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Abstract

We utilize the multi Davydov-Ansatz, an Ansatz of the bosonic many-body wave function in terms

of moving Gaussian basis functions, to illuminate several aspects of open quantum system dynamics

and quantum many-body theory. By two arti�ces alongside the time-dependent variational principle

we extract from this Ansatz, commonly considered ill-behaved and not converging, a highly stable

and converging method. Its extremely favourable scaling of the numerical e�ort with the number of

degrees of freedom facilitates exploration of the zero and non-zero temperature physics of both system

and environment of open quantum systems in the strong coupling regime, even in cases where the

system is laser-driven.

The discovery that strongly coupling a system to an environment may, apart from the introduction of

dissipation and decoherence also serve as a resource for the system has fuelled the research on strongly

correlated open quantum systems. Although the advent of ultra powerful data processors enables ad-

vanced methods to tackle these systems, their explicit treatment without further assumptions remains

an eminently challenging task. With the multi Davydov-Ansatz we numerically exactly calculate the

dynamics of various open systems coupled strongly to an environment. In particular, we illuminate

diverse aspects of laser-driven molecular dynamics in dissipative environments.

Based on a rigorous investigation of the time-dependent variational principle for moving Gaussian

basis functions, we systematically develop a linear algebra formulation of the system of equations of

motion for the Ansatz parameters. On its basis we precisely isolate the origin of the issues related

to the multi Davydov-Ansatz and solve the long-standing convergence problem of the method by a

regularization termed apoptosis. We show exemplary for the ohmic and sub-ohmic Spin-Boson model

that apoptosis renders the multi Davydov-Ansatz a highly stable method with an outstanding speed

of convergence, suited to numerically exactly reproduce the dynamics of the model at surprisingly

humble numerical e�ort even for strong coupling strengths.

Furthermore, since they are not suited to e�ciently reproduce Fock number states in many-body

systems, we shed some light on possible extensions of the Gaussian basis functions in the multi

Davydov-Ansatz in terms of displaced number states and in terms of squeezed states. In particular

we argue that due to the emergence of an inappropriate number of equations of motion, there is no

straightforward generalization of the multi Davydov-Ansatz by displaced number states.

For the purpose of further optimization of the multi Davydov-Ansatz, we investigate in detail the

impact on the numerical e�ort of di�erent representations of an open system's environment. In

particular, di�erent frequency discretizations for given continuous spectral densities are examined

with respect to the speed of convergence of the system dynamics to the continuum limit. We utilize a

Windowed Fourier Transform as an a priori measure for the quality of the discretized representation

of bath correlations. Furthermore, e�cient representations of the environment for shifted initial

conditions in general and non-zero temperature in particular are found systematically.

As an alternative representation of an environment of mutually uncoupled harmonic oscillators, we

investigate an environment represented in terms of a linear chain of e�ective modes. In this context

we detail how to consistently reformulate the e�ective mode representation in second quantization,

removing inadvertent double excitations introduced by the original formulation. We show that the
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alternative representation is bene�cial in cases where the bath spectral density is highly structured,

while for the ohmic and sub-ohmic spectral density of the Spin-Boson model it is of no advantage.

Once we have identi�ed the numerically most e�cient representation of the environment, we apply

the multi Davydov-Ansatz in order to illuminate several aspects of open quantum system dynamics

whose investigation has previously remained occlusive. In particular, the access to the exact dynamics

of the environmental degrees of freedom allows to shed light on the question for the channels through

which energy can be interchanged between system and environment in the considered systems.

Firstly, in a system-bath setup we survey the vibrational relaxation dynamics of deuterium dimers

at a silicon surface. The investigation of the relaxation dynamics requires the quantum mechanical

treatment of multiple system levels, which in turn prohibits a treatment of the environmental dynamics

on a perturbative level. We demonstrate that the multi Davydov-Ansatz allows for a numerically

exact calculation of the system dynamics with multiple system levels and a huge number of surface

vibrations explicitly taken into account. Furthermore, due to the structure of the spectral density of

the environment, the e�ective mode representation allows for this system to dramatically reduce the

numerical e�ort.

Secondly we shall investigate in detail the relaxation dynamics of an exciton in a one-dimensional

molecular crystal. Since the strong coupling regime renders highly complicated the phonon dynamics,

apoptosis turns out to be inevitably required in order to reliably converge the system dynamics.

We show that the multi Davydov-Ansatz equipped with apoptosis allows for an extremely e�cient

calculation of the exciton and phonon dynamics, for both large hopping integrals and large molecular

crystals.

Furthermore we illuminate diverse aspects of laser-driven molecular dynamics in a dissipative envi-

ronment. By restriction to two electronic energy levels we determine the channels through which

system and environment interchange energy in the vicinity of an avoided crossing in a dissipative

Landau-Zener model. In particular, we reveal that the �nal transition probability can be tuned by

coupling to the environment for both diagonal and o�-diagonal coupling. By appropriately adjusting

the initial excitation of the system, the �nal transition probability is shown to converge to a �xed

value for increasing coupling.

Finally, we investigate in detail laser-induced population transfer by rapid adiabatic passage in a

dissipative environment. By application of the multi Davydov-Ansatz it is shown for zero as well as

for non-zero temperature that strongly coupling the system to an environment can serve as a resource

for the population inversion. In particular, we shall examine how the coupling to the environment

compensates for the decay channels in the system even if the laser pulse is only weakly chirped.
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Zusammenfassung

Wir verwenden den multi Davydov-Ansatz, einen Ansatz der bosonischen Vielteilchen-Wellenfunktion

mit frei beweglichen Gausschen Basisfunktionen, um verschiedene Aspekte der Dynamik o�ener Quan-

tensysteme und der Quanten-Vielteilchen-Theorie zu untersuchen. Vermittels zweier Kunstgri�e im

zeitabhängigen Variationsprinzip extrahieren wir aus diesem Ansatz, der üblicherweise als instabil und

nicht konvergierend angesehen wird, eine hochgradig stabile und schnell konvergierende Methode. Die

extrem günstige Skalierung des numerischen Aufwands der Methode mit der Zahl der Freiheitsgrade

ermöglicht die Erforschung der System- als auch Umgebungs-Physik von o�enen Quantensystemen bei

starker Kopplung. Da des Weiteren sowohl zeitlich veränderliche Systeme als auch nicht verschwin-

dende Temperaturen leicht in den Formalismus des multi Davydov-Ansatzes integrierbar sind, können

sogar lasergetriebene Systeme bei endlichen Temperaturen und starker Kopplung untersucht werden.

Die Kopplung eines Systems an eine Umgebung dient typischerweise der Beschreibung dissipativer

Prozesse und führt zu Dekohärenz im System. Zwar hat die Entdeckung, dass eine solche starke Kopp-

lung an eine Umgebung auch eine Ressource für die Systemdynamik darstellen kann, die Forschung

an stark korrelierten o�enen Quantensystemen befeuert. Doch trotz der Entwicklung ultraleistungs-

fähiger Datenprozessoren stellt die explizite Berechnung der Dynamik solcher Systeme ohne weitere

einschränkende Annahmen noch immer eine überaus schwierige Aufgabe dar. Der multi Davydov-

Ansatz befähigt uns, die Dynamik verschiedener stark gekoppelter o�ener Quantensysteme numerisch

exakt zu berechnen. Mit seiner Hilfe beleuchten wir insbesondere diverse Aspekte lasergetriebener

Moleküldynamik in dissipativen Umgebungen.

Basierend auf einer mathematisch rigorosen Untersuchung des zeitabhängigen Variationsprinzips für

frei bewegliche Gaussche Basisfunktionen entwickeln wir systematisch eine Formulierung des Systems

von Bewegungsgleichungen für die Ansatzparameter vermittels linearer Algebra. Diese ermöglicht

sowohl die exakte Bestimmung der Ursachen der Instabilitäten und des Konvergenzproblems des

multi Davydov-Ansatzes als auch deren Au�ösung, welche wir im Falle des Konvergenzproblems als

Apoptosis bezeichnet haben. Wir zeigen exemplarisch für das ohmsche und sub-ohmsche Spin-Boson

Modell dass der multi Davydov-Ansatz durch Apoptosis zu einer hochgradig stabilen Methode mit

hervorragender Konvergenzgeschwindigkeit wird, welche geeignet ist die Dynamik des Modells sogar

für starke Kopplung mit geringem numerischem Aufwand exakt zu reproduzieren.

Da weiterhin die Gausschen Basisfunktionen im multi Davydov-Ansatz nicht geeignet sind, um die

Fock-Besetzungszahlzustände in Quanten-Vielteilchensystemen e�zient darzustellen, erläutern wir

mögliche Erweiterungen derselben durch verschobene Besetzungszahlzustände und gequetschte Zu-

stände. Dabei zeigen wir insbesondere die Unmöglichkeit einer direkten Verallgemeinerung des multi

Davydov-Ansatzes durch verschobene Besetzungszahlzustände, da sich bei ihrer variationellen Ablei-

tung eine ungeeignete Ansatz von Bewegungsgleichungen ergibt.

Zum Zwecke der weiteren Optimierung des multi Davydov-Ansatzes untersuchen wir detailliert den

Ein�uss verschiedener Darstellungen der Umgebung auf den numerischen Aufwand der Methode. Dazu

analysieren wir für gegebene kontinuierliche Spektraldichten verschiedene Diskretisierungen der Fre-

quenzachse hinsichtlich deren Konvergenzgeschwindigkeit der Systemdynamik gegen den Kontinuums-
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Limes. Eine Fourier-Fensterfunktion dient dabei als Maÿ für die Qualität der diskretisierten Darstel-

lung der Bad-Korrelationen. Des Weiteren leiten wir systematisch e�ziente Darstellungen der Umge-

bung für verschobene Anfangsbedingungen im Allgemeinen und endliche Temperatur im Speziellen

her.

Als eine alternative Darstellung der Umgebung durch miteinander nicht wechselwirkende harmonische

Oszillatoren untersuchen wir auch Umgebungen die als eine lineare Kette e�ektiver Moden gegeben

sind. In diesem Kontext zeigen wir, wie das Auftreten unerwünschter Doppelanregungen in der ur-

sprünglichen Formulierung durch eine konsistente Herleitung der e�ektiven Darstellung in zweiter

Quantisierung verhindert werden kann. Wir demonstrieren, dass die e�ektive Darstellung für hoch-

gradig strukturierte Spektraldichten vorteilhaft ist, während sie für die ohmsche und sub-ohmsche

Spektraldichte des Spin-Boson Modells keinen Vorteil bietet.

Sobald wir die numerisch e�zienteste Darstellung der Umgebung identi�ziert haben, untersuchen

wir unter Anwendung des multi Davydov-Ansatzes bisher unerforschte Aspekte der Dynamik o�ener

Quantensysteme. Dabei nutzen wir den Zugang zur exakten Dynamik der Umgebung zur Identi�ka-

tion der Kanäle, durch welche System und Umgebung in den betrachteten o�enen Quantensystemen

Energie austauschen können.

Zum einen erforschen wir in einem System-Bad-Kontext die Schwingungs-Relaxationsdynamik von

Deuterium-Dimeren an einer Silizium-Ober�äche. Die Tatsache, dass die Untersuchung der Dyna-

mik dieses Systems die quantenmechanische Einbeziehung vieler System-Level erfordert, macht eine

störungstheoretische Behandlung der Umgebungsdynamik unmöglich. Wir demonstrieren, dass ver-

mittels des multi Davydov-Ansatzes eine numerisch exakte Berechnung der Systemdynamik unter

Einbeziehung vieler System-Level und einer sehr groÿen Anzahl von Ober�ächen-Schwingungen mög-

lich ist. Wegen der Struktur der Spektraldichte der Umgebung kann der numerische Aufwand für die

Berechnung der Dynamik durch die Darstellung in e�ektiven Moden drastisch reduziert werden.

Zweitens untersuchen wir detailliert die Relaxationsdynamik eines Exzitons in einem eindimensio-

nalen Molekül-Kristall. Wir zeigen, dass die zuverlässige Konvergenz der Systemdynamik Apoptosis

zwingend erfordert, da wegen der starken Kopplung die Phononendynamik hochgradig kompliziert

ist. Wir demonstrieren, dass der multi Davydov-Ansatz kombiniert mit Apoptosis eine extrem e�zi-

ente Berechnung der Exziton- und Phononendynamik sowohl für groÿe Übergangsintegrale als auch

ausgedehnte Molekülkristalle ermöglicht.

Drittens beleuchten wir diverse Aspekte lasergetriebener Moleküldynamik in dissipativen Umgebun-

gen. Unter Beschränkung auf zwei elektronische Energie-Level bestimmen wir die Kanäle, durch wel-

che System und Bad in der Umgebung einer vermiedenen Kreuzung im dissipativen Landau-Zener

Modell Energie austauschen. Wir zeigen insbesondere, dass die Übergangswahrscheinlichkeit durch

diagonale und neben-diagonale Kopplung eingestellt werden kann, und dass durch geeignete initiale

Anregung des Systems die Übergangswahrscheinlichkeit mit wachsender Kopplung gegen einen festen

Wert konvergiert.

Schlieÿlich untersuchen wir im Detail laserinduzierten Populationstransfer vermittels schnellen adiaba-

tischen Durchgangs in einer dissipativen Umgebung. Wir zeigen durch Anwendung des multi Davydov-
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Ansatzes dass sowohl für Temperatur Null als auch für endliche Temperatur die starke Kopplung des

Systems an eine Umgebung als Ressource für Populationsinversion dienen kann. Wir untersuchen

dabei insbesondere, wie die Kopplung an die Umgebung die Zerfallskanäle sogar im Falle schwach

gechirpter Laserpulse kompensiert.
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1. Introduction

In the early 1970s it was not yet understood how chemical energy, released by hydrolysis of ATP

into ADP, was converted into mechanical energy during the muscle contraction in vertebrates. In

his in�uential works [1, 2] Davydov explained muscle contraction on the basis of his earlier works on

excitation transport in crystals. Considering the muscle as a linear chain of peptides, he assumed

that the chemical energy excited the C=O group of a single peptide bond, causing a distortion of the

protein while continuing to the next peptide bond. By a mechanism of self-trapping he explained that

the size of the region under excitation did not spread but remained constant [3, 4]. Thus the excitation

could be modeled as a coherent state and was later called (Davydov-)soliton in reminiscence of [5].

A coherent state is obtained by displacing in phase space the ground state of the quantum harmonic

oscillator. In a quadratic potential coherent states evolve in time as if they were classical particles

[6]. Alongside with them ful�lling the minimum Heisenberg uncertainty, coherent states have proven

a powerful tool to forge the bridge between quantum and classical mechanics. They exhibit, however,

further intriguing properties which render them appealing candidates also for fully-quantum real-time

propagation. In this spirit Davydov applied coherent states in his work, and likewise will we pursue

along these lines.

In order to solve the time-dependent Schrödinger equation (TDSE), Davydov postulated two types

of wave-functions (later called D1 and D2) in terms of coherent states and showed, that indeed it was

a solution to Hamilton's equations under some additional assumptions at temperature 𝑇 = 0. In a

subsequent paper Davydov investigated the soliton motion with thermal oscillations of the peptides

taken into account [7] utilizing a thermally averaged Hamiltonian. The subsequent exposition on the

thermal stability of the soliton caused the `crisis of bio-energy', since at standard conditions the lifetime

of C=O vibrations relative to the time for transforming their energy into disordered heat motion was

found to be only 10−10 − 10−12s. The nonlinear equations of motion Davydov used had soliton-like

solutions only when solved in the adiabatic limit corresponding to 𝑇 = 0. However, the questions of

existence and importance of the Davydov soliton remained controversial for 𝑇 > 0, because numerical

simulations and theoretical calculations done by independent research groups reached diametrically

opposed conclusions [8�12]. They were summarized in [13], yet the discourse reaches to present days

(see e.g. [14, 15]).

Also on a more theoretical level, Davydov's ideas were further investigated. The authors of [16]

showed that none of Davydov's Ansätze could actually account for the exact solution of the TDSE by

using the similarity of Davydov's Hamiltonian with the Fröhlich Hamiltonian arising in polaron theory

[17]. It was furthermore shown that the application of Hamilton's equations had to be replaced by the

variational principle [18, 19], and that temperature could not be included by the averaged Hamiltonian

method [20�22].

After several rather silent years, in 2010 the �rst work appeared which utilizes Davydov's idea un-

der the alias `Davydov-Ansatz' as a numerical tool for the approximate solution of the TDSE [23].
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In subsequent works [24�26], the method was re�ned and further developed to include multiple co-

herent states [27], the so-called multi Davydov-Ansatz - surprisingly enough seemingly unaware of

works employing an Ansatz in terms of multiple freely moving Gaussian basis functions in the multi-

con�gurational time-dependent Hartree (MCTDH) community [28�30]. Developed independently in

parallel, the methods exhibit rather divergent formalisms. It will be one of the main foci of this work

to include both into a united framework, pro�ting from and to be pro�table for both sides.

This work consists of four main chapters. In the �rst chapter, the theoretical ground is prepared for

the subsequent chapters. While there is much more that could be said about the concepts introduced

there, the focus will be on the aspects which will be needed later on to solve open quantum system

dynamics, accompanied by hints for further reading. The material is completed by further details in

the appendix.

In the second chapter we will set the stage by considering the variational multi-con�gurational Gaus-

sian Ansatz (vMCG) of the bosonic many body wave function in terms of freely moving coherent

states. We will satisfy the desire for a clear presentation of the derivation of equations of motion

for the parameters in an as simple and as general as possible setting. By carving out as precisely as

possible the structure of these equations, we will show how to circumvent the issues related to the

Ansatz by two minimally invasive arti�ces. While one of these arti�ces is adopted from the multi-

con�gurational time-dependent Hartree method (MCTDH), the other one is fully innovative and has

been termed `apoptosis'. Contact is drawn to semiclassical and other methods with the main focus on

attempts to circumvent the original method's weaknesses. We investigate possible generalizations of

the vMCG method by application of squeezed states and displaced number states on the background

of the ine�ciency of the representation of Fock number states by the vMCG method. As a general-

ization of the vMCG method to open quantum system settings, the multi Davydov-Ansatz formalism

is included into the framework constructed so far. Finally, it is outlined how to e�ciently treat with

the multi Davydov-Ansatz non-zero temperature by Monte-Carlo sampling.

In the third chapter the impact of the regularizations outlined in the second chapter will be investigated

in detail. It will be shown that the multi Davydov-Ansatz equipped with the regularizations outlined

in the second chapter is suited to propagate in real-time the full system-plus-bath wave-function

with extremely small computational e�ort. To this end, the multi Davydov-Ansatz will �rstly be

applied to the Quantum Rabi model. The impact of the regularization in the case of vanishing

coe�cients is investigated for a single environmental mode in the strong coupling regime. Secondly,

the maybe simplest model of an open quantum system, the Spin-Boson model, will serve as a testbed

for apoptosis, in the ohmic and in the sub-ohmic regime at weak as well as strong coupling. Once the

reliability of the concept is proven, the quality of di�erent discretizations with respect to the speed

of convergence to the continuum limit of a continuous spectral density is examined. We will show

that the aspiration for an a priori measure of the quality of the discretization can be satis�ed by the

Windowed Fourier transform (WFT). While coherent states allow for a straightforward description of

non-zero temperature physics, no attention has been paid so far to the corresponding subtleties arising

in the context of a sub-ohmic spectral density. We will show how to concisely extend the description
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to these contexts. Again in the spirit of reduction of the numerical e�ort, we outline subsequently how

to transform the environment, typically given by a set of uncoupled modes each of which is coupled

separately to the system, into a linear chain of e�ective modes where only the �rst mode is coupled

to the system. In particular, the quality of the optimal discretization of the spectral density found

from the WFT will be contrasted with this e�ective mode representation (EMR). Rounding o� the

considerations regarding the Spin-Boson model, we will show that the multi Davydov-Ansatz is suited

to calculate the critical coupling strength for the quantum phase transition from the delocalized to

the localized regime in the case of ohmic damping.

The fourth chapter is devoted to the application of the developed methodology. We will see that the

regularizations found in the second chapter are inevitably required for the method to produce reliable

results. We will investigate two settings where the spectral density is already given in discretized

form and thus not requiring a continuum limit as well as two settings where the spectral density is

given in continuous form. In a setup where the spectral density is given in discretized form we will

�rstly determine the vibrational relaxation dynamics of deuterium dimers in the presence of a silicon

surface, utilizing a novel Hamiltonian exact up to second order in the environmental coordinates [31].

As we shall outline, the model does not allow for a treatment on a perturbative level. Thus we will

apply the multi Davydov-Ansatz in order to calculate the system dynamics with multiple system

levels and a huge number of surface vibrations explicitly taken into account. We will outline how

to drastically reduce the numerical e�ort by transforming the environment with the EMR. We will

secondly push the limits for the investigation of the relaxation dynamics of an exciton hopping on

a linear molecular chain utilizing the Holstein polaron model into previously unknown territory by

calculating the long-time dynamics for large exciton hopping elements and strong coupling strengths.

Turning our back to un-driven cases, we will show subsequently how to use the multi Davydov-Ansatz

for the investigation of laser-driven molecular dynamics. In a �rst setup we will investigate the

impact of environmental excitation on the transition probability in a Landau-Zener system coupled to

a dissipative environment. We will show that the multi Davydov-Ansatz is suited to reliably reproduce

the analytically given long-time limit of the staying probability for multiple modes given in terms of

a continuous ohmic spectral density. In a second setup we will show that the dissipative environment,

given in terms of a super-ohmic continuous spectral density, can be used as a resource for population

inversion if coupled strongly to a two-level system subject to chirped femtosecond laser excitations.

The appendix complements the work by additional detailed calculations and numerical details. This

work was started in Oct. 2016, 30 years after the �rst appearance of Davydov's Ansatz [3], and

�nished in 2020, 10 years after Davydov's ideas had �rstly been used under the alias `Davydov-Ansatz'

as numerical tool [23].





2. Prerequisites

In this section the foundations will be laid for all theoretical tools needed later in this thesis. Special

emphasis is laid on properties of coherent states (CS), which have been known to exhibit outstanding

theoretical physical properties for a very long time [6]. Their localized nature will render them

appealing candidates for real-time propagation in bosonic many-body setups. CS arise naturally in

the context of the quantum harmonic oscillator, which is why the treatment of the latter is the spark

from which the light will emanate in this work.

2.1. Harmonic oscillator basics

The Hamilton operator of the one-dimensional harmonic oscillator with mass𝑚 and frequency 𝜔 reads

ℋ̂HO =
𝑝̂2

2𝑚
+

1

2
𝑚𝜔2𝑞̂2. (2.1)

The position operator 𝑞̂ and the momentum operator 𝑝̂ ful�ll the canonical commutation relation

[𝑞̂, 𝑝̂] = iℏ, (2.2)

where [·, ·] denotes the commutator, [𝐴̂, 𝐵̂] = 𝐴̂𝐵̂ − 𝐵̂𝐴̂ for operators 𝐴̂, 𝐵̂. By ℏ we denote the

reduced Planck constant. By introducing the operators

𝑎̂ =

√︂
𝑚𝜔

2ℏ

(︂
𝑞̂ + i

𝑝̂

𝑚𝜔

)︂
, 𝑎̂† =

√︂
𝑚𝜔

2ℏ

(︂
𝑞̂ − i

𝑝̂

𝑚𝜔

)︂
, (2.3)

the di�erential analysis, required to solve for the spectrum of ℋ̂HO, can be traded for operator algebra.

From the canonical commutation relation (2.2) one obtains[︁
𝑎̂, 𝑎̂†

]︁
= 1̂ (2.4)

for the commutator of the operators (2.3). With the help of the inverse of (2.3),

𝑞̂ =

√︂
ℏ

2𝑚𝜔

(︁
𝑎̂† + 𝑎̂

)︁
, 𝑝̂ =

√︂
ℏ𝑚𝜔

2
i
(︁
𝑎̂† − 𝑎̂

)︁
, (2.5)

the Hamilton operator (2.1) can be rewritten as

ℋ̂HO = ℏ𝜔
(︂
𝑎̂†𝑎̂+

1

2

)︂
. (2.6)
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It can then be shown that the spectrum of the (Hermitian) number-operator 𝒩̂ HO = 𝑎̂†𝑎̂ is N (see eg.

[32] for details). Consequently, the eigenvalues of ℋ̂HO are

𝐸𝑛 = ℏ𝜔
(︂
𝑛+

1

2

)︂
, 𝑛 ∈ N. (2.7)

Furthermore, the corresponding eigenspaces are not degenerate, such that the normalized eigenstates

can be denoted by |𝑛⟩ and are mutually orthogonal,

ℋ̂HO |𝑛⟩ = 𝐸𝑛 |𝑛⟩ , ⟨𝑚|𝑛⟩ = 𝛿𝑚𝑛. (2.8)

The |𝑛⟩ are termed number states, and since they obey (see [32])

𝑎̂† |𝑛⟩ =
√
𝑛+ 1 |𝑛+ 1⟩ , (2.9)

𝑎̂ |𝑛⟩ =
√
𝑛 |𝑛− 1⟩ , (2.10)

the operators 𝑎̂† and 𝑎̂ are called ladder operators. Two consecutive number states |𝑛⟩ and |𝑛+ 1⟩
di�er by ℏ𝜔 in energy, thus 𝑎̂† creates and 𝑎̂ annihilates a phonon of energy ℏ𝜔. Consequently, 𝑎̂†

is termed creation operator and 𝑎̂ annihilation operator. Since 𝑎̂†𝑎̂ is Hermitian, one infers from the

spectral theorem (see e.g. [33]) that the number states ful�ll the closure relation

1̂ =
∞∑︁
𝑛=0

|𝑛⟩ ⟨𝑛| . (2.11)

The position representation of the number states, obtained by solving the time-independent Schrödinger

equation in terms of 𝑞, reads

⟨𝑞|𝑛⟩ =
(︁𝑚𝜔

𝜋ℏ

)︁ 1
4
(2𝑛𝑛!)−

1
2 e−

𝜉2

2 𝐻𝑛(𝜉), 𝜉 =

√︂
𝑚𝜔

ℏ
𝑞, (2.12)

where 𝐻𝑛(𝑥) denotes the 𝑛-th Hermite polynomial [34]. The probability density | ⟨𝑞|𝑛⟩ |2 is plotted

in the left panel of Fig. 2.1 as function of 𝑞 for the �rst �ve number states. While the ground state

probability distribution | ⟨𝑞|0⟩ |2 of the quantum harmonic oscillator is a Gaussian function of mean

0 and width
√︁

ℏ
2𝑚𝜔 and thus localized around 𝑞 = 0, with increasing 𝑛 the number states |𝑛⟩ become

more and more delocalized.

The momentum representation of the number states can be obtained up to a normalization prefactor

by formally substituting 𝑞 → 𝑝 and 𝑚𝜔 → 1
𝑚𝜔 in Eq. (2.12),

⟨𝑝|𝑛⟩ = (−i)𝑛
(︂

1

𝑚𝜔𝜋ℏ

)︂ 1
4

(2𝑛𝑛!)−
1
2 e−

𝑦2

2 𝐻𝑛(𝑦), 𝑦 =

√︂
1

ℏ𝑚𝜔
𝑝. (2.13)
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Note that the prefactor is required in order for the two representations to be Fourier transforms of

each other by the Fourier transform

𝑓(𝑝) =
1√
2𝜋ℏ

∞∫︁
−∞

d𝑞 e−i𝑝𝑞/ℏ𝑓(𝑞), 𝑓(𝑞) =
1√
2𝜋ℏ

∞∫︁
−∞

d𝑝 ei𝑝𝑞/ℏ𝑓(𝑝). (2.14)

The set of all possible states of the quantum harmonic oscillator has the structure of a Hilbert space,

i.e. a complex vector space equipped with a scalar product. Since the number states constitute a

countable basis of this Hilbert space, they allow for utilization of linear algebra concepts. While this is

often helpful, in many contexts it is desirable to work with localized basis states instead. The coherent

states, introduced in the next section, constitute such a set of localized basis functions.

Figure 2.1.: Left panel: probability density | ⟨𝑞|𝑛⟩ |2 as function of 𝑞 in units where ℏ = 𝜔 = 𝑚 = 1
for the first 5 number states: 𝑛 = 0 (blue solid), 𝑛 = 1 (red solid), 𝑛 = 2 (yellow solid), 𝑛 = 3 (violet
solid) and 𝑛 = 4 (green solid). Ordinate is the corresponding energy in units of ℏ𝜔. Right panel:
probability density | ⟨𝑞|𝛼⟩ |2 of a coherent state for 𝛼 = 1 + i as function of 𝑞 in arbitrary units.

2.2. Canonical coherent states of the harmonic oscillator

CS arise naturally in the context of the quantum harmonic oscillator. They are de�ned as the eigen-

states of the annihilation operator 𝑎̂, de�ned in (2.3). By expansion in terms of number states, one

�nds that the spectrum of 𝑎̂ is C, that the corresponding eigenspaces are not degenerate, and that

the normalized eigenstates read [35]

|𝛼⟩ = e−
|𝛼|2
2

∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!

|𝑛⟩ , 𝛼 ∈ C. (2.15)

Although the harmonic oscillator ground state |0⟩ and the CS |0⟩ coincide, the notations |𝑛⟩ for the
number states and |𝛼⟩ for CS can be ambiguous due to N ⊂ C. It will, however, directly be indicated
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what is meant, if it is not clear from the context. From Eq. (2.15) the overlap ⟨𝑛|𝛼⟩ of a coherent

state with a number state is given by

⟨𝑛|𝛼⟩ = e−
|𝛼|2
2

𝛼𝑛

√
𝑛!
. (2.16)

The position representation of the CS can be obtained by utilization of the generating function of the

Hermite polynomials [34]:

⟨𝑞|𝛼⟩ =
(︁𝑚𝜔

𝜋ℏ

)︁ 1
4
exp

⎡⎣−𝑚𝜔

2ℏ

(︃
𝑞 −

√︂
2ℏ
𝑚𝜔

𝛼

)︃2

+
𝛼2 − |𝛼|2

2

⎤⎦ (2.17)

=
(︁𝑚𝜔

𝜋ℏ

)︁ 1
4
exp

[︂
−|𝛼|2

2
− 𝑥2

2
+
√
2𝑥𝛼− 𝛼2

2

]︂
, 𝑥 =

√︂
𝑚𝜔

ℏ
𝑞. (2.18)

The momentum representation, obtained either by Fourier transform of (2.18) or by using (2.13) and

the generating function of the Hermite polynomials, reads

⟨𝑝|𝛼⟩ =
(︂

1

𝜋ℏ𝑚𝜔

)︂ 1
4

exp

[︂
−|𝛼|2

2
− 𝑦2

2
−
√
2i𝑦𝛼+

𝛼2

2

]︂
, 𝑦 =

√︂
1

ℏ𝑚𝜔
𝑝. (2.19)

Thus, by virtue of (2.18) and (2.19), CS are Gaussians in phase space, centered at

𝛼 =

√︂
𝑚𝜔

2ℏ

(︂
𝛼1 +

i

𝑚𝜔
𝛼2

)︂
. (2.20)

Insertion of (2.20) into (2.18) yields the usual expression

⟨𝑞|𝛼⟩ =
(︁𝑚𝜔

𝜋ℏ

)︁ 1
4
exp

[︂
−𝑚𝜔

2ℏ
(𝑞 − 𝛼1)

2 + i𝛼2

(︂
𝑞 − 1

2
𝛼1

)︂]︂
, (2.21)

from which the width and the center of the Gaussian can be read o� immediately. The probability

density | ⟨𝑞|𝛼⟩ |2 as a function of 𝑞 is plotted for 𝛼 = 1+i in the right panel of Fig. 2.1, again revealing

the Gaussian nature of the coherent states: the probability density | ⟨𝑞|𝛼⟩ |2 of a coherent state |𝛼⟩ is
a Gaussian distribution of mean 𝛼1 and width

√︁
ℏ

2𝑚𝜔 .

The Wigner distribution function [36] 𝜌(𝑝, 𝑞) of the density 𝜌̂ = |𝛼⟩ ⟨𝛼| corresponding to the CS |𝛼⟩
can be calculated as

𝜌(𝑝, 𝑞) = ℏ−1

∫︁
d𝜏 exp

[︂
i

ℏ
𝑝𝜏

]︂
⟨𝑞 + 𝜏

2
| 𝜌̂ |𝑞 − 𝜏

2
⟩ (2.22)

=
2

ℏ
exp

[︂
−
(︁
𝑥−

√
2Re (𝛼)

)︁2
−
(︁
𝑦 +

√
2 Im (𝛼)

)︁]︂
, 𝑥 =

√︂
𝑚𝜔

ℏ
𝑞, 𝑦 =

√︂
1

ℏ𝑚𝜔
𝑝,

(2.23)
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where we have inserted (2.18). Here, Re () denotes the real part and Im () the imaginary part. As to

be expected, this is a Gaussian in phase space centered at (2.20). We infer that CS are, in contrast

to the number states, highly localized quantum objects: 99.9% of a CS's weight is in the phase space

region
{︀
(𝑞, 𝑝) | 𝑚𝜔

ℏ 𝑞2 + 1
ℏ𝑚𝜔𝑝

2 ≤ 𝑟2, 𝑟 = 2.63
}︀
. This localization will turn out highly advantageous in

bosonic many-body setups, but it comes at the price that the CS are not orthogonal. On the contrary,

the overlap of two arbitrary CS does not vanish due to

⟨𝛼|𝛽⟩ = exp

[︂
𝛼*𝛽 − 1

2

(︁
|𝛼|2 + |𝛽|2

)︁]︂
. (2.24)

The absolute value of the overlap of two CS as a function of Re (𝛼) and Im (𝛼) is plotted in Fig.

2.2. It reveals that, although two arbitrary CS have non-vanishing overlap, the overlap decreases

Figure 2.2.: Absolute value of the overlap ⟨𝛼|𝛽⟩ of two CS for fix 𝛽 = 1 + i as function of Re (𝛼)
and Im (𝛼).

exponentially with the distance of the CS - in compliance with their localized nature.

From the integral identity

∫︁
C2

d𝛼 (𝛼*)𝑚𝛼𝑛e−|𝛼|2 =

∞∫︁
0

d|𝛼| |𝛼|𝑚+𝑛+1e−|𝛼|2
2𝜋∫︁
0

d𝜃 ei(𝑚−𝑛)𝜃 = 𝜋𝑛!𝛿𝑚𝑛 (2.25)

and by insertion of (2.11) readily follows the closure relation

1̂ =
1

𝜋

∫︁
C2

d𝛼 |𝛼⟩ ⟨𝛼| , (2.26)
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where d𝛼 = dRe (𝛼) d Im (𝛼) and the integral has to be performed over the whole complex plane.

In contrast to the number states which form a countable basis of the Hilbert space of the harmonic

oscillator, coherent states form an uncountable basis and thus have to form an overcomplete set of

states. One consequently expects the closure relation (2.26) to exhibit redundancies, something we

address in Sec. 2.3.

Furthermore, while working in the context of number states allows for utilization of linear algebra

concepts, working in the context of coherent states allows for utilization of concepts of functional

analysis. Thus, for a single harmonic oscillator, the former is in most contexts obviously much simpler

to work with. We shall see, however, that this is not the case for multiple harmonic oscillators in

open quantum system settings, where the powerful tools of the latter play a dominant role.

Another important aspect makes coherent states appealing candidates for basis functions one would

like to work with. The CS are considered the most classical quantum objects [6], due to two important

properties. Firstly, they exhibit the minimum possible quantum uncertainty Δ𝑞Δ𝑝 = ℏ
2 according to

the Heisenberg uncertainty principle,

Δ𝑞 =

√︂
⟨𝛼| 𝑞̂2 |𝛼⟩ −

[︁
⟨𝛼| 𝑞̂ |𝛼⟩

]︁2
=

√︂
ℏ

2𝑚𝜔
, Δ𝑝 =

√︂
⟨𝛼| 𝑝̂2 |𝛼⟩ −

[︁
⟨𝛼| 𝑝̂ |𝛼⟩

]︁2
=

√︂
ℏ𝑚𝜔

2
.

(2.27)

Secondly, the CS stays a CS under the action of the propagator of the harmonic oscillator,

exp

[︂
− i

ℏ
𝜔𝑎̂†𝑎̂𝑡

]︂
|𝛼⟩ = exp

[︂
− i

ℏ
𝜔𝑎̂†𝑎̂𝑡

]︂
exp

[︃
−|𝛼|2

2

]︃ ∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!

|𝑛⟩ (2.28)

= exp

[︃
−|𝛼|2

2

]︃ ∞∑︁
𝑛=0

(︀
𝛼e−i𝜔𝑡/ℏ)︀𝑛

√
𝑛!

|𝑛⟩ (2.29)

= |𝛼e−i𝜔𝑡/ℏ⟩ , (2.30)

which moves on an ellipse in phase space, as the classical harmonic oscillator [37]. Coherent states

thus appear as the most appropriate tool to draw contact between quantum and classical mechanics.

While we will work in the full quantum context throughout this thesis, the intimate relation with

(semi-) classical methods will always shine through.

We have seen in section 2.1 that the ground state |0⟩ of the harmonic oscillator is a Gaussian centered

at (0, 0) in phase space. A coherent state can thus be viewed as the ground state displaced in phase

space. Indeed, the CS |𝛼⟩ is generated by the action of the displacement operator

𝐷̂𝛼 := exp
[︁
𝛼𝑎̂† − 𝛼*𝑎̂

]︁
(2.31)

on the ground state,

|𝛼⟩ = 𝐷̂𝛼 |0⟩ . (2.32)



2.2 Canonical coherent states of the harmonic oscillator 11

This can easily be veri�ed by rewriting the displacement operator (2.31) with the help of the Baker-

Campbell-Hausdor� formula in normal ordered form,

𝐷̂𝛼 = exp

[︂
− 1

2
|𝛼|2

]︂
exp

[︂
𝛼𝑎̂†
]︂
exp

[︂
− 𝛼*𝑎̂

]︂
, (2.33)

and comparison with (2.15),

|𝛼⟩ = exp

[︂
− |𝛼|2

2

]︂
exp

[︂
𝛼𝑎̂†
]︂
|0⟩ . (2.34)

Furthermore, the displacement operator is unitary since a shift by −𝛼 inverts a shift by 𝛼,

𝐷̂
†
𝛼 = 𝐷̂

−1
𝛼 = 𝐷̂−𝛼. (2.35)

Clearly, two subsequent shifts can be combined into one single shift. Indeed, as can be seen from the

Baker-Campbell-Hausdor� formula, the composition of two displacement operators is, apart from an

exponential factor, again a displacement operator,

𝐷̂𝛼𝐷̂𝛽 = exp

[︂
1

2
(𝛼𝛽* − 𝛼*𝛽)

]︂
𝐷̂𝛼+𝛽. (2.36)

A central element of the calculus we will employ later on is the commutation of the displacement

operator with the creation and annihilation operators. It can be derived from the Baker-Campbell-

Hausdor� formula and reads

𝐷̂
†
𝛼𝑎̂𝐷̂𝛼 = 𝑎̂+ 𝛼, 𝐷̂

†
𝛼𝑎̂

†𝐷̂𝛼 = 𝑎̂† + 𝛼*. (2.37)

In Sec. 2.6 we will need the displacement operator expressed in terms of position and momentum

operator. By insertion of (2.20) for 𝛼 and (2.3) for the creation and annihilation operator, we may

easily derive the desired representation. It reads

𝐷̂𝛼 = exp [i (𝛼2𝑞̂ − 𝛼1𝑝̂)] . (2.38)

We will employ the coherent states as basis functions for real-time propagation in bosonic many-body

systems. If the system's potential is harmonic, as e.g. for the harmonic oscillator (2.1), the system

comprises a natural frequency 𝜔, de�ning the width of the CS in phase space. In cases where the

potential is not harmonic, however, the width of the CS is a free parameter. Then it is convenient

to calculate the overlap ⟨𝛼, 𝜔|𝛽, 𝛾⟩ of two CS of di�erent phase-space positions 𝛼, 𝛽 and widths 𝜔, 𝛾.
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This can be carried out analytically in position representation, since by (2.18)

⟨𝛼, 𝜔|𝛽, 𝛾⟩ =
∞∫︁

−∞

d𝑞 ⟨𝛼, 𝜔|𝑞⟩ ⟨𝑞|𝛽, 𝛾⟩ (2.39)

=

√︃
2
√
𝜔𝛾

𝜔 + 𝛾
exp

[︃
1

2(𝜔 + 𝛾)

(︂
2𝜔(𝛼*)2 + 2𝛾𝛽2 + 4

√
𝜔𝛾𝛼*𝛽

− (𝜔 + 𝛾)
(︁
|𝛼|2 + |𝛽|2 + (𝛼*)2 + 𝛽2

)︁)︂]︃
. (2.40)

As desirable, Eq. (2.40) reduces to the standard overlap (2.24) for 𝜔 = 𝛾.

Apart from the ones outlined so far, the CS have a vast number of other interesting properties. An

exquisite assortment is given in [38]. Here, the focus is on application of CS as time-dependent basis

functions, thus the following important aspects will be selected: the completeness of CS (see Sec.

2.3) and representation of the canonical density operator in terms of CS (see Sec. 2.4). Furthermore,

as promising generalizations of the concept of CS, squeezed states are introduced in Sec. 2.5 while

displaced number states are introduced in Sec. 2.6.

2.3. Overcompleteness of CS and the Segal-Bargmann

transformation

In order to examine the completeness of CS in more detail, we wish to apply concepts of functional

analysis to the setting of the quantum harmonic oscillator. To this end we consider the space of

analytic functions on phase space C, i.e. the space of complex functions that are locally given by a

convergent power series with complex coe�cients. It is easy to verify that the operators 𝑏̂ :=
√
ℏ𝜕𝑧

and 𝑐̂ := 1√
ℏ
𝑧, acting as partial derivative and multiplication respectively, ful�ll the analog of the

canonical commutation relation[︁
𝑏̂, 𝑐̂
]︁
= 1̂. (2.41)

This analogy is suited to translate the standard functional analysis setup to the quantum mechanics

setup of the harmonic oscillator, since the Stone-von Neumann theorem [39, 40] ensures the unitary

equivalence of the two representations. Indeed, Bargmann showed in [41] that with the inner product

⟨𝑓 |𝑔⟩ = 1

𝜋ℏ

∫︁
C

d𝑧 e−
|𝑧|2
ℏ 𝑓 †(𝑧)𝑔(𝑧), (2.42)

these two operators can be made adjoints of each other,

𝑏̂
†
= 𝑐̂, (2.43)
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and that the space of analytic functions satisfying ⟨𝑓 |𝑓⟩ < ∞ thus attains the structure of a Hilbert

space, named Segal-Bargmann space 𝐻SB. The unitary Segal-Bargmann transformation (SBT)

𝐴 : 𝐿2(R) → 𝐻SB, (𝐴𝑓)(𝑧) =

∫︁
R

d𝑥 e−
1
2(|𝑧|

2−2
√
2𝑧𝑥+|𝑥|2)𝑓(𝑥) (2.44)

maps a wave function in position representation to an analytic function in the Segal-Bargmann space.

In (2.44) we have introduced the symbol 𝐿2(R) for the Hilbert space of the quantum harmonic

oscillator, considered as the space of square integrable functions on R.
The unitary transformation (2.44) may be extended straightforwardly to operators by setting

𝐴(𝐵̂) := 𝐴(𝐵̂(𝐴−1)) for any operator 𝐵̂ acting on the Hilbert space 𝐿2(R). It can be shown that

in this way the SBT maps the annihilation operator 𝑎̂ onto 𝑏̂ and the creation operator 𝑎̂† onto 𝑐̂,

respectively (see [42] for further details).

An important property of the transformation (2.44) is that it maps the ground state |0⟩ to the identity
function. Hence, for any state |Ψ⟩ of the quantum harmonic oscillator may be expanded in terms of

number states by the closure relation (2.11),

|Ψ⟩ =
∞∑︁
𝑛=0

Ψ𝑛 |𝑛⟩ =
∞∑︁
𝑛=0

Ψ𝑛√
𝑛!
(𝑎̂†)𝑛 |0⟩ , (2.45)

the SBT maps this wave function to a power series,

(𝐴 |Ψ⟩) (𝑧) =
∞∑︁
𝑛=0

Ψ𝑛√
𝑛!
𝐴
(︁
(𝑎̂†)𝑛

)︁
𝐴 |0⟩ =

∞∑︁
𝑛=0

Ψ𝑛√
𝑛!
𝑧𝑛. (2.46)

Thus, in the spirit of the SBT the expansion of a wave function in terms of the number states is

the analog of expanding the wave-function in terms of a power series. The coherent states can be

considered to directly mediate this analogy, since for any CS |𝑧⟩ it holds that

⟨Ψ|𝑧⟩ =
∞∑︁
𝑛=0

⟨Ψ|𝑛⟩ ⟨𝑛|𝑧⟩ = e−
|𝑧|2
2

∞∑︁
𝑛=0

⟨Ψ|𝑛⟩√
𝑛!

𝑧𝑛. (2.47)

In addition, the property of |𝛼⟩ being an eigenvector of 𝑎̂,

𝑎̂ |𝛼⟩ = 𝛼 |𝛼⟩ (2.48)

along with

𝑎̂†e
|𝛼|2
2 |𝛼⟩ = 𝜕𝛼e

|𝛼|2
2 |𝛼⟩ (2.49)

again emphasize appealingly that the coherent states mediate the analogy of the Segal-Bargmann

transformation (2.44).
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The SBT enables us to directly include complex functional analysis tools into quantum mechanics.

In particular, the authors of [43] show with a straightforward proof by means of complex functional

analysis that the CS are vastly overcomplete: the CS on a lattice 𝐿𝑧,𝛾 := {𝑧 + 𝛾(𝑚+ i𝑛) |𝑚,𝑛 ∈ Z}
in the complex plane form an overcomplete set if and only if 0 < 𝛾 ≤

√
𝜋. Thus completeness holds

for a phase-space lattice of coherent states if and only if the density of states per Planck unit cell is

equal to or greater than one. A corresponding graphical illustration is given in 2.3. This result will

play a very important role in numerical applications later on.

Furthermore, with the SBT, it is simple to prove that the CS are supercomplete, i.e. the CS

p

qz

γ

γ

Figure 2.3.: Overcompleteness of CS: if the area of the phase-space region shaded in grey is at
most 𝜋 (i.e. a Planck unit cell), the CS corresponding to the lattice form an overcomplete set.

corresponding to any (non-constant) convergent series in C form a complete set (see, e.g., [44]).

Prominent examples are the CS on a circle and on a line.

In the context of the completeness of the number states it is not surprising that a countable set

of CS su�ces to represent unity. In numerical applications, however, taking into account in�nitely

many basis functions is not possible in general. Since it is at the heart of any method which employs

coherent states as basis functions, we wish to represent unity in terms of a �nite number of coherent

states, at least approximately. Since the CS {|𝛼𝑘⟩ | 𝑘 ∈ N} := {|𝛼⟩ |𝛼 ∈ 𝐿𝑧,𝛾} on an appropriate

lattice 𝐿𝑧,𝛾 in the complex plane form an overcomplete set, they have to obey a closure relation,

1̂ =
∑︁
𝑘,𝑙∈N

𝐴𝑘𝑙 |𝛼𝑘⟩ ⟨𝛼𝑙| . (2.50)

With the matrix elements of the overlap matrix 𝑆𝑖𝑗 := ⟨𝛼𝑖|𝛼𝑗⟩, (2.50) results in

𝑆𝑖𝑗 =
∑︁
𝑘,𝑙∈N

𝐴𝑘𝑙𝑆𝑖𝑘𝑆𝑙𝑗 , (2.51)



2.4 Density operator representation in terms of CS 15

which gives 𝑆 = 𝑆𝐴𝑆 rewritten in matrix form. Consequently 𝐴 = 𝑆−1, and we deduce

1̂ =
∑︁
𝑘,𝑙∈N

(︀
𝑆−1

)︀
𝑘𝑙
|𝛼𝑘⟩ ⟨𝛼𝑙| , 𝑆𝑘𝑙 = ⟨𝛼𝑘|𝛼𝑙⟩ . (2.52)

To be precise, this is valid only in the case where the overlap matrix 𝑆 is invertible. It will turn out

that the requirement of invertibility is an extremely crucial point if coherent states are applied as

freely moving basis functions. Consequently one would wish to circumvent the inversion. One can

indeed show that the inverse 𝑆−1 can be replaced with the identity matrix if the coherent states are

taken on a tight frame [45] instead of the grid 𝐿𝑧,𝛾 introduced above. Unfortunately this requires a

huge number of CS and does thus not appear suited to tackle many-body setups, in general.

We shall see that the non-orthogonality of the coherent states causes the major issue which their

application su�ers from. On the contrary their vast overcompleteness, highlighted in this section and

intimately related to this non-orthogonality, will be the corner stone of their extremely favourable

complexity scaling with the number of particles.

