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ABSTRACT 

 

Iron-based ferritic alloys are used for a plethora of industrial applications. These 

alloys contain foreign atoms purposely employed to improve certain properties as well 

as some unwanted impurities introduced during fabrication. Materials properties are 

decisively influenced by diffusion processes. Very often diffusion cannot be avoided 

during fabrication and application. Therefore, many efforts are made to understand the 

underlying atomic-level mechanisms by both experimental and theoretical 

investigations. In this thesis work a multiscale modelling approach is used to study 

oxygen and vacancy diffusion in dilute ferritic iron alloys. Due to the extremely low 

solubility of oxygen the measurement of oxygen diffusion in iron is difficult. Only few 

experimental data are available. Experimental investigation of vacancy migration is still 

more complicated. The lack of reliable experimental data is therefore an important 

motivation for theoretical investigations. Gaining fundamental data on oxygen and 

vacancy diffusion in dilute iron alloys is essential for many applications. Oxygen plays 

a crucial role in the corrosion of iron-based alloys. Oxygen and the vacancy are also 

important in the formation and evolution of Y-Ti-O nanoclusters in oxide dispersion 

strengthened ferritic Fe-Cr alloys, which are considered as promising candidates for 

structural materials of future fusion and fission reactors. Furthermore, vacancies are 

formed during neutron and ion irradiation and their diffusion affects radiation-induced 

nanostructure formation in ferritic alloys.   

In the first part of this thesis work, the diffusion of interstitial oxygen under the 

influence of substitutional atoms or solutes (Al, Si, P, S, Ti, Cr, Mn, Ni, Y, Mo and W) 

in bcc Fe is investigated by the combination of Density Functional Theory (DFT) and 

Atomistic Kinetic Monte Carlo (AKMC) simulations. The substitutional atoms are 

assumed to be immobile because oxygen diffusion is much faster than that of the 

solutes. DFT is applied to gain data on binding energies between interstitial oxygen 

and the substitutional foreign atoms, and to calculate the migration barriers for oxygen 

in the environment of the solutes. Using the migration barriers obtained by DFT, the 

diffusion coefficient of oxygen is determined by AKMC simulation. It is found that Si, P, 

Ni, Mo, and W have negligible influence on the oxygen diffusion coefficient. Al, Cr, Mn, 

S, Ti, and Y cause a considerable reduction of oxygen mobility. In these cases, the 

temperature dependence of oxygen diffusivity shows deviations from Arrhenius 



 
 

behavior. This is explained in detail by the significant temperature dependence of the 

ratio between residence times in the respective states. 

In the second part of the work a method is presented which allows for an efficient 

calculation of the diffusion coefficient of oxygen and other interstitial atoms in dilute 

alloys. The method is applied to examples considered in the first part of the work. The 

calculation procedure is based on the separation of the diffusion path into a contribution 

related to migration in the interaction region between the mobile interstitial and the 

substitutional solute and another part related to diffusion in perfect bcc Fe. In this 

manner AKMC simulation must be performed only for one concentration of the 

substitutional solute, and the obtained results can be employed to obtain data for other 

concentrations using analytical expressions containing binding energies between the 

interstitial and the substitutional solute. 

The focus of third part of the work is on the mutual dependence of oxygen and 

vacancy diffusion in bcc Fe and dilute iron alloys. Here both O and v must be 

considered as mobile while the substitutional atoms are assumed to be immobile. DFT 

is applied to determine the binding energy between O and v for different distances, the 

migration barriers for O in the environment of v, and the corresponding barriers of v in 

the vicinity of O. In agreement with previous work O and v have a very strong binding 

at the 1st neighbor distance. On the other hand, the calculations show that the Ov pair 

at the 6th neighbor distance is instable. The newly found simultaneous or coupled 

jumps of both O and v compensate the lack of jump paths that would occur due to this 

instability. The DFT results are employed to determine the diffusion coefficient of O 

and v using the scheme of the AKMC-based calculation method presented in the 

second part of the thesis work. At first a model system with fixed O and v 

concentrations is studied. It is found that a small v content of some ppm can already 

lead to a strong reduction of the O diffusivity. A similar effect is obtained for v diffusion 

under the influence of O. Furthermore, investigations on the interdependence of O and 

v diffusion during thermal processing of oxide dispersion strengthened iron alloys are 

performed, and the influence of the substitutional atoms Y and Ti is studied. A simple 

thermodynamic model is employed to determine the concentration of O, Y, and Ti 

monomers as well as the total v concentration, for a typical total content of O, Y, and 

Ti. These results are used in calculations of the diffusion coefficients of O and v. Not 

only a strong mutual dependence but also a significant influence of Y on O diffusion is 



 
 

found. Finally, O and v diffusivities in a system with a total O content close to the 

thermal solubility are calculated. The monomer O concentration as well as the total v 

concentration was determined using two different models considering equilibrium of O 

and v with Ov, or equilibrium of O and v with Ov and O2v or Ov2. Despite the very small 

value of thermal solubility of O in bcc Fe, both the O and v diffusion coefficient are very 

different from that in pure iron. Even for such a low amount of O in the alloy the diffusion 

coefficients differ strongly from those in perfect bcc Fe.  

The results of the present work have important consequences for planning and 

performing new experiments on O and v diffusion in dilute iron alloys. In particular, a 

very precise knowledge of the concentrations of O and v, as well as of other foreign 

atoms and traps such as dislocations is required.  
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Chapter 1 Introduction 
 

Diffusion of foreign atoms such as dopants, impurities, and alloying elements may 

occur during fabrication, processing and operation of functional materials, and has a 

crucial influence on materials properties. It was found that diffusion proceeds via 

interstitial sites if the size of the migrating atom is smaller than that of the host atoms. 

Foreign atoms with sizes similar to or larger than those of the host material diffuse via 

the vacancy or the interstitialcy mechanism [1]. In this case vacancies and self-

interstitials must be available. Since at thermal equilibrium the concentration of these 

point defects is very low, the migration via the vacancy and the interstitialcy mechanism 

is generally much slower than that via the interstitial sites. Most of previous 

experimental and theoretical studies of diffusion processes were focused on the 

migration of a single atomic species in a pure host material. However, the migration of 

one foreign atom may be also influenced by the presence of other foreign atoms of the 

same or another type, even if the concentration of foreign atoms of different kinds is 

still rather low. 

Iron-based ferritic alloys are widely used in industrial applications. They always 

contain several foreign atoms or solutes. Some of them are impurities, others are 

purposely introduced in order to improve the mechanical properties, the corrosion and 

radiation resistance as well as the high-temperature stability. Many research activities 

are focused on the understanding of nanostructure evolution in these materials, under 

thermal and/or mechanical load and under irradiation. Multiscale modeling can 

substantially contribute to improve the knowledge on these processes. The general 

scheme is the following: At first data on migration barriers and binding energies of 

foreign atoms in bcc Fe are determined. Most advantageous and correct is the 

determination of these quantities by first-principle Density Functional Theory (DFT). 

Alternatively, available classical interatomic potentials may be employed in Molecular 

Statics or Dynamics calculations. In a second step Kinetic Monte Carlo simulations or 

rate theory are applied using the data determined in the first step as inputs. Atomistic 

Kinetic Monte Carlo (AKMC) simulation on a rigid lattice is a very suitable method in 

order to gain insight into many details of nanostructure evolution. Most of these 

simulations use rather simplified models in order to describe the migration barriers of 

foreign atoms, cf. e.g. the review paper of Becquart et al. [2]. Since these barriers are 
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the most important ingredients to describe the kinetics of a system, the results of that 

kind of simulations may be not sufficiently correct. Even in a multicomponent ferritic 

alloy containing foreign atoms with a rather low concentration the influence of the many 

different local atomic environments on the migration barrier should be taken into 

account precisely. This requires a huge effort since a very high number of barriers must 

be determined by DFT calculations. Recently, Messina et al. [3] presented an elegant 

neural-networks-based AKMC method to overcome these problems.  

Oxygen (O) atoms and vacancies (v) play an important role in production and 

application of bcc-iron-based alloys. An example is Oxide Dispersion Strengthened 

ferritic Fe-Cr alloy, which is considered as promising candidate for structural materials 

of future fusion and fission reactors [4]. O and v have a crucial influence on formation 

and evolution of Y-Ti-O nanoclusters during the production of these materials. High 

concentrations of vacancies are formed during neutron and ion irradiation and their 

diffusion affects decisively radiation-induced nanostructure formation in the ferritic 

alloys. The behavior of O in these materials is also important for the electrochemical 

process of corrosion. 

Measurements of O and v diffusion in bcc iron are difficult. In order to separate this 

diffusion from other effects experiments were mainly performed under conditions of 

thermal equilibrium, where O as well as v concentration is very small. However, in this 

case very small concentrations of foreign atoms or intrinsic defects may have a strong 

influence on the results. Only few experimental data on O diffusion are available. They 

were obtained many years ago using the method of internal oxidation of solutes which 

have a higher affinity to oxygen than iron [5-10].  Frank et al. [5] performed a critical 

review of experimental data published before 1967 and derived a value for the diffusion 

activation energy. In 1967 Swisher et al. [7] determined the O diffusion coefficient in 

bcc Fe from measurements at temperatures above about 970 K. In 1986 Takada et al. 

[8-10] published diffusion data obtained from experiments at temperatures between 

1023 and 1173 K, i.e. mainly for the paramagnetic state of bcc Fe. Experimental 

investigation of v migration is still more complicated. In 1998 Seeger [11] estimated 

both the formation and migration energy of the vacancy using data obtained from self-

diffusion, positron annihilation, and muon spin-rotation measurements. These data 

differ to the values determined by DFT methods.  More recently,  Hashimoto et al. [12] 

published an estimate of the v migration energy which is close to the theoretical results.  
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The lack of a comprehensive experimental data base on O and v diffusion in bcc 

Fe and the related alloys is an important motivation for theoretical investigations with 

the focus on a better understanding of the atomic-level mechanisms. A few theoretical 

studies on the influence of foreign atoms or vacancies on the diffusion of interstitial 

atoms in dilute ferritic alloys were performed in the past. Simonovic et al. [13] and Liu 

et al.  [14] used combined DFT and AKMC calculations in order to treat the effect of 

different substitutional solutes on the diffusion of carbon. Barouh et al. [15] and Shang 

et al. [16] considered the influence of vacancies on the migration barriers of the 

interstitial solutes carbon, nitrogen and oxygen by means of DFT. Ortiz et al. [17] 

investigated the influence of carbon on He migration and clustering in bcc Fe using 

DFT and rate theory. The present work is also motivated by these previous studies.  

The main objective of this thesis consists in gaining results on the effect of 

substitutional atoms on oxygen and vacancy migration in dilute iron alloys and on the 

mutual influence of on oxygen and vacancy diffusion.  

The thesis consists of six chapters:  

Chapter 1: Introduction 

Chapter 2: Calculation methods: 

 Fundamentals of Density Functional Theory (DFT) and Atomistic Kinetic Monte 

Carlo (AKMC) simulations. 

Chapter 3: Influence of substitutional atoms on the diffusion of oxygen in dilute iron 

alloys: 

 The influence of immobile Al, Si, P, S, Ti, Cr, Mn, Ni, Y, Mo, and W atoms on 

the migration of interstitial O is investigated. DFT is applied to determine binding 

energies and migration barriers, while the diffusion coefficient is calculated by 

AKMC simulations. For each solute concentration separate AKMC simulations 

are performed. 

Chapter 4: Efficient calculation method for the diffusion coefficient of interstitial solutes 

in dilute alloys: 

 An efficient calculation method is presented and applied to examples treated in 

Chapter 3. The new method only requires AKMC simulations for one 

concentration of substitutional atoms. In this manner the computational effort is 
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reduced considerably. The scheme of the efficient procedure is also applied in 

Chapter 5. 

Chapter 5: Mutual dependence of oxygen and vacancy diffusion in bcc Fe and dilute 

iron alloys: 

 DFT is employed to determine binding energies between O, v as well as Y and 

Ti substitutional atoms and the corresponding migration barriers of O (v) in the 

vicinity of the v (O), Y, and Ti, In AKMC simulations both O and v must be 

considered as mobile while the substitutional solutes are assumed to be 

immobile. Three different cases are studied: (i) A model system with fixed O and 

v concentrations, (ii) interdependence of O and v diffusion during thermal 

processing of oxide dispersion strengthened iron alloys, and (iii) O and v 

diffusion in a system with a total O content close to the thermal solubility. 

Chapter 6: Summary, conclusions and outlook 
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Chapter 2 Calculation Methods 
 

2.1 Introduction 

In this chapter, basics of the two calculations methods employed in this thesis, i.e. 

Density Functional Theory (DFT) and Atomistic Kinetic Monte Carlo (AKMC) is 

presented. In section 2.2 first-principle calculations are considered, starting from many-

electron Schrödinger equation via the Hartree and the Hartree-Fock approximations 

towards DFT. In section 2.3 the theoretical treatment of diffusion processes is 

explained. This includes the calculation of the jump rate using DFT-based data for the 

migration energy barrier and the attempt frequency as well as the algorithm of AKMC 

simulations on a rigid lattice. 

2.2 First-principle calculations [18-22] 

2.2.1 Many-electron Schrödinger equation 

The Hamiltonian for a system of electrons and nuclei is given by  

222 2 2
2 2

,

1 1ˆ
2 2 2 2

I JI
i I

i i I i j I I Je Ii ji I I J

Z Z eZ e e
H

m Mr rr R R R 

       
 

      

    
e Ne ee N NNT V V T V      ,                                                                        (2.1) 

where electrons are denoted by lower case subscripts, and nuclei (with charge 
IZ  and  

mass 
IM ) are denoted by upper case subscripts. The terms in Hamiltonian are, in 

order, the electron kinetic energy, the Coulomb interaction between the electrons and 

nuclei, the Coulomb interaction between electrons, the nuclei kinetic energy, and the 

Coulomb interaction between nuclei. The atomic nuclei are much heavier than the 

electrons (each proton or neutron in a nucleus has more than 1800 times the mass of 

an electron). This means, electrons respond much more rapidly to changes in their 

surroundings than nuclei can. So the mathematical problems for the nuclei and 

electrons can be separated: When describing the motion of electrons, the position of 

the atomic nuclei is assumed to be fixed. Therefore, the following Hamiltonian can be 

used for the electrons 

    
e Ne eeH T V V    ,                                                                                        (2.2) 
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This leads to the following (stationary) Schrödinger equation for N electrons 

              
22 2

2

,

1

2 2

I
i e e e

i i I i je i ji I

Z e e
E

m r rr R 

 
     

 
 

     ,                               (2.3) 

where 
e  (  1 2, , ,e e Nr r r  , with ( , ),i ir r    denotes the spin state) is the wave 

function for all electrons and 
eE  is their ground-state energy.  The above equation 

describes a many-electron problem and cannot be generally solved. Therefore, 

approximations must be employed. 

Neglecting all interactions between electrons, 
e  can be written as 

     1 1 1 2 2 2, , ,e N N Nr r r        ( i  is the spin of electron i  ) which corresponds 

to the Hartree approximation. Using the single-electron wave functions  
1 2, ,..., N   , 

the density of electrons is determined by      *

,

, ,i i

i

n r r r  


    , and the 

interaction of a given electron with all the others can be described by the Hartree 

potential   2 3( )
H

n r
V r e d r

r r




 . In this manner the many-electron Schrödinger 

equation is separated in a system of N coupled equations for the single-electron wave 

functions. 

The approximation of Fock took into account the fact that electrons are fermions, 

i.e. that the all-electron wave function has to be antisymmetric with regard to exchange 

of variables ( , )i ir  , which is in agreement with the  Pauli exclusion principle. This led 

to the use of the Slater determinant instead of the Hartree product 

     

     

1 1 1 1 2 2 1

1

!

1 1 2 2

, , ,

, , ,

N N

e N

N N N N N

r r r

r r r



     



     

                                                  (2.4) 

The use of this expression results in N coupled (Hartree-Fock) equations for the 

single-electron wave functions 
1 2, ,..., N    of the Slater determinant. In this case, the 

electron-electron interaction is not only described by the Hartree potential, but also by 

the Fock or exchange potential (for the interaction of a given electron with all the others) 
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     
 

* ;2
3 2 3

, , , ( , ')
( ) ' '

| ' | | ' |,

i
j i j ex

ex

j i i

r r r n r re
V r d r e d r

r r r rr





   
   

 
 

  


          (2.5) 

The consideration of spin variables shows that the exchange potential describes 

the interaction of electrons with parallel spins, with a non-local “charge 

density“  
; ( , ')i

exn r r
 that also depends on state i  of the electron under consideration. 

The Fock potential is therefore a purely quantum-mechanical quantity.  

It must be mentioned that the energy of the ground-state obtained from Hartree-

Fock equations is still above the true ground state energy. This is because correlation 

energy is not included due to the approximation introduced by using the Slater 

determinant. This error arises because the interaction of one electron with another is 

treated as the interaction with a smoothed out, averaged electron density. In fact, the 

position of one electron affects the position of the other electron, because they repel 

each another. Their positions are correlated, an effect not included in the Hartree-Fock 

approximation. On the other hand, applications of the Hartree-Fock equations to solid 

state physics would lead to a huge computational effort. For example, in the case of a 

nanocluster with 100 Pt atoms a system of 7800 coupled equation must be solved 

iteratively. 

2.2.2 Density Functional Theory (DFT) 

The subject of Density Functional Theory (DFT) is the (nondegenerate) ground 

state of an interacting many-electron system under the influence of an external (e.g. 

lattice) potential. DFT is based on the fundamental work of Hohenberg, Kohn, and 

Sham [18,21,22]  

 Their findings can be summarized as follows: 

The ground-state energy is a unique functional of the ground-state electron density. 

The electron density that minimizes the energy functional is the true ground-state 

electron density which corresponds to the full solution of the many-electron 

Schrödinger equation.  

In this manner, the problem of solving the many-electron Schrödinger equation, 

with the ground-state wave function depending on 3N coordinates is replaced by the 
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search for the minimum of the energy functional with respect to the electron density 

 n r  which depends only on three spatial coordinates.  

The ground state energy as functional of the electron density may be written as 

[ ( )] [ ( )] [ ( )]E n r T V n r U n r                                                                              (2.6) 

where T , V , and U are the functional of the kinetic energy, of the potential energy due 

to the external potential, and of the potential energy of the electron-electron interaction, 

respectively. In the case of a solid with enV  as the Coulomb interaction (attraction) 

between one electron and the nuclei in a lattice, the expression for V is given by  

2
3[ ( )] ( )I

I

Z e
V n r n r d r

r R
 


                      (2.7) 

The quantity U describes the electrostatic interaction (repulsion) between the 

electrons, as well as their interaction due to the quantum-mechanical exchange and 

correlation effects  

 
2

3 3( ) ( ')
[ ( )] ' [ ( )]

2 | ' |
XC

e n r n r
U n r d r d r V n r

r r
 

                                                          (2.8) 

Furthermore, it is assumed that the kinetic energy T  can be written in the same 

manner as in the case of a non-interacting electron system 

2 2
* 3

1

( ) ( )
2

N

i i

i

T r r d r
m

 


 
  

 
 ,                                                                              (2.9) 

where ( )i r  is a (still unknown) single-electron wave function. Using the last 

expression, one implicitly assumes that the (still unknown) ground-state electron 

density may be related to an effective single-electron Hamiltonian. This is not an 

explicitly verified fact. However, such an expression is generally used in DFT, since 

the consideration of single-particle wave functions simplifies the formalism. On the 

other hand, certain approximations must be employed for the functional [ ( )]XCV n r  so 

that the ansatz for T  is not the only uncertainty. On the other hand, a proper choice of 

the functional [ ( )]xcE n r  may compensate the error made by this ansatz. 

