinic	Triclinic	Triclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	P-1	P-1
a in \AA	13.83650(10)	9.5582(7)	12.4338(41)
b in \AA	21.99929(12)	9.6936(8)	12.5077(3)
c in \AA	13.99782(10)	11.8527(8)	13.0479(4)
α in ${ }^{\circ}$	90	87.895(6)	114.387(3)
β in ${ }^{\circ}$	109.4646(8)	80.107(6)	96.369(2)
γ in ${ }^{\circ}$	90	86.923(6)	116.073(3)
V in \AA^{3}	4017.32(5)	1079.88(14)	1550.40(9)
Z	4	1	2
T in K	99.97(12)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.22 \times 0.115 \times 0.065$	$0.229 \times 0.048 \times 0.036$	$0.226 \times 0.105 \times 0.092$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.375	1.447	1.295
$\mathrm{F}(000)$	1752.0	494.0	648.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 7.782 \\ & 153.374 \end{aligned}$	$\begin{aligned} & 7.574 \\ & 136.62 \end{aligned}$	$\begin{aligned} & 7.966 \\ & 153.428 \end{aligned}$
index range	$\begin{aligned} & -14 \leq \mathrm{h} \leq 17 \\ & -27 \leq \mathrm{k} \leq 23 \\ & -17 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -11 \leq \mathrm{k} \leq 11 \\ & -14 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15 \\ & -14 \leq \mathrm{k} \leq 15 \\ & -16 \leq 1 \leq 14 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}{ }^{-1}$	2.944	3.155	2.770
abs. correction	Gaussian	Analytical	Gaussian
reflections collected	44324	7302	15021
reflections unique	8432	7302	6454
$\mathrm{R}_{\text {int }}$	0.0272	0.0953	0.0248
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	8188	5821	5907
$\underset{R}{\text { residual density }}$ $\text { in e } \AA^{-3}$	0.57, -0.47	1.39, -0.42	0.43, -0.40
parameters	462	328	336
GOOF	1.027	0.998	1.035
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0313	0.0700	0.0281
wR_{2} (all data)	0.0838	0.1893	0.0729
CCDC	1950482	1950486	1950483

Table 20. Crystallographic data and details of the structure refinements of 65, 42 and 66 .

	65	42	66
formula	$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{NP}$	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{NPS}$	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{NP}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	230.02	236.04	280.07
color, habit	red, block	colorless, block	colorless, block
crystal system	Monoclinic	Triclinic	Monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	P-1	P2 $1_{1} \mathrm{c}$
a in \AA	12.4333(5)	6.71538(17)	8.62852(12)
b in \AA	5.84986(19)	6.98592(18)	13.86704(18)
c in \AA	14.1072(5)	10.6276(2)	9.96682(12)
α in ${ }^{\circ}$	90	91.2912(19)	90
β in ${ }^{\circ}$	109.657(4)	107.150(2)	93.9632(12)
γ in $^{\circ}$	90	108.239(2)	90
V in \AA^{3}	966.27(6)	448.83(2)	1189.70(3)
Z	4	2	4
T in K	100.01(10)	100.01(10)	100.0(2)
crystal size in mm^{3}	$0.255 \times 0.169 \times 0.139$	$0.204 \times 0.111 \times 0.058$	$0.252 \times 0.134 \times 0.054$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.581	1.747	1.564
$\mathrm{F}(000)$	464.0	236.0	568.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\text {max }}^{\text {in }}{ }^{\circ} \end{aligned}$	$\begin{aligned} & 8.216 \\ & 153.616 \end{aligned}$	$\begin{aligned} & 8.778 \\ & 153.11 \end{aligned}$	$\begin{aligned} & 10.276 \\ & 152.568 \end{aligned}$
index range	$\begin{aligned} & -13 \leq \mathrm{h} \leq 15 \\ & -7 \leq \mathrm{k} \leq 6 \\ & -17 \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} & -7 \leq \mathrm{h} \leq 8 \\ & -8 \leq \mathrm{k} \leq 8 \\ & -13 \leq 1 \leq 12 \end{aligned}$	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10 \\ & -17 \leq \mathrm{k} \leq 16 \\ & -12 \leq 1 \leq 10 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	7.181	9.863	5.953
abs. correction	Gaussian	Multi Scan	Gaussian
reflections collected	4303	3556	6081
reflections unique	2004	1850	2471
$\mathrm{R}_{\text {int }}$	0.0407	0.0156	0.0157
reflections obs. [$\mathrm{F}>2 \sigma$ (F)]	1915	1796	2374
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.04, -0.87	0.25, -0.40	0.30, -0.26
parameters	118	125	186
GOOF	1.086	1.074	1.040
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0625	0.0223	0.0625
wR_{2} (all data)	0.1596	0.0612	0.1596
CCDC	1986655	1986657	19866556

Table 21. Crystallographic data and details of the structure refinements of $\mathbf{6 1}[\mathrm{OTf}], \mathbf{6 2}[\mathrm{OTf}] * \mathrm{MeCN}$ and 63[OTf].

	61[OTf]	62[OTf]* ${ }^{\text {MeCN }}$	63[OTf]
formula	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PS}$	$\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	336.22	477.39	536.45
color, habit	yellow, parallelepiped	yellow, block	orange, block
crystal system	triclinic	Triclinic	Monoclinic
space group	P-1	P-1	Cc
a in \AA	7.2241(5)	7.0876(3)	17.5520(2)
b in \AA	9.0577(7)	12.8437(4)	8.75829(9)
c in \AA	10.9162(8)	13.035(4)	16.02248(19)
α in ${ }^{\circ}$	95.055(3)	116.376(3)	90
β in ${ }^{\circ}$	99.126(3)	101.678(3)	113.4693(14)
γ in ${ }^{\circ}$	109.450(3)	96.308(3)	90
V in \AA^{3}	657.34(8)	1013.70(7)	2259.30(5)
Z	2	2	4
T in K	100.0	99.99(10)	99.99(17)
crystal size in mm^{3}	$0.19 \times 0.12 \times 0.06$	$0.239 \times 0.194 \times 0.107$	$0.454 \times 0.3 \times 0.073$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.699	1.564	1.577
$\mathrm{F}(000)$	340.0	488.0	1096.0
diffractometer	Bruker APEX II	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Mo} \\ & 0.71073 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 01.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 3.822 \\ & 60.246 \end{aligned}$	$\begin{aligned} & 7.89 \\ & 153.316 \end{aligned}$	$\begin{aligned} & 10.99 \\ & 153.212 \end{aligned}$
index range	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10 \\ & -10 \leq \mathrm{k} \leq 12 \\ & -15 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 8 \\ & -16 \leq \mathrm{k} \leq 15 \\ & -15 \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} & -21 \leq \mathrm{h} \leq 22 \\ & -10 \leq \mathrm{k} \leq 10 \\ & -17 \leq 1 \leq 20 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	0.415	2.698	2.486
abs. correction	multi-scan	Gaussian	Gaussian
reflections collected	8822	9124	8418
reflections unique	3836	4208	3760
$\mathrm{R}_{\text {int }}$	0.0175	0.0264	0.0178
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	3277	3959	3750
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.59, -0.30	0.33, -0.43	0.86, -0.38
parameters	190	349	335
GOOF	1.044	1.035	1.092
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0340	0.0413	0.0400
wR R_{2} (all data)	0.0915	0.1148	0.1092
CCDC	1950480	1986660	1986667

Table 22. Crystallographic data and details of the structure refinements of $\mathbf{6 4}[\mathrm{OTf}] * \mathrm{MeCN}, \mathbf{6 1}^{\mathrm{Cl2}}[\mathrm{OTf}]$ and $61^{\mathrm{F} 4}$ [OTf].

	64[OTf]* ${ }^{\text {MeCN }}$	$61{ }^{\text {C12 }}[\mathrm{OTf}]$	61 ${ }^{\text {F4 }}$ [OTf]
formula	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PS}_{3}$	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}_{3}$	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	489.44	407.14	412.22
color, habit	colorless, block	orange, plate	Clear, colorless, block
crystal system	Triclinic	Monoclinic	Monoclinic
space group	P-1	$\mathrm{P} 21 / \mathrm{n}$	Pn
a in \AA A	8.9698(2)	12.7884(5)	8.73091(8)
b in \AA	9.62662(19)	5.86021(18)	7.86576(5)
c in \AA	11.58620(18)	21.1423(9)	11.09899(9)
α in ${ }^{\circ}$	93.2154(14)	90	90
β in ${ }^{\circ}$	102.3339(17)	107.479(4)	110.5932(10)
γ in ${ }^{\circ}$	90.6727(19)	90	90
V in \AA^{3}	975.54(4)	1511.30(11)	713.521(10)
Z	2	4	2
T in K	100.01(10)	100.0(4)	100.0
crystal size in mm^{3}	$0.16 \times 0.061 \times 0.039$	$0.175 \times 0.134 \times 0.01$	$0.15 \times 0.12 \times 0.12$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.666	1.789	1.919
$F(000)$	496.0	816.0	412.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 7.824 \\ & 153.082 \end{aligned}$	$\begin{aligned} & 7.248 \\ & 153.056 \end{aligned}$	$\begin{aligned} & 11.174 \\ & 153.032 \end{aligned}$
index range	$\begin{aligned} & -11 \leq \mathrm{h} \leq 10 \\ & -12 \leq \mathrm{k} \leq 12 \\ & -14 \leq 1 \leq 10 \end{aligned}$	$\begin{aligned} & -16 \leq \mathrm{h} \leq 16 \\ & -7 \leq \mathrm{k} \leq 5 \\ & -26 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10 \\ & -9 \leq \mathrm{k} \leq 9 \\ & -13 \leq 1 \leq 13 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	4.767	6.637	4.089
abs. correction	Gaussian	Gaussian	Multi-Scan
reflections collected	8995	14505	11042
reflections unique	4048	3323	2814
$\mathrm{R}_{\text {int }}$	0.0252	0.0330	0.0108
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	3807	3283	2814
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.60, -0.55	0.30, -0.90	0.28, -0.33
parameters	315	209	226
GOOF	1.042	1.129	1.085
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0383	0.0354	0.0230
wR2 (all data)	0.1051	0.1052	0.0634
CCDC	1986666	1986665	1986664

Table 23. Crystallographic data and details of the structure refinements of $\mathbf{6 1}{ }^{\mathrm{Cl} 1}[\mathrm{OTf}], \mathbf{6 9}[\mathrm{OTf}]_{3} * 2 \mathrm{MeCN}$, 70a[OTf]