2.4. Density operator representation in terms of CS

Later in this thesis, we aim at application of coherent states in setups of nonzero temperature. Thus

in this section we introduce the basic concepts of formulation of density operators in terms of coherent

states. The properties of a system of constant particle number being in thermodynamic equilibrium

with an energy reservoir at temperature 𝑇 are described by the canonical density operator

𝜌̂𝛽 =
(︁
tr
[︁
exp

(︁
−𝛽ℋ̂

)︁]︁)︁−1
exp

(︁
−𝛽ℋ̂

)︁
, (2.53)

where

𝛽 = (𝑘B𝑇 )
−1 (2.54)

is the inverse temperature, 𝑘B the Boltzmann constant and ℋ̂ is the Hamiltonian of the system.

We will exclusively be concerned with setups in which the system is given by a set of harmonic

oscillators. Thus we assume the Hamiltonian ℋ̂ to be the harmonic oscillator Hamiltonian (2.6) in

which we omit the ground state energy without loss of generality. By

exp
[︁
−𝛽ℏ𝜔𝑎̂†𝑎̂

]︁
|𝑛⟩ = exp [−𝛽ℏ𝜔𝑛] |𝑛⟩ (2.55)

one �nds the canonical density of the harmonic oscillator in number state representation

𝜌̂𝛽 = 𝑍(𝛽)

∞∑︁
𝑛=0

e−𝛽ℏ𝜔𝑛 |𝑛⟩ ⟨𝑛| , (2.56)
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where the inverse partition function 𝑍(𝛽) is given by

𝑍(𝛽) = 1− e−𝛽ℏ𝜔. (2.57)

The inverse temperature 𝛽 → ∞ as 𝑇 → 0, and thus the system is in the (pure) ground state

𝜌̂𝛽 = |0⟩ ⟨0| at zero temperature.

Let us for the moment consider again a system governed by a general density operator 𝜌̂. The attempt

to generate a phase space probability density by using the diagonal elements of 𝜌̂ in the CS basis (2.15)

gives rise to the de�nition of the 𝑄-function [46]

𝑄(𝛼, 𝛼*) =
1

𝜋
⟨𝛼| 𝜌̂ |𝛼⟩ . (2.58)

Since it is positive and normalized the 𝑄-function can be viewed as a kind of probability density.

Indeed, averages of antinormally ordered products of creation and annihilation operators can be

calculated from the 𝑄-function via

tr
[︁
(𝑎̂)𝑟(𝑎̂†)𝑠𝜌̂

]︁
=

∫︁
C

d𝛼𝛼𝑟(𝛼*)𝑠𝑄(𝛼, 𝛼*). (2.59)

Resting on the overcompleteness of the CS (see Sec. 2.3), the 𝑄-function has, among others, the

interesting property to completely determine the density operator (see e.g. [46] for details).

Accordingly, Glauber [47] and Sudarshan [48] showed that a wide variety of density operators 𝜌̂ can

be written as diagonal ensemble of CS,

𝜌̂ =

∫︁
C

d𝛼𝑃 (𝛼, 𝛼*) |𝛼⟩ ⟨𝛼| , (2.60)

where 𝑃 is called the 𝑃 -function. An enlightening treatise of its properties can be found in [49]. The

𝑃 -function plays a role similar to the one of the 𝑄-function for expectation values of normally ordered

products of creation and annihilation operators,

tr
[︁
(𝑎̂†)𝑟(𝑎̂)𝑠𝜌̂

]︁
=

∫︁
C

d𝛼 (𝛼*)𝑟𝛼𝑠𝑃 (𝛼, 𝛼*). (2.61)

It is straightforward to show, by insertion of (2.58) and (2.60), that 𝑄- and 𝑃 -function are related via

exp
(︁
|𝜆|2
)︁∫︁

C

d𝛼 exp [𝜆𝛼* − 𝜆*𝛼]𝑄(𝛼, 𝛼*) =

∫︁
C

d𝛼 exp [𝜆𝛼* − 𝜆*𝛼]𝑃 (𝛼, 𝛼*). (2.62)
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Since 𝜆𝛼*−𝜆*𝛼 is purely imaginary, the integrals are Fourier transforms in two variables, Re (𝛼) and

Im (𝛼). By transforming back, one obtains the more direct relation

𝑄(𝛼, 𝛼*) =
1

𝜋2

∫︁
C

d𝜆

∫︁
C

d𝛽 exp
(︁
− |𝜆|2 + 𝜆 (𝛽* − 𝛼*)− 𝜆* (𝛽 − 𝛼)

)︁
𝑃 (𝛽, 𝛽*) (2.63)

=
1

𝜋

∫︁
C

d𝛽 exp
[︁
− |𝛽 − 𝛼|2

]︁
𝑃 (𝛽, 𝛽*). (2.64)

Accordingly, one obtains

𝑃 (𝛼, 𝛼*) =
1

𝜋2

∫︁
C

d𝜆

∫︁
C

d𝛽 exp
(︁
|𝜆|2 + 𝜆 (𝛽* − 𝛼*)− 𝜆* (𝛽 − 𝛼)

)︁
𝑄(𝛽, 𝛽*), (2.65)

but the 𝜆-integration can not be performed directly since the integral does not exist due to the

exponential prefactor. For speci�ed 𝜌̂, however, the 𝛽-integration can be performed �rst, possibly

compensating for the prefactor. In particular, this is the case for the canonical density of the harmonic

oscillator.

For the thermal state (2.56), the corresponding 𝑄-function 𝑄𝛽 can be easily calculated from (2.15),

𝑄𝛽(𝛼, 𝛼
*) =

𝑍(𝛽)

𝜋

∞∑︁
𝑛=0

e−𝛽ℏ𝜔𝑛e−|𝛼|2 |𝛼|
2𝑛

𝑛!
=

𝑍(𝛽)

𝜋
exp

[︁
− |𝛼|2 𝑍(𝛽)

]︁
. (2.66)

Plugging this into (2.65), the 𝑃 -function can be calculated,

𝑃𝛽(𝛼, 𝛼
*) =

1

𝜋2

∫︁
C

d𝜆 exp
(︁
|𝜆|2 − 𝜆𝛼* + 𝜆*𝛼

)︁
exp

(︃
− |𝜆|2

𝑍(𝛽)

)︃
(2.67)

=
e𝛽ℏ𝜔 − 1

𝜋
exp

[︁
− |𝛼|2

(︁
e𝛽ℏ𝜔 − 1

)︁]︁
. (2.68)

Thus, for the canonical density of the harmonic oscillator the 𝑃 -function 𝑃𝛽 in (2.68) is a complex

Gaussian distribution with mean 0 and variance 1
2

(︀
e𝛽ℏ𝜔 − 1

)︀−1
. For zero temperature, this width

becomes zero and thus the distribution becomes a 𝛿-peak at zero. On the contrary, for nonzero

temperature the width diverges for 𝜔 → 0 meaning that oscillators of small frequency can be strongly

displaced. This will play an important role in later applications.

The Gaussian nature of the distribution (2.68) concedes the treatment of nonzero temperature setups

by Monte-Carlo sampling, allowing for a highly e�cient computation of the integral in (2.60) in

many-body setups. For further options to treat nonzero temperature by means of coherent states see

[50].



18 2.5 Ideal squeezed states

2.5. Ideal squeezed states

We have seen that the coherent states constitute a vastly overcomplete set of states in the quantum

harmonic oscillator's Hilbert space. The width
√︁

ℏ
𝑚𝜔 of a coherent state's wave function is �xed

by the mass 𝑚 and frequency 𝜔 of the oscillator. Still it may be desirable to have a set of states

with the width as a free parameter, whereas the minimum uncertainty property of coherent states

is required una�ected. The squeezed states, to be introduced below, constitute such a set of states,

with a squeezing parameter which allows to tune the degree of localization in position or momentum

even below
√︁

ℏ
2 . The localization in the other quadrature is then such that the overall uncertainty is

minimal, Δ𝑝Δ𝑞 = ℏ
2 .

Squeezed states |𝜉, 𝛼⟩ are de�ned as

|𝜉, 𝛼⟩ = 𝑆̂𝜉𝐷̂𝛼 |0⟩ , (2.69)

where 𝐷̂𝛼 is the displacement operator de�ned in Sec. 2.2 and 𝑆̂𝜉 is the squeezing operator de�ned

as

𝑆̂𝜉 = exp

[︂
1

2

(︁
𝜉*(𝑎̂)2 − 𝜉(𝑎̂†)2

)︁]︂
. (2.70)

Consequently, a squeezed state is obtained by �rst displacing the vacuum and then squeezing the

result.

Analogously to the displacement operator (2.35), the squeezing operator is unitary,

𝑆̂
†
𝜉 = 𝑆̂

−1
𝜉 = 𝑆̂−𝜉. (2.71)

We now aim at the derivation of the position representation of a squeezed state, where we follow the

argumentation of [51]. To this end, we rewrite the squeezing operator with the help of the Baker-

Campbell-Hausdor� formula in normal ordered form [52]

𝑆̂𝜉 = exp

[︂
−1

2
(𝑎̂†)2ei𝜑 tanh 𝑟

]︂
(cosh 𝑟)−(𝑎̂

†𝑎̂+ 1
2) exp

[︂
1

2
(𝑎̂)2e−i𝜑 tanh 𝑟

]︂
, (2.72)

where 𝜉 = 𝑟ei𝜑. We thus �nd that the squeezed ground state |𝜉, 0⟩ = 𝑆̂𝜉 |0⟩ is given by

|𝜉, 0⟩ = 1√
cosh 𝑟

exp

[︂
−1

2
ei𝜑 tanh 𝑟(𝑎̂†)2

]︂
|0⟩ . (2.73)

While squeezing and displacement operator do not commute, they can be interchanged as

𝑆̂𝜉𝐷̂𝛼 = 𝐷̂𝛼′𝑆̂𝜉, 𝛼′ = 𝛼 cosh 𝑟 − 𝛼*ei𝜑 sinh 𝑟. (2.74)
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Thus we can derive from the squeezed ground state (2.73) the general form of a squeezed state by

application of the displacement operator 𝐷̂𝛼′ ,

|𝜉, 𝛼⟩ = 1√
cosh 𝑟

exp

[︂
−1

2
|𝛼′|2 + 𝛼′𝑎̂† − 1

2
ei𝜑 tanh 𝑟

(︁
𝑎̂† − (𝛼′)*

)︁2]︂
|0⟩ , (2.75)

where 𝛼′ is given by (2.74). One immediately infers that (2.75) reduces to the expression of a coherent

state (2.34) in the case of zero squeezing 𝜉 = 0, since then 𝛼′ = 𝛼, cosh 𝑟 = 1 and tanh 𝑟 = 0.

We have �nally arrived at a form analogous to (2.34), with the annihilation operator dislodged from

the expression. This form is especially suited to calculate the overlap with a number state,

⟨𝑛|𝜉, 𝛼⟩ =
(︀
1
2e

i𝜑 tanh 𝑟
)︀𝑛

2

√
𝑛! cosh 𝑟

exp

[︂
−1

2

(︁
|𝛼|2 − 𝛼2ei𝜑 tanh 𝑟

)︁]︂
𝐻𝑛

(︂
𝛼√

2ei𝜑 cosh 𝑟 sinh 𝑟

)︂
. (2.76)

One may verify that this reduces to the overlap of a coherent state with a number state (2.16) for

zero squeezing 𝜉 = 0 by inferring

lim
𝑥→0

√
𝑥𝑛𝐻𝑛

(︂
𝛼√
𝑥

)︂
= 𝛼𝑛 (2.77)

from the fact that the Hermite polynomial 𝐻𝑛 has degree 𝑛.

Finally, by utilization of the generating function of the Hermite polynomials 𝐻𝑛 we �nd the position

representation of the squeezed states as [53]

⟨𝑞|𝜉, 𝛼⟩ =
∞∑︁
𝑛=0

⟨𝑞|𝑛⟩ ⟨𝑛|𝜉, 𝛼⟩ =
exp

(︀
−1

2𝛼1𝛼2

)︀
𝜋

1
4

√︀
𝑆(1 + 2i𝜅)

exp

[︂
−
(︂

1

2𝑆2(1 + 2i𝜅)
− i𝜅

)︂
(𝑞 − 𝛼1)

2 + i𝛼2𝑞

]︂
,

(2.78)

where 𝜅 = Im(𝜉) sinh 𝑟
2𝑟𝑆 and 𝑆 = cosh 𝑟 + Re(𝜉)

𝑟 sinh 𝑟 and 𝛼 is de�ned as in (2.20). Taking 𝜉 to be real

and positive and setting 𝑠 = e𝜉 yields

⟨𝑞|𝜉, 𝛼⟩ =
(︂

1

𝜋𝑠2

)︂ 1
4

exp

[︂
− 1

2𝑠2
(𝑞 − 𝛼1)

2 − i𝛼2𝑞

]︂
, (2.79)

which is obviously a Gaussian distribution with mean 𝛼1 determined by the displacement 𝛼 and width

𝑠 = e𝜉 determined by the squeezing parameter 𝜉. The relationship 𝑠 = e𝜉 con�rms that squeezing

with −𝜉 indeed compensates for squeezing with 𝜉 in nice compliance with Eq. (2.71).

We have in mind the application of squeezed states to real-time propagation in bosonic many-body

systems. While the squeezed states obviously ful�ll a closure relation analogous to the one of the

coherent states (see Eq. (2.26)),

1

𝜋

∫︁
C

d𝛼 |𝜉, 𝛼⟩ ⟨𝜉, 𝛼| = 𝑆̂𝜉

⎡⎣ 1

𝜋

∫︁
C

d𝛼 |𝛼⟩ ⟨𝛼|

⎤⎦ 𝑆̂
†
𝜉 = 1̂, (2.80)
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the additional squeezing parameter renders more �exible the set of possible states compared to the

canonical coherent states. We can think of the squeezed states as a set of states being even more

overcomplete than the coherent states. The calculations we have executed so far in this section reveal,

however, that this additional �exibility comes at the price of a much more complicated algebra for

the squeezed states.

In the applications we have in mind, we will need to calculate the commutation relations of the

squeezing parameter with the creation and annihilation operator. Derived from the Baker-Campbell-

Hausdor� formula, they read

𝑆̂
†
𝑎̂𝑆̂ = 𝑎̂ cosh 𝑟 + 𝑎̂†ei𝜑 sinh 𝑟, 𝑆̂

†
𝑎̂†𝑆̂ = 𝑎̂† cosh 𝑟 + 𝑎̂e−i𝜑 sinh 𝑟. (2.81)

We may expect two subsequent squeezes by 𝜉1 and 𝜉2 to be condensable into a single squeezing by a

certain 𝜉3. Indeed, the composition of two squeezing operators reads [54]

𝑆̂𝜉1𝑆̂𝜉2 = 𝑆̂𝜉3

(︂
1 + 𝑡1𝑡

*
2

1 + 𝑡*1𝑡2

)︂ 1
2
(𝑎̂†𝑎̂+ 1

2
)

, 𝑡𝑗 = ei𝜑𝑗 tanh 𝑟𝑗 for 𝜉𝑗 = 𝑟𝑗e
i𝜑𝑗 , (2.82)

where 𝜉3 =
𝑡1+𝑡2
1+𝑡*1𝑡2

. Formula (2.82) is consistent since it reduces to 𝑆̂𝜉1𝑆̂𝜉2 = 1̂ for 𝜉1 = −𝜉2 since then

𝑡1 = −𝑡2.

Many of the formulas in this section have been joined from di�erent standard text books and publica-

tions. It is their complicated character which makes the squeezed states hard to work with in second

quantized form. By assuming the squeezing parameter 𝜉 to be real and positive, all presented formulas

simplify tremendously. This is why, in order to do real-time propagation, applications typically resort

to this speci�cation.

Let us now highlight a second possible generalization to coherent states, the so-called displaced number

states.

2.6. Displaced number states

A vast number of generalizations of the concept of coherent states can be found in the literature

(see e.g. [55]). Apart from the previously introduced ideal squeezed states also squeezed number

states have been considered [53, 56, 57]. Since it combines a delocalization scheme with delocalized

functions, their application as time-dependent basis functions in real-time propagation problems does

not seem promising to us. We have seen in Secs. 2.1 and 2.2 that with increasing 𝑛 the number

states |𝑛⟩ become more and more delocalized, while the coherent states 𝛼 are highly localized for any

𝛼. Thus we may expect neither for large 𝑛 nor for bosonic many-body problems the coherent states

to be well suited to approximate the number states. We shall see later that a possible expedient is

the application of displaced number states, which basically are the number states displaced in phase

space.
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Displaced number states |𝛼, 𝑛⟩ are de�ned as

|𝛼, 𝑛⟩ := 𝐷̂𝛼 |𝑛⟩ , (2.83)

where |𝑛⟩ are the number states of the harmonic oscillator and 𝐷̂𝛼 is the displacement operator de�ned

in (2.31). While we have applications with �xed 𝑛 but time-dependent 𝛼 in mind, the parameters 𝑛

and 𝛼 allow in principle to tune between canonical coherent states (𝑛 = 0) and number states (𝛼 = 0).

By utilization of the properties of the Hermite polynomials, from (2.12) and (2.38) one may easily

�nd the position representation of a number state. It reads

⟨𝑞|𝛼, 𝑛⟩ =
(︁𝑚𝜔

𝜋ℏ

)︁ 1
4
(2𝑛𝑛!)−

1
2 exp

[︂
−𝑚𝜔

2ℏ
(𝑞 − 𝛼1)

2 + i𝛼2

(︂
𝑞 − 1

2
𝛼1

)︂]︂
𝐻𝑛

(︁𝑚𝜔

ℏ
(𝑞 − 𝛼1)

)︁
, (2.84)

where 𝛼 is given by (2.20). The position representation (2.84) reduces to the position representation

of coherent states, Eq. (2.21), for 𝑛 = 0, as well as to the one of the number states, Eq. (2.12), for

𝛼 = 0.

We concentrate here on the properties of displaced number states which will be important for later

applications. A profound essay on many further properties of displaced number states can be found

in [58].

While the number states are orthogonal, this does in general not hold for displaced number states.

We furthermore expect the overlap ⟨𝑚,𝛼|𝛽, 𝑛⟩ of two displaced number states not to be as localized

as the one of two coherent states. By using the composition rule of displacement operators (2.36) we

�nd that the overlap of two displaced number states is given by

⟨𝑚,𝛼|𝛽, 𝑛⟩ = exp

[︂
1

2
(𝛼*𝛽 − 𝛼𝛽*)

]︂
⟨𝑚| 𝐷̂𝛽−𝛼 |𝑛⟩

= exp

[︂
𝛼*𝛽 − 1

2

(︁
|𝛼|2 + |𝛽|2

)︁]︂⎧⎨⎩
√︁

𝑛!
𝑚!(𝛽 − 𝛼)𝑚−𝑛𝐿𝑚−𝑛

𝑛

(︁
|𝛽 − 𝛼|2

)︁
, 𝑚 ≥ 𝑛√︁

𝑚!
𝑛! (𝛼

* − 𝛽*)𝑛−𝑚 𝐿𝑛−𝑚
𝑚

(︁
|𝛽 − 𝛼|2

)︁
, 𝑛 ≥ 𝑚

.

(2.85)

The calculation of the overlap ⟨𝑚| 𝐷̂𝛽−𝛼 |𝑛⟩ is transferred to App. A. The expression of the overlap

(2.85) reduces to the overlap of coherent states (2.24) for 𝑚 = 𝑛 = 0, and to 𝛿𝑚𝑛 for the number

states in the case of 𝛼 = 𝛽 = 0.

In the left panel of Fig. 2.4 the probability density | ⟨𝑞|𝛼, 𝑛⟩ |2 for �xed 𝛼 of a displaced number state

is shown as function of 𝑞 for the �rst �ve integers. The right panel of Fig. 2.4 shows the absolute

value | ⟨𝑚,𝛼|𝛽, 𝑛⟩ | of the overlap of two displaced number states, for 𝑚 = 3, 𝑛 = 2 and �xed 𝛽 as

function of Re (𝛼) and Im (𝛼). It shows the rotational symmetry of the overlap which is apparent if

one considers the absolute value of (2.85).

It is clear that the displaced number states constitute an overcomplete set of states. For the

applications we have in mind it is important to have available a representation of unity in terms of
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Figure 2.4.: Left panel: probability density | ⟨𝑞|𝛼, 𝑛⟩ |2 of a displaced number state for fixed 𝛼 = 1+i
as function of 𝑞 in arbitrary units for the first 5 numbers: 𝑛 = 0 (blue solid), 𝑛 = 1 (red solid), 𝑛 = 2
(yellow solid), 𝑛 = 3 (violet solid) and 𝑛 = 4 (green solid). Ordinate is the corresponding energy in
units of ℏ𝜔. Right panel: absolute value | ⟨𝑚,𝛼|𝛽, 𝑛⟩ | of the overlap of two displaced number states,
for 𝑚 = 3, 𝑛 = 2 and fixed 𝛽 = 1 + i as function of Re (𝛼) and Im (𝛼).

the displaced number states. While it is straightforward to show that

1 =
∞∑︁
𝑛=0

|𝛼, 𝑛⟩ ⟨𝛼, 𝑛| , (2.86)

it turns out tedious to show that

1 =
1

𝜋

∫︁
C

d𝛼 |𝛼, 𝑛⟩ ⟨𝛼, 𝑛| . (2.87)

Since there is no proof to be found in the literature, the latter is shown in App. A.

We have introduced so far primarily three sets of states which we plan to apply in order to examine

the real-time dynamics of bosonic many-body systems: the canonical coherent states, the squeezed

states and the displaced number states. Although the canonical coherent states are the least general

ones of these, it will turn out that they result in the by far best suited formalism. Before we come to

this, in the next section we shall address the question how to determine the time-evolution of these

states in order to as good as possible reproduce the exact system dynamics.

2.7. On the variational principle

In only a very small number of bosonic many-body systems the exact system dynamics can be cal-

culated straightforwardly by expansion of the wave-function in terms of an orthogonal basis. This

is due to the exponential scaling of the basis size with the number of degrees of freedom: if 𝑛 basis
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functions shall be taken into account for a single degree of freedom, then the tensor-product basis for

𝑁 particles consists of 𝑛𝑁 basis functions. In order to circumvent this problem, we shall seek for a

wave-function in terms of parametrized basis functions. Although still convergence has to be checked

by increasing the number of basis functions, one may hope to circumvent the exponential scaling issue

by a clever parametrization of the wave function which explores the relevant region of phase space

with only a few basis functions.

While orthogonal basis functions have been utilized extremely successfully in this context by the

multi-con�gurational time-dependent Hartree method (MCTDH) and the multi-layer variant (ML-

MCTDH) [59�62], we here utilize the non-orthogonal sets of states introduced so far (see Secs. 2.2,

2.6 and 2.5) by assuming the respective parameters which de�ne the states to be time-dependent.

The closure relation, shown to hold for each of the sets, ensures that the system's initial state can be

represented in terms of the parametrized wave function. Then we will be concerned with the question

how to determine the time-evolution of the parameters such that the parametrized wave-function

optimally follows the exact system dynamics, where the adverb optimally is to be speci�ed.

We assume, as general as possible, a parametrization of the wave-function in terms of a set of complex

time-dependent parameters {𝑎1, . . . , 𝑎𝑛} ⊂ C,

|Ψ(𝑡)⟩ = |Ψ(𝑎1(𝑡), . . . , 𝑎𝑛(𝑡))⟩ . (2.88)

We will in the sequel suppress the explicit notion of the argument 𝑡 in |Ψ(𝑡)⟩.
It is of utmost importance that any such parametrization equips the set of states 𝑀 , de�ned as

𝑀 := {|Ψ(𝑎1, . . . , 𝑎𝑛)⟩ | 𝑎1, . . . , 𝑎𝑛 ∈ C}, (2.89)

with the structure of a complex manifold [63]. This means that the set of states 𝑀 is locally

homeomorph to C𝑛, which is not true for the full Hilbert space, in general. For each �xed point

(𝑎1, . . . , 𝑎𝑛) ∈ C𝑛 the local homeomorphism allows for translation of the concept of partial derivatives

from C𝑛 to 𝑀 . Consequently one can de�ne the tangent space 𝑇 (𝑀, (𝑎1, . . . , 𝑎𝑛)) on the set of states

𝑀 , spanned by the partial derivatives 𝜕𝑎𝑖 .

Since the set of states in general is a subspace of the full system's Hilbert space, one can not hope

for the Ansatz wave function (2.88) to exactly follow the system dynamics. Rather, by increasing the

number of basis functions included in the Ansatz, i.e. by increasing the number of parameters, one has

to check for convergence. On the route to convergence it is desirable to determine the time-evolution

of the parameters 𝑎𝑖 such that the wave-function (2.88) evolves according to a certain optimality

condition. In order to specify this condition, we assume that the system dynamics is governed by

some Hamiltonian ℋ̂, for which we would like to solve the TDSE

iℏ𝜕𝑡 |Ψ⟩ = ℋ̂ |Ψ⟩ . (2.90)
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While the action ℋ̂ |Ψ(𝑎1, . . . , 𝑎𝑛)⟩ of the Hamiltonian on the Ansatz wave function is exactly calcula-

ble, �nding the time-derivatives of the parameters is an optimization problem. We de�ne it in terms

of variational calculus: the time-derivatives 𝑎̇𝑖 are determined such that

𝜕𝑡 |Ψ⟩ =
𝑛∑︁

𝑖=1

𝑎̇𝑖𝜕𝑎𝑖 |Ψ⟩ (2.91)

obeys some variational principle.

In this context, three variational principles are commonly referred to in the literature: the McLachlan

variational principle [64] (MVP), the time-dependent variational principle [65] (TDVP) and the Dirac-

Frenkel variational principle [66] (DFVP). A nice overview along with further interesting details of

the respective principle can be found in [67].

Firstly, in McLachlan's version of the variational principle, the time-derivatives are determined such

that ||iℏΨ− ℋ̂Ψ||2 is minimized on 𝑀 . It can easily be shown that this leads to

Im
(︁
⟨𝛿Ψ| iℏ𝜕𝑡 − ℋ̂ |Ψ⟩

)︁
= 0. (2.92)

Here, the variation |𝛿Ψ⟩ denotes the possible variations of the parametrized wave function, obtained

by varying the parameters.

Secondly, in the TDVP, the time-derivatives of the parameters are determined from the requirement

of the action

𝑆 =

∫︁
d𝑡 𝐿, 𝐿 = ⟨Ψ| iℏ𝜕𝑡 − ℋ̂ |Ψ⟩ (2.93)

to be stationary, 𝛿𝑆 = 0 (along with some �xed boundary conditions), leading to

Re
(︁
⟨𝛿Ψ| iℏ𝜕𝑡 − ℋ̂ |Ψ⟩

)︁
= 0. (2.94)

Thirdly, the DFVP states directly and without derivation from a speci�c extremal condition that

⟨𝛿Ψ| iℏ𝜕𝑡 − ℋ̂ |Ψ⟩ = 0. (2.95)

Obviously the TDVP and the MVP can be derived from the DFVP, while it is not obvious that the

reverse holds as well. Assuming the parameters 𝑎1, . . . , 𝑎𝑛 in (2.88) to be real, it can be shown that

a su�cient condition for the equivalence of the di�erent versions of the variational principle is that

𝑀 can be parametrized by pairs of real complementary parameters (see [68] for details and for the

de�nition of complementary parameters). We translate the result of [68] to the present context by

combining complementary pairs of parameters to complex ones, leading to the important theorem:

The three variational principles MVP, TDVP and DFVP are equivalent if 𝑀 can be parametrized by
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complex parameters 𝑎𝑖 such that |Ψ⟩ ful�lls the Cauchy-Riemann equations

𝜕

𝜕𝑎*𝑖
|Ψ⟩ = 0. (2.96)

We have argued above that 𝑀 is locally homeomorph to C𝑛. In this sense the requirement for |Ψ⟩ to
ful�ll the Cauchy-Riemann equations (2.96) coincides with the requirement of |Ψ⟩ being parametriz-

able as an analytic function on 𝑀 .

It is of utmost importance to note that the previous theorem does not imply that for a given

parametrization which does not ful�ll condition (2.96) the three variational principles MVP, TDVP

and DFVP are not equivalent. In fact we shall see that a wave function parametrized in terms of

coherent states does actually not ful�ll condition (2.96) - but it can be reparametrized to ful�ll this

condition. We shall furthermore see that for a wave function parametrized by displaced number states

neither condition (2.96) nor the equivalence of the three variational principles hold. This hints that

the above theorem is indeed an equivalence. Finally we will see that for a wave function parametrized

in terms of squeezed states, resorting to real squeezing parameters ensures the equivalence of the three

variational principles.

For all three variational principles the equations of motion for the parameters can be obtained by ex-

pressing the variation |𝛿Ψ⟩ in terms of the parameter variations 𝛿𝑎𝑖 and assuming the latter's mutual

independence (see Sec. 3.1 for details). The de�nition of the action 𝑆 in the TDVP (see eq. (2.93)),

however, allows to derive the equations of motion on a di�erent route.

From the Lagrangian density (2.93) the Euler-Lagrange equations can easily be derived (see e.g. [69]).

They read

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑢̇
− 𝜕𝐿

𝜕𝑢
= 0. (2.97)

Here, 𝑢 has to be replaced by all parameters 𝑎𝑖 and their complex conjugates.

Since the Euler-Lagrange equations have to be derived from the `pure form' of the variational principle,

one expects the e�ort invested in this derivation to pay o� when computing the equations of motion

(EOM) for the parameters. Peculiarly, the contrary is the case: computing the EOM in the Euler-

Lagrange formalism turns out highly arduous. Furthermore, the Euler-Lagrange formalism heavily

disguises the structure which is apparent on the level of the pure variational principle. Moreover,

di�ering from (2.93) also a Lagrangian density

𝐿 =
iℏ
2

[︁
⟨Ψ|Ψ̇⟩ − ⟨Ψ̇|Ψ⟩

]︁
− ⟨Ψ| ℋ̂ |Ψ⟩ (2.98)

is used in the literature. In [70] we have investigated di�erent aspects of the Euler Lagrange formalism

as applied to wave functions parametrized by coherent states. Especially the usefulness of (2.98) in

the context of normalized wave functions has been detailed there.

Since conservation of the normalization of the wave function is a requirement one would naturally

impose on (almost) any propagation scheme, we examine it in more detail for the propagation of
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parametrized wave functions in terms of the variational principle. Indeed, it can be shown that the

normalization of a wave function whose parameter's time evolution is determined from the DFVP is

conserved if the corresponding set of states 𝑀 contains rays, i.e. if 𝛼𝑢 ∈ 𝑀 for all 𝛼 > 0, 𝑢 ∈ 𝑀 (see

[67] for details). Since any parametrization which we employ here ful�lls this condition, the previous

statement ever ensures the conservation of the normalization of the wave function.

It has been ampli�ed nicely in [71] for an Ansatz in terms of coherent states that the Euler-Lagrange

and the pure variational formalism indeed yield identical equations of motion. Although we have

utilized the Euler Lagrange formalism in many applications, we concentrate here on the application

of the DFVP due to the former's tediousness and the latter's simplicity and straightforwardness.

We have now completed the discourse on theoretical tools required to employ coherent states as time-

dependent basis functions. In the next chapter, we will detail how to apply these tools in order to

obtain from the coherent states a highly functional method called multi Davydov-Ansatz.



3. Real time propagation with CS

As we have seen in the previous chapter, the CS have a vast number of interesting properties. What

makes them appealing candidates for basis functions for real-time propagation for a large number of

degrees of freedom is their overcompleteness and their local nature (see Secs. 2.1 and 2.3). Since the

CS are localized, matrix elements of potentials only known locally can easily be calculated. This is of

utmost importance in so-called on the �y methods, where the potential is determined simultaneously

with the propagation of the equations of motion. From the overcompleteness, on the other hand, we

may expect the number of basis functions required to adequately reproduce the exact wave function to

be reasonably small in high-dimensional problems. Already in the early stages of quantum mechanics

people have tried to utilize CS as basis functions in order to approximately solve the TDSE. Semiclas-

sical methods founded their triumphal march on the classical properties of CS, namely their minimal

uncertainty (2.27) and their classical time-evolution under the action of the harmonic oscillator propa-

gator (2.30). Emanating from the correspondence principle and in�uential works of Gutzwiller [72�75],

Miller [76�79], Marcus [80�85], Heller [86] and many others, the method was ennobled by Herman

[87, 88], Kluk [89] and others [90, 91]. While the initial value representation remained Achilles' heel

of the method, requiring a vast oversampling of the initial state, attempts to write the wave function

as an exact expansion in terms of CS emerged in parallel [86, 92�94]. While CS are utilized today in

many di�erent contexts, two main groups exist (to our best knowledge) which employ CS as moving

basis functions in combination with the full variational principle. Firstly, the group of Yang Zhao

has contributed valuable work in the �eld. Secondly, the group of Irene Burghardt has contributed

many precious works employing sets of moving CS as basis functions. This group has from the very

beginning publicly risen to the challenge of certain issues intimately related to the method [95] and

outlined in detail below. After systematically deriving the equations of motion from the variational

principle we shall highlight how to solve these issues. Two arti�ces will be shown to su�ce in order to

circumvent them, rendering extremely stable and reliable the formerly highly unstable method. On

its basis, the multi Davydov-Ansatz being a straightforward generalization of the basic method to

more general systems is introduced. Furthermore, also squeezed states and displaced number states

will be investigated with respect to their potential as time-dependent moving basis functions. Finally

it is outlined how to treat non-zero temperature systems with the multi Davydov-Ansatz.

3.1. Variational principle with CS

We set the stage by �rst considering an 𝑁 -particle Hilbert space and a dynamics being governed

by the Hamiltonian ℋ̂ =
∑︀𝑁

𝑗=1 𝐻̂𝑗 +
∑︀

𝑖<𝑗 𝑊̂ 𝑖𝑗 , with one-particle Hamiltonians 𝐻̂𝑗 and two-particle

interactions 𝑊̂ 𝑖𝑗 .

A straightforward numerical calculation of the exact dynamics in terms of the number states, intro-

duced in Sec. 2.1, is in most cases out of reach due to the exponential scaling of the basis size with



28 3.1 Variational principle with CS

the number 𝑁 of particles. In order to circumvent this issue, we aim at utilization of an appropriate

parametrization along with the application of a variational principle, outlined in Sec. 2.7.

We shall focus on the parametrization of the wave function in terms of coherent states (see Sec. 2.2)

since it will turn out that for these - in contrast to the displaced number states and for the squeezed

states - the three variational principles MVP, TDVP and DFVP are equivalent. We shall furthermore

see that the overcompleteness of the CS is at the heart of their extremely favourable scaling with the

number of degrees of freedom.

Any result from Chap. 2 straightforwardly generalizes to the setting of 𝑁 degrees of freedom. Specif-

ically, 𝑁 -mode coherent states

|𝛼⟩ :=
𝑁⨂︁

𝑛=1

|𝛼𝑛⟩ , 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) ∈ C𝑁 , (3.1)

are multi-dimensional Gaussians in phase space,

⟨q|𝛼⟩ =

(︃
𝑁∏︁

𝑛=1

𝑚𝑛𝜔𝑛

𝜋ℏ

)︃ 1
4

exp

[︃
𝑁∑︁

𝑛=1

(︂
−|𝛼𝑛|2

2
− 𝜉2𝑛

2
+
√
2𝜉𝑛𝛼𝑛 − 𝛼2

𝑛

2

)︂]︃
, 𝜉𝑛 =

√︂
𝑚𝑛𝜔𝑛

ℏ
𝑞𝑛,

(3.2)

whose overlap is given by

⟨𝛼|𝛽⟩ =
𝑁∏︁

𝑛=1

⟨𝛼𝑛|𝛽𝑛⟩ = exp

[︃
𝑁∑︁

𝑛=1

(︂
𝛼*
𝑛𝛽𝑛 − 1

2

(︁
|𝛼𝑛|2 + |𝛽𝑛|2

)︁)︂]︃
. (3.3)

Any wave function |Ψ⟩ in the 𝑁 -particle Hilbert space can be written in terms of multi-mode coherent

states by utilization of the 𝑁 -mode analog of the closure relation (2.26),

|Ψ⟩ = 1

𝜋𝑁

∫︁
C𝑁

d𝛼 ⟨𝛼|Ψ⟩ |𝛼⟩ . (3.4)

By straightforward discretization of (3.4), one deduces that an Ansatz for the wave function in terms

of multi-mode CS of multiplicity 𝑀 is given by

|ΨM

CS(𝑡)⟩ =
𝑀∑︁
𝑘=1

𝐴𝑘(𝑡) |𝛼𝑘(𝑡)⟩ . (3.5)

Here, 𝐴𝑘(𝑡) are time-dependent complex coe�cients, while 𝛼𝑘(𝑡) are time-dependent 𝑁 -dimensional

complex displacements. We shall refer to this Ansatz as the variational multi-con�gurational Gaussian

(vMCG) Ansatz.

Clearly, the integral entering Eq. (3.4) is an 𝑁 -fold product of independent integrals each of whose

integration has to be performed over the complex plane. A discretization of each single integral, how-

ever, is not at all expedient since then one was back at exponential scaling. Rather, the discretization
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(3.5) comprises the expectation that our unconsciousness about a single particles dynamics will be

taken care of by the variational principle. Speaking more generically: in order to reproduce the ex-

act dynamics it may be that for certain particles a single coherent state is enough, while for others

multiple coherent states may be needed. Although it is not known a priori for which of the particles

which number of coherent states is needed, we may well leave this issue to the variational principle

since it optimizes the dynamics in this respect.

Let us now investigate the structure of the vMCG Ansatz (3.5) in more detail.

3.1.1. Gauge freedom in the vMCG Ansatz

For the following, it is of utmost importance that there is a gauge freedom in the vMCG Ansatz

(3.5) in the sense that the wave function (3.5) is invariant with respect to (time-dependent) linear

transformations of the CS basis. Let𝑄 be a nonsingular transformation matrix, then the wave function

remains unchanged if 𝐴𝑘 and |𝛼𝑘⟩ are replaced by

𝐴𝑘 → 𝐴̃𝑘 =
𝑀∑︁
𝑙=1

𝐴𝑙

(︀
𝑄−1

)︀
𝑙𝑘

and |𝛼𝑘⟩ → |𝛼̃𝑘⟩ =
𝑀∑︁
𝑙=1

𝑄𝑘𝑙 |𝛼𝑙⟩ . (3.6)

This is analogous to the multi-con�gurational time-dependent Hartree approach[59, 60] (MCTDH),

where the gauge freedom is used to signi�cantly simplify the equations of motion.

Let us �rst consider diagonal transformations 𝑄, which e�ectively amount to multiplication of each

CS with a possibly time-dependent non-zero C-number. Due to the normalization factor of the CS,

the Ansatz (3.5) does not obey relation (2.96),

𝜕

𝜕𝛼*
𝑖

|ΨM

CS⟩ ≠ 0. (3.7)

But, transforming coe�cients and displacements according to (3.6) by the transformation

𝑄𝑘𝑙 :=

⎧⎪⎨⎪⎩exp

[︂
1
2

𝑁∑︀
𝑛=1

|𝛼𝑘𝑛|2
]︂
, 𝑘 = 𝑙

0, 𝑘 ̸= 𝑙

(3.8)

results in the same wave function, yet it obeys property (2.96) because the normalization terms are

canceled. Thus, although the Ansatz (3.5) does not obey the relation (2.96), it can be reparametrized

such that condition (2.96) is ful�lled. Hence, according to Sec. 2.7, the three variational principles

are equivalent for the wave function Ansatz (3.5). On the basis of this equivalence holding, we may

propagate the parameters of the vMCG Ansatz by the DFVP on a thorough ground.

Apart from the vMCG Ansatz (3.5) also other discretizations of (3.4) are possible. While in order

to avoid exponential scaling a discretization of each single integral entering (3.4) is not expedient,

separate discretization of certain parts of the system may well be appropriate. Thus let us, in the

spirit of MCTDH, split the full Hilbert space arti�cially into (at least) two parts, e.g. by combining
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`physical' or `logical' coordinates,

𝐻 = 𝐻1 ⊗𝐻2. (3.9)

Then, the wave-function may be expanded in terms of CS in each subspace separately,

|Ψ(𝑡)⟩ =

(︃
𝑀1∑︁
𝑘=1

𝐴𝑘 |𝛼𝑘⟩

)︃⎛⎝𝑀2∑︁
𝑗=1

𝐵𝑗 |𝛽𝑗⟩

⎞⎠ . (3.10)

While this decomposition in comparison to (3.5) introduces further coe�cients, it allows for opti-

mization in each subspace separately. To be more precise: while the additional equations for the

additional coe�cients come at marginal computational cost, the dimension of the space in which the

displacements have to be propagated can be halved. This constitutes an extraordinary advantage in

the MCTDH method. But, in tremendous contrast to the latter, the basis functions employed here

are not orthogonal. Consequently, in order to obtain the equations in the reduced space, a corre-

sponding overlap matrix has to be inverted. Since its invertibility can not always be guaranteed, this

unfortunately compensates for the gained e�ort. Apart from the requirement of a priori guessing a

decomposition of the full Hilbert space, this introduces further instabilities into the method and hence

we refrain from following this route.

By further exploiting the gauge freedom of the vMCG method, the authors of [28, 29, 71, 96, 97] have

successfully included the vMCG method into the MCTDH formalism. By allowing not only diagonal

but more general transformations, one may mutually orthogonalize sets of CS. This is being done in

the so-called Gaussian-MCTDH (GMCTDH) method). Here, however, we will take an alternative

route here and show that with the improvements of the vMCG Ansatz, outlined in Secs. 3.3.1 and

3.3.2 su�ce to yield a method working smoothly also without application of more general transfor-

mations.

3.1.2. Equations of motion for the vMCG Ansatz

Before we explicitly derive the equations of motion for the vMCG method, let us brie�y mention that

the set of states

𝑀 :=
{︁ 𝑀∑︁

𝑘=1

𝐴𝑘 |𝛼𝑘⟩ |𝐴𝑘 ∈ C,𝛼𝑘 ∈ C𝑁
}︁

(3.11)

corresponding to the vMCG Ansatz (3.5) obviously contains rays, i.e. 𝛽𝑢 ∈ 𝑀 for all 𝛽 ∈ C, 𝑢 ∈ 𝑀 .

Hence the norm of the Ansatz wave function (3.5) is conserved if its parameters are propagated

according to the DFVP (see Sec. 2.7).

Now that we know that for the Ansatz (3.5) all three variational principles are equivalent, and that

the wave function's norm is conserved if propagated with any of these, we may set about explicit
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calculation of the equations of motion. Due to its simplicity and straightforwardness, we shall apply

the DFVP.

The variation of the Ansatz (3.5) reads

⟨𝛿ΨM

CS| =
𝑀∑︁
𝑙=1

⟨𝛼𝑙|

{︃
𝛿𝐴*

𝑙 +𝐴*
𝑙

𝑁∑︁
𝑛=1

[︂(︂
−1

2
𝛼𝑙𝑛 + 𝑎̂𝑛

)︂
𝛿𝛼*

𝑙𝑛 − 1

2
𝛼*
𝑙𝑛𝛿𝛼𝑙𝑛

]︂}︃
, (3.12)

where the variation with respect to the displacements is most easily calculated from (2.34). All

appearing variations are mutually independent. Thus the equations of motion read

⟨𝛼𝑙| i𝜕𝑡 − ℋ̂ |ΨM

CS⟩ = 0, (3.13)

𝐴*
𝑙 ⟨𝛼𝑙| 𝑎̂𝑗

(︁
i𝜕𝑡 − ℋ̂

)︁
|ΨM

CS⟩ = 0, (3.14)

where Eq. (3.13) was obtained from the variations of the coe�cients, (3.14) was obtained from the

variations of the displacements, and where the �rst equation was used to simplify the second one. By

insertion of the explicit expression for the time-derivative of the Ansatz wave function

𝜕𝑡 |ΨM

CS⟩ =
𝑀∑︁
𝑘=1

{︃
𝐴̇𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

[︂
−1

2
(𝛼𝑘𝑛𝛼̇

*
𝑘𝑛 + 𝛼̇𝑘𝑛𝛼

*
𝑘𝑛) + 𝛼̇𝑘𝑛𝑎̂

†
𝑛

]︂}︃
|𝛼𝑘⟩ , (3.15)

equations (3.13,3.14) read

i

𝑀∑︁
𝑘=1

{︃
𝐴̇𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

[︂
−1

2
(𝛼𝑘𝑛𝛼̇

*
𝑘𝑛 + 𝛼̇𝑘𝑛𝛼

*
𝑘𝑛) + 𝛼̇𝑘𝑛𝛼

*
𝑙𝑛

]︂}︃
⟨𝛼𝑙|𝛼𝑘⟩ = ⟨𝛼𝑙| ℋ̂ |ΨM

CS⟩ , (3.16)

i𝐴*
𝑙

𝑀∑︁
𝑘=1

{︃
𝛼𝑘𝑗

(︃
𝐴̇𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

[︂
−1

2
(𝛼𝑘𝑛𝛼̇

*
𝑘𝑛 + 𝛼̇𝑘𝑛𝛼

*
𝑘𝑛) + 𝛼̇𝑘𝑛𝛼

*
𝑙𝑛

]︂)︃
+𝐴𝑘𝛼̇𝑘𝑗

}︃
⟨𝛼𝑙|𝛼𝑘⟩

= 𝐴*
𝑙 ⟨𝛼𝑙| 𝑎̂𝑗ℋ̂ |ΨM

CS⟩ . (3.17)

Eqs. (3.16,3.17) are the central working equations of this thesis. They constitute a system of highly

nonlinear ordinary di�erential equations, which one attempts to solve numerically in two steps:

(i) solve the linear system of equations for the vector containing derivatives of the parameters

(ii) integrate the vector

While step (ii) is just a matter of appropriate technical equipment, step (i) may be problematic.

Firstly, any numerical solver requires the linear system to be in standard form

𝑀 #�𝑥 =
#�

𝑏 . (3.18)

It is not straightforward how to do so due to the complex conjugates of the derivatives of the dis-

placements 𝛼̇*
𝑘𝑛. Secondly, if the linear system was in standard form, moreover its unique solubility
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would be required. It will turn out that this is actually very often not the case. However, these two

problems are so severe that an own section is attributed to each of them (see the next two sections).

3.2. Standard form of the linear system

In order to bring the system (3.16,3.17) into standard form, the most obvious approach would be

to split real and imaginary parts. Besides this being cumbersome, it would completely disguise the

structure of the coe�cient matrix. With the intention to avoid splitting of real and imaginary parts,

the authors of [29, 30] therein and in subsequent works [71, 95�100] employ an Ansatz

|Ψ(𝑡)⟩ =
𝑀∑︁
𝑘=1

𝐵𝑘(𝑡) exp [𝜇𝑘(𝑡)] |𝛽𝑘(𝑡)⟩ , (3.19)

where

|𝛽𝑘⟩ =
𝑁⨂︁

𝑛=1

|𝛽𝑘𝑛⟩ , |𝛽𝑘𝑛⟩ = exp
[︁
𝛽𝑘𝑛𝑎̂

†
𝑛

]︁
|0⟩ (3.20)

are unnormalized CS and 𝜇𝑘(𝑡) are additional parameters. Then, 𝜇̇𝑘 replaces the problematic terms

in the EOM,

𝑁∑︁
𝑘=1

[︂
−1

2

(︁
𝛽𝑘𝑛𝛽̇

*
𝑘𝑛 + 𝛽̇𝑘𝑛𝛽

*
𝑘𝑛

)︁]︂
→ 𝜇̇𝑘, (3.21)

which stem from the normalization of the CS. However, keeping in mind the gauge freedom elaborated

on at the beginning of Sec. 3.1, it is little surprising that no additional equations can be obtained for

the 𝜇𝑘 from the variational principle. The equations one obtains actually coincide with those for the

coe�cients (3.16). Consequently it is argued that one is free to choose 𝜇̇𝑘 = 0, and one sets

𝜇𝑘(𝑡) = −1

2

𝑁∑︁
𝑛=1

|𝛽𝑘𝑛(𝑡)|2 (3.22)

as the appropriate normalization of the CS at each time step. This procedure is inconsistent, since

then neither 𝜇̇𝑘 = 0 nor is independent variation of 𝜇𝑘 and 𝛽𝑘𝑛 justi�ed. Surprisingly enough, there

is a vast number of publications where this method is applied, admittedly su�ering from certain in-

stabilities which are nevertheless attributed to the issues outlined in the next section.