 

The unique relation between ( )n r and ( )i r  (      *

i i

i

n r r r  ) enables to 

perform the minimization of [ ( )]E n r  with respect to ( )i r  which leads to the Kohn-

Sham equations 
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   
22

2 2 3 [ ( )]( ')
'

2 | ' | ( )

XCI
i i i

Ie I

V n rZ e n r
e d r r r

m r r n rr R

 
      

 
 

 


 


                 (2.10) 

This corresponds to a single-electron Schrödinger equation for i  and i  with an 

effective potential. Strictly speaking, i  and i  are auxiliary quantities to be used to 

determine the electronic density ( )n r . On the other hand, in practice these quantities 

are employed to determine certain ground-state properties as momentum distribution 

of electrons etc.  

 

The Kohn-Sham equations are solved in an iterative way: 

1. Define an initial electron density  n r   

2. Solve the Kohn-Sham equations using the initial density or the density obtained 

in the preceding iterative step to find the single-electron wave function  i r   

3. Calculate the new electron density      *

i i

i

n r r r   by the wave function 

determined by step 2. 

4. Compare the calculated electron density with that of the preceding iteration step. 

If the two densities are different, then go to step 2 and continue. Otherwise, the 

obtained electron density is considered the true ground-state density and this 

density can be used to calculate the (total) ground state energy. In practice the 

total energies obtained for two successive iteration steps are compared and the 

iteration is stopped if the difference falls below a certain threshold (see below). 

The accuracy of Kohn-Sham approach is only limited by the approximations in the 

exchange-correlation (XC) functional. These approximations are mainly based on the 

theory of a homogeneous electron gas with a positively charged homogenous 

background introduced for reason of charge compensation. This model system is also 

called jellium. In the Local Density Approximation (LDA) it is assumed that the 

functional dependence of  XCV on the (constant) electron density of the jellium may be 

also used for the nonhomogeneous case treated in DFT, i.e   LDA

XC XCV V n r    . The 

next level of approximation is to include the local gradient of the electron density, which 

is called Generalized Gradient Approximation (GGA):    ,LDA

XC XCV V n r n r    .Two of 

most popular GGA functionals are the Perdew-Wang (PW91) [23] and the Perdew-
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Burke-Ernzerhof (PBE) functional [24] . The latter is employed in the present work in 

the framework of DFT calculations using the Vienna Ab-Initio Simulation Package 

(VASP) [25-27]. 

In many applications of DFT it is not necessary to consider all electrons since 

properties arising from the type of chemical bonding are dominated by the less tightly 

bound valence electrons. Therefore, the pseudopotential concept was introduced to 

avoid the use of core-electron wave functions which exhibit many oscillations and may 

lead to significant computational effort. A pseudopotential replaces the electron density 

of a set of core electrons by a smoothed density, which is chosen to match various 

important physical and mathematical properties of the true ion core. There are many 

kinds of pseudopotentials provided by current DFT codes. Most frequently, ultrasoft 

pseudopotentials (USPPs) [28] and pseudopotentials determined by the projector 

augmented wave (PAW) method [29,30] are employed. The latter are used in the 

present work. 

In many DFT codes such as in VASP plane-wave-based functions are used as 

Kohn-Sham wave functions ( i , see above)  for the valence electrons with  

( )

, ,
( ) ( )ikr ikr iGr i k G r

k k k G k G
G G

r e u r e c e c e                                                                      (2.11) 

where k  is the wave vector. The function ( )
k
r is chosen in such manner that the 

Bloch theorem valid for periodic structures is obeyed  

 ( ) ( )ikR

k k
r R e r                                         (2.12) 

where R  is a vector that characterizes the translational symmetry (e.g. a lattice vector) 

in the real space while G  is the corresponding quantity in the reciprocal space or lattice. 

The number of components in the above Fourier expansion can be limited by defining 

a fixed energy cutoff cutE  and all expansion coefficients 
,k G

c  related to an energy 

2 2( )

2
cut

e

k G
E

m


  are neglected. Such a truncation is possible since the contribution 

from higher Fourier components or large k G  is small. In applications test 

calculations must be performed in order to find the convergence of the total energy 

versus cutE .  
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In DFT calculations on defects, substitutional atoms, etc., such as performed in the 

present work, supercells are considered as a representative part of the material. 

Periodic boundary conditions are applied since translational invariance, i.e. 

homogeneity of the material, is assumed. In this case the vector R  is related to the 

size of the supercell. In the reciprocal space the supercell corresponds to the first 

Brillouin zone.  

Using the above Fourier expansion, the Kohn-Sham equations can be treated 

within the reciprocal space and the required quantities can be calculated for a finite 

number of k  points in the first Brillouin zone. Symmetry consideration may allow for 

the consideration of the so-called Irreducible Brillouin Zone (IBZ). DFT simulation 

packages such as VASP employ special algorithms to generate a suitable k -point grid 

for the IBZ, e.g. the widely used Monkhorst-Pack method [31]. In applications the 

optimum number of k -points must be obtained by test calculations that check the 

convergence of the total energy versus the number of k -points. 

2.3 Theoretical treatment of diffusion processes 

2.3.1 Determination of the jump rate 

Diffusion processes can be treated as sequences of atomic jumps from one 

potential energy minimum to another via a transition state. In the Transition State 

Theory (TST) [32] it is generally assumed that the residence time of an atom in a state 

that corresponds to an energetic minimum is much longer than the time of transition to 

another minimum (or equilibrium) state. Therefore, forward and backward jumps are 

considered uncorrelated. The harmonic TST offers a very good approximation to 

calculate the jump rate. The main assumptions of the harmonic TST are [33]: i) The 

transition pathway from one energetic minimum to another is well characterized by a 

saddle point on the potential energy surface; ii) the vibrational modes are harmonic 

near the minimum states on the potential energy surface, and (iii) the vibrational modes 

are also harmonic perpendicular to transition pathway at the saddle point. The 

harmonic TST yields the following expression for the jump rate [32]: 

 0 exp( )m

B

E

k T


                                                                                                  (2.13) 



12 
 

where 
mE  is difference between the energy at the saddle point and the energy of 

minimum from which the jump starts. The quantity 
mE  is called jump barrier, migration 

barrier, or migration energy. The prefactor 
0  is the attempt frequency of the jump and 

may be determined by 











43

1

33

1

min

0 N

i

SP

i

N

i i

v

v
v                                                                                                  (2.14) 

Here a system consisting of  N  atoms is considered, where min

i   and   SP

i  denote the 

vibrational frequencies of the system at the minimum and the saddle point, respectively. 

Since at the saddle point only vibrational modes perpendicular to the transition 

pathway exist, the product in the denominator contains one factor less than that in the 

numerator. 

2.3.2 Calculation of the migration barrier by the Nudged Elastic Band method 
(NEB)  

In the present work NEB [34,35] is employed in connection with DFT calculations 

in order to determine the migration barrier and the minimum energy path (MEP), 

provided that the initial and the final (minimum or equilibrium) state is known. Note that 

MEP is another term for the transition pathway. In NEB the minimum-energy states 

before and after a diffusive jump are connected by a number of images using harmonic 

springs (the elastic band). Each image corresponds to a certain state of the whole 

system of N  atoms.  For each image i ,3N dimensional vectors R i
 and Fi  characterize 

the positions of N  atoms and the forces on these atoms. The NEB force on image i  is 

given by 

 1 1

NEB sp

i i i i i i i i iK 

       F F F F R R R R                                                     (2.15) 

where F
sp

i
 is the spring force, K  is the spring constant, and 

i  is the normalized local 

tangent at image i   which may be determined using the  

1 1

1 1

R R

R R

i i
i

i i

  

 





                        (2.16) 

and 

( )F F Fi i i i i                     (2.17) 
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is the perpendicular part of the true force Fi  on image i . In the equation for F
NEB

i
  the 

spring force allows the band to maintain a spread distribution of images, while the 

perpendicular part of the true force is directed towards the MEP. For all images an 

iterative minimization of F
NEB

i
 is performed which is achieved by a (restricted)  

relaxation of both the electronic states and the atomic positions using the DFT 

calculation procedure. The real MEP with the migration barrier is considered to be 

reached if all F
NEB

i
 approach zero, i.e. if the NEB force on all atoms of the different 

images becomes lower than a given threshold.  

However, there is no guarantee that the image with the highest energy found by 

NEB calculation is identical with the saddle point.  The true transition state can be 

obtained using the Climbing-Image Nudged Elastic Band method (CINEB). In CINEB 

the images determined by standard NEB are employed as input data. Then, the 

procedure described above is applied once more, with the exception that the NEB force 

on the image with highest energy 
maxF
NEB

i
 is replaced by  

,max ,max ,max ,maxF F -2F
NEB

i i i i                                                                                         (2.18) 

which corresponds to a modified true force where the component along the tangent is 

reversed.  

In this work the so-called vtsttools [36] provided by the Henkelman group at the 

University of Texas (Austin) were employed in all application of  NEB and CINEB. 

2.3.3 Calculation of the attempt frequency [37]  

According to Eq.(2.14) the attempt frequency 
0  depends on the vibrational modes 

min

i   and   SP

i   of the system of N  atoms. The value of 
0  is often in the range of 1012-

1013 s-1, so that a common approximation is to choose a fixed value in this range to 

save the computational work of computing the vibrational modes. In the present work 

the attempt frequency is determined via Eq.(2.14) only for nearest-neighbor oxygen 

and vacancy jumps in perfect bcc Fe. The vibrational or normal modes are calculated 

using the method implemented in the DFT code VASP which employs the harmonic 

approximation and the frozen phonon approach. The main tasks consist in the 

calculation of forces on atoms for a predefined set of displacements from their 
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equilibrium positions, and the subsequent diagonalization of the so-called dynamical 

matrix ij
αβΦ  that contains the force derivatives 

i
ij

j

F

u


 








                                                                                                            (2.19) 

where i  and j  denote the different atoms and   and   denote the Cartesian 

coordinates ( , ,x y z ), i.e. ju  means the displacement of atom j  in direction  , while iF  

is the force on atom i  in direction  . 

 

2.3.4 Diffusion coefficient in a perfect crystal 

The diffusion coefficient of the interstitial oxygen atom or of the vacancy in a perfect 

crystal may be obtained from the general formula [38] 

2

2

pn vl
D

d
  ,                                                                                                                           (2.20) 

with the jump rate v , jump length l , and the dimension of the diffusion d , as well as 

the number of possible equivalent jumps pn of the diffusing atom (or vacancy) from a 

given position. In the case of bcc Fe and oxygen diffusion via jumps between nearest 

neighbor octahedral interstitial sites, the quantities pn , d , and l  are given by 

4pn   , 3d   , / 2l a  ( a :  lattice constant of bcc Fe),                                               (2.21) 

while for the diffusion of the vacancy one obtains 

8pn   , 3d   , 
3

2
l a                                                                                                     (2.22) 

Using Eq. (2.13) for the jump rate the oxygen and the vacancy diffusion coefficients in 

bcc Fe are given by 

2

0 exp
6

O
O m

O

B

Ea
D

k T

 
  

 
                                                                                                     (2.23) 

and 

v
2 v

v 0 exp m

B

E
D a

k T

 
  

 
                                                                                                       (2.24) 
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2.3.5 Atomistic Kinetic Monte Carlo (AKMC) simulations on a rigid lattice 

If the jump rate depends on the local atomic environment of the diffusing atom in 

most cases AKMC simulations must be applied to determine the diffusion coefficient. 

In this section the algorithm of AKMC simulations is explained for the case considered 

in Chapters 3 and 4, i.e. oxygen diffusion under the influence of substitutional atoms 

in bcc Fe. In these chapters AKMC simulations are applied to dilute alloys where the 

concentration of the substitutional solutes is small. The simulation cell contains simple 

cubic (sc) lattice sites consisting of the bcc lattice sites and the octahedral interstitial 

sites of the bcc lattice. 3d periodic boundary conditions are applied. At the beginning 

of the simulation the position of the substitutional atom or solute is randomly chosen. 

The substitutional atom is assumed to be immobile and the size of simulation cell 

corresponds to the concentration for which the AKMC simulation is performed. Oxygen 

is mobile and may jump from one octahedral interstitial site to a neighboring octahedral 

interstitial site since at such positions O is most stable. The AKMC step number and 

the physical time are set to 0 at the beginning of the simulation. The main part of the 

AKMC code deals with the determination of possible foreign-atom neighbors of the 

oxygen atom before and after a jump. For this purpose, linked cells and neighbor lists 

are used which are determined at the very beginning of the simulations. At each AKMC 

step, O may jump into 4 directions which are geometrical equivalent but may exhibit 

different jump rates i  if oxygen is in the environment of a substitutional atom. The 

jump rates i  ( 1, ,4)i   are determined by 0 exp( )
i

m
i

B

E

k T


   , with the migration 

barrier i

mE  and the (unique) attempt frequency 0  . Furthermore, the cumulative 

function 
1

i

j

j




  as well as the probability 
4

1 1

/
i

i j j

j j

p  
 

   are calculated. A jump event 

k  is selected using a random number r (uniformly distributed between 0 and 1):  

1k kp r p   . Then the jump is carried out, i.e., the position of the oxygen atom is 

changed. The AKMC step number is increased by 1 and the physical time is increased 

by  
4

1

ln / j

j

t r 


     with another random number r . The procedure described above 

that corresponds to the well-known rejection-free AKMC algorithm [33] is repeated 

many times and the position of the O atom is recorded as a function of physical time. 
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In order to obtain good statistics, the migration of the oxygen atom is simulated many 

times, with different initial positions of the oxygen and the foreign atom. 

After AKMC simulation, the diffusion coefficient of oxygen atom is determined in 

the following manner [39-41]. The recorded trajectory of O is decomposed into sn  time 

segments t  , and for each segment the squared displacement 

 
2

1( ) ( ) ( )m msd m x t x t    with 
1m mt t t   is determined, where x  denotes the position 

of O at given time. Then, the diffusion coefficient is obtained from 
1

1 ( )

6

sn

ms

sd m
D

n t

   . 

Within certain limits, the length of the segments determined by t  and their number sn  

can be chosen arbitrarily so that the calculation of the diffusion coefficient can be 

performed for many different subdivisions of the trajectory, and, finally the results are 

averaged. However, there is a limitation for the choice of t  and sn : On the one hand, 

t  should be large enough to include all local jump correlations, on the other hand, sn  

should be large enough to provide a statistically meaningful diffusion coefficient.    
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Chapter 3 Influence of substitutional atoms on the diffusion of 

oxygen in dilute iron alloys 

3.1 Introduction 

It is known from literature that in bcc Fe the most stable position of O is the 

octahedral interstitial site and the tetrahedral interstitial site is the saddle point for first-

neighbor jumps [14,16,42-44]. In this chapter it is investigated how the presence of 

foreign atoms modifies the O migration. In the first part jumps of oxygen in pure bcc 

Fe, between first-, second-, and third-neighbor octahedral interstitial sites are 

investigated by DFT. Then, DFT is applied to determine the binding energy between 

oxygen and a foreign atom, for different neighbor distances, and to calculate the 

modified migration barriers, i.e. for the oxygen jump between the first and the second 

neighbor of a foreign atom, etc. Using the migration barriers obtained by DFT the 

diffusion coefficients of oxygen are determined by AKMC simulations considering a 

dilute iron alloy on a rigid lattice. Finally, a detailed discussion on the influence of the 

different foreign atoms on the oxygen diffusivity is performed.  

3.2 DFT calculations 

3.2.1 Calculation method 

The Vienna ab-initio simulation package VASP [25-27] was applied to perform the 

DFT calculations. Plane wave basis sets and pseudopotentials generated within the 

projector-augmented wave (PAW) approach [29,30] were used and the exchange and 

correlation effects were treated by the Perdew-Burke-Ernzerhof (PBE) 

parameterization [24] of the generalized gradient approximation (GGA). In all 

calculations the spin polarized formalism was applied and a plane wave cutoff of 500 

eV was used. The Brillouin zone sampling was performed employing the Monkhorst-

Pack scheme [31]. The calculations were carried out for cubic bcc-Fe supercells with 

128 lattice sites and 3 3 3   k  points. For the integration in the reciprocal space the 

Methfessel-Paxton smearing method [45] was applied with a width of 0.2 eV. After 

introduction of an oxygen atom on an octahedral interstitial site and of another foreign 

atom on a substitutional site the positions of atoms as well as the volume and shape 

of the supercell were relaxed so that the total stress/pressure on the supercell became 

zero. Such calculations were performed for different distances between the oxygen 

and the foreign atom as illustrated in Fig. 3.1. The notation of the neighbor positions of 
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oxygen relative to the foreign atom is according to the scheme for a simple cubic lattice 

(cf. [15]) which consists of the bcc lattice sites and the octahedral interstitial sites of 

the bcc lattice. Note that within this scheme oxygen cannot reside on third, fourth, 

seventh, eighth, etc. neighbor positions since these sites are already occupied by iron 

atoms, and that there are two different ninth neighbor sites (9a and 9b). The accuracy 

of DFT calculations is determined by two criteria: (i) If the residual force acting on any 

atom falls below a given threshold the relaxation calculation is stopped. (ii) At each 

relaxation step the energy minimization is performed until the total energy change falls 

below another threshold. In the present work threshold values of 10-2 eV/Å and 10-5 eV 

are used, in first and the second case, respectively. The binding energy between a 

foreign atom X  on a substitutional site and the oxygen O  on an octahedral interstitial 

site, at different distances to the foreign atom (cf. Fig. 3.1), is defined by 

0( ) ( ) ( )bindE E X O E E X E O                                                                                          (3.1) 

 

 

Figure 3.1 Octahedral interstitial sites for oxygen in the neighborhood of a 

substitutional atom (or solute). The notation of oxygen positions relative to the foreign 

atom is according to the scheme for a simple cubic lattice that consists of the bcc 

lattice sites and the octahedral interstitial sites of the bcc lattice. 

( )E X O , ( )E X , and ( )E O denote the total energy of (iron)supercells with the 

defect pair X O   and the monomers X  and O , respectively, while 
0E  is the total 

energy of the supercell with perfect bcc Fe. By definition the value of bindE  is negative 

in the case of attraction between the X  and the O  atoms.  

The migration energy barriers for oxygen in perfect bcc Fe and in the environment 

of a substitutional atom are calculated using the combination of standard NEB and 
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CINEB methods as described in section 2.3.2. Furthermore, the attempt frequency is 

determined as outlined in sections 2.3.1 and 2.3.3, i.e. by using the vibrational 

frequencies of the supercell at the minimum state (before the O jump) and at the saddle 

point. In order to obtain reasonable data for these frequencies the minimum and saddle 

point states must be calculated with a very high precision. In this case threshold values 

of 10-4 eV/Å and 10-7 eV were used for the residual force on atoms and the total energy 

change (see above), respectively. 

3.2.2 Migration barriers of oxygen in pure iron, attempt frequency 

  

Figure 3.2 Illustration of the minimum energy paths for the jump of oxygen  between  

first neighbor (a) and third-neighbor (b)  octahedral interstitial sites in pure bcc Fe. 

The octahedral interstitial site is the most stable site of oxygen in pure bcc Fe [42-

44,46-48]. It was shown that the incorporation of O into the lattice leads to a local 

tetragonal distortion and a corresponding change of the supercell shape is observed if 

relaxation calculation is performed under zero stress/pressure conditions [48]. Three 

different migration paths of oxygen in pure bcc Fe were investigated in this work: 

between (i) first-neighbor, (ii) second-neighbor, and (iii) third-neighbor octahedral sites. 