	$61{ }^{\text {C14 }}[\mathrm{OTf}$	69[OTf] ${ }_{3} * 2 \mathrm{MeCN}$	70a[OTf]
formula	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PS}$	$\mathrm{C}_{27} \mathrm{H}_{21.13} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{PS}_{3}$	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	478.02	871.78	526.47
color, habit	colorless, block	Clear yellow, block	Clear yellow, block
crystal system	Monoclinic	Monoclinic	monoclinic
space group	Pn	I2/a	$\mathrm{P} 2{ }_{1} / \mathrm{c}$
a in \AA	9.33396 (12)	30.8800(3)	13.34132(11)
b in \AA	8.28139(10)	7.96591(7)	11.57043(8)
c in \AA	11.25557(14)	29.4064(3)	16.78264(15)
α in ${ }^{\circ}$	90	90	90
β in ${ }^{\circ}$	109.4015(14)	110.0904(10)	112.3951(10)
γ in ${ }^{\circ}$	90	90	90
V in \AA^{3}	820.629(19)	6793.46(11)	2395.26(4)
Z	2	8	4
T in K	100.01(10)	100.00(10)	100.01(10)
crystal size in mm^{3}	$0.188 \times 0.115 \times 0.059$	$0.327 \times 0.176 \times 0.097$	$0.224 \times 0.2 \times 0.076$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.935	1.705	1.460
$\mathrm{F}(000)$	476.0	3529.0	1088.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \circ \end{aligned}$	$\begin{aligned} & 10.682 \\ & 153.146 \end{aligned}$	$\begin{aligned} & 7.164 \\ & 153.368 \end{aligned}$	$\begin{aligned} & 7.166 \\ & 153.178 \end{aligned}$
index range	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -9 \leq \mathrm{k} \leq 10 \\ & -14 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -33 \leq \mathrm{h} \leq 38 \\ & -9 \leq \mathrm{k} \leq 9 \\ & -37 \leq 1 \leq 36 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 16 \\ & -14 \leq \mathrm{k} \leq 14 \\ & -21 \leq 1 \leq 20 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	9.153	3.472	2.371
abs. correction	Gaussian	Gaussian	Multi-scan
reflections collected	14816	18509	12926
reflections unique	3415	7053	4986
$\mathrm{R}_{\text {int }}$	0.0229	0.0186	0.0140
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	3415	6831	4836
residual density in e \AA^{-3}	0.24, -0.40	1.09, -0.74	0.24, -0.0754
parameters	227	713	441
GOOF	1.092	1.043	1.020
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0246	0.0697	0.0285
wR2 (all data)	0.0587	0.1857	0.0754
CCDC	1986658	1986659	1986662

Table 24. Crystallographic data and details of the structure refinements of 70b[OTf $] * \mathrm{Et}_{2} \mathrm{O}, \mathbf{7 0 c}[\mathrm{OTf}] * \mathrm{Et}_{2} \mathrm{O}$ and 70d[OTf].

	70b[OTf] ${ }^{\text {Et }}{ }_{2} \mathrm{O}$	70c[OTf] ${ }^{*} \mathrm{Et}_{2} \mathrm{O}$	70d[OTf]
formula	$\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3.5} \mathrm{PS}$	$\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{PS}$	$\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PS}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	675.74	768.90	774.74
color, habit	colorless, plate	colorless, block	Clear colorless, needle
crystal system	Triclinic	Monoclinic	Orthorhombic
space group	P-1	$\mathrm{P} 21 / \mathrm{c}$	Pbca
a in \AA A	13.8270(2)	17.32700(13)	8.79642(10)
b in \AA	13.9544(3)	12.54811(10)	19.3254(2)
c in \AA	20.1132(3)	19.52034(14)	42.2670(6)
α in ${ }^{\circ}$	73.762(2)	90	90
β in ${ }^{\circ}$	72.1020(10)	99.5180(7)	90
γ in $^{\circ}$	78.218(2)	90	90
V in \AA^{3}	3515.84(11)	4185.70(5)	7185.17(15)
Z	4	4	8
T in K	100.01(10)	100.01(10)	99.99(8)
crystal size in mm^{3}	$0.4 \times 0.235 \times 0.105$	$0.268 \times 0.169 \times 0.1$	$0.549 \times 0.065 \times 0.036$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.277	1.220	1.432
$\mathrm{F}(000)$	1428.0	1640.0	3200.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 6.654 \\ & 153.386 \end{aligned}$	$\begin{aligned} & 5.172 \\ & 153.376 \end{aligned}$	$\begin{aligned} & 8.368 \\ & 153.168 \end{aligned}$
index range	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17 \\ & -17 \leq \mathrm{k} \leq 17 \\ & -25 \leq 1 \leq 25 \end{aligned}$	$\begin{aligned} & -21 \leq \mathrm{h} \leq 20 \\ & -14 \leq \mathrm{k} \leq 15 \\ & -22 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -7 \leq \mathrm{h} \leq 11 \\ & -17 \leq \mathrm{k} \leq 24 \\ & -52 \leq 1 \leq 52 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	1.736	1.525	1.781
abs. correction	Analytical	Gaussian	Gaussian
reflections collected	25162	24645	27926
reflections unique	12373	8707	7476
$\mathrm{R}_{\text {int }}$?	0.0218	0.0366
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	11364	8017	6892
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.62, -0.58	0.67, -0.39	0.38, -0.50
parameters	858	483	616
GOOF	1.024	1.053	1.110
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0609	0.0407	0.0451
wR2 (all data)	0.1638	0.1148	0.01131
CCDC	1986668	1986663	1986661

Table 25. Crystallographic data and details of the structure refinements of 71, $\mathbf{7 2}$ and $\left[(72)_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	71	72	$\left[(72){ }_{2} \mathrm{Cu}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$
formula	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{P}_{4}$	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{P}_{4}$	$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	392.30	394.29	1086.11
color, habit	Colorless, block	Clear, colorless, block	Clear yellow, block
crystal system	Triclinic	Triclinic	Triclinic
space group	P-1	P-1	P-1
a in \AA	9.1061(3)	8.32598(17)	14.9813(3)
b in \AA	10.8015(4)	10.35329(18)	16.6700(3)
c in \AA	11.0270(4)	13.62138(17)	22.63748 (19)
α in ${ }^{\circ}$	75.983(3)	107.2865(13)	72.9307(11)
β in ${ }^{\circ}$	89.224(3)	90.3167(14)	82.9453(11)
γ in ${ }^{\circ}$	85.882(3)	109.4435(17)	67.1309(17)
V in \AA^{3}	1049.40(7)	1050.07(3)	4979.38(15)
Z	2	2	4
T in K	100.01(10)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.204 \times 0.109 \times 0.08$	$0.166 \times 0.116 \times 0.077$	$0.264 \times 0.142 \times 0.064$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.242	1.247	1.449
$\mathrm{F}(000)$	416.0	416.0	240.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 8.266 \\ & 153.07 \end{aligned}$	$\begin{aligned} & 6.842 \\ & 153.072 \end{aligned}$	$\begin{aligned} & 5.974 \\ & 153.786 \end{aligned}$
index range	$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -9 \leq \mathrm{k} \leq 13 \\ & -13 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -10 \leq \mathrm{h} \leq 10 \\ & -12 \leq \mathrm{k} \leq 12 \\ & -16 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -16 \leq \mathrm{h} \leq 18 \\ & -21 \leq \mathrm{k} \leq 20 \\ & -28 \leq 1 \leq 26 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	3.304	3.333	4.861
abs. correction	Multi-Scan	Gaussian	Gaussian
reflections collected	9775	9375	50722
reflections unique	4351	4346	20368
$\mathrm{R}_{\text {int }}$	0.0185	0.0196	0.0416
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	4156	4141	18310
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.30, -0.27	0.35, -0.30	1.05, -0.86
parameters	223	240	1105
GOOF	1.026	1.033	1.044
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0244	0.0293	0.0416
wR_{2} (all data)	0.0645	0.0789	0.1191
CCDC	1990335	1990345	1990336

Table 26. Crystallographic data and details of the structure refinements of $\left[\left(\mathbf{7 2 ~}_{2}\right)_{2} \mathrm{Ag}\right][\mathrm{OTf}] * \mathrm{MeCN}$, $\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{7 4 [\mathrm { OTf }] .}$

	$\left[(72){ }_{2} \mathrm{Ag}\right][\mathrm{OTf}] * \mathrm{MeCN}$	$\left[(72)_{2} \mathrm{Au}\right][\mathrm{OTf}] * \mathrm{CH}_{2} \mathrm{Cl}_{2}$	74[OTf]
formula	$\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{AgF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S}$	$\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{AuCl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{8} \mathrm{~S}$	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}_{4} \mathrm{~S}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	1086.57	1219.54	556.41
color, habit	Clear colorless, block	Clear colorless, block	Clear, colorless, block
crystal system	Triclinic	Triclinic	Orthorhombic
space group	P-1	P-1	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a in \AA	12.6802(3)	14.8924(2)	10.94462(9)
b in \AA	14.2616(4)	16.7756(2)	14.08128(12)
c in \AA	16.8114(4)	22.8908(4)	17.64605(14)
α in ${ }^{\circ}$	65.300(3)	73.4752(13)	90
β in ${ }^{\circ}$	89.294(2)	83.6786(13)	90
γ in ${ }^{\circ}$	67.278(3)	67.3194(13)	90
V in \AA^{3}	2507.03(13)	5058.59(14)	2719.51(4)
Z	2	4	4
T in K	100.0(3)	100.01(10)	100.01(10)
crystal size in mm^{3}	$0.257 \times 0.156 \times 0.138$	$0.178 \times 0.087 \times 0.041$	$0.259 \times 0.169 \times 0.092$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.439	1.601	1.359
$\mathrm{F}(000)$	1116.0	2440.0	1160.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 5.88 \\ & 153.426 \end{aligned}$	$\begin{aligned} & 5.92 \\ & 153.442 \end{aligned}$	$\begin{aligned} & 8.032 \\ & 153.262 \end{aligned}$
index range	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15 \\ & -16 \leq \mathrm{k} \leq 17 \\ & -21 \leq 1 \leq 20 \end{aligned}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 18 \\ & -20 \leq \mathrm{k} \leq 21 \\ & -28 \leq 1 \leq 28 \end{aligned}$	$\begin{aligned} & -7 \leq \mathrm{h} \leq 13 \\ & -16 \leq \mathrm{k} \leq 17 \\ & -22 \leq 1 \leq 18 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	6.464	9.642	3.662
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	25869	72942	15014
reflections unique	10409	21100	5654
$\mathrm{R}_{\text {int }}$	0.0206	0.0214	0.0197
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	10196	20520	5186
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.50, -1.31	1.28, -1.78	0.17, -0.24
parameters	568	1105	305
GOOF	1.024	1.038	1.043
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0265	0.0234	0.0190
wR2 (all data)	0.0670	0.0584	0.0481
CCDC	1990340	1990341	1990339

Table 27. Crystallographic data and details of the structure refinements of $\mathbf{7 5}[\mathrm{OTf}], \mathbf{7 6}[\mathrm{OTf}]_{2}$ and $\left.\mathbf{7 7 [O T f}\right]_{3} * 2$ MeNO_{2}.