Let us now outline how to consistently bring system (3.16,3.17) into standard form. The key obser-

vation is that

𝑋𝑘 := 𝐴̇𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

[︂
−1

2
(𝛼𝑘𝑛𝛼̇

*
𝑘𝑛 + 𝛼̇𝑘𝑛𝛼

*
𝑘𝑛)

]︂
(3.23)
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is only dependent on the index 𝑘, and appears equally in (3.16) and in (3.17). Consequently, having

to solve the linear system (3.16,3.17) for the unknowns 𝐴̇𝑘 and 𝛼̇𝑘𝑛 is replaced by having to solve the

system

i

𝑀∑︁
𝑘=1

{︃
𝑋𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

𝛼̇𝑘𝑛𝛼
*
𝑙𝑛

}︃
⟨𝛼𝑙|𝛼𝑘⟩ = ⟨𝛼𝑙| ℋ̂ |ΨM

CS⟩ , (3.24)

i𝐴*
𝑙

𝑀∑︁
𝑘=1

{︃
𝛼𝑘𝑗

(︃
𝑋𝑘 +𝐴𝑘

𝑁∑︁
𝑛=1

𝛼̇𝑘𝑛𝛼
*
𝑙𝑛

)︃
+𝐴𝑘𝛼̇𝑘𝑗

}︃
⟨𝛼𝑙|𝛼𝑘⟩ = 𝐴*

𝑙 ⟨𝛼𝑙| 𝑎̂𝑗ℋ̂ |ΨM

CS⟩ (3.25)

for the unknowns 𝑋𝑘 and 𝛼̇𝑘𝑛. Advantageously, it is immediate how to bring the latter in standard

form (3.18). Subsequent to its numerical solution, 𝐴̇𝑘 can easily be calculated from 𝑋𝑘 and 𝛼̇𝑘𝑛

according to (3.23).

This whole idea actually rests upon the gauge freedom of the vMCG Ansatz (see Sec. 3.1.1) and the

transformation (3.8), since 𝑋𝑘 originates from coe�cients transformed according to (3.8) forth and

back,

𝑋𝑘 = 𝑄𝑘𝑘𝜕𝑡
(︀
𝑄−1

)︀
𝑘𝑘

𝐴𝑘, 𝑄𝑘𝑘 = exp

[︃
1

2

𝑁∑︁
𝑛=1

|𝛼𝑘𝑛|2
]︃
. (3.26)

Clearly, application of unnormalized CS without introduction of the 𝜇𝑘 parameters would as well

eliminate the complex conjugates of the displacements' derivatives from the EOM (see [70] for further

details). This again corresponds to the gauge (3.8),

𝐴𝑘 → 𝐴̃𝑘 =
(︀
𝑄−1

)︀
𝑘𝑘

𝐴𝑘, 𝑄𝑘𝑘 = exp

[︃
1

2

𝑁∑︁
𝑛=1

|𝛼𝑘𝑛|2
]︃
, (3.27)

but without transforming back as in (3.26). Disadvantageously in this case the coe�cients may

become large: given a certain magnitude for the coe�cients 𝐴𝑘 in (3.27), the transformed coe�cients

𝐴̃𝑘 have to scale reciprocally as 𝐴̃𝑘 = 𝑄𝑘𝑘𝐴𝑘. Since this is numerically less stable, the procedure

which introduces the 𝑋𝑘 will be favored in the sequel.

Now that we have shown how to bring the system of equations of motion into standard form, we

illuminate in more detail the second problem mentioned in Sec. 3.1.2: the regularity of the coe�cient

matrix.

3.3. Regularity of the coefficient matrix

We shall now address the main issue which real-time propagation with CS has su�ered from for the

last decades: the invertibility of the coe�cient matrix. We will show that the e�ort invested in the

previous section to bring the system (3.16,3.17) into standard form (3.18) will pay o� here. From the

system (3.24,3.25) we infer that the coe�cient matrix is (almost) singular if
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(a) any of the coe�cients 𝐴𝑙 ≈ 0, since then the corresponding 𝑁 equations (3.25) read 0 ≈ 0,

(b) for any two CS 𝛼𝑙1 ≈ 𝛼𝑙2 (𝑙1 ̸= 𝑙2), since then two of the equations (3.24) and 2𝑁 (pairwise)

equations (3.25) are (almost) equal, called the linear dependency problem.

(a) is related to the type of the Ansatz (3.5) being kind of a scalar product between the vector

containing the coe�cients and the `vector' containing the coherent states. Adopting the language of

(ML-)MCTDH [60], we will speak of the CS |𝛼𝑙⟩ as unpopulated if 𝐴𝑙 ≈ 0. Clearly then the position

and the evolution of the CS |𝛼𝑙⟩ is rather arbitrary. Indeed, the authors of [101�103] have shown that

one may infer directly from the TDSE that in the case 𝐴𝑙 = 0 the time evolution of the corresponding

displacements 𝛼𝑙𝑛 cannot be given by any �rst-order di�erential equation. Consequently, canceling

𝐴*
𝑙 in (3.25) is not expedient. Rather, some workaround has to be found. In [60] the authors propose

to regularize the (positive semide�nite) single-particle density matrix

𝜌𝑙𝑘 = 𝐴*
𝑙𝐴𝑘 (3.28)

according to

𝜌 → 𝜌+ 𝜀 exp
[︁
−𝜌

𝜀

]︁
, 𝜀 ≪ 1. (3.29)

As can be seen by diagonalization of 𝜌 this amounts in replacing the eigenvalues 𝜆 ≥ 0 of 𝜌 according

to

𝜆 → 𝜆+ exp

[︂
−𝜆

𝜀

]︂
, 𝜀 ≪ 1, (3.30)

analogously to the proceeding given in [102, 103].

While calculation of the matrix exponential may be computationally expensive, one may also resort

to regularization of 𝜌 according to

𝜌 → 𝜌+ 𝜀1, 𝜀 ≪ 1, (3.31)

where 1 is the identity matrix.

Furthermore, in [101] the author proposes to resort to second-order di�erential equations. Due to

the nonorthogonality of the CS, this is not feasible in our case. Instead, we would like to resort to

a regularization according to (3.29), but special care has to be taken due to the nonorthogonality of

the coherent states. In the next section, we highlight how to carefully regularize the equations (3.24,

3.25) according to (3.29) or (3.31), while in Sec. 3.3.2 we address case (b) of two CS coming close.

3.3.1. Regularization in the case of vanishing coefficients

It will be convenient to express the ingredients entering the equations (3.24, 3.25) by matrix operations.

To this end we denote the Hadamard product (elementwise multiplication) by ∘, the tensor product
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by ⊗, by 1𝑛 the 𝑛 × 𝑛 unit matrix, and by 1𝑚×𝑛 the matrix in C𝑚×𝑛 which consists of only ones.

Then we de�ne the matrix 𝐹 of displacements

𝐹𝑘𝑛 := 𝛼𝑘𝑛, (3.32)

and the vector of coe�cients

𝐴 ∈ C𝑀×1. (3.33)

Then the coe�cient matrix 𝑀 of system (3.24, 3.25) in standard form, up to the pre-factor i, reads

𝑀 =

(︃
𝑆 𝐿2

𝐿†
2 𝐿3

)︃
, (3.34)

where the matrix 𝜌 is de�ned by Eq. (3.28), the overlap matrix 𝑆 is de�ned as

𝑆𝑙𝑘 = ⟨𝛼𝑙|𝛼𝑘⟩ , (3.35)

and

𝐿2 =
(︀
𝐹 * ⊗𝐴𝑇

)︀
∘ (11×𝑁 ⊗ 𝑆) , (3.36)

𝐿3 =
[︀
11×𝑁 ⊗ 𝐹 𝑇 ⊗ 1𝑀×1

]︀
∘ [1𝑁×1 ⊗ 𝐹 * ⊗ 11×𝑀 )] ∘ [1𝑁×𝑁 ⊗ (𝜌 ∘ 𝑆)] + 1𝑁 ⊗ (𝜌 ∘ 𝑆) . (3.37)

It has been claimed in [95] that for the unpopulated CS, regularization of 𝐿3 en bloc would result

in a stable algorithm. On the contrary, our implementations show that doing so results in further

instabilities since it e�ects not only the coe�cients (present in 𝜌) but also the displacements (present

in F and S). Regularizing not carefully enough thus leads to further instabilities since it indirectly

changes the present positions of the coherent states.

Conversely, the explicit form of 𝑀 given in (3.34) nicely highlights via (3.37) how to carefully reg-

ularize. Regularizing only 𝜌 in (3.37) according to (3.29) or (3.31) in the case of (almost) vanishing

coe�cients does not indirectly a�ect the positions of the CS, and thus does not introduce further

instabilities into the propagation scheme. Indeed it turns out to be highly stable, which we will detail

in Sec. 4.3.1.

3.3.2. Apoptosis of CS

In this section, we address issue (b) of Sec. 3.3. If two CS come close, 𝛼𝑙1 ≈ 𝛼𝑙2 , their roles are

not unique and consequently their derivatives can not be determined uniquely, rendering (almost)

singular the coe�cient matrix 𝑀 . This setup does not occur if orthogonal states are propagated,

thus we can not lend further help from MCTDH where the wave function is expanded in terms of

(layers of) orthogonal basis states. If 𝛼𝑙1 ≈ 𝛼𝑙2 , only two of the equations (3.24) become equal,

while 2𝑁 of the equations (3.25) become pairwise equal. The physical problems which one attempts
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to tackle with the help of CS and Ansatz (3.5) are typically high-dimensional, since one hopes their

vast overcompleteness to beat the exponential scaling of orthogonal basis sets. But it is especially

these high-dimensional problems where CS coming close is the dominant issue [104]. Furthermore,

in unfortunate synergy with the latter, we may expect the issue generically to occur if enough CS

are included to ensure convergence [105], since then they are dense enough to exhibit redundancies.

Thus CS generically come close as soon as convergence with respect to the number of CS is reached

and hence full convergence is out of reach. Frustratingly enough in most applications only a few CS

su�ce to be already close to convergence.

In order to circumvent this problem, plenty of e�ort such as re-expansion schemes [106], multiplication

of the CS with orthogonal polynomials [107, 108], orthogonalizing momentum-symmetrized Gaussians

[109] and projector splitting [110] has been invested. Nevertheless, each of these methods su�ers itself

from further issues (loss of norm conservation in the case of re-expansion, complication of EOM and

indeterminateness of coe�cients in the case of orthogonal polynomials, etc).

A �rst immediate observation is related to the dimension of the matrices entering 𝑀 which are af-

fected by the closeness of CS. 𝛼𝑙1 ≈ 𝛼𝑙2 produces (almost) equal rows in 𝐹 and 𝑆 (see (3.34)-(3.37)).

While we may hope to regularize the overlap matrix 𝑆 ∈ C𝑀×𝑀 along similar lines as the density

matrix 𝜌 ∈ C𝑀×𝑀 in Sec. 3.3, this is unlikely to succeed for 𝐹 ∈ C𝑀×𝑁 since in typical setups

𝑀 ≪ 𝑁 .

The second immediate observation is related to the subsequent desire to remove one of the corre-

sponding rows 𝑙1/2 from 𝐹 . It is the linearity in the variations of (3.12) and the linearity in the

displacements' derivatives of (3.15) which is the key to implement this removal. Assume that the two

CS |𝛼𝑙1⟩ and |𝛼𝑙2⟩ move from a certain time 𝑡0 on connectedly, i.e. without changing their relative

position. Mathematically this means that the 𝑁 free parameters of one of them, say 𝛼𝑙2 , are replaced

by the parameters of the other one:

𝛼𝑙2(𝑡) = 𝛼𝑙1(𝑡) +𝐶, (3.38)

for 𝑡 ≥ 𝑡0, where 𝐶 = 𝛼𝑙2(𝑡0)−𝛼𝑙1(𝑡0) is a constant. Consequently 𝛿𝛼𝑙1,𝑗 = 𝛿𝛼𝑙2,𝑗 and 𝛼̇𝑙1,𝑗 = 𝛼̇𝑙2,𝑗 for

all 𝑗. At the level of the coe�cient matrix 𝑀 , this indeed amounts to deleting the 𝑁 rows/columns

corresponding to the displacements 𝛼𝑙2,𝑗 and replacing the 𝑁 rows/columns corresponding to 𝛼𝑙1,𝑗

with the sum of both from time 𝑡0 on. The idea originates from [70] where we have used a similar

idea to obtain equations for CS on a �xed grid which we have termed the D1.5 Ansatz.

𝛼𝑙2 may from time 𝑡0 on be regarded as dislodged, since its 𝑁 free parameters are removed. We

have name this programmed death for the ensemble's bene�t apoptosis [111]. Still the corresponding

coe�cient 𝐴𝑙2 remains as a free parameter which is highly advantageous, because, in contrast to a

complete removal of the CS |𝛼𝑙2⟩, the norm of the Ansatz wave function is naturally conserved (no

re-expansion is necessary) and no instabilities are introduced. Hence apoptosis is compatible with

any adaptive integrator and can be done on the �y. Furthermore, keeping the coe�cient comes at

marginal computational cost since usually 𝑀 ≪ 𝑁 .

We relate the time 𝑡0 at which apoptosis shall occur to the distance 𝑑(|𝛼𝑙1⟩ , |𝛼𝑙2⟩) given by the 2
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product metric on C𝑁 ,

𝑑(|𝛼𝑙1⟩ , |𝛼𝑙2⟩) =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

|𝛼𝑙1,𝑛 − 𝛼𝑙2,𝑛|2. (3.39)

This is obviously equivalent to relating it with the absolute value of the overlap, see (3.3). For a

given threshold 𝜀 ≪ 1, apoptosis is implemented if 𝑑(|𝛼𝑙1⟩ , |𝛼𝑙2⟩) < 𝜀. The distance threshold on the

one hand should be chosen according to timeliness of apoptosis. If it is too small, the integrator will

get stuck as if no apoptosis had been implemented. On the other hand, in order to keep �exibility

maximal, 𝜀 should not be too large. Keeping the threshold in a range 0.01 ≤ 𝜀 ≤ 0.1 works nicely in

all cases studied so far.

Furthermore, it may happen that multiple CS approach each other during propagation, and apoptosis

of more than one CS could be required at a time step. Finding those CS which are close to each

other is implemented using a connected-component search in graphs [112]. Then, each connected

component has to be replaced by one of its members only à la (3.38).

Any calculation performed in the context of this thesis indicates that an increasing number of CS

does not necessarily lead to an increasing number of apoptosis events. This is again intimately related

to the overcompleteness of the CS: one CS's motion in phase space is complicated and dependent on

the position of all other CS. Actually propagation with increased multiplicity 𝑀 may cope without

apoptosis, or with more or fewer CS connected. Thus, in the presence of apoptosis convergence can

be checked by increasing the multiplicity M in a systematic way (see Sec. 4.3.2. However, in cases

of very long propagation times, it seems also possible to exploit the CS's �exibility and to split the

propagation interval into parts. Then, convergence for each part could be ensured independently by

insertion of new CS at appropriate positions (see Sec. D) at each part's beginning.

In our tests, the integrator steps typically decrease signi�cantly in the event of two CS coming close.

This is exemplary shown in the left panel of Fig. 3.1, where without apoptosis the integrator �nally

gets stuck, meaning that the step size is too small to obtain results within reasonable time. With

apoptosis implemented, the integrator steps also decrease in the event of two coherent states coming

close, but always recovers after apoptosis has occurred (see right panel of Fig. 3.1. The speci�c details

(time to recovery, step-size of the integrator etc.) depend on the setting and the speci�c choice of the

regularization threshold 𝜀. Converged results are obtained although the �exibility of the remaining CS

is decreased. Furthermore it seems likely for some of the coe�cients of connected CS to decrease after

apoptosis, which would require a stronger regularization of the density matrix 𝜌. This has, however,

not been observed in our tests.

We shall show that apoptosis succeeds in the regularization of CS as moving basis functions, rendering

extremely stable the formerly highly unstable method. We round out this part of the theory section

by taking the chance to detail the route from the full variational principle to Semiclassics (Sec. 3.4),

highlighting further attempts to resolve the convergence issue of CS. Furthermore, we address the so-

called Davydov-Ansatz which generalizes the Ansatz (3.5) by orthogonal basis expansion for systems
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Figure 3.1.: Typical evolution of integrator steps (here for the 1D Morse potential with well depth
𝐷 = 150 and potential width 𝛼 = 0.288 (see App. B), for multiplicity 𝑀 = 49). In the event of two
CS approaching at 𝑡0 (here at 𝑡0 ≈ 2.2), the integrator steps decrease significantly, rendering impos-
sible a further proceeding of the integrator (left panel). With apoptosis implemented (right panel),
the integrator steps also decrease at 𝑡0, but the integrator soon recovers, allowing for continuation
of the propagation.

of �nite Hilbert space dimension in open quantum system settings (see Sec. 3.6). Especially it will

be exempli�ed how to apply the Davydov-Ansatz to cases of nonzero temperature.

3.4. The route to Semiclassics

Being aware of the issues related to the fully variational vMCG method and the lack of these issues in

semiclassical methods due to the fact that classical trajectories never intersect (see below), quite some

e�ort has been invested in order to �nd a middle course combining the advantages of both. For the

sake of highlighting these courses, we reproduce here the route from the vMCG to the semiclassical

Herman-Kluk (HK) method.

For the simplicity of notation, the case 𝑁 = 1 is considered in this section. Generalization to 𝑁 > 1

is straightforward. Without loss of generality we assume that the Hamilton operator of our system of

interest is in normal-ordered form,

ℋ̂ = 𝐻(𝑎̂†, 𝑎̂), (3.40)

where all powers of 𝑎̂† precede all powers of 𝑎̂. With (2.48) it is immediate that the matrix elements

of the Hamiltonian then read

⟨𝛼𝑙| ℋ̂ |𝛼𝑘⟩ = 𝐻 (𝛼*
𝑙 , 𝛼𝑘) ⟨𝛼𝑙|𝛼𝑘⟩ . (3.41)
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For a normally ordered Hamiltonian (3.40),

[︁
𝑎̂, ℋ̂

]︁
=

𝜕ℋ̂
𝜕𝑎̂†

, (3.42)

where also the left-hand side is normally ordered. This can most easily be argued by induction,

by letting ℋ̂ =
(︀
𝑎̂†
)︀𝑛

without loss of generality. Consequently the system of di�erential equations

(3.24,3.25) reads

i

𝑀∑︁
𝑘=1

[︁
𝑋𝑘 +𝐴𝑘𝛼̇𝑘𝛼

*
𝑙

]︁
⟨𝛼𝑙|𝛼𝑘⟩ =

𝑀∑︁
𝑘=1

𝐴𝑘𝐻 (𝛼*
𝑙 , 𝛼𝑘) ⟨𝛼𝑙|𝛼𝑘⟩ , (3.43)

i𝐴*
𝑙

𝑀∑︁
𝑘=1

[︁
𝛼𝑘𝑋𝑘 +𝐴𝑘 (1 + 𝛼𝑘𝛼

*
𝑙 ) 𝛼̇𝑘

]︁
⟨𝛼𝑙|𝛼𝑘⟩ = 𝐴*

𝑙

𝑀∑︁
𝑘=1

𝐴𝑘

[︂
𝐻 (𝛼*

𝑙 , 𝛼𝑘)𝛼𝑘 +
𝜕𝐻 (𝛼*

𝑙 , 𝛼𝑘)

𝜕𝛼*
𝑙

]︂
⟨𝛼𝑙|𝛼𝑘⟩ .

(3.44)

The authors of [113] have noted that in the case of multiplicity 𝑀 = 1, Eq. (3.44) with the help of

Eq. (3.43) reduces to

i𝛼̇ =
𝜕𝐻(𝛼*, 𝛼)

𝜕𝛼* , (3.45)

i.e. a purely classical equation of motion for the coherent state parameter. Nevertheless Eq. (3.45)

may di�er from classical Hamiltons equations even in the case when the potential has a classical

analog. This is shown exemplary in App. B for the 1D Morse potential.

Di�erent authors have utilized the idea of using equation (3.45) (see, e.g. [114, 115]). One possible

approximation on the route to semiclassics is to propagate all the coherent state parameters 𝛼𝑘(𝑡)

according to the classical equation, but to keep the fully variational equations of motion for the

coe�cients 𝐴𝑘(𝑡). The corresponding method, the coupled coherent state method (CCS), was �rst

proposed in [116, 117]. Propagating the CS on classical trajectories prevents any issue related to CS

coming too close (see Sec. 3.3.2): in Hamilton-type systems of di�erential equations, trajectories can

never cross since this would contradict the uniqueness of the solution (see e.g. [118]). This, however,

comes at the price of leaving the full variational realm. While the variational principle ensures that

increasing the multiplicity 𝑀 increases the quality of the approximation towards the exact result, no

such convergence is ensured in the CCS method. Especially it turns out that in numerical applications

one has to start with a �nite swarm of CS localized in a physically relevant region of phase space

initially. Because their centers move classically, there are still situations (e.g. tunneling) in which the

CS will not reach relevant regions at later stages.

Further ideas have emerged in the periphery of CCS. For instance, propagating random grids of CS

guided by Ehrenfest trajectories [119], locally coupled CS [120], propagating the CS along Bohmian

trajectories [121] etc. Also static grids of CS have been used. This either requires a priori knowledge

about the wave function's support during propagation, or a highly dense and vastly extended grid.

Both is not possible in high dimensional problems. Also hybrid methods have emerged where the
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CS are to be propagated fully quantum mechanically, but as soon as two CS come close they are

propagated according to the classical equation (3.45), see e.g. [122].

Even further away from the full variational method are semiclassical methods. They rest upon the

fact that classical trajectories can never intersect (see above) and Liouville's theorem of conservation

of phase-space volume [123]. From these one infers that the points 𝛼𝑡, propagated classically from

a set of initial points 𝛼0, cover the whole phase space if the initial ones do so. Consequently the

corresponding CS |𝛼𝑡⟩ are overcomplete,

1 =
1

𝜋

∫︁
d𝛼𝑡 |𝛼𝑡⟩ ⟨𝛼𝑡| . (3.46)

In order to derive the semiclassical Herman-Kluk (HK) propagator [87�89], one writes the wavefunc-

tion by insertion of the closure relations (2.26) and (3.46) as

|Ψ(𝑡)⟩ =
∫︁

d𝛼0

∫︁
d𝛼𝑡 |𝛼𝑡⟩ ⟨𝛼𝑡| exp

[︂
− i

ℏ
ℋ̂𝑡

]︂
|𝛼0⟩ ⟨𝛼0| . (3.47)

The authors of [124] have shown that replacing the coherent state matrix element of the propagator

with its semiclassical approximation, and performing the 𝛼𝑡 integral with stationary phase approxi-

mation, the HK propagator can be obtained. Resting upon the same foundation, alternative routes

to the HK propagator have also been proposed (see e.g. [90, 91]) along with a detailed analysis of

approximations necessary in order to obtain it ([125]). In the HK-method all the dynamical input

that enters the �nal expression is local, classical information: the classical trajectories `do not talk

to each other'. This means that, in contrast to the CCS method, not only the trajectories but also

the coe�cients in the CS expansion are evolving independently from each other. The fact that only

uncoupled ordinary di�erential equations have to be solved in the HK case is a big advantage numer-

ically. This, however, comes at the price that the stability information can increase exponentially in

chaotic systems and therefore a lot of trajectories (CS) are usually needed for convergence [126].

While application of the variational principle ensures that increasing the multiplicity 𝑀 increases the

quality of the approximation towards the exact result, no such fundamental mechanism is at hand

in the CCS and HK methods. In the CCS method it is just known that the method is exact in the

continuum limit : if each point 𝛼0 in phase space would be propagated, then the result was exact.

Although interesting attempts to solve for these issues exist [127], usually many trajectories have to

be propagated which do not to contribute to the result at all.

Along with coherent states (termed frozen Gaussians in this context), also squeezed states (termed

thawed Gaussians) have been applied (see, e.g.,[37]). While the possibility for the CS to squeeze

is expected to decrease the number of basis functions required for convergence, it renders the cor-

responding method even more unstable in the full variational case. Clearly, the additional freedom

also introduces more uncertainty in the case of vanishing coe�cients as well as close to convergence.

Interestingly it has also proven not to work satisfactorily in semiclassical methods [128].
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Finishing the detour to semiclassical methods we return to the main route of the vMCG method. We

shall detail how to apply the concepts of the vMCG method in more general contexts.

3.5. Variational principle with DNS and squeezed states

Now that we have detoured to semiclassical methods we come back to the main road and the vMCG

method. Bosonic many body problems are central in solid state and condensed matter physics.

Although solid state physics Hamiltonians as the Bose-Hubbard model [129�132] are still challenging

frameworks, they appear ideal for treatment with CS. We will outline, however, the limitations of the

vMCG method with respect to these applications. The vMCG formalism has been applied to this

class of problems if the initial state is a CS [133]. But initial conditions often include single number

state distributions on lattices, e.g. each even lattice site shall be occupied etc [131]. In order to apply

the vMCG method to these problems, an e�cient representation of Fock number states in terms of

multi mode CS would be nice to be at hand. Unfortunately, the standard representation, obtained by

insertion of the completeness relation (2.26) for CS,

|𝑛⟩ = 1

𝜋

∫︁
C

d𝛼 ⟨𝛼|𝑛⟩ |𝛼⟩ (3.48)

yields a distribution | ⟨𝛼|𝑛⟩ | = exp
[︀
−|𝛼|2/2

]︀ |𝛼|𝑛√
𝑛!

in the complex plane which is rotationally sym-

metric, not allowing for e�cient Monte-Carlo integration for multiple modes. Although the two-

dimensional integral in (3.48) can be traded for a one-dimensional integral (see [36]), this does not

resolve for the issue of rotational symmetry. The impossibility of an e�cient representation of number

states in terms of CS is rooted in the CS being highly localized while the number states are not (see

Sec. 2.2).

An expedient is o�ered by utilization of displaced number states (DNS), introduced in Sec. 2.6. For

the simplicity of notation we restrict the following considerations to the single mode case 𝑁 = 1.

Generalization to multiple modes is straightforward. Due to the closure relation (2.87), an Ansatz for

the wave function in terms of DNS reads

|ΨM

DNS(𝑡)⟩ =
𝑀∑︁
𝑘=1

𝐴𝑘(𝑡) |𝛼𝑘(𝑡), 𝑛⟩ , (3.49)

with time dependent complex coe�cients and time dependent complex displacements 𝛼𝑘, which one

may hope to converge to the exact result as 𝑀 → ∞. On the one hand, the Ansatz (3.49) circumvents

the problem of sampling for the initial value representation since |Ψ(0)⟩ = |𝑛⟩ for 𝐴𝑘(0) = 𝛿𝑘,1, 𝛼1(0) =

0. On the other, we shall outline subsequently that the equations of motion obtained for the Ansatz



42 3.5 Variational principle with DNS and squeezed states

in terms of DNS, are not well behaved. The variation reads

⟨𝛿ΨM

DNS| =
𝑀∑︁
𝑙=1

⟨𝑛|
{︂
𝛿𝐴*

𝑙 +𝐴*
𝑙

[︂
𝐷̂

†
𝛼𝑙

(︂
−1

2
𝛼𝑙 + 𝑎̂

)︂
𝛿𝛼*

𝑙 +

(︂
−1

2
𝛼*
𝑙 − 𝑎̂†

)︂
𝐷̂

†
𝛼𝑙
𝛿𝛼𝑙

]︂}︂
, (3.50)

and thus, by assuming the variations to be mutually independent, three sets of equations emerge,

⟨𝛼𝑙, 𝑛| i𝜕𝑡 − ℋ̂ |ΨM

DNS⟩ = 0, (3.51)

𝐴*
𝑙 ⟨𝛼𝑙, 𝑛| 𝑎̂

(︁
i𝜕𝑡 − ℋ̂

)︁
|ΨM

DNS⟩ = 0, (3.52)

𝐴*
𝑙 ⟨𝑛| 𝑎̂†𝐷̂

†
𝛼𝑙

(︁
i𝜕𝑡 − ℋ̂

)︁
|ΨM

DNS⟩ = 0, (3.53)

where the �rst equations were used to simplify the second and third ones. Although equations of

motion have been derived for DNS in the literature [50, 134, 135], they focused on derivation of

the equations of motion by the time-dependent variational principle, overseeing that variation with

respect to the parameters and their complex conjugates have to be carried out. Consequently, the

third equation (3.53) has not been taken into account there. The set of equations reduces to the system

(3.13,3.14) in the case of 𝑛 = 0. Nevertheless, system (3.51-3.53) overdetermines the displacements

and coe�cients, and in no obvious way is one of them a combination of two others. The reason is

deeply rooted in the variational principle: due to the appearance of the complex conjugates of the

displacements in combination with the annihilation operator in the wave function (3.49), it can not

be parametrized such that it ful�lls the Cauchy-Riemann equations (2.96). This is in contrast to the

case 𝑛 = 0, for which we have shown in Sec. 3.1 that it can be parametrized such that it ful�lls

the Cauchy-Riemann equations. Thus we conclude that for the Ansatz (3.49) the three variational

principles are not equivalent, see Sec. 2.7. Furthermore, neither in resorting only to the real part

nor to the imaginary part does the set of equations (3.51-3.53) o�er a way out, since in any case the

resulting number of equations is not appropriate to uniquely determine the complex coe�cients and

displacements. Summarizing, the equations of motion for the parameters in the Ansatz (3.49) for

𝑛 ̸= 0 can not be derived from the variational principle in a consistent way, and thus the Ansatz is

in general not suited to account for dynamics in high-dimensional solid state physics problems. It is

especially not possible to circumvent the curse of dimensionality in the sampling of the integral (3.48)

by derivation of generalized equations of motion from the Ansatz (3.49).

In the case of multiplicity 𝑀 = 1 and a single environmental mode, squeezed states introduced in

Sec. 2.5 have been utilized in [37] in order to do real-time propagation of the Quantum Rabi model

(see also Sec. 4.3.2.1). As can be expected from the considerations of Sec. 2.5 and be seen in [37],

the formalism is highly complicated. It has to remain an open question whether the results of [37]

are generalizable straightforwardly to 𝑀 > 1 and multiple modes 𝑁 > 1 if the squeezing parameters

is allowed to be complex. Unpublished results from the Burghardt community exist which claim to

have generalized the squeezed states (so-called thawed Gaussians) to cases where 𝑀,𝑁 > 1 for real

squeezing parameters. In the light of the above considerations it is doubtful that the variational
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principle formalism can be applied such that the issue of a third equation emerging for the DNS can

be prevented for the squeezed states. In particular, the representation (2.75) seems appropriate for

this purpose, but it does not allow to straightforwardly calculate commutation relations with the

creation and annihilation operators. Research in this direction is in progress in our group. However,

we refrain from implementation of both the DNS and the squeezed states subsequently but utilize

the CS as basis functions. We outline in the next section how to apply the latter in a more general

context.

3.6. The multi Davydov-Ansatz

It is obviously a matter of the underlying system whether the vMCG Ansatz (3.5) is a promising

parametrization of the wave function. While, due to their overcompleteness, in principle any wave

function may be expressed in terms of CS, the vMCG Ansatz is particularly promising for bipartite

systems one of whose parts' dynamics is exactly solvable by coherent states. As we have seen in Sec.

2.2, coherent states are the exact solution of the TDSE for the quantum harmonic oscillator. Thus,

we will mainly aim at the investigation of open quantum systems which are composed of a system of

interest part (the `system') and a part of uncoupled harmonic oscillators (the `environment'). Then

the two components being coupled renders the overall system dynamics non-trivial.

Although the vMCG Ansatz is promising for the environment-component, this does not have to be

the case for the system-part. Especially in cases where the latter's Hilbert space has �nite dimension

𝑁𝑆 , expansion in terms of a �nite orthonormal basis {|𝜑𝑛⟩ |𝑛 = 1, . . . , 𝑁𝑆} appears preferable.

Thus, expanding the environment in the spirit of the vMCG Ansatz and the system in terms of a

�nite orthonormal basis, two straightforward generalizations of the vMCG Ansatz are conceivable.

Firstly, by pairing each coherent state with a general system wave function, the Ansatz

|ΨM

D2(𝑡)⟩ =
𝑀∑︁
𝑘=1

(︃
𝑁𝑆∑︁
𝑛=1

𝐴𝑘𝑛(𝑡) |𝜑𝑛⟩

)︃
|𝛼𝑘(𝑡)⟩ (3.54)

arises. We shall term this the multi (Davydov) D2-Ansatz [27], correspondingly also termed `single-

set' [95].

Secondly, by pairing each coherent state with one system basis function, the Ansatz

|ΨM

D1(𝑡)⟩ =
𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑛=1

𝐴𝑘𝑛(𝑡) |𝜑𝑛⟩ |𝛼𝑘𝑛(𝑡)⟩ (3.55)

emerges. We shall term this the multi (Davydov) D1-Ansatz, correspondingly termed `multi-set'.

The application of an orthonormal system basis allows to straightforwardly generalize the equations of

motion (3.24, 3.25) as well as the considerations of Secs. 3.1 - 3.3 to the present setting. In particular,
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the general equations (3.13, 3.14) are replaced by

⟨𝜑𝑛| ⟨𝛼𝑙| i𝜕𝑡 − ℋ̂ |ΨM

D2⟩ = 0, (3.56)

𝑁𝑆∑︁
𝑛=1

𝐴*
𝑙𝑛 ⟨𝜑𝑛| ⟨𝛼𝑙| 𝑎̂𝑗

(︁
i𝜕𝑡 − ℋ̂

)︁
|ΨM

D2⟩ = 0 (3.57)

for the multi D2-Ansatz, and by

⟨𝜑𝑛| ⟨𝛼𝑙𝑛| i𝜕𝑡 − ℋ̂ |ΨM

D1⟩ = 0, (3.58)

𝐴*
𝑙𝑛 ⟨𝜑𝑛| ⟨𝛼𝑙𝑛| 𝑎̂𝑗

(︁
i𝜕𝑡 − ℋ̂

)︁
|ΨM

D2⟩ = 0 (3.59)

for the multi D1-Ansatz. A detailed derivation of the equations of motion for both the multi D1 and

the multi D2-Ansatz is gathered in App. C, and an implementable form in terms of matrix operations

is derived in App. C.1 for the D2 and in App. C.2 for the D1-Ansatz.

Since the displacements carry the additional index of the sum over the system basis states, the multi

D1-Ansatz is considered to be more �exible than the multi D2-Ansatz [95, 136]. As all our calculations

show (see Sec. 4.3.2.2), this is actually not the case. Rather is the multi D1-Ansatz disadvantageous

compared to the multi D2-Ansatz in certain settings, to be detailed readily.

The number of parameters in the multi D2-Ansatz of multiplicity 𝑀 is 𝑀 ·𝑁𝑆 +𝑀 ·𝑁 , while in the

multi D1-Ansatz of multiplicity 𝑀 it is 𝑀 · 𝑁𝑆 · (𝑁 + 1). Here, 𝑁 is the number of environmental

modes. Consequently, a multi D1-Ansatz of multiplicity 𝑀 has as many free parameters as a multi

D2-Ansatz of multiplicity 𝑀 · 𝑁𝑆 . Subsequent calculations (see Sec. 4.3.2.2) will show that the

number of parameters needed if the multi D2-Ansatz is employed is never smaller than the number

of parameters needed for the multi D1-Ansatz.

At a �rst glance, this seems contradictory since obviously the multi D2-Ansatz (3.54) is less general

than the multi D1-Ansatz: the latter reduces to the former by requiring

𝛼𝑛𝑘 = 𝛼𝑘. (3.60)

Similarly, however, one may argue that the D1-Ansatz can be derived from the D2-Ansatz by requiring

𝐴𝑛𝑘 = 𝛿𝑛𝑘, (3.61)

provided 𝑀 = 𝑛 ·𝑁𝑆 is a multiple of 𝑁𝑆 .

A �rst hint to understand the di�erence between the multi D1 and D2-Ansatz is to examine their

respective behavior in the context of the issue of vanishing coe�cients, discussed in Sec. 3.3.1. Assume

that the dynamics is such that one basis state of the orthogonal system basis, say |𝜑1⟩, is highly stable
for a long time 𝑡 ∈ [0, 𝑇 ],

⟨𝜑𝑗 |Ψ(𝑡)⟩ = 0, 𝑗 = 2, . . . , 𝑁𝑆 , 𝑡 ∈ [0, 𝑇 ]. (3.62)
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For instance, the Landau Zener system, investigated in Sec. 5.3, constitutes such a system in which

one of the standard basis functions is long-time stable. Then in the D1-Ansatz 𝐴𝑘𝑗(𝑡) = 0 for all

𝑘 = 1, . . . ,𝑀 , 𝑗 = 2, . . . , 𝑁𝑆 , 𝑡 ∈ [0, 𝑇 ], rendering highly singular the coe�cient matrix since all

corresponding displacements are arbitrary. As can be seen by comparing Eqs. (3.57) and (3.59), this

is not the case for the D2-Ansatz.

A second hint is given by the natural bipartiteness of the open system. An arbitrary wave function

|Ψ⟩ in the corresponding Hilbert space can be written as

|Ψ⟩ =
∫︁

d𝛼

𝑁𝑆∑︁
𝑛=1

𝐴𝛼,𝑛 |𝜑𝑛⟩ |𝛼⟩ . (3.63)

Consequently, we may expect the D2-Ansatz (3.54) to converge to the exact result as 𝑀 → ∞.

Since the D1-Ansatz reduces to the D2-Ansatz given that (3.60), we may also expect the D1-Ansatz

to converge to the exact result, but only provided that (3.60) holds. With respect to the system's

bipartiteness, the D2-Ansatz appears much more natural.

Putting it again di�erently: while in the D2-Ansatz the CS |𝛼𝑘⟩ is optimized under the premise that

the corresponding system part is arbitrary, in the D1-Ansatz it is optimized under the premise that its

system compagnon is a certain given basis state. It is hence not clear a priori (and will be examined

in Sec. 4.3.2.2) whether the quality of the D1-Ansatz depends on the choice of the system basis. On

the contrary, from the Ansatz (3.54) one readily infers that the quality of the D2-Ansatz does not

depend on the choice of the system basis.

In order to account for the dynamics of open quantum systems we will, according to the previous

considerations, always apply the multi D2-Ansatz, while the D1-Ansatz is merely used for comparison

in Sec. 4.3.2.1. However, a natural requirement to an open quantum system is the environment to

be in thermodynamic equilibrium with an energy reservoir at temperature 𝑇 . We shall outline in the

next section how to treat the nonzero temperature case with the multi D2-Ansatz.

3.7. The multi Davydov-Ansatz at non-zero temperature

In the context of the environment being in thermodynamic equilibrium with an energy reservoir at

temperature 𝑇 it is also termed a (heat-) bath. In order to investigate systems where the bath's

temperature is �nite (i.e. not zero), we aim at generalization of the multi D2-Ansatz to these setups.

The state of a system at temperature 𝑇 is in general a statistical ensemble of pure states and is

thus described appropriately by a density operator 𝜌̂, the time-evolution of which is governed by the

Liouville-von Neumann equation

iℏ𝜕𝑡𝜌̂ =
[︁
ℋ̂, 𝜌̂

]︁
. (3.64)

Here, ℋ̂ is the possibly time-dependent full system plus environment Hamiltonian. Intending to tackle

Eq. (3.64) on the wave function level, we have investigated di�erent approaches to generalize the multi
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D2-Ansatz formalism to baths at �nite temperature [50]. It turns out, however, that for numerical

purposes �nite temperature is best incorporated by a stochastic initial value sampling [137].

The total state at �nite temperature may be written as

𝜌̂(𝑡) = 𝑈̂𝜌(0)𝑈̂
†
, (3.65)

where 𝑈̂ is the time evolution operator corresponding to the full Hamiltonian,

𝑈̂ = 𝒯 exp

⎡⎣− i

ℏ

𝑡∫︁
0

d𝑡′ ℋ̂(𝑡′)

⎤⎦ . (3.66)

Here, we have introduced the time-ordering operator 𝒯 [126].

We assume that the initial state is factorized, 𝜌̂(0) = 𝜌̂sys(0) ⊗ 𝜌̂bath(0). Since the bath is comprised

of harmonic oscillators assumed to be at temperature 𝑇 initially, the bath part of the initial density

is given by the multi-mode analog of the thermal state (2.56), 𝜌̂bath(0) = 𝜌̂𝛽 , with 𝛽 being the inverse

temperature (2.54).

In order to express the thermal state in terms of multi-mode CS, we may analogously to (2.60) use

the multi-mode analog of the (Glauber-Sudarshan) P-representation introduced in Sec. 2.4,

𝜌̂𝛽 =

∫︁
C

d𝛼𝑃𝛽 (𝛼,𝛼*) |𝛼⟩ ⟨𝛼| . (3.67)

Here, analogously to (2.68) the multi-mode P-function is given by

𝑃𝛽 (𝛼,𝛼*) =
∏︁
𝑛

e𝛽𝜔𝑛 − 1

𝜋
exp

[︁
− |𝛼𝑛|2

(︁
e𝛽𝜔𝑛 − 1

)︁]︁
, (3.68)

which is a multidimensional complex Gaussian distribution.

It is the decomposition (3.67) of the initial thermal state in terms of coherent states along with the

Gaussian nature of the P-function (3.68) which facilitate application of Monte-Carlo sampling of the

integral, and thus propagation on the wave function level even in cases where the bath's temperature

is �nite. If the initial system state is a pure state, reading

𝜌̂sys(0) = |Ψsys(0)⟩ ⟨Ψsys(0)| , (3.69)

then the total state takes the form

𝜌̂(𝑡) = ℳ𝛼

(︁
𝑈̂ |Ψsys(0)⟩ ⟨Ψsys(0)| ⊗ |𝛼⟩ ⟨𝛼| 𝑈̂ †)︁

= ℳ𝛼 (|ΨM

D2(𝛼, 𝑡)⟩ ⟨ΨM

D2(𝛼, 𝑡)|) (3.70)
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of a stochastic average ℳ𝛼 over independently sampled complex valued Gaussian random variables

𝛼 with zero mean and variance

𝜎2
𝑛 =

1

2
(𝑒𝛽𝜔𝑛 − 1)−1. (3.71)

In (3.70) we have assumed that the propagation 𝑈̂ |Ψsys(0)⟩ |𝛼⟩ of the whole state, with the bath being

initially in the stochastic state |𝛼⟩, can be identi�ed with the multi D2 state |ΨM
D2(𝛼, 𝑡)⟩ subject to the

same initial condition. This is reasonable if each realization is ensured to be converged with respect

to the multiplicity 𝑀 , i.e. to the number of coherent states.

In particular, the expectation value of an operator 𝑂̂S acting only on the system Hilbert space is given

by

⟨𝑂̂S⟩ = ℳ𝛼 ⟨ΨM

D2(𝛼, 𝑡)| 𝑂̂S |ΨM

D2(𝛼, 𝑡)⟩ , (3.72)

where we have used the speci�c form of the multi D2-Ansatz (3.54). Thus, utilization of the P-function

(3.68) allows to randomly sample from the Gaussian distribution and to independently propagate each

sample by the multi D2-Ansatz. The total state (3.70) as well as expectation values (3.72) are then

given by an average over these samples.

In this chapter we have investigated general aspects of the real-time propagation in terms of the

vMCG Ansatz (3.5) along with the application of the variational principle. We have outlined how

to carefully regularize the 𝜌-matrix in the case of vanishing coe�cients, and apoptosis in the case

of coherent states approaching. As completion of the discourse on previous attempts to circumvent

these issues, we have rounded out this part by an excursion to semiclassical methods. In order to

tackle open quantum system settings we have highlighted how to generalize the vMCG Ansatz to

the multi D1 and D2-Ansatz. Finally we have theoretically argued that the multi D2-Ansatz should

be preferred over the multi D1-Ansatz and shown how to treat nonzero bath setups by the multi

D2-Ansatz on the wave function level.

Before we come to more complex problems we shall �rstly apply the method to the Spin-Boson model,

assumed to be the ideal test-bed due to its intricacy in combination with the wealth of available

results.





4. Open Quantum Systems

Quantum mechanical systems must be regarded as open systems, because, on the one hand, any empir-

ical test of the statistical predictions on a quantum system requires one to couple it to a macroscopic

measurement device. On the other hand, any realistic system is subject to a coupling to environmental

degrees of freedom which in turn act back on the system.

The quantum-mechanical approach to description of dissipative systems is via coupling of the system

to an environment. While the whole framework, consisting of system and environment, then will

obey the fundamental rule of energy conservation, the system of interest may loose energy to the

environment. But, due to the Poincaré recurrence theorem (see e.g. [138]), also the reversed process

may occur within �nite time. Hence, in order to describe `proper' dissipation, the environment must

be large enough such that the time it takes for energy to �ow back from the environment into the

system is large or `practically in�nity'. But also on the contrary, thermal and quantum �uctuations

in the environment cause �uctuations in the system, which results in Brownian motion and may also

induce further e�ects in the system (see also below). Especially, a quantum system which becomes

entangled with an environment exhibits decoherence. This is of particular interest in the �eld of

quantum information, where phase coherence between two qubit states is used as resource [139�141].

No real-world system is completely isolated from its environment, making dissipation, �uctuation and

decoherence omnipresent in physics and chemistry. In particular this is quanti�ed by the �uctuation-

dissipation theorem [142], which relates the �uctuations in a system that obeys detailed balance with

the response of the system to external perturbations [143].

In most applications, the environment is uncontrollable, its dynamics is not tractable and/or of no

interest. Reduced density operator approaches thus aim for an e�ective description of the reduced

dynamics [143�161] in terms of master equations. In contrast to the whole framework consisting of

system and environment, the time-evolution of the reduced density operator is not unitary in general.

Furthermore, the derivation and implementation of such master equations usually requires several as-

sumptions as e.g. Markovianity (no memory), rendering the reduced dynamics valid only for a certain

parameter regime. Alternatively, a wealth of methods has been developed to compute the dynamics of

the composite system including environmental degrees of freedom [59, 60, 127, 134, 162�169]. Unlike

e�ective reduced evolution approaches, they do not aim at the derivation of an equation of motion for

the reduced density matrix, but rather are based on an explicit calculation of the system and bath

dynamics.

There is a growing number of open systems where the environment cannot adequately be described

as memoryless [170]. These include micromechanical resonators [171], quantum dots [172, 173], su-

perconducting qubits [174], and single photon sources needed for quantum communication [175].

Furthermore, structured environments are ubiquitous in problems involving the strong interplay of

vibrational and electronic states, e.g. natural photosynthetic systems [176], semiconductor quantum

dots [177�179], non-adiabatic processes in physical chemistry [180] and non-equilibrium energy trans-
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port in molecular systems [181].

The open system's environment may under mild assumptions be taken as a set of mutually uncoupled

oscillators, each of which couples via its position to the system [182]. Under the further assumption

that the system couples bilinearly to the environmental oscillators' positions, the coupling between

the system and the environment can be quanti�ed in terms of a continuous spectral density (SD) 𝐽(𝜔)

de�ned for all frequencies 𝜔 ∈ [0,∞]. Its functional form may then be chosen such that in the classical

limit a Langevin equation for the system is recovered. For a given set of environmental oscillators

quanti�ed by their respective frequencies 𝜔𝑛, the spectral density speci�es the bilinear coupling 𝜆𝑛

of the oscillator of frequency 𝜔𝑛 to the system. We shall then aim at the investigation of the system

dynamics in the continuum limit, i.e. for all frequencies 𝜔 ∈ [0,∞] present in the environment.

The Spin-Boson model, composed of a two-level system and an environment, constitutes the simplest

non-trivial open quantum system. Despite its simplicity it is numerically demanding and shows a

rich variety of interesting physical phenomena. In this chapter we use the multi Davydov method

to solve the Spin-Boson model numerically exactly for both, a zero and non-zero temperature initial

bath state. After introducing the basics of open quantum systems in Sec. 4.1, we will in Sec. 4.2

perform a classical limit of the latter, demonstrating that in this limit classical dissipation emerges.

Subsequently we shall �rstly examine in detail the e�ect of the regularizations outlined in Chaps. 3.3.1

and 3.3.2 for a given discretization of the SD. Once we have shown that with these regularizations the

multi Davydov method is suited to exactly reproduce the Spin-Boson dynamics, we shall investigate

secondly the problem of �nding a discretization to the SD which results in a good approximation of the

dynamics, especially for a small number of bath modes. We utilize the windowed Fourier transform

(WFT), a useful representation of bath correlations which indicates a priori the quality of a given

discretization. The results, found for the Spin-Boson model, have the potential to judge the quality

of approximations with respect to the exact dynamics also for other systems. This might be useful

for many methods other than the ones presented here, that are based on a discretization of the bath.

With the goal of further reducing the number of environmental oscillators required to reproduce the

continuum limit dynamics, we will investigate in detail the dynamics of the environmental oscillators.

We will �nd that special care has to be taken in the case of polarized initial conditions and for nonzero

temperature, in the sub-ohmic case of the Spin-Boson model. Furthermore, we will thirdly utilize the

e�ective mode representation (EMR), an alternative representation of the environment in terms of a

chain of e�ective modes.

The Spin-Boson model undergoes a quantum phase transition from a localized to a delocalized regime

with the coupling strength between system and environment being the transition's order parameter.