The results are shown in Fig. 3.2. The first-neighbor jump consists of a linear migration 
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path with a barrier of 0.512 eV. This value is consistent with previous DFT calculations 

of Fu et al. [42], Claisse et al.  [44], Shang et al. [16],  Barouh et al. [15]  and Samin et 

al. [49] who obtained  0.6, 0.48, 0.526, 0.56, and 0.451 eV, respectively. The saddle 

point situated in the middle of the path corresponds to a tetrahedral interstitial site of 

the bcc lattice, cf. Fig. 3.2(a). Note that the data points correspond to the calculated 

values which are used to obtain the fit curve. It is worth mentioning that the tetragonal 

distortions in the initial and the final state differ: While in the initial state the elongation 

is along the z axis it is along the x axis in the final state. A tetragonal distortion is also 

observed at the saddle point. However, in this case the dimensions of the supercell in 

x and z directions are equal and slightly higher than in y direction. It was found by NEB 

calculations that a second-neighbor jump consists of two successive first-neighbor 

jumps. This was also reported for carbon migration in bcc Fe [13] which occurs in a 

similar manner as the oxygen diffusion, i.e. between octahedral interstitial sites. The 

third-neighbor jump consists of a nonlinear migration path as shown in Fig. 3.2(b). The 

saddle point, a rhombohedral interstitial site, is in the middle of the minimum energy 

path, with a barrier height of 1.452 eV. This result is also similar to the findings for 

carbon [13]. The barrier for the third-neighbor jump is considerably higher than that for 

a first-neighbor jump. For such a jump the probability of occurring is therefore much 

smaller than that for three consecutive first-neighbor jumps. Based on above results, 

in the following only first-neighbor jumps are considered. For a first-neighbor jump the 

attempt frequency was determined according to the formalism outlined in Eqs. (2.14) 

in Chapter 2 and a value of 15.76 THz was obtained in the temperature range relevant 

for diffusion (above 500 K). 

3.2.3 Binding energy of pairs consisting of an oxygen atom and a substitutional 
solute 

The binding energies obtained after relaxation of a supercell with a foreign atom 

on a bcc site and oxygen on an octahedral interstitial site are summarized in Table 3.1. 

Si, P, Ni, Mo, and W exhibit mainly repulsion and a few, very weak, attractive 

interactions. In the case of Ni, Mo, and W highest repulsion exists at the first neighbor 

distance, whereas for Si and P maximum repulsive interaction occurs at the second 

neighbor distance. Al, Cr, and Mn show the strongest attraction at the first neighbor 

distance while S, Ti, and Y show the highest attractive interaction with O at the second 

neighbor distance. On the one hand Table 3.1 demonstrates that the interaction 
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between O and the solutes has a relatively long range. On the other hand the trend is 

as expected, i.e. the interaction decreases with distances and approaches zero at the 

tenth neighbor distance. An exception is the O-Y interaction that is still considerable at 

this distance. This may be explained by the large size of the Y atom which causes 

significant displacements and distortions. DFT data from literature are also given in 

Table 3.1.  These values show a very similar trend as the present results.
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Table 3.1. Binding energy of oxygen-solute pairs at different distances. Negative (positive) values mean attraction (repulsion). DFT data 

from literature are given in brackets.  

bindE  (eV) 1nn 2nn 5nn 6nn 9nna 9nnb 10nn 

O-Al -0.243 0.047 -0.051 0.000 -0.04 -0.069 -0.030 

O-Si -0.064 0.453 0.051 -0.003 0.009 -0.081 0.017 

O-P 0.051 0.161 0.071 -0.059 0.044 -0.024 0.040 

O-S -0.361 -0.466 -0.066 -0.134 0.051 0.062 0.013 

O-Ti 

-0.372 

(-0.26 [43],-0.23 [44], 

-0.27 [46]) 

-0.593 

(-0.55 [43], -0.45 [44],  

-0.55 [46]) 

-0.052 

(0.07 [44]) 

-0.009 

(0.14 [44]) 

-0.037 

(0.12 [44]) 

0.094 

 

-0.042 

 

O-Cr 
-0.257 

(-0.25 [43], -0.1 [44]) 

-0.085 

(0.02 [43],0.06 [44]) 

0.092 

(0.2 [44]) 

0.025 

(0.13 [44]) 

-0.003 

(0.09 [44]) 

0.120 

 

0.002 

 

O-Mn -0.246 -0.068 0.108 0.084 0.062 0.067 0.072 

O-Ni 0.214 0.175 -0.02 0.015 -0.018 0.017 -0.028 

O-Y 0.031 -1.010 -0.336 -0.035 -0.085 0.217 -0.133 
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(0.35 [43],0.32 [44], 

0.28 [46]) 

(-1.01 [43],-0.73 [44], 

-0.85 [46]) 

(0.04 [44]) (0.07 [44]) (0.11 [44])   

O-Mo 0.397 -0.048 0.057 0.056 -0.036 0.158 -0.037 

O-W 0.555 0.075 0.075 0.065 -0.045 0.139 -0.042 
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However, the numbers are somewhat different which should be mainly due to the fact 

that the literature data were obtained at constant volume of the supercell, whereas in 

the present work not only the positions of atoms but also the size and shape of the 

supercell were relaxed until the total stress/pressure reached zero. Furthermore, in the 

present work a newer version of VASP pseudopotentials (version 5.4) was used which 

may lead to some additional differences.  Details on the volume change (compared to 

a supercell with perfect bcc Fe) and the distortion of the supercell by a single oxygen 

octahedral interstitial and by single substitutional solutes are given in Appendix I. The 

presence of oxygen leads to a considerable volume increase and to a tetragonal 

distortion. Most of the substitutional atoms cause an isotropic expansion of the 

supercell, whereas isotropic contraction is found for Si and P. Furthermore, Appendix 

I shows the effective volume change and the supercell distortion obtained for the 

different oxygen-solute pairs. The effective volume change, which is defined by the 

difference between the volume changes caused by the presence of the pair and the 

sum of the volume changes due to the presence of a single O atom and a single 

substitutional atom, can be positive or negative. Tetragonal and orthorhombic 

distortions of the supercell are observed which is preferentially caused by the presence 

of the oxygen interstitial and the spatial orientation of the O-solute pair. Tetragonal 

distortions are found for the 1st, 2nd, 6th, 9th neighbor distances since the relaxation 

occurs only in two spatial dimensions, because the initial geometrical arrangement of 

the pairs according to Fig. 3.1 is along [100], [110], [211], [221], and [300], respectively. 

On the other hand, in the case of pairs at 5th and 10th neighbor distances (oriented 

along [210] and [310]) orthorhombic distortions are observed due to relaxation in three 

dimensions.     

The dependence of the binding energy of the oxygen-solute pair on the kind of the 

solute was investigated by studying the following characteristic quantities: (i) partial 

density of electronic states, (ii) magnetic moment, (iii) charge transfer, (iv) volume 

change of the supercell, and (v) distance between the two atoms belonging to the pair. 

It was found that the results concerning the charge transfer determined by Bader 

analysis [50] seem to be most suitable for a qualitative interpretation of the trends found 

for the binding energy. If the pair is at the first neighbor distance in most cases 

attractive interaction occurs if the following two criteria are fulfilled simultaneously: 

Oxygen gains more than about 0.4 “electrons” and the solute loses more than about 

0.6 “electrons”. This indicates an ionic-like bond. With the exception of the O-S and the 
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O-Y pair, in the other cases the ionic character of one of the partners is obviously not 

sufficiently pronounced for an attraction. More details about these investigations can 

be found in the Appendix II. 

3.2.4 Oxygen migration barriers in the environment of a substitutional solute 

Fig. 3.3 shows the minimum energy paths for the migration of oxygen between 

first-neighbor octahedral interstitial sites in the environment of different foreign atoms, 

up to the tenth neighbor. Due to the atomic configuration shown in Fig. 3.1 only the 

following first-neighbor jumps are possible: between neighbors 1 and 2, 2 and 5, 5 and 

6, 5 and 10, 6 and 9, 9b and 10. The migration barriers are higher or lower than the 

value of 0.512 eV obtained for pure bcc Fe. At the largest distance from the foreign 

atom the migration barriers approach this value. However, some differences remain, 

in particular in the case of Y which should be due to its atomic size. In the figures the 

data points depict the calculated values that are used to determine the fit curves. In 

the case of Ni most of the barriers are smaller and only a few are slightly higher than 

that in pure Fe. P, Mo, and W exhibit this kind of barriers outside the 2nd neighbor shell 

whereas such barriers exist for Si outside the 5th neighbor shell. However, in these 

cases the barriers for jumps into the closer environment of the foreign atom are 

relatively high (around 0.7 eV). Al, S, Ti, Cr, Mn, and Y show rather high barriers for 

escape from neighbor shells close to the solute, whereas the barriers for approaching 

are often relatively low. In the vicinity of S and Ti  the escape is impeded by the 

combined action of the barriers for  25 and for  56 or 510 jumps. A similar 

situation exists for Al, Mn, and Cr caused by the combination of the barriers for the 

12 and the 25 jump.  



26 
 

 



27 
 

 



28 
 

 



29 
 

 

Figure 3.3 Migration barriers for oxygen in the neighborhood of various substitutional 

atoms:  Al (a), Si (b), P (c), S (d), Ti  (e), Cr (f), Mn (g), Ni (h), Y (i), Mo (j), W (k). The 

red and blue numbers show the barrier height and the binding energy, respectively. 

In AKMC simulations the barriers must be modified according to the detailed 
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balance. This is illustrated in the case of Cr (l) where the changes are marked by 

magenta numbers and lines. 

Obviously, an impeded escape is correlated with the existence of deep attractive states. 

A special situation is found in the environment of Y. The NEB calculation for the 

transition between neighbor 5 and 6 shows a local minimum related to the first image 

and a local maximum related to the second image [cf. part of the line in Fig. 3.3 (i) 

marked by green color]. Complete relaxation of the state corresponding to the local 

minimum led to the 2nd neighbor configuration. Thus one can conclude that a direct 

transition between neighbors 5 and 6 is not possible. On the other hand it can be 

assumed that the local maximum found between 5 and 6 is the barrier for a direct 

transition between neighbors 6 and 2. In the vicinity of Y the escape of the oxygen 

atom is strongly impeded by the combined action of the barriers for the 25 and 510 

transitions. It should be noticed that calculations showed that O resides in a 

(meta)stable state at the 5th neighbor position, with a shallow minimum which is hardly 

visible in Fig. 3.3 (i).  Note that there is also a very small barrier for the transition 52. 

With the exception of the peculiarities in the case of Y, in general the migration path of 

O is similar to that in pure bcc Fe, i.e. from a modified octahedral site via a modified 

tetrahedral site to another modified octahedral site. This is illustrated in Fig. 3.4  for the 

oxygen jump between the first and second neighbor position of Cr.  In many plots 

shown in Fig. 3.3 the migration barrier corresponds to the middle data point in the 

graphical representation of the respective jump. Exceptions are the transitions 

between 1st and the 2nd neighbors of Si, Y, and W, between the 2nd and 5th neighbor of 

Y, between the 5th and 10th neighbors of S, between the 5th and 6th neighbors of Cr and 

Mn, and between neighbors 6 and 9a as well as 5 and 10 of Y. Also in these cases the 

saddle points correspond to modified tetrahedral interstitial configurations.   
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Figure 3.4 Modified minimum energy path for the jump of oxygen between the first 

and the second neighbor of Cr. 

3.3 AKMC simulations  

3.3.1 Simulation procedure 

The general scheme of the AKMC simulations on a rigid lattice is described in 

section 2.3.5. Based on the results presented in previous sections it is assumed that 

the migration of oxygen consists of jumps between first-neighbor octahedral sites of 

the bcc lattice. The concentration of foreign atoms in the alloy is determined by the 

size of the simulation cell. Based on the DFT data for mE  and 0v  the jump rates for the 

4 possible jumps of the O atom from a given octahedral site to neighboring octahedral 

sites are determined. It should be noticed that the attempt frequency calculated for 

oxygen jumps in perfect bcc Fe is also used for those in the environment of 

substitutional atoms, whereas the values for  mE  are different (see Fig. 3.3.) Jumps 

from neighbors 9a, 9b, or 10 to larger distances, from larger distances to these sites, 

or jumps completely outside the ten neighbor shells are described as the jumps in pure 

Fe. In cases where at neighbor shells 9a, 9b, and 10 the binding energy between 

oxygen and the substitutional solute does not vanish, it is set to zero and the migration 

energy barriers 9 ,6a

mE ,   10,5

mE , 9 ,10b

mE and 10,9b

mE are modified according to  
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, ,i j j i j i

m m bind bindE E E E   ,                                                                                                                     (3.1) 

This relation describes the rule of detailed balance which must be fulfilled in AKMC 

simulations, cf. [51]. Note that Eq. (3.1) is always satisfied for transitions inside the 

tenth neighbor shell. For illustration the modifications of 9 ,6a

mE ,   10,5

mE , 9 ,10b

mE and 10,9b

mE

in the environment of Cr are shown in Fig. 3.3(l).  As mentioned in section 2.3.5, the 

oxygen diffusion coefficient is obtained from 

 
1

1 ( )

6

sn

ms

sd m
D

n t

  .                                                                                                                  (3.2) 

where 2

1( ) ( ( ) ( ))m msd m x t x t    is the squared displacement of a part of the migration 

trajectory characterized by the time segment t , with 
1m mt t t  , and sn  is the total 

number of time segments. In the present AKMC simulations the maximum and 

minimum values of sn  (see section 2.3.5) are 7500 and 10, respectively. Too small 

(high) values of t  ( sn ) lead to values of D  which are not reliable, because 

correlations are not included sufficiently, and too high (small) values of t  ( sn ) lead to 

large fluctuations of D  which is due to poor statistics. Therefore, those values of D  

are not considered in the final averaging over the results for different subdivisions into 

time segments. In the present code the averaging is performed only over subdivisions 

between max / 3sn  and max2 / 3sn . 

3.3.2 Diffusion coefficients of oxygen 

AKMC simulations were performed to study oxygen diffusion in alloys with 

concentrations of substitutional solutes of 0.098, 0.231, 0.400, 0.781, and 1.852 at%. 

As already mentioned above, an AKMC simulation cell contains only one substitutional 

foreign atom, therefore the size of the cell ( 8 8 8  , 6 6 6  , 5 5 5  , 4 4 4  , and 

3 3 3  bcc unit cells, respectively) is related to the solute concentration. With the 

exception of the case of highest concentration (1.852 %) dilute alloys are considered.  

In dilute alloys the migration of the O atom cannot be influenced at the same time, or 

“simultaneously”, by more than one substitutional solute or its periodic image. After 

leaving the region of influence of a certain solute atom, in a dilute alloy the diffusing O 

atom migrates (long enough) through perfect bcc Fe before it enters another region of 

influence. The region of influence ends at the 10th neighbor shell, cf. Fig. 3.3 and the 
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discussion related to the detailed balance in the previous section. The concentration 

of 1.852 % is already beyond that of a dilute alloy, details on this case are discussed 

below. Fig. 3.5 shows the dependence of the diffusion coefficient on temperature in 

the range between 500 and 2000 K. It has to be taken into account that the presented 

data are strictly valid only in the ferromagnetic phase, i.e. below the Curie temperature 

(1043 K). Furthermore, at about 1183 K the  (bcc)  to  (fcc) transition of iron occurs. 

The main reason for showing a temperature scale up to 2000 K is to verify the expected 

convergence of the diffusion coefficient to the value for pure bcc Fe at sufficiently high 

temperatures. It must be also mentioned that in the present work the temperature 

dependence of the spontaneous magnetization in the ferromagnetic state is neglected, 

i.e. it is always assumed that the magnetization of bulk iron corresponds to its ground 

state value. According to the influence on the diffusion of oxygen the foreign atoms 

can be categorized into three groups which is similar to the classification discussed 

concerning the migration barriers. The first group consists of Si, P, Ni, Mo, and W. 

These solutes have a very small effect on the diffusion coefficient. The reason for this 

behavior is due to the size and combination of the migration barriers as depicted in 

Figs. 3.3 (b-c), (h), (j), and (k). The majority of barriers in the vicinity of Ni is somewhat 

lower than the barrier in pure Fe. Therefore, the diffusion coefficient increases slightly 

with concentration [cf. inset in Fig. 3.5 (h)]. In the case of P, Mo, and W the barriers for 

oxygen jumps from the 2nd to the 1st neighbor are rather high while the other barriers 

are not very different from that in pure iron. Similar conditions exist in the environment 

of Si with a high barrier between the 5th and the 2nd neighbor. Such a combination of 

migration barriers, with a reduced accessibility of positions close to the solute, may 

cause the so-called labyrinth mechanism [13,14], which leads to a slight reduction of 

the diffusion coefficient with increasing solute concentration [cf. insets in Figs. 3.5 (b-

c), and (j)].  The second group of solutes with Al, Cr, and Mn exhibit a considerable 

reduction of oxygen mobility. Taking Cr as an example, 0.098 (1.852) % Cr decrease 

the diffusion coefficient of by 44.3% (95.2%) at 500K and by 2.6% (43.4%) at 1000K, 

compared to the values for pure Fe. The reasons for this behavior is the so-called 

trapping mechanism [13,14] caused by the existence of a pronounced attractive state 

at the 1st neighbor distance and by high escape barriers from this state [cf. Figs. 3.3 

(a), (f), and (g)]. Such a trapping mechanism is also responsible for the huge decrease 

of the diffusion coefficient observed in the case of the third group with S, Ti, and Y.  For 

example, the oxygen diffusivity decreases by 99.97% (99.99%) at 500K and by 78.9% 



34 
 

(97.05%) at 1000K if the alloy contains 0.098% (1.852%) Ti. The foreign atoms S, Ti, 

and Y exhibit deep attractive state at the 2nd neighbor distance and the barriers for 

escape from these positions are very high [cf. Figs. 3.3 (d-e) and (i)].  However, in all 

cases considered in this work the oxygen diffusion coefficient is still some orders of 

magnitude higher than that of the corresponding foreign atom (cf. [1,52,53]). Therefore, 

the assumption that the substitutional solute can be considered to be immobile in the 

AKMC simulations is justified. 
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Figure 3.5 Diffusion coefficient of oxygen in several dilute Fe alloys in dependence 

on temperature and solute concentration (in at %). 

  



37 
 

 

 

Figure 3.6 Residence time ratio for oxygen at the first neighbor site of Cr (a) and at 

the second neighbor site of Ti (b). 

It is not surprising that the influence of foreign atoms on the oxygen mobility leads 

to deviations from the Arrhenius behavior of the diffusion coefficient. This is clearly 

visible for solutes of the second and third group. The reason is the inhomogeneous 

distribution of the barriers heights: Specific barriers exist in the vicinity of the 

substitutional atom, while beyond the 10th neighbor shell the migration barriers are 

equal to that in pure bcc Fe. The pronounced difference between all these barriers 

leads to a temperature dependence of the ratio between residence times in the various 

states. For a detailed study the ratio between the residence or occupation time of the 

oxygen atom at different neighbor distances and the total time of the simulation was 

determined. Fig. 3.6 illustrates the residence time ratio for oxygen at the first neighbor 

site of Cr and the second neighbor site of Ti. Both sites are related to the highest 

absolute values of binding energy (cf. Table 3.1).  A strong variation with temperature 

and concentration is visible in Fig. 3.6. In the case of Cr the occupation time ratio 

continuously increases with concentration both at low and high temperature while it 
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decreases with increasing temperature. The latter is due to the fact that with increasing 

temperature the ratio of the residence time in the deepest state to that in other states 

decreases because of the higher mobility of the diffusing atom. The reduction of the 

diffusion coefficient with concentration and the concave shape of the curves in Figs. 