	75[OTf]	76[OTf $]_{2}$	$77[\mathrm{OTf}]_{3} * 2 \mathrm{MeNO}_{2}$
formula	$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{4} \mathrm{~S}$	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}_{4} \mathrm{~S}_{3}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	558.39	722.49	1008.69
color, habit	Clear, colorless, block	Colorless, block	Clear, colorless, block
crystal system	Monoclinic	Orthorhombic	Triclinic
space group	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	Pccn	P-1
a in \AA A	13.97178(9)	11.21381(12)	13.3125(3)
b in \AA	15.50651(11)	19.60180 (19)	13.4806(3)
c in \AA A	24.38356(18)	13.59001(18)	13.9690(4)
α in ${ }^{\circ}$	90	90	61.919(2)
β in ${ }^{\circ}$	94.7277(6)	90	84.582(2)
γ in ${ }^{\circ}$	90	90	71.999(2)
V in \AA^{3}	5264.81(6)	2987.23(6)	2099.62(10)
Z	8	4	2
T in K	100.01(10)	99.9(5)	100.00(10)
crystal size in mm^{3}	$0.192 \times 0.099 \times 0.084$	$0.216 \times 0.076 \times 0.053$	$0.221 \times 0.198 \times 0.078$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.409	1.606	1.595
$\mathrm{F}(000)$	2320.0	1488.0	1036.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 6.348 \\ & 153.41 \end{aligned}$	$\begin{aligned} & 9.022 \\ & 153.29 \end{aligned}$	$\begin{aligned} & 6.994 \\ & 153.582 \end{aligned}$
index range	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17 \\ & -19 \leq \mathrm{k} \leq 17 \\ & -27 \leq 1 \leq 30 \end{aligned}$	$\begin{aligned} & -14 \leq \mathrm{h} \leq 13 \\ & -15 \leq \mathrm{k} \leq 24 \\ & -17 \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} & -14 \leq \mathrm{h} \leq 16 \\ & -17 \leq \mathrm{k} \leq 16 \\ & -17 \leq 1 \leq 17 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	3.808	4.367	3.993
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	50820	14708	23898
reflections unique	11024	3118	8722
$\mathrm{R}_{\text {int }}$	0.0229	0.0213	0.0158
reflections obs. [$\mathrm{F}>2 \sigma$ (F)]	10434	2536	8518
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.86, -0.48	0.61, -0.55	0.43, -0.57
parameters	628	194	543
GOOF	1.032	1.064	1.030
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0343	0.0330	0.0288
wR_{2} (all data)	0.0895	0.0889	0.0766
CCDC	1990337	1990344	1990342

Table 28. Crystallographic data and details of the structure refinements of $\mathbf{7 8}[\mathrm{OTf}]_{3} * \mathrm{MeNO}_{2}, \mathbf{8 2}[\mathrm{OTf}]_{3}$ and 84.

	78[OTf] ${ }_{3} * \mathrm{MeNO}_{2}$	$\mathbf{8 2}[\mathrm{OTf}]_{3}$	84
formula	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{4} \mathrm{~S}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{~S}_{3}$	$\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Au}_{2} \mathrm{P}_{6}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	905.56	907.58	1244.93
color, habit	Clear colorless, block	Clear yellow, block	Clear colorless, block
crystal system	Triclinic	Monoclinic	Triclinic
space group	P-1	$\mathrm{P} 21 / \mathrm{c}$	P-1
a in \AA	13.1277(3)	11.97360(10)	10.9267(2)
b in \AA	13.5583(3)	12.42100(10)	15.7924(2)
c in \AA A	$22.2736(4)$	24.8508(2)	16.2263(3)
α in ${ }^{\circ}$	98.981(2)	90	85.4103(13)
β in ${ }^{\circ}$	97.504(2)	94.1930(10)	79.3391(16)
γ in ${ }^{\circ}$	104.540(2)	90	70.9080(15)
V in \AA^{3}	3730.20(14)	3686.02(5)	2599.73(8)
Z	4	4	2
T in K	100.00(10)	100.00(10)	100.01(10)
crystal size in mm^{3}	$0.593 \times 0.316 \times 0.186$	$0.347 \times 0.233 \times 0.169$	$0.22 \times 0.18 \times 0.104$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.612	1.635	1.590
F(000)	1848.0	1848.0	1248.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\text {max }} \text { in } \end{aligned}$	$\begin{aligned} & 6.87 \\ & 153.692 \end{aligned}$	$\begin{aligned} & 7.134 \\ & 153.822 \end{aligned}$	$\begin{aligned} & 4.37 \\ & 52.744 \end{aligned}$
index range	$\begin{aligned} & -16 \leq \mathrm{h} \leq 14 \\ & -15 \leq \mathrm{k} \leq 16 \\ & -25 \leq 1 \leq 27 \end{aligned}$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 14 \\ & -12 \leq \mathrm{k} \leq 15 \\ & -31 \leq 1 \leq 31 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13 \\ & -19 \leq \mathrm{k} \leq 19 \\ & -20 \leq 1 \leq 20 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	4.372	4.388	5.852
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	41107	39477	27513
reflections unique	15525	7710	10635
$\mathrm{R}_{\text {int }}$	0.0415	0.0369	0.0412
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	14705	6974	9435
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.65, -0.91	0.40, -0.38	4.44, -2.82
parameters	1171	690	505
GOOF	1.149	1.047	1.045
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0741	0.0362	0.0381
wR2 (all data)	0.1533	0.0968	0.1026
CCDC	1990338	1990343	-

Table 29. Crystallographic data and details of the structure refinements of $\mathbf{8 6} * 2$ THF, $\mathbf{8 7} * n-\mathrm{C}_{6} \mathrm{H}_{14}$ and $48 \mathrm{PtCl}_{2} * \mathrm{PhMe}$.

	86*2 THF	$87 * n-\mathrm{C}_{6} \mathrm{H}_{14}$	$48 \mathrm{PtCl}_{2} * \mathrm{PhMe}^{\text {a }}$
formula	$\mathrm{C}_{68} \mathrm{H}_{126} \mathrm{Au}_{4} \mathrm{ClO}_{2} \mathrm{P}_{7}$	$\mathrm{C}_{78} \mathrm{H}_{146} \mathrm{Au}_{6} \mathrm{ClP}_{7}$	$\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{NP}_{3} \mathrm{Pt}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	2015.79	2517.98	861.71
color, habit	Clear colorless, block	Clear colorless, block	Clear yellow, block
crystal system	Triclinic	Monoclinic	Monoclinic
space group	P-1	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{c}$
a in \AA	14.42900(10)	12.04330(10)	12.62090 (10)
b in \AA	14.71530(10)	29.7708(2)	14.61390(10)
c in \AA	18.4887(2)	24.0692(2)	19.86860(10)
α in ${ }^{\circ}$	84.5490(10)	90	90
β in ${ }^{\circ}$	74.6830(10)	91.9930(10)	90.2400(10)
γ in ${ }^{\circ}$	79.1890(10)	90	90
V in \AA^{3}	3714.73(6)	8624.52(12)	3664.54(4)
Z	2	4	4
T in K	100.01(10)	100.01(10)	99.97(15)
crystal size in mm^{3}	$0.152 \times 0.146 \times 0.067$	$0.271 \times 0.044 \times 0.033$	$0.155 \times 0.105 \times 0.076$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.802	1.939	1.562
$\mathrm{F}(000)$	1976.0	4840.0	1744.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA A	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 4.962 \\ & 153.546 \end{aligned}$	$\begin{aligned} & 4.722 \\ & 144.252 \end{aligned}$	$\begin{aligned} & 7.004 \\ & 154.312 \end{aligned}$
index range	$\begin{aligned} & -18 \leq \mathrm{h} \leq 18 \\ & -18 \leq \mathrm{k} \leq 18 \\ & -23 \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} & -14 \leq \mathrm{h} \leq 14 \\ & -36 \leq \mathrm{k} \leq 26 \\ & -29 \leq 1 \leq 29 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 15 \\ & -18 \leq \mathrm{k} \leq 17 \\ & -25 \leq 1 \leq 24 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	16.572	20.495	9.929
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	18603	46616	38756
reflections unique	18603	16970	7675
$\mathrm{R}_{\text {int }}$	0.0310	0.0311	0.0331
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	18557	16514	7416
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.56, -1.55	1.33, -2.10	0.96, -1.25
parameters	757	831	389
GOOF	1.113	1.074	1.058
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0310	0.0308	0.0232
wR_{2} (all data)	0.1157	0.0811	0.0603
CCDC	-	-	

Table 30. Crystallographic data and details of the structure refinements of $\mathbf{8 8} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{4 8} \mathrm{PdCl}_{2} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $89 * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} * 1 / 2 n-\mathrm{C}_{5} \mathrm{H}_{12}$.

	88* $3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$48 \mathrm{PdCl}_{2} * 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	89*3 $\mathrm{CH}_{2} \mathrm{Cl}_{2} * 1 / 2 n-\mathrm{C}_{5} \mathrm{H}_{12}$
formula	$\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pt}$	$\mathrm{C}_{61.5} \mathrm{H}_{103} \mathrm{Cl}_{11} \mathrm{~N}_{2} \mathrm{P}_{6} \mathrm{Pd}_{2}$	$\mathrm{C}_{38.5} \mathrm{H}_{61} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pd}$
Mr_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	1048.49	1659.02	994.87
color, habit	Clear yellow, block	Clear colorless, needle	Yellow, plate
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$
a in \AA	15.59596(17)	20.06282(11)	16.0145(2)
b in \AA	18.00133(16)	18.55034(9)	17.7540(2)
c in \AA	17.41022(16)	20.98058(10)	17.1678(2)
α in ${ }^{\circ}$	90	90	90
β in ${ }^{\circ}$	103.7603(10)	102.6738(5)	103.8760(10)
γ in ${ }^{\circ}$	90	90	90
V in \AA^{3}	4747.60(8)	7618.14(7)	4738.72(10)
Z	4	4	4
T in K	100.01(10)	104(6)	100.01(10)
crystal size in mm^{3}	$0.192 \times 0.122 \times 0.097$	$0.383 \times 0.084 \times 0.061$	$0.17 \times 0.108 \times 0.054$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.467	1.446	1.394
F(000)	2104.0	3420.0	2056.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in }{ }^{\circ} \end{aligned}$	$\begin{aligned} & 6.846 \\ & 153.386 \end{aligned}$	$\begin{aligned} & 5.52 \\ & 153.506 \end{aligned}$	$\begin{aligned} & 6.782 \\ & 136.502 \end{aligned}$
index range	$\begin{aligned} & -19 \leq \mathrm{h} \leq 18 \\ & -21 \leq \mathrm{k} \leq 22 \\ & -18 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -24 \leq \mathrm{h} \leq 25 \\ & -23 \leq \mathrm{k} \leq 22 \\ & -26 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -19 \leq \mathrm{h} \leq 19 \\ & -21 \leq \mathrm{k} \leq 18 \\ & -19 \leq 1 \leq 20 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	10.109	8.835	7.766
abs. correction	Multi-Scan	Gaussian	Gaussian
reflections collected	28189	64218	49238
reflections unique	9887	15925	8680
$\mathrm{R}_{\text {int }}$	0.0255	0.0321	0.0436
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	9685	15332	8017
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	0.68, -0.87	1.44, -2.00	1.80, -1.54
parameters	486	841	505
GOOF	1.064	1.087	1.064
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0255	0.0475	0.0551
wR_{2} (all data)	0.0638	0.1245	0.1605
CCDC	-	-	

Table 31. Crystallographic data and details of the structure refinements of $\mathbf{9 0} * 3 / 2 o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} * 1 / 2 n-\mathrm{C}_{6} \mathrm{H}_{14}$, 91*MeCN and $\mathbf{9 3}[\mathrm{OTf}] 2^{*} 2 \mathrm{MeCN}$.