While the value of the critical coupling can be calculated analytically in some settings, we will �nally

numerically determine the precise value of the critical coupling in a case where no such analytical

value is known. Units in which ℏ = 1 will be used throughout.

We shall subsequently give a general introduction to open quantum systems. We will in particular

motivate the physical relevance of these systems by drawing contact with the classical limit in which

many quantities arise naturally. The following sections mainly serve as a proof of concept for the
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methodology introduced in Sec. 3.1. Firstly, for the Quantum Rabi model, the results obtained from

the multi Davydov-Ansatz will be compared to an expansion in terms of number states. Special em-

phasis is on the investigation of the impact of the regularization in the case of vanishing coe�cients

outlined in Sec. 3.3.1. Secondly, many calculations have already been performed for the SBM and

are thus at our disposal. Results obtained with the multi Davydov-Ansatz will be compared to these.

Especially the apoptosis procedure outlined in Sec. 3.3.2 will be examined in detail here. It will

become apparent that the two regularizations turn the method commonly considered ill-behaved into

a well behaved reliable high-precision tool. While in the �rst parts, Secs. 4.3.1 and 4.3.2, we will

work in a �xed setting, in the subsequent sections we will examine in detail the ingredients which

determine this setting. In particular, we will examine di�erent routes along which the numerical e�ort

may be reduced. Firstly, we will investigate di�erent discretizations of the frequency axis in Sec. 4.4.

Furthermore, in Sec. 4.5 we shall outline how to circumvent an oversampling of small frequencies for

polarized initial conditions and non-zero temperature in the sub-ohmic case. Thirdly and �nally, we

will transfer the SBM into a linear chain of e�ective modes as outlined in Sec. 4.6 and investigate

the resulting dynamics. We shall see that, for the SBM, the e�ective representation does not yield

substantial advantage.

4.1. System-Bath Hamiltonian

An open quantum system introduces a natural bipartiteness of the whole framework consisting of

system and environment. In order to account for this bipartiteness we denote by ℋ̂S the Hamiltonian

of the system part and by ℋ̂B the Hamiltonian of the environmental (bath-) part. It is natural to

require system and environment to interact with each other, rendering non-trivial the overall system-

bath dynamics. Thus, taking into account interactions between the two parts, the total Hamiltonian

reads

ℋ̂ = ℋ̂S + ℋ̂B + ℋ̂int. (4.1)

We assume the environment to be modelled by a set of 𝑁 mutually uncoupled harmonic oscillators

of frequencies 𝜔𝑛, 𝑛 = 1, . . . , 𝑁 . The bath Hamiltonian in second quantized form is then given by

ℋ̂B =
𝑁∑︁

𝑛=1

𝜔𝑛𝑎̂
†
𝑛𝑎̂𝑛, (4.2)

where 𝑎̂†𝑛 and 𝑎̂𝑛 are creation and annihilation operators of the 𝑛-th mode. We have neglected the

oscillators' ground state energies (2.6) since they only contribute a constant term to the Hamiltonian,

which does thus only contribute an overall phase to the system dynamics. Furthermore, the mass 𝑚𝑛

of the 𝑛-th oscillator is included according to (2.3) into the de�nition of the creation and annihilation

operators.

Proceeding according to [182] we furthermore require the system to couple linearly to the positions
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of the bath oscillators. Then the system-bath interaction Hamiltonian reads

ℋ̂int = 𝐿̂

𝑁∑︁
𝑛=1

𝜆𝑛

(︁
𝑎̂†𝑛 + 𝑎̂𝑛

)︁
, (4.3)

where 𝐿̂ is the system coupling operator,

ℋ̂I =
𝑁∑︁

𝑛=1

𝜆𝑛

(︁
𝑎̂†𝑛 + 𝑎̂𝑛

)︁
(4.4)

is the bath coupling operator, and 𝜆𝑛 speci�es the coupling strength of the 𝑛-th mode to the system.

In order for the full Hamiltonian to be Hermitian, the coupling operator is assumed to be Hermitian,

𝐿̂ = 𝐿̂
†
. (4.5)

The Hamiltonian we will be working on here thus takes the general Caldeira-Leggett form [182]

ℋ̂ = ℋ̂S +
𝑁∑︁

𝑛=1

𝜔𝑛𝑎̂
†
𝑛𝑎̂𝑛 + 𝐿̂

𝑁∑︁
𝑛=1

𝜆𝑛

(︁
𝑎̂†𝑛 + 𝑎̂𝑛

)︁
. (4.6)

The couplings 𝜆𝑛 can be quanti�ed in terms of a continuous SD 𝐽(𝜔), which can be chosen such that

in the classical limit an equation of Langevin type for the system emerges (see Sec. 4.2) and is an

input parameter of the model. Then 𝐽 is related to the couplings 𝜆𝑛 by requiring

𝐽(𝜔) = 𝜋

𝑁∑︁
𝑛=1

𝜆2
𝑛𝛿(𝜔 − 𝜔𝑛), (4.7)

from which for a given set of frequencies {𝜔𝑛 |𝑛 = 1, . . . , 𝑁} the couplings 𝜆𝑛 can be calculated by

integration of (4.7) over a small interval [𝜔𝑛 − 𝛿, 𝜔𝑛 + 𝛿] containing only the frequency 𝜔𝑛,

𝜆2
𝑛 =

1

𝜋

𝜔𝑛+𝛿∫︁
𝜔𝑛−𝛿

d𝜔 𝐽(𝜔). (4.8)

Since the couplings are determined by (4.8) only up to a pre-factor of absolute value 1, we expect the

model properties not to change if all couplings are multiplied by such a pre-factor.

In order to avoid ultraviolet divergences, the SD 𝐽(𝜔) may have effective support only on a �nite

sub-interval [0,Ω] ⊆ [0,∞]. This means that 𝐽(𝜔) > 𝜀 only for 𝜔 ∈ [0,Ω], for a given 𝜀 ≪ 1. Al-

though it is in general neither possible to directly numerically calculate the system dynamics if all

frequencies 𝜔 ∈ [0,Ω] nor if countably many frequencies {𝜔𝑛 |𝑛 = 1, . . . ,∞} ⊆ [0,Ω] are present in the

environment, we shall aim at investigation of the system dynamics in the continuum limit, i.e. for all

frequencies 𝜔 ∈ [0,Ω] present in the environment. To this end we will propagate with the Hamiltonian

(4.6), i.e. with a �xed number 𝑁 of environmental modes, and then numerically check convergence
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for 𝑁 → ∞ where the 𝜔𝑛 su�ciently densely cover the interval [0,Ω] in the limit 𝑁 → ∞.

Instead of explicit declaration of the frequencies 𝜔𝑛 the discretization of the frequency axis can alter-

natively be speci�ed indirectly by a frequency density (FD) 𝜌f(𝜔). A normalized frequency density
∞∫︀
0

d𝜔 𝜌f(𝜔) = 1 allows to divide the 𝜔-axis into parts of equal weight with respect to the FD. For 𝑥𝑛

chosen such that

𝑥𝑛∫︁
0

d𝜔 𝜌f(𝜔) =
𝑛

𝑁 + 1
, 𝑛 = 0, . . . , 𝑁, (4.9)

the intervals [𝑥𝑛−1, 𝑥𝑛] for 𝑛 = 1 . . . 𝑁 have the same weight 1
𝑁+1 with respect to the FD 𝜌f. The

actual frequency for the 𝑛-th mode can in general be somewhere inside the 𝑛-th interval. Usually one

�xes the position to the median with respect to the FD which results in the condition

𝜔𝑛∫︁
0

d𝜔 𝜌f(𝜔) =
2𝑛− 1

2(𝑁 + 1)
, 𝑛 = 1, . . . , 𝑁, (4.10)

from which by inversion the mode frequency 𝜔𝑛 can be calculated.

The corresponding coupling strength then follows according to (4.8), where it is ensured that only the

frequency 𝜔𝑛 is in the interval [𝑥𝑛−1, 𝑥𝑛]. Hence

𝜆2
𝑛 =

1

𝜋

𝑥𝑛∫︁
𝑥𝑛−1

d𝜔 𝐽(𝜔) . (4.11)

Three remarks are in place. Firstly, the factor 1
𝜋 originates from the de�ning relation of the approx-

imation of the continuous SD given by (4.7). Secondly, it is as justi�ed to �x the position of the

frequency 𝜔𝑛 to the median with respect to the FD of the interval [𝑥𝑛−1, 𝑥𝑛] according to (4.10) as

to �x it anywhere else in this interval. Especially, by �xing the frequencies as the left boundaries of

the intervals, one may calculate the frequencies from

𝜔𝑛∫︁
0

d𝜔 𝜌f(𝜔) =
𝑛

𝑁 + 1
, 𝑛 = 1, . . . , 𝑁. (4.12)

Thirdly, in di�erential form condition (4.9) reads (𝑥𝑛 − 𝑥𝑛−1)𝜌f(𝜔𝑛) =
1

𝑁+1 , and (4.11) then becomes

𝜆2
𝑛 = 1

𝜋 (𝑥𝑛 − 𝑥𝑛−1)𝐽(𝜔𝑛), leading to the couplings

𝜆2
𝑛 =

𝐽(𝜔𝑛)

(𝑁 + 1)𝜋𝜌f(𝜔𝑛)
, (4.13)

frequently used in the literature[134, 163, 166, 183].

In order to better understand the role of the SD, we show in the next section that the classical limit of

the Hamiltonian (4.6) yields a stochastic di�erential equation of Langevin type for the system degrees



54 4.2 The road to classical dissipation

of freedom. The damping kernel entering this Langevin equation is intimately related to the SD.

4.2. The road to classical dissipation

In this section we will perform a classical limit of the open quantum system (4.6) revealing that in

this limit the Hamiltonian (4.6) yields a classical Langevin equation. In particular, the environmental

�uctuations yield a stochastic force acting on the system degree of freedom. The SD of the system is

related to and thus allows to specify the damping kernel of the Langevin equation. Furthermore, the

emergence of the so-called counter term is discussed.

In order to perform the classical limit of (4.6) we consider in the following a one-dimensional system

of a particle with mass 𝑀 = 1 with position 𝑞 and momentum 𝑝, moving in some (possibly time-

dependent) potential 𝑉 (𝑞, 𝑡). This system is described by a Hamilton operator

ℋ̂S =
1

2
𝑝̂2 + 𝑉 (𝑞̂, 𝑡). (4.14)

Under the assumption that the system-bath coupling be linear in the system coordinate (for detailed

justi�cation of this assumption, see [182]), the system coupling operator

𝐿̂ = 𝑞̂. (4.15)

The corresponding classical Hamilton's equations of motion for the full classical Hamiltonian corre-

sponding to (4.6) in mass weighted coordinates read

𝑞̈ + 𝑉 ′(𝑞, 𝑡) =

𝑁∑︁
𝑛=1

𝑐𝑛𝑞𝑛, (4.16)

𝑞̈𝑛 + 𝜔2
𝑛𝑞𝑛 = 𝑐𝑛𝑞. (4.17)

Here, 𝑉 ′(𝑞, 𝑡) denotes the derivative of the potential with respect to 𝑞, and

𝑐𝑛 =
√
2𝜔𝑛𝜆𝑛 (4.18)

are the coupling constants.

The inhomogeneous equations (4.17) for the bath oscillators are driven by the system displacement.

These equations can formally be solved with the Green's function for the harmonic oscillator,

𝐺𝑛(𝑡) = Θ(𝑡)
sin(𝜔𝑛𝑡)

𝜔𝑛
, (4.19)
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which results in

𝑞𝑛(𝑡) = 𝑞𝑛(0) cos(𝜔𝑛𝑡) +
𝑝𝑛(0)

𝜔𝑛
sin(𝜔𝑛𝑡) +

𝑐𝑛
𝜔𝑛

𝑡∫︁
0

d𝑠 sin [𝜔𝑛(𝑡− 𝑠)] 𝑞(𝑠). (4.20)

Performing integration by parts on the integral, and insertion of the result into (4.16) �nally yields a

stochastic equation of Langevin type for the system coordinate

𝑞̈ +

𝑡∫︁
0

d𝑠 𝛾(𝑡− 𝑠)𝑞̇(𝑠) + 𝑉 ′(𝑞, 𝑡)− 𝛾(0)𝑞 = Γ(𝑡). (4.21)

Here the so-called damping-kernel 𝛾(𝑡) is given by

𝛾(𝑡) =
𝑁∑︁

𝑛=1

𝑐2𝑛
𝜔2
𝑛

cos (𝜔𝑛𝑡) , (4.22)

while

Γ(𝑡) =

𝑁∑︁
𝑛=1

𝑐𝑛

[︂
cos (𝜔𝑛𝑡)

(︂
𝑞𝑛(0) +

𝑐𝑛𝑞(0)

𝜔2
𝑛

)︂
+

𝑝𝑛(0)

𝜔𝑛
sin (𝜔𝑛𝑡)

]︂
(4.23)

is a force acting on the system which can be shown to obey Gaussian statistics [143].

The damping kernel is related to the continuous SD since one infers from the discretization (4.7) of

the SD and (4.18) that

𝛾(𝑡) =

𝑁∑︁
𝑛=1

𝑐2𝑛
𝜔2
𝑛

cos(𝜔𝑛𝑡) =
2

𝜋

∞∫︁
0

d𝜔
𝐽(𝜔)

𝜔
cos(𝜔𝑡). (4.24)

Thus speci�cation of the SD su�ces in order to de�ne the damping kernel. Especially for the choice

𝐽(𝜔) = 𝛾0
4 𝜔 for the continuous SD, one infers that the damping kernel then is memoryless,

𝛾(𝑡) =
2

𝜋

∞∫︁
0

d𝜔
𝐽(𝜔)

𝜔
cos(𝜔𝑡) = 𝛾0𝛿(𝑡). (4.25)

The Langevin equation (4.21) thus describes ohmic dissipation in this case. As already pointed out

earlier, the SD has to have e�ective support only on a sub-interval of [0,∞] in order to avoid ultraviolet

divergences. According to the previous considerations, a SD 𝐽(𝜔) ∼ 𝜔 equipped with an appropriate

high-frequency cuto� is called ohmic.

Furthermore, the bilinearity of the interaction results in the additional term −𝛾(0)𝑞 in (4.21), which
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renormalizes the potential according to

𝑉 (𝑞, 𝑡) → 𝑉 (𝑞, 𝑡)− 1

2
𝑞2

𝑁∑︁
𝑛=1

𝑐2𝑛
𝜔2
𝑛

. (4.26)

In order to compensate for this renormalization one introduces the so-called counter term (see [182]

for further details) in the quantum system Hamilton operator (4.6)

ℋ̂CT =
1

2
𝑞̂2

𝑁∑︁
𝑛=1

𝑐2𝑛
𝜔2
𝑛

= 𝑞̂2
1

𝜋

∞∫︁
0

d𝜔
𝐽(𝜔)

𝜔
. (4.27)

In the second equality, we have inserted the discretization (4.7) of the SD and the couplings (4.18) in

position representation. The counter term acts only on the system Hilbert space, and one replaces

ℋ̂S → ℋ̂S + ℋ̂CT, (4.28)

with which one attempts to cancel any e�ect other than dissipation and random forcing originating

from the coupling of the system to the environment.

The counter term (4.27) straightforwardly generalizes to cases where the Hamiltonian has the more

general form (4.6) than the one considered in this section (replace 𝐿̂
2
with 𝑞̂2).

The integral

Λ =
1

𝜋

∞∫︁
0

d𝜔
𝐽(𝜔)

𝜔
(4.29)

on the right hand side of Eq. (4.27) is a measure for the system-bath coupling. It arises in electron

transfer theory [184�186] where it analogously is a measure for the overall electronic�nuclear coupling.

Being the energy corresponding to the transfer of a unit charge, it is termed reorganization energy.

Now that we have detailed the origin of the ohmic form of the continuous SD and the counter term

from the classical limit, we return to the full quantum case.

4.3. The impact of apoptosis and regularization of the 𝜌-matrix

The multi Davydov-Ansatz is commonly known to su�er from severe instabilities. Even with straight-

forward regularizations implemented, whether a propagation completes or not is just a matter of

luck: while for certain numbers 𝑀 of CS employed and certain positions of the initially unpopulated

CS a numerical propagation may successfully complete, a slight change in the multiplicity 𝑀 or the

positions of the initially unpopulated CS may lead to termination of the propagation due to tiny

integrator steps before completion. This instability is commonly considered intimately related to the

method, which is why one - despite its amazingly slow growth of the numerical e�ort with the number

of environmental modes - considers the method to be better avoided.
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In this section we shall investigate in detail the impact of the regularizations of the vMCG Ansatz

outlined in Secs. 3.3.1 and 3.3.2 on the multi Davydov-Ansatz. While the regularization in the case of

vanishing coe�cients plays the dominant role if the environment consists of just a few modes (see Sec.

3.3.1), singularity of the coe�cient matrix (3.34) in the case of two CS approaching is the dominant

issue in settings with a large number of modes (see Sec. 3.3.2). Thus we will consider two settings

here for an open system given by a single qubit.

Firstly, we investigate the impact of regularization in the case of vanishing coe�cients in the quantum

Rabi model for a single environmental oscillator in Sec. 4.3.1. We will �nd that regularization of

the coe�cient matrix (3.34) en bloc (see Sec. 3.3.1) introduces further instabilities and that it is of

utmost importance to regularize carefully by only regularizing the 𝜌-matrix.

Secondly, we investigate the impact of apoptosis in the case of two CS approaching in the Spin-Boson

model for multiple environmental oscillators in Sec. 4.3.2. We will �nd that with apoptosis imple-

mented each propagation completes successfully.

We shall show that the combination of both regularizations renders highly stable the multi Davydov-

Ansatz and thus allows for convergence of the multi Davydov method to arbitrary precision. Further

details regarding the implementation of the multi Davydov-Ansatz are gathered in App. D.

4.3.1. Multi Davydov-Ansatz for the Quantum Rabi model

In order to investigate the impact of the regularization of the coe�cient matrix (3.34) in the case of

vanishing coe�cients, let us consider a two-level system coupled to only a single environmental mode.

This model, known as the quantum Rabi model, has been introduced in [187, 188] to describe the

e�ect of a rapidly varying, weak magnetic �eld on an oriented atom possessing nuclear spin. The

model is obtained by treating the �eld as classically rotating. Then the system Hamiltonian is given

by

ℋ̂S =
Δ

2
𝜎̂𝑥, (4.30)

and the coupling operator is given by

𝐿̂ =
1

2
𝜎̂𝑧. (4.31)

Here, 𝜎̂𝑥 and 𝜎̂𝑧 are the Pauli spin matrices and Δ is the level splitting. The bath Hamiltonian and

the environmental coupling operator corresponding to (4.2) and (4.4) are given by

ℋ̂B = 𝜔𝑎̂†𝑎̂ (4.32)

and

ℋ̂I = 𝜆(𝑎̂† + 𝑎̂), (4.33)
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respectively, for a single environmental mode. A photonic realization of the Rabi model has been

found recently [189], and nice reviews of the model along with further properties and experimental

realizations can be found in [190, 191]. Most importantly, all parameters of the Rabi model are tunable

in experimental realizations.

We do not resort to an analytical solution to the quantum Rabi model, presented in [192], since a

numerically exact and quickly calculable solution is available if one expands the wave-function in

terms of number states |𝑗⟩ and truncates the series at �nite 𝑁𝑛:

|Ψ(𝑡)⟩ =
𝑁𝑛∑︁
𝑗=0

(𝐴𝑗(𝑡) |+⟩+𝐵𝑗(𝑡) |−⟩) |𝑗⟩ . (4.34)

A straightforward calculation with the Hamilton operator (4.6) yields

ℋ̂ |Ψ⟩ =
𝑁𝑛∑︁
𝑗=0

[︃(︂
Δ

2
(𝐴𝑗 |−⟩+𝐵𝑗 |+⟩) + 𝜔𝑗

)︂
|𝑗⟩

+
𝜆

2
(𝐴𝑗 |+⟩ −𝐵𝑗 |−⟩)

(︁√︀
𝑗 + 1 |𝑗 + 1⟩+

√︀
𝑗 |𝑗 − 1⟩

)︁]︃
. (4.35)

Insertion into the TDSE and projection onto ⟨𝑗| ⟨±| yields the system

i #�𝑦̇ = 𝑀 #�𝑦 (4.36)

for #�𝑦 = (𝐴1, . . . , 𝐴𝑁 , 𝐵1, . . . , 𝐵𝑁 ), with the time-independent matrix

𝑀 =

(︃
𝑚1 𝑚2

𝑚2 𝑚3

)︃
, (4.37)

where

𝑚1 =

⎛⎜⎜⎜⎜⎝
0𝜔 𝜆

2

√
0 0 0

𝜆
2

√
1 1𝜔 𝜆

2

√
1

0 𝜆
2

√
2 2𝜔 𝜆

2

√
2

. . .

⎞⎟⎟⎟⎟⎠ , (4.38)

𝑚2 = diag

[︂
Δ

2
, . . . ,

Δ

2

]︂
, (4.39)
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and

𝑚3 =

⎛⎜⎜⎜⎜⎝
0𝜔 −𝜆

2

√
0 0 0

−𝜆
2

√
1 1𝜔 −𝜆

2

√
1

0 −𝜆
2

√
2 2𝜔 −𝜆

2

√
2

. . .

⎞⎟⎟⎟⎟⎠ . (4.40)

The solution is given by

#�𝑦 (𝑡) = exp [−i𝑀 𝑡] #�𝑦 (0), (4.41)

where the matrix exponential can be calculated in many di�erent ways [193, 194]. Convergence then

has to be checked with respect to the number of included number states 𝑁𝑛.

Subsequently we compare the numerical exact result with the one obtained by the multi Davydov-

Ansatz. Special emphasis is on the investigation of the regularization of the coe�cient matrix (3.34)

in the case of (almost) vanishing coe�cients. To this end we consider the demanding setting given

in [190]. There the strong coupling regime has been explored. Both presented settings provide an

optimal test bed for the regularization to be investigated since many initially unpopulated CS are to

be employed, 𝑀 ≫ 𝑁 , and consequently not apoptosis but vanishing coe�cients is expected to be

the dominant issue. We investigate the e�ect of regularization of the matrices S, L3 and 𝜌 (see Sec.

3.3.1 and Eq. 3.34) by adding a multiple of the identity to them.

The initial state is assumed to be |Ψ(0)⟩ = 1√
2

(︁
|+⟩ + |−⟩

)︁
|0⟩, i.e. the system is in the equator

of the Bloch sphere while the environmental oscillator is in its ground state initially. The oscillator

frequency is set to 𝜔 = 1 and the coupling 𝜆 = 4. In the �rst setting, Δ = 0.2 while in the second

setting Δ = 4. The multi Davydov-Ansatz has been employed with a multiplicity 𝑀 = 20. Further

details of the implementation are summarized in App. D.

Table 4.1.: Comparison of regularizations for different setups

regularization Δ = 0.2 Δ = 4

𝜌 S L3 Fig. deviation 𝑑 Fig. deviation 𝑑

no no weak 4.1 left 0.048 X X

no no strong 4.1 middle 3.369 4.3 left 2.377

no weak weak 4.1 right 0.045 X X

no weak strong 4.2 left 3.369 4.3 middle 2.259

no strong weak 4.2 middle 1.354 4.3 right 1.196

weak no no 4.2 right 0.008 4.4 0.111

Impact of different regularizations of the matrices 𝜌 (see Eq. (3.28)), S (see Eq. (3.35)) and L3 (see
Eq. (3.37)) entering the coefficient matrix (3.34). The entry X indicates that the propagation could
not be completed, and the deviation 𝑑 is given by (4.42).
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The results are gathered in Figs. 4.1 - 4.4 where the expectation value 𝑠𝑥(𝑡) :=< 𝜎̂𝑥 >= ⟨Ψ(𝑡)| 𝜎̂𝑥 |Ψ(𝑡)⟩
of 𝜎̂𝑥 is plotted as function of time. Table 4.1 summarizes the results obtained by regularizing the

matrices S, L3 and 𝜌 in Eq. (3.34) by respectively adding the identity times 10−4 (strong) and times

10−8 (weak) to some of them. The entry X indicates that the propagation could not be completed.

By neither regularizing 𝜌 nor L3, none of the propagations completed, and thus these lines have been

omitted from Tab. 4.1. The same holds true for strongly regularizing S and L3 which gave completely

unreasonable results. In order to better quantify the impact of the regularizations, the deviation 𝑑

from the exact result, given by the distance

𝑑 =

𝑁𝑡∑︁
𝑚=1

|𝑠approx𝑥 (𝑡𝑚)− 𝑠exact𝑥 (𝑡𝑚)| (4.42)

for a discretization (𝑡1, . . . , 𝑡𝑁𝑡) of the time-interval [0, 20] is also given.

From Figs. 4.2 (right panel) and 4.4 and Table 4.1 we �nd that weakly regularizing 𝜌 su�ces in order

to obtain converged results in both settings, while none of the remaining possibilities listed in Tab.

4.1 lead to converged results in both setups. Furthermore, the instability of the other regularizations

can be carved out in even more detail by increasing the multiplicity 𝑀 which only in the case of

regularization of the 𝜌-matrix leads to a decay in the distance 𝑑.

This exemplary shows what we generally found for all performed numerical calculations: as theoret-

ically outlined in Sec. 3.3.1 carefully regularizing only the 𝜌-matrix is suited to tackle the issue of

vanishing coe�cients without introducing further instabilities. We conclude that the regularization

of the 𝜌-matrix as outlined in Sec. 3.3.1 is the minimally invasive regularization best suited for the

propagation of CS in the case of (almost) vanishing coe�cients.

Figure 4.1.: Expectation value of 𝜎̂𝑥 as function of time for the first setting Δ = 0.2, for different
regularizations. Results obtained from the multi Davydov-Ansatz with multiplicity 𝑀 = 20 (red
solid) are compared to the exact result (black dashed) Left panel: only L3 weakly regularized.
Middle panel: only L3 strongly regularized. Right panel: S and L3 weakly regularized.

While we have detailed the impact of the regularization of the 𝜌-matrix in the case of vanishing

coe�cients in this section, we shall now investigate in more detail the e�ect of apoptosis in the case of

two CS approaching. To this end, we will switch to multiple environmental modes in the Spin-Boson

model.
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Figure 4.2.: As in Fig. 4.1, but for different regularizations. Left panel: S weakly and L3 strongly
regularized. Middle panel: S strongly and L3 weakly regularized. Right panel: only 𝜌 weakly
regularized.

Figure 4.3.: As in Fig. 4.1, but for different regularizations. Left panel: only L3 strongly regular-
ized. Middle panel: S weakly and L3 strongly regularized. Right panel: S strongly and L3 weakly
regularized.

Figure 4.4.: As in Fig. 4.1, but only 𝜌 weakly regularized.

4.3.2. Multi Davydov-Ansatz and the Spin-Boson model

In order to examine in more detail the impact of apoptosis, outlined in Sec. 3.3.2, we transition from

the simple quantum Rabi model with only a single environmental mode (see the previous section) to

the Spin-Boson model (SBM) where the environment comprises many modes, since di�erent coherent

states approaching is expected to be the dominant issue for multiple modes. Typically di�erent CS

come close if convergence with respect to the number 𝑀 of CS is reached, rendering impossible further

systematic convergence by increasing the multiplicity. In other words: if with a certain multiplicity
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𝑀 the result obtained with the multi Davydov-Ansatz is close to convergence, propagation with in-

creased 𝑀 will typically fail due to tiny integrator steps caused by CS approaching.

On the contrary, we shall see that with apoptosis implemented, convergence can be systematically

reached by increasing 𝑀 . It will turn out that in the Spin-Boson model the region of convergence of

the multi Davydov-Ansatz can be reached extremely quickly, i.e. for surprisingly small 𝑀 . Since the

implementation of apoptosis allows to further converge the result, we will obtain converged results

in various parameter regimes for astonishingly small computational e�ort. Thus by apoptosis the

multi Davydov-Ansatz can be tuned into a reliable high-precision tool suited to tackle open quantum

system dynamics at almost every level.

It is hard to graphically show the impact of apoptosis. The dynamics of the coherent states in the

multi Davydov-Ansatz is highly non-linear, thus whether and for which coherent states apoptosis is

needed depends on the setup and the positions of the initially unpopulated CS. In order to give a

complete description of an apoptosis event, one consequently has to include the initial positions of all

the coherent states, the integrator tolerances etc., which is tedious due to the high dimension of the

environmental phase space. Thus we refrain from specifying the time of apoptosis events and rather

resort to a presentation of systematically converged results which indirectly con�rms the reliability of

the method. In order to do so, we examine the Spin-Boson model in various parameter regimes.

The Spin-Boson model (SBM) constitutes the simplest non-trivial open quantum system, a two-level

system coupled non-trivially to an environmental bath. It has been the subject of research for many

decades [26, 163, 166, 168, 195�197]. While it arises naturally in contexts where the system comprises

intrinsically just two levels, a vast number of more complex systems can be described by the SBM.

This can be accomplished �rstly if the system comprises multiple levels which one arti�cially restricts

in the low-temperature limit to only the lowest-lying two ones, as e.g. in the case of a NH3-molecule

coupled to the radiation �eld. Generally, even in cases where the system has a continuous degree

of freedom with which is associated a potential with two separate minima, restriction to a two-level

system can be accomplished by only taking into account the ground states in the two separate minima

[198].

Due to its generality, the SBM has found wide application, e.g. for the incoherent tunneling of bistable

defects in metals [199] and amorphous systems as metallic glass [200], electron and proton transfer

in solvent environments [201], and macroscopic quantum tunneling in superconducting circuits [202].

In addition, the SBM is relevant in describing exciton transport in biological complexes [203, 204],

especially in photosynthetic reactions [205, 206], and in quantum computing [207].

In the case of ohmic damping (see Sec. 3.4 and below) the SBM can be shown to be equivalent with

the anisotropic spin-1/2 Kondo model in one dimension [208, 209]. The Kondo model describes a

magnetic impurity coupled to a Fermi sea, and below an ultraviolet energy scale set by the Fermi en-

ergy the equivalence can be formulated explicitly through bosonization [210�212]) of the SBM. Thus,

for strong coupling, the SBM may be utilized to describe the emergence of Kondo screening clouds

[157].

Recently, a new experimental setup was implemented [213] which realizes the ohmic SBM with an
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environmental coupling tunable from weak to ultrastrong [214]. Furthermore, in [215], a qubit ultra-

strongly coupled to a single oscillator mode was demonstrated. Although plenty of research has been

done on the model in recent years, only a very early review of the SBM exists [198].

The Hamilton operator of the two-level system reads

ℋ̂S =
𝜀

2
𝜎̂𝑧 +

Δ

2
𝜎̂𝑥, (4.43)

where 𝜀 is the detuning between the two wells and Δ is the tunneling matrix element. This generalizes

the system Hamiltonian of the quantum Rabi model (4.30), where again 𝜎̂𝑧 and 𝜎̂𝑥 are Pauli spin

matrices. We assume the environment to be sensitive to the system position, i.e. the coupling operator

is given by

𝐿̂ =
1

2
𝜎̂𝑧. (4.44)

We recall that the full system-bath Hamiltonian is given by (4.6).

Despite the seeming simplicity of the Spin-Boson model, its exact numerical solution requires advanced

methods, e.g., the multi-layer multi-con�gurational time-dependent Hartree (ML-MCTDH) method,

hierarchical equations of motion [154, 216] (HEOM), time-evolving matrix product operators [31]

(TEMPO), or others [164, 217] while still being numerically demanding. Consequently, certain aspects

of the SBM are still not yet fully understood.

For the Spin-Boson model, the counter-term (4.27) introduced in Sec. 4.2 is a multiple of the identity,

ℋ̂CT =
1

4
𝐿̂
2

𝑁∑︁
𝑛=1

𝜆2
𝑛

𝜔𝑛
=

1

4

𝑁∑︁
𝑛=1

𝜆2
𝑛

𝜔𝑛
, (4.45)

and thus does not a�ect the dynamics. Introducing the counter term at the level of the Caldeira

Leggett model (4.6) and then reducing to the simpli�ed SBM does obviously not yield the same as

introducing the counter term at the level of the already reduced SBM. To our best knowledge, this

inconsistency has not been addressed in the literature.

A continuous SD 𝐽(𝜔) ∼ 𝜔, equipped with an appropriate cuto� in order to avoid ultraviolet diver-

gences (see Sec. 4.1), leads to ohmic dissipation in the classical limit (see Sec. 4.2). By equipment of

𝐽 with an exponential cuto�, the SD

𝐽(𝜔) =
𝜋

2
𝛼𝜔e−𝜔/𝜔𝑐 , (4.46)

is consequently called ohmic. Here, 𝛼 is the Kondo parameter which speci�es the overall system-bath

coupling strength and 𝜔𝑐 speci�es the high-frequency cuto�. The ohmic SD can be generalized by

allowing it to obey an arbitrary power-law,

𝐽(𝜔) =
𝜋

2
𝛼𝜔𝑠−1

𝑐 𝜔𝑠e−𝜔/𝜔𝑐 , (4.47)
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which reduces to (4.46) in the case of 𝑠 = 1. For 𝑠 < 1 the SD is referred to as sub-ohmic, while

for 𝑠 > 1 it is called super-ohmic. Numerical solutions for a wide variety of parameters, commonly

considered as `the' exact solution for the Spin-Boson model, have been calculated for zero temperature

by means of the ML-MCTDH method and presented in [163] for the ohmic and in [166] for the sub-

ohmic case. We shall use these numerical results as reference and compare them to the results obtained

from the multi Davydov-Ansatz in the ohmic (Sec. 4.3.2.1) as well as in the sub-ohmic (Sec. 4.3.2.2)

case. We restrict ourselves to the case of zero detuning 𝜀 = 0. Then by setting Δ as the unit of

energy, the Spin-Boson model has only two free parameters, the cuto� frequency 𝜔𝑐 and the Kondo

parameter 𝛼. In this section, the system is assumed to be in its excited state and the bath to be in

the ground state initially,

|Ψ(0)⟩ = |0⟩ |+⟩ . (4.48)

Further details concerned with the positions of initially unpopulated CS are summarized in App. D.

4.3.2.1. Spin-Boson model in the ohmic regime

In this section we aim at comparison of the dynamics obtained from the multi D2-Ansatz with the

results given in [163]. To this end, we assume the SD to be of ohmic form (4.46) and discretize the

frequency axis by a FD given by

𝜌f(𝜔) =
1

𝜔𝑐
exp

[︂
− 𝜔

𝜔𝑐

]︂
. (4.49)

The frequencies and couplings, calculated from (4.12) and (4.13) respectively, read

𝜔𝑛 = −𝜔𝑐 ln

[︂
1− 𝑛

𝑁 + 1

]︂
, 𝜆𝑛 =

√︂
𝛼𝜔𝑐

2(𝑁 + 1)
𝜔𝑛, 𝑛 = 1, . . . , 𝑁. (4.50)

We will consider here couplings 𝛼 ∈ {0.1, 0.5} and cuto�s 𝜔𝑐 ∈ {10Δ, 40Δ}. Convergence with

respect to the number of bath modes 𝑁 and the number of CS employed in the multi Davydov-

Ansatz will be checked, where we aim at reproduction of the results for the expectation value <

𝜎̂𝑧 >= ⟨Ψ(𝑡)| 𝜎̂𝑧 |Ψ(𝑡)⟩ of 𝜎̂𝑧 given in [163] in the time interval 𝑡Δ ∈ [0, 25] within line width.

The results are shown in Figs. 4.5 - 4.8. The speed of convergence with respect to 𝑀 is remarkable.

While for small coupling 𝛼 = 0.1 three CS, i.e. 𝑀 = 3 is enough to converge the result, even in

the strong coupling case (𝛼 = 0.5) only six multi-mode CS are required to converge the result. We

will see, however, that in the sub-ohmic regime, more CS are required for converged results (see Sec.

4.3.2.2). Furthermore, we observe that the number 𝑁 of bath modes required to converge to the

continuum limit is not excessively large. Rather, at most 𝑁 = 400 modes su�ce for convergence. As

we shall see in Sec. 4.4 this is intimately related to the speci�c choice of the FD. It will turn out that

the FD (4.49) applied here is extremely favourable in this respect.

In order to converge the results, apoptosis is needed frequently. We point out again that without
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Figure 4.5.: Convergence of the multi D2-Ansatz for 𝜔𝑐 = 10Δ, 𝛼 = 0.1. Left panel convergence
wrt. 𝑁 : 𝑁 = 100 (red solid), 𝑁 = 200 (green solid), 𝑁 = 300 (black dashed), for 𝑀 = 5. Right
panel convergence wrt. 𝑀 for 𝑁 = 300: 𝑀 = 3 (red solid), 𝑀 = 4 (green solid), 𝑀 = 5 (black
dashed).

Figure 4.6.: Convergence of the multi D2-Ansatz for 𝜔𝑐 = 10Δ, 𝛼 = 0.5. Left panel convergence
wrt. 𝑁 : 𝑁 = 100 (red solid), 𝑁 = 200 (green solid), 𝑁 = 300 (black dashed), for 𝑀 = 6. Right
panel convergence wrt. 𝑀 for 𝑁 = 300: 𝑀 = 4 (red solid), 𝑀 = 5 (green solid), 𝑀 = 6 (black
dashed).

apoptosis implemented still some of the results may be obtained for certain positions of the initially

unpopulated CS. Finding these positions is cumbersome, and sometimes none of the attempts seems to

work. On the contrary, with apoptosis implemented, each of the propagations successfully completes

independently from the positions of the initially unpopulated CS. It is indeed much more conve-

nient and time-saving to have apoptosis implemented. Furthermore, the results show that although

apoptosis decreases the �exibility of the multi Davydov-Ansatz, convergence occurs systematically

by increasing the multiplicity 𝑀 . We conclude that apoptosis is minimally invasive and suited to

stabilize the formerly highly unstable method.

By plotting the absolute value of the displacements as a function of the number 𝑛 of the mode and the



66 4.3 The impact of apoptosis and regularization of the 𝜌-matrix

Figure 4.7.: Convergence of the multi D2-Ansatz for 𝜔𝑐 = 40Δ, 𝛼 = 0.1. Left panel convergence
wrt. 𝑁 : 𝑁 = 100 (red solid), 𝑁 = 200 (green solid), 𝑁 = 300 (black dashed), for 𝑀 = 4. Right
panel convergence wrt. 𝑀 for 𝑁 = 300: 𝑀 = 3 (red solid), 𝑀 = 4 (green solid), 𝑀 = 5 (black
dashed).

Figure 4.8.: Convergence of the multi D2-Ansatz for 𝜔𝑐 = 40Δ, 𝛼 = 0.5. Left panel convergence
wrt. 𝑁 : 𝑁 = 200 (red solid), 𝑁 = 300 (green solid), 𝑁 = 400 (black dashed), for 𝑀 = 6. Right
panel convergence wrt. 𝑀 for 𝑁 = 400: 𝑀 = 4 (red solid), 𝑀 = 5 (green solid), 𝑀 = 6 (black
dashed).

index 𝑘 labeling the multiplicity, for di�erent times, in Figs. 4.9 - 4.12 we can read o� the channels

through which the energy �ows from the system to the bath. It is remarkable that even for short

times all the bath modes contribute to the dynamics (we have not plotted the absolute values of

the coe�cients since we expect all multi-mode CS to contribute from the small multiplicity 𝑀 = 4).

Furthermore comparison of the left panels of Figs. 4.9,4.10 with the left panels of Figs. 4.11,4.12

shows the e�ect of the cuto� frequency on the dynamics of the bath: the larger the cuto� (at the

same number of modes), the more are the modes distributed in a larger region of the frequency axis

and thus fewer modes lie in the region of the system frequency. Hence fewer modes e�ectively couple



4.3.2 Multi Davydov-Ansatz and the Spin-Boson model 67

Figure 4.9.: Displacements for the ohmic case for 𝑁 = 300 bath modes and multiplicity 𝑀 = 4 at
different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further parameters
read 𝜔𝑐 = 10Δ, 𝛼 = 0.1.

Figure 4.10.: Displacements for the ohmic case for 𝑁 = 300 bath modes and multiplicity 𝑀 = 4 at
different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further parameters
read 𝜔𝑐 = 10Δ, 𝛼 = 0.5.

Figure 4.11.: Displacements for the ohmic case for 𝑁 = 300 bath modes and multiplicity 𝑀 = 4 at
different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further parameters
read 𝜔𝑐 = 40Δ, 𝛼 = 0.1.

to the system mode, and the dynamics is slower, in coincidence with a comparison of Figs. 4.5,4.6 and

4.7,4.8. This pursues in the dynamics for larger times, as for large coupling the energy is concentrated

in the small frequency modes (see Fig. 4.12) for large cuto�, while the energy stays distributed for

small cuto� (see Fig. 4.10), for large coupling.

In order to better understand the dynamics of the bath, we have plotted in Fig. 4.13 the energy
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Figure 4.12.: Displacements for the ohmic case for 𝑁 = 300 bath modes and multiplicity 𝑀 = 4 at
different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further parameters
read 𝜔𝑐 = 40Δ, 𝛼 = 0.5.

density

𝜌EB(𝜔𝑛, 𝑡) := 𝜌f(𝜔𝑛) ⟨Ψ(𝑡)|𝜔𝑛𝑎̂
†
𝑛𝑎̂𝑛 |Ψ(𝑡)⟩ (4.51)

of the bath and in Fig. 4.14 the energy density

𝜌Eint(𝜔𝑛, 𝑡) := 𝜌f(𝜔𝑛) ⟨Ψ(𝑡)| 𝜎̂𝑧𝜆𝑛

(︁
𝑎̂†𝑛 + 𝑎̂𝑛

)︁
|Ψ(𝑡)⟩ (4.52)

of the interaction. For small coupling, the energy is mainly concentrated in the small frequencies of the

bath (see right panel of Fig. 4.13). With growing coupling strength the energy is stronger distributed

among the di�erent modes in the system. We see from Figs. 4.13, 4.14 that density of bath and

interaction are complementary with each other. The picture which we draw from the displacements

is con�rmed here: in the ohmic case, for strong coupling all modes share the energy equally. As we

shall see in Sec. 4.3.2.2, this is not the case for sub-ohmic dissipation.

Figure 4.13.: Energy density (4.51) of the bath as function of 𝜔 and time 𝑡. Left panel 𝛼 = 0.1,
right panel 𝛼 = 0.5, with cutoff 𝜔𝑐 = 40Δ.

In the present setting we also substantiate the theoretical considerations of Sec. 3.6 with respect to
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Figure 4.14.: Energy density (4.52) of the interaction as function of 𝜔 and time 𝑡. Left panel
𝛼 = 0.1, right panel 𝛼 = 0.5, with cutoff 𝜔𝑐 = 40Δ.

the di�erences between the D1 and the D2-Ansatz. Con�rming these considerations, we shall show

that the D2-Ansatz outperforms the D1-Ansatz and that thus the former should be preferred over

the latter. In the multi D2-Ansatz, used to numerically calculate the results presented so far, we

have utilized as system basis the eigenbasis of 𝜎̂𝑧, i.e. the standard basis
{︀
(1, 0)𝑇 , (0, 1)𝑇

}︀
of R2. By

utilization of the D2-Ansatz with alternative basis choices we �nd that the results do not di�er from

the ones presented so far for di�erent choices of the system basis. Concerning the multi D1-Ansatz,

however, for di�erent choices of the system basis we �nd di�erent results. In Fig. 4.15 we compare

Figure 4.15.: Multi D2 vs D1-Ansatz. Left panel: Comparison of D1 in eigenbasis of 𝜎̂𝑧 with
converged D2 result (black solid), for 𝑁 = 400 bath modes: 𝑀 = 2 (green dotted), 𝑀 = 3 (blue
dashed), 𝑀 = 4 (red solid). Right panel: Comparison of D1 in eigenbasis of 𝜎̂𝑥 with converged D2
result (black solid), for 𝑁 = 400 bath modes: 𝑀 = 2 (green dotted), 𝑀 = 3 (blue dashed), 𝑀 = 4
(red solid).

di�erent types of the D1-Ansatz with the numerically exact result of the D2-Ansatz which we found

in Sec. 4.3.2. It turns out �rstly that the D1-Ansatz converges slower than the D2-Ansatz. While the
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multi D1-Ansatz with multiplicity 𝑀 = 4 (employing eight multi-mode CS) is not yet fully converged,

the multi D2-Ansatz with multiplicity 𝑀 = 6 (employing six multi-mode CS) is fully converged. It

turns out that the multi D1-Ansatz with multiplicity 𝑀 = 6 is fully converged as well, which con�rms

the theoretical considerations of Sec. 3.6. Furthermore disadvantageously it turns out that the quality

of the D1 result depends on the chosen basis. If the eigenbasis of 𝜎̂𝑥 is chosen, results are even worse

than those obtained if the eigenbasis of 𝜎̂𝑧 is chosen. On the contrary and as expected from Sec. 3.6,

this is not the case for the D2-Ansatz which yields identical results whichever system basis is chosen.

For this reason, we will from now on perform any calculation with the D2-Ansatz.

In this section we have investigated the ohmic Spin-Boson model, which is in the context of master

equation approaches considered less complicated than the sub-ohmic case. We shall in the next section

apply the multi D2-Ansatz to this more challenging regime.

4.3.2.2. Spin-Boson model in the sub-ohmic regime

In this section, we examine the sub-ohmic regime of the Spin-Boson model and aim at comparison

of the dynamics obtained from the multi D2-Ansatz with the results given in [166]. To this end, we

assume the SD to be of sub-ohmic form (4.47) for 𝑠 < 1 and again discretize the frequency axis by

a FD given by (4.49). The frequencies and couplings, calculated from (4.12) and (4.13) respectively,

read

𝜔𝑛 = −𝜔𝑐 ln

[︂
1− 𝑛

𝑁 + 1

]︂
, 𝜆𝑛 =

√︃
𝛼𝜔2−𝑠

𝑐

2(𝑁 + 1)
𝜔𝑠
𝑛, 𝑛 = 1, . . . , 𝑁. (4.53)

We will consider here the case of 𝑠 = 0.5 with couplings 𝛼 ∈ {0.05, 0.2} for small cuto� 𝜔𝑐 = 10Δ and

𝛼 ∈ {0.025, 0.1} for large cuto� 𝜔𝑐 = 40Δ. Again convergence with respect to the number of bath

modes 𝑁 and the number of CS employed in the multi Davydov-Ansatz was checked, with the goal

of reproduction of the results for the expectation value < 𝜎̂𝑧 >= ⟨Ψ(𝑡)| 𝜎̂𝑧 |Ψ(𝑡)⟩ of 𝜎̂𝑧 given in [166]

in the time interval 𝑡Δ ∈ [0, 25] within line width.

The results are shown in Fig. 4.16, where the polarization ⟨𝜎̂𝑧⟩ := ⟨Ψ(𝑡)| 𝜎̂𝑧 |Ψ(𝑡)⟩ as well as the

entropy 𝑆(𝑡) are plotted. The entropy is de�ned as

𝑆(𝑡) = −trS [𝜌̂S(𝑡) ln 𝜌̂S(𝑡)] , (4.54)

where the reduced density matrix is calculated by a trace over the bath degrees of freedom,

𝜌S(𝑡) = trB𝜌̂(𝑡). (4.55)

It is a measure for the entanglement between system and bath. Again, the speed of convergence

with respect to the multiplicity 𝑀 is remarkable, yet not as brilliant as in the ohmic regime (see the

previous section). While a smaller number 𝑁 = 200 of modes is required in the sub-ohmic regime to

converge to the continuum limit, the dynamics of these modes turns out more complicated, requiring
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more CS to converge with respect to the multiplicity 𝑀 compared to the ohmic regime. Because of

this more complicated dynamics, events of two CS approaching occur more frequently. Consequently,

apoptosis is needed more frequently in the sub-ohmic regime. However, the calculations performed

in this regime con�rm that the number of CS coming close during propagation is not related to the

multiplicity 𝑀 nor the coupling strength in an obvious way. Propagation with increased 𝑀 may cope

without apoptosis, or with more or fewer CS connected. Thus, in the presence of apoptosis convergence

can be checked by increasing the multiplicity 𝑀 in a systematic way. The results reveal that although

apoptosis events decrease the �exibility of the CS, results still nicely converge by increasing 𝑀 .

Figure 4.16.: Results in the sub-ohmic regime for 𝑁 = 200. 𝜔𝑐 = 10Δ, 𝛼 = 0.05 converged with
𝑀 = 16 (red solid) and 𝛼 = 0.2 converged with 𝑀 = 24 (blue dashed). 𝜔𝑐 = 40Δ, 𝛼 = 0.025
converged with 𝑀 = 16 (green dotted) and 𝛼 = 0.1 converged with 𝑀 = 28 (black solid). Dynamics
of the polarization < 𝜎̂𝑧(𝑡) > (left panel), entropy 𝑆(𝑡) (right panel).