3.5 (f) are related to the behavior of the occupation time ratio as shown in Fig. 3.6 (a). 

The dependencies of the diffusion coefficient due to presence of Al and Mn can be 

explained similarly to the case of Cr. The occupation time ratio for Ti [Fig. 3.6 (b)] 

strongly differs to that of Cr. While this quantity also decreases with temperature, with 

increasing concentration a pronounced trend towards saturation is found at low 

temperature. This is the reason for the saturation of the reduction of the diffusion 

coefficient with increasing concentration observed at these temperatures [Fig. 3.5 (e)]. 

At low temperature the residence time of oxygen at the 2nd neighbor site of Ti is much 

larger than at all other sites, even at the rather low concentration of 0.098%. The 

explanation of the influence of S and Y on the mobility of oxygen in terms of the 

residence time ratio is similar to the above discussion for Ti.  

 

Figure 3.7 Different environments of the 10th neighbour octahedral site in a 

simulation cell consisting of  4 4 4   (a)  and  3 3 3   (b)  bcc unit cells. The figure 

illustrates the extensions of the simulation cell in one direction. In larger simulation 

cells the situation is similar to (a). 
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Figure 3.8 Ratio of the number of oxygen jumps from 10 to 5 to the number of jumps 

between 10 and 9b as function of the solute concentration at 600K (a) and 800K (b) 

As already mentioned above, the case of the highest concentration (1.852 %, one 

solute in a simulation  cell consisting of 3 3 3  bcc unit cells) does not correspond to 

a dilute alloy since there may be a kind of  ”simultaneous interaction” of the diffusing 

oxygen atom with the solute and its periodic image. This is illustrated in Fig. 3.7 by 

comparison with the situation in a AKMC cell containing  4 4 4   bcc unit cells. Due to 

periodic boundary conditions the environment of the 10th neighbor site is not equal. In 

the 4 4 4   cell as well as in larger cells this site has one neighbor with a 5th neighbor 

distance to the solute, one neighbor with a 9th neighbor distance (9b) and  two 

neighbors with a distance to the foreign atom larger than the 10th neighbor distance 

(denoted by 13, 17b). In the smaller cell the considered site has only one neighbor with 

a distance to the solute larger than the 10th neighbor distance (13) and one neighbor 

with a 9th neighbor distance (9b), but two neighbors with a 5th neighbor distance. This 

leads to a modification of the ratios between the jumps from and to the 10th neighbor 

site while the ratios for the other sites within the 10th neighbor shell remain unchanged. 
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The ratio of the number of jumps between 10 and 5 to the number of jumps between 

10 and 9b is depicted in Fig. 3.8, for the solutes of group 2 and 3 and at a temperature 

of 600 and 800 K. For concentrations up to 0.781% this ratio has a constant value 

which is determined by the given relation between the corresponding jump barriers.  

However, due to the situation discussed above, at the concentration of 1.852% the 

ratio becomes equal to two times the value obtained for the lower concentrations. At 

this concentration the highest ratios is found for Y and Ti. This leads to the intersection 

of the curves for the diffusion coefficient in Figs. 3.5 (e) and (i). Such an intersection is 

not observed for the other solutes considered in Fig. 3.8. Obviously, the ratio of jump 

numbers at 1.852% is too low in these cases. Note that in Fig. 3.8 the data points are 

relevant whereas the lines are only shown to guide the eye. The above discussion 

illustrates a rather artificial example of a non-dilute alloy and shows that in this case a 

pronounced non-monotonous dependence of the diffusion coefficient on concentration 

is possible. The general case of a non-dilute alloy is not subject of this work.  Here a 

huge number of additional barriers would have to be determined. These barriers 

concern all cases of possible “simultaneous interactions” of the oxygen atom with more 

than one substitutional solute. 

3.4 Summary and conclusions 

The effect of substitutional foreign atoms on oxygen diffusion in bcc Fe was 

investigated by a combination of DFT calculations and AKMC simulations. At first DFT 

was used to investigate three different migration paths of oxygen in pure bcc Fe, i.e. 

between first-neighbor, second-neighbor, and third-neighbor octahedral interstitial 

sites. Most relevant is the first-neighbor jump with a linear migration path and the 

tetrahedral interstitial site as the saddle point. The second-neighbor jump consists of 

two successive first-neighbor jumps. The third-neighbor jump has a nonlinear migration 

path and the saddle point corresponds to a rhombohedral interstitial site, but the barrier 

for such a direct jump is too high to be relevant for O diffusion. In the presence of a 

substitutional solute the migration path is rather similar to that in pure bcc Fe, i.e. from 

a modified octahedral site via a modified tetrahedral site to another modified octahedral 

site as the first-neighbor jump. The interaction of oxygen with Si, P, Ni, Mo, and W is 

primarily repulsive. The corresponding migration barriers are not very different from 

that in pure Fe, with the exception of a high barrier close to the substitutional atom. Al, 

S, Ti, Cr, Mn, and Y exhibit strong attractive interactions with oxygen, associated with 
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large barriers for escape from neighbor shells close to the solute. The barriers for 

approaching the substitutional atom are frequently relatively low. In the vicinity of S 

and Ti  the escape is impeded by the combined action of the barriers for  25 and for  

56 or 510 jumps, while for Al, Mn, and Cr the combination of the barriers for the 

12 and the 25 jump impedes the escape. Some peculiarities were found in the 

case of Y: A direct transition between neighbors 5 and 6 is not possible and a direct 

second-neighbor jump between 6 and 2 was considered. In the vicinity of Y the escape 

of the oxygen atom is strongly impeded by the combined action of the barriers for the 

25 and 510 transitions.  

 

AKMC simulation were applied to study O diffusion in dilute alloys with 

concentrations of foreign atoms up to 0.781 at %. Si, P, Ni, Mo, and W have a very 

small effect on the oxygen diffusion coefficient. Al, Cr, and Mn cause a considerable 

reduction of oxygen mobility. The reason for this behavior is the so-called trapping 

mechanism due to the attractive interaction between the substitutional solute and O.  

Such a mechanism is also responsible for the huge decrease of the diffusion coefficient 

observed in the case of S, Ti, and Y. In all cases investigated the oxygen diffusion 

coefficient was still some orders of magnitude higher than that of the corresponding 

foreign atom. Therefore, the assumption that the substitutional solute can be 

considered to be immobile throughout the AKMC simulations is justified. The influence 

of  Al, Cr, Mn, S, Ti, and Y leads to deviations from the Arrhenius behavior of the 

oxygen diffusion coefficient. This is due to the significant temperature dependence of 

the ratio between residence times in the respective states. At the concentration of 

1.852 %  a “simultaneous interaction” of the diffusing oxygen atom with the solute and 

its periodic image may occur. In this rather artificial example of a non-dilute alloy a non-

monotonous dependence of the diffusion coefficient on concentration may be observed. 

The results of present investigations show a strong dependence of the oxygen 

diffusion coefficient on the kind of the substitutional atom. This changes the picture of 

oxygen diffusion in dilute ferritic iron alloys importantly. Future experimental work is 

required to study these dependencies in detail and to consider other trapping 

mechanisms which might compete with those considered in the present paper. In this 

context theoretical studies on the modification of oxygen diffusion by other traps than 

substitutional solutes may be useful. 
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Chapter 4 Efficient calculation method for the diffusion coefficient 

of interstitial solutes in dilute alloys 
 

4.1 Introduction 

In Chapter 3 separate AKMC simulations for different sizes of the simulation cell were 

performed in order to determine the dependence of the oxygen diffusion coefficient on 

the concentration of substitutional atoms. In this chapter an efficient method is 

presented which allows for the calculation of the diffusion coefficient for different 

concentrations based on results of AKMC simulations for only one size of the 

simulation cell. This leads to a tremendous decrease of computational efforts. 

4.2 Calculation method 

The calculation of the diffusion coefficient can be separated into a contribution related 

to the migration in the region of interaction between oxygen and the substitutional 

solute and a part related to diffusion in pure bcc Fe. At given temperature and 

concentration of substitutional atoms the diffusion coefficient of oxygen (or of another 

interstitial solute) can be written as  

 

free inter
free inter

total total

t t
D D D

t t
                                                                                                     (4.1a) 

with 

total free intert t t                                                                                                                    (4.1b) 

 

where freeD  is the diffusion coefficient of oxygen in pure bcc Fe, i.e. outside the region 

of influence by the substitutional solute, and interD  is the diffusion coefficient of oxygen 

inside the interaction region. The quantities 
freet  and intert correspond to the sum of the 

time periods for diffusion outside or inside the region of influence, respectively, and 

totalt is the total diffusion time. The value of freeD  is given by the known analytical formula 

(see section 2.3.4) 
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with the lattice constant a , as well as the migration barrier free

mE  and the attempt 

frequency 
0

free  in pure bcc Fe, i.e. 2.832a  Å, 0.512eVfree

mE  , and 
0 15.76THzfree 

(see section 3.2.2) The values of 
freet , intert , and totalt may be obtained from AKMC 

simulations as performed for the different solute concentrations or cell sizes in Chapter 

3. However, the time ratios in Eq. (4.1a) can be also expressed by analytical relations 

containing terms with probabilities for a certain interaction of oxygen with the 

substitutional solute.  
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 ( 1 2N   , 
2 4N  , 5 8N  , 6 8N  , 9 8aN  , 9 2bN  , 10 8N  ) 

 

These relations are based on the Gibbs distributions of the probability to find the 

system with the oxygen atom and the substitutional solute in any particular state (see 

Ref. [54]). The quantity i

bindE denotes the binding energy of the pair at the i th neighbor 

distance, Sc  is the concentration of the substitutional solute, and 
iN  is the possible 

number of substitutional solute sites in the i th neighborhood of oxygen. In the case of 

a dilute alloy (see Chapter 3) it  can be assumed that  interD  is nearly independent of 

the concentration of the substitutional solute (or the size of the AKMC simulation cell), 

since interD  is only determined by migration paths inside the region of influence by the 

substitutional solute. In this case AKMC simulation need to be used only once, i.e. for 

a certain concentration of the substitutional foreign atom, and the total diffusion 

coefficient D  can be then determined for the other concentrations using Eqs. (4.1-4.3). 

It is quite clear that such a method is much more efficient than performing separate 

AKMC simulations for different concentrations or cell sizes as done in Chapter 3.  
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The calculation method outlined above is applied to O diffusion under the influence 

of Ti, Cr, and Si substitutional atoms. The DFT data for binding energies and migration 

barriers determined in Chapter 3 are used. For better comparison the three 

characteristic examples are depicted once more in Fig. 4.1 (see also Fig. 3.3): (i) In 

the environment of Ti strong attractive states exist for oxygen at the 1st and 2nd neighbor 

distance and in this region the barriers are relatively high compared to that in perfect 

bcc Fe (0.512 eV). (ii) In the corresponding interaction region of Cr the attraction is 

weaker and the barriers are somewhat lower. (iii) Very weak attraction and repulsion 

dominates in the region near a Si atom and the migration barriers are rather different. 

According to the rule of detailed balance (see section 3.3.1) some barriers are modified 

since the binding energy at the neighbors 9a, 10, and at sites outside the 10th neighbor 

shell are set zero. Furthermore, the binding energy at neighbor 9b was also set to zero 

and the detailed balance was applied to change the respective barrier. 
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Figure 4.1 Migration barriers for oxygen in the environment of Ti (a), Cr (b), and Si (c). 

The red and blue numbers show the barrier height and the binding energy, respectively. 

The magenta lines and numbers show modifications of the original DFT data according 

to the rule of detailed balance (see text). 

4.3 Results and discussion 

4.3.1 The value of interD  



46 
 

 

Figure 4.2. Diffusion coefficients of oxygen inside ( interD ) and outside ( freeD ) the 

interaction region with Ti (a), Cr (b), and Si (c), for different concentrations Sc  (in 

at%) of these substitutional solutes. Note the that the data for  interD  for different Sc  

are nearly equal. 

Fig. 4.2 depicts data of interD determined by AKMC simulations for different cell sizes 

(concentrations of the substitutional foreign atoms): 32x32x32 bcc unit cells (0.0015%), 

16x16x16 unit cells (0.0122%), 8x8x8 unit cells (0.0977%), 6x6x6 unit cells (0.2315%), 

5x5x5 unit cells (0.4000%), and 4x4x4 unit cells (0.7813%), together with the oxygen 

diffusion coefficient freeD  in pure bcc Fe.  Ti, Cr, and Si substitutional solutes were 

considered and their influence on the diffusing oxygen is taken into account up to the 
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10th neighbor shell, see Fig. 4.1. The value of interD is indeed nearly independent of 

concentration as assumed in section 4.2. The more attractive the interaction of oxygen 

with a substitutional solute is, the larger is the difference between interD  and freeD , i.e. 

the lower is the value of interD . The Arrhenius plots show almost straight lines for interD  

since this quantity is related to migration paths where the diffusing oxygen atom passes 

repeatedly the interaction region. However, the motion of oxygen on these paths does 

not correspond to a migration in a lattice with an exactly periodic sequence of barriers. 

Therefore, slight deviations from a straight line in the Arrhenius plot are found [see Fig. 

4.2 (b)].  



48 
 

 

Figure 4.3 Relative deviation 
0 0

inter inter inter[ ( ) ( )] / ( )S S SD c D c D c  for different values of  

in the case of Ti (a), Cr (b), and Si (c) in dependence on temperature (
0

Sc =0.0015%). 

If the interaction region between oxygen and Ti is reduced to the 5th neighbour shell 

the deviations become smaller (d). 

Sc
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Figs. 4.3 (a-c) show the relative deviation of interD at concentrations Sc  of 0.0122%, 

0.0977%, 0.2315%, 0.4000%, and 0.7813% from that at 0

Sc =0.0015%, i.e. the quantity 

0 0

inter inter inter[ ( ) ( )] / ( )S S SD c D c D c . In general the relative deviations are small which is in 

accord with the finding from Fig. 4.2 where a logarithmic scale was used on the 

ordinate. However, the difference found for the two highest concentrations (0.7813 and 

0.4000 %) of the substitutional solute Ti cannot be explained by statistical fluctuations 

of the AKMC results. Obviously, in these cases the size of the AKMC simulation cell is 

too small to achieve a sufficient “randomization” of the trajectories of the migrating 

oxygen between successive passes through interaction regions. In other words, the 

entrance and exit points for migration to and from different interaction regions (or for 

migration in pure Fe) are slightly correlated which is not the case for low concentration. 

Here the term “different interaction regions” is related to successive passing of an 

interaction region with a sufficiently long migration in pure Fe in between. The above 

mentioned correlation leads to apparently longer diffusion paths in the interaction 

region since entrance point at the subsequent interaction region is preferentially on the 

side facing to the exit point from the preceding interaction region. This issue was 

considered in more detail by performing AKMC simulations for a case where the 

interaction region of oxygen with the substitutional foreign atom is reduced to the 5th 

neighbor shell. For this purpose, outside the 5th neighbor shell the binding energies 

were set to zero and the corresponding barriers were set equal to that in pure bcc Fe 

as well as the rule of detailed balance was applied in the transition region.  Fig. 4.3 (d) 

clearly shows that for 0.4000 and 0.7813% Ti the relative deviation is smaller than in 

Fig. 4.3 (a). Obviously, there is more space now for the “randomization” of the 

trajectories in pure Fe. The results presented in Fig. 4.3  show that in cases of strong 

attraction between O and the substitutional solute a minor dependence of interD  on 

concentration occurs at higher concentration values, whereas this is not observed for 

weak attraction or repulsion. This minor dependence is stronger at low temperature. 
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4.3.2 Time ratios 

 

Figure 4.4. The time ratios free total/t t  (left) and inter total/t t  (right) in dependence on 

temperature and concentration. 

The time ratios free total/t t  and inter total/t t  according to Eq. (4.3) are shown in Fig. 4.4.  

Due to the attraction between oxygen and Ti and between oxygen and Cr at the first- 

and second-neighbor distances, in these states the residence time of the diffusing 

atom is relatively high at low temperatures (see also section 3.3.2). This leads to high 

values for inter total/t t  and low values for free total/t t . The opposite behavior is found at high 

temperatures. The higher the concentration of the substitutional solute the lower 

(higher) are the values of free total/t t  ( inter total/t t ) at a given temperature. On the other hand, 
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the interaction between oxygen and Si is repulsive and weakly attractive. Therefore, 

inter total/t t  ( free total/t t ) is low (high) within the whole temperature range. 

A verification that the ratios free total/t t  and inter total/t t determined by Eq. (4.3) are 

equivalent to those calculated by separate AKMC simulations for different 

concentrations of the substitutional solutes is also important. It was found that the 

relative deviation of the AKMC data from those determined by Eq. (4.3) is below about 

2% in the temperature range between 500 and 2000 K, for all concentrations of Ti, Cr, 

and Si considered. These results justify the use of Eq. (4.3), in combination with Eqs. 

(4.1) and (4.2), to determine the total oxygen diffusion coefficient at given 

concentration and temperature.  

4.3.3 Total diffusion coefficient 

Data for the total diffusion coefficient D  of oxygen in the different dilute alloys are 

depicted in Fig. 4.5. They were calculated using four different methods: (i) by full AKMC 

simulations as in Chapter 3, (ii) by Eqs. (4.1) and (4.2), i.e. with interD , free total/t t  and 

inter total/t t  from AKMC simulations, (iii) by Eqs. (4.1)-(4.3), i.e. with a concentration-

independent value of interD  from  AKMC simulations (taken from Fig. 4.2 for the 

concentration of 0.0977%), and (iv) using the equation 

free
free

total

t
D D

t
                                                                                                                          (4.4) 

with  free / totalt t  from (4.3a). 
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Figure 4.5. Total diffusion coefficient D  of oxygen in dependence on temperature 

and solute concentration obtained by different calculation methods. Curves 

marked by ‘full’ show results from full AKMC simulations (see section 3.3.2).   ‘A’ 

denotes the data determined by Eqs. (4.1) and (4.2) with the time ratios and interD  

from AKMC simulations for the respective concentrations Sc . Data determined by 

(4.1)-(4.3) with interD  from AKMC simulations are marked by ‘B’, while results from 

(4.4) with free / totalt t  from (4.3) are denoted by ’C‘. The diffusion coefficient of 

oxygen in pure bcc Fe ( freeD ) is plotted as reference. For Cr or Si below 0.2315% 
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the difference between D  and freeD  is very small. Therefore these data are not 

shown. 

In Eq. (4.4) merely DFT binding energy data and the migration barrier of oxygen in 

pure bcc Fe are required. Fig. 4.5 clearly shows that the data obtained by methods (i-

iii) are more or less equal for the concentrations of substitutional solutes considered. It 

must be also stressed that the slight concentration dependence of interD  found at higher 

fractions of Ti is not visible in the Arrhenius plot for D  (Fig. 4.5).  In many cases, 

especially for low concentrations, even the data obtained by all the four methods agree 

very well. Under this condition D  can be easily obtained by Eq. (4.4) for which the 

knowledge of the binding energies i

bindE  and freeD is sufficient. This kind of calculation 

does not require any AKMC simulations. In the example of the substitutional solute Ti 

the data for D  in the Arrhenius plot show deviations from a straight line for 

concentrations below about 0.2315%. In this case the second term of Eq. (4.1a) is 

generally smaller than the first one so that temperature dependence is only determined 

by free / totalt t  times freeD , i.e. by Eq. (4.4). If the interaction with oxygen is repulsive and 

weakly attractive as in the case of Si, interD  is nearly equal to freeD  (see Fig. 4.2) and 

for higher concentrations both inter / totalt t  and free / totalt t  must be taken into account (see 

Fig. 4.4). Therefore, in Figs. 4.5 the results obtained by Eq. (4.4) slightly differ from the 

others at concentrations of 0.7813 and 0.4000%. At lower concentrations D  becomes 

more or less equal to freeD .  