	$\begin{array}{lll} \mathbf{9 0} * 3 / 2 & o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2} * 1 / 2 \quad n- \\ \mathrm{C}_{6} \mathrm{H}_{14} & & \end{array}$	91*MeCN	$\mathbf{9 3 [O T f}]_{2} * 2 \mathrm{MeCN}$
formula	$\mathrm{C}_{112} \mathrm{H}_{144} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{P}_{12} \mathrm{Pd}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{P}_{4} \mathrm{Pd}_{2}$	$\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{3} \mathrm{~S}_{2}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	2655.38	789.94	924.89
color, habit	Clear yellow, block	Clear brown, plate	Clear colorless, needle
crystal system	Triclinic	Monoclinic	triclinic
space group	P-1	$\mathrm{P} 21 / \mathrm{n}$	P-1
a in \AA	15.67394(15)	12.73769(19)	9.65639(17)
b in \AA	18.2686(2)	13.66343(19)	12.3961(2)
c in \AA	21.3739(2)	16.9399(2)	19.6766(3)
α in ${ }^{\circ}$	84.0590(9)	90	75.3991(14)
β in ${ }^{\circ}$	78.9522(8)	100.6013(14)	78.8391(14)
γ in ${ }^{\circ}$	87.4801(9)	90	79.7637(14)
V in \AA^{3}	5972.72(11)	2897.91(7)	2215.44(7)
Z	2	4	2
T in K	100.01(10)	100.01(10)	100.00(10)
crystal size in mm^{3}	$0.116 \times 0.11 \times 0.045$	$0.102 \times 0.051 \times 0.012$	$0.34 \times 0.085 \times 0.052$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.477	1.811	1.386
$\mathrm{F}(000)$	2716.0	1560.0	972.0
diffractometer	Super Nova	Super Nova	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\min } \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \circ \end{aligned}$	$\begin{aligned} & 4.864 \\ & 153.376 \end{aligned}$	$\begin{aligned} & 8.016 \\ & 152.956 \end{aligned}$	$\begin{aligned} & 4.698 \\ & 153.644 \end{aligned}$
index range	$\begin{aligned} & -19 \leq \mathrm{h} \leq 19 \\ & -22 \leq \mathrm{k} \leq 22 \\ & -24 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 15 \\ & -17 \leq \mathrm{k} \leq 13 \\ & -21 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 11 \\ & -15 \leq \mathrm{k} \leq 15 \\ & -23 \leq 1 \leq 24 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}{ }^{-1}$	7.596	15.627	2.749
abs. correction	Gaussian	Gaussian	Gaussian
reflections collected	66823	16225	22904
reflections unique	24759	6014	9214
$\mathrm{R}_{\text {int }}$	0.0482	0.0443	0.0277
reflections obs. $[\mathrm{F}>2 \sigma(\mathrm{~F})]$	22808	5116	8463
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.66, -1.59	1.97, -0.78	0.44, -0.43
parameters	1526	305	526
GOOF	1.024	1.0073	1.038
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0552	0.0440	0.0332
wR_{2} (all data)	0.1594	0.145	0.0859
CCDC	-	-	

Table 32. Crystallographic data and details of the structure refinements of $\mathbf{9 6} * \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$.

	$\mathbf{9 6} * \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$
formula	$\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{~S}$
M_{r} in $\mathrm{g} \mathrm{mol}^{-1}$	788.81
color, habit	Clear colorless, block
crystal system	Monoclinic
space group	Cc
a in \AA	13.51580(8)
b in \AA	16.17008(8)
c in \AA A	18.73266(11)
α in ${ }^{\circ}$	90
β in ${ }^{\circ}$	101.5007(6)
γ in $^{\circ}$	90
V in \AA^{3}	4011.85(4)
Z	4
T in K	100.01(10)
crystal size in mm^{3}	$0.247 \times 0.178 \times 0.103$
ρ_{c} in $\mathrm{g} \mathrm{cm}^{-3}$	1.306
$\mathrm{F}(000)$	1672.0
diffractometer	Super Nova
$\lambda_{\mathrm{XK} \alpha}$ in \AA	$\begin{aligned} & \mathrm{X}=\mathrm{Cu} \\ & 1.54184 \end{aligned}$
$\begin{aligned} & \theta_{\text {min }} \text { in }{ }^{\circ} \\ & \theta_{\max } \text { in } \end{aligned}$	$\begin{aligned} & 8.63 \\ & 153.53 \end{aligned}$
index range	$\begin{aligned} & -16 \leq \mathrm{h} \leq 17 \\ & -18 \leq \mathrm{k} \leq 20 \\ & -21 \leq 1 \leq 23 \end{aligned}$
$\mu \mathrm{in} \mathrm{mm}^{-1}$	2.324
abs. correction	Gaussian
reflections collected	19781
reflections unique	7065
$\mathrm{R}_{\text {int }}$	0.0246
reflections obs. [$\mathrm{F}>2 \sigma(\mathrm{~F})$]	7017
$\begin{aligned} & \text { residual density } \\ & \text { in e } \AA^{-3} \end{aligned}$	1.20, -0.53
parameters	497
GOOF	1.049
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0337
wR_{2} (all data)	0.0933
CCDC	-

17. Abbreviations

\AA

ATR
BTz
d
dec.
DFT
eq.
h
HSAB
Hz
m
MEP
m.p.

NHC
NICS
NMR
OTf
PAH
ppm
Py
pyr
q.
quant.
quint.
r.t.

S
sept.
t
THF
tht
X_{ax}.
$\mathrm{X}_{\text {eq. }}$

Ångström $\left(=10^{-10} \mathrm{~m}\right)$
attenuated total reflexion
2-benzo[d]thiazolyl
day(s) or doublet (in NMR spectra)
decomposes
density functional theory
equivalent(s)
hour
hard and soft (Lewis) acids and bases (Pearsons' concept)
Hertz $\left(=\mathrm{s}^{-1}\right)$
multiplet (in NMR spectra)
molecular electrostatic potential
melting point
N-heterocyclic carbene
nucleus-independend chemical shift
nuclear magnetic resonance
triflate ($=$ trifluoromethanesulfonate)
polycyclic aromatic hydrocarbons
parts per million
2-pyridyl
3,5-dimethylpyrazolyl
quartet (in NMR spectra)
quantitative(ly)
quintet (in NMR spectra)
room temperature
singlet (in NMR spectra)
septet (in NMR spectra)
triplet (in NMR spectra)
tetrahydrofuran
tetrahydrothiophene
axial (indicating position of X)
equatorial (indicating postiton of X)

18. References

[1] See the reviews on "Main Group Chemistry": a) G. Bertrand, Chem. Rev. 2010, 110, 3851; b) New J. Chem. 2010, 34, 1510.
[2] K. B. Dillon, F. Mathey, J. F. Nixon in Phosphorus: The Carbon Copy: From Organophosphorus to Phospha-organic Chemistry, Wiley, Chichester, 1998.
[3] Y. R. Luo in Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.
[4] a) M. Baudler, K. Glinka, Chem. Rev. 1993, 93, 1623; b) S. Gómez-Ruiz, E. HeyHawkins, Coord. Chem. Rev. 2011, 255, 1360; c) M. Donath, F. Hennersdorf, J. J. Weigand, Chem. Soc. Rev. 2016, 45, 1145.
[5] S. Greenberg, D. W. Stephan, Chem. Soc. Rev. 2008, 37, 1482.
[6] S. Molitor, C. Mahler, V. H. Gessner, New J. Chem. 2016, 40, 6467.
[7] S. J. Geier, D. W. Stephan, Chem. Comm. 2008, 2779.
[8] L. Wu, S. S. Chitnis, H. Jiao, V. T. Annibale, I. Manners, J. Am. Chem. Soc. 2017, 139, 16780.
[9] V. T. Annibale, T. G. Ostapowicz, S. Westhues, T. C. Wambach, M. D. Fryzuk, Dalton Trans. 2016, 45, 16011.
[10] S. S. Chitnis, H. A. Sparkes, V. T. Annibale, N. E. Pridmore, A. M. Oliver, I. Manners, Angew. Chem. Int. Ed. 2017, 56, 9536.
[11] K.-O. Feldmann, J. J. Weigand, J. Am. Chem. Soc. 2012, 134, 15443.
[12] a) K. Hirano, M. Miura, Tetrahedron Lett. 2017, 58, 4317; b) I. Hajdók, F. Lissner, M. Nieger, S. Strobel, D. Gudat, Organometallics 2009, 28, 1644.
[13] Y. Sato, S.-i. Kawaguchi, A. Nomoto, A. Ogawa, Angew. Chem. Int. Ed. 2016, 55, 9700.
[14] a) M. Baudler, Angew. Chem. Int. Ed. 1982, 21, 492; M. Baudler, Angew. Chem. Int. Ed. 1987, 26, 419; M. Baudler, W. Driehsen, S. Klautke, Z. anorg. Allg. Chem. 1979, 459, 48; M. Baudler, M. Michels, J. Hahn, M. Pieroth, Angew. Chem. Int. Ed. 1985, 24, 504; b) H. Cowley, Chem. Rev. 1965, 65, 617; c) K. Issleib, W. Seidel, Chem. Ber. 1959, 92, 2681; d) G. Fritz, Comments Inorg. Chem. 1982, 6, 329; e) G. Fritz, Advances Inorg. Chem. 1987, 171; f) I. Kovacs, H. Krautscheid, E. Matern, G. Fritz, Z. anorg. allg. Chem. 1994, 620, 1369.
[15] a) J. J. Weigand, A. Decken, N. Burfrod, Acta Cryst. 2008, C64, 64; b) J. Bresien, K. Faust, C. Hering-Junghans, J. Rothe, A. Schulz, A. Villinger, Dalton Trans. 2016, 45, 1998; c) S. Borucki, Z. Kelemen, M. Maurer, C. Bruhn, L. Nyulászi, R. Pietschnig,