Also in this case we investigate the dynamics of the displacements more closely. Results are plotted

in Figs. 4.18 - 4.21 for di�erent values 𝛼 ∈ {0.05, 0.2} for small cuto� 𝜔𝑐 = 10Δ and 𝛼 ∈ {0.025, 0.1}
for large cuto� 𝜔𝑐 = 40Δ. The rather strange formations seen in the left panels of these �gures are

reminiscent of the initial positions of the unpopulated displacements. We �rstly see that the cuto�

frequency has the same impact as in the ohmic case, namely that fewer modes e�ectively couple to

the system mode, and that hence the dynamics is slower. Furthermore, the small modes are much

more pronounced than in the ohmic case, meaning that the energy which �ows from the system is

concentrated in the small modes. This is shown exemplary in Fig. 4.17, where the energy density

(4.51) of the interaction is plotted. By comparing with Fig. 4.14 in the ohmic case we see that in the

ohmic case on the contrary all modes are equally pronounced.

It could even be suited to neglect the larger modes completely in this case, since they obviously do

not contribute to the dynamics at all in the case of a large cuto�. By comparing the right panels

of Figs. 4.18 - 4.21 we �nd that the bath modes are much more displaced in the strong coupling

and large cuto� case than in the other cases (note the scaling). Again this is due to the fact that

more modes e�ectively couple to the system frequency in the sub-ohmic case than in the ohmic case,

and even more for strong coupling and large cuto�. Finally, it is expected that the small frequencies
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contribute to the dynamics for large times while the large frequencies contribute for short times. This

expectation is accomplished in the sub-ohmic case, whereas it is not in the ohmic case.

Figure 4.17.: Energy density (4.52) of the interaction as function of 𝜔 and time 𝑡. Left panel
𝛼 = 0.025, right panel 𝛼 = 0.1, with cutoff 𝜔𝑐 = 40Δ.

The multi D2-Ansatz has enabled us to successfully reproduce the exact dynamics of the SBM both

in the ohmic as well as in the sub-ohmic regime at surprisingly humble numerical e�ort. While in

the ohmic regime a quite large number 𝑁 of modes is required in order to converge to the continuum

limit, the multiplicity 𝑀 turned out surprisingly low in this regime (see previous section). On the

contrary, in the sub-ohmic regime a small number of modes su�ces to converge to the continuum

limit while a larger multiplicity 𝑀 is required in order to converge with respect to the number of CS.

While convergence with respect to multiplicity 𝑀 is related to the complexity of the dynamics, the

number 𝑁 of modes required to converge to the continuum limit is intimately related to the choice

for the FD. In the next section we shall address in more detail the question how to converge to the

continuum limit with as few as possible environmental modes.

Figure 4.18.: Displacements for the subohmic case for 𝑁 = 200 bath modes and multiplicity
𝑀 = 24 at different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further
parameters read 𝜔𝑐 = 10Δ, 𝛼 = 0.05, 𝑠 = 0.5.
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Figure 4.19.: Displacements for the subohmic case for 𝑁 = 200 bath modes and multiplicity
𝑀 = 24 at different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further
parameters read 𝜔𝑐 = 10Δ, 𝛼 = 0.2, 𝑠 = 0.5.

Figure 4.20.: Displacements for the subohmic case for 𝑁 = 200 bath modes and multiplicity
𝑀 = 16 at different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further
parameters read 𝜔𝑐 = 40Δ, 𝛼 = 0.025, 𝑠 = 0.5.

Figure 4.21.: Displacements for the subohmic case for 𝑁 = 200 bath modes and multiplicity
𝑀 = 16 at different times: left panel 𝑡Δ = 0.5, middle panel 𝑡Δ = 5, right panel 𝑡Δ = 15. Further
parameters read 𝜔𝑐 = 40Δ, 𝛼 = 0.1, 𝑠 = 0.5.

4.4. The Windowed Fourier Transform

In the previous section we have investigated in detail the convergence properties of the multi D2-

Ansatz. In particular, we have highlighted the impact of the regularizations in the case of vanishing

coe�cients (see Sec. 3.3.1) and in the case of CS approaching (see Sec. 3.3.2). We have shown that

these regularizations render the multi D2-Ansatz a highly stable and e�cient high-precision tool with

amazingly slow complexity growth with the number of environmental modes. In particular we have
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shown that the linear dependency issue, based on the problem of CS approaching, can be successfully

solved by apoptosis. Consequently, the multi D2-Ansatz can be converged to an arbitrary precision,

and we have with the multi D2-Ansatz at hand a reliable tool to fully numerically calculate the system

and environment dynamics in open quantum system settings. Building on these results, in this section

we shall be concerned with the question how to optimally discretize the continuous environment in

order to converge to the continuum limit with as few as possible environmental modes. In particular,

we will investigate the bath correlation function (BCF) and the Windowed Fourier Transform (WFT)

as a priori criteria to judge the quality of a given discretization [218].

We shall in this thesis mainly be concerned with open quantum systems where the environment is

given in terms of mutually uncoupled oscillators whose coupling to the system is speci�ed in terms of

a continuous SD 𝐽(𝜔). The latter is again assumed to be of the general form (4.47).

For a given discretization of the frequency axis 𝜔1, . . . , 𝜔𝑁 the 𝑛-th mode's coupling to the system is

then given by (4.8) or alternatively by (4.11) or (4.13). While the SD and its discretization (4.7) are

an input to the system and hence �xed, the discretization of the frequency axis, speci�ed in terms

of a number 𝑁 of frequencies and a continuous FD 𝜌f(𝜔), is not. The only physical requirement to

the discretization of the frequency axis is that in the continuum limit 𝑁 → ∞ all frequencies are

included.

Obviously, although by the multi D2-Ansatz propagation of hundreds of bath modes is possible with

marvellous numerical e�ort, reduction of the number of bath modes by a few hundred dramatically

speeds up the propagation. Thus, from a numerical point of, a second requirement to the discretization

of the frequency axis is the minimization of the number of modes needed to converge to the continuum

limit. Hence, discretizing a SD is subject to two contrasting requirements:

(i) the discretization converges to the continuous SD in the limit of an in�nite number of modes

(ii) the number of bath modes included shall be as small as possible, for the sake of numerical

feasibility and e�ciency.

To ful�ll the �rst requirement, a rather arbitrary frequency density 𝜌f(𝜔) can be chosen, which de-

termines the distribution of the discrete frequencies. While the speci�c choice of the FD should not

in�uence the result if enough modes are included, as shown in the following, for a �nite number of

modes the particular choice of the FD signi�cantly in�uences the reduced dynamics. Various kinds

of densities can be found in the literature [134, 162, 163, 166, 219, 220], with varying depth of detail

in explaining why the particular choice was used. This raises the question for a simple and useful

criterion on the FD in order to yield a good approximation for the reduced dynamics.

Reduced descriptions, where the total density matrix is traced over the (in�nitely many) environmen-

tal variables with continuous spectral density [198, 221], in general lead to non-Markovian evolution

equations, whose memory kernel involves the bath correlation function (BCF) 𝐶(𝜏), to be de�ned

readily, as a main ingredient [221, 222]. Since they consequently require an excellent approximation

of the BCF, they typically utilize the BCF as a measure of the quality of the bath discretization (see
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e.g. [223] and citations therein). The BCF is de�ned as

𝐶(𝜏) =
⟨{︁

ℋ̂I(𝜏), ℋ̂I(0)
}︁⟩

B

, (4.56)

where ℋ̂I(𝜏) is the bath coupling operator (4.4) in the interaction picture,

ℋ̂I(𝜏) = exp
[︁
i𝜏ℋ̂B

]︁
ℋ̂I exp

[︁
−i𝜏ℋ̂B

]︁
, (4.57)

and {·, ·} denotes the anti-commutator. The BCF thus is the correlation function of the bath coupling

operator in the interaction picture.

The average ⟨⟩
B
in (4.56) is taken with respect to the bath being in thermal equilibrium at temperature

𝑇 ,

⟨𝐴̂⟩
B
= trB

[︁
𝑍(𝛽) exp

(︁
−𝛽ℋ̂B

)︁
𝐴̂
]︁
. (4.58)

Here, 𝛽 is the inverse temperature (2.54) and 𝑍(𝛽) is the inverse partition function (2.57). The BCF

is calculated explicitly in App. E, along with further details. It reads

𝐶(𝜏) =
𝑁∑︁

𝑛=1

𝜆2
𝑛e

−i𝜏𝜔𝑛 coth

(︂
𝛽𝜔𝑛

2

)︂
. (4.59)

Especially for 𝑇 = 0, 𝛽 = ∞ and thus the zero temperature BCF is given by

𝐶(𝜏) =
𝑁∑︁

𝑛=1

𝜆2
𝑛e

−i𝜔𝑛𝜏 . (4.60)

By insertion of the discretization (4.7) one may obtain the continuous BCF at zero temperature as

the half-sided Fourier transform of the continuous SD,

𝐶(𝜏) =
1

𝜋

∞∫︁
0

d𝜔 𝐽(𝜔)e−i𝜔𝜏 . (4.61)

Exact numerical methods are based on numerical representations of either the SD or the BCF. How-

ever, dealing directly with a general continuous SD (or the equivalent BCF) is mostly impossible, in

general. Finite representations are required by either discretizing the SD or suitably expanding the

BCF. In order to calculate the reduced dynamics up to a �nal time 𝑇 it is su�cient to know the

BCF up to that time [150]. Therefore, a suitable approximation of the BCF over the time interval

of interest assures the exact reduced dynamics within an error bound controlled by the accuracy of

the BCF approximation. Following the same line of arguments while discretizing the SD, one realizes

that the required number of discrete modes increases dramatically with the maximum propagation

time 𝑇 .

It is worth stressing, therefore, that methods based on a discrete SD have been used successfully
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[127, 134, 162, 163, 165, 166, 183] even in a regime where the number of modes is not su�cient to

reproduce the BCF over a signi�cant time interval. However, it seems di�cult to give an a priory

criterion on how to judge the quality of the discretization with respect to the reduced dynamics. From

a numerical point of view, such a criterion would be of great interest. Ideally, the large freedom on

how to perform the discretization could be used to minimize the error of the reduced dynamics for a

given number of environmental modes.

Under the premise that it is the BCF whose optimal reproduction ensures optimal reproduction of

the system dynamics, as alternative to the FD a discretization can be obtained by employing Gauss-

quadrature for the de�ning integral of the BCF

𝐶(𝜏) =
1

𝜋

∞∫︁
0

d𝜔 𝐽(𝜔)e−i𝜔𝜏 ≈
𝑁∑︁

𝑛=1

𝜆2
𝑛e

−i𝜔𝑛𝜏 . (4.62)

At �rst sight, the integral bounds (0,∞) require Gauss-Laguerre quadrature. However, since 𝐽(𝜔) is

e�ectively di�erent from zero only in a region 𝜔 ∈ [0,Ω], also other kinds of Gauss quadratures may

be used. In all cases, for a given number of bath modes 𝑁 the quadrature scheme gives 𝜏 -independent

nodes 𝜔𝑛 (the zeros of the polynomial connected to the chosen quadrature) and weights 𝛾𝑛 > 0 such

that

∞∫︁
0

d𝜔 𝑓(𝜔) ≈
𝑁∑︁

𝑛=1

𝛾𝑛𝑓(𝜔𝑛). (4.63)

In our case, 𝑓(𝜔) = 1
𝜋𝐽(𝜔)e

−i𝜔𝜏 , leading to the desired discretization (4.62) with couplings

𝜆2
𝑛 =

1

𝜋
𝛾𝑛𝐽(𝜔𝑛). (4.64)

One can show that a Gaussian quadrature with 𝑁 nodes basically exactly [223] reproduces the BCF

on a time interval [0, 𝑇 ] if

𝑇 ≤ 4𝑁

Ω
. (4.65)

Before we turn to actual quantum dynamics, let us compare the outlined strategies with respect to

the resulting BCF for zero temperature. For the continuous SD given by (4.47) it can be calculated

explicitly from (4.61),

𝐶(𝜏) =
1

𝜋

∞∫︁
0

d𝜔 𝐽(𝜔)e−i𝜔𝜏 =
𝛼𝜔2

𝑐Γ(𝑠+ 1)

2(1 + i𝜔𝑐𝜏)𝑠+1
, (4.66)

where Γ(𝑠+ 1) is the Gamma function.

Reduced descriptions lead to non-Markovian evolution equations whose memory kernel involves the
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BCF as a main ingredient. While they consequently require an excellent approximation of the BCF,

its role for an explicit approach like the multi Davydov-Ansatz is not clear. In order to draw contact

between the two fundamentally di�erent approaches, we will compare the quality of the approximation

of the SD at the level of the BCF, by comparing discretized (4.60) and continuous (4.66) version. We

shall see, however, that the BCF is not an appropriate measure of the quality of the approximation

for the multi Davydov-Ansatz (see [218] and �gures therein for further details).

For the density approach, we speci�cally choose 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 as given in [163, 166] and 𝜌f(𝜔) ∼
𝐽(𝜔)/𝜔, as given in [134] (see left panel of Fig. 4.22). In Fig. 4.23, we consider 𝜌f(𝜔) ∼ 𝐽(𝜔). For the

Gauss quadrature we choose Gauss-Legendre as given in [223] and Gauss-Laguerre (see right panel of

Fig. 4.22).

Figure 4.22.: The BCF for different discretizations with 𝑁 = 200 for a sub-Ohmic SD with 𝑠 = 0.5
is shown. All discretizations initially follow the algebraic decay of the BCF. The discretizations via
density of frequencies (left panel) do not show obvious recurrences. The discretizations by Gauss
quadrature follow the exact algebraic decay longer, but then show strong recurrences.

All discretizations lead to very good agreement with the exact BCF for short times and, for 𝑁 = 200,

to deviations of the order of 1% for long times (note the logarithmic scale of the 𝑦-axis of the �gures).

Among the densities, the exponential choice performs better, both in initial and longer time agreement.

The Gauss quadrature methods follow the exact decay of the BCF for a longer time, but then show

strong jump-like recurrences.

The Laguerre quadrature is designed to integrate over 𝜔 ∈ (0,∞). Thus, only a few of the nodes 𝜔𝑘

are in the region of signi�cant 𝐽(𝜔). The corresponding BCF therefore shows strong recurrences, as

visible in the right panel of Fig. 4.22 (green line).

Most of the frequencies found from the Legendre quadrature are located at the bounds of the interval,

where they have small weight 𝜆2
𝑘. Consequently, for this quadrature method, too, only few frequencies

e�ectively contribute to the BCF, explaining the strong recurrences. Nevertheless, the Legendre

quadrature gives by far the best agreement for the longest initial time interval (see right panel of

4.22 (red dashed line)). In the left panel of Fig. 4.23 we have plotted the BCF resulting from a

discretization in terms of Legendre quadrature, for di�erent intervals [0, 𝑛𝜔𝑐] (𝑛 = 3, 4, 5, 6, 7) on
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which the quadrature nodes are calculated. It is interesting to note that the longer the interval, the

earlier the jump but also the better the approximation of the SD before the jump. As we will see

subsequently, the jump in the BCF corresponds to a jump in the deviation of the system dynamics.

Furthermore, as soon as a stronger deviation on the BCF level can be found also a stronger deviation

in the system dynamics is observed. Thus, the length of the interval is another parameter entering the

Legendre quadrature which determines the quality of the approximation, requiring an intermediate

value optimizing between deviation and jump.

From the non Markovian quantum state di�usion equation [150] it is clear that an ideal discretization

should for a long time follow the BCF without showing recurrences. As can be seen from (4.9) and

(4.11), choosing 𝜌f(𝜔) ∼ 𝐽(𝜔) leads to equal couplings 𝜆2
𝑘 of all modes. As all modes contribute equally

to the BCF, we expect this discretization to exhibit the longest recurrence time (given the irregular

distribution of the 𝜔𝑘 as determined from (4.10)). The corresponding BCF is plotted in the right

panel of Fig. 4.23 (blue dashed line), together with the discretization with the exponential density of

frequencies (taken from Fig. 4.22, full orange line). As is apparent from this �gure, the resulting BCF

is indeed slightly improved (we tried many other discretizations, without further improvement). We

will later see and discuss, however, that the corresponding quantum dynamics turns out far worse,

surprisingly. In contrast to reduced density approaches, methods based on a discretized SD yield a

Figure 4.23.: The BCF for different discretizations with 𝑁 = 200 for a sub-Ohmic SD with
𝑠 = 0.5 is shown. Left panel: discretizations with Legendre quadrature, for different intervals
[0, 𝑛𝜔𝑐] (𝑛 = 3, 4, 5, 6, 7) on which the quadrature nodes are calculated (the longer the interval,
the earlier the jump). Right panel: discretization with 𝜌f(𝜔) ∼ 𝐽(𝜔) is shown (blue, dashed), in
comparison to an exponential FD (orange, full).

representation of the BCF with purely oscillating terms. A �nite sum of such exponentials does not

decay asymptotically, at all. In that sense do the multi Davydov-Ansatz as well as the ML-MCTDH

method and reduced density methods approach the approximation of the bath from di�erent ends.

Nonetheless, valid results have been obtained using discrete baths, even though the BCF is only

recovered for fairly short times compared to propagation time. This can be seen from Fig. 4.24,

where the exact dynamics is reproduced with 𝑁 = 200 bath modes on the time-interval 𝑡Δ ∈ [0, 25],
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whereas the BCF (orange line in left panel of Fig. 4.22) is only reproduced exactly for 𝑡Δ ∈ [0, 2]. Since

Figure 4.24.: Population dynamics of the spin for an environment with parameters 𝑠 = 0.5, 𝜔𝑐 =
10Δ and 𝛼 = 0.2 obtained via ML-MCTDH method[166] is shown (black dashed line). In addition,
the dynamics gained from the multi Davydov-Ansatz is plotted for different multiplicities𝑀 (𝑀 = 12
blue line, 𝑀 = 18 red line, 𝑀 = 24 green line). As in the ML-MCTDH reference calculation,
discretization of the SD was done with the exponential density of frequencies 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 .
Convergence was reached over the time-interval of interest for 𝑀 = 24 with 𝑁 = 200 bath modes.

the system dynamics is nontrivial only during a short initial time span, one might conclude from this

result that for explicit methods it is su�cient if the BCF is reproduced exactly in a correspondingly

short time interval. The main requirement for the discretization then would be not to exhibit strong

recurrences. In Fig. 4.25, the dynamics corresponding to the other discretizations considered so far

reveals that this expectation fails spectacularly. The dynamics corresponding to Gauss quadrature

discretizations coincides with the exact dynamics as long as the BCF is represented exactly, and

the recurrences in the BCF mark the time from which on deviations from the exact dynamics can

be observed. Highly surprisingly, the dynamics of the various discretizations via FD are completely

di�erent, although all FD methods apparently coincide reasonably well on the level of the BCF (see

Fig. 4.22 left panel and Fig. 4.23).

Furthermore, the BCF for the Legendre method coincides much longer with the exact one than the

one corresponding to the exponential FD. This is not re�ected at all in the quantum dynamics of

the open system. We conclude that in drastic contrast to reduced descriptions, for explicit methods

based on discretized SDs, the quality of the BCF is not the appropriate measure for the choice of the

discretization. Still, it is true that if the BCF is reproduced exactly up to a time 𝑇 , then also the

dynamics is reproduced exactly up to that time - but not vice versa.
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Figure 4.25.: Population dynamics of the spin for an environment with parameters 𝑠 = 0.5, 𝜔𝑐 =
10Δ and 𝛼 = 0.2 obtained with the multi Davydov-Ansatz via 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 is shown (full orange
line) (convergence has been checked in Fig. 4.24), in comparison with the other discretizations

(𝜌f(𝜔) ∼
𝐽(𝜔
𝜔 blue solid, ∼ 𝐽(𝜔) cyan solid, Laguerre green solid, Legendre red solid). For all other

discretizations except the exponential one, recurrences become apparent (the multi Davydov-Ansatz
has been employed with 𝑀 = 14 and 𝑁 = 200 bath modes).

It seems to some extent disappointing that, under the proposition of a �xed overall number of bath

modes, all e�ort to improve on the discretization scheme with respect to the quality of the BCF does

not result in more accurate dynamics as compared to the widely used exponential FD. The conclusion

that a fairly low quality approximation of the BCF for longer times does not necessarily yield low

quality dynamics may also allow more freedom in approximating the BCF in the time domain. Even

more crucial, the question for an a-priory criterion to judge the quality of the approximations either in

time or frequency domain arises. It seems natural to introduce a quantity which interpolates between

the two domains. Thus, as a-priori indicator for the quality of a discretization of the SD, we utilize a

windowed Fourier transform (WFT) of the BCF (see [218]) with a Gaussian window of width 𝜎,

𝐹𝜎(𝜔, 𝑡) :=

∞∫︁
−∞

d𝜏 𝑁𝜎(𝑡− 𝜏)𝐶(𝜏)𝑒i𝜔𝜏 , 𝑁𝜎(𝑡− 𝜏) =

√︀
𝜋
2𝜎 − 1
√
2𝜋𝜎

𝑒−
(𝑡−𝜏)2

2𝜎2 . (4.67)

The prefactor of the Gaussian was chosen such that in the limit 𝜎 → 0 the BCF (with the additional

phase 𝑒i(𝜔𝑡+𝜋)) is recovered (as a function of time), 𝜎 → ∞ yields the SD (as a function of frequency).

The WFT is thus suited to capture properties of the bath in both time- and frequency domain. We

gratefully thank Prof. Dr. Walter Strunz for bringing up for discussion the idea of the WFT.
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The integral in the WFT can be evaluated directly in the discrete case,

𝐹𝜎(𝜔, 𝑡) =

√︀
𝜋
2𝜎 − 1
√
2𝜋𝜎

∞∫︁
−∞

d𝜏 exp

[︃
i𝜔𝜏 − (𝑡− 𝜏)2

2𝜎2

]︃
𝐶(𝜏) (4.68)

=

√︀
𝜋
2𝜎 − 1
√
2𝜋𝜎

𝑁∑︁
𝑘=1

𝜆2
𝑘

∞∫︁
−∞

d𝜏 exp

[︃
i(𝜔 − 𝜔𝑘)𝜏 − (𝑡− 𝜏)2

2𝜎2

]︃
(4.69)

=

(︂√︂
𝜋

2
𝜎 − 1

)︂ 𝑁∑︁
𝑘=1

𝜆2
𝑘 exp

[︂
i𝑡 (𝜔 − 𝜔𝑘)−

1

2
𝜎2 (𝜔 − 𝜔𝑘)

2

]︂
, (4.70)

simplifying numerical calculations dramatically. We found that for𝑁 = 75, none of the methods comes

close to the exact values of the WFT. This coincides with the fact that for all of the discretization

methods, 𝑁 = 75 modes are too few to reproduce the dynamics properly. For 𝑁 = 150, the section

𝜎 = 30 Δ
𝜔𝑐

outstandingly predicts that the exponential discretization gives the best results for the

dynamics, since the corresponding image coincides best with the one of the exact WFT.

We see that whenever 𝐹𝜎(𝜔, 𝑡) of the approximation looks similar to 𝐹𝜎(𝜔, 𝑡) obtained from the exact

BCF in some region close the qubit frequency 𝜔 ≈ Δ, the approximate dynamics and the exact

dynamics look alike. This motivates to use 𝐹𝜎 with an intermediate 𝜎 leading to a nontrivial image

of the WFT, rather than the BCF or the SD, to estimate the quality of the discretization. Further

investigations in di�erent regimes (small 𝑠 vs. large 𝑠, small coupling vs. large coupling) have shown

that, up to minimal gains, no discretization outperforms the exponential FD [161]. It is clear that the

FD has to be governed by a good balance between dense sampling around the system frequency, no

regular distribution, and no negligence of regions where the SD has support. In particular, the failure

of the discretization 𝜌f ∼ 𝐽(𝜔) may be a result of the fact that only a few modes are distributed

around the system frequency. This can be seen nicely in Figs. 4.27, 4.28, where the lower edge of the

red rectangle is poorly represented (system frequency is Δ).

Figure 4.26.: Absolute value of the WFT for 𝜎 = 100 Δ
𝜔𝑐
. Exact (left panel) and for discretization

with the FD 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 (right panel).
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Figure 4.27.: Absolute value of the discrete WFT for 𝜎 = 100 Δ
𝜔𝑐
. Discretization with FD 𝜌f(𝜔) ∼

𝐽(𝜔)/𝜔 (left panel) and 𝜌f(𝜔) ∼ 𝐽(𝜔) (right panel)

Figure 4.28.: Absolute value of the discrete WFT for 𝜎 = 100 Δ
𝜔𝑐
. Discretization with Laguerre

quadrature (left panel) and Legendre quadrature (right panel).

It has turned out from our numerics that even if the BCF corresponding to the choice of frequencies

looks very reasonable in the time domain, this does not prevent the reduced dynamics from severe,

unphysical recurrences (see also [223]). We therefore found the WFT to be an alternative priori

criterion to judge the quality of the reduced dynamics. By investigating its information content in

the intermediate 𝜎 regime combines both, time as well as frequency domain characteristics of the

bath correlation, we have found that whenever the WFT shows reasonable agreement with the exact

result, also the ensuing dynamics of the open quantum system is reliably reproduced. This fact is in

no way tied to the dynamical method that has been used (multi Davydov-Ansatz), because the same

conclusions can be drawn from an integrable model as shown in [218]. We may thus hope that the

WFT opens up a path towards even more e�cient representations of general open quantum system

dynamics.

In this section we have shown that in the sub-ohmic case 𝑠 < 1, among the many discretizations
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considered the exponential discretization 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 is optimal in the sense that it converges

the quickest to the continuum limit, i.e. with the fewest environmental modes required. Comparing

discrete and continuous WFT also in the ohmic and super-ohmic regime reveals that this seems to be a

universal behaviour, since we always �nd the exponential FD to outperform the other discretizations.

However, deviations between the multi Davydov method and the quasi-adiabatic path-integral method

(QUAPI) [147, 148, 196] as well as the hierarchy of pure states method (HOPS) [159] have been found

in [161, 218], in the case of non-zero temperature 𝑇 ̸= 0. We found that dramatically increasing

the number 𝑁 of bath modes annihilates the deviations between the multi Davydov-Ansatz and the

HOPS method. This �rstly seems to contradict the �ndings of the present section, and secondly raises

the question for the origin of the deviations from the QUAPI method. We give reasoning for both in

the next section.

4.5. The sub-ohmic case and the problem of oversampling

Despite the thorough convergence analysis of the multi Davydov method presented so far as well as

its consistency with the ML-MCTDH approach, deviations between the multi Davydov method and

the quasi-adiabatic path-integral method (QUAPI) [147, 148, 196] as well as the hierarchy of pure

states method (HOPS) [161] have been found in [161, 218], in the case of non-zero temperature.

As outlined in Sec. 3.7, non-zero temperature can be treated by a sampling of stochastic initial

conditions. There, shifted initial conditions are propagated with the multi Davydov-Ansatz on the

wave-function level, turning the total density and thermal expectation values into stochastic averages

over the sampled wave functions. Since the shifted initial conditions are propagated as for zero

temperature and since the WFT is independent from the initial condition (see Eq. (4.67)), we expect

the considerations of the previous section to be valid also in the non-zero temperature case.

By dramatically increasing the number 𝑁 of bath modes, we found coincidence between the HOPS

method and the multi Davydov method for 𝑁 = 1200 environmental modes also in the case of non-

zero temperature, for an exponential discretization of the frequency axis. This seems to contradict

the validity of the WFT as measure of the quality of the discretization, since it predicts the dynamics

obtained from an exponential discretization of the frequency axis to coincide with the exact result for

𝑁 = 200 modes.

In order to resolve this contradiction and to highlight the interplay between the initial condition and

the number of bath modes required to converge to the continuum limit, we examine here in more

detail the impact of initial shifts on the dynamics of the multi Davydov-Ansatz wave-function. To

this end, we investigate the so-called polarized initial condition (to be de�ned readily) in the case of

zero temperature.

4.5.1. On the polarized initial condition

In the case of zero temperature, we have assumed up to now the system to be in the excited state

and the bath to be in its ground state initially, see Eq. (4.48). In contrast to this so-called factorized
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initial condition 𝜌̂(0) = |+⟩ ⟨+| |0⟩ ⟨0|, it is natural to assume the bath distribution to be equilibrated

to the initial system state |+⟩ in the case of non-zero temperature,

𝜌̂(0) = 𝜌̂S(0)
(︁
trB
[︁
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁]︁)︁−1
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
. (4.71)

In this so-called polarized initial state, 𝛽 is the inverse temperature (2.54), and ℋ̂B and ℋ̂I are bath-

and bath-interaction-Hamiltonian (see (4.2) and (4.4)). It is the natural ground state provided that

the system is initially in the state 𝜌̂S(0).

Even in the case of zero temperature polarized and factorized initial condition do not coincide, since

for 𝑇 = 0 the polarized initial condition reduces to (see App. F)

𝜌̂(0) = 𝜌̂S(0)𝐷̂
†
C |0⟩ ⟨0| 𝐷̂C, (4.72)

where

C𝑛 =
𝜆𝑛

𝜔𝑛
, (4.73)

corresponding to a shifted initial bath state

ΨB(0) = 𝐷̂
†
C |0⟩ . (4.74)

Provided the bath initial state is polarized, the authors of [224] have shown that in nonequilibrium

coherences exist in the case of zero temperature even when strong dissipation forces the thermody-

namic state of the system to behave almost classically. Corresponding results are shown in Fig. 4.29,

where the exact results are obtained for a multiplicity 𝑀 = 10 for all given coupling strengths.

Analogous to the �ndings of Secs. 4.3.2 the small number of CS needed for convergence is remark-

able, especially since dynamics is investigated here in the ultra-strong coupling regime where the bath

dynamics is expected to be highly complicated. However, it should be noted that the time-axis is

scaled here with 𝜔𝑐, i.e. is 𝑥 times shorter for the cuto� frequency scaled as 𝜔𝑐 = 𝑥Δ compared to

the results presented in Sec. 4.3.2.

The complexity of the dynamics is substantiated by the �nding that CS coming close dominates the

numerical calculations in this ultra strong coupling regime. It turns out that CS approaching occurs

in each propagation, forcing the integrator to stop due to tiny step-sizes caused by singularities in

the coe�cient matrix if no apoptosis was implemented. With apoptosis implemented, propagation

may be continued for times that are longer by an order of magnitude and beyond. It is remarkable

that the number of CS coming close during propagation is not related to the multiplicity 𝑀 nor the

coupling strength in an obvious way: propagation with increased 𝑀 may cope without apoptosis, or

with more or fewer CS connected. Thus, in the presence of apoptosis convergence can be checked by

increasing the multiplicity 𝑀 in a systematic way. Furthermore, although it reduces the �exibility of

the Ansatz, one infers from Fig. 4.29 that this does not negatively a�ect the convergence, since also
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Figure 4.29.: Dynamics of the population < 𝜎̂𝑧 > for 𝑁 = 300 modes for the FD 𝜌f ∼
𝐽(𝜔)
𝜔 as

well as 𝑁 = 150 bath modes for the exponential FD. Multiplicity is 𝑀 = 10, for different coupling
strengths:, 𝛼 = 0.03: 𝜔𝑐𝑡 = 22.3 (green line), 𝛼 = 0.04 : 𝜔𝑐𝑡 = 34.3 (blue line), 𝛼 = 0.05 : 𝜔𝑐𝑡 = 12.8
(red line), 𝛼 = 0.1 : 𝜔𝑐𝑡 = 28.6 (black line).

after the apoptosis event the result stays converged.

It turns out that a huge number of bath modes 𝑁 = 4000 is required to converge the result if the

exponential FD 𝜌f ∼ e−𝜔/𝜔𝑐 is used, while only 𝑁 = 300 modes su�ce to converge the result if the

FD 𝜌f ∼
𝐽(𝜔)
𝜔 is used. This seems to contradict the �ndings of Sec. 4.4 since there the exponential

FD turned out to outperform the FD 𝜌f ∼
𝐽(𝜔)
𝜔 , which was con�rmed at the level of the WFT (see

Figs. 4.26 and 4.27). Especially, the WFT (4.67) does not depend on the initial condition.

This conundrum can be resolved in the following way. It is of utmost importance that the SD 𝐽(𝜔)

is de�ned for 𝜔 ∈ [0,∞], while the initial shifts of the bath modes (4.74) diverge as 𝜔𝑛 → 0 (see

Eq. (4.73)) if the couplings do not decay to zero quickly enough. This is indeed the case in the

sub-ohmic regime 𝑠 < 1 where 𝜆2
𝑛 ∼ 𝐽(𝜔𝑛) ∼ 𝜔𝑠

𝑛 for 𝜔𝑛 → 0, see (4.7). Due to this divergence the

small modes have to be vastly oversampled in order to correctly display the bath dynamics. While

the FD ∼ 𝐽(𝜔)
𝜔 ∼ 𝜔𝑠−1 equally diverges for 𝜔 → 0 in the sub-ohmic regime, leading to an appropriate

oversampling of the small frequencies, this is not the case for the exponential FD ∼ e−𝜔/𝜔𝑐 . This ex-

plains why with the former FD one manages to converge to the continuum limit with a much smaller

number of modes.

In Sec. 4.4 we found that, for the factorized initial condition, 𝑁 = 200 modes su�ce with the ex-

ponential FD to converge to the continuum limit, while 𝑁 = 300 modes are required to converge to

the continuum limit with the FD 𝜌f ∼
𝐽(𝜔)
𝜔 . We thus infer that, with an appropriate implementation,
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also for the polarized initial condition convergence with at most 𝑁 = 200 modes with the exponential

FD should be attainable. We subsequently outline how to avoid the problem of oversampling of small

frequencies.

Alternatively to propagating shifted initial conditions (4.74),

|ΨM

D2(𝛼, 𝑡)⟩ = 𝒯 exp

⎡⎣ 𝑡∫︁
0

d𝑡′ ℋ̂(𝑡′)

⎤⎦ 𝐷̂
†
C |0⟩ , (4.75)

the initial shifts translate to a shifted Hamiltonian even in the case where the Hamiltonian is time-

dependent:

|Ψ(𝑡)⟩ = 𝐷̂
†
C𝒯 exp

⎡⎣ 𝑡∫︁
0

d𝑡′ 𝐷̂Cℋ̂(𝑡′)𝐷̂
†
C

⎤⎦ |0⟩ . (4.76)

While this unitary transformation leaves the system Hamiltonian ℋ̂S unchanged, it changes bath and

interaction part according to

ℋ̂B =
𝑁∑︁

𝑛=1

𝜔𝑛(𝑎̂
†
𝑛 −C𝑛)(𝑎̂𝑛 −C𝑛), (4.77)

ℋ̂I =
𝑁∑︁

𝑛=1

𝜆𝑛

(︁
𝑎̂†𝑛 + 𝑎̂𝑛 − 2C𝑛

)︁
. (4.78)

From the interaction part ℋ̂int = 𝐿̂ℋ̂I, a further term

−𝐿̂
𝑁∑︁

𝑛=1

2C𝑛𝜆𝑛 = −2𝐿̂
𝑁∑︁

𝑛=1

𝜆2
𝑛

𝜔𝑛
(4.79)

contributing only at the system level arises. Although they have to be oversampled if the shifted initial

condition is propagated, we expect almost none of the (very) small frequencies to contribute to the

dynamics. In the shifted Hamiltonian picture we thus infer that oversampling the small frequencies

may be required only in order to correctly display the contribution (4.79) at the system level. Instead

of converging it simultaneously with the number of bath modes 𝑁 , we can do the limit separately by

drawing contact with the continuous SD (4.7) according to

𝑁∑︁
𝑛=1

𝜆2
𝑛

𝜔𝑛
=

1

𝜋

∞∫︁
0

d𝜔
𝐽(𝜔)

𝜔
= Λ, (4.80)
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resulting in the expression for the reorganization energy (4.29). Especially if the SD is of standard-

form (4.47), then

Λ =
𝛼𝜔𝑐

2
Γ(𝑠). (4.81)

In this manner the system contribution in the shifted Hamiltonian picture is replaced with its contin-

uum limit independently of the discretization of the continuous SD. Still convergence of the dynamics

with respect to the number of bath modes has to be checked. Indeed, if the dynamics is governed

by the shifted Hamiltonian where the additional system contribution is replaced with its continuum

limit according to (4.81), then 𝑁 = 150 modes su�ce to converge the result if the exponential FD

𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 is used to discretize the bath, in nice compliance with the results of Sec. 4.4.

Before we investigate how this �nding translates to the non-zero temperature case, an important

remark seems in place. Although it does not play any role for the dynamics in the SBM as studied

here due to 𝐿̂
2
= 1, an analogous procedure may be required for the counter term (4.45),

ℋ̂CT = 𝐿̂
2

𝑁∑︁
𝑛=1

𝜆2
𝑛

𝜔𝑛
=

Λ

4
𝐿̂
2
, (4.82)

if it would be due to a system coupling operator 𝐿̂
2 ̸= 1.

4.5.2. On the treatment of non-zero temperature

While the method as outlined in Sec. 3.7 has been used successfully in the sub-ohmic case [137],

from the considerations of the previous section we infer that the deviation between the HOPS and

the multi Davydov-Ansatz found in [218] originates from the initial shifts, introduced by the initial

value sampling in the non-zero temperature case (see Sec. 3.7). The results of the previous section

directly translate to the case of �nite temperature, since analogously the width 𝜎2
𝑛 of the Gaussian

distribution one has to sample from (see (3.71)) ful�lls

lim
𝜔𝑛→0

𝜎2
𝑛 = ∞, (4.83)

i.e. it is large for the small frequency modes. Two important conclusions can be drawn. Firstly,

in order to converge the stochastic sampling, many samples have to be drawn for the small modes.

Secondly, in order to correctly display the in�uence of the thermal initial bath state on the dynamics,

many small frequency modes have to be included in the discretization of the SD. In the spirit of the

previous section, we attempt to circumvent these two issues by translating the stochastic sampling

of initial conditions to a stochastic family of Hamiltonians. Instead of propagating shifted initial
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conditions drawn from the distribution (3.68),

|ΨM

D2(𝛼, 𝑡)⟩ = 𝒯 exp

⎡⎣ 𝑡∫︁
0

d𝑡′ ℋ̂(𝑡′)

⎤⎦ |𝛼⟩ |Ψsys(0)⟩ , (4.84)

the initial shifts |𝛼⟩ = 𝐷̂𝛼 |0⟩ translate to a stochastic Hamiltonian

|Ψ(𝑡)⟩ = 𝐷̂𝛼𝒯 exp

⎡⎣ 𝑡∫︁
0

d𝑡′ 𝐷̂
†
𝛼ℋ̂(𝑡′)𝐷̂𝛼

⎤⎦ |0⟩ |ΨS(0)⟩ , (4.85)

introduced in the present context in [161]. Again this unitary transformation leaves the system

Hamiltonian ℋ̂S unchanged, but changes bath and interaction part according to

ℋ̂B =

𝑁∑︁
𝑛=1

𝜔𝑛(𝑎̂
†
𝑛 + 𝛼*

𝑛)(𝑎̂𝑛 + 𝛼𝑛), (4.86)

ℋ̂I =

𝑁∑︁
𝑛=1

𝜆𝑛

(︁
𝑎̂†𝑛 + 𝛼*

𝑛 + 𝑎̂𝑛 + 𝛼𝑛

)︁
. (4.87)

From the interaction part ℋ̂int = 𝐿̂ℋ̂I, a further term

𝐿̂
𝑁∑︁

𝑛=1

𝜆𝑛 (𝛼
*
𝑛 + 𝛼𝑛) (4.88)

contributing only at the system level arises, and again the connection with the continuous SD may

be drawn: since the 𝛼𝑛 are Gaussian distributed with mean 0 and variance 𝜎2
𝑛, the system contri-

bution
𝑁∑︀

𝑛=1
𝜆𝑛𝛼𝑛 is also Gaussian distributed with mean 0 and variance

𝑁∑︀
𝑛=1

𝜆2
𝑛𝜎

2
𝑛. Insertion of the

discretization of the SD (4.7) yields

𝑁∑︁
𝑛=1

𝜆2
𝑛𝜎

2
𝑛 =

1

𝜋

∞∫︁
0

d𝜔 𝐽(𝜔)𝜎2(𝜔), (4.89)

where 𝜎2(𝜔) = 1
2

(︀
e𝛽𝜔 − 1

)︀−1
. Sampling the stochastic system Hamiltonian from the continuum

distribution again means that the continuum limit is performed independently of the discretization of

the bath. At the same time, the contributions 𝛼𝑛 to the bath Hamiltonian (4.86) in the shifted picture

have to be drawn according to the discretized distribution. But the 𝛼𝑛 drawn from the discretized

distribution are correlated with the corresponding contribution to the discretized system contribution,

and thus system and bath contributions can not be drawn independently. On the other hand, a large

number of modes contributes to the continuum limit (4.89), and thus one may also argue that the

resulting sum is only weakly correlated to the individual discretized values. Alternatively, however,

in order to better approximate the system contribution, one may choose 𝑁 ′ ≫ 𝑁 and discretize the
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frequency axis into 𝑁 ′ modes {𝜔̃1, . . . , 𝜔̃𝑁 ′}. Then a good approximation to the continuous system

contribution (4.88) can be calculated with the corresponding couplings and initial displacements.

Subsequently one again discretizes the frequency axis into 𝑁 modes {𝜔1, . . . , 𝜔𝑁}, and keeps only

those 𝜔̃𝑗 which are close to the latter ones, {𝜔̃𝑖1 , . . . , 𝜔̃𝑖𝑁 }. Both ideas have been implemented, the

results are shown in Fig. 4.30. Indeed, exact coincidence of the multi Davydov-Ansatz with the HOPS

Figure 4.30.: Convergence of the multi Davydov-Ansatz to the result of the HOPS method (black
solid), for 𝑠 = 0.25, 𝜔𝑐 = 20Δ, 𝛼 = 1.3𝛼𝑐), for non-zero temperature 𝑇 = 0.2Δ. Results have been
converged with 𝑀 = 11, 𝑁 = 200. The numbers of samples are 1500 (blue dashed), 3000 (green
dashed), 4500 (red dashed).

result can be achieved with both ways of translating the stochastic sampling of initial conditions to

a family of stochastic Hamiltonians. The non-zero asymptotic value obtained from both methods

seems reasonable, because the coupling strength was chosen larger than the critical coupling [217]

𝛼𝑐 = 0.022, which corresponds to dynamics in the localized phase at zero temperature.

A third possible approach, used by QUAPI, for instance, is based on a discrete evaluation of the

memory integral over the BCF in the time domain. While recently QUAPI has been combined with

matrix product states [225] aiming at circumvention of this issue, the long-time tails of the BCF are

in the original approach necessarily poorly represented. The non-zero temperature BCF

𝐶(𝜏, 𝛽) =
2𝛼𝜔2

𝑐Γ(𝑠+ 1)

(𝛽𝜔𝑐)
𝑠+1

(︁
𝑧−(𝑠+1) + 2Re

(︀
𝜁(𝑠+ 1, 𝑧 + 1)

)︀)︁
𝑧 :=

1 + i𝜔𝑐𝜏

𝛽𝜔𝑐
,

(4.90)



90 4.6 The Effective Mode Representation

where 𝜁 denotes the Hurwitz zeta function and 𝛽 is inverse temperature, decays even slower than at

zero temperature, substantiating the issue. The results of [218] con�rm consistency of the hierarchy

of pure states (HOPS) and the multi Davydov method, while slight deviations to the QUAPI results

in [226] are noticed. We believe that these deviations have their origin in the e�ectively �nite bath

correlation time which is an intrinsic feature of all methods that replace the memory integral by a

�nite sum. Therefore, neglecting the long-time tails in the BCF altogether might well lead to the

observed discrepancies.

It is of utmost importance that in both cases, if stochastic initial conditions as well as if a family

of stochastic Hamiltonians is propagated, CS approach frequently during the propagation. Thus, in

order to sample in a stable and e�cient way, implementation of apoptosis is unconditionally required.

If it was not, the vast majority of propagations would not complete due to tiny integrator steps, and

not all samples could be included. Consequently, only small temperature could be treated reliably

without apoptosis. With apoptosis, all propagations complete successfully, and hence also large tem-

peratures can be treated (see Sec. 5.4).

Finally we have veri�ed the optimality of the exponential FD in almost any possible case, in the

ohmic and sub-ohmic regime in both the zero and non-zero temperature regime. We shall therefore

subsequently always apply the exponential FD in order to discretize the frequency axis. This allows,

by means of the multi Davydov-Ansatz, for a sublime e�cient convergence to the continuum limit

with a small number of environmental modes.

We may, however, expect the number of CS required to exactly reproduce the reduced dynamics not

to change dramatically if the bath is unitarily transformed. We have not yet utilized this gauge free-

dom, and we may hope that it is suited to further reduce the numerical e�ort required for the explicit

treatment of the bath modes. In order to further minimize the number of bath modes, we shall exploit

the mentioned gauge freedom in the next section where we detail the e�ect of a transformation of the

bath into a linear chain.

4.6. The Effective Mode Representation

While typically the environment of an open quantum system is given in terms of a set of uncoupled

modes each of which is coupled bilinearly to the system (see (4.6), an alternative approach to non-

Markovian open system dynamics is based on the construction of a Mori-type hierarchy [227�229]

of coupled e�ective environmental modes that is terminated by coupling the �nal member of the

hierarchy to a Markovian bath [230�232]. The discretized spectral density is thus replaced by a series

of approximate spectral densities involving an increasing number of e�ective modes. As the authors of

[164, 233] have shown, the representation can be obtained starting from the system-bath Hamiltonian

(4.6) and iteratively constructing the e�ective mode representation (EMR). In the �nal representation,

the �rst e�ective mode couples to system and the second e�ective mode, while the second e�ective

mode couples to the �rst and the third e�ective mode, and so forth. The construction guarantees the
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accurate representation of the overall system-plus-bath dynamics for increasing time intervals with

increasing chain lengths.

Formally a Markovian closure has to be included as �nal member of the hierarchy, but it can be

shown that the Markovian closure is not necessary in order to exactly reproduce the dynamics up to

a certain time, the latter depending only on the number of included modes. The transformation as

given in [164, 233] can, however, not straightforwardly be reformulated in second quantization since

it introduces arti�cial double excitations in the bath coordinates, resulting in arti�cial �uctuations

around the exact result. The authors have furthermore pointed out that the factorized initial state

of the bath modes does not remain factorized under the orthogonal transformation to the EMR. In

frequency weighted coordinates, however, the factorized initial state remains factorized under the

transformation. Here the EMR is rederived in (mass- and) frequency weighted coordinates which

makes the reformulation of the transformed bath Hamiltonian in second quantization representation

consistent. This idea has been put forward in the group of Prof. Dr. Peter Saalfrank, which will

publish it soon.

Starting from the Hamiltonian (4.6), we �rst transform to frequency-weighted coordinates by replacing

𝑄𝑛 :=
√
𝜔𝑛𝑞𝑛, 𝑃𝑛 :=

1
√
𝜔𝑛

𝑝𝑛. (4.91)

The transformed creation and annihilation operators

𝐴̂
†
𝑛 =

√︂
1

2ℏ

(︁
𝑄̂𝑛 − i𝑃̂𝑛

)︁
, (4.92)

𝐴̂𝑛 =

√︂
1

2ℏ

(︁
𝑄̂𝑛 + i𝑃̂𝑛

)︁
(4.93)

ful�ll the standard commutation relation
[︁
𝐴̂𝑛, 𝐴̂

†
𝑚

]︁
= 𝛿𝑛𝑚. Their insertion into the Hamiltonian (4.1)

interestingly leaves its form formally invariant. Thus we work on the same form, but keep in mind

that we are working in frequency weighted coordinates.