4.4 Conclusions 

In conclusion, effective procedures to determine the diffusion coefficient of 

interstitial oxygen in dilute ferritic iron alloys have been presented and the limits of their 

applicability are discussed. In comparison with investigations on interstitial oxygen 

diffusion in Chapter 3, AKMC simulation must be performed only for one concentration 

of the substitutional solute which leads to a considerably shorter computing time. For 

sufficiently low concentrations of substitutional atoms (below 0.2315 at. %), it is even 

possible to determine the oxygen diffusion coefficient using an analytical expression 

where only diffusion coefficient of oxygen in pure bcc Fe and binding energies of 

oxygen and substitutional solutes at different neighbor distances are needed, i.e. no 

further AKMC calculation is required. The calculation methods described in this chapter 
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can be used for other interstitial diffusers in dilute iron alloys and also to interstitial 

diffusion in other host materials with small concentrations of substitutional solutes. 

The method described above may be also called cluster expansion approach of 

diffusion. A similar but more general approach which is based on the self-consistent 

mean field approach was recently developed by other authors [55-57]. In Appendix III 

it is shown that that approach and the method presented in this chapter lead to nearly 

identical results. 
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Chapter 5 Mutual dependence of oxygen and vacancy diffusion in 

bcc Fe and dilute iron alloys 

5.1 Introduction 

The focus of the present chapter is on the mutual dependence of oxygen and 

vacancy diffusion in bcc Fe and dilute iron alloys. DFT calculations are used to 

determine the binding energy between oxygen and the vacancy for different distances, 

and to obtain the migration barriers for oxygen in the environment of a vacancy and for 

the vacancy in the environment of an oxygen atom. Using the data determined by DFT 

as inputs for the efficient calculation method described in Chapter 4, the simultaneous 

migration of O and v is considered. At first the diffusion coefficients of oxygen in a 

model system with fixed vacancy concentrations, the diffusion coefficients of the 

vacancy for fixed oxygen concentrations, and the diffusivity of the Ov pair are 

determined. In reality the vacancy and oxygen concentrations in dilute Fe-based alloys 

are determined by the thermal equilibrium with other foreign atoms and intrinsic defects 

or are affected by external conditions. Vacancy concentrations significantly above the 

equilibrium value in pure bcc Fe may occur due to irradiation, strong plastic 

deformation, mechanical alloying, etc. An example of the latter case is the production 

of Oxide Dispersion Strengthened (ODS) Fe-based alloys using powder technology. In 

this chapter the oxygen and vacancy diffusion in the first stage of thermal processing 

of the ODS alloys is investigated using the DFT data for binding and migration energies. 

Since the initial powder contains not only relatively high concentrations of oxygen and 

vacancies but also Y and Ti, the influence of these most relevant substitutional solutes 

is also considered. In contrast to O and v the substitutional atoms Y and Ti can be 

assumed to be immobile. In the last part of this chapter O and v diffusion is studied for 

pure bcc Fe with an oxygen content close to the thermal solubility. The calculated 

diffusion coefficient of oxygen is compared with the few available experimental data. 

5.2  DFT Calculations 

5.2.1 Computational method 

The calculations were performed within the framework of DFT as implemented in 

the Vienna ab initio simulation package (VASP) [25-27]. The same settings as in 

section 3.2.1 were employed: (i) Pseudopotentials generated by the projector-

augmented wave [29,30] approach were used. (ii) Exchange and correlation effects 
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are described by the generalized gradient approximation with the Perdew-Burke-

Ernzerhof parametrization [24]. (iii) A supercell consisting of 4 4 4    bcc unit cells was 

considered and a 3 3 3   k  point grid was employed for the Brillouin-zone sampling 

within the Monkhorst-Pack scheme [31]. (iv) For the integration in the reciprocal space 

the Methfessel-Paxton smearing method [45] was applied with a width of 0.2 eV. (v) 

All calculations were carried out within the framework of the spin-polarized formalism 

and with a plane-wave cutoff energy of 500 eV. (vi) After introduction of foreign atoms 

or of a vacancy into the supercell, the position of atoms as well as the volume and 

shape of the supercell were relaxed so that the total stress/pressure of the supercell 

tends to zero. (vii) The convergence criteria were set to 10-2 eV/Å and 10-5 eV for the 

residual force per atom and the change of total energy in one iteration step, 

respectively.  

As shown in previous investigations [42-44,46-48], oxygen prefers the octahedral 

interstitial sites in bcc Fe, and the most stable site for vacancy is the bcc lattice site. 

 

 

Figure 5.1 (a) Examples for octahedral interstitial sites of oxygen (red) in the 

neighborhood of a vacancy (green). Neighbors inside the interaction region 

considered in DFT calculations are marked by black numbers.  The gray spheres 

represent Fe atoms. (b) Examples for bcc sites of the vacancy (green) in the 

neighborhood of an oxygen atom (red).  The meaning of the black numbers is the 

same as in (a). 

Fig. 5.1 (a) [Fig. 5.1 (b)] illustrate the neighboring octahedral interstitial (substitutional) 

sites of a vacancy (oxygen) up to the 10th neighbor position. The notation and 
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numbering of the neighbor positions is according to the scheme for the underlying 

simple cubic lattice (see Chapter 3 and [15,58]) which consists of bcc lattice sites and 

all octahedral interstitial sites of the bcc lattice. Within this scheme oxygen cannot 

reside on third-neighbor, fourth-neighbor, seventh-neighbor, eighth-neighbor, etc., 

positions of the vacancy since these sites are already occupied by iron atoms. 

Furthermore, there are two different ninth-neighbor sites (9a and 9b).  

The binding energy of an oxygen-vacancy (Ov) pair at a certain distance is 

determined by 

     0Ov v ObindE E E E E    ,                                                                                       (5.1) 

with 
0E   as the total energy of the perfect bcc Fe supercell.  OvE ,  vE , and  OE  

denote the total energy of the supercell  with the Ov pair, with a single vacancy, and a 

single oxygen atom, respectively. Negative values of the binding energy mean that the 

interaction is attractive. 

The minimum energy paths and the respective migration barriers for oxygen and 

the vacancy were calculated using the standard nudged elastic band (NEB) method 

and, subsequently, the climbing-image NEB method, see section 2.3.2. For 

comparison, also the solid-state NEB [59] was employed in some cases. The results 

do not differ significantly from those obtained by the combination of standard NEB and 

climbing-image NEB. For all these calculations the vtsttools  [60] provided by the 

Henkelman group at the University of Texas (Austin) were used. 

5.2.2 Binding energy of oxygen-vacancy pairs at different distances 

The binding energies of the Ov pair up to the 10th neighbor distance are 

summarized in Table 5.1. The most attractive state is found for the first neighbor 

distance, and the attraction is still appreciable at the second neighbor distance. With 

increasing distance, the interaction becomes weaker. Most of the binding energy data 

determined in the present work are consistent with previous DFT results 

[15,16,43,44,47]. 
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Table 5.1 Binding energy of the Ov pair at different distances between O and v (see Fig. 5.1). In this work the pair at the 6th neighbor 

distance was found to be not stable, i.e. the vacancy relaxes to the first neighbor distance with respect to O.  The value with asterisk (-

0.34 eV) corresponds to the binding energy at a transition state which was found during the relaxation calculations (see text). DFT data 

from literature are also given. 

 

Neighbour position 

 

1 

 

2 5 6 9a 9b 10 

bindE (eV) 

-1.596 

-1.52 [15] 

-1.53 [16] 

-1.45 [42] 

-1.65 [43] 

-1.69 [44] 

-0.697 

-0.58 [15] 

-0.65 [16] 

-0.60 [42] 

-0.75 [43] 

-0.73 [44]  

-0.126 

-0.05 [15] 

-0.08 [16] 

-0.14 [44] 

-0.34* 

-0.35 [15] 

-0.37 [44] 

0.019 

0.01 [47] 

0.138 

0.22 [47] 
0.015 
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A peculiarity was found for O and v at the 6th neighbor distance. This state is not 

stable, i.e. during relaxation calculation the vacancy moves to the first neighbor 

distance with respect to O. This result could be also reproduced with supercells 

containing 3 3 3   and 5 5 5  bcc unit cells and in a calculation with a higher precision 

(convergence criteria 10-4 eV/Å and 10-9 eV for force and energy change, respectively) 

for a supercell with 4 4 4   unit cells. For a supercell with 4 4 4   bcc unit cells also 

relaxation calculations at constant volume were performed, and the result was very 

similar to that obtained by the other calculations. The relaxation process was studied 

in more detail, and it was found that before completely relaxing to the 1st neighbor 

distance a transition state of the Ov pair can be identified. For this non-stable state, a 

“quasi-binding energy” of about -0.34 eV could be estimated. This value is very similar 

to that obtained in previous DFT calculations (-0.37 eV [44], -0.35 eV [15]) for the 

binding energy of the Ov pair at the 6th neighbor distance. In contrast to the result of 

this work these authors consider the Ov pair at the 6th neighbor distance as a 

(meta)stable. On the other hand, Barouh et al. [15] found that the migration barrier for 

the vacancy jump from the 6th to the 1st neighbor distance is 0, which is in accord with 

the result of the present work, showing that the Ov pair at the 6th neighbor distance is 

not really stable. 

From previous DFT calculations it is known that the incorporation of an oxygen 

atom on an octahedral interstitial site of the bcc Fe lattice leads to considerable 

tetragonal distortion whereas the distortion due to the first-neighbor Ov pair is much 

smaller (see [48]). In the present work tetragonal distortions are also found for 1st, 2nd, 

and 9th neighbor Ov pairs. The instability of the 6th neighbor pair could be explained by 

the fact that such an atomic configuration causes very strong distortions, leading to an 

immediate relaxation towards the 1st neighbor pair. 

5.2.3 Migration barriers 

5.2.3.1 Oxygen and vacancy migration in pure bcc Fe 
 

Oxygen diffusion in perfect bcc Fe was already treated in section 3.2.2. Vacancy 

migration from one bcc site to the nearest neighbor bcc site corresponds to a jump of 

a Fe atom in the opposite direction. NEB calculations showed that the minimum energy 

path is a straight line with a migration barrier of 0.695 eV. This value is in good 

agreement with previous DFT results (0.68 eV [48], 0.64 eV [61], 0.65 eV [62], 0.67 eV 



61 
 

[63], 0.68 eV [64], 0.66 eV [65], 0.67 eV [66]). The saddle point of the nearest neighbor 

vacancy jump corresponds to the atomic configuration with the jumping Fe atom in the 

middle between the original and the final site of the vacancy. It should be noticed that 

the jump distance of the vacancy corresponds to a third neighbor distance in the 

underlying simple cubic lattice. Using the calculation method described in Chapter 2, 

an attempt frequency of 15.33 THz was obtained for the vacancy jump in pure bcc Fe. 

This value is comparable with the result (11.6 THz) of recent DFT calculations [52]. 

Investigations of vacancy jumps over second and third neighbor distances of the bcc 

lattice showed that in pure bcc Fe these long-distance jumps consist of successive 

nearest neighbor jumps between bcc lattice sites. It is worth mentioning that different 

Fe atoms take part in these successive nearest neighbor jumps of the vacancy. 

Since the migration barriers of O (0.512 eV) and v (0.695 eV) are in the same order 

of magnitude, the mobility of both species must be considered in order to determine 

the diffusion coefficient of oxygen in bcc Fe in the presence of a vacancy and to 

calculate the diffusion coefficient of the vacancy in the presence of oxygen. This is 

different to investigations in Chapter 3 on the influence of substitutional foreign atoms 

on the migration of oxygen, with O as the only mobile species. 
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5.2.3.2 Vacancy influence on oxygen migration barriers, and oxygen influence 
on vacancy migration barriers 
 

 

Figure 5.2 Minimum energy path of the cage jump of oxygen. The large green 

sphere represents the vacancy.   

(a) Cage jumps of oxygen. Since the presence of a vacancy is related to 

additional free volume, the oxygen atom can jump from one nearest neighbor site with 

respect to the vacancy to another. The corresponding jump length is the second 

neighbor distance between octahedral interstitial sites. This process is called cage 

jump [15] and is illustrated in Fig. 5.2. A barrier height of 0.576 eV was obtained from 

NEB calculations. Barouh et al. [15] got a lower value (0.40 eV) which might be 

explained by the fact that they used the DFT code SIESTA and the drag method to 

determine migration barriers. The value of 0.576 eV is slightly higher than that for the 

first neighbor jump of oxygen in pure Fe (0.512 eV, see Chapter 3), but considerably 

lower compared to barriers for oxygen or for the vacancy which must be overcome to 

escape the state of the nearest neighbor Ov pair (see below). Therefore, the cage jump 

is the most probable jump once oxygen and vacancy are trapped at this strong 
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attractive state. However, as already pointed out by Barouh et al. [15] the cage jump 

of oxygen around the first-neighbor vacancy does not really contribute to net diffusion 

of oxygen, the vacancy, and the oxygen-vacancy pair. 

(b) Nearest neighbor O and v jumps as well as simultaneous jumps of O and 

v. In order to calculate the possible migration barriers by the NEB method two cases 

were considered: (i) oxygen jumps if the vacancy position is fixed, and (ii) vacancy 

jumps if the oxygen position is fixed. The connectivity plot depicted in Fig. 5.3 (a) 

illustrates all potential jumps of O and v within the interaction region, i.e. up to the 10th 

neighbor distance. The dotted and dashed lines mark jumps that are not possible in 

reality, due to the instability of the Ov pair at the 6th neighbor distance (see above) and 

because of the problem with the vacancy jump between states 2 and 5 (see below), 

respectively.  

 

 

Figure 5.3 Graphical representation of possible jumps of oxygen and the vacancy 

between different neighbor positions (connectivity plots). Potential jumps (O: red, v: 

green) including the 6th neighbor position are depicted in (a). However, the instability 

of the Ov pair at the 6th neighbor distance makes jumps marked by dotted lines 

impossible. For other reasons (see text) the direct vacancy jump marked by the 
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dashed line is not possible. Figure (b) illustrates the really relevant neighbor positions 

and jumps. Jump barriers for forward and backward jumps are given in eV, e.g. for 

oxygen jump from 2 to 5 the barrier is 0.769 eV, while it is 0.198 eV for the jump from 

5 to 2. In both figures the binding energy of the Ov pair at given distance is marked 

by blue color. The black italics numbers in figure (b) show the binding energies and 

migration barriers modified due to the rule of detailed balance (see text). 

Fig. 5.3 (b) shows the barriers for oxygen jumps between nearest neighbor 

octahedral sites, in the neighborhood of the vacancy (1-2, 2-5, 5-10, and 9b-10), as 

well as the barrier for the cage jump. The values for the O jumps from 1 to 2 and 2 to 

1 as well as from 2 to 5 and 5 to 2 are consistent with results of Barouh et al. [15]. The 

data for vacancy jumps between nearest neighbor bcc lattice sites, in the neighborhood 

of oxygen (1-2, 2-9a, 5-10, 9a-10), are also given in Fig. 5.3 (b). As already mentioned, 

in the present work migration barriers were determined up to the 10th neighbor distance. 

It is assumed that at larger distances the interaction between O and v is negligible so 

that in this region the migration energies of both species correspond to that in pure bcc 

Fe.  

If the Ov pair at the 6th neighbor distance were stable, both O and v could jump 

between the 5th and the 6th neighbor as well as between the neighbors 9a and 6, see 

Fig. 5.3 (a). These two cases are worth investigating in more detail. Due to the 

instability of the Ov pair at the 6th neighbor distance the attempt of an oxygen jump 

from 5 towards 6 causes a simultaneous (or coupled) vacancy jump so that finally both 

species are at the 1st neighbor distance. NEB calculations yield a barrier of 0.442 eV 

for such a simultaneous jump of both O and v. Fig. 5.4 shows the initial, intermediate, 

and final atomic configurations for this case. The opposite jump has a much higher 

barrier (1.912 eV). Also the attempt of an oxygen jump from 9a towards 6 leads to a 

simultaneous v jump which results in a final configuration with both species at the 1st 

neighbor distance. The barrier of this simultaneous jump is 0.285 eV, and the initial, 

intermediate and final atomic configurations are also depicted in Fig. 5.4. The barrier 

for the opposite jump is 1.899 eV.  It is interesting that in the cases illustrated in Fig. 

5.4 the relatively high barriers for the jumps between 1 and 5 as well as between 1 and 

9a are comparable with the barrier for the jump of the vacancy from 1st to 2nd neighbor 

of O [Fig. 5.3 (b)], and these barriers are somewhat higher than the combination of 

successive jumps of O from 1 to 2 and from 2 to 5 (1.667 eV). The two simultaneous 



65 
 

jumps of Fig. 5.4 are marked by magenta color in the connectivity plot depicted in Fig. 

5.3 (b). 
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Figure 5.4 Atomic configurations illustrating the simultaneous (or coupled) jumps 

between the 1st  and the 5th  neighbor position (a) and between the neighbor 

positions 1 and 9a (b). The scale on the ordinate concerns the binding energy of 

the Ov pair (see Table 5.1). 

A barrier for the direct vacancy jump between the 2nd and the 5th neighbor of O 

could be not determined by the NEB method due to lacking convergence. Therefore, 

these jumps are not considered in the present work. It might be possible that Barouh 

et al. [15] faced a similar problem, since they did not show results for those jumps. 

Obviously, the difficulty to determine the above mentioned barriers is caused by the 

negligible barrier (0.003 eV) for the O jump between the 2nd and the 1st neighbor of v: 

If v attempts to jump from the 2nd to the 5th neighbor of O, at first the oxygen atom may 

migrate to the 1st neighbor octahedral interstitial site of v. Then, the first simultaneous 

jump mechanism as described above may occur, i.e. O and v are initially at the 1st 

neighbor distance, and finally at the 5th neighbor distance. These assumptions are 

supported by the fact that the (not fully convergent) NEB calculations for the direct 

vacancy jump between the 2nd and the 5th neighbor of oxygen yield a local minimum 

with an atomic configuration and a binding energy which correspond to O at the 1st 

neighbor site of the v. 

5.3 AKMC basics and determination of diffusion coefficients in a model system 

In order to use the NEB data for migration barriers in AKMC simulations in a 

consistent manner, the rule of detailed balance must be obeyed 

, ,i j j i j i

m m bind bindE E E E                                                                                                              (5.2) 
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(see Chapter 3) for all the O and v jumps shown in the connectivity plot of Fig. 5.3 (b). 

k

bindE  and ,k l

mE  are the binding energy between O and v at the k th neighbor distance 

and the migration barrier for the jump between the k th and l th neighbor distance, 

respectively. In present AKMC simulations the binding energy of the Ov pair at and 

beyond the 9th neighbor distance was set to zero and in these regions the migration 

energy of O and v was set to the corresponding values in pure bcc Fe. Therefore, some 

of the NEB barriers at the rim of the interaction region had to be modified using Eq. 

(5.2). The modified data are also shown in Fig. 5.3 (b). 