Chem. Eur. J. 2017, 23, 10438; d) A. D. Gorman, J. A. Cross, R. A. Doyle, T. R. Leonard, P. G. Pringle, H. A. Sparks, Eur. J. Inorg. Chem. 2019, 1633.
[16] a) M. Baudler, B. Makowka, Angew. Chem. Int. Ed. 1984, 12, 987; b) M. Baudler, B. Makowka, Z. anorg. allg. Chem. 1985, 528, 7; c) M. Baudler, L. de Riese-Meyer, Z. Naturforsch. 1986, 41b, 399; d) S. Burck, K. Götz, M. Kaupp, M. Nieger, J. Weber, J. S. auf der Günne, D. Gudat, J. Am. Chem. Soc. 2009, 131, 10763.
[17] a) I. Haiduc in The Chemistry of Inorganic Ring Systems, Wiley-Interscience, London, 1970; b) G. M. Kosolapoff, L, Maier in Organic Phosphorus Compounds, WileyInterscience, New York, 1972; c) M. Baudler, J. Hellmann, P. Bachmann, K.-F. Tebbe, R. Fröhlich, M. Fehér, Angew. Chem. Int. Ed. 1981, 20, 406; d) E. Niecke, R. Rüger, B. Krebs, Angew. Chem. Int. Ed. 1982, 21, 544.
[18] a) R. J. Less, R. L. Melen, V. Naseri, D. S. Wright, Chem. Comm. 2009, 4929; b) R. J. Less, R. L. Melen, D. S. Wright, RSC Adv. 2012, 2, 2191; c) R. Dobrovetsky, K. Takeuchi, D. W. Stephan, Chem. Comm. 2015, 51, 2396; d) H. Schneider, D. Schmidt, U. Radius, Chem. Comm. 2015, 51, 10138; e) K. Schwedtmann, R. Schoemaker, F. Hennersdorf, A. Bauzá, A. Frontera, R. Weiss, J. J. Weigand, Dalton Trans. 2016, 45, 11384; f) S. Molitor, J. Becker, V. H. Gessner, J. Am. Chem. Soc. 2014, 136, 15517; g) L. Wu, V. T. Annibale, H. Jiao, A. Brookfield, D. Collison, I. Manners, Nat. Commun. 2019, 10, 2786.
[19] a) R. Waterman, Acc. Chem. Res. 2019, 52, 2361; b) R. Waterman, Curr. Org. Chem. 2008, 12, 1322; c) N. Etkin, M. C. Fermin, D. W. Stephan, J. Am. Chem. Soc. 1997, 119, 2954; d) V. P. W. Böhm, M. Brookhart, Angew. Chem. Int. Ed. 2001, 40, 4694.
[20] a) A. B. Burg, J. Am. Chem. Soc. 1961, 83, 2226; b) L. Maier, Helv. Chim. Acta 1966, 49, 1119; c) K. Jurkschat, C. Mugge, A. Tzschach, W. Uhlig, A. Zschunke, Tetrahedron Lett. 1982, 23, 1345; d) K. Rauzy, M. R. Mazières, P. Page, M. Sanchez, J. Bellan, Tetrahedron Lett. 1990, 31, 4463.
[21] a) K.-O. Feldmann, S. Schulz, F. Klotter, J. J. Weigand, ChemSusChem 2011, 4 1805; b) K.-O. Feldmann, R. Fröhlich, J. J. Weigand, Chem. Comm. 2012, 48, 4296; c) K.O. Feldmann, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 7545; d) K.-O. Feldmann, J. J. Weigand, J. Am. Chem. Soc. 2012, 134, 15443; e) R. Schoemaker, K. Schwedtmann, A. Franconetti, A. Frontera, F. Hennersdorf, J. J. Weigand, Chem. Sci. 2019, 10, 11054; f) C. Taube, K. Schwedtmann, M. Noikham, E. Somsook, F. Hennersdorf, R. Wolf, J. J. Weigand, Angew. Chem. Int. Ed. 2019, 58, 2.
[22] a) S. Fisher, L. K. Peterson, J. F. Nixon, Can. J. Chem. 1974, 52, 3981; b) S. Fisher, J. Hoyano, L. K. Peterson, Can. J. Chem. 1976, 54, 2710.
$[23]$ a) C. G. J. Tazelaar, E. Nicolas, T. van Dijk, D. L. J. Broere, M. Cardol, M. Lutz, D. Gudat, J. C. Slootweg, K. Lammertsman, Dalton Trans. 2016, 45, 2237; b) R. Panzer, C. Guhrenz, D. Haubold, R. Hübner, N. Gaponik, A. Eychmüller, J. J. Weigand, Angew. Chem. Int. Ed. 2017, 56, 14737.
[24] a) A. Michaelis, Justus Liebigs Ann. Chem. 1903, 326, 1293; b) R. Burgada, G. Martin, G. Mavel, Bull. Soc. Chim. Fr. 1963, 2154; c) G. Mavel in Progress in NMR Spectroscopy, Vol. 1 (Ed.: J. W. Emsley, J. Feeney, L. H. Sutcliffe), Pergamon, Oxford, 1966.
[25] G. Ewart, D. S. Payne, A. L. Porte, A. P. Lane, J. Chem. Soc. 1962, 3984.
[26] A. K. Bartholomew, L. M. Guard, N. Hazari, E. D. Luzik Jr., Aust. J. Chem. 2013, 66, 1455.
[27] For recent reviews on the coordination chemistry of azolyl-substituted phosphanes see: a) A. Thakur, D. Mandal, Coord. Chem. Rev. 2016, 329, 16; b) C. G. J. Tazelaar, J. C. Slootweg, K. Lammertsma, Coord. Chem. Rev. 2018, 356, 115.
[28] a) S. Trofimenko, Polyhedron 2004, 23, 197; b) S. Trofimenko, Chem. Rev. 1993, 93, 943.
[29] M. Scheer, St. Gremler, E. Herrmann, M. Dargatz, H.-D. Schädler, Z. anorg. Allg. Chem. 1993, 619, 1047.
[30] a) M. Baudler, K. Hammerström, Z. Naturforschg. 1965, 20b, 810; b) A. H. Cowley, R. P. Pinnel, Inorg. Chem. 1966, 1459; c) L. R. Smith, J. L. Mills, J. Am. Chem. Soc. 1976, 98, 3852; d) K. Schwedtmann, J. Haberstroh, S. Roediger, A. Bauzá, A. Frontera, F. Hennersdorf, J. J. Weigand, Chem. Sci. 2019, 10, 6868.
$[31] ~ a) ~ A . ~ H . ~ C o w l e y, ~ D . ~ S . ~ D i e r d o r f, ~ J . ~ A m . ~ C h e m . ~ S o c . ~ 1969, ~ 91, ~ 6609 ; ~ b) ~ R . ~ K . ~ H a r r i s, ~$ E. M. Norval, M. Fild, J. Chem. Soc., Dalton Trans. 1979, 826; c) A. B. Burg, Inorg. Chem. 1981, 20, 3731; d) L. R. Avens, R. A. Wolcott, L. V. Cribbs, J. L. Mills, Inorg. Chem. 1989, 28, 200; e) L. R. Avens, L. V. Cribbs, J. L. Mills, Inorg. Chem. 1989, 28, 205; f) L. R. Avens, L. V. Cribbs, J. L. Mills, Inorg. Chem. 1989, 28, 211.
[32] K.-O. Feldmann, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 7545.
[33] K.-O. Feldmann, J. J. Weigand, J. Am. Chem. Soc. 2012, 134, 15443.
[34] a) D. Schomburg, G. Bettermann, L. Ernst, R. Schmutzler, Angew. Chem. 1985, 11, 971; b) L. Ernst, P. G. Jones, P. Look-Herber, R. Schmutzler, Chem. Ber. 1990, 123, 35.
[35] a) N. Burford, C. A. Dyker, A. Decken, Angew. Chem. Int. Ed. 2005, 44 2364; b) N. Burford, C. A. Dyker, M. Lumsden, A. Decken, Angew. Chem. Int. Ed. 2005, 44, 6196; c) S. D. Riegel, N. Burford, M. D. Lumsden, A. Decken, Chem. Commun. 2007, 4668;
d) D. A. Dyker, N. Burford, G. Menard, M. D. Lumsden, A. Decken, Inorg. Chem. 2007, 46, 4277; e) J. J. Weigand, S. D. Riegel, N. Burford, A. Decken, J. Am. Chem. Soc. 2007, 129, 7969; f) C. A. Dyker, S. D. Riegel, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2007, 129, 7464.
[36] S. S. Chitnis, M. Whalen, N. Burford, J. Am. Chem. Soc. 2014, 136, 12489.
[37] A. P. M. Robertson, C. A. Dyker, P. A. Gray, B. O. Patrick, A. Decken, N. Burford, J. Am. Chem. Soc. 2014, 136, 1491.
[38] S. S. Chitnis, R. A. Musgrave, H. A. Sparkes, N. E. Pridmore, V. T. Annibale, I. Manners, Inorg. Chem. 2017, 56, 4521.
[39] S. S. Chitnis, H. A. Sparkes, V. T. Annibale, N. E. Pridmore, A. M. Oliver, I. Manners, Angew. Chem. 2017, 129, 9664.
[40] M. H. Holthausen, D. Knackstedt, N. Burford, J. J. Weigand, Aust. J. Chem. 2013, 66, 1155.
[41] R. Schoemaker, TU Dresden, Master's Thesis, 2015.
[42] For an alternative, previously reported synthesis of PyPCl_{2} see: X. Chen, H. Zhu, T. Wang, C. Li, L. Yan, M. Jiang, J. Liu, X. Sun, Z. Jiang and Y. Ding, J. Mol. Catal. A: Chem. 2016, 414, 37.
[43] For an alternative, previously reported synthesis of $\mathrm{BTzPCl}_{2} 35$ see: I. V. Komarov, A. V. Strizhak, M. Y. Kornilov, E. Zraudnitskiy, A. A. Tolmachev, Synth. Commun. 2000, 30, 243.
[44] F. R. Keene, Acta. Cryst. 1988, C44, 757.
[45] T. Stey, M. Pfeiffer, J. Henn, S. K. Pandey, D. Stalke, Chem. Eur. J. 2007, 13, 3636.
[46] R. E. Cobbledick, F. W. B. Bernstein, Acta. Crystallogr. 1975, B31, 2731.
[47] Handbook of Chemistry and Physics, $56^{\text {th }}$ edition, ed. R. C. Weast, CRC Press, Cleveland, Ohio, 1975, F-214.
[48] a) T. A. van der Knaap, T. C. Kleebach, F. Visser, F. Bickelhaupt, P. Ros, E. J. Baerends, C. H. Stam, M. Konijn, Tetrahedron 1984, 40, 765; b) L. A. van der Veen, P. C. J. Kamer, P. W. N. M. van Leeuwen, Organometallics 1999, 18, 4765; c) J. J. M. de Pater, C. E. P. Maljaars, E. de Wolf, M. Lutz, A. L. Spek, B.-J. Deelman, C. J. Elsevier, G. van Koten, Organometallics 2005, 24, 5299; d) S. Warsink, E. J. Derrah,
C. A. Boon, Y. Cabon, J. J. M. de Pater, M. Lutz, R. J. M. Klein Gebbink, B.-J. Deelman, Chem. Eur. J. 2015, 21, 1765.
[49] J. J. Daly, J. Chem. Soc. A 1966, 0, 1020.
[50] a) S. Gomez-Ruiz, E. Hey-Hawkins, Coord. Chem. Rev. 2011, 255, 1360; b) Phosphorus Chemistry: Catalysis and Material Science Applications, ed. M. Peruzzini, L. Gonsalvi, Springer, Volume 37, 2011.
[51] a) J. W. Dube, C. L. B. Macdonald, P. Ragogna, Angew. Chem. Int. Ed. 2012, 51, 13026; b) J. W. Dube, C. L. B. Macdonald, B. D. Ellis, Paul Ragogna, Inorg. Chem. 2013, 52, 11438.
$[52]$ a) M. Scheer, C. Kuntz, M. Stubenhofer, M. Zabel, A. Y. Timoshkin, Angew. Chem., Int. Ed. 2010, 49, 188; b) M. Baacke, S. Morton, G. Johannsen, N. Weferling, O. Stelzer, Chem. Ber. 1980, 113, 1328; c) W. S. Sheldrick, S. Morton, O. Stelzer, Z. Anorg. Allg. Chem. 1981, 475, 232; d) M. Scheer, S. Gremler, E. Herrmann, P. G. Jones, J. Organomet. Chem. 1991, 414, 337.
[53] D. R. Armstrong, N. Feeder, A. D. Hopkins, M. J. Mays, D. Moncrieff, J. A. Wood, A. D. Woods, D. S. Wright, Chem. Comm. 2000, 2483.
[54] C. E. Averre, M. P. Coles, I. R. Crossley, I. J. Day, Dalton Trans. 2012, 41, 278.
[55] For a review on argentophilic interactions see: H. Schmidbaur, A. Schier, Angew. Chem., Int. Ed. 2015, 54, 746; for aurophilic interactions see: H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370.
[56] A. Bondi, J. Phys. Chem. 1964, 68, 441.
[57] a) C.-M. Che, Z. Mao, V. M. Miskowski, M.-C. Tse, C.-K. Chan, K.-K. Cheung, D. L. Phillips, K.-H. Leung, Angew. Chem., Int. Ed. 2000, 39, 4084; C.-M. Che, M.-C. Tse, M. C. W. Chan, K.-K. Cheung, D. L. Phillips, K.-H. Leung, J. Am. Chem. Soc. 2000, 122, 2464; C.-M. Che, W.-F. Wu, K.-C. Chan, K.-K. Cheung, Chem. Eur. J. 2001, 7, 4656.
[58] a) M. Henary, J. L. Wootton, S. I. Khan, J. I. Zink, Inorg. Chem. 1997, 36, 796; P. Aslanidis, P. J. Cox, S. Divanidis, A. C. Tsipis, Inorg. Chem. 2002, 41, 6875.
[59] a) H. Friebolin in Ein- und Zweidimensionale NMR-Spektroskopie, Wiley VCH, Weinheim, 2006; b) H. Fujii, M. Tomura, T. Kurahashi, M. Kujime, Inorg. Chem. 2007, 46, 541.
[60] a) J. P. Albrand, D. Gagnaire, J. B. Robert, J. Am. Chem. Soc. 1973, 95, 6498; b) J. P. Albrand, J. B. Robert, J. Chem. Soc. Chem. Comm. 1974, 644; c) L. R. Smith, J. L. Mills, J. Chem. Soc. Chem. Comm. 1974, 20, 808.
[61] K.-O. Feldmann, WWU Münster, PhD Thesis, 2012.
[62] P. A. Gray, Y.-Y. Carpenter, N. Burford, R. McDonald, Dalton Trans. 2016, 45, 2124.
[63] N. Burford, T. S. Cameron, P. J. Ragogna, J. Am. Chem. Soc. 2001, 123, 7947.
[64] a) C. A. Dyker, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2006, 128, 9632; b) Y.-Y. Carpenter, C. A. Dyker, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2008, 130, 15732.
[65] a) A. J. Arduengo III, H. V. R. Dias, J. C. Calabrese, Chem. Lett. 1997, 143; b) A. J. Arduengo III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall, B. Riegel, Inorg. Chem. 1997, 36, 2151; c) J. H. Barnard, P. A. Brown, K. L. Shuford, C. D. Martin, Angew. Chem. Int. Ed. 2015, 54, 12083.
[66] A. Schmidpeter, S. Lochschmidt, W. S. Sheldrick, Angew. Chem. 1985, 97, 214.
[67] a) B. D. Ellis, M. Carlesimo, C. L. B. Macdonald, Chem.Commun. 2003, 1946; b) B. D. Ellis, C. L. B. Macdonald, Inorg. Chem. 2006, 45, 6864; c) E. L. Norton, K. L. S. Szekely, J. W. Dube, P. G. Bomben, C. L. B. Macdonald, Inorg.Chem. 2008, 47, 1196.
[68] M. Regitz, O. J. Scheerer in Multiple Bonds and Low Coordination in Phosphorus Chemistry, Georg Thieme Verlag Thieme Medical Publishers, New York, 1990.
[69] H. R. Allcock in Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972.
[70] E. Payet, A. Auffrant, X. F. Le Goff, P. Le Floch, J. Organomet. Chem. 2010, 695, 1499.
[71] a) E. Rüba, K. Mereiter, R. Schmid, V. N. Sapunov, K. Kirchner, H. Schottenberger, M. J. Calhorda, L. F. Veiros, Chem. Eur. J. 2002, 8, 3948; b) C. Coletti, L. Gonsalvi, A. Guerriero,L. Marvelli, M. Peruzzini, G. Reginato, N. Rem, Organometallics 2010, 29, 5982.
[72] a) M. D. Watson, A. Fechtenkotter, K. Müllen, Chem. Rev. 2001, 101, 1267; b) J. S. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718; c) L. Schmidt-Mende, A. Fechtenkotter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, Science 2001, 293, 1119; d) W. Pisula, X. Feng, K. Müllen, Chem. Mater. 2011, 21, 3295; e) Z. Zeng, X. Shi, C. Chi, J. T. Lopez-Navarette, J. Casado, J. Wu, Chem. Soc. Rev. 2015, 44, 6578; f) T. J. J. Müller, U. H. F. Bunz in Functional Organic Materials: Syntheses, Strategies and Applications, Wiley-VCH, Weinheim, 2007.
[73] a) W. Pisula, X. Feng, K. Müllen, Chem. Mater. 2011, 22, 3634; b) X. Yan, L.-S. Li, J. Mater. Chem. 2011, 21, 3295.
[74] M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479.
[75] a) T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura, J. Am. Chem. Soc. 2011, 133, 18614; b) Z. Zhou, A. Wakamiya, T. Kushida, S. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 4529.
[76] a) S. M. Draper, D. J. Gregg, R. Mathadil, J. Am. Chem. Soc. 2002, 124, 3486; b) S. M. Draper, D. J. Gregg, E. R. Schofield, W. R. Browne, M. Duati, J. G. Vos, P. Passaniti, J. Am. Chem. Soc. 2004, 126, 8694; c) D. Q. Wu, W. Pisula, V. Enkelmann, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131, 9620; d) N. K. S. Davis, A. L. Thompson, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 30; e) Y. Fogel, M. Kastler, Z. Wang, D. Andrienko, G. J. Bodwell, K. Müllen, J. Am. Chem. Soc. 2007, 129, 11743; f) D. Wu, W. Pisula, V. Enkelmann, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131,9620 ; g) D. Q. Wu, X. Feng, M. Takase, M. C. Haberecht, K. Müllen, Tetrahedron 2008, 64, 11379; h) D. J. Gregg, C. M. Fitchett, S. M. Draper, Chem. Соттип. 2006, 3090.
[77] D. Wu, W. Pisula, M. C. Haberecht, X. Feng, K. Müllen, Org. Lett. 2009, 11, 5686.
[78] a) C. J. Martin, B. Gil, S. D. Perera, S. M. Draper, Chem. Commun. 2011, 47, 3616; b) X. Feng, J. Wu, M. Ai, W. Pisula, L. Zhi, J. P. Rabe, K. Müllen, Angew. Chem., Int. Ed. 2007, 46, 3033; c) A. A. Gorodetsky, C.-Y. Chiu, T. Schiros, M. Palma, M. Cox, Z. Jia, W. Sattler, I. Kymissis, M. Steigerwald, C. Nuckolls, Angew. Chem., Int. Ed. 2010, 49, 7909; d) R. Benshafrut, M. Rabinovitz, R. E. Hoffman, N. Ben-Mergui, K Müllen, V. S. Iyer, Eur. J. Org. Chem. 1999, 37.
[79] a) C. Fave, T. Y. Cho, M. Hissler, C. W. Chen, T. Y. Luh, C. C. Wu, R. Réau, J. Am. Chem. Soc. 2003, 125, 9254; b) H. C. Su, O. Fadhel, C. J. Yang, T. Y. Cho, C. Fave, M. Hissler, C. C. Wu, R. Réau, J. Am. Chem. Soc. 2006, 128, 983; c) J. Crassous, R. Réau, Dalton Trans. 2008, 48, 6865; d) Y. Matano, H. Imahori, Org. Biomol. Chem. 2009, 7, 1258; e) A. Bruch, A. Fukazawa, E. Yamaguchi, S. Yamaguchi, A. Studer, Angew. Chem., Int. Ed. 2011, 50, 12094; f) Y. Ren, T. Baumgartner, J. Am. Chem. Soc. 2011, 133, 1328; g) Y. Ren, T. Baumgartner, Dalton Trans. 2012, 41, 7792; h) P.-A. Bouit, A. Escande, R. Szücs, D. Szieberth, C. Lescop, L. Nyulászi, M. Hissler, R. Réau, J. Am. Chem. Soc. 2012, 134, 6524; i) H. Chen, W. Delaunay, J. Li, Z. Wang, P. A. Bouit, D. Tondelier, B. Geffroy, F. Mathey, Z. Duan, R. Réau, M. Hissler, Org. Lett. 2013, 15, 330; j) J. C.-H. Chan, W. H. Lam, H.-L. Wong, W.-T. Wong, V. W.-W. Yam, Angew. Chem., Int. Ed. 2013, 52, 11504; k) M. Stolar, T. Baumgartner, Chem. Asian J. 2014, 9, 1212; 1) M. Takahashi, K. Nakano, K. Nozaki, J. Org. Chem. 2015,