In a �rst step one de�nes the e�ective coupling

𝐶̄0 :=

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

𝜆2
𝑛 (4.94)

and the �rst e�ective mode creation and annihilation operator

𝐵̂
(†)
1 =

𝑁∑︁
𝑛=1

𝜆𝑛

𝐶̄0
𝑎̂(†)𝑛 . (4.95)

With these de�nitions, the bath interaction Hamiltonian (4.4) reads

ℋ̂I = 𝐶̄0

(︁
𝐵̂

†
+ 𝐵̂

)︁
. (4.96)
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Thus the system couples to the �rst e�ective mode only. The transformation (4.95) does not a�ect

the system Hamiltonian, but a�ects the bath Hamiltonian. In order to express the bath Hamiltonian

in terms of the �rst e�ective mode, one attempts to �nd 𝑁 − 1 modes whose creation and annihila-

tion operators ful�ll the standard commutation relations. Thus one attempts to �nd an orthogonal

transformation 𝑇 = 𝑡𝑚𝑛 with 𝑚,𝑛 = 1, . . . , 𝑁 such that

𝑎̂(†)𝑛 =

𝑁∑︁
𝑚=1

𝑡𝑛𝑚𝐵̂
(†)
𝑚 . (4.97)

While Eq. (4.95) de�nes the �rst column of the transformation 𝑇 , the remaining columns are undeter-

mined. In principle any orthogonal 𝑇 with �rst column identical to (4.95) is a valid choice. Utilizing

the Householder transformation, however, is a very natural choice since there from the �rst column

all remaining columns are uniquely determined. For a given normalized 𝑣 ∈ R𝑁×1 the Householder

matrix 𝑇 is de�ned by 𝑇 = 1 − 2𝑣𝑣𝑇 . If 𝑣 shall be such that the �rst column of 𝑇 coincides with

(4.95), one �nds

𝑣1 =

√︃
1

2

(︂
1− 𝜆1

𝐶̄0

)︂
, 𝑣𝑗 = − 𝜆𝑗

2𝑣1𝐶̄0
for 𝑗 = 2, . . . , 𝑁, (4.98)

where it is easily veri�ed that the such de�ned 𝑣 is indeed real and normalized. Furthermore, since 𝑇

is unitary,[︁
𝐵̂𝑚, 𝐵̂

†
𝑛

]︁
= 𝛿𝑚𝑛. (4.99)

Insertion of (4.97) into the bath Hamiltonian leads to

ℋ̂B =
𝑁∑︁

𝑛=1

ℏ𝜔𝑛

2

(︁
𝑎̂†𝑛𝑎̂𝑛 + 𝑎̂𝑛𝑎̂

†
𝑛

)︁
=

𝑁∑︁
𝑚=1

ℏ
2

(︃
𝑁∑︁

𝑛=1

𝜔𝑛𝑡
2
𝑛𝑚

)︃
⏟  ⏞  

=:Ω̃𝑚

(︁
𝐵̂

†
𝑚𝐵̂𝑚 + 𝐵̂𝑚𝐵̂

†
𝑚

)︁
+

𝑁∑︁
𝑚<𝑙

ℏ

(︃
𝑁∑︁

𝑛=1

𝜔𝑛𝑡𝑛𝑚𝑡𝑛𝑙

)︃
⏟  ⏞  

=:𝑑̃𝑚𝑙

(︁
𝐵̂

†
𝑚𝐵̂𝑙 + 𝐵̂𝑚𝐵̂

†
𝑙

)︁

= ℏΩ̃1𝐵̂
†
1𝐵̂1 +

𝑁∑︁
𝑙=2

ℏ𝑑̃1𝑙
(︁
𝐵̂

†
1𝐵̂𝑙 + 𝐵̂1𝐵̂

†
𝑙

)︁
+

𝑁∑︁
𝑚=2

ℏΩ̃𝑚𝐵̂
†
𝑚𝐵̂𝑚 +

𝑁∑︁
2=𝑚<𝑙

ℏ𝑑̃𝑚𝑙

(︁
𝐵̂

†
𝑚𝐵̂𝑙 + 𝐵̂𝑚𝐵̂

†
𝑙

)︁
.

(4.100)

The �rst e�ective mode is coupled to all remaining e�ective modes via the second term. The last term,

introducing a mutual coupling among all modes the residual bath, can be eliminated by diagonalization

of the matrix 𝐷̃ = 𝑑̃𝑚𝑙, with 𝑚, 𝑙 = 2, . . . , 𝑁 .

Thus we proceed as follows: The matrix containing the elements 𝑑̃𝑚𝑙 is given by

𝐷 = 𝑇diag (𝜔1, . . . , 𝜔𝑁 )𝑇 . From this matrix we extract the �rst e�ective mode Ω1 := Ω̃1, and
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decouple the residual bath by diagonalizing 𝐷̃:

𝑇
𝑇
𝐷̃𝑇 = diag (Ω2, . . . ,Ω𝑁 ) . (4.101)

The transformation 𝑈𝑇𝐷𝑈 where

𝑈 =

(︃
1 0

0 𝑇

)︃
(4.102)

�nally yields

𝑈𝑇𝐷𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ω1 𝑑12 . . . . . . 𝑑1𝑁

𝑑21 Ω2 0 . . . 0
... 0

. . .
...

...
...

. . . 0

𝑑𝑁1 0 . . . 0 Ω𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.103)

where

(𝑑12, . . . , 𝑑1𝑁 ) =
(︁
𝑑̃12, . . . , 𝑑̃1𝑁

)︁
𝑇 . (4.104)

The corresponding transformed bath and interaction Hamiltonian are given by

ℋ̂B = ℏΩ1𝐵̂
†
1𝐵̂1 +

𝑁∑︁
𝑙=2

ℏ𝑑1𝑙
(︁
𝐵̂

†
1𝐵̂𝑙 + 𝐵̂1𝐵̂

†
𝑙

)︁
+

𝑁∑︁
𝑚=2

ℏΩ𝑚𝐵̂
†
𝑚𝐵̂𝑚, (4.105)

ℋ̂I = 𝐿̂𝐶̄0

(︁
𝐵̂

†
1 + 𝐵̂1

)︁
. (4.106)

Thus, the system is now coupled only to the �rst e�ective mode, while the �rst e�ective mode is

coupled to all remaining e�ective modes. From here, we start again with 𝑁 − 1 modes Ω2, . . . ,Ω𝑁

and proceed as outlined above. After 𝑛 steps, we �nd the Hamiltonian

ℋ̂ = ℋ̂S + 𝐿̂𝐶̄0

(︁
𝐵̂

†
1 + 𝐵̂1

)︁
+

𝑛∑︁
𝑚=1

ℏΩ𝑚𝐵̂
†
𝑚𝐵̂𝑚 +

𝑛∑︁
𝑚=2

𝐶̄𝑚−1

(︁
𝐵̂

†
𝑚−1𝐵̂𝑚 + 𝐵̂𝑚−1𝐵̂

†
𝑚

)︁
+ ℋ̂R,

(4.107)

with the residual bath Hamiltonian ℋ̂R. Again, as shown in [164], the residual bath Hamiltonian

should be completed by a Markovian closure which can be neglected if enough e�ective modes are

included.

In order to further investigate the optimality of the exponential FD which we have heuristically found

in Sec. 4.4 with the help of the WFT, the EMR of the SBM is compared to results obtained with the

discretization of the SD with the exponential FD. Since in the EMR the bath is transformed into a

linear chain, the WFT is not meaningful for the EMR and thus can not serve as an a priori criterion



94 4.6 The Effective Mode Representation

for the quality of the discretization via the e�ective modes. In principal the EMR allows for an exact

inclusion of the continuous bath [164]. Still, for numerical purposes, one has to start from a discretized

bath from which the e�ective modes can be calculated by subsequent orthogonal transformations. It

does not make much sense if the numerical calculation of the e�ective modes is more demanding than

the actual propagation. Thus we have chosen to start with a bath discretized with 2000 modes, from

which 𝑁 = 200 e�ective modes have been calculated. In all numerical calculations performed we �nd

that the number of CS required to converge the result in the EMR is exactly the same as required

in standard bath representation. This is surprising since the Hamiltonian and thus the dynamics can

be expected to be rather di�erent in the two di�erent pictures. It once more con�rms the power

and reliability of the multi Davydov method. Results are shown in Fig. 4.31. They reveal that the

EMR does not yield any advantage for the SBM, since results with 𝑁 = 200 e�ective modes are not

nearly as converged as the result in the standard bath representation (compare left panel of Fig. 4.5),

if the bath is discretized with the exponential FD. Furthermore, from Fig. 4.31 we infer that the

discretization from which the 2000 modes are extracted plays a dominant role for the dynamics of

the e�ective modes. While in the standard bath representation the exponential FD yields the best

approximation to the continuum limit, the FD ∼ 𝐽(𝜔)/𝜔 yields the best approximation in the EMR.

However, Sec. 5.1 will reveal that in stark contrast, the EMR is highly advantageous if starting from

a given discretization.

Figure 4.31.: EMR calculations compared to the numerically exact result of Sec. 4.3.2 (𝑠 = 1,𝑀 =
6) for 𝑁 = 100 effective modes (left panel) and 𝑁 = 200 effective modes (right panel), obtained from
2000 modes given by different discretizations: 𝜌f ∼ e−𝜔/𝜔𝑐 (orange solid), 𝜌f ∼ 𝐽(𝜔) (cyan solid),
Legendre quadrature (red solid). Further parameters are 𝛼 = 0.5, 𝜔𝑐 = 10Δ.

In this section, we have investigated in detail the e�ects of a transformation of the typical setup

of mutually uncoupled environmental oscillators to a linear chain. In particular we found that this

transformation does not yield substantial advantages in the case of the Spin-Boson model.

In this chapter we have thoroughly proven that the multi Davydov-Ansatz equipped with apoptosis

(see Secs. 3.3.2 and 4.3.2.2) and the regularization in the case of vanishing coe�cients (see Secs. 3.3.1

and 4.3.2.1) is a highly stable and systematically converging method suited to calculate the dynamics
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Figure 4.32.: EMR calculations compared to the numerically exact result of Sec. 4.3.2 (𝑠 =
0.5,𝑀 = 24) for 𝑁 = 100 effective modes (left panel) and 𝑁 = 200 effective modes (right panel),
obtained from 2000 modes given by different discretizations: 𝜌f ∼ e−𝜔/𝜔𝑐 (orange solid), 𝜌f ∼ 𝐽(𝜔)
(cyan solid), 𝜌f ∼ 𝐽(𝜔)/𝜔 (blue solid), Legendre quadrature (red solid). Further parameters are
𝛼 = 0.2, 𝜔𝑐 = 10Δ.

of open quantum systems in the weak as well as in the strong coupling regime. Furthermore, we have

investigated various di�erent approaches to further reduce the numerical e�ort required to converge

to the continuum limit for di�erent continuous spectral densities. We subsume that results obtained

from the multi Davydov-Ansatz are extremely reliable and thus suited to predict physically correct

conclusions also in cases where no further results are at our disposal. In the next chapter, we will

venture to explore with the multi Davydov-Ansatz previously unexploited physical territory.





5. Applications

In this chapter, we apply the multi Davydov-Ansatz along with apoptosis (see Sec. 3.3.2), regu-

larization in the case of vanishing coe�cients (see Sec. 3.3.1) and the insights with respect to the

discretization of continuous environments gained in the previous chapter. In particular, we will see

that the regularizations are inevitably required for the method to produce reliable results. While the

considerations of Sec. 4 are important in cases where the system-bath coupling is speci�ed in terms of

a continuous spectral density, we shall �rstly examine two settings where the environment is already

given in discretized form. There, no convergence check for the continuum limit is required.

Speci�cally, we shall �rstly determine the vibrational relaxation dynamics of deuterium dimers in

the presence of a silicon surface, utilizing a novel Hamiltonian exact up to second order in the en-

vironmental coordinates [31]. Since the model does not allow for a perturbative treatment, we will

apply the multi Davydov-Ansatz in order to numerically exactly calculate the system dynamics with

multiple system levels and a huge number of surface vibrations explicitly taken into account. Subse-

quently we will determine the channels through which the relaxation occurs. Finally we will outline

how to drastically reduce the numerical e�ort by transforming the environment with the EMR. We

will secondly investigate the relaxation dynamics of an exciton hopping on a linear molecular chain

utilizing the Holstein polaron model. By investigation of the long-time dynamics for large exciton

hopping elements and strong coupling strengths we will �nd that the relaxation dynamics is highly

complicated, rendering inevitable the application of apoptosis.

In two further setups, we shall return to continuous spectral densities. Speci�cally, we will outline

how to use the multi Davydov-Ansatz for the investigation of laser-driven molecular dynamics in

dissipative environments. Firstly we will investigate the impact of environmental excitation on the

transition probability in a Landau-Zener system. We will show that the multi Davydov-Ansatz is

suited to reliably reproduce the analytically given long-time limit of the staying probability for mul-

tiple modes given in terms of a continuous ohmic spectral density. Finally, in a second setup we will

show that the dissipative environment, given in terms of a super-ohmic continuous spectral density,

can be used as a resource for population inversion if coupled strongly to a two-level system subject to

chirped femtosecond laser excitations. The insights gained from the examination of the environmental

dynamics are suited to open up a path for experimental realization of laser-driven population inversion

even for weakly chirped laser pulses.

5.1. Vibrational relaxation dynamics at surfaces

Adsorbate-surface interactions have played an important role in both physics and chemistry for many

decades [234�242]. Molecules attached to surfaces di�er considerably from their gas phase counterparts

since the presence of the surface leads to vibrational frequency shifts and, most importantly, opens ad-

ditional decay channels for excited adsorbate vibrations which are inaccessible in free molecules. This
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relaxation is of central interest in surface science [243�251] since the energy �ow between adsorbed

species and surfaces controls the dynamical properties of di�usion, adsorption and also desorption.

Important applications include photodesorption switching [252], noncontact friction [253], tunneling

microscopy [254�256] and surface-enhanced Raman scattering (SERS) [257, 258]. Especially the latter

has gained new interest since the observation of giant SERS from single molecules located between

closely spaced silver nanoclusters [259�261].

In particular, hydrogen adsorbed on a silicon surface has been subject to vital research [262�265].

Furthermore, complete isotope selectivity in infrared laser-induced desorption of H2 and D2 from a

Si(111) surface, recently discovered experimentally [266, 267], has fueled research in the �eld. But

while di�erent techniques to measure surface vibrational relaxation have been put forward, the com-

plex nature of the adsorbate-substrate couplings and surface disorder render di�cult the measurement

process.

Experimentally and theoretically, dynamics of Si-H bending and stretching modes has been of par-

ticular interest [268�272]. Experimental results [273, 274] hint that these vibrations are sensitive to

surface structure and imperfections. The relaxation of a vibrationally excited adsorbate can be due

to the coupling to substrate phonons, or to electron-hole pairs [241, 246]. We concentrate on vibra-

tional phonon-driven multilevel relaxation since it is expected to dominate the relaxation process for

semiconductors and insulators because of the large band gap.

Vibrational relaxation of adsorbates on surfaces can be done with classical molecular dynamics with

on-the-�y ab initio force�elds. The classical model misses energy quantization, tunneling splittings

and interference, however. Thus, quantum-mechanical treatment is a necessity. Quantum-mechanical

models are often based on system-bath Hamiltonians, involving a phononic expansion of the inter-

action potential in terms of 𝑛-phonon terms (𝑛 = 1, 2, . . .). This expansion can be derived from ab

initio semi-empirical models or with further approximations.

On the contrary, here we calculate vibrational relaxation rates of a D-Si bending mode coupled to

a fully D-covered Si(100)-(2 × 1) surface at zero temperature for a system-bath Hamiltonian being

exact up to second order in the environmental coordinates. The authors of [31] have shown that it

can be rigorously derived by an embedded cluster approach. In the sequel it is outlined brie�y how

this derivation unfolds, where we follow the lines given in [31].

Firstly, a small cluster based on experimental structure parameters given in [275] for D:Si(100)-2× 1

is formed. Considering a double slab with six Si layers where only top and bottom layer are dimerized

yields an unrelaxed Si70D54 cluster. The latter is relaxed with hybrid and pure density functional

theory, where individual bending modes are identi�ed. By normal mode analysis, eigenmodes corre-

sponding to the D-Si bending modes are extracted.

The parallel antisymmetric D-Si-Si bending mode ||, 𝑎 given in [31] is localized at the surface which

is why it will be examined in more detail here. In Born-Oppenheimer approximation, i.e. by ne-

glecting electron-phonon coupling, the ground state potential 𝑉 (𝑞) corresponding to this mode is well

de�ned. It is calculated on a grid for di�erent displacements of the bending mode. By solving the one-

dimensional time-independent Schrödinger equation (TISE) the system eigenstates 𝜀𝑗 are obtained,
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where the system Hamiltonian reads

ℋ̂S =

𝑁𝑆∑︁
𝑗=1

𝜀𝑗 |𝑣𝑗⟩ ⟨𝑣𝑗 | . (5.1)

Now, a larger embedding cluster Si602D230 consisting of𝑁 = 832 atoms is selected. The smaller cluster

is embedded in the larger one by mapping each unit of the smaller cluster to a corresponding unit in

the larger one. For numerical reasons, the larger cluster is treated on a lower level of sophistication,

with Brenner-type force�elds [276] containing pairwise attractive and repulsive interactions as well as

many-body corrections.

Constrained normal mode analysis in the vibrational subspaces orthogonal to the transferred system

modes was carried out in the Saalfrank group, resulting in 3𝑁 − 1 = 2495 phonon modes 𝜔𝑛 treated

in harmonic approximation. Six of these modes are rotations and translations of the whole cluster

and are consequently removed from the set of modes.

The corresponding density of states of vibrational normal modes is plotted in the right panel of Fig.

5.1. As can be seen from the left panel of Fig. 5.1 does the D-Si bending mode's anharmonic frequency

𝜔10 = 458 cm−1 lie inside the phonon bath frequency spectrum. Consequently the D-Si bending mode

can e�ciently couple to phonons via one-phonon channels. Thus we take into account only one-phonon

system-bath couplings. Then, the couplings 𝜆𝑛(𝑞) are calculated for several displacements along the

system coordinate, on the same grid which the ground state potential is calculated on.

Finally, the coupling matrix elements ⟨𝑣𝑖|𝜆𝑛(𝑞) |𝑣𝑗⟩ are calculated. By linearly approximating the

couplings, 𝜆𝑛(𝑞) ≈ 𝜆𝑛𝑞, the system coupling operator takes the form

𝐿̂ =
∑︁
𝑖 ̸=𝑗

𝛾𝑖𝑗 |𝑣𝑖⟩ ⟨𝑣𝑗 | , (5.2)

where 𝛾𝑖𝑗 = ⟨𝑣𝑖| 𝑞 |𝑣𝑗⟩ are the transition matrix elements. By further taking into account only the

nearest neighbor transitions, the coupling operator reads

𝐿̂ =

𝑁𝑆−1∑︁
𝑗=1

𝛾𝑗 (|𝑣𝑗⟩ ⟨𝑣𝑗+1|+ |𝑣𝑗+1⟩ ⟨𝑣𝑗 |) , (5.3)

with nearest neighbor transition matrix elements 𝛾𝑗 = ⟨𝑣𝑗 | 𝑞 |𝑣𝑗+1⟩. It is important to note that in the

cluster approach presented above, no periodic boundary conditions have been imposed for numerical

reasons.

Here we generalize the results obtained in [277] by application of the multi Davydov-Ansatz. It allows

for a numerical exact calculation of the dynamics, allowing for accurate extraction of the lifetimes of

the bending mode. Under the assumption that the system's initial state is the �rst excited state |𝑣2⟩
and that the phonons are in the ground state initially, it has been pointed out in [277] that plotting
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the stick spectrum, i.e. the absolute values

𝑑𝑗 :=
⃒⃒⃒
⟨𝑣2| ⟨0|Φ𝑗⟩

⃒⃒⃒2
(5.4)

of the initial state in the eigenbasis |Φ𝑗⟩ of the full Hamiltonian as function of the energies 𝜀𝑗 , reveals an

important property of the dynamics of the full system. The power spectrum of the adsorbate-surface

system for D-Si consists of several non-uniformly distributed peaks around the bending mode frequency

𝜔10 = 458 cm−1 (see Fig. 5.1). Since the stick spectrum dictates the time-evolution of system and

bath, one infers that the time-dependent survival probability of the D-Si initial vibrational state does

not decay exponentially and does thus not allow for an easy extraction of the bending mode's lifetime.

Figure 5.1.: Left panel: density of states of vibrational normal modes for Si602H230 (blue) and
Si602D230 clusters (red). The vertical dashed red line indicates the D-Si bending mode frequency
𝜔10 = 458 cm−1 considered here. Right panel: Stick spectrum, 𝑑𝑗 as defined in Eq. (5.4) as function
of the system energies 𝜀𝑗 for D-Si(100), taken from [277]. The inset is a zoom around the bending
mode frequency (458 cm−1), indicated by the vertical green line.

We carried out calculations with 𝑁 = 2495 phonon modes as given in [31], for two system levels taken

into account. Results were converged with a multiplicity 𝑀 = 25 and the calculations took around a

week on an 8-core machine. The results are plotted in the left panel of Fig. 5.2.

By comparing our results to the ones given in [277], where only ground and �rst excited states of

the Fock basis were taken into account, we �nd that despite the simplicity of the approximation, it

captures the main features of the model. While we �nd coincidence with the results of [277] for short

times, smaller deviations are found for longer times (see left panel of Fig. 5.2 for results from the

multi Davydov-Ansatz; results from [277] are not shown).

In an experimental setup one may typically aim at exciting the bending mode by an optimally tuned
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Figure 5.2.: Populations of different levels calculated with 𝑁 = 2495 phonon modes from the multi
Davydov-Ansatz with multiplicity 𝑀 = 25. Left panel: 𝑗 = 1 (black solid), 𝑗 = 2 (blue solid). Right
panel: 𝑗 = 1 (black solid), 𝑗 = 2 (blue solid) 𝑗 = 3 (red solid), 𝑗 = 4 (green solid). Starting in the
second excited (left panel) and fourth excited (right panel) state.

laser. But since the stick spectrum shows several non-uniformly distributed peaks closely around

the bending mode frequency, excitation of multiple levels will be inevitable. Thus we aim here at

generalization of the results of [277] to multiple system levels taken into account.

The result for 𝑁𝑆 = 4 levels taken into account where the initial system state is given by |𝑣4⟩ is plotted
in the right panel of Fig. 5.2. The dynamics shows that starting in a higher excited state changes the

dynamics (compare to left panel of Fig. 5.2) since the relaxation occurs through further intermediate

levels. Especially one observes further revivals and beatings in contrast to the two-level case. The

displacements plotted in Figs. 5.3 - 5.5 reveal that energy between system and bath is interchanged

primarily through small and large bath modes while the `intermediate' modes do not contribute.

Figure 5.3.: The absolute values of the displacements at 𝑡 = 100 fs (left panel) and 𝑡 = 300 fs (right
panel) as function of number of mode 𝑛 = 1 . . . 2000 and multiplicity 𝑘 = 1, . . . , 11.

Finally, we may infer from the structure of the stick spectrum that for short times the presence of

the surface should lead to population transfer also to the higher excited states. We thus aimed at

inclusion of 𝑁𝑆 > 4 system levels into the model. In order to reduce the computational e�ort, we

carried out the transformation of the Hamiltonian to the EMR outlined in Sec. 4.6. While we found
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Figure 5.4.: The absolute values of the displacements at 𝑡 = 700 fs (left panel) and 𝑡 = 1000 fs
(right panel) as function of number of mode 𝑛 = 1 . . . 2000 and multiplicity 𝑘 = 1, . . . , 11.

Figure 5.5.: The absolute values of the displacements at 𝑡 = 1500 fs (left panel) and 𝑡 = 2000 fs
(right panel) as function of number of mode 𝑛 = 1 . . . 2000 and multiplicity 𝑘 = 1, . . . , 11.

in Sec. 4.6 that no noteworthy advantage arose from the EMR in the SBM, a completely di�erent

picture shows up here. It turns out that in the EMR, 𝑁 = 100 modes are enough to obtain results

identical with the ones found in the standard representation. Even more amazingly, the multiplicity

needed to converge the results does not change in the EMR.

We attribute the e�ciency of the EMR to the fact that from the stick spectrum 5.1 we �nd that

there are only few frequencies which e�ectively couple to the system, in contrast to the SBM. Thus

they can well be represented by some e�ective modes which are in the same region as the peaks.

This is con�rmed from the plots of the displacements in Figs. 5.3 - 5.4, which show that the modes

which e�ectively contribute are centered at the borders of the frequency range, while the intermediate

frequencies do not essentially contribute to the dynamics. For the SBM, on the contrary, the resulting

e�ective modes cover the same wide frequency range as the original modes (see Sec. 4.6), and all

modes e�ectively contribute in the dynamics (see �gures for the displacements in Sec. 4.3.2).
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Taking into account 𝑁 = 10 levels with the system being initially in the fourth, �fth and sixth excited

state are plotted in Figs. 5.6 and 5.7. A multiplicity of 𝑀 = 30 was required to converge the result.

As expected, mediated by the bath, population is transferred for short times also to the higher excited

states. We could extract lifetimes from the calculated dynamics, but we refrain from doing so here due

to the complexity of the dynamics. It is furthermore unclear how to attribute the di�erent lifetimes

found for the multiple levels a physical relevant lifetime.

The overview is rounded o� by plots of entropy 𝑆(𝑡) (see Eq. (4.54)) and purity 𝛾(𝑡) in Fig. 5.8.

Figure 5.6.: Populations of different levels. 𝑗 = 1 (black solid), 𝑗 = 2 (blue solid), 𝑗 = 3 (red solid),
𝑗 = 4 (green solid), 𝑗 = 5 (magenta solid), 𝑗 = 6 (cyan solid), 𝑗 = 7 (yellow solid). Starting in the
fourth excited (left panel) and fifth excited (right panel) state.

The purity is de�ned as

𝛾(𝑡) = trS
[︁
𝜌̂2S(𝑡)

]︁
, (5.5)

where the reduced density matrix 𝜌̂S(𝑡) is given by (4.55). It measures how pure a given state is since

𝛾 = 1 i� the state is pure, and in general 0 ≤ 𝛾 ≤ 1. We see that starting from an initially pure state,

the state evolves rather quickly into a mixture where the speed of this evolution is determined by the

initial system excitation. The smaller the initial excitation in the system, the slower the evolution to

a mixture. Since it is the entanglement between system and bath which reduces the purity, we may

view the purity as a measure for the coupling strength between system and bath. We furthermore see

from the left panel of Fig. 5.8 that bath and system become �nally disentangled. This is con�rmed

by the entropy, which as well is a measure for the entanglement between system and bath. It is thus

clear that the entropy processes analogously to the purity.

To summarize, we have calculated by means of the multi Davydov-Ansatz the relaxation dynamics of

deuterium dimers adsorbed on a silicon surface. While the favourable scaling of the multi Davydov-

Ansatz with the number of phonon modes allows for the computation of the full system-plus-bath

dynamics at comparatively low e�ort, we have transformed the standard bath representation into the

EMR. The multi Davydov-Ansatz in combination with the EMR has turned out in the present context
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Figure 5.7.: Populations of different levels. 𝑗 = 1 (black solid), 𝑗 = 2 (blue solid), 𝑗 = 3 (red solid),
𝑗 = 4 (green solid), 𝑗 = 5 (magenta solid), 𝑗 = 6 (cyan solid), 𝑗 = 7 (yellow solid), 𝑗 = 8 (orange
solid). Starting in the sixth excited state.

Figure 5.8.: Entropy 𝑆(𝑡) (left panel) and purity 𝛾(𝑡) (right panel) as function of time, for different
initial conditions. The system starts in the 𝑗-th excited state, where 𝑗 = 4 (red solid), 𝑗 = 5 (blue
solid), 𝑗 = 6 (green solid).

to allow the calculation of the relaxation of the dynamics of deuterium at a silicon surface at extremely

low cost, since only 100 e�ective modes su�ce in order to accurately represent the environment, while

the number 𝑀 of coherent states required to converge the multi Davydov-Ansatz did not increase by

changing the representation.
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5.2. Relaxation dynamics of the Holstein polaron

In this section, we will examine the Holstein molecular crystal, where we aim at investigation of

the long-time dynamics in the strong coupling regime. The complex phonon dynamics, especially in

the context of long-time propagation, inevitably leads to multiple CS approaching during propaga-

tion. Thus, without apoptosis, only short times and weak coupling could be considered. If the multi

Davydov-Ansatz is equipped with apoptosis, however, reliable results can be obtained in the strong

coupling limit, even for long-time propagation. Once more we will �nd that apoptosis allows for

converged results far beyond apoptosis events although it reduces the �exibility of the Ansatz wave

function.

Recent developments in ultrafast laser spectroscopy allow to study experimentally the real time

nonequilibrium dynamics of photo-excited quantities [278�281]. Especially relaxation processes such

as these of charge carriers in topological insulators, electron-hole pairs in light harvesting complexes

[282] and polarons in anorganic liquids and solids [283�285] have been subject to intense research.

The motion of such a photo-excited quantity in a molecular crystal can in many applications be the-

oretically described by the Holstein molecular crystal model, introduced in [286, 287].

There the crystalline medium is a linear chain of 𝑁 identical point-like molecules or atoms of mass

𝑚 = 1, where the internuclear distances of the molecules are allowed to vary. As a result of the inter-

action of the photo-excited quantity and the lattice, the surrounding lattice particles are displaced and

the photo-excited quantity experiences a potential well. Since the photo-excited quantity is unable to

move unless accompanied by the surrounding lattice deformation, photo-excited quantity and lattice

deformation form a unit, which is called polaron. The lattice vibrations, given by the variation of

the internuclear distances, are in the absence of the exiton quantity assumed to be uncoupled. Thus,

assuming the lattice particles to stay close to their equilibrium position and consequently the potential

energy curve of an individual molecule to be quadratic, the lattice Hamiltonian reads

ℋ̂L =
1

2

𝑁∑︁
𝑛=1

[︀
𝑝̂2𝑛 + 𝜔2

0𝑥̂
2
𝑛

]︀
, (5.6)

where 𝑝̂𝑛 and 𝑥̂𝑛 are momentum and position of the 𝑛-th molecule, respectively, and 𝜔0 is the Einstein

frequency. Imposing periodic boundary conditions on the one-dimensional lattice allows for introduc-

tion of phononic creation and annihilation operators 𝐴̂
†
𝑛 and 𝐴̂𝑛, respectively. The lattice Hamiltonian

then reads

ℋ̂L =
𝑁∑︁

𝑛=1

𝜔𝑛𝐴̂
†
𝑛𝐴̂𝑛. (5.7)

In tight binding approximation, the exciton Hamiltonian reads

ℋ̂ex = −𝐽
∑︁
𝑛

[︁
𝐵̂

†
𝑛𝐵̂𝑛+1 + 𝐵̂

†
𝑛+1𝐵̂𝑛

]︁
− 𝜇

𝑁∑︁
𝑛=1

𝐵̂
†
𝑛𝐵̂𝑛, (5.8)
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where 𝐽 is the hopping integral between neighboring sites, and 𝜇 is the chemical potential which is

set to zero for convenience. Under the assumption that the coupling is to the displacement of the

atom only of the site the exciton is at, the interaction Hamiltonian reads

ℋ̂int = 𝛾
𝑁∑︁

𝑛=1

𝐵̂
†
𝑛𝐵̂𝑛

(︁
𝐴̂

†
𝑛 + 𝐴̂𝑛

)︁
, (5.9)

where 𝛾 is the phonon-exciton coupling strength. Finally, one introduces the Bloch operators

𝑎̂𝑘 =
1√
𝑁

𝑁∑︁
𝑛=1

e−i𝑛𝑘𝐴̂𝑛, (5.10)

where 𝑘 = 2𝜋
𝑁 𝑛, 𝑛 = 0, . . . , 𝑁 − 1 are the lattice momenta. Then

𝐴̂𝑛 =
1√
𝑁

𝑁∑︁
𝑘=1

ei𝑛𝑘𝑎̂𝑘, (5.11)

and one arrives at the Hamiltonian

ℋ̂ = ℋ̂ex + ℋ̂L + ℋ̂int, (5.12)

where

ℋ̂ex = −𝐽
∑︁
𝑛

[︁
𝐵̂

†
𝑛𝐵̂𝑛+1 + 𝐵̂

†
𝑛+1𝐵̂𝑛

]︁
(5.13)

ℋ̂L =
∑︁
𝑛

𝜔𝑛𝑎̂
†
𝑛𝑎̂𝑛 (5.14)

ℋ̂int =
∑︁
𝑘,𝑛

𝜆𝑘𝐵̂
†
𝑛𝐵̂𝑛

(︁
𝑎̂𝑛e

i𝑘𝑛 + 𝑎̂†𝑛e
−i𝑘𝑛

)︁
. (5.15)

The prefactor 1√
𝑁

has been absorbed into the couplings 𝜆𝑘, and the coupling is allowed to depend

on the phonon frequency 𝜔𝑘. It is important to note that the Hamiltonian (5.12) is symmetric with

respect to the site number.

The Holstein exciton has been found recently experimentally in a surface-doped layered semiconductor

[288], and furthermore, an ensemble of cold polar molecules trapped in an optical lattice [289] has been

shown to constitute a tunable Holstein model. The authors of [290] have presented an exact solution

for two sites, and DMRG methods have been applied to it [291], and also the Zhao community has

contributed valuable work with the multi Davydov-Ansatz in this �eld [23, 27, 137, 292�295].

It will be shown that the multi Davydov-Ansatz equipped with apoptosis allows for extension of

previous results by orders of magnitude in coupling and propagation time. We �nd that almost

every calculation has to resort to the apoptosis procedure presented in 3.3.2, which explains the small

number of sites and shortness of times considered so far.
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Subsequently we assume a linear dispersion phonon band

𝜔(𝑞) = 𝜔0 +𝑊

(︂
2|𝑞|
𝜋

− 1

)︂
, (5.16)

where𝑊 is the half width of the phonon dispersion determining the speed of the phonon wave packets.

By �xing even 𝑁 and taking the lattice momenta as

𝑘 =
2𝑛𝜋

𝑁
, 𝑛 = −𝑁

2
+ 1, . . .

𝑁

2
, (5.17)

the corresponding frequencies are given by

𝜔𝑘 = 𝜔0 +𝑊

(︂
2|𝑘|
𝜋

− 1

)︂
. (5.18)

The couplings are given by the spectral density

𝐽(𝜔) =
2𝑆

𝜋𝑊 2
𝜔2
√︀

𝑊 2 − (𝜔 − 𝜔0)2 ≈
𝑁∑︁

𝑛=1

𝜆2
𝑛𝜔

2
𝑛𝛿(𝜔 − 𝜔𝑛), (5.19)

as proposed in [296]. Here, 𝑆 is the Huang-Rhys factor, 𝜔0 = 1 is the central energy of the phonon

band, and 𝑊 is the phonon energy bandwidth. In the following we consider the exciton probability,

i.e. the diagonal elements of the exciton reduced density matrix

𝜌𝑛𝑛(𝑡) = ⟨Ψ(𝑡)| 𝐵̂†
𝑛𝐵̂𝑛 |Ψ(𝑡)⟩ . (5.20)

The exciton is assumed initially at position 𝑛 = 𝑁
2 , |Ψex(0)⟩ = |𝑁2 ⟩ex (note that, due to the sym-

metry of the Hamiltonian, any position would yield the same result), and the phonons are initially

in their ground states, |Ψph(0)⟩ = |0⟩
ph
. In order to obey the symmetry of the Hamiltonian, the

initially unpopulated displacements have to be set such that they also obey this symmetry - otherwise

unsymmetric dynamics would be observed.

In Figs. 5.9,5.10 we plot the exciton probability as function of site number and of time. All values

of the density which are above 0.3 in Fig. 5.9 (above 0.5 in Fig. 5.10) have been set to 0.3 (0.5) for

better visibility of the dynamics. The rendezvous which the two parts of the density have before each

part reaches the chain's end is due to the rather large Huang-Rhys factor. The displacements, plotted

in Fig. 5.11, show that the dynamics is highly complicated. Almost any propagation has to resort to

apoptosis, which explains why, despite the small number of variables compared to previously treated

settings, only short times and small chain lengths have been treated. It is the complexity of the

dynamics which leads to CS coming close rather frequently. With apoptosis implemented, however,

we are able to propagate smoothly for almost arbitrarily long times and large numbers of sites.

Let us now assume the couplings 𝜆𝑛 to be constant,

𝜆𝑛 = 𝑔 (5.21)
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corresponding to the setup given in [134]. The dynamics is plotted in Fig. 5.12. Again all values above

the threshold 0.3 have been set to the threshold. While the in�uence of 𝐽 is to spread the dynamics

over a broader range of sites, the e�ect of 𝑊 is to bundle the dynamics. In all cases at 𝑡 = 0, there

are no phonon deformations. The photo-excitation at 𝑡 = 0 triggers a pair of localized phonon wave

packets which travel at a group velocity given by ±2𝑊/𝜋. Thus, the larger 𝑊 , the smaller the angle

between the two wave-packets.

Figure 5.9.: The time evolution of the exciton probability 𝜌𝑗𝑗(𝑡) as function of number of site
𝑗 = −𝑁

2 , . . . ,
𝑁
2 and of time 𝑡. The parameters read 𝐽 = −0.5, 𝑊 = 0.8, 𝑆 = 0.3.
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Figure 5.10.: The time evolution of the exciton probability 𝜌𝑗𝑗(𝑡) as function of number of site
𝑗 = −𝑁

2 , . . . ,
𝑁
2 and of time 𝑡. The parameters read 𝐽 = 0.5, 𝑊 = 0.8, 𝑆 = 0.5.

Figure 5.11.: The absolute value of the displacements as function of site index 𝑛 = −𝑁
2 , . . . ,

𝑁
2

and multiplicity 𝑘 = 1, . . . , 40: at time 𝑡 = 4 2𝜋
𝜔0

(left panel) and 𝑡 = 12 2𝜋
𝜔0

(right panel). Further
parameters read 𝐽 = 0.5, 𝑊 = 0.8, 𝑆 = 0.5, 𝑔 = 0.3.
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Figure 5.12.: The effect of 𝑊 on the time evolution of the exciton probability 𝜌𝑗𝑗(𝑡) as function of
number of site 𝑗 = −𝑁

2 , . . . ,
𝑁
2 and of time 𝑡. Left panel: 𝐽 = 0.8, 𝑊 = 0.1, 𝑔 = 0.4. Right panel:

𝐽 = 0.8, 𝑊 = 0.8, 𝑔 = 0.4.

Optical spectroscopy is an important aspect of the exciton dynamics. In order to draw contact with

the dynamical quantities calculated from the multi Davydov-Ansatz, the linear absorption spectrum

𝐹 (𝜔) of the exciton dynamics is studied here. It is given by [297]

𝐹 (𝜔) =
1

𝜋
Re

⎛⎝ ∞∫︁
0

d𝑡 𝐹 (𝑡)e−i𝜔𝑡

⎞⎠ , (5.22)

where the autocorrelation function 𝐹 (𝑡) is de�ned as

𝐹 (𝑡) =
ph
⟨0|

ex
⟨0|𝑃̂ 𝑈̂ 𝑃̂

†|0⟩
ex
|0⟩

ph
, (5.23)

where 𝑈̂ is the propagator of the system, and

𝑃̂ = 𝜇

𝑁∑︁
𝑛=1

[︁
|𝑛⟩

ex ex
⟨0|+ |0⟩

ex ex
⟨𝑛|
]︁

(5.24)

is the polarization operator, where 𝜇 is the transition dipole matrix element of a single site. The

autocorrelation function can be calculated as

𝐹 (𝑡) = 𝜇2
𝑁∑︁

𝑚,𝑛=1
ph
⟨0|

ex
⟨𝑛|𝑈̂ |𝑚⟩

ex
|0⟩

ph
= 𝜇2𝑁

𝑁∑︁
𝑛=1

ph
⟨0|

ex
⟨𝑛|𝑈̂ |0⟩

ex
|0⟩

ph
, (5.25)

because of the symmetry of the Hamiltonian (5.12) with respect to the site number. By identifying
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the propagated state with the multi D2 state, one obtains

𝐹 (𝑡) = 𝜇2𝑁

𝑁∑︁
𝑛=1

ph
⟨0|

ex
⟨𝑛|

𝑀∑︁
𝑙=1

(︃
𝑁∑︁

𝑚=1

𝐴𝑙𝑚(𝑡)|𝑚⟩
ex

)︃
|𝛼𝑙(𝑡)⟩ph = 𝜇2𝑁

𝑀∑︁
𝑙=1

𝑁∑︁
𝑛=1

𝐴𝑙𝑛(𝑡)ph⟨0|𝛼𝑙(𝑡)⟩
ph
.

(5.26)

The linear absorption spectrum for the parameter setting 𝑁 = 16, 𝐽 = 0.1,𝑊 = 0.1 and 𝑔 = 0.4

is plotted in Fig. 5.13. It di�ers remarkably from the result given in [27]. Huang-Rhys theory [298]

predicts the phonon side bands at zero temperature to follow a Poisson distribution,

𝐹 (𝜔) = e−𝑆
∞∑︁
𝑛=0

𝑆𝑛

𝑛!
𝛿(𝜔 + 𝑆𝜔0 − 𝑛𝜔0). (5.27)

The leftmost sideband, 𝑛 = 0, is expected to be at 𝜔 = −𝑆𝜔0 where

Figure 5.13.: The linear absorption spectrum (5.22) as function of 𝜔. The result obtained from the
multi Davydov-Ansatz are plotted (blue solid) vs. the Poisson distribution (5.27) (black dashed).
The parameters read 𝑁 = 16, 𝐽 = 0.1, 𝑊 = 0.1, 𝑔 = 0.4.

𝑆 =
1

𝜔0

𝑁∑︁
𝑛=1

𝜆2
𝑛𝜔𝑛 =

𝑁𝑔2

𝜔0
= 2.56, (5.28)

in nice coincidence with Fig. 5.13. Furthermore, the tallest peak is predicted to be at 𝑛 = 𝑆−1 = 1.56,

which again is nicely conform with our result since the two peaks at 𝑛 = 1 and 𝑛 = 2 have similar

height. Furthermore, by �tting a Poisson distribution with parameter 𝜆 to the data, we �nd that the
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�t is optimal for 𝜆 ≈ 𝑆 (see dashed black line in Fig. 5.13), which again con�rms our results.

We have investigated in detail the relaxation dynamics of an exciton in the Holstein molecular crys-

tal. By considering the strong coupling regime, we have found that apoptosis is inevitable in order to

obtain converged long-time results. We have shown that, despite the complexity of the phonon dy-

namics and despite apoptosis reduces the �exibility of the multi Davydov-Ansatz, apoptosis is suited

to obtain converged results in regions far beyond those attainable without apoptosis implemented.

Furthermore, we have found that special care has to be taken with respect to the initial positions of

the initially unpopulated CS in order to maintain the symmetry of the model. Only if the initially

unpopulated CS obey the symmetry does the Ansatz wave function obey the symmetry for all times.

5.3. The dissipative Landau Zener Model

In the course of a Landau-Zener (LZ) transition, energy levels of a two-level system undergo an avoided

crossing under an action of the external drive [299, 300]. This celebrated physical phenomenon was

independently studied by Landau, Zener, Stueckelberg, and Majorana in 1932, and the standard LZ

model is also referred to as the Landau-Zener-Stueckelberg-Majorana (LZSM) model [299�302] which

has found applications in a broad range of �elds, including atomic and molecular physics [126, 303�307]

quantum optics [308], solid state physics [309, 310], chemical physics [311] and quantum information

science [312].

Recent experimental realizations of the LZSM as nitrogen-vacancy centers in diamond lattices [312],

one-electron semiconductor double quantum dots [313], accelerated Bose-Einstein condensates which

are synthetically spin-orbit coupled [314] and devices in circuit quantum electrodynamics (QED)

[315�318] have revitalized scienti�c interest in the model. In 2004, Wallra� et al. performed an exper-

iment in which a charge qubit is coupled to a superconducting transmission line resonator [319] and

Chiorescu et al. fabricated a superconducting �ux qubit coupled to a quantum interference device

[320]. Such QED con�gurations are the solid-state analog of a two-level atom. Parameters in the

super-conducting circuits can be tuned over a wide range, allowing for e�cient control of the qubits

and transmission line resonators. For example, Asta�ev et al. built an arti�cial-atom maser consist-

ing of a resonator and a Josephson-junction charge qubit coupled to it. The charge qubit is made

of a superconducting Al island connected to a ground through two Josephson junctions with super-

conducting quantum interference device (SQUID) geometry so that the e�ective Josephson energy is

controlled by the magnetic �ux through the loop [321].

In 2004, the LZSM mechanism was observed by Izmalkov et al. in an Al three-junction qubit coupled

to a Nb resonant tank circuit, and output signals were found to depend on surrounding environments

[322]. Environmental e�ects on the QED device can be modeled by coupling a set of harmonic os-

cillators to the LZSM model [323]. In the framework of the dissipative LZSM model, �nal transition

probabilities in the fast and slow sweeping limit have been studied in 1989 using time-dependent

perturbation theory [324]. Inspired by the realization of LZSM physics in QED devices, Hänggi
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and co-workers systematically investigated the �nal transition probabilities in�uenced by the bosonic

bath at zero temperature [316, 323]. Nalbach et al. studied extensively thermal e�ects in the dissipa-

tive LZSM model using the quasi-adiabatic propagator path integral method and the nonequilibrium

Bloch equations [325�329]. Furthermore, Sun et al. applied the hierarchy equation method [330] to

the dissipative LZSM model. Recently, Huang and Zhao adopted the multiple Davydov trial states

to elucidate the dissipative LZSM dynamics [331].

While much is still unknown about the underlying physics of the dissipative LZSM model, recent

attention has been devoted to a superconducting qubit coupled to a single harmonic oscillator of

frequency 𝜔 [321, 323, 331�334]. For example, a circuit QED device has been experimentally realized

by coupling the charge qubit to the superconducting resonator through an electric �eld. The charge

qubit and the resonator have been used to represent the standard LZSM model and the harmonic

oscillator, respectively [321]. Saito et al. have revealed in their model that the dynamics at zero tem-

perature depends strongly on the oscillator frequency only at intermediate times, if the oscillator is in

its ground state at 𝑡 → ∞ [323]. Sun et al. compared the dynamics with rotating-wave approximation

(RWA) and without RWA when the initial state of the oscillator is assumed to be a superposition of

coherent states, implying that the RWA method is inaccurate for this problem. Ashhab considered the

�nal probabilities when the harmonic oscillator mode is initially set to a �nite-temperature thermal

equilibrium state [333]. Huang and Zhao found two-stage LZ transitions induced by the combined

e�ect of tunneling strength Δ and the o�-diagonal qubit-oscillator coupling.

In 2018, Malla et al. aimed to �nd the analytical solution of slow and fast oscillators (𝜔 < Δ and

𝜔 > Δ, where 𝜔 is the frequency of the harmonic oscillator) when there are many quanta excited

initially. Although many e�orts have been devoted to understanding the LZSM model, there exist

several unsettled fundamental issues: the in�uence on LZ transitions of an initially excited environ-

ment as well as the e�ect of di�erent oscillator frequencies in the intermediate regime (𝜔 ∼ Δ) on the

�nal probability. Moreover, the o�-diagonal qubit-oscillator coupling has not been adequately treated

if the initial oscillator state is not the vacuum state [332�334].

The time-dependent LZSM system Hamiltonian reads

ℋ̂S = 𝑣𝑡𝜎̂𝑧 +Δ𝜎̂𝑥, (5.29)

where 𝑣 is the sweeping velocity and Δ is the coupling matrix element. The instantaneous eigenvalues

𝐸± and eigenstates 𝑣± of the Hamiltonian (5.29) can be found easily by diagonalization,

𝐸±(𝑡) = ±
√︀
(𝑣𝑡)2 +Δ2. (5.30)

If the variation of the Hamiltonian (5.29) with time is adiabatic, i.e., slow enough, the Adiabatic

Theorem (see e.g. [335] for details) states that the system, if initially in an instantaneous eigenstate,

always stays in an instantaneous eigenstate. Thus the instantaneous eigenstates are called adiabatic

eigenstates. On the contrary, the eigenstates of 𝜎̂𝑧, denoted as |±⟩, are called diabatic eigenstates.

While adiabatic and diabatic states coincide for 𝑡 → ±∞ since the term 𝑣𝑡𝜎̂𝑧 dominates the Hamil-
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tonian (5.29) for 𝑡 → ±∞, this is not the case for 𝑡 ≈ 0. A schematic sketch is given in Fig. 5.14,

where the instantaneous energies and the energy of the states 𝜎̂𝑧 is plotted as function of time. While

at 𝑡 = 0 the energies corresponding to the eigenstates of 𝜎̂𝑧 cross, it appears as an avoided crossing

of spacing 2Δ in the adiabatic basis.

Under the assumption that the system is in the state |+⟩ at 𝑡 → −∞, Landau and Zener found

independently that the probability 𝑝(𝑡 → ∞) for the system to be in the state |+⟩ at 𝑡 → ∞ is given

by

𝑝(𝑡 → ∞) = exp

[︂
−𝜋Δ2

|𝑣|

]︂
. (5.31)

We infer that for the probability to end up in the state |−⟩ at 𝑡 → ∞ if the system is in the state |+⟩
at 𝑡 → −∞ it holds that 1 − 𝑝(𝑡 → ∞) → 1 for 𝑣 → 0, in compliance with the Adiabatic theorem

(the system stays on a red curve in Fig. 5.14 if it is there initially).

While the formula (5.31) has been known for a long time, much is still unknown about the dynamics of

the LZSM-model if the system is coupled a dissipative environment. In order to illuminate the physics

of the LZSM coupled to an environment, we will �rstly examine the impact of initial excitation of the

environment if the coupling is scaled accordingly (see Sec. 5.3.1) for a single environmental mode, as

well as the impact of ohmic dissipation in the case of multiple environmental modes in Sec. 5.3.2.