In AKMC simulations a rigid lattice consisting of bcc lattice sites and octahedral 

interstitial sites is used. Therefore, the simultaneous (or coupled) jumps must be 

described in an approximate manner. In the case shown in Fig. 5.4 (a), in the forward 

direction v jumps from the 1st to the 6th neighbor position (barrier 1.912) eV), afterwards 

O is simply shifted to the 5th neighbor position of v. In the opposite direction O jumps 

from the 5th to the 6th neighbor position of v (barrier 0.442 eV), then v is shifted to the 

1st neighbor position of O. The jump depicted in Fig. 5.4 (b) is also modeled in two 

steps. In one direction v jumps to the 6th neighbor distance (barrier 1.899 eV) followed 

by the shift of O to the neighbor position 9a.  In the other direction, O jumps to the 6th 

neighbor distance (barrier 0.304 eV, correction due to detailed balance), followed by a 

shift of v to the 1st neighbor distance of O. 

The AKMC simulations used here are based on the residence time algorithm as 

described in section 2.3.5. However, not only oxygen but also the vacancy must be 

considered as mobile. In Chapter 4, an efficient method was presented to determine the 

diffusion coefficient of oxygen in bcc Fe under the influence of a low concentration of 

foreign atoms at substitutional site. Such a procedure is also used here. In the following 

two subsections a model system with fixed vacancy or oxygen concentrations is 

considered in order to demonstrate the effect of vacancies on O diffusion and the 

influence of oxygen on v diffusion. In the following more realistic examples are studied. 

5.3.1 The diffusion coefficient of oxygen in the presence of vacancies 

For a given temperature and a given (sufficiently low) concentration of vacancies 

the diffusion coefficient of O can be determined according to section 4.2 
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inter
inter

total total

free

free

t t
D D D

t t
                                                                                                         (5.3a) 

with 

total interfreet t t                                                                                                                       (5.3b) 

The first and second term is related to the diffusion of oxygen in perfect bcc Fe and 

within the region of interaction between oxygen and a vacancy, respectively. 
freeD  

denotes the diffusivity of oxygen in pure Fe, and interD  denotes the diffusivity of oxygen 

in the interaction region. 
freeD  can be obtained by the analytical expression (see 

section 2.3.4) 

2

0 exp
6

free
free m

free

B

Ea
D

k T


 
  

 
,                                                                                                  (5.4) 

with the attempt frequency 0

free =15.76 THz and the migration barrier free

mE  = 0.512 eV, 

while a = 2.832 Å is the lattice constant in bcc Fe (see also section 4.2). The diffusion 

coefficient interD  must be determined by AKMC simulations taking into account that O 

as well as v are mobile. In the dilute limit, which is considered throughout the present 

work for the concentrations of species that influence O (or v) diffusion, interD is nearly 

independent of the concentration of these species, i.e. nearly independent of the size 

of the AKMC simulations cell, see Chapter 4. Therefore, interD  can be determined by 

AKMC calculations for only one specific v concentration.  In the interaction region the 

jumps are simulated using the attempt frequencies  0

free for O (or v) and barriers 

according to Fig. 5.3 (b).  The quantities 
freet  and intert  denote the sum of the time 

periods for diffusion outside and inside the interaction region, respectively, and totalt is 

the total diffusion time. 

The time ratios in Eq. (5.3a) are given by the analytical expressions (see Chapter 

4), 

v

total

v v

1

(Ov)
1 exp

i
free i

i

bind
i i

i i B

N C
t

t E
N C N C

k T




 

   
 



 
          1,2,5i                                            (5.5a) 
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v
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i
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i
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i

bind
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E
N C

k Tt
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 
 
 

 
   

 



 

                                                                 (5.5b)                                                                                                            

( 1 2N   , 
2 4N  , 5 8N  ), 

with the vacancy concentration 
vC , and the binding energy (Ov)i

bindE of the Ov pair at 

the i th neighbor distance (see Table 5.1, neighbor denotation according to Fig. 5.1), 

and 
iN  is the number of possible vacancy sites at the i th neighbor distance from O. 

Here neighbors beyond 5i   are not taken into account because of the low binding 

energy. Note that in the dilute limit vi

i

N C  is small compared to 

v

(Ov)
exp

i

bind
i

i B

E
N C

k T

 
 
 

 . 

As already discussed in Chapter 4, the use of relations such as Eqs. (5.3)-(5.5) to 

calculate  the diffusion coefficient D  for different vacancy concentrations is much more 

efficient than performing separate AKMC calculations for each concentration using 

simulation cells with different sizes. This method requires only one AKMC simulation 

to determine interD  and in the remaining calculations one can employ analytical 

expressions for 
freeD  and the time ratios. In the present case  interD  was obtained by 

AKMC simulations for a vacancy concentration of 0.0977 at%, i.e. using a simulation 

box consisting of 8x8x8 bcc unit cells with one mobile O atom and one mobile vacancy. 

In the Arrhenius plot inter ( )D T  is almost straight line, from which the effective activation 

energy of about 2.0 eV was derived. The time ratios 
total/freet t   and inter total/t t  are 

depicted in Fig. 5.5, for vacancy concentrations of 0.0015, 0.0122, 0.0977, 0.2315, 

0.4000, and 0.7813%. With increasing temperature, inter total/t t  decreases while 

total/freet t  increases. Due to the strong attraction, in particular at the 1st neighbor 

distance, the quantity 
total/freet t  rapidly decreases if the vacancy concentration 

increases. For concentrations above 0.0977% 
total/freet t  is nearly zero and inter total/t t  is 

nearly 1, even at elevated temperatures. At low temperature 
tota/free lt t converges to zero 

and inter total/t t  approaches 1. 
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Figure 5.5 The time ratios  
total/freet t  (a) and  inter total/t t   (b) for oxygen, in dependence 

on temperature and vacancy concentration. 
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Figure 5.6 The total diffusion coefficient of oxygen for given concentrations of 

vacancies (a), and the total diffusion coefficient of the vacancy for different oxygen 

concentrations (b). The corresponding data of   
freeD  (cyan) and interD  (violet) are 

also shown. 

Fig. 5.6 (a) illustrates the total diffusion coefficient of oxygen in bcc Fe in 

dependence on the vacancy concentration.  The data of D  are between the values of 

the diffusion coefficient of oxygen in pure Fe (
freeD ) and that inside the region 

influenced by the vacancy ( interD ). The presence of vacancies significantly decreases 

the mobility of oxygen. For example, at 800 K and a concentration of 0.0015 at% the 

diffusion coefficient is five to six orders of magnitude lower than that in pure bcc Fe. 

With increasing vacancy concentration the reduction of D  becomes slower and the 

value approaches that of interD .This is mainly due to the quick decrease of total/freet t with 

increasing v concentration. Note that in this work temperatures below 800 K were not 



72 
 

considered, since in these cases AKMC simulations require extremely long computing 

times. 

The total diffusion coefficient D  can be also determined by  

total

free

free

t
D D

t
                                                                                                                          (5.6) 

if the interaction part inter
inter

total

t
D

t
 is negligibly small compared to 

total

free

free

t
D

t
 [see Eq. (5.3a)].  

It is found that at concentrations of 0.0015, 0.0122 and 0.0977 at% the total diffusion 

coefficient can be well reproduced by Eq. (5.6). At higher vacancy concentrations 

results obtained by (5.6) deviate from those determined by Eq. (5.3a). This is due to 

the fact that in these cases both terms of Eq. (5.3a) must be taken into account, their 

absolute values are very small but comparable.  

5.3.2 The diffusion coefficient of the vacancy in the presence of oxygen 

The method used in the last section to evaluate the diffusion coefficient of oxygen 

is also applied to study vacancy diffusion. The data for the diffusion coefficient of v in 

the interaction region with O ( interD ) were determined by AKMC simulations in a similar 

manner as interD  for oxygen. Within the statistical accuracy of the AKMC data interD for 

v is nearly equal to interD for O, with an effective activation energy of about 2.0 eV. The 

time ratios 
total/freet t   and inter total/t t  used in the determination of the vacancy diffusion 

coefficient are calculated in a similar manner as in the case of the oxygen diffusion 

coefficient. The value of  
freeD  for the vacancy is given by  

2

0 exp
free

free m
free

B

E
D a

k T


 
  

 
,                                                                                                   (5.7) 

with free

mE  0.695 eV  and  0

free =15.33 THz  (see sections 2.3.4 and 5.2.3.1). 

Considering both v and O jumps, AKMC simulations are performed in order to 

determine the diffusion coefficient of v in the interaction region with O. The total 

diffusion coefficient of the vacancy is illustrated in Fig. 5.6 (b) for oxygen concentrations 

of 0.0015, 0.0122, 0.0977, 0.2315, 0.4000, and 0.7813 at %. The slope of these curves 

is slightly steeper than that of the curves for O [Fig. 5.6 (a)] because of the somewhat 
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steeper slope of 
freeD  for the vacancy. The influence of O on the v diffusion coefficient 

is comparable with the influence of v on O diffusion: At 800 K and an oxygen 

concentration of 0.0015% the diffusion coefficient is about five to six orders of 

magnitude lower than that in pure bcc Fe. 

All the data presented in this chapter are strictly valid for ferromagnetic iron, i.e., 

below the Curie temperature of 1043 K. The temperature dependence of the 

spontaneous magnetization is not taken into account in the calculation of the basic 

DFT data (binding and migration energy), i.e., for bcc iron always the ground state 

value of magnetization is assumed. Furthermore, above about 1183 K the fcc phase is 

most stable, and not bcc Fe. On the other hand, in this work temperatures up to 2000 

K are considered in order to verify that the total diffusion coefficient of oxygen and of 

the vacancy (see Fig. 5.6) approaches the corresponding values for pure bcc Fe at 

sufficiently high temperature, and in order to study the hypothetical high-temperature 

behavior of other quantities. 

5.3.3 The diffusion coefficient of the oxygen-vacancy pair  

In AKMC simulations the position of the Ov pair is defined as the middle point 

between oxygen and vacancy. The calculation of the diffusion coefficient of the Ov pair 

is very similar to the determination of interD  for O and v. Fig. 5.7 depicts the result. The 

activation energy for Ov migration is about 1.95 eV, i.e. only slightly smaller than the 

activation energies found for interD  of O and v (see above). This value may be the result 

of a simultaneous jump from 1st to 5th neighbor position, followed by an oxygen jump 

from the 5th to the 2nd neighbor position [see Fig. 5.3 (b)]. Finally, O jumps to 1st 

neighbor position of v with a negligible barrier of 0.003 eV. During this process the Ov 

pair has moved by a distance of a 1st neighbor distance in bcc Fe (or a 3rd neighbor 

distance in the underlying simple cubic lattice). The most probable minimum energy 

path for the migration of the Ov pair is illustrated in detail in Fig. 5.8.  The scale in Fig. 

5.8 concerns the binding energy of the Ov pair. The difference between the lowest 

value (about -1.6 eV, see also Table 5.1) and the highest value gives about 1.95 eV, 

i.e. the activation energy extracted from Fig. 5.7. for Ov pair migration. The present 

results are also in good agreement with the global migration energy of 1.90 eV 

determined by Barouh et al. [10] for the Ov pair. The dissociation energy of the Ov pair 

calculated by the sum of the absolute value of the 1st neighbor binding energy and the 
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oxygen migration energy in pure bcc Fe is about 2.11 eV which is 0.16 eV higher than 

the activation energy of pair migration. This estimation shows that pair migration is 

more probable than dissociation. 

 

Figure 5.7 Diffusion coefficient of the Ov pair (inside the interaction region), 

determined by AKMC simulations, with one mobile oxygen and one mobile vacancy. 

 

Figure 5.8 Minimum energy path for the migration of the Ov pair. The scale on the 

ordinate concerns the binding energy of the Ov pair (see Table 5.1). 
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5.4 Oxygen and vacancy diffusion in the first stage of thermal processing of 
ODS Fe-based alloys  

In the calculation of the data shown in Figs. 5.5, 5.6, and 5.7 constant vacancy and 

oxygen concentrations are assumed which are still rather low, but much higher than in 

pure bcc Fe at the thermal equilibrium [5,8-10,67]. A supersaturation of vacancies can 

occur under extreme conditions, e.g. under irradiation, plastic deformation, and 

mechanical alloying. The latter method is employed in the production of Oxide 

Dispersion Strengthened (ODS) Fe-based alloys using powder technology. These 

materials are considered as promising candidates for structural materials of future 

fusion and fission reactors [4]. The mechanical alloying or milling process produces a 

lot of empty volume which may be considered as an additional source of vacancies. 

Furthermore, it is generally supposed that milling of a mixture containing a Fe-based 

alloy as well as Ti, and Y2O3  leads to a nearly complete dissolution of yttria (Y2O3)  

[68,69]. Typical total O, Y, and Ti concentrations ( total

OC , total

YC , total

TiC ) are 0.18, 0.12, and 

1.05 at%, respectively (MA957 alloy see [68-70]). These data are used in the following 

considerations. Note, that total

OC  is much higher than the thermal solubility of oxygen in 

bcc Fe. The strong attraction between oxygen and the vacancy, between O and Y, and 

between Y and the vacancy (see below) is assumed to be decisive for the high oxygen 

and Y incorporation ability of the ODS Fe-based alloys. The thermal processing of the 

ODS alloy is a complex and time consuming process which includes hot isostatic 

pressing or hot extrusion, and additional annealing (see e.g. [71-75]). In the following 

the thermal treatment is described in a very simple manner by assuming equilibrium 

between O, Y, Ti, and vacancy monomers on the one hand and Ov, vY, vTi, OY, and 

OTi pairs on the other hand. This may correspond to the first phase of the thermal 

processing, i.e. to the beginning of the formation of the characteristic ODS clusters 

which contain of O, v, Y and Ti. Any mechanical effects such as pressure and 

deformation are neglected in these considerations.    

If only the most stable pairs: 

 Ov at 1st neighbor distance (
bindE = -1.596 eV), and at 2nd neighbor distance (-

0.697 eV), 

 OY at 2nd neighbor distance (-1.01 eV, see Table 3.1), and at 5th neighbor 

distance (-0.336 eV, see Table 3.1), 
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 OTi at 1st  neighbor distance (-0.372 eV (see chapter 3)), and at  2nd neighbor 

distance  (−0.593 eV, see Table 3.1 ), 

 vY  at 3rd neighbor distance   (-1.26 eV [53]), and 

 vTi  at 3rd  neighbor distance (-0.25 eV [52]) 

are taken into account,  the following four equations must be solved to determine the 

concentrations of O, Y, and Ti monomers, 
OC , YC , and TiC , respectively, and the total 

vacancy concentration  total

vC . These relations correspond to Lomer’s equation [76] and 

are similar to expressions recently published by Schuler et al. [67]. 

Equation for the total vacancy concentration  total

vC : 

 total

v v v v1C C A B                                                                                                           (5.8a) 

with  

v O Y Ti6 8( )A C C C                                                                                                          (5.8b) 

1 2

v O O

3 3

Y Ti

(Ov) (Ov)
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bind bind

B B

bind bind

B B

E E
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k T k T
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k T k T

   
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   

   
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                                                      (5.8c) 

Equation for the total oxygen concentration total

OC : 

 total

O O O O1C C A B                                                                                                         (5.9a) 

with 

O v Y Ti6 12 6A C C C                                                                                                          (5.9b) 

1 2 2

O v v Y

5 1 2

Y Ti Ti

(Ov) (Ov) (OY)
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(OY) (OTi) (OTi)
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bind bind bind
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B C C C

k T k T k T

E E E
C C C

k T k T k T

     
          

     

     
          

     

  (5.9c) 

Equation for the total Y concentration total

YC : 
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 total

Y Y Y Y1C C A B                                                                                                         (5.10a) 

with 

Y O v12 8A C C                                                                                                                    (5.10b) 

2 5 3

Y O O v

(OY) (OY) (vY)
4exp 8exp 8expbind bind bind

B B B

E E E
B C C C

k T k T k T

     
          

     
      (5.10c) 

 

Equation for the total Ti concentration  total

TiC : 

 total

Ti Ti Ti Ti1C C A B                                                                                                        (5.11a) 

with 

Ti O v6 8A C C                                                                                                                     (5.11b) 

1 2 3

Ti O O v

(OTi) (OTi) (vTi)
2exp 4exp 8expbind bind bind

B B B

E E E
B C C C

k T k T k T

     
          

     
    (5.11c) 

3 (vY)bindE  and 3 (vTi)bindE  denote binding energies at the 1st  neighbor distance of the 

bcc lattice which corresponds to the 3rd neighbor distance in the underlying simple 

cubic lattice. Note that in bcc Fe the interaction between Y and Ti is repulsive and is 

therefore not considered in Eqs. (5.8)-(5.11) [77]. In these equations, the quantity B  

times the corresponding monomer concentration characterizes the concentration of 

the considered species (O, v, Y, Ti) within pairs. The quantity 1 A  times the 

corresponding monomer concentration characterizes the concentration of the species 

which are not in pairs. 

It must be mentioned that the thermodynamic approach given in Eqs. (5.8)-(5.11) can 

be considered as  a cluster expansion truncated after the pair term. A more general 

method which allows the consideration of larger cluster was developed recently by 

other authors [47,67,78]. 

In the thermal equilibrium the concentration of single vacancies (monomers) is 

given by 
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v exp
f

F

B

E
C

k T

 
  

 
                                                                                                                    (5.12) 

if only the vacancy formation energy at the (ferromagnetic) ground state f

FE  is taken 

into account.  This is consistent with Eqs. (5.8-5.11) where ground state binding 

energies are used. At elevated temperature the ground state quantities should be 

replaced by free formation and binding energies. In the present work only the phonon 

and magnetic contributions to the free formation energy of the vacancy fF  are 

considered. According to Schuler et al. [67] fF  is determined by  

       
2 2

0 0( )f f f f f f f

P F P P F PF T E E E M T T S S S M T      
 

                                   (5.13) 

where  f

FE , f

FS  and  f

PE , f

PS  are the formation energy and entropy in ferromagnetic 

and paramagnetic bcc Fe, respectively, with 2.12f

FE   eV, 1.98f

PE  eV, 5f

F BS k  and 

4f

P BS k  [67]. The quantity  0( )M T  denotes the reduced magnetization which varies 

between 1 (ferromagnetic ground state) and 0 (full paramagnetic state). For 0( )M T  the 

experimental data of Crangle et al. [79] are used.  Using fF  the monomer vacancy 

concentration can be calculated by  

v exp
f

B

F
C

k T

 
  

 
                                                                                                                   (5.14) 
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Figure 5.9 Temperature dependence of monomer concentrations vC , OC , YC , TiC , 

and of the total vacancy concentration (a) as well as the concentration ratios vs. 

temperature (b). The data were obtained by the solution of Eqs. (5.8)-(5.11), for the 

following  total  concentrations of solutes: 0.18 at% (O), 0.12 at% (Y), and 1.05 at% 

(Ti). The solid and dashed lines were determined using from Eqs. (5.12) and (5.14), 

respectively. The scale on the ordinate of figure (a) shows not at% but the 

dimensionless concentration (normalized to 1). 

The solutions of Eqs. (5.8)-(5.11) with vC  from (5.12) or (5.14) are shown in Fig. 

5.9. The temperature dependence of the monomer concentrations and of total

vC  is 

illustrated in Fig. 5.9 (a). The difference between the data for total

vC  obtained using vC   

from (5.12) or (5.14) is significant. In Fig. 5.9 (b) the ratios total

v v/C C , total total

v O/C C , 

total

O O/C C , total

Y Y/C C , and total

Ti Ti/C C  are depicted. This figure clearly shows that most of 
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the vacancies and most of the O and Y atoms are bound in the corresponding pairs. 