80, 3790; m) P. Hibner-Kulicka, J. A. Joule, J. Skalik, P. Bałczewski, RSC Adv. 2017, 7, 9194.
[80] a) M. Hissler, P. W. Dyer, R. Réau, Coord. Chem. Rev. 2003, 244, 1; b) T. Baumgartner, R. Réau, Chem. Rev. 2006, 106, 4681; c) B. Nohra, S. Graule, C. Lescop, R. Réau, J. Am. Chem. Soc. 2006, 128, 3520; d) S. Graule, M. Rudolph, N. Vanthuyne, J. Autschbach, C. Roussel, J. Crassous, R. Réau, J. Am. Chem. Soc. 2009, 131, 3183; e) Z. Benkö, L. Nyulászi, Top. Heterocycl. Chem. 2009, 19, 27; f) Y. Matano, A. Saito, T. Fukushima, Y. Tokudome, F. Suzuki, D. Sakamaki, H. Kaji, A. Ito, K. Tanaka, H. Imahori, Angew. Chem., Int. Ed. 2011, 50, 8016; g) A. Bruch, A. Fukazawa, E. Yamaguchi, S. Yamaguchi, A. Studer, Angew. Chem., Int. Ed. 2011, 50, 12094; h) Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai, T. Baumgartner, J. Am. Chem. Soc. 2011, 133, 17014; i) H. Chen, W. Delaunay, L. Yu, D. Joly, Z. Wang, J. Li, Z. Wang, C. Lescop, D. Tondelier, B. Geffroy, Z. Duan, M. Hissler, F. Mathey, R. Réau, Angew. Chem., Int. Ed. 2012, 51, 214; j) P.-A. Bouit, A. Escande, R. Szűcs, D. Szieberth, C. Lescop, L. Nyulászi, M. Hissler, R. Réau, J. Am. Chem, Soc. 2012, 134, 6524.
$[81] ~ a)$ O. Fadhel, M. Gras, N. Lemaitre, V. Deborde, M. Hissler, B. Geffroy, R. Réau, Adv. Mater. 2009, 21, 1261; b) D. Joly, D. Tondelier, V. Deborde, B. Geffroy, M. Hissler, R. Réau, New J. Chem. 2010, 34, 1603; c) D. Joly, D. Tondelier, V. Deborde, W. Delaunay, A. Thomas, K. Bhanuprakash, B. Geffroy, M. Hissler, R. Réau, Adv. Funct. Mater. 2012, 22, 567; d) K. Baba, M. Tobisu, N. Chatani, Angew. Chem., Int. Ed. 2013, 52, 11892; Angew. Chem. 2013, 125, 12108; e) A. Oukhrib, L. Bonnafoux, A. Panossian, A. Waifang, D. H. Nguyen, M. Urrutigoity, F. Colobert, M. Gouygou, F. R. Leroux, Tetrahedron 2014, 70, 1431; f) Y. Zhou, Z. Gan, B. Su, J. Li, Z. Duan, F. Mathey, Org. Lett. 2015, 17, 5722.
[82] a) K. M. Pietrusiewicz, M. Kuźnikowski, Phosphorus, Sulfur'Silicon Relat. Elem. 1993, 77, 57; b) D. Fabbri, S. Gladiali, O. De Lucchi, Synth. Commun. 1994, 24, 1271; c) S. M. Reid, R. C. Boyle, J. T. Mague, M. J. Fink, J. Am. Chem. Soc. 2003, 125, 7816; d) M. Widhalm, C. Aichinger, K. Mereiter, Tetrahedron Lett. 2009, 50, 2425; e) T. Agou, M. D. Hossain, T. Kawashima, K. Kamada, K. Ohta, Chem. Commun. 2009, 6762; f) A. Fukazawa, H. Yamada, Y. Sasaki, S. Akiyama, S. Yamaguchi, Chem. Asian J. 2010, 5, 466; g) A. Muller, C. W. Holzapfel, Acta Crystallogr., Sect. E: Struct. Rep. Online 2013, 69, o20; h) A. Fukazawa, H. Yamada, S. Yamaguchi, Angew. Chem., Int. Ed. 2008, 47, 5582; Angew. Chem. 2008, 120, 5664; i) A.