Figure 5.14.: Schematic sketch of the instantaneous energies 𝐸± (red solid) and the energies of
the eigenstates |±⟩ of 𝜎̂𝑧 (blue dashed) in arbitrary units, as function of time 𝑡 in arbitrary units.
Further parameters read 𝑣 = 0.2,Δ = 0.5.
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5.3.1. Coupling to a single environmental mode

The system Hamiltonian for level transitions in the dynamics of a qubit coupled to a single harmonic

degree of freedom is given by

ℋ̂S = 𝜀(𝑡)𝜎̂𝑧 +Δ𝜎̂𝑧, (5.32)

and the coupling operator is given by

𝐿̂ = (cos 𝜃𝜎̂𝑧 + sin 𝜃𝜎̂𝑥) , (5.33)

with time-dependent asymmetry parameter 𝜀(𝑡) = 𝑣𝑡 with sweeping velocity 𝑣, and two coupling

strengths

𝜆𝑧 = cos 𝜃, 𝜆𝑥 = sin 𝜃, (5.34)

where a change in the mixing angle 𝜃 allows us to switch between the diagonal (𝜃 = 0) and o�-diagonal

coupling (𝜃 = 𝜋/2).

In the course of the LZSM dynamics, the system energy is driven through orders of magnitude. This

on the one hand is a demanding challenge for the numerics. On the other hand, system and bath

can not interchange energy as long as the system frequency is above the environmental oscillator

frequency. We shall see that the dynamics nicely displays this e�ect.

Due to the coupling to the spin, the oscillator eigenstates in the subspace of the projected Hamiltonian

corresponding to spin up and spin down states are changed to

|𝑛±⟩ = 𝐷̂∓𝐶 |𝑛⟩ , 𝐶 =
𝜆 cos 𝜃

𝜔
, (5.35)

respectively, as can be shown by a completion of the square argument [316]. In the presence of

environmental coupling, the analytical result for the probability to remain in the initial state of the

system is

𝑝(𝑡 → ∞) = exp

⎡⎢⎢⎣−𝜋

(︂(︁
Δ− 𝜆2

𝜔 sin (2𝜃)
)︁2

+ 𝜆2 sin2 𝜃

)︂
|𝑣|

⎤⎥⎥⎦ . (5.36)

One can read o� from this result that, even in the presence of coupling to the oscillator, the asymptotic

result for the staying probability is una�ected, leading to the celebrated Landau-Zener result (5.31)

if the coupling is purely longitudinal (𝜃 = 0). Furthermore, in combination with the no-go-theorem

of Saito [316] one can read o� from (5.36) the probability 𝑃 (𝑡) = |⟨Ψ(𝑡)|−⟩| for the system to be in



116 5.3 The dissipative Landau Zener Model

the diabatic ground state if initially |Ψ(0)⟩ = |0+⟩ |+⟩, for 𝑡 → ∞,

𝑃 (𝑡 → ∞) = 1− 𝑝(𝑡 → ∞) = 1− exp

⎡⎢⎢⎣−𝜋

(︂(︁
Δ− 𝜆2

2𝜔 sin (2𝜃)
)︁2

+ 𝜆2 sin2 𝜃

)︂
2 |𝑣|

⎤⎥⎥⎦ . (5.37)

The general formula allows for a tuning of the steady state survival probability via several di�erent

strategies. Apart from the most obvious ones of changing the tunneling splitting and/or the sweep

velocity, which are suggested by the Landau-Zener formula, another one would be to change the

mixing angle 𝜃 between the diagonal and o�-diagonal coupling [331] and/or the coupling strength.

We note in passing that, for 𝜃 = 0, a change in the oscillator frequency does not a�ect the asymptotic

result if started from the ground state. For initially highly excited (number) states, the oscillator

frequency does play a role for the steady state result, however [334].

Number states can be generated experimentally in cavities as has been shown by Haroche and co-

workers. In 2007, his group fabricated an open cavity made up of two superconducting niobium

mirrors facing each other and detected the birth of a photon in a cavity [336]. In detail, a small

coherent �eld was produced after a microwave pulse was radiated by a classical source and scattered

on the edges of the cavity mirrors. The �eld was then injected inside the cavity, leading to the creation

of a superposition of photon number states [337]. Still another option for tuning the probability 𝑝,

therefore, would be to change the initial excitation of the boson. This last possibility to control the

steady state probability is in the focus of interest of the theoretical studies here. From the closure

relation (2.26) one may infer that a number state is given in terms of an integral over the whole

complex plane. As laid out in [36, 338], one may write a number state

|𝑛⟩ = 1

2𝜋

√︃
𝑛!e|𝛽|

2

|𝛽|2𝑛

𝜋∫︁
−𝜋

d𝜃 e−i𝑛𝜃 ||𝛽| ei𝜃⟩ , (5.38)

i.e. as a one-dimensional integral along a circle in phase space. The fact that a single integral is su�-

cient is deeply rooted in the overcompleteness of the coherent states (see Sec. 2.3). A straightforward

discretization of the integral (5.38) can be done by �xing 𝑁 ∈ N and setting

𝜃𝑘 := −𝜋 +
2𝜋

𝑁𝑑
𝑘, 𝑘 = 0, . . . , 𝑁𝑑. (5.39)

Thus

|𝑛⟩ ≈

√︃
𝑛! e|𝛽|

2

|𝛽|2𝑛
1

𝑁𝑑

𝑁𝑑∑︁
𝑘=0

e−i𝑛𝜃𝑘 ||𝛽| ei𝜃𝑘⟩ . (5.40)

The Davydov-Ansatz with multiplicity 𝑀 for the propagation of a single contribution ||𝛽| ei𝜃𝑘⟩ to the
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sum in (5.40) reads

|Ψ𝑘(𝑡)⟩ =
𝑀∑︁

𝑚=1

∑︁
𝑗=±

𝐴𝑘𝑗𝑚(𝑡) |𝛼𝑘𝑗𝑚(𝑡)⟩ |𝑗⟩ , (5.41)

with initial conditions

𝐴𝑘𝑗𝑚(0) = 𝛿𝑗,+𝛿𝑚,1, 𝛼𝑘,+,1(0) = |𝛽| ei𝜃𝑘 . (5.42)

The full wave function is then approximated by

|Ψ(𝑡)⟩ =

√︃
𝑛!e|𝛽|

2

|𝛽|2𝑛
1

𝑁𝑑

𝑁𝑑∑︁
𝑘=0

e−i𝑛𝜃𝑘 |Ψ𝑘(𝑡)⟩ , (5.43)

giving rise to four sums in expectation values, which is numerically demanding for large 𝑁𝑑. In-

stead, the whole expression (5.40) may be propagated with a single D2 wave function |Ψ(𝑡)⟩ =
𝑀∑︀
𝑘=1

∑︀
𝑗=±

𝐴𝑘𝑗 |𝑗⟩ |𝛼𝑘⟩ of multiplicity 𝑀 ≥ 𝑁𝑑 with initial conditions

𝐴𝑘,+ =

√︃
𝑛!e|𝛽|

2

|𝛽|2𝑛
1

𝑁𝑑
e−i𝑛𝜃𝑘 , 𝛼𝑘(0) = |𝛽| ei𝜃𝑘 , (5.44)

for 𝑘 < 𝑁 . Numerical results show that the multiplicity required to converge a single realization

(5.41) is not multiplied to the multiplicity required to converge (5.44), but is the same in both cases.

The parameter space of the LZSM model with coupling to a single harmonic mode is already quite

large. Because we are interested in the initial state dependence of the survival probability we �rst

keep �xed the tunneling as well as the sweep parameter in the slow oscillator regime,

Δ = 1, 𝑣 =
𝜋Δ2

4
, 𝜔 =

Δ

4
, (5.45)

and only to the very end, we also change the frequency of the oscillator. We �rst investigate the case

𝑛 = 0, for which we may compare the numerical results with the analytical transition probability

given by (5.36). We set 𝑛 = 0, 𝑁 = 1, 𝛽 = 0 and |𝛽|2𝑛 = 1. Multiplicity 𝑀 is increased until

convergence is reached. Firstly, we �nd from Fig. 5.15 for the three mixing angles, 𝜃 = 0, 𝜋/4, 𝜋/2,

that the �nal transition probability depends critically on the requirement that the starting time 𝑡0 of

the propagation is su�ciently early, i. e., 𝑡0 ≪ 0. This can be understood from the fact that (5.36) is

valid only if the system starts out in its ground state 𝐷̂
†
[𝐶]|0⟩|+⟩ at 𝑡0 → −∞ (see (5.35)). If 𝑡0 is too

close to 𝑡 = 0, this state is not the system's ground state, and the dynamics will depend essentially on

the precise value of 𝑡0. We �nd secondly that the value of |𝑡0| which results in the correct transition

probability depends on the mixing angle 𝜃 and the largest value was found for 𝜃 = 𝜋/4. This again

follows from the same reasoning, since the o�-diagonal coupling transfers the diabatic states to the

adiabatic ones.
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Figure 5.15.: Convergence test with respect to initial time 𝑡0 for 𝜆 = Δ: Dashed black lines indicate
the analytical result (5.36). Different starting times indicated by different colors. For 𝜃 = 0 (left
panel) starting time Δ

2 𝑡 = −15 leads to converged result for 𝑀 = 15. For 𝜃 = 𝜋
4 (middle panel),

starting time Δ
2 𝑡 = −55 leads to converged result for 𝑀 = 25. For 𝜃 = 𝜋 (right panel) starting time

Δ
2 𝑡 = −25 leads to converged result for 𝑀 = 23.

The initial times found from Figs. 5.15 are also the appropriate times to start from for higher excited

states |𝑛⟩, 𝑛 > 0. We choose 𝑛 ∈ [1, 100] for the initial excitation and a coupling strength which is

renormalized by the initial excitation,

𝜆 =
Δ√
𝑛
, (5.46)

as given in [334]. The convergence with respect to the number 𝑁 of sampling points on the circle of

radius 𝛽 =
√
𝑛 is quite quick, while convergence with respect to multiplicity 𝑀 occurs only slowly.

Next, we choose di�erent radii |𝛽| of the circle of integration, in order to examine the emphasis on

the special radius |𝛽| =
√
𝑛 given in [36]. In Fig. 5.16 it is shown that indeed the deviation from the

special radius leads to strong deterioration of the results.

Figure 5.16.: Convergence test with respect to 𝛽: 𝑃 (𝑡) for 𝑛 = 4, 𝜃 = 𝜋/4, 𝑁𝑑 = 14, 𝑀 = 18.
𝛽 = 1 (red), 𝛽 = 4 (green), 𝛽 =

√
𝑛 = 2 (blue) (in coincidence with the exact result).
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The main �nding here is that the initial oscillator excitation can be used as a parameter to tune the

steady value of the staying probability, if the coupling is scaled according to 𝜆 = Δ√
𝑛
and the mixing

angle 𝜃 ̸= 0. This is shown in Fig. 5.17, where a monotonic decrease of the steady state value for

increasing excitation can be observed for 𝑛 > 3. Multiplicities up to 𝑀 = 25 have been used to

obtain converged results. In [334] an (approximate) analytical reasoning for convergence of 𝑃 (𝑡 → ∞)

as 𝑛 → ∞ is given for 𝜃 = 0, in conjunction with the corresponding steady state value. Although

generalization of the result therein to 𝜃 ̸= 0 is not straightforward, our numerical calculations show

that also for 𝜃 ̸= 0 convergence is reached as 𝑛 → ∞. In the absence of initial excited quanta, it is

well known that longitudinal coupling (𝜃 = 0) does not contribute to the LZ transition. By gradually

increasing the quanta number 𝑛, depending on the mixing angle, a more or less pronounced change

of the �nal transition probability can be observed. Especially for a mixing angle of 𝜃 = 𝜋/4 the e�ect

is largest. Also, in this case the energy exchange between the system and the oscillator is largest for

large quantum numbers.

We have also tried to converge results with the multi D1-Ansatz. While the method nicely converges if

the 𝜎̂𝑥 eigenstates are chosen as basis, with the same number of CS as the D2-Ansatz, the D1-Ansatz

does not converge at all if the 𝜎̂𝑧 eigenstates are chosen as basis. In the light of the considerations

of Sec. 3.6 this is not surprising since the dynamics is here indeed such that ⟨−|Ψ(𝑡)⟩ = 0 for 𝑡 ≪ 0.

During the long time for which ⟨−|Ψ(𝑡)⟩ = 0 we �nd in the D1-Ansatz that the CS corresponding to

the |−⟩ state move far away from the origin, and if the dynamics is such that the |−⟩ state is populated
in the vicinity of the avoided crossing, they are too far away in order to participate in the dynamics.

Furthermore, the corresponding 𝜌-matrix is singular throughout all the time when ⟨−|Ψ(𝑡)⟩ = 0 and

consequently a strong regularization has to be implemented for the D1-Ansatz. The D2-Ansatz is

highly advantageous with respect to these issues since there they do not occur.

Finally, we investigate the transition for di�erent oscillator frequencies for 𝑛 = 50: slow oscillator

Figure 5.17.: Transition probabilities as a function of 𝑛: 𝜃 = 0 (blue), 𝜃 = 𝜋/4 (red), 𝜃 = 𝜋/2
(green).
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𝜔 = 0.2𝜔0, intermediate oscillator 𝜔 = 𝜔0 and fast oscillator 𝜔 = 2𝜔0, where 𝜔0 = Δ
4 . Further

parameters for the numerics are 𝑁 = 25 and 𝑀 = 30. The mixing angle is 𝜃 = 𝜋/4. As shown in

Fig. 5.18, the qubits start with same initial probabilities, and end with large transition probability

in the case of a slow oscillator. As expected, the transition time is longer when the oscillator is slow,

and allows more transition to occur at intermediate times.

In this section, we have numerically investigated transition probabilities from the plus to the minus

spin state, starting from eigenstates of the LZSM problem in the presence of an excited bosonic mode

for 𝑡 → −∞. In the next section, we generalize the results of this section to multiple modes. While

a straightforward generalization to Fock number states is not possible (see Sec. 3.5), we shall assume

that the initial bath state is a shifted coherent state.

5.3.2. Coupling to multiple environmental modes

In the following, we attempt to generalize the results of the previous section to multiple environmental

modes. In the case of longitudinal coupling, which we assume here, the survival probability does not

at all depend on the bath if the initial state is the multi-mode state corresponding to (5.35) (see [316]

for details),

|Ψ(0)⟩ = |+⟩ 𝐷̂†
C |0⟩ , C𝑛 =

𝜆𝑛

𝜔𝑛
. (5.47)

The survival probability is given by 𝑝(𝑡 → ∞) = exp
[︁
−𝜋Δ2

2|𝑣|

]︁
. We sweep the detuning with velocity

𝑣 = 5Δ2, and investigate the case of ohmic damping here (𝑠 = 1), as given in [339]. Thus it is not

necessary to include the initial shift (5.47) in the bath coordinates to an e�ective system contribution

as outlined in Sec. 4.5.1.

Figure 5.18.: Transition probabilities 𝑃 (𝑡) as a function of 𝜔: 𝜔 = 1 × 𝜔0 (blue), 𝜔 = 0.2 × 𝜔0

(green), and 𝜔 = 2× 𝜔0 (red), where 𝜔0 = Δ/4; mixing angle 𝜃 = 𝜋/4.
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Figure 5.19.: Convergence of the multi Davydov-Ansatz for coupling strength 𝛼 = 0.2 and 𝜔𝑐 =
50Δ. 𝑀 = 20 (cyan solid), 𝑀 = 35 (green solid), 𝑀 = 50 (blue solid), 𝑀 = 65 (red dashed).
Convergence is rather slow.

The cuto� frequency, taken here to be large, 𝜔𝑐 = 50Δ, has another important property here. While

the system frequency is swept through orders of magnitude in the course of the LZSM model, system

and bath can not interchange energy if the system energy is far above the cuto� 𝜔𝑐. Thus, the larger

𝜔𝑐, the earlier is the time for which system and bath start to interact, and the later is the time at

which they cease to interact. This can be nicely seen from Fig. 5.19, where the convergence to the

�nal transition probability is ultra slow, corresponding to the large value of 𝜔𝑐.

The convergence with respect to the multiplicity is rather slow. The result has been converged with

𝑀 = 65 coherent states where the bath is discretized with𝑁 = 200modes according to the exponential

FD. An exponential �t from the data calculated with the multi D2-Ansatz with 𝑀 = 65 predicts a

staying probability of 𝑝(𝑡 → ∞) = 0.7397 while the exact value is given by exp
[︀
− 𝜋

10

]︀
= 0.7304. In

order to illuminate the slowness of the convergence in more detail, we plot the distribution of the

displacements 𝛼𝑘𝑛 as a function of 𝑛 ∈ {1, . . . , 200} and 𝑘 ∈ {1, . . . , 60} at time 𝑡Δ = 11.5 in Fig.

5.20, and in Fig. 5.21 the coe�cients 𝐴𝑗𝑘(𝑡) as function of 𝑘 and 𝑡. The visual representation reveals

that the bath stays coherent as long as the system is far away from the avoided crossing 𝑡 ≪ 0. In

contrast to the undriven SBM, multiple modes e�ectively participate in the dynamics in the vicinity

of the avoided crossing. This is deeply rooted in the sweeping of the system frequency since it leads

to a sweep through resonance with multiple bath modes causing strong decoherence in the bath. As

soon as the vicinity of the avoided crossing is left, the bath becomes coherent again as can be seen

from the coe�cients' time evolution in Fig. 5.21. In the light of the chaotic dynamics encountered
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in the vicinity of the avoided crossing, it is even more surprising that the �nal transition probability

does not depend on the bath at all.

Figure 5.20.: The absolute value of the displacements at 𝑡Δ = 11.5 as function of number of mode
𝑛 = 1 . . . 200 and multiplicity 𝑘 = 1, . . . , 60.

Figure 5.21.: The absolute value of the coefficients as function of number of time 𝑡Δ and multiplicity
𝑘 = 1, . . . , 60: 𝐴+,𝑘(𝑡) (left panel), 𝐴−,𝑘(𝑡) (right panel).

We have shown that with apoptosis, the multi Davydov-Ansatz numerically exactly predicts the

dynamics of system and bath in driven systems even in highly demanding regimes. While without

apoptosis the possible number of CS which can be employed in the Ansatz is limited, no such limit

exists with apoptosis implemented. In particular, we have shown that the method can be converged

also in cases where convergence is rather slow due to the complexity of the bath dynamics. In the
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next section, we shall thus con�dently apply the method to a dissipative laser-driven system in the

strong coupling regime which has so far remained occlusive due to its complexity.
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5.4. Rapid Adiabatic Passage with a dissipative environment

It is well known that coupling a quantum system to an environment leads to dissipation and deco-

herence. While they are mostly considered as a nuisance, it has been shown recently that quantum

dissipation can be exploited as a resource for the preparation and control of quantum states [340�

351]. Furthermore, the continuous progress in laser technology has led to a wealth of theoretical and

experimental studies on the interaction of matter with laser light (see e.g. [126] and [352] for in-depth

reviews). Quantum mechanical experiments rely on the ability to start with a pure initial state or

an ensemble of identical initial states, and thus especially the problem of laser-induced population

transfer in multi-level systems has been subject to intense research. For two-level systems, population

transfer can theoretically be achieved if the laser frequency is tuned linearly through resonance with

the system, as in the LZSM model (see Sec. 5.3). This requires, however, adiabatic dynamics, 𝑣 → 0

in (5.31), rendering virtually impossible the corresponding practical implementation. Alternatively,

population transfer can be achieved if highly coherent radiation is tuned to the resonance frequency

of the system. In principal, complete population transfer can be achieved independently of the pulse

shape if the pulse area is equal to 𝜋 [126]. Unfortunately the robustness of this method of population

transfer under variations of the pulse area away from 𝜋 and due to inhomogeneities of the sample is

in general experimentally not satisfactory [353, 354]. Furthermore, for multi-level systems in which

many states lie within the bandwidth of the excitation source, it is virtually impossible for a single

pulse to satisfy the 𝜋-condition for all transitions simultaneously. This is the reason why a lot of

e�ort has been put into the investigation of the rapid adiabatic passage (RAP) scenario, that is less

prone to external disturbances. There the frequency of the radiation is a slowly varying function

of time, which is swept through resonance with the system [353]. Subsequently, we will investigate

both the 𝜋-pulse as well as the RAP scenario, for a semiconductor quantum dot in the presence of an

environmental phononic heat bath. Theoretical investigation of this model in the ultra weak coupling

regime has been carried out in [355], utilizing a second order perturbation theory in the system bath

interaction. Not surprisingly, very good agreement with the experimental results was found, although

for high temperatures and low chirp parameters far from optimal population transfer was reported

(away from odd integer multiples of 𝜋 of pulse areas in the case of small chirp). Here, we will focus

on large system bath couplings. This is especially of high relevance since recent advances in the �eld

of cold atomic gases have revealed that it is indeed possible to accurately tune the coupling between

a quantum dot and the bath [356].

In the following, we consider the interaction of a two-level system, characterized by system energies

𝜔1 < 𝜔2, with the electric �eld 𝐸(𝑡) of an external laser. We assume that the polarization of the �eld

is in the direction of the system's dipole matrix element 𝜇, and that the latter is constant. Let |1, 2⟩
be the diabatic basis, i.e. the standard basis of R2, then the TDSE for the two-level system, written

in terms of the coe�cients of |Ψ⟩ = 𝑐1 |1⟩+ 𝑐2 |2⟩, reads

i

(︃
𝑐̇1

𝑐̇2

)︃
=

(︃
𝜔1 𝜇𝐸(𝑡)

𝜇𝐸*(𝑡) 𝜔2

)︃(︃
𝑐1

𝑐2

)︃
. (5.48)
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The real electric �eld of the chirped excitation pulse can be written as

𝐸(𝑡) =
1

2
𝑓(𝑡)

(︀
exp

[︀
−i𝜔0𝑡− i𝛼𝑡2

]︀
+ 𝑐𝑐.

)︀
, (5.49)

where 𝜔0 is the laser frequency and 𝛼 is the linear temporal chirp and 𝑓(𝑡) is the time-dependent

envelope of the electric �eld. We now take three commonly applied steps that lead to simpli�ed

equations. Firstly, we transfer into the rotating frame (interaction picture) by using the factorization

Ansatz

𝑐1 = 𝑑1 exp
[︀
−i𝜔1𝑡+ i𝛼𝑡2

]︀
,

𝑐2 = 𝑑2 exp [−i𝜔2𝑡] . (5.50)

Secondly, by applying the rotating wave approximation (RWA) we neglect fast oscillating exponential

terms ∼ exp
[︀
±i (𝜔0 + 𝜔2 − 𝜔1) 𝑡± i𝛼𝑡2

]︀
. Thirdly and �nally we assume laser and system to be

resonant at 𝑡 = 0, i.e. 𝜔2 − 𝜔1 = 𝜔0. Then the system of equations

i

(︃
𝑑̇1

𝑑̇2

)︃
=

(︃
2𝛼𝑡 1

2𝜇𝑓(𝑡)
1
2𝜇𝑓(𝑡) 0

)︃(︃
𝑑1

𝑑2

)︃
(5.51)

emerges from system (5.48).

We assume that the pulse has the Gaussian shape

𝑓(𝑡) =
Θ

𝜇
√
𝜋𝜏𝑝

exp

(︂
− 𝑡2

𝜏2𝑝

)︂
, (5.52)

where 𝜏𝑝 is the pulse duration (including the numerical FWHM factor
√
ln 16), and the peak amplitude

Θ
𝜇
√
𝜋𝜏𝑝

is scaled with the dipole matrix element 𝜇 and characterized by the pulse area Θ. The frequency

bandwidth Γ and the spectral chirp 𝜑′′ are related to the pulse duration and the temporal chirp via

[354]

𝜏2𝑝 =
1

Γ2

(︀
1 + (2𝜑′′)2Γ4

)︀
, (5.53)

𝛼 =
2𝜑′′Γ4

1 + (2𝜑′′)2Γ4
. (5.54)

Experimentally, the chirped laser pulse is created by passing a Fourier-limited source pulse through

a pulse-shaping device [357]. The transform-limited pulse duration 𝜏0 of the source pulse is set to

𝜏0 = 5 ps as reported in [355]. It is related to the above quantities via Γ = 1
𝜏0
.

In an experimental setup, the laser-driven system is not isolated, and it is thus natural to couple it to

an environmental bath of phonons. The corresponding total Hamiltonian is then given by (4.6). The
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system Hamiltonian is given by (5.51),

ℋ̂S =

(︃
2𝛼𝑡 1

2𝜇𝑓(𝑡)
1
2𝜇𝑓(𝑡) 0

)︃
, (5.55)

and we assume the bath to be coupled to the diabatic state |1⟩,

𝐿̂ =

(︃
0 0

0 1

)︃
. (5.56)

For the 3D solid state quantum dot investigated in [355], interaction of excitons with acoustical

phonons is dominant [355]. Thus the continuous spectral density 𝐽(𝜔), specifying the phonon bath,

is assumed to be superohmic with exponent 3,

𝐽(𝜔) = 𝐴𝜔3 exp

[︂
−𝜔2

𝜔2
𝑐

]︂
≈

𝑁∑︁
𝑘=1

𝜆2
𝑘𝛿(𝜔 − 𝜔𝑘), (5.57)

where 𝐴 speci�es the system-bath coupling strength and 𝜔𝑐 is the cuto� frequency. Based on an

estimate of the size of the quantum dot, the cuto� frequency induced by the electron-phonon coupling

form factor is set to 𝜔𝑐 = 0.72meV. In a slight deviation from Eq. (4.7) and previous considerations,

we assume the discretization of the SD in (5.57) without the 𝜋-prefactor.

Because we want to treat strong coupling strengths, special care has to be taken with respect to the

initial conditions for the quantum dynamics. The quantum dot is assumed to be in its ground state

initially, |ΨS(0)⟩ = |1⟩. In the interaction picture, however, the sign of 𝜑′′ determines whether the

energy of the state |1⟩ is above or below the energy of state |2⟩. This is schematically sketched in Fig.

5.22 , where the energies of the diabatic basis |1, 2⟩ are plotted as function of time in the interaction

picture versus the energies of the adiabatic basis (the instantaneous eigenstates of the Hamiltonian

(5.55))

𝐸ad

± (𝑡) = 𝛼𝑡±

√︃
(𝛼𝑡)2 +

(︂
1

2
𝜇𝑓(𝑡)

)︂2

, (5.58)

for 𝜑′′ = −7 ps2 and pulse area 𝜃 = 𝜋. For negative chirp 𝜑′′ < 0, the energy of |1⟩ is above the energy
of state |2⟩ in the interaction picture, for 𝑡 < 0. In the presence of a dissipative bath, however, the

ground state of the environment is determined by those states which diagonalize ⟨ΨS(0)| ℋ̂ |ΨS(0)⟩,
see [316] for details. Thus, the initial bath state at 𝑇 = 0 is given by the ground state |ΨB(0)⟩ = |0⟩.
The sign of the chirp will be chosen to be negative [357], such that the passage proceeds on the upper

red line in Fig. 5.22. The coupling strength has been chosen as 𝐴 = 10𝑗𝐴0 with 𝑗 = 0, 1, 2 and

𝐴0 = 0.022 ps−2 as given in [355]. Converged results have been found for the phonon bath being

discretized with 𝑁 = 200 modes by the FD 𝜌f(𝜔) ∼ e−𝜔/𝜔𝑐 . In the light of the consideration of

Sec. 5.3.1 we have taken special care with respect to the initial time of the propagation. In order to

converge the results with respect to the time axis, propagation has been carried out from −𝑇 to 𝑇
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Figure 5.22.: Energies of the diabatic basis |1, 2⟩ (blue dashed) vs. the energies of the adiabatic
basis (5.58) (red solid) of the Hamiltonian (5.55) as function of time. Further parameters read
𝜑′′ = −7 ps2, 𝜃 = 𝜋.

where 𝑇 = 10√
2|𝛼|

= 54.15 ps.

Figure 5.23.: Dynamics of the population 𝑃 (𝑡) = ⟨Ψ(𝑡)|2⟩ ⟨2|Ψ(𝑡)⟩, for small chirp 𝜑′′ = −7ps2

and different pulse areas: Left panel 𝜃 = 𝜋/2 (blue solid), 𝜃 = 𝜋 (red solid), 𝜃 = 3𝜋/2 (green
solid), 𝜃 = 2𝜋 (cyan solid), 𝜃 = 5𝜋/2 (black solid). Right panel 𝜃 = 3𝜋 (blue solid), 𝜃 = 7𝜋/2 (red
solid), 𝜃 = 4𝜋 (green solid), 𝜃 = 9𝜋/2 (cyan solid), 𝜃 = 5𝜋 (black solid). The coupling strength is
𝐴 = 0.22 ps−2.

Firstly we see from Figs. 5.23-5.26 that, as expected, system and bath do not interact as long as

the laser is o�. Only after the |2⟩ state has been populated by the laser-matter interaction does the

bath interact with the system. For large 𝑡 → ∞ the system frequency 𝜔S ∼ |𝛼|𝑡 is above the cuto�
frequency 𝜔𝑐 and thus system and bath do not interact. We stress that the dynamics is such that

⟨2|Ψ(𝑡)⟩ = 0 for 𝑡 ≪ 0, hence the corresponding coe�cients in the Ansatz wave function are zero for

long times and application of the D1-Ansatz would fail to converge. This is, however, not the case for

the D2-Ansatz.

By comparing Figs. 5.23 and 5.24 it is nicely revealed that for small chirp 𝜑′′ = −7 ps2 the dynamics

changes its very nature in the presence of strong coupling to the phonon bath. The presence of

spontaneous decay channels between system and bath corrects, for small as well as for large chirp, for

the decay channel in the system, in the strong coupling regime.

While for small chirp the transition probability is already above 90% for pulse areas 𝜃 > 3𝜋/2 (see

Figs. 5.23 and 5.24), for large chirp the transition probability is enhanced but does not exceed 80%
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Figure 5.24.: Dynamics of the population 𝑃 (𝑡) = ⟨Ψ(𝑡)|2⟩ ⟨2|Ψ(𝑡)⟩, for small chirp 𝜑′′ = −7 ps2

and different pulse areas: Left panel 𝜃 = 𝜋/2 (blue solid), 𝜃 = 𝜋 (red solid), 𝜃 = 3𝜋/2 (green
solid), 𝜃 = 2𝜋 (cyan solid), 𝜃 = 5𝜋/2 (black solid). Right panel 𝜃 = 3𝜋 (blue solid), 𝜃 = 7𝜋/2 (red
solid), 𝜃 = 4𝜋 (green solid), 𝜃 = 9𝜋/2 (cyan solid), 𝜃 = 5𝜋 (black solid). The coupling strength is
𝐴 = 2.2 ps−2.

Figure 5.25.: Dynamics of the population 𝑃 (𝑡) = ⟨Ψ(𝑡)|2⟩ ⟨2|Ψ(𝑡)⟩, for large chirp 𝜑′′ = −40 ps2

and different pulse areas: Left panel 𝜃 = 𝜋/2 (blue solid), 𝜃 = 𝜋 (red solid), 𝜃 = 3𝜋/2 (green
solid), 𝜃 = 2𝜋 (cyan solid), 𝜃 = 5𝜋/2 (black solid). Right panel 𝜃 = 3𝜋 (blue solid), 𝜃 = 7𝜋/2 (red
solid), 𝜃 = 4𝜋 (green solid), 𝜃 = 9𝜋/2 (cyan solid), 𝜃 = 5𝜋 (black solid). The coupling strength is
𝐴 = 0.22 ps−2.

even for 𝜃 = 5𝜋 (see Figs. 5.25 and 5.25). In addition, we have plotted the �nal transition probability

as a function of pulse area and coupling strength at 𝑇 = 0 in Fig. 5.27. The plot nicely shows how

with increasing coupling strength the oscillations in the �nal transition probability cease. Although

we can not quantify it, it is obvious that the presence of spontaneous decay channels between system

and bath corrects for the decay channel in the system in the strong coupling regime.

We have also investigated the e�ect of �nite temperature on the found results. While moderate

temperature does not essentially in�uence the e�ect, our results con�rm the results given in [355]

in regard to a diminishing e�ect on the population transfer, see Figs. 5.28 and 5.29. Temperature

sampling has been converged with up to 4000 samples. We �nd, analogously to 4.5.2, that in order

to converge the samples of the temperature sampling, apoptosis occurs at almost any calculation and

is thus once more con�rmed to be indispensable for the functionality of the multi Davydov method.

The multi Davydov-Ansatz has enabled us to calculated the dynamics of a laser-driven system cou-

pled strongly to a dissipative environment. In this context, �rstly, we have shown that with apoptosis
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Figure 5.26.: Dynamics of the population 𝑃 (𝑡) = ⟨Ψ(𝑡)|2⟩ ⟨2|Ψ(𝑡)⟩, for large chirp 𝜑′′ = −40 ps2

and different pulse areas: Left panel 𝜃 = 𝜋/2 (blue solid), 𝜃 = 𝜋 (red solid), 𝜃 = 3𝜋/2 (green
solid), 𝜃 = 2𝜋 (cyan solid), 𝜃 = 5𝜋/2 (black solid). Right panel 𝜃 = 3𝜋 (blue solid), 𝜃 = 7𝜋/2 (red
solid), 𝜃 = 4𝜋 (green solid), 𝜃 = 9𝜋/2 (cyan solid), 𝜃 = 5𝜋 (black solid). The coupling strength is
𝐴 = 2.2 ps−2.

Figure 5.27.: The final transition probability as function of pulse area 𝜃 = 0, . . . , 5𝜋 and coupling
𝐴 = 𝐴0 × 0.022 ps−2 for 𝐴0 = 1, . . . , 100.

the temperature sampling, required in order to treat the non-zero temperature case, can e�ciently

be converged. The stochastically sampled shifted Hamiltonians render complex the bath dynamics,

leading to coherent states approaching frequently. On the contrary, without apoptosis, almost none

of the samples could be propagated.

We have furthermore shown that in the context of RAP, coupling a system to a dissipative environ-
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Figure 5.28.: Temperature dependence of the final transition probability, for small chirp 𝜑′′ =
−7ps: 𝑇 = 0K (left panel), 𝑇 = 20K (right panel). Colors indicate the magnitude 10𝑗 of the
coupling (𝐴 = 10𝑗 × 0.022 ps−2): 𝑗 = 0 blue solid, 𝑗 = 1 red solid, 𝑗 = 2 black solid.

Figure 5.29.: Temperature dependence of the final transition probability, for large chirp 𝜑′′ =
−20 ps: 𝑇 = 0K (left panel), 𝑇 = 20K (right panel). Colors indicate the magnitude 10𝑗 of the
coupling (𝐴 = 10𝑗 × 0.022 ps−2): 𝑗 = 0 blue solid, 𝑗 = 1 red solid, 𝑗 = 2 black solid.

ment may serve as a resource for laser-driven population inversion. Even in cases where the laser

is only weakly chirped, almost full population inversion can be achieved. This holds true even for

non-zero temperature and may thus allow for experimental realization.



6. Summary And Outlook

We have theoretically investigated an Ansatz of the bosonic many-body wave function of several com-

plex composite quantum systems in terms of freely moving Gaussian basis functions. We have shown

how to circumvent severe weaknesses of the method, based on non-orthogonal coherent states, because

of which it is traditionally considered ill-behaved. By detailing how to proceed in the case of vanishing

coe�cients by regularization and by apoptosis in the case of closeness of CS we have dispelled these

prejudices once and for all.

Based on the foundations presented in the �rst section, in the second chapter we have investigated

general aspects of the real-time propagation in terms of the variational multi-con�gurational Gaussian

(vMCG) Ansatz, a parametrization of the wave function by means of coherent states. By exploitation

of a gauge freedom of the Ansatz, we have �rstly shown that all variational principles introduced

in the �rst chapter are equivalent for the vMCG Ansatz. By means of the gauge freedom we have

secondly outlined how to thoroughly derive from the variational principle a system of equations of

motion for the Ansatz parameters in standard form, even in the case where normalized coherent states

are applied. Based on a rigorous translation of the equations of motion to linear algebra language,

we have detailed subsequently how to carefully regularize the equations of motion for the Ansatz

parameters in the event of two major issues related to the vMCG Ansatz: the regularization of the

𝜌-matrix in the case of vanishing coe�cients, and apoptosis in the case of coherent states approaching.

As completion of the discourse on previous attempts to circumvent these issues, we have rounded out

this part by an excursion to semiclassical methods. In this context we have isolated the variational

principle as root of the widely di�ering numbers of basis functions required for converged results be-

tween semiclassical methods and the full variational approach. Furthermore, possible generalizations

of the vMCG method by means of displaced number states (DNS) and squeezed states have discussed.

While we found that an extension in terms of DNS along the variational principle is impossible due to

the emergence of an inappropriate number of equations of motion, generalization by squeezed states is

possible in principle. Yet the complexity of the formulation of squeezed states in terms of creation and

annihilation operators inevitably requires to work in position representation, where the formulation

is much simpler. Thereof work is in progress in our group, and we hope that the insights and regular-

izations found in this thesis may help to overcome the issues related to squeezed states, allowing for

the application of even more powerful basis sets. In order to tackle open quantum system settings,

we have highlighted how to generalize the vMCG Ansatz to the multi D1 and D2-Ansatz. Finally

we have theoretically argued that the multi D2-Ansatz should be preferred over the multi D1-Ansatz

and shown how to treat nonzero bath setups by the multi D2-Ansatz on the wave function level.

In the third chapter we have thoroughly proven that the multi Davydov Ansatz equipped with apop-

tosis and the regularization in the case of vanishing coe�cients is a highly stable and systematically

converging method suited to calculate the dynamics of open quantum systems in the weak as well as

in the strong coupling regime at extremely low computational e�ort. To this end, we have considered
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the quantum Rabi model, as well as the Spin-Boson model in the ohmic and in the sub-ohmic regime.

We have demonstrated for the quantum Rabi model that the regularization of the 𝜌-matrix in the

case of (almost) vanishing coe�cients as outlined in the second chapter clearly outperforms other pos-

sible regularizations. Secondly, while a surprisingly small number of basis functions has been shown

to su�ce in order to be close to convergence, we have demonstrated for the Spin-Boson model that

apoptosis is inevitably required in order to fully converge to the exact result. While without apoptosis

still some propagations may complete successfully, only the implementation of apoptosis allows for a

systematic convergence of the multi Davydov Ansatz.

In addition we have shown for the Spin-Boson model that in the ohmic regime most of the environ-

mental modes participate in the dynamics, the sub-ohmic regime is dominated by the dynamics of

the small frequency modes. Thus, it is more complicated to reproduce the model's dynamics for the

ohmic case in the ultra-strong coupling regime. In both the ohmic as well as in the sub-ohmic case,

energy is mainly transferred from the system to the environment through small frequencies.

In order to further reduce the numerical e�ort required to converge to the continuum limit for contin-

uous spectral densities, we have �rstly investigated various di�erent discretizations of the frequency

axis. We have shown that, for the multi Davydov Ansatz, the bath correlation function is not an

appropriate criterion to estimate the quality of the discretization. By studying the Windowed Fourier

Transform we have found such an a priori criterion for the quality of the discretization of continuous

spectral densities in the frequency domain. We think that it is well suited to help other researchers

to quantify the quality of a given discretization without having to resort to the dynamics. It will for

sure straighten up the disorder reigning currently in the �eld of discretizations of spectral densities in

the frequency domain.

Subsequently, by borrowing ideas from the hierarchy of pure states (HOPS) method, we have demon-

strated how to avoid an oversampling of small frequencies for polarized initial conditions in the

sub-ohmic regime as well as for the treatment of non-zero temperature settings. In this context,

translation of the initial conditions to a shifted Hamiltonian have proven highly advantageous.

Finally, we have investigated in detail the advantageousness for the numerical e�ort of a transforma-

tion of the environment of mutually uncoupled oscillators to a (Mori-type) linear chain of e�ective

modes. While this e�ective representation in principle allows for reproduction of the exact system-

plus-bath dynamics, for the Spin-Boson model with continuous ohmic and sub-ohmic spectral density

the e�ective mode representation has been shown to be of no advantage.

The �ndings of the third chapter show that results obtained from the multi Davydov Ansatz are ex-

tremely reliable and thus suited to predict physically correct conclusions also in cases where no further

results are at our disposal. Thus, in the fourth chapter, we have explored by its means physically

unexploited territory.

Firstly we have calculated by means of the multi Davydov Ansatz the relaxation dynamics of deu-

terium dimers adsorbed on a silicon surface. To this end, we have taken into account 2495 phonon

modes and multiple system levels of the discretized parallel antisymmetric D-Si-Si bending mode. The

favourable scaling of the multi Davydov Ansatz with the number of phonon modes has allowed for the
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computation of the full system-plus-bath dynamics at comparatively low e�ort. By investigating in

detail their dynamics we found that only certain small frequency-ranges of the environmental modes

e�ectively participate in the dynamics. By transforming the standard bath representation into the

e�ective mode representation (EMR), we found that indeed only approximately 100 e�ective modes

su�ce in order to accurately represent the environment, while the number 𝑀 of coherent states re-

quired to converge the multi Davydov Ansatz did not increase by changing the representation. Thus,

the multi Davydov Ansatz in combination with the EMR has turned out in the present context to

allow the calculation of the relaxation of the dynamics of deuterium at a silicon surface at extremely

low cost. However, also in this context apoptosis has turned out to be indispensable in order to obtain

converged results.

By inclusion of further energetically higher-lying system-levels we have shown that initial population

transfer occurred also to these higher-lying levels, rendering more complex the overall relaxation dy-

namics. The results presented in this chapter have the potential to reliably predict the relaxation

dynamics. While they shed light on the channels through which the relaxation occurs, they may

allow to isolate possible approaches to enhance reactions in the presence of surfaces. Future research

is required in order to illuminate in more detail the relaxation dynamics in the presence of an external

laser, responsible for the initial excitation of the deuterium dimers. In particular, possible further

theoretical research comprises the treatment of continuous system degrees of freedom [358].

Secondly, we have investigated in detail the relaxation dynamics of an exciton on a one-dimensional

molecular chain in the Holstein molecular crystal. By considering the strong coupling regime, we have

found that apoptosis is inevitable in order to obtain converged long-time results. We have shown

that, despite the complexity of the phonon dynamics and despite apoptosis reduces the �exibility of

the multi Davydov Ansatz, apoptosis is suited to obtain converged results in regions far beyond those

attainable without apoptosis implemented.

Furthermore, we have found that special care has to be taken with respect to the initial positions of

the initially unpopulated CS in order to maintain the symmetry of the model. Only if the initially

unpopulated CS obey the symmetry does the Ansatz wave function obey the symmetry for all times.

Finally, we leave for further applications the extension of the presented results to larger chain lengths

and even longer times. As pointed out in Sec. 3.5, a straightforward generalization to multiple exci-

tons is, however, not in sight.

Thirdly we have shown how to tune the transition probability in the Landau-Zener-Stückelberg-

Majorana model (LZSM) coupled to an environment. By investigating in detail the dynamics of the

system, we have illuminated several aspects of diagonal and o�-diagonal coupling. The main �nding

of this section has been the fact that if the coupling is scaled appropriately, a consistent limit for the

excitation 𝑛 → ∞ can be found.

To this end, we have numerically investigated transition probabilities from the plus to the minus spin

state, starting from eigenstates of the LZSM problem in the presence of an excited bosonic mode |𝑛⟩
for 𝑡 → −∞. We have demonstrated how the reduction of the integral occurring in the representation

of the excited state by coherent states to an integral over a circle of radius 𝛽, and of the corresponding
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initial value sampling to a single wave-function allows for an extremely e�cient propagation scheme.

Although the circle's radius 𝛽 is in principle arbitrary, numerical calculations show that correct results

are obtained with reasonable numerical e�ort only if the radius is chosen as 𝛽 =
√
𝑛, in coincidence

with theoretical considerations in [36]. With the avoided crossing (of the bare system) at 𝑡 = 0,

we found from a thorough convergence study that, especially for non-zero mixing angle 𝜃 (see Eq.

(5.29)), in the numerics, we have to start from rather early times 𝑡0 ≪ 0. Furthermore, in order

to compare results for di�erent initial excitation numbers of the bosonic mode, we had to scale the

coupling strength with 1/
√
𝑛. Then, we found convergence of the transition probability 𝑃 (𝑡 → ∞)

for large 𝑛. The asymptotic values are non-trivially dependent on the mixing angle 𝜃. For 𝜃 = 0, the

diagonal coupling shows little e�ect on the transition probabilities at long times even in the presence

of the initial excited quanta. For 𝜃 = 𝜋/4, both channels of coupling are open, and it turns out that

for large 𝑛, larger amounts of energy are exchanged between the spin and the oscillator as if one of

the channels was closed. Furthermore, we have shown that also the oscillator frequency allows for

a tuning of the �nal probability. If the oscillator is slower, more transitions occur at intermediate

times, leading to larger transition probability at long times. It would be an interesting topic for

future studies to investigate if interference between the diagonal and o�-diagonal coupling channels is

responsible for the enhanced energy exchange between the spin and oscillator. This could be done by

adding additional bath degrees of freedom with continuous spectral densities, leading to decoherence.

For multiple environmental modes, we have investigated the e�ect of an ohmic bath of large cuto�

on the LZSM dynamics by pushing the number of coherent states employed to reproduce the exact

dynamics into unexplored territory. We have shown that with apoptosis, the multi Davydov-Ansatz

numerically exactly predicts the dynamics of system and bath in driven systems even in highly de-

manding regimes. While without apoptosis the possible number of CS which can be employed in the

Ansatz is limited, no such limit exists with apoptosis implemented. In particular, we have shown that

the method can be converged also in cases where convergence is rather slow due to the complexity of

the bath dynamics.

Fourthly and �nally, in a study of rapid adiabatic passage coupled to an environment we have shown

that strongly coupling a system subject to chirped laser excitation to an environmental bath is suited

to enhance the �nal transition probability by orders of magnitude, and that consequently the envi-

ronmental degrees of freedom may serve as a resource. This was shown to hold true even for non-zero

temperature, and thus we hope that experimental realizations will underpin this �nding in the future.

In this context, the multi Davydov-Ansatz has enabled us to calculated the dynamics of a laser-

driven system coupled strongly to a dissipative environment. We have shown that with apoptosis

the temperature sampling, required in order to treat the non-zero temperature case, can e�ciently

be converged. The stochastically sampled shifted Hamiltonians render complex the bath dynamics,

leading to coherent states approaching frequently. On the contrary, without apoptosis, almost none

of the samples could be propagated.

To summarize, we have shown that even in highly demanding regimes as for laser driven systems at

non-zero temperature in dissipative environments, the multi Davydov-Ansatz equipped with apoptosis
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and the regularization of the 𝜌-matrix is a highly reliable and stable numerical tool which allows to

calculate the system and bath dynamics at extremely low numerical e�ort. We hope that the results

of this thesis will enable other researchers to reliably predict the properties of various further physical

systems.





List of abbreviations

BCF bath correlation function

CS coherent state

CCS coupled coherent states method

DFVP Dirac-Frenkel variational principle

DMRG density-matrix renormalization group method

DNS displaced number states

EMR e�ective mode representation

EOM equations of motion

FD density of frequencies

FWHM full-width half-maximum

HEOM hierarchy of equations of motion method

HK Herman-Kluk

HOPS hierarchy of pure states method

LZ Landau-Zener

LZSM Landau-Zener-Stüeckelberg-Majorana model

(ML-) MCTDH (multi-layer) multi-con�gurational time-dependent Hartree method

MVP McLachlan variational principle

QED quantum electrodynamics

QUAPI quasi-adiabatic path-integral method

RAP rapid adiabatic passage

RWA rotating-wave approximation

SBM Spin Boson model

SD spectral density

TDSE time-dependent Schrödinger equation

TDVP time-dependent variational principle

TISE time-independent Schrödinger equation

vMCG variational multi-con�gurational Gaussian method

WFT Windowed Fourier Transform





Appendix

A. Closure relation of displaced number states

We want to show that unity can be represented by

1̂ =
1

𝜋

∫︁
C

d𝛼 𝐷̂𝛼 |𝑛⟩ ⟨𝑛| 𝐷̂
†
𝛼. (A.1)

First, we calculate the matrix elements ⟨𝑚| 𝐷̂𝛼 |𝑛⟩ by utilization of

exp [−𝛼*𝑎̂] |𝑛⟩ =
𝑛∑︁

𝑘=0

(−𝛼*)𝑘

𝑘!
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|𝑘⟩ . (A.2)

Using the disentangled form of the displacement operator (2.33), one easily derives

⟨𝑚| 𝐷̂𝛼 |𝑛⟩ = exp

(︂
−1

2
|𝛼|2
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, (A.4)

where the generalized Laguerre polynomials 𝐿(𝑗)
𝑛 are given by

𝐿(𝑗)
𝑛 (𝑥) =

𝑛∑︁
𝑘=0

(−1)𝑘
(︂
𝑛+ 𝑗
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They ful�ll the orthogonality condition

∞∫︁
0

d𝑥𝑥𝑗e−𝑥𝐿(𝑗)
𝑛 (𝑥)𝐿(𝑗)

𝑚 (𝑥) =
(𝑛+ 𝑗)!