At very high temperature the values of  total

v v/C C , total

O O/C C  and total

Y Y/C C  obtained 

using 
vC  from Eq. (5.14) deviate from those calculated  using  

vC  from Eq. (5.12), 

[difference between dashed and solid line in Fig. 5.9 (b)]. However, these temperatures 

are not of practical relevance for the thermal processing of ODS alloys. At lower 

temperature the three ratios show an increase. Furthermore, total

Ti Ti/C C  is close to one, 

which means that most of the Ti atoms are not bound in pairs. This is due to fact that 

total

TiC is higher than total

OC , total

YC , and total

vC , and that the attraction between Ti and the 

other species is relatively weak. The ratios  total total

v O/C C  calculated using 
vC from  Eqs. 

(5.12) or (5.14) are very different since 
vC determined by Eq. (5.14) is significantly 

higher. However, in both cases the ratio is much less than one. This does not agree 

with the assumption made by several authors [80-82] that in the production of ODS 

alloys the total vacancy concentration can reach the same order of magnitude as the 

total concentration of oxygen. On the other hand, it must be emphasized that the data 

of Fig. 5.9 were determined under the assumption of the equilibrium between 

monomers and pairs. Including larger clusters containing O, vacancies, Y, and Ti (see 

e.g. [83]) may change the ratio total total

v O/C C  and the other results. In this case equations 

similar to (5.8c)-(5.11c) would contain additional terms with concentrations of the 

clusters and binding energies of the monomers to the cluster. Furthermore, it must be 

noticed that above considerations assume a compact Fe-based material containing a 

given amount of foreign atoms, and the total vacancy concentration is established by 

the thermal equilibrium. In reality at the beginning of the thermal treatment of ODS 

alloys the material is not compact but more similar to a powder. Therefore, there are 

certainly additional sources of vacancies so that their concentration should be higher 

than in a compact material. Thus the data depicted in Fig. 5.9 (b) should be regarded 

as a lower limit for total total

v O/C C . 

In the following the diffusion coefficient of oxygen is calculated for the dilute iron 

alloy using (i) the monomer concentrations vC ,
YC , and 

TiC  shown in  Fig. 5.9 (a), or 

(ii) the total concentrations  total

vC , total

YC , and total

TiC  given in the above text or depicted in 

Fig. 5.9 (a) ( total

vC ). The reason why total concentrations are considered is discussed 
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below. The oxygen diffusion coefficient is determined using expressions similar to Eqs. 

(5.3) and (5.5), but considering interactions not only with v but also with Y and Ti 

inter,v inter,Y inter,Ti

inter,v inter,Y inter,Ti

total total total total

free

free

t t t t
D D D D D

t t t t
                                                        (5.15a)                                                    

total free inter,v inter,Y inter,Tit t t t t                                                                                              (5.15b)                                           

and  

free 1

total

1t R

t R


                                                                                                                         (5.16a) 
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i j k
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     
       (5.16f) 

1 21R R R                                                                                                                        (5.16g) 

The data for inter,YD  and inter,TiD  are calculated by AKMC simulations similarly to the 

determination of inter,vD .  As in the determination of concentrations by Eqs. (5.8)-(5.14), 

only the most attractive O-v, O-Y, and O-Ti interactions are taken into account in Eqs. 

(5.16). The star superscript indicates that monomer or total concentrations are used in 

two separate types of calculations as already mentioned above. At first the diffusion 

coefficient is determined using the monomer concentrations vC ,
YC , and 

TiC . In reality 
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the diffusion of oxygen may be not only influenced by the v, Y, and Ti monomers but 

also by pairs or larger cluster which may contain v, Y, or Ti.  In very simple 

approximation the total concentrations total

vC , total

YC , and total

TiC  may be used instead of 

the monomer concentrations. This is not quite correct since neither the binding energy 

of an oxygen atom with pairs or larger clusters nor the migration barriers of oxygen in 

their environment is equal to those in the case of monomers.  On the other hand, the 

calculation of the corresponding binding energies and migration barriers by DFT is an 

extensive task since many different cluster configurations must be considered. In order 

to get an idea about the influence of the clusters calculations are therefore performed 

using total

vC , total

YC , and total

TiC .  

 

Figure 5.10 Total diffusion coefficients of O (a) and v (b) determined for the 

monomer or the total concentrations shown in Fig. 5.9 (a) and given in the text.  The 

concentrations used in the calculations are written close to the corresponding curves 
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for the diffusion coefficient using the same color. These curves were either obtained 

using 
vC   from Eq. (5.12) (solid lines) or  

vC  from Eq. (5.14) (dashed lines).  

Fig. 5.10 (a) depicts the results for the O diffusion. If only the monomer 

concentrations vC , 
YC , and 

TiC  are taken into account the diffusion coefficient is 

already significantly lower than that in pure Fe. The use of either Eq. (5.12) or Eq. (5.14) 

for vC  affects the result only at very high temperatures which are not of practical 

relevance. Below the bcc-to-fcc transition temperature of 1183 K the effective diffusion 

activation energy is about 1.1 eV.  On the other hand, the use of total concentrations 

total

vC , total

YC , and total

TiC  in Eqs. (5.16) leads to an O diffusion coefficient which is still lower 

than that obtained by considering the monomer concentrations. A large difference is 

obtained between the results determined using vC  from Eq. (5.12) or Eq. (5.14). The 

latter case leads to the lowest oxygen diffusion coefficient. This can be explained by 

the fact that total

vC  is significantly higher than vC  [see Fig. 5.9 (a)].  With vC  from Eq. 

(5.12) or Eq. (5.14) the diffusion activation energy is about 1.5 or 1.0 eV, respectively, 

in the temperature range of bcc Fe. The influence of the substitutional foreign atoms 

on the O diffusion coefficient becomes obvious by comparing with data shown in Fig. 

3.5 (Chapter 3), and in Fig. 5.6 (a), and by considering the concentrations shown in 

Fig. 5.9 (a): For example, at low temperature the black dashed curve in Fig. 5.10 (a) 

should be determined by the total concentration of Y (0.12 at%) and/or Ti (1.05 at%) 

since the total v concentration is extremely low. Comparison with diagrams shown in 

Figs. 3.5 (e) and (i) of Chapter 3 clearly shows that the Y content dominates the value 

of the O diffusion coefficient at temperatures around 800 K. On the other hand, at 

temperatures near 2000 K the v content is in the order of some tenth of percent [black 

dashed line in Fig. 5.9 (a)] and therefore determines the value of the O diffusion 

coefficient, as one can see by comparing with Fig. 5.6 (a). A similar discussion could 

be performed concerning the other curves depicted in Fig. 5.10 (a).  

Vacancy diffusion in the alloy containing O, Y, and Ti was treated using a method 

similar to that employed in the calculation of the oxygen diffusion coefficient. The 

results are shown in Fig. 5.10 (b). The following cases were considered: (i) Only the 

monomer concentrations OC , 
YC , and 

TiC  [see Fig. 5.9 (a)] were taken into account. 

(ii) The (constant) total concentrations total

OC , total

YC , and total

TiC  (data given above) were 
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used. Since the monomer concentrations of O, Y, and Ti determined either using Eqs. 

(5.12) or (5.14) for vC  are nearly equal, see Fig. 5.9 (a), the resulting values for v 

diffusion are also not very different. The corresponding diffusion activation energy is 

about 1.6 eV (below 1183 K). On the other hand, in the calculation of the v diffusivity 

for the constant total concentrations of O, Y, and Ti the quantity vC  need not to be 

used at all. In the latter case, at 800 K the v diffusion coefficient is about seven orders 

of magnitude lower than that in perfect bcc Fe, and the activation energy is about 2.13 

eV.  The comparison of the red line in Fig. 5.10 (b) with the green curve in Fig. 5.6 (b) 

reveals that the given total O concentration dominates the v diffusion coefficient over 

the whole temperature range. Thus the influence of Y and Ti is negligible which is due 

to the weaker binding between v and Y as well as v and Ti compared to that between 

v and O. Similarly, the blue curves in Fig. 5.10 (b) should be mainly determined by the 

monomer O concentration. 

5.5 Oxygen and vacancy diffusion in bcc Fe with an oxygen content close to 
the value of thermal solubility   

The few experimental data on oxygen solubility in bcc Fe were published many 

years ago [5,7,10] and were derived from measurements and calculations performed 

in connection with internal oxidation experiments. In the temperature range between 

800 and 1043 K the data obtained from the formula of Takada et al. [10] differ to those 

of Frank et al. [5] by up to one order of magnitude. The value of Swisher et al. [7] lies 

between these data sets (see Appendix IV). In the present work the solubility data of 

Takada et al. [10] are used. Furthermore, Murali et al. [48] calculated by DFT the free 

formation energy of oxygen by considering equilibrium between Fe and FeO. In the 

ferromagnetic temperature range the oxygen concentration obtained from these 

theoretical solubility data is somewhat higher than that of Takada et al. [10] (see 

Appendix IV).  
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Figure 5.11 Total diffusion coefficients of O (a) and v (b) for the case that the oxygen 

concentration is equal to the thermal solubility. The black and blue curves were 

determined using monomer and total concentrations, respectively, for O and v. 

These concentrations were calculated by the method according to sections 5.3 and 

5.4. The red and magenta curves were obtained by a modified procedure where not 

only the O-v interaction but also the O-Ov (or v-Ov) interactions are taken into 

account (see Appendix V). The red and magenta curves were calculated for 

monomer and total v or O concentrations, respectively. Note that in (b) the blue and 

the magenta curves as well as the black and red curves are nearly identical. The 

oxygen diffusion data determined by internal oxidation experiments are marked by 

S [7], T [8-10] , and F [5]. In the case of S and T the thick lines show the temperature 

range in which the measurements were performed. Note that the data of Swisher et 

al. [7] are based on permeability measurements for  iron [6] and are therefore only 

approximately valid for bcc Fe. The brown dashed line was obtained using the 
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activation energy given by Frank et al. [5] and the pre-exponential factor from Eq. 

(5.4). 

At first the formalism of sections 5.3 or 5.4 is employed. The oxygen solubility is 

set equal to total

OC , and vC  is calculated by Eq. (5.14). In this manner the monomer O 

concentration OC , the total vacancy concentration total

vC   and other quantities are 

determined (see also Appendix V). Since both the oxygen and the vacancy 

concentration are rather low, Eq. (5.6) can be employed to determine the oxygen 

diffusion coefficient. A similar relation is used for the vacancy diffusivity. The results 

obtained by this method are depicted in Fig. 5.11. If the monomer vacancy 

concentration vC  is used in an expression similar to Eq. (5.16a), the oxygen diffusion 

coefficient is lower than that for pure bcc Fe but shows a relatively weak temperature 

dependence [Fig. 5.11 (a)]. This is due to the fact that the value of the free formation 

energy of the vacancy according to Eq. (5.13) is not very different to the absolute value 

of the binding energy of the Ov pair. This may lead to a slight increase of the time ratio 

total/freet t  with decreasing temperature while 
freeD decrease.  This peculiarity does not 

happen if the total vacancy concentration  total

vC  is used instead of vC .  In this case the 

oxygen diffusion coefficient is somewhat more similar to the measured data although 

significant differences remain. The motivation for using the total instead of monomer 

concentrations was discussed in previous section 5.4. On the other hand, Fig. 5.11 (a) 

clearly shows the discrepancy between the experimental data of Swisher et al. [7] and 

Takada et al. [8-10]. This underlines the need for new experimental diffusion data 

directly obtained from an oxygen concentration profile in a sufficiently pure and defect-

free bcc Fe. Using the pre-exponential factor from Eq. (5.4) and the diffusion activation 

energy of Frank et al. [5] (0.98 eV) another “quasi- experimental” data set was obtained 

[see Fig. 5.11 (a)]. 

Schuler et al. [67] demonstrated that in the case of bcc Fe with an oxygen content 

equal to the thermal solubility, not only the Ov pair but also O2v are important in the 

determination of the total vacancy concentration. Following Ref. [67],  in the present 

work the formalism of sections 5.3 or 5.4 was extended so that and not only Ov, but 

also O2v and Ov2 are considered (Appendix V), with binding energies O2v

bindE  -3.349 eV 

and Ov2

bindE  -2.502 eV.  That means it is assumed that during O migration not only the 
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Ov pair but also the O2v cluster may be formed temporarily.  Similar to the case without 

O2v, calculations were performed assuming vC  or total

vC  for the vacancy concentration. 

In both cases the diffusion activation energy which determines the slope of the curves 

[red and magenta curves in Fig. 5.11 (a)] is higher than for the respective curves 

obtained without considering O2v. Fig. 5.11 (b) shows the vacancy diffusion coefficient 

under the influence of oxygen. Assuming the monomer concentration OC  in a relation 

similar to Eq. (5.16a) leads to a somewhat higher diffusion activation energy than using  

total

OC . In both cases the vacancy diffusion coefficient is much lower than that in pure 

bcc Fe. Taking into account that during v migration not only Ov but also Ov2 may be 

formed temporarily does not change the results since in thermal equilibrium the 

concentration of Ov2 is very small (see Appendix V). The results presented in this 

section demonstrate that the presence of a very small amount of oxygen, in the order 

of the thermal solubility, have a significant influence on both O and v diffusion.  

5.6 Summary and conclusions 

The mutual dependence of O and v diffusion in bcc Fe and dilute iron alloys was 

investigated using a combined computational method.  DFT calculations of the binding 

energy between O and v at different distances and of the migration barriers of O and 

v in the regions of their interaction revealed significant special features. The finding of 

an extremely strong binding of the Ov pair at the first neighbor distance and of the very 

high barrier to be overcome for leaving this state are consistent with previous work.  

On the other hand, it was shown that the Ov pair at the 6th neighbor distance is instable. 

This would lower the number of possible migration paths for O and v in the interaction 

region. However, this reduction is compensated by the newly found simultaneous or 

coupled jumps of O and v. Furthermore, the investigations showed that a direct v jump 

from the 2nd to the 5th neighbor distance to O is not possible. Ultimately, these 

peculiarities are due to the very strong attractive interaction of the Ov pair at the 1st 

neighbor state. The DFT results were used as inputs for AKMC-based calculations of 

the diffusion coefficients of O and v. The consideration of a model system with fixed v 

or O concentrations already demonstrated the strong influence of vacancies on O 

diffusion and of oxygen on v diffusion, leading to a significant decrease of the 

corresponding diffusion coefficients, even if the concentrations are only in the order of 

some ppm. As a more realistic case, the diffusion of O and v during the first stage of 
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thermal processing of ODS alloys was investigated. This system contains ODS-typical 

total concentrations of O, Y, and Ti. In a simple model thermal equilibrium between O, 

v, Y, and Ti monomers on the one hand and Ov, OY, OTi, vY, and vTi pairs on the 

other hand was assumed. Then the O, Y, and Ti monomer concentrations as well as 

the total v concentration were determined. The O diffusion coefficients obtained for 

monomer or total concentrations show a significant dependence on the vacancy and 

the Y content, whereas the v diffusivity is only influenced by the presence of oxygen. 

Furthermore, a system with an O content close to the thermal solubility in iron was 

studied. The monomer O concentration as well as the total v concentration was 

determined using two different models considering equilibrium of O and v with Ov, or 

equilibrium of O and v with Ov and O2v or Ov2. Despite the very small value of thermal 

solubility of O in bcc Fe, both the O and v diffusion coefficient are very different from 

that in pure iron. These findings also show that not only the total v concentration or the 

effective v formation energy is strongly affected by the very small O content, as found 

by Schuler et al. [67], but also the diffusion coefficients of v and O and the 

corresponding effective diffusion activation energies.  
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Chapter 6: Summary, conclusions and outlook 
 

In this dissertation, diffusion of oxygen (O) and the vacancy (v) in dilute bcc-iron-

based alloys was studied by a combination of Density Functional Theory (DFT) and 

Atomistic Kinetic Monte Carlo (AKMC) simulations. In particular, the effect of 

substitutional atoms on oxygen diffusion, the mutual influence of vacancy and oxygen 

diffusion as well as the influence of substitutional atoms on vacancy diffusion was 

investigated.  

Migration mechanisms of O and v in perfect bcc Fe 

 The most relevant jump of O is that between two first-neighbor octahedral 

interstitial sites, with a linear migration path, and the tetrahedral interstitial site 

as the saddle point. A second-neighbor jump consists of two successive first-

neighbor jumps. The third-neighbor O jump has a nonlinear migration path and 

the saddle point corresponds to a rhombohedral interstitial site, but the barrier 

for such a direct jump is too high to be relevant for O diffusion. 

 The vacancy jumps from one bcc site to the neighboring site on a straight path. 

At the saddle point the migrating Fe atom is at the middle between the 

neighboring bcc sites. Vacancy migration over longer distances always consist 

of successive first-neighbor jumps.    

Migration of oxygen in environment of substitutional atoms (Al, Si, P, S, Ti, Cr, 

Mn, Ni, Y, Mo, and W)  

 The migration mechanism is rather similar to that in pure bcc Fe, i.e. the most 

relevant O jump occurs from a modified octahedral site via a modified 

tetrahedral site to another modified octahedral site. The migration barriers in the 

environment of Si, P, Ni, Mo and W are not very different to that in pure Fe, with 

the exception of a high barrier close to the substitutional atom. The interaction 

of these solutes with oxygen is mainly repulsive. Al, S, Ti, Cr, Mn and Y have 

strong attractive interaction with oxygen, associated with large barriers for 

escape from neighbor shells close to the solutes, while the migration barriers 

for approaching these solutes are relatively low. 

 The oxygen diffusion coefficient was determined for dilute alloys with 

concentrations of substitutional atoms up to 0.781 at%. The influence of Si, P, 

Ni, Mo, and W on O diffusion is very small. Al, S, Ti, Cr, Mn and Y cause 
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considerable reduction of the oxygen mobility. The reason for this behavior is 

the so-called trapping mechanism due to the attractive interaction between the 

substitutional solute and O. The influence of Al, Cr, Mn, S, Ti, and Y leads to 

deviations from the Arrhenius behavior of the oxygen diffusion coefficient. This 

can be explained by the significant temperature dependence of the occupation 

time for the different states. In all cases investigated the oxygen diffusion 

coefficient was still some orders of magnitude higher than that of the 

corresponding substitutional solute. Therefore, the initial assumption that the 

substitutional solute can be considered to be immobile in the calculation of the 

O diffusion coefficient is justified. 

Efficient AKMC-based calculation method for the diffusion coefficient of 

interstitial atoms in dilute alloys 

 The calculation procedure is based on the separation of the diffusion path into 

a contribution related to migration in the interaction region between the mobile 

interstitial and the substitutional solute and another part related to diffusion in 

perfect bcc Fe. In this manner AKMC simulation must be performed only for one 

concentration of the substitutional solute, and the obtained results can be 

employed to determine data for other concentrations using analytical 

expressions containing binding energies between the interstitial and the 

substitutional solute. This leads to a tremendous decrease of computational 

efforts. For sufficiently low concentrations of solutes, it is even possible to use 

an analytical expression where only the diffusion coefficient of the interstitial 

atom in perfect bcc Fe and binding energies are needed. In this work the 

developed efficient method is not only applied to investigate the effect of 

substitutional atoms on O diffusion, but a corresponding scheme is also used to 

determine the vacancy diffusion coefficient under the influence of oxygen and 

substitutional atoms (see below).  

Mutual influence of O and v 

 The Ov pair has an extremely strong binding at the 1st neighbor distance and is 

unstable at the 6th neighbor distance. These peculiarities affect possible 

migration paths for O and v in the interaction region and might lead to the 

reduction of the number of conventional migration paths consisting of separate 

O and v jumps between neigboring octahedral and bcc lattice sites, respectively. 
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The newly found simultaneous or coupled jumps of both O and v compensate 

the absence of separate O and v jumps from and to the 6th neighbor site.   