Fukazawa, E. Yamaguchi, E. Ito, H. Yamada, J. Wang, S. Irle, S. Yamaguchi, Organometallics 2011, 30, 3870; j) S. Arndt, M. M. Hansmann, F. Rominger, M. Rudolph, A. S. K. Hashmi, Chem. Eur. J. 2017, 23, 5429; k) Q. Ge, J. Zong, B. Li, B. Wang, Org. Lett. 2017, 19, 6670.
[83] a) T. Imamoto, M. Matsuo, T. Nonomura, K. Kishikawa, M. Yanagawa, Heteroatom Chem. 1993, 4, 475; b) V. Diemer, A. Berthelot, J. Bayardon, S. Jugé, F. R. Leroux, F. Colobert, J. Org. Chem. 2012, 77, 6117; c) K. V. Rajendran, D. G. Gilheany, Chem. Comтип. 2012, 48, 817; d) K. Fourmy, S. Mallet-Ladeira, O. Dechy-Cabaret, M. Gouygou, Organometallics 2013, 32, 1571; e) X. Wei, X. Lu, X. Zhao, Z. Duan, F. Mathey, Angew. Chem. Int. Ed. 2015, 54, 1583.
[84] L. Nyulászi, Tetrahedron 2000, 56, 79.
[85] a) K. Karaghiosoff, C. Cleve, A. Schmidpeter, Phosphorus and Sulfur 1986, 28, 289; b) K. Karaghiosoff, A. Schmidpeter, Phosphorus and Sulfur 1988, 36, 217; c) I. A. Litvinov, K. Karaghiosoff, A. Schmidpeter, E. Y. Zabotina, E. N. Dianova, Heteroat. Chem. 1991, 2, 369; d) R. K. Bansal, N. Gupta. K. Karaghiosoff, Z. Naturforsch. 1992, 47b, 373; e) R. K. Bansal, R. Mahnot, D. C. Sharma, K. Karaghiosoff, Synthesis 1992, 267; f) R. K. Bansal, K. Karaghiosoff, A. Schmidpeter, Tetrahedron 1994, 50, 7675; g) K. Karaghiosoff, R. Mahnot, C. Cleve, N. Gandhi, R. K. Bansal, A. Schmidpeter, Chem. Ber. 1995, 128, 581; h) N. Gupta in Top. Heterocycl. Chem., Vol 21. (Vol. Ed.: R. K. Bansal), Springer-Verlag, Berlin Heidelberg, 2010, 175.
[86] a) T. Baumgartner, Acc. Chem. Res. 2014, 47, 1613; b) T. Hatakeyama, S. Hashimoto, M. Nakamura, Org. Lett. 2011, 13, 2130; c) P.-A. Bouit, A. Escande, R. Szűcs, D. Szieberth, C. Lescop, L. Nyulászi, M. Hissler, R. Réau, J. Am. Chem, Soc. 2012, 134, 6524 ; d) M. Stolar, J. Borau-Garcia, M. Toonen, T. Baumgartner, J. Am. Chem. Soc. 2015, 137, 3366.
[87] a) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008, 47, 6114; b) A. Bauzá, J. T. Mooibkoek, A. Frontera, ChemPhysChem 2015, 16, 2496.
[88] a) G. Müller, J. Brand, S. B. Z. Jetter, Z. Naturforsch. B 2001, 56, 1163; b) K. Schwedtmann, M. H. Holthausen, K.-O. Feldmann, J. J. Weigand, Angew. Chem. Int. Ed. 2013, 52, 14204.
[89] P. Kilian, A. M. Slawin, A. L. Fuller, P. Wawrzyniak, Inorg. Chem. 2009, 48, 2500.
[90] K. B. Dillon, Chem. Rev. 1994, 94, 1441.
[91] T. Q. Nguyen, F. Qu, X. Huang, A. F. Janzen, Can. J. Chem. 1992, 70, 2089.
[92] K. B. Dillon, R. N. Reeve, T. C. Waddington, J.C.S. Dalton 1977, 23, 2382.
[93] C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
[94] S. Kobayashi, M. Sugiura, H. Kitagawa, W. W. L. Lam, Chem. Rev. 2002, 102, 2227.
[95] I. Tsuneo, Y. Koide, S. Hiyama, Chem. Lett. 1990, 19, 1445.
[96] R. Corbo, T. P. Bell, B. D. Stringer, C. F. Hogan, D. J. D. Wilson, P. J. Barnard, J. L. Dutton, J. Am. Chem. Soc. 2014, 136, 12415.
[97] M. Donath, M. Bodensteiner, J. J. Weigand, Chem. Eur. J. 2014, 20, 1730.
[98] C. D. Martin, C. M. Le, P. J. Ragogna, J. Am. Chem. Soc. 2009, 131, 15126.
[99] J. Beckmann, J. Bolsinger, A. Duthie, P. Finke, E. Lork, C. Lüdtke, O. Mallow, S. Mebs, Inorg. Chem. 2012, 51, 12395.
[100] P. A. Rupar, V. N. Staroverov, K. M. Baines, Science 2008, 322, 1360
[101] S. S. Chitnis, A. P. M. Robertson, N. Burford, J. J. Weigand, R. Fischer, Chem. Sci. 2015, $6,2559$.
[102] S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald, M. J. Ferguson, Chem. Sci. 2015, 6, 6545.
[103] Handbook of Chemistry and Physics, $65^{\text {th }}$ edition, ed. R. C. Weast, CRC Press, Boca Raton, Florida, 1975.
[104] a) W. Mahler, A. B. Burg, J. Am. Chem. Soc. 1957, 79, 251; b) P. R. Bloomfield, K. Parvin, Chem. Ind.-Lond. 1959, 90, 148; c) F. Pass, H. Schindlbauer, Monatsh. Chem. 1959, 90, 148; d) W. A. Henderson, M. Epstein, F. S. Seichter, J. Am. Chem. Soc. 1963, 85,2462 ; e) R. B. King, N. D. Sadani, J. Org. Chem. 1985, 50, 1719; f) M. Baudler, D. Grenz, U. Arndt, H. Budzikiewicz, M. Fehér, Chem. Ber. 1988, 121, 1707.
[105] a) H. Matschiner, H. Tannerberg, Z. Chem. 1980, 20, 218; b) H. P. Stritt, H. P. Latscha, Z. Anorg. Allg. Chem. 1986, 542, 167.
[106] G. He, O. Shynkaruk, M. W. Lui, E. Rivard, Chem. Rev. 2014, 114, 7815.
[107] M. Baudler, K. Glinka, A. H. Cowley, M. Pakulski, Inorganic Syntheses, Volume11 25, Inorganic Syntheses, Inc. 1989.
[108] a) I. S. Yoshifuji, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. 1981, 103, 4587; b) R. C. Smith, E. Urzenius, K.-C. Lam, A. L. Rheingold, J. D. Protasiewicz, Inorg. Chem. 2002, 41, 5296.
[109] a) G. Fritz, H. Fleischer, Z. Anorg. Allg. Chem. 1989, 570, 67; b) R. Appel, D. Gudat, E. Niecke, M. Nieger, C. Porz, H. Westermann, Z. Naturforsch. 1991, 46b, 865; c) A. Beil, R. J. Gilliard Jr., H. Grützmacher, Dalton Trans. 2016, 45, 2044.
[110] a) J. Bresien, C. Hering, A. Schulz, A.Villinger, Chem. Eur. J. 2014, 20, 12607; b) J. Bresien, L. Eickhoff, A: Schulz, T. Suhrbier, A. Villinger, Chem. Eur. J. 2019, 25, 1. [111] a) M. Baudler, G. Reuschenbach, Z. Anorg. Allg. Chem. 1980, 464, 9; b) G. Fritz, J. Härer, Z. Anorg. Allg. Chem. 1983, 504, 23.
[112] T. L. Breen, D. W. Stephan, Organometallics 1997, 16, 365.
[113] J. J. Weigand, N. Burford, R. J. Davidson, T. S. Cameron, P. Sellheim, J. Am. Chem. Soc. 2009, 131, 17943.
[114] a) H. G. Ang, J. S. Shannon, B. O. West, Chem. Commun. 1965, 10; b) A. Forster, C.
S. Cundy, M. Green, F. G. A. Stone, Inorg. Nucl. Chem. Letters 1966, 2, 233; c) C. S. Cundy, M. Green, F. G. A. Stone, A. Taunton-Rigby, J. Chem. Soc (A) 1968, 1776; d) N. H. Tran Huy, Y. Inubushi, L. Ricard, F. Mathey, Organometallics 2011, 30, 1734.
[115] G. Horvat, T. Portada, V. Stilinović, V. Tomišić, Acta. Cryst. E 2007, 63, m1734.
[116] R. G. Pearson, Inorg. Chim. Acta 1995, 240, 93 and references therein.
[117] Keith R. Dixon in Multinuclear NMR (Ed. Joan Mason), Plenum Press, New York, 1987, 369.
[118] a) S. I. Hommeltoft, O. Ekelund, J. Zavilla, Ind. Eng. Chem. Res. 1997, 36, 3491; b) T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem. 2011, 76, 9353.
[119] N. Weferling, Z. anorg. allg. Chem. 1987, 548, 55.
[120] A. B. Burg, Inorg. Chem. 1985, 24, 3342.
[121] R. Ramage, B. Atrash, D. Hopton, M. J. Parrott, J. Chem. Soc. Perkin Trans. I, 1985, 1217.
[122] R. Appel, R. Milker, Chem. Ber., 1975, 108, 1783.
[123] W. Wolfsberger, J. Organomet. Chem., 1986, 317, 167.
[124] Holleman-Wiberg, Lehrbuch der anorganischen Chemie, Vol. 102, Walter DeGruyter, 2007.
[125] S. Ahrland, K. Dreisch, B. Norén, A. Oskarsson, Materials Chemistry and Physics 1993, 35, 281-289.
[126] D. M. Stefanescu, H. F. Yuen, D. S. Glueck, J. A. Golen, L. N. Zakharov, C. D. Incarvito, A. L. Rheingold, Inorg. Chem., 2003, 42, 8891.
[127] I. G. Phillips, R. G. Ball, R. G. Cavell, Inorg. Chem., 1992, 31, 1633.
[128] S. Gómez-Ruiz, A. Schisler, P. Lönnecke, E. Hey-Hawkins, Chem. Eur. J., 2007, 13, 7974.
[129] D. E. Berry, K. A. Beveridge, G. W. Bushnell, K. R. Dixon, Can. J. Chem., 1985, 63, 2949.
[130] H.-K. Fun, S. Chantrapromma, Y.-C. Liu, Z.-F. Chen, H. Liang, Acta Cryst. 2006, E62, m1252.
[131]Q. Liu, L. Thorne, I. Kozin, D. Song, C. Seward, M. D‘Iorio, Y. Tao, S. Wang, J. Chem. Soc., Dalton Trans., 2002, 3234.
[132] M. A. Fox, J. K. Whitesell in Organische Chemie, Spektrum Akademischer Verlag, Heidelberg, 1995.
[133] H. Goldwhite in Introduction to Phosphorus Chemistry, Cambridge University Press, Cambridge, 1981.
[134] A. Dewanji, C. Mück-Lichtenfeld, K. Bergander, C. G. Daniliuc, A. Studer, Chem. Eur. J., 2015, 21, 12295.
[135] H. Chikashita, K. Itoh, Heterocycles, 1985, 23, 295.
[136] K. Issleib, H. Weichmann., Chem. Ber., 1968, 101, 2197.
[137] G. Becker, O. Mundt, M. Rössler, E. Schneider, Z. anorg. allg. Chem., 1978, 443, 42.
[138] B. A. Pindzola, J. Jin, D. L. Gin, J. Am. Chem. Soc., 2003, 125, 2940.
[139] CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England. [140] Bruker (2007). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
[141] Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
[142] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
[143] G. Sheldrick, Acta Cryst. 2008, 64, 112.
[144] G. Sheldrick, Acta Cryst. C 2015, 71, 3.
[145] R. Ahlrichs, M. Bär, M. Hacer, H. Horn, C. Kömel, Chem. Phys. Lett., 1989, 162, 165.
[146] A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 2, 799.
[147] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
[148] P. von Ragué Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317.
[149] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. WilliamsYoung, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.

Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[150] A. Klampt, WIREs Comput. Mol. Sci., 2011, 1, 699-709. www.wavefuntion.com
[151] a) N. T. T. Chau, M. Meyer, S. Komagawa, F. Chevallier, Y. Fort, M. Uchiyama, F. Mongin, P. C. Gros, Chem. Eur. J., 2010, 16, 12425; b) J. Verbeek, L. Brandsma, J. Org. Chem., 1984, 49, 3857.
[152] a) P. Gros, Y. Fort, P. Caubere, J. Chem. Soc., Perkin Trans. 1, 1997, 3597; b) E. Lukevics, E. Liepins, I. Segal, M. Fleisher, Journal of Organometallic Chemistry, 1991, 406, 283.
[153] L. Wang, H. Zhu, S. Guo, J. Cheng, J.-T. Yu, Chem. Commun., 2014, 50, 10864.

19. Acknowledgement

I owe my deepest gratitude to my supervisor Prof. Jan J. Weigand for his comprehensive support and advice. I am very thankful that he gave me the opportunity to work on this intriguing chemistry.

As a part of the brewery team I furthermore like to thank him and Prof. Dr. Thomas Henle as well as my brewing colleagues. Starting with a 201 batch just for fun, I'm still amazed to see our beer in supermarkets nowadays.

Many thanks go out to our collaboration partner Antonio Franconetti, Antonio Bauzá and Prof. Dr. Antonio Frontera who performed all theoretical investigations in this work. Moreover I would like to thank Prof. Jan J. Weigand, Dr. Felix Hennersdorf, Jannis Fidelius and Johannes Steup for X-ray analysis. I further like to thank all my colleagues past and present and especially Dr. Kai Schwedtmann for his general support. He and others became good friends and not only made lab work even more enjoyable but especially the after work part of life. To one of them I even became a lab wife, yet he left and washed ashore the coast of Miami, where he became a convertible driving hotshot.

Darüber hinaus möchte ich meinen Freunden aus Emlichheim und Umgebung danken, die ich seit Jahren an meiner Seite schätze.

Zu guter Letzt gilt mein Dank meiner Familie, besonders meinen Eltern Jürgen und Judith, meinem Bruder Nico und meiner Freundin Sina, die immer für mich da sind.

20. Publications and Conference Contributions

20.1. Peer Reviewed Publications

3) R. Schoemaker, P. Kossatz, K. Schwedtmann, F. Hennersdorf, J. J. Weigand "Coordination Chemistry and Methylation of Mixed-substituted Tetraphosphetanes (RP$\left.P^{t} B u\right)_{2}(R=P h, P y){ }^{\prime}$, Chem. Eur. J. 2020, accepted.
4) R. Schoemaker, K. Schwedtmann, F. Hennersdorf, A. Bauzá, A. Frontera, J. J. Weigand "Toward N,P-Doped π-Extended PAHs - A One-Pot Synthesis to Diannulated 1,4,2Diazaphospholium Triflate Salts", J. Org. Chem. 2020, DOI: 10.1021/acs.joc.0c00577.
5) R. Schoemaker, K. Schwedtmann, A. Franconetti, A. Frontera, F. Hennersdorf, J. J. Weigand "Controlled Scrambling Reactions to Polyphosphanes via Bond Metathesis Reactions", Chem. Sci. 2019, 10, 11054.

20.2. Oral presentations

2) "New synthetic approaches to novel acyclic- and cyclo-polyphosphanes"
R. Schoemaker, F. Hennersdorf, D. Harting, J. J. Weigand; 15th European Workshop on Phosphorus Chemistry, Uppsala, Sweden, 2018.
3) "Synthesis and Reactivity of a Diannelated, Cationic Diazaphosphole"
R. Schoemaker, F. Hennersdorf, C. H. Sala, J. J. Weigand; 14. Mitteldeutsches AnorganikerNachwuchssymposium (MANS-14), Halle (Saale), Germany, 2016.

20.3. Poster presentations

9) "Diazaphospholium salts for a bottom-up approach towards Phosphorus substituted Polycyclic Aromatic Hydrocarbons"
R. Schoemaker, F. Hennersdorf, C. H. Sala, J. J. Weigand; GDCh-Wissenschaftsforum Chemie 2017; Berlin, Germany.
10) "Diazaphospholium salts for a bottom-up approach towards Phosphorus substituted Polycyclic Aromatic Hydrocarbons"
R. Schoemaker, F. Hennersdorf, C. H. Sala, J. J. Weigand; Anglo-German Inorganic Chemistry 2017; Göttingen, Germany
11) "Phospholium triflates as building blocks for 2 D graphene-type materials"
R. Schoemaker, F. Hennersdorf, C. H. Sala, J. J. Weigand; 14th European Workshop on Phosphorus Chemistry, Cluj-Napoca, Romania, 2017.
12) "Synthesis and chlorination reactions of a diannelated, cationic diazaphosphole"
R. Schoemaker, C. H. Sala, J. J. Weogand; 18. Wöhler Tagung, Berlin, Germany, 2016.
13) "Synthesis and reactivity of a diannelated, cationic diazaphosphole"
R. Schoemaker, J. J. Weigand; 21st International Conference on Phosphorus Chemistry, Kazan, Russia, 2016.
14) "Application of 2-(dichlorophosphanyl)pyridine in heterocycle synthesis"
R. Schoemaker, J. J. Weigand; 13th European Workshop on Phosphorus Chemistry, Berlin, Germany, 2016, awarded with the Best Poster Award.
15) "Deoxygenation of Aromatic Aldehydes Using SynPhos Reagents"
R. Schoemaker, J. J. Weigand; GDCh Wissenschaftsforum Chemie, Dresden, Germany, 2015.
16) "Deoxygenation of Aromatic Aldehydes Using SynPhos Reagents" R. Schoemaker, J. J. Weigand; 12th European Workshop on Phosphorus Chemistry, Kassel, Germany, 2015.
17) "Synthesis of Cationic, Highly Lewis Acidic NHCs"
R. Schoemaker, K. Schwedtmann, J. J. Weigand; 17th Wöhlertagung, Saarbrücken, Germany, 2014.

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Erklärung

Die vorliegende Dissertation wurde in der Zeit von 10/2015 bis 06/2020 in der Professur für Anorganische Molekülchemie der Technischen Universität Dresden unter der wissenschaftlichen Betreuung von Herrn Prof. Dr. rer. nat. habil. Jan. J. Weigand angefertigt.

Frühere Promotionsverfahren haben nicht stattgefunden.

[^0]: ${ }^{\text {a }} \boldsymbol{S y n} \boldsymbol{P h o s}$ ist the acronym of the ERC funded project „Highly-Reactive (Regenerative) Phosphorus Buiding Blocks - New Concepts in Synthesis" (Grant No 307616) and stands for reagents which can be applied in efficient, selective and highyielding molecular transformation reactions.