𝑛!
𝛿𝑛𝑚. (A.6)

By twice insertion of the identity in terms of number states (2.11), eq. (A.1) is equivalent to

1̂ =
1

𝜋

∞∑︁
𝑘,𝑙=0

∫︁
C

d𝛼 |𝑘⟩ ⟨𝑘| 𝐷̂𝛼 |𝑛⟩ ⟨𝑛| 𝐷̂
†
𝛼 |𝑙⟩ ⟨𝑙| . (A.7)

From (A.4) we infer that it is crucial to split the summations into four parts: (i) 𝑘, 𝑙 ≤ 𝑛, (ii)

𝑘 < 𝑛, 𝑙 > 𝑛, (iii) 𝑘 > 𝑛, 𝑙 < 𝑛, (iv) 𝑘, 𝑙 > 𝑛. While the parts (ii) and (iii) give 0, the parts (i) and (iv)
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give
𝑛∑︀
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In (A.9) we have introduced polar coordinates, where the integration over the angle gives 2𝜋𝛿𝑘𝑙. In

(A.10) we have used the orthogonality of the Laguerre polynomials (A.6). Now suppose 𝑘 < 𝑛, 𝑙 > 𝑛.

Along similar lines, the integration over the angle gives 0. This completes the proof.
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B. Hamilton equations: classical vs. CCS for a Morse oscillator

Here we show that Eq. (3.45),

i𝛼̇ =
𝜕𝐻(𝛼*, 𝛼)

𝜕𝛼* , (B.1)

arising for the special case of multiplicity 𝑀 = 1 from system (3.43,3.44), di�ers from classical

Hamilton equations for the 1D Morse potential

𝑉 (𝑞) = 𝐷
(︀
1− e−𝛼1𝑞

)︀2
. (B.2)

The Hamilton equations for a particle of mass 𝑚 = 1 in the 1D Morse potential read

𝑞̇ = 𝑝, (B.3)

𝑝̇ = −𝑉 ′(𝑞) = −2𝐷𝛼1

(︀
e−𝛼1𝑞 − e−2𝛼1𝑞

)︀
. (B.4)

Here, 𝐷 is the well-depth and 𝛼1 is the potential width.

Quantization of the potential, done via (2.5), yields

ℋ̂ =
𝜔

4

(︁
𝑎̂† − 𝑎̂

)︁2
+𝐷

(︁
1− e−𝛼2(𝑎̂

†+𝑎̂)
)︁2

(B.5)

where

𝛼2 =
𝛼1√
2𝜔

. (B.6)

Here, 𝜔 can be considered as a further free parameter. The ordered form of the kinetic energy operator

is found to be

𝑇 (𝑎̂†, 𝑎̂) =
𝑝̂2

2
= −𝜔

4

(︁
𝑎̂† − 𝑎̂

)︁2
= −𝜔

4

[︂(︁
𝑎̂†
)︁2

− 2𝑎̂†𝑎̂− 1 + 𝑎̂2
]︂

(B.7)

and the ordered form of the potential energy is

𝑉 (𝑎̂†, 𝑎̂) = 𝐷
(︁
1− 2e𝛼

2
2/2e−𝛼2𝑎̂

†
e−𝛼2𝑎̂ + e2𝛼

2
2e−2𝛼2𝑎̂

†
e−2𝛼2𝑎̂

)︁
, (B.8)

where the Baker-Campbell-Hausdor� formula has been used to order the exponentials. Consequently,

equation (B.1) reads

i𝛼̇ =
𝜕𝐻 (𝛼*, 𝛼)

𝜕𝛼* = −𝜔

2
(𝛼* − 𝛼) + 2𝐷𝛼2

[︁
e𝛼

2
2/2e−𝛼2(𝛼*+𝛼) − e2𝛼

2
2e−2𝛼2(𝛼*+𝛼)

]︁
. (B.9)
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Using

𝛼 =

√︂
𝜔

2

(︂
𝑞 +

i

𝜔
𝑝

)︂
, (B.10)

according to (2.20), we �nally arrive at

𝑞̇ = 𝑝 (B.11)

𝑝̇ = −2𝐷𝛼1

(︁
e𝛼

2
1/(4𝜔)e−𝛼1𝑞 − e𝛼

2
1/𝜔e−2𝛼1𝑞

)︁
. (B.12)

Eq. (B.12) di�ers from (B.4) in the two exponential prefactors which stem from disentanglement of

creation and annihilation operator. However, usually these factors are close to unity.
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C. Equations of motion for the multi Davydov-Ansatz

In order to express the equations of motion, arising from the variational principle for the multi

Davydov-Ansatz, we consider a physical system which is bipartite: while one part has �nite Hilbert

space dimension (the `system'), the other one does not (the environment or `bath'). Clearly they have

to be coupled in order not to behave as if they were isolated. Thus, let us assume a Hamiltonian

ℋ̂ = ℋ̂sys + ℋ̂bath + ℋ̂int (C.1)

split into system-, bath- and interaction parts. The system is of �nite Hilbert space dimension 𝑁𝑆 ,

such that we can choose a �nite basis {|𝑣𝑗⟩ | 𝑗 = 1, . . . , 𝑁𝑆} and write

ℋ̂sys =

𝑁𝑆∑︁
𝑖,𝑗=1

𝑍𝑖𝑗 |𝑣𝑖⟩ ⟨𝑣𝑗 | . (C.2)

Writing

ℋ̂int = 𝐿̂ℋ̂I (C.3)

with 𝐿̂ acting only on the system and ℋ̂I only acting on the environment, we may also expand

𝐿̂ =

𝑁𝑆∑︁
𝑖,𝑗=1

𝐿𝑖𝑗 |𝑣𝑖⟩ ⟨𝑣𝑗 | . (C.4)

The corresponding multi D2-Ansatz reads (see Sec. 3.6)

|ΨM

D2(𝑡)⟩ =
𝑀∑︁
𝑘=1

⎛⎝𝑁𝑆∑︁
𝑗=1

𝐴𝑘𝑗(𝑡) |𝑣𝑗⟩

⎞⎠ |F𝑘(𝑡)⟩ , (C.5)

where 𝐴𝑘𝑗(𝑡) are complex coe�cients and |F𝑘(𝑡)⟩ =
𝑁𝑏⨂︀
𝑛=1

|𝐹𝑘𝑛(𝑡)⟩ are 𝑁𝑏-mode coherent states.

The multi D1-Ansatz (see Sec. 3.6 corresponding to the chosen system basis reads

|ΨM

D1(𝑡)⟩ =
𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑗=1

𝐴𝑘𝑗(𝑡) |𝑣𝑗⟩ |F𝑘𝑗(𝑡)⟩ , (C.6)

where again 𝐴𝑘𝑗(𝑡) are complex coe�cients and |F𝑘𝑗(𝑡)⟩ =
𝑁𝑏⨂︀
𝑛=1

|𝐹𝑘𝑗𝑛(𝑡)⟩ are 𝑁𝑏-mode coherent states.

In the sequel we will suppress the explicit notion of time-dependence for the sake of simplicity. We

shall derive the equations of motion for the D2-Ansatz in Sec. C.1 and subsequently outline how to

formulate the system of equations of motion in terms of matrix operations. In Sec. C.2 we do the

same for the D1-Ansatz.
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C.1. D2-Ansatz

The time-derivative of the multi D2-Ansatz wave function (C.5) reads

𝜕

𝜕𝑡
|ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

[︃
𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑚𝐹 *

𝑘𝑚 − 1

2
𝐹𝑘𝑚𝐹̇

*
𝑘𝑚 + 𝐹̇ 𝑘𝑚𝑎̂†𝑚

)︂]︃
|F𝑘⟩ |𝑣𝑗⟩ , (C.7)

and the variation similarly reads

⟨𝛿ΨM

D2| =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

⟨𝑣𝑗 | ⟨F𝑘|

[︃
𝛿𝐴*

𝑘𝑗 +𝐴*
𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂(︂
−1

2
𝐹𝑘𝑚 + 𝑎̂𝑚

)︂
𝛿𝐹 *

𝑘𝑚 − 1

2
𝐹 *
𝑘𝑚𝛿𝐹𝑘𝑚

)︂]︃
. (C.8)

Under the assumption that all appearing variations are mutually independent, 𝑀𝑁𝑆 equations can

be obtained by projection of the TDSE onto ⟨𝑣𝑗 | ⟨F𝑙|, which yields

⟨𝑣𝑗 | ⟨F𝑙|
𝜕

𝜕𝑡
|ΨM

D2⟩ =
𝑀∑︁
𝑘=1

[︃
𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑚𝐹 *

𝑘𝑚 − 1

2
𝐹𝑘𝑚𝐹̇

*
𝑘𝑚

)︂]︃
⟨F𝑙|F𝑘⟩

+
𝑀∑︁
𝑘=1

[︃
𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑚𝐹 *
𝑙𝑚

]︃
⟨F𝑙|F𝑘⟩

=− i ⟨𝑣𝑗 | ⟨F𝑙| ℋ̂ |ΨM

D2⟩ . (C.9)

We de�ne the expression

𝑋𝑘𝑗 := 𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑚𝐹 *

𝑘𝑚 − 1

2
𝐹𝑘𝑚𝐹̇

*
𝑘𝑚

)︂
(C.10)

according to Sec. 3.2. With this abbreviation, equation (C.9) reads

𝑀∑︁
𝑘=1

[︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑚𝐹 *
𝑙𝑚

]︃
⟨F𝑙|F𝑘⟩ = −i ⟨𝑣𝑗 | ⟨F𝑙| ℋ̂ |ΨM

D2⟩ . (C.11)

Additional 𝑀𝑁𝑏 equations are obtained by projection onto
𝑁𝑆∑︀
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟, which yields

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟

𝜕

𝜕𝑡
|ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

{︃
𝐴*

𝑙𝑗

𝑀∑︁
𝑘=1

[︃
𝐹𝑘𝑟

(︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑚𝐹 *
𝑙𝑚

)︃]︃
⟨F𝑙|F𝑘⟩

+
𝑀∑︁
𝑘=1

𝐴𝑘𝑗𝐹̇ 𝑘𝑟 ⟨F𝑙|F𝑘⟩

}︃

=− i

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂ |ΨM

D2⟩ . (C.12)
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We denote the Hadamard product by ∘, the tensor product by ⊗, by 1𝑛 the 𝑛× 𝑛 unit matrix, and

by 1𝑚×𝑛 the matrix in C𝑚×𝑛 which consists of only ones. Furthermore, we denote by vec(𝑀) the

vectorization of a matrix 𝑀 , which converts the matrix into a column vector,

vec(𝑀) = (𝑎11, . . . , 𝑎𝑚1, 𝑎12, . . . , 𝑎𝑚2, . . . , 𝑎1𝑛, . . . , 𝑎𝑚𝑛)
𝑇 ∈ C𝑚𝑛×1 (C.13)

for

𝑀 =

⎛⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
...

... · · ·
...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

⎞⎟⎟⎠ ∈ C𝑚×𝑛. (C.14)

De�ne the matrix of displacements

𝐹 ∈ C𝑀×𝑁𝑏 , 𝐹𝑘𝑛 = 𝐹𝑘𝑛, (C.15)

the matrix of coe�cients

𝐴 ∈ C𝑀×𝑁𝑆 , 𝐴𝑘𝑗 = 𝐴𝑘𝑗 , (C.16)

and the matrix of auxiliary variables

𝑋 ∈ C𝑀×𝑁𝑆 , 𝑋𝑘𝑗 = 𝑋𝑘𝑗 . (C.17)

The vectors of coe�cients are

# �

𝐴𝑗 := (𝐴1𝑗 , . . . , 𝐴𝑀𝑗)
𝑇 ∈ C𝑀×1, 𝐴𝑗 := diag

(︁
# �

𝐴𝑗

)︁
∈ C𝑀×𝑀 . (C.18)

Furthermore, we set

#  �

𝑋𝑗 := (𝑋1𝑗 , . . . , 𝑋𝑀𝑗)
𝑇 ∈ C𝑀×1, 𝑋𝑗 := diag

(︁
#  �

𝑋𝑗

)︁
∈ C𝑀×𝑀 , (C.19)

and

𝐷 := 𝐹𝐹 † ∈ C𝑀×𝑀 , 𝑑 := diag (𝐷)⊗ 11×𝑀 ∈ R𝑀×𝑀 (C.20)

With the matrices

𝑆 := e𝐷
*− 1

2(𝑑+𝑑𝑇 ) ∈ C𝑀×𝑀 , 𝑆𝑙𝑘 = ⟨F𝑙|F𝑘⟩ (C.21)
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it is immediate that

⟨𝑣𝑗 | ⟨F𝑙|
𝜕

𝜕𝑡
|ΨM

D2⟩ =
𝑀∑︁
𝑘=1

[︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑚𝐹 *
𝑙𝑚

]︃
⟨F𝑙|F𝑘⟩

=
[︁
𝑆

#  �

𝑋𝑗 +
(︁
𝐹 *𝐹̇

𝑇 ∘ 𝑆
)︁

# �

𝐴𝑗

]︁
𝑙
, (C.22)

and

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟

𝜕

𝜕𝑡
|ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

{︃
𝐴*

𝑙𝑗

𝑀∑︁
𝑘=1

[︃
𝐹𝑘𝑟

(︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑚𝐹 *
𝑙𝑚

)︃]︃
⟨F𝑙|F𝑘⟩

+
𝑀∑︁
𝑘=1

𝐴𝑘𝑗𝐹̇ 𝑘𝑟 ⟨F𝑙|F𝑘⟩

}︃

=

⎡⎣𝑁𝑆∑︁
𝑗=1

(︁
𝐴*

𝑗

(︁
𝑆𝑋𝑗 +

(︁
𝐹 *𝐹 𝑇˙ ∘ 𝑆

)︁
𝐴𝑗

)︁
𝐹 +𝐴*

𝑗𝑆𝐴𝑗𝐹̇
)︁⎤⎦

𝑙𝑟

. (C.23)

Obtaining vectorized expressions from these ones is tedious. We end up with a system which has the

structure⎛⎜⎜⎜⎜⎝
𝑆 𝐿21

. . .
...

𝑆 𝐿2𝑁𝑆

𝐿†
21 . . . 𝐿†

2𝑁𝑆
𝐿3

⎞⎟⎟⎟⎟⎠
(︃
vec𝑋

vec 𝐹̇

)︃
= −i

(︃
vec𝑅1

vec𝑅2

)︃
(C.24)

where

𝐿2𝑗 =
(︁
𝐹 * ⊗ # �

𝐴𝑗
𝑇
)︁
∘ (11×𝑁𝑏

⊗ 𝑆) ∈ C𝑀×𝑀𝑁𝑏 (C.25)

𝐿3 =
(︀[︀
11×𝑁𝑏

⊗ 𝐹 𝑇 ⊗ 1𝑀×1

]︀
∘ [1𝑁𝑏×1 ⊗ 𝐹 * ⊗ 11×𝑀 )]

)︀
∘
[︀
1𝑁𝑏×𝑁𝑏

⊗
(︀(︀
𝐴*𝐴𝑇

)︀
∘ 𝑆
)︀]︀

+ 1𝑁𝑏
⊗
(︀(︀
𝐴*𝐴𝑇

)︀
∘ 𝑆
)︀
∈ C𝑀𝑁𝑏×𝑀𝑁𝑏 . (C.26)

The right-hand sides are given by

𝑅1 ∈ C𝑀×𝑁𝑆 , (𝑅1)𝑙𝑗 := ⟨𝑣𝑗 | ⟨F𝑙| ℋ̂ |ΨM

D2⟩ , (C.27)

and

𝑅2 ∈ C𝑀×𝑁𝑏 , (𝑅2)𝑙𝑟 :=

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂ |ΨM

D2⟩ (C.28)
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De�ne the matrices

𝑍 ∈ C𝑁𝑆×𝑁𝑆 , 𝑍𝑖𝑗 = 𝑍𝑖𝑗 (see(C.2)), (C.29)

and

𝐿 ∈ C𝑁𝑆×𝑁𝑆 , 𝐿𝑖𝑗 = 𝐿𝑖𝑗 (see(C.4)). (C.30)

For the system part,

⟨𝑣𝑗 | ⟨F𝑙| ℋ̂sys |ΨM

D2⟩ =
𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑖=1

⟨𝑣𝑗 | ℋ̂S |𝑣𝑖⟩𝐴𝑘𝑖𝑆𝑙𝑘 =
(︀
SAZ𝑇

)︀
𝑙𝑗
, (C.31)

and

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂sys |ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑖=1

𝐴*
𝑙𝑗𝐹𝑘𝑟 ⟨𝑣𝑗 | ℋ̂sys |𝑣𝑖⟩𝐴𝑘𝑖𝑆𝑙𝑘

=
(︀[︀(︀

𝐴*𝑍𝐴𝑇
)︀
∘ S
]︀
F
)︀
𝑙𝑟
. (C.32)

Assume ℋ̂bath and ℋ̂I to be in normal-ordered form,

ℋ̂bath = 𝐻bath(â
†, â), ℋ̂I = 𝐻I(â

†, â). (C.33)

Then

⟨F𝑙| ℋ̂bath |F𝑘⟩ = 𝐻bath(F
*
𝑙 ,F𝑘)𝑆𝑙𝑘 =: 𝐵𝑙𝑘𝑆𝑙𝑘,

⟨F𝑙| ℋ̂I |F𝑘⟩ = 𝐻I(F
*
𝑙 ,F𝑘)𝑆𝑙𝑘 =: 𝐼𝑙𝑘𝑆𝑙𝑘. (C.34)

and consequently

⟨𝑣𝑗 | ⟨F𝑙| ℋ̂bath |ΨM

D2⟩ =
𝑀∑︁
𝑘=1

𝐴𝑘𝑗𝐵𝑙𝑘𝑆𝑙𝑘 =

(︃(︁
B ∘ S

)︁
⏟  ⏞  

=:U

A

)︃
𝑙𝑗

, (C.35)

and

⟨𝑣𝑗 | ⟨F𝑙| ℋ̂I |ΨM

D2⟩ =
𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑖=1

𝐴𝑘𝑖𝐿𝑗𝑖𝐼𝑙𝑘𝑆𝑙𝑘 =

(︃
(I ∘ S)⏟  ⏞  
=:𝑉

(︀
AL𝑇

)︀⏟  ⏞  
=:𝑊

)︃
𝑙𝑗

. (C.36)

Furthermore, for a normal-ordered Hamiltonian 𝐻(â†, â):

[︁
𝑎̂𝑟, 𝐻(â†, â)

]︁
=

𝜕𝐻(â†, â)

𝜕𝑎̂†𝑟
(C.37)



148 C Equations of motion for the multi Davydov-Ansatz

Thus, if we set

𝜕𝐻bath(F
*
𝑙 ,F𝑘)

𝜕𝐹 *
𝑙𝑟

= 𝛼𝑙𝑘𝑟,
𝜕𝐻I(F

*
𝑙 ,F𝑘)

𝜕𝐹 *
𝑙𝑟

= 𝛽𝑙𝑘𝑟, (C.38)

then for the bath part:

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂B |ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

𝐴*
𝑙𝑗𝐴𝑘𝑗 (𝐵𝑙𝑘𝐹𝑘𝑟 + 𝛼𝑙𝑘𝑟)𝑆𝑙𝑘

=

(︃[︁ (︀
𝐴*𝐴𝑇

)︀
∘U

]︁
F+ sum

[︁ (︀(︀
𝐴*𝐴𝑇

)︀
∘ 𝑆
)︀
∘𝛼, 2

]︁)︃
𝑙𝑟

, (C.39)

and for the interaction part:

𝑁𝑆∑︁
𝑗=1

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂I |ΨM

D2⟩ =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

𝑁𝑆∑︁
𝑖=1

𝐴*
𝑙𝑗𝐴𝑘𝑖𝐿𝑗𝑖 (𝐼𝑙𝑘𝐹𝑘𝑟 + 𝛽𝑙𝑘𝑟)𝑆𝑙𝑘

=

(︃[︁ (︀
𝐴*𝑊 𝑇

)︀
∘V

]︁
F+ sum

[︁ (︀(︀
𝐴*𝐿𝐴𝑇

)︀
∘ 𝑆
)︀
∘ 𝛽, 2

]︁)︃
𝑙𝑟

.

(C.40)

Here, sum[·, 2] denotes summation over the second component, i.e. the rows of the matrix.

C.2. D1-Ansatz

The time-derivative of the multi D1-Ansatz wave function (C.6) reads

𝜕

𝜕𝑡
|ΨM

D1⟩ =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

[︃
𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑗𝑚𝐹 *

𝑘𝑗𝑚 − 1

2
𝐹𝑘𝑗𝑚𝐹̇

*
𝑘𝑗𝑚 + 𝐹̇ 𝑘𝑗𝑚𝑎̂†𝑚

)︂]︃
|F𝑘𝑗⟩ |𝑣𝑗⟩ ,

(C.41)

and the variation similarly reads

⟨𝛿ΨM

D1| =
𝑁𝑆∑︁
𝑗=1

𝑀∑︁
𝑘=1

⟨𝑣𝑗 | ⟨F𝑘𝑗 |

[︃
𝛿𝐴*

𝑘𝑗 +𝐴*
𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂(︂
−1

2
𝐹𝑘𝑗𝑚 + 𝑎̂𝑚

)︂
𝛿𝐹 *

𝑘𝑗𝑚 − 1

2
𝐹 *
𝑘𝑗𝑚𝛿𝐹𝑘𝑗𝑚

)︂]︃
.

(C.42)
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Under the assumption that all appearing variations are mutually independent, 𝑀𝑁𝑆 equations can

be obtained by projection of the TDSE onto ⟨𝑣𝑗 | ⟨F𝑙𝑗 |, which yields

⟨𝑣𝑗 | ⟨F𝑙𝑗 |
𝜕

𝜕𝑡
|ΨM

D1⟩ =
𝑀∑︁
𝑘=1

[︃
𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑗𝑚𝐹 *

𝑘𝑗𝑚 − 1

2
𝐹𝑘𝑗𝑚𝐹̇

*
𝑘𝑗𝑚

)︂]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩

+
𝑀∑︁
𝑘=1

[︃
𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑗𝑚𝐹 *
𝑙𝑗𝑚

]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩

=− i ⟨𝑣𝑗 | ⟨F𝑙𝑗 | ℋ̂ |ΨM

D1⟩ . (C.43)

We de�ne the expression

𝑋𝑘𝑗 := 𝐴̇𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

(︂
−1

2
𝐹̇ 𝑘𝑗𝑚𝐹 *

𝑘𝑗𝑚 − 1

2
𝐹𝑘𝑗𝑚𝐹̇

*
𝑘𝑗𝑚

)︂
(C.44)

according to Sec. 3.2. With this abbreviation, equation (C.43) reads

𝑀∑︁
𝑘=1

[︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑗𝑚𝐹 *
𝑙𝑗𝑚

]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩ = −i ⟨𝑣𝑗 | ⟨F𝑙𝑗 | ℋ̂ |ΨM

D1⟩ . (C.45)

Additional 𝑀𝑁𝑆𝑁𝑏 equations are obtained by projection onto 𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙𝑗 | 𝑎̂𝑟, which yields

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙𝑗 | 𝑎̂𝑟

𝜕

𝜕𝑡
|ΨM

D1⟩ =𝐴*
𝑙𝑗

𝑀∑︁
𝑘=1

[︃
𝐹𝑘𝑗𝑟

(︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑗𝑚𝐹 *
𝑙𝑗𝑚

)︃]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩

+
𝑀∑︁
𝑘=1

𝐴𝑘𝑗𝐹̇ 𝑘𝑗𝑟 ⟨F𝑙𝑗 |F𝑘⟩

=− i𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙𝑗 | 𝑎̂𝑟ℋ̂ |ΨM

D1⟩ . (C.46)

We again denote the Hadamard product by ∘, the tensor product by ⊗, the vectorization of a matrix

𝑀 by vec(𝑀), by 1𝑛 the 𝑛×𝑛 unit matrix, and by 1𝑚×𝑛 the matrix in C𝑚×𝑛 which consists of only

ones. De�ne the matrix of displacements

𝐹𝑗 ∈ C𝑀×𝑁𝑏 , (𝐹𝑗)𝑘𝑛 = 𝐹𝑘𝑗𝑛, (C.47)

The vectors of coe�cients are

# �

𝐴𝑗 := (𝐴1𝑗 , . . . , 𝐴𝑀𝑗)
𝑇 ∈ C𝑀×1, 𝐴𝑗 := diag

(︁
# �

𝐴𝑗

)︁
∈ C𝑀×𝑀 . (C.48)

and the matrix of auxiliary variables

𝑋 ∈ C𝑀×𝑁𝑆 , 𝑋𝑘𝑗 = 𝑋𝑘𝑗 . (C.49)
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Furthermore, we set

#  �

𝑋𝑗 := (𝑋1𝑗 , . . . , 𝑋𝑀𝑗)
𝑇 ∈ C𝑀×1, 𝑋𝑗 := diag

(︁
#  �

𝑋𝑗

)︁
∈ C𝑀×𝑀 , (C.50)

and

𝐷𝑗 := 𝐹𝑗𝐹
†
𝑗 ∈ C𝑀×𝑀 , 𝑑𝑗 := diag (𝐷𝑗)⊗ 11×𝑀 ∈ R𝑀×𝑀 (C.51)

With the matrices

𝑆𝑗 := e𝐷
*
𝑗−

1
2(𝑑𝑗+𝑑𝑇

𝑗 ) ∈ C𝑀×𝑀 , (𝑆𝑗)𝑙𝑘 = ⟨F𝑙𝑗 |F𝑘𝑗⟩ (C.52)

it is immediate that

⟨𝑣𝑗 | ⟨F𝑙𝑗 |
𝜕

𝜕𝑡
|ΨM

D1⟩ =
𝑀∑︁
𝑘=1

[︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑗𝑚𝐹 *
𝑙𝑗𝑚

]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩

=
[︁
𝑆𝑗

#  �

𝑋𝑗 +
(︁
𝐹 *
𝑗 𝐹𝑗

˙ 𝑇 ∘ 𝑆𝑗

)︁
# �

𝐴𝑗

]︁
𝑙
, (C.53)

and

𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙𝑗 | 𝑎̂𝑟

𝜕

𝜕𝑡
|ΨM

D1⟩ =𝐴*
𝑙𝑗

𝑀∑︁
𝑘=1

[︃
𝐹𝑘𝑗𝑟

(︃
𝑋𝑘𝑗 +𝐴𝑘𝑗

𝑁𝑏∑︁
𝑚=1

𝐹̇ 𝑘𝑗𝑚𝐹 *
𝑙𝑗𝑚

)︃]︃
⟨F𝑙𝑗 |F𝑘𝑗⟩

+
𝑀∑︁
𝑘=1

𝐴𝑘𝑗𝐹̇ 𝑘𝑟 ⟨F𝑙𝑗 |F𝑘𝑗⟩

=
[︁(︁

𝐴*
𝑗

(︁
𝑆𝑗𝑋𝑗 +

(︁
𝐹 *
𝑗 𝐹

𝑇
𝑗
˙ ∘ 𝑆𝑗

)︁
𝐴𝑗

)︁
𝐹𝑗 +𝐴*

𝑗𝑆𝑗𝐴𝑗𝐹𝑗
˙
)︁]︁

𝑙𝑟
. (C.54)

Obtaining vectorized expressions from these ones is tedious. We end up with 𝑁𝑆 systems which have

the structure(︃
𝑆𝑗 𝐿2𝑗

𝐿†
21 𝐿3𝑗

)︃(︃
#�

𝑋𝑗

vec𝐹𝑗
˙

)︃
= −i

(︃
#�

𝑅1𝑗

vec𝑅2𝑗

)︃
(C.55)

where

𝐿2𝑗 =
(︁
𝐹 *
𝑗 ⊗ # �

𝐴𝑗
𝑇
)︁
∘ (11×𝑁𝑏

⊗ 𝑆𝑗) ∈ C𝑀×𝑀𝑁𝑏 (C.56)

𝐿3𝑗 =
(︀[︀
11×𝑁𝑏

⊗ 𝐹 𝑇
𝑗 ⊗ 1𝑀×1

]︀
∘
[︀
1𝑁𝑏×1 ⊗ 𝐹 *

𝑗 ⊗ 11×𝑀 )
]︀)︀

∘
[︁
1𝑁𝑏×𝑁𝑏

⊗
(︁(︁

#�

𝐴*
𝑗

#�

𝐴𝑇
𝑗

)︁
∘ 𝑆𝑗

)︁]︁
+ 1𝑁𝑏

⊗
(︁(︁

#�

𝐴*
𝑗

#�

𝐴𝑇
𝑗

)︁
∘ 𝑆𝑗

)︁
∈ C𝑀𝑁𝑏×𝑀𝑁𝑏 . (C.57)

The right-hand sides are given by

#�

𝑅1𝑗 ∈ C𝑀×1, (𝑅1𝑗)𝑙 := ⟨𝑣𝑗 | ⟨F𝑙𝑗 | ℋ̂ |ΨM

D1⟩ , (C.58)
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and

𝑅2𝑗 ∈ C𝑀×𝑁𝑏 , (𝑅2𝑗)𝑙𝑟 := 𝐴*
𝑙𝑗 ⟨𝑣𝑗 | ⟨F𝑙| 𝑎̂𝑟ℋ̂ |ΨM

D1⟩ . (C.59)

Unlike in the multi D2 equations of motion (see Sec. C.1), it is not straightforwardly possible to

easily express the right-hand sides in an analogous general form in terms of matrix operations. This

is, apart from further complications, mainly due to the fact that the Hamiltonian may couple the

di�erent system eigenstates, and thus overlaps (𝑆𝑖𝑗)𝑙𝑘 := ⟨F𝑙𝑖|F𝑘𝑗⟩ enter the equations requiring

tensor contractions which can not easily be formulated in terms of matrix operations. If the model

comprises a two-level system (as e.g. the Spin-Boson model, for which we have implemented the

equations of motion (see Sec. 4.3.2.1) for the multi D1-Ansatz), the implementation yet being tedious

can rely on direct implementation of the required sums.
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D. Details of implementation

We shall address important details regarding the implementation of the multi D2-Ansatz here. In

particular, positions of initially unpopulated CS, implementation of apoptosis especially with treat-

ment of cases where multiple CS approach at the same time, and further details with respect to the

regularization of vanishing coe�cients are discussed.

Let us assume an open quantum system setting as given in Sec. 4, with a Hamiltonian given by (4.6).

In most settings encountered in this thesis the initial state is a product state, |Ψ(0)⟩ = |Ψ⟩
B
(0)|Ψ⟩

S
(0),

with an arbitrary system initial state |Ψ⟩
S
(0) and the bath initial state |Ψ⟩

B
(0) = |𝛼0⟩ being a multi-

mode coherent state at 𝛼0 ∈ C𝑁 . If a multitude of 𝑀 > 1 coherent states are employed in the multi

D2-Ansatz (3.54), the initial condition �xes only one of the 𝑀 initial positions of the coherent states,

i.e. 𝑀 − 1 CS are initially unpopulated. Their positions are in principle arbitrary. In contrast to

numerical details given in [168], our calculations hint that the mutual distances of the CS should

not be too close (then the overlap matrix S given in Eq. (3.35) becomes singular) but also not too

large (then the unpopulated CS which are far away from the initially populated one do not take

part in the action). An appropriate distance can be extracted from the theoretical considerations in

Sec. 2.3: if the unpopulated CS are placed on arbitrary grid points on the (multi-dimensional) regular

grid
{︀
(𝑐1, . . . , 𝑐𝑁 ) ∈ C𝑁 | 𝑐𝑗 =

√
𝜋(𝑚𝑗 + i𝑛𝑗), 𝑗 = 1, . . . , 𝑁,𝑚𝑗 , 𝑛𝑗 ∈ Z

}︀
around the initial CS 𝛼0, then

both requirements are ful�lled. Furthermore, as long as neighbouring points of the initial CS on this

grid are chosen, it is of no relevance where exactly the initially unpopulated CS are placed.

In order to implement the apoptosis procedure outlined in Sec. 3.3.2, the mutual distances 𝑑(𝛼1,𝛼2)

in phase space of the multi-mode CS have to be monitored in each time step. If the distance

𝑑(𝛼1,𝛼2) =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

|𝛼1𝑛 − 𝛼2𝑛|2 < 𝜀 (D.1)

undershoots a given threshold 𝜀 at a certain time 𝑡0 for two CS |𝛼1⟩ and |𝛼2⟩, then we need to connect

these two CS by replacing

𝛼2(𝑡) → 𝛼1(𝑡) +C, C = 𝛼2(𝑡0)−𝛼1(𝑡0). (D.2)

This connection is implemented as follows.

It is possible that the criterion (D.1) is ful�lled for multiple CS |𝛼𝑖⟩, 𝑖 = 1, . . . , 𝐼 at the same time,

requiring all of them to be connected but with not any two of them ful�lling condition (D.1). To be

more speci�c, say 𝐼 = 3 and 𝑑(𝛼1,𝛼2) < 𝜀 and 𝑑(𝛼2,𝛼3) < 𝜀. Then not necessarily 𝑑(𝛼1,𝛼3) < 𝜀 but

still it is required to connect |𝛼1⟩ with |𝛼3⟩. Thus, �nding all CS which have to be connected to |𝛼1⟩
is a connected component search. Speci�cally, in each time step we store the distance information in
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an adjacency matrix D ∈ R𝑀×𝑀 whose elements are de�ned by the distance 𝑑,

D𝑖𝑗 =

⎧⎨⎩1, 𝑑(𝛼𝑖,𝛼𝑗) < 𝜀

0, 𝑑(𝛼𝑖,𝛼𝑗) ≥ 𝜀
. (D.3)

On this adjacency matrix we perform a weakly connected component search (also known as Union

Find algorithm), resulting in the number 𝑁𝐶 of connected components (excluding the components of

size one, i.e. the CS which are not connected to any other CS) together with a list of arrays containing

the numbers of the connected CS.

For each array (𝑎1, . . . , 𝑎𝑛) in the list, we choose the �rst element as the one which replaces the other

ones according to (D.2). This e�ectively means that the columns in L2 and R2 as well as the rows and

columns in L3 (see Eq. (3.34) and Sec. C) corresponding to the entries 𝑎1, . . . , 𝑎𝑛 of the array have

respectively to be summed up, and the matrix entries corresponding to 𝑎1 be replaced with the sum

while the matrix entries corresponding to 𝑎2, . . . , 𝑎𝑛 be deleted. Finally, the results of the subsequent

solution of the linear system (3.18) have to be re�lled into the corresponding entries of the input to

the integrator.

Finally, details of the implementation with respect to the regularization in the case of vanishing coef-

�cients are discussed. The required strength of the regularization depends on the setting, speci�cally

on the number 𝑁 of bath modes and the number 𝑀 of CS employed in the multi D2-Ansatz. A strong

regularization of the 𝜌-matrix (see Sec. 3.3 and Eq. (3.28)) is required in cases where 𝑁 ≈ 1 and

𝑀 ≫ 10 (in these cases even a regularization of the S-matrix may be required). On the contrary, the

calculations we have executed show that in problems where many modes are included, 𝑁 ≫ 1, regu-

larization of the 𝜌-matrix is not necessarily required if a small noise is included for the the coe�cients

corresponding to the initially unpopulated CS. This substantiates the theoretical considerations of

Secs. 3.3.1 and 3.3.2 which hints that the closeness of CS and not the regularization of vanishing

coe�cients is the dominant issue for large systems. Thus, the closeness of CS is the dominant issue in

the systems whose dynamics we are mostly interested in. If the integration is implemented as outlined

here, the propagation proceeds highly stable and without further instabilities.
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E. Calculation of the BCF

We aim here at the derivation of the BCF 𝐶(𝜏) = trB
[︁
𝑍(𝛽) exp

[︁
−𝛽ℋ̂B

]︁{︁
ℋ̂I(𝜏), ℋ̂I(0)

}︁]︁
where

𝛽 = (𝑘𝐵𝑇 )
−1 is the inverse temperature (2.54), 𝑍(𝛽) is the inverse partition function (2.57),

ℋ̂B =
𝑁∑︀

𝑛=1
𝜔𝑛𝑎̂

†
𝑛𝑎̂𝑛 is the bath Hamiltonian (4.2) and ℋ̂I(𝜏) = exp

[︁
i𝜏ℋ̂B

]︁
ℋ̂I exp

[︁
−i𝜏ℋ̂B

]︁
is the bath

part of the interaction Hamiltonian ℋ̂I =
𝑁∑︀

𝑛=1
𝜆𝑛

(︀
𝑎̂†𝑛 + 𝑎̂𝑛

)︀
(see (4.4)) in the interaction picture. The

bracket {·, ·} denotes the anti-commutator, {𝐴,𝐵} = 𝐴𝐵 + 𝐵𝐴 for operators 𝐴,𝐵. Let us �rst

consider the case 𝑁 = 1.

One easily calculates from (2.10) that

ei𝜏𝜔𝑎̂
†𝑎̂𝑎̂e−i𝜏𝜔𝑎̂†𝑎̂ |𝑛⟩ = e−i𝜏𝜔𝑛ei𝜏𝜔𝑎̂

†𝑎̂𝑎̂ |𝑛⟩ = e−i𝜏𝜔𝑛√𝑛ei𝜏𝜔𝑎̂
†𝑎̂ |𝑛− 1⟩ = e−i𝜏𝜔√𝑛 |𝑛− 1⟩ , (E.1)

for all 𝑛. The |𝑛⟩ constitute a complete set of states (see Sec. 2.1) and thus we infer

ei𝜏𝜔𝑎̂
†𝑎̂𝑎̂e−i𝜏𝜔𝑎̂†𝑎̂ = e−i𝜏𝜔𝑎̂, (E.2)

since both operators act on all number states in the same way. From this by Hermitian conjugation

it readily follows

ei𝜏𝜔𝑎̂
†𝑎̂𝑎̂†e−i𝜏𝜔𝑎̂†𝑎̂ = ei𝜏𝜔𝑎̂†. (E.3)

Thus for a single environmental mode

ℋ̂I(𝜏) = 𝜆
(︁
ei𝜏𝜔𝑎̂† + e−i𝜏𝜔𝑎̂

)︁
. (E.4)

Consequently the �rst part 𝐶1(𝜏) of the bath correlation function reads for 𝑁 = 1

𝐶1(𝜏) := trB
[︁
𝑍(𝛽) exp

[︁
−𝛽ℋ̂B

]︁
ℋ̂I(𝜏)ℋ̂I(0)

]︁
(E.5)

= 𝑍(𝛽)𝜆2
∞∑︁
𝑛=0

⟨𝑛|
[︁
e−𝛽𝜔𝑎̂†𝑎̂

(︁
ei𝜏𝜔𝑎̂† + e−i𝜏𝜔𝑎̂

)︁(︁
𝑎̂† + 𝑎̂

)︁]︁
|𝑛⟩ . (E.6)

In the sum only these terms survive where a creation and an annihilation operator act on the number

states (otherwise the overlap with the same number state from both sides yields zero). Thus

𝐶1(𝜏) = 𝑍(𝛽)𝜆2
∞∑︁
𝑛=0

⟨𝑛|
[︁
e−𝛽𝜔𝑎̂†𝑎̂

(︁
ei𝜏𝜔𝑎̂†𝑎̂+ e−i𝜏𝜔𝑎̂𝑎̂†

)︁]︁
|𝑛⟩ (E.7)

= 𝑍(𝛽)𝜆2
∞∑︁
𝑛=0

[︁
e−𝛽𝜔𝑛

(︀
𝑛ei𝜏𝜔 + (𝑛+ 1)e−i𝜏𝜔

)︀]︁
(E.8)

= 𝑍(𝛽)𝜆2

[︃
ei𝜏𝜔

∞∑︁
𝑛=0

𝑛e−𝛽𝜔𝑛 + e−i𝜏𝜔
∞∑︁
𝑛=0

(𝑛+ 1)e−𝛽𝜔𝑛

]︃
. (E.9)
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From the geometric series
∞∑︀
𝑛=0

𝑥𝑛 = (1− 𝑥)−1 for |𝑥| < 1 we infer

∞∑︁
𝑛=0

𝑛𝑥𝑛 = 𝑥
∞∑︁
𝑛=0

𝑛𝑥𝑛−1 = 𝑥
𝑑

𝑑𝑥

∞∑︁
𝑛=0

𝑥𝑛 =
𝑥

(1− 𝑥)2
. (E.10)

Consequently we obtain for the �rst part of the BCF for 𝑁 = 1 that

𝐶1(𝜏) = 𝑍(𝛽)𝜆2

[︃
ei𝜏𝜔

e−𝛽𝜔

(1− e−𝛽𝜔)
2 + e−i𝜏𝜔

(︃
e−𝛽𝜔

(1− e−𝛽𝜔)
2 +

1

1− e−𝛽𝜔

)︃]︃
(E.11)

=
𝑍(𝛽)𝜆2

(1− e−𝛽𝜔)
2

[︁
ei𝜏𝜔e−𝛽𝜔 + e−i𝜏𝜔

]︁
(E.12)

=
𝜆2

1− e−𝛽𝜔

[︁
ei𝜏𝜔e−𝛽𝜔 + e−i𝜏𝜔

]︁
. (E.13)

Analogously for the second part

𝐶2(𝜏) : = trB
[︁
𝑍(𝛽) exp

[︁
−𝛽ℋ̂B

]︁
ℋ̂I(0)ℋ̂I(𝜏)

]︁
(E.14)

=
𝜆2

1− e−𝛽𝜔

[︁
ei𝜏𝜔 + e−i𝜏𝜔e−𝛽𝜔

]︁
. (E.15)

Thus we �nally arrive at

𝐶(𝜏) = 𝐶1(𝜏) + 𝐶2(𝜏) = 𝜆2 1 + e−𝛽𝜔

1− e−𝛽𝜔

[︀
ei𝜏𝜔 + e−i𝜏𝜔

]︀
. (E.16)

By inferring that each of the summands contains all the information of the BCF, we arbitrarily keep

only the second one and have

𝐶(𝜏) = 𝜆2 coth

(︂
𝛽𝜔

2

)︂
e−i𝜔𝜏 . (E.17)

This result straightforwardly generalizes to the case of multiple modes 𝑁 > 1 where we have

𝐶(𝜏) =
𝑁∑︁

𝑛=1

𝜆2
𝑛 coth

(︂
𝛽𝜔𝑛

2

)︂
e−i𝜔𝑛𝜏 . (E.18)

Especially for temperature 𝑇 → 0, the inverse temperature 𝛽 = (𝑘𝐵𝑇 )
−1 → ∞. Due to

lim
𝛽→∞

coth
(︁
𝛽𝜔𝑛

2

)︁
= 1 the zero temperature BCF reads

𝐶(𝜏) =
𝑁∑︁

𝑛=1

𝜆2
𝑛e

−i𝜔𝑛𝜏 . (E.19)
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F. Calculation of the polarized initial condition for 𝑇 = 0

We examine the density
(︁
trB
[︁
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁]︁)︁−1
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
for ℋ̂B and ℋ̂I given

by (4.2) and (4.4) respectively. For 𝑁 = 1 we obtain from the commutation relation (2.37) of the

displacement operator (see Sec. 2.2) and creation and annihilation operator as well as insertion of the

closure relation (2.11) of the number states

exp
[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
= exp

[︁
−𝛽(𝜔𝑎̂†𝑎̂+ 𝜆(𝑎̂† + 𝑎̂))

]︁
(F.1)

= exp

[︂
𝛽
𝜆2

𝜔

]︂
exp

[︂
−𝛽𝜔

(︂
𝑎̂† +

𝜆

𝜔

)︂(︂
𝑎̂+

𝜆

𝜔

)︂]︂
(F.2)

(2.37)
= exp

[︂
𝛽
𝜆2

𝜔

]︂
exp

[︁
−𝛽𝜔𝐷̂

†
𝐶 𝑎̂

†𝐷̂𝐶𝐷̂
†
𝐶 𝑎̂𝐷̂𝐶

]︁
, 𝐶 =

𝜆

𝜔
(F.3)

= exp

[︂
𝛽
𝜆2

𝜔

]︂
exp

[︁
𝐷̂

†
𝐶

(︁
−𝛽𝜔𝑎̂†𝑎̂

)︁
𝐷̂𝐶

]︁
(F.4)

= exp

[︂
𝛽
𝜆2

𝜔

]︂(︃
𝐷̂

†
𝐶

∞∑︁
𝑛=0

|𝑛⟩ ⟨𝑛| 𝐷̂𝐶

)︃
×

× exp
[︁
𝐷̂

†
𝐶

(︁
−𝛽𝜔𝑎̂†𝑎̂

)︁
𝐷̂𝐶

]︁(︃
𝐷̂

†
𝐶

∞∑︁
𝑚=0

|𝑚⟩ ⟨𝑚| 𝐷̂𝐶

)︃
, (F.5)

where we have used the unitarity (2.35) of the displacement operator. Since for any unitary operator

𝐴, any operator 𝐵 and any 𝑘 ∈ N it holds that
(︀
𝐴†𝐵𝐴

)︀𝑘
= 𝐴†𝐵𝑘𝐴, we conclude

exp
[︁
𝐴†𝐵𝐴

]︁
=

∞∑︁
𝑘=0

1

𝑘!

(︁
𝐴†𝐵𝐴

)︁𝑘
=

∞∑︁
𝑘=0

1

𝑘!
𝐴†𝐵𝑘𝐴 = 𝐴†

(︃ ∞∑︁
𝑘=0

1

𝑘!
𝐵𝑘

)︃
𝐴 = 𝐴† exp [𝐵]𝐴. (F.6)

Hence

exp
[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
= exp

[︂
𝛽
𝜆2

𝜔

]︂
𝐷̂

†
𝐶

∞∑︁
𝑛,𝑚=0

|𝑛⟩ ⟨𝑛| exp
[︁
−𝛽𝜔𝑎̂†𝑎̂

]︁
|𝑚⟩ ⟨𝑚| 𝐷̂𝐶 (F.7)

= exp

[︂
𝛽
𝜆2

𝜔

]︂
𝐷̂

†
𝐶

∞∑︁
𝑛=0

e−𝛽𝜔𝑛 |𝑛⟩ ⟨𝑛| 𝐷̂𝐶 . (F.8)



F Calculation of the polarized initial condition for 𝑇 = 0 157

Since the trace is invariant under cyclic permutation we conclude

trB
[︁
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁]︁
= trB

[︃
exp

[︂
𝛽
𝜆2

𝜔

]︂
𝐷̂

†
𝐶

∞∑︁
𝑛=0

e−𝛽𝜔𝑛 |𝑛⟩ ⟨𝑛| 𝐷̂𝐶

]︃
(F.9)

= trB

[︃
exp

[︂
𝛽
𝜆2

𝜔

]︂ ∞∑︁
𝑛=0

e−𝛽𝜔𝑛 |𝑛⟩ ⟨𝑛|

]︃
(F.10)

= exp

[︂
𝛽
𝜆2

𝜔

]︂ ∞∑︁
𝑚=0

⟨𝑚|

(︃ ∞∑︁
𝑛=0

e−𝛽𝜔𝑛 |𝑛⟩ ⟨𝑛|

)︃
|𝑚⟩ (F.11)

= exp

[︂
𝛽
𝜆2

𝜔

]︂
(𝑍(𝛽))−1 . (F.12)

Here, we have used the inverse partition function 𝑍(𝛽) (see (2.57)). Thus, from (F.8) and (F.12) the

�nal expression for the density reads

(︁
trB
[︁
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁]︁)︁−1
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
= 𝑍(𝛽)𝐷̂

†
𝐶

∞∑︁
𝑛=0

e−𝛽𝜔𝑛 |𝑛⟩ ⟨𝑛| 𝐷̂𝐶 . (F.13)

Now we may transition to the case 𝑇 → 0, i.e. 𝛽 = (𝑘𝐵𝑇 )
−1 → ∞. Although in (F.8) the pre-factor

exp
[︁
𝛽 𝜆2

𝜔

]︁
→ ∞ in this case, it is cancelled by an appropriate pre-factor in the trace (F.12). Since

𝑍(𝛽) → 1 for 𝛽 → ∞ we �nally �nd that in (F.13) only the �rst summand survives for 𝑇 → 0,(︁
trB
[︁
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁]︁)︁−1
exp

[︁
−𝛽
(︁
ℋ̂B + ℋ̂I

)︁]︁
= 𝐷̂

†
𝐶 |0⟩ ⟨0| 𝐷̂𝐶 . (F.14)

This result straightforwardly generalizes to (4.74) in the case 𝑁 > 1.
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