Influence of vacancy on oxygen diffusion and of oxygen on vacancy diffusion in 

a model system with fixed O and v concentration 

 Using the efficient AKMC-based method outlined above, a significant decrease 

of the diffusion coefficient of oxygen is observed due to the presence of v, even 

if the v concentration in the order of some ppm. A similar effect is obtained for 

v diffusion under the influence of oxygen. 

Diffusion of oxygen and vacancy in the first stage of thermal processing of 

Oxygen Dispersion Strengthened (ODS) steels 

 An alloy containing ODS-typical total concentrations of O, v, Y and Ti was 

described in a simple manner assuming thermal equilibrium between O, Y, Ti 

and vacancy monomers on the one hand, and Ov, vY, vTi, OY, and OTi pairs 

on the other hand. Then the O, Y, and Ti monomer concentrations as well as 

the total v concentration were determined and the AKMC-based method was 

employed to determine O and v diffusion coefficients. The oxygen diffusion 

coefficient shows a significant dependence on v and Y, while the diffusivity of 

vacancy is only influenced by oxygen. 

Oxygen and vacancy diffusion in bcc Fe with oxygen concentration close to the 

value of thermal solubility 

 The monomer O concentration and the total v concentration were determined 

using two different thermodynamic models. In the first case, thermal equilibrium 

of O and v monomers with Ov was taken into account, and in the second case 

equilibrium of O and v with Ov, O2v, and Ov2 was considered. The total O 

concentration was set equal to the thermal solubility. Despite the very small 

value of thermal solubility of O in bcc Fe, both the O and v diffusion coefficient 

are very different from that in pure iron. These findings also show that not only 

the total v concentration or the effective v formation energy is strongly affected 

by the very small O content, as found by Schuler et al. [67], but also the diffusion 

coefficients of v and O, and the corresponding effective diffusion activation 

energies. 
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The results of the present work have important consequences for planning and 

performing experiments on O and v diffusion in dilute iron alloys. In particular, a very 

precise knowledge of the concentrations of O and v, as well as of other foreign atoms 

and traps such as dislocations is required. It is also recommended to use bcc Fe single 

crystals in order to avoid the influence of grain boundaries in such fundamental 

experiments.  The results of the present work are comprehensive and contribute to 

providing new insight into the interplay between different atomic species and defects 

in complex materials. Theoretical methods similar to those used in this PhD Thesis 

may be employed in future studies of diffusion in various crystalline solids, with focus 

on the influence of substitutional atoms or dopants on the diffusion of foreign interstitial 

atoms, vacancies and self-interstitial atoms, as well as on (ii) the mutual influence of 

diffusion of intrinsic point defects and interstitial atoms.  
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Appendix I 

Related to Chapter 3: Influence of substitutional atoms on the diffusion of oxygen in 

dilute iron alloys 

A. Volume change 
0( ) ( )V X V X V    and dimensions of the supercell obtained after 

placing oxygen on an octahedral interstitial site, or after replacing a Fe atom by Si, P, 

S, Ti, Cr, Mn, Ni, Y, Mo, or W, and subsequent relaxation.  

In the case of an isotropic expansion/contraction only one supercell dimension is 

given while for tetragonal distortions the first line is related to the two equivalent 

directions (a) whereas the second line is related the third direction (b). In perfect bcc 

Fe the supercell dimension is 11.328 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X  V  (Å3) 
supercell  dimension   

d  (Å) 

O 13.477 
11.342 (a) 

11.407 (b) 

Al 2.3963 11.335 

Si -0.0529 11.328 

P -1.1611 11.325 

S 0.8578 11.331 

Ti 4.0146 11.339 

Cr 2.2522 11.334 

Mn 2.5198 11.335 

Ni 2.0916 11.334 

Y 14.322 11.366 

Mo 6.6809 11.346 

W 6.4006 11.345 
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B. Effective volume change V  (Å3) (first line) and supercell dimensions d (Å) obtained after relaxation of a supercell containing an 

oxygen-solute pair.  

( ) ( ) ( )V V O X V X V O      , where  X  and V   denote the solute and the difference to the volume of a supercell with perfect 

bcc Fe, respectively. In the case of a tetragonal distortion the first line is related to the two equivalent directions (a) whereas the second 

line is related the third direction (b). In the case of an orthorhombic distortion three lines (a), (b), and (c) are given.  

O X  1nn 2nn 5nn 6nn 9nna 9nnb 10nn 

O-Al 

-2.1348 

11.345 (a) 

11.401 (b) 

 

-1.3361 

11.347 (a) 

11.404 (b) 

 

-0.5950 

11.345 (a) 

11.346 (b) 

11.413 (c) 

-0.3472 

11.349 (a) 

11.409 (b) 

 

0.0142 

11.348 (a) 

11.413 (b) 

 

-1.6040 

11.344 (a) 

11.409 (b) 

 

0.0443 

11.346 (a) 

11.347 (b) 

11.416 (c) 

        

O-Si 

-1.4890 

11.345 (a) 

11.388 (b) 

 

0.4775 

11.349 (a) 

11.397 (b) 

 

-0.5243 

11.337 (a) 

11.342 (b) 

11.407 (c) 

-0.3244 

11.343 (a) 

11.401 (b) 

 

-0.0213 

11.341 (a) 

11.408 (b) 

 

-1.5066 

11.342 (a) 

11.394 (b) 

 

0.2844 

11.340 (a) 

11.341 (b) 

11.411 (c) 

        
O-P -0.5172 2.2862 0.0412 -0.2388 0.2623 -0.9629 0.4865 
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11.346 (a) 

11.384 (b) 

 

11.348 (a) 

11.404 (b) 

 

11.337 (a) 

11.341 (b) 

11.403 (c) 

11.342 (a) 

11.395 (b) 

 

11.339 (a) 

11.405 (b) 

 

11.346 (a) 

11.382 (b) 

 

11.337 (a) 

11.340 (b) 

11.407 (c) 

        

O-S 

1.8078 

11.346 (a) 

11.418 (b) 

 

2.1176 

11.349 (a) 

11.415 (b) 

 

0.9043 

11.343 (a) 

11.349 (b) 

11.412 (c) 

0.0573 

11.350 (a) 

11.397 (b) 

 

0.3936 

11.345 (a) 

11.409 (b) 

 

-1.0893 

11.354 (a) 

11.381 (b) 

 

0.7449 

11.344 (a) 

11.348 (b) 

11.411 (c) 

        

O-Ti 

-0.3046 

11.349 (a) 

11.421 (b) 

 

-0.6531 

11.351 (a) 

11.414 (b) 

 

-0.2654 

11.350 (a) 

11.351 (b) 

11.418 (c) 

-0.2914 

11.351 (a) 

11.417 (b) 

 

0.0155 

11.352 (a) 

11.417 (b) 

 

-0.1074 

11.347 (a) 

11.427 (b) 

 

-0.3123 

11.351 (a) 

11.417 (b) 

 

        

O-Cr 

-1.0385 

11.342 (a) 

11.416 (b) 

 

-0.4087 

11.346 (a) 

11.413 (b) 

 

-0.0727 

11.348 (a) 

11.411 (b)  

 

-0.1192 

11.346 (a) 

11.414 (b) 

 

0.1017 

11.348 (a) 

11.412 (b) 

 

0.1486 

11.344 (a) 

11.421 (b) 

 

0.1648 

11.347 (a) 

11.348 (b) 

11.414 (c) 
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O-Mn 

-2.8018 

11.339 (a) 

11.410 (b) 

 

-3.1639 

11.339 (a) 

11.407 (b) 

 

-3.3475 

11.339 (a) 

11.341 (b) 

11.404 (c) 

-0.7583 

11.347 (a) 

11.411 (b) 

 

-2.7973 

11.342 (a) 

11.404 (b) 

 

-3.0893 

11.340 (a) 

11.405 (b) 

 

-2.8537 

11.341 (a) 

11.406 (b) 

 

        

O-Ni 

-0.7296 

11.342 (a) 

11.417 (b) 

 

-0.3337 

11.348 (a) 

11.408 (b) 

 

0.2285 

11.347 (a) 

11.349 (b) 

11.412 (c) 

0.5041 

11.349 (a) 

11.412 (b) 

 

0.5706 

11.348 (a) 

11.414 (b) 

 

1.1740 

11.350 (a) 

11.415 (b) 

 

0.8155 

11.348 (a) 

11.349 (b) 

11.416 (c) 

        

O-Y 

1.0245 

11.375 (a) 

11.459 (b) 

 

-0.7925 

11.383 (a) 

11.428 (b) 

 

-0.9586 

11.362 (a) 

11.385 (b) 

11.446 (c) 

0.0156 

11.383 (a) 

11.434 (b) 

 

0.0777 

11.376 (a) 

11.449 (b) 

 

0.3062 

11.377 (a) 

11.449 (b) 

 

0.1376 

11.375 (a) 

11.379 (b) 

11.448 (c) 

        

O-Mo 
0.1926 

11.349 (a) 

-1.2846 

11.356 (a) 

-1.0606 

11.357 (a) 

-0.8950 

11.355 (a) 

-0.8549 

11.357 (a) 

-0.4869 

11.351 (a) 

-0.8711 

11.356 (a) 
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11.445 (b) 11.419 (b) 11.420 (b) 11.425 (b) 11.421 (b) 11.435 (b) 11.423 (b) 

        
O-W 1.0911 

11.352 (a) 

11.445 (b) 

 

-0.6568 

11.358 (a) 

11.419 (b) 

 

-0.2163 

11.357 (a) 

11.359 (b) 

11.422 (c) 

-0.2546 

11.355 (a) 

11.427 (b) 

 

-0.3009 

11.358 (a) 

11.421 (b) 

 

0.1400 

11.352 (a) 

11.437 (b) 

 

-0.2373 

11.357 (a) 

11.358 (b) 

11.423 (c) 
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Appendix II 

Related to Chapter 3: Influence of substitutional atoms on the diffusion of oxygen in 

dilute iron alloys 

Qualitative interpretation of the dependence of the binding energy of the oxygen-solute 

pair on the kind of the substitutional solute  

The dependence of the binding energy of the oxygen-solute pair on the type of the 

solute was investigated by studying the following characteristic quantities: (i) partial 

density of electronic states, (ii) magnetic moment, (iii) charge transfer, (iv) volume 

change of the supercell, (v) distance between the two atoms belonging to the pair. It 

was found that the results concerning the charge transfer determined by Bader 

analysis [Bader] seem to be most suitable for a qualitative interpretation of the trends 

found for the binding energy. For the particular oxygen solute pair the number of 

valence electrons considered in the pseudopotential (VASP POTCAR file), the number 

of valence electrons obtained by Bader analysis and the corresponding gain (positive) 

or loss (negative) of “electrons” (or negative charges) are shown in the Table below. 

The binding energy of the pairs is also given. If the pair is at the first neighbor distance 

(cf. Fig. 3.1 of Chapter 3) in most cases a significant attractive interaction occurs if the 

following two criteria are fulfilled simultaneously: Oxygen gains more than about 0.4 

“electrons” and the solute loses more than about 0.6 “electrons”. This indicates an 

ionic-like bond. With the exception of the O-S and the O-Y pair, in the other cases the 

ionic character of one of the partners is obviously not sufficiently pronounced for an 

attraction. The Figure below depicts the binding energy of the O-solute pairs as 

function of their distance after relaxation. The unrelaxed distances according to Fig. 

3.1 of Chapter 3 are also given. In all cases the (relaxed) distance between first-

neighbor pairs is higher than the unrelaxed one. The largest increase is found for the 

O-S, O-Y, O-Mo, and O-W pairs. In these cases the distance between O and the 

substitutional solute is significantly higher than that to one or more of the neighboring 

Fe atoms, which may also explain the two exceptions mentioned above. It was found 

that the O-S pair forms a <100> dumbbell that occupies a bcc lattice site. The distance 

between O (S) and this lattice site is about 1.362 Å (0.925 Å). The distance between 

five neighboring Fe atoms to O is smaller than the O-S distance, and the distance 

between five neighboring Fe atoms to S is also smaller than this pair distance. 

However, there is nearly no net transfer of electrons from these neighboring Fe atoms 
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to O or S. On the other hand, in total the O-S pair gains about one electron which might 

indicate a covalent-type bond and the formation of a kind of molecule inside bcc Fe. 

Furthermore, the Figure demonstrates that with increasing distance between O and a 

substitutional solute this distance approaches the value for the unrelaxed distance. 

Some peculiarities are found for the O-Si, O-P, and O-S pairs at second-neighbor 

distance. Here the (relaxed) distance is much larger than for the other pairs. Much 

more Fe atoms than expected from simple geometrical considerations based on Fig. 

3.1 of Chapter 3 have a distance to atoms of the pair which is smaller than the pair 

distance.  The O-S pair forms a kind of <110> dumbbell with a distance between O (S) 

to the respective bcc lattice site of about 2.172 Å (0.501 Å). The charge transfer from 

two surrounding Fe atoms may be the cause that the pair gains about one electron.  

 

Figure: Binding energy of the O-solute pairs in dependence on the distance between 

O and the substitutional solute after relaxation. The nominal neighbor distances 

(before relaxation) are given on the top axis. 

 

This could be again an indication for the formation of a kind of O-S molecule in bcc 

Fe. Due to the complex situation regarding the atomic configuration of the O-solute 

pair and the surrounding Fe atoms it cannot be expected that the above criteria based 
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on a simple charge transfer can be also applied to all pairs at 2nd distance. However, 

these criteria may be also used to interpret qualitatively the values of the binding 

energy of the O-Si, O-P, O-Ti, O-Cr, O-Mn, O-Ni, and O-Y pairs. 

 

Table: Correlation between the binding energy of the O-solute pair and the results of 

the Bader analysis. 

 

First-neighbor 
pair 

 (eV) 
  

in POTCAR 

 

from Bader 
analysis 

Gain/loss of 
“electrons” 

O 
-0.243 

6 6.659 0.659 

Al 3 0.669 -2.331 

     
O 

-0.064 
6 6.159 0.159 

Si 4 0.923 -3.077 

     
O 

0.051 
6 6.212 0.212 

P 5 3.237 -1.763 

     
O 

-0.361 
6 7.039 1.039 

S 6 5.957 -0.043 

     
O 

-0.372 
6 6.381 0.381 

Ti 12 10.648 -1.352 

     
O 

-0.257 
6 6.699 0.699 

Cr 12 10.862 -1.138 

     
O 

-0.246 
6 6.918 0.918 

Mn 13 12.316 -0.684 

     
O 

0.214 
6 7.116 1.116 

Ni 10 9.825 -0.175 

     
O 

0.031 
6 6.817 0.817 

Y 11 9.356 -1.644 

     
O 

0.397 
6 6.119 0.119 

Mo 14 12.478 -1.522 

     
O 

0.555 
6 6.125 0.125 

W 12 10.175 -1.825 

 

 

 

 

Second- 

neighbor pair 
 (eV) 

  

in POTCAR 

 

from Bader 
analysis 

Gain/loss of 
“electrons” 

bindE
valence electrons

N
valence electrons

N

bindE
valence electrons

N
valence electrons

N
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O 
0.047 

6 6.714 0.714 

Al 3 1.413 -1.587 

     
O 

0.453 
6 6.924 0.924 

Si 4 3.457 -0.543 

     
O 

0.161 
6 6.663 0.663 

P 5 4.930 -0.070 

     
O 

-0.466 
6 6.475 0.475 

S 6 6.485 0.485 

     
O 

-0.593 
6 6.798 0.798 

Ti 12 10.455 -1.545 

     
O 

-0.085 
6 6.794 0.794 

Cr 12 11.480 -0.520 

     
O 

-0.068 
6 6.987 0.987 

Mn 13 12.630 -0.370 

     
O 

0.175 
6 6.971 0.971 

Ni 10 10.001 0.001 

     
O 

-1.010 
6 6.891 0.891 

Y 11 9.332 -1.668 

     
O 

-0.048 
6 6.766 0.766 

Mo 14 12.511 -1.489 

     
O 

0.075 
6 6.816 0.816 

W 12 9.967 -2.033 

 

 

[Bader] http://theory.cm.utexas.edu/henkelman/code/bader/ 
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Appendix III  
Related to Chapter 4: Efficient calculation method for the diffusion coefficient of 

interstitial solutes in dilute alloys 

Comparison of the results obtained by the AKMC-based calculation method with 

those calculated by the cluster expansion approach of diffusion based on the self-

consistent mean field (SCMF) method ([A], [B]): The example of O migration in a 

dilute iron alloy with a small amount of Ti 

Results obtained by the method described in Chapter 4 were compared with those 

calculated by the method presented in Refs. [A] and [B]. The figure below shows the 

case of O diffusion in a dilute iron alloy with a small amount of Ti. Dr. Luca Messina 

(DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-

Saclay, F-91191 Gif-sur-Yvette, France, and KTH Royal Institute of Technology, 

Nuclear Engineering, SE-114 21 Stockholm, Sweden) performed the calculations 

with the code KineCluE. We are very grateful to Dr. Messina for providing us his 

results. In both calculations the same DFT data for the migration barriers were used. 

The agreement between results of both methods is very good. Therefore, one may 

assume that such an agreement also exists for other application considered in this 

thesis. 
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Figure. Dependence of the oxygen diffusion coefficient on temperature and on Ti 

concentration [lines: SCMF results obtained by Dr. Messina, symbols: results of our 

AKMC data (cf. Fig. 3.5 in Chapter 3 and Fig. 4.5 in Chapter 4) ]. 
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Appendix IV  
Related to chapter 5: Mutual dependence of oxygen and vacancy diffusion in bcc Fe 

and dilute iron alloys 

Data used in section 5.5 of the chapter 5 

Fig. 1 shows the thermal solubility data of Frank et al. [A], Takada et al. [B], and 

Swisher et al. [C]. Frank et al. [A] obtained the data from a critical review of results 

published before 1967. The data of Takada et al. [B] were obtained by assuming 

equilibrium between Fe and FeO. Therefore, the oxygen concentration determined by 

these authors corresponds to that at the surface of the specimen where the equilibrium 

is maintained using FeO powder. It should be mentioned that this equilibrium was also 

considered in the paper of of Frank et al. [A]. Furthermore, solubility data obtained from 

the theoretical work of Murali et al. [D] are depicted. 

 

 

Fig. 1 Thermal solubility limit of oxygen in pure Fe. 

 

Figs. 2 (a) and (b) illustrate the concentration of monomers and clusters used in 

the calculation of oxygen diffusion [results are shown in Fig. 5.11 (a) of chapter 5] 

assuming temporary Ov and O2v cluster formation (a) or temporary Ov formation only 

(b). 

Figs. 2 (c) and (d) show the concentrations of monomers and clusters used to 

determine the vacancy diffusion coefficient (results are shown in Fig. 5.11 (b) of chapter 
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5) assuming temporary Ov and Ov2 cluster formation (c) or temporary Ov formation 

only (d). Due to the very low concentration and the relatively low binding energy of Ov2 

the concentrations of O and Ov are nearly identical in both figures.  

 

O diffusion 

 

v diffusion 

 

  

Fig. 2 Concentration of monomers and clusters used in the calculation of oxygen (a-b) 

and vacancy (c-d) diffusion. The total vacancy and oxygen concentrations are also 

depicted.  
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Appendix V 
Related to chapter 5: Mutual dependence of oxygen and vacancy diffusion in bcc Fe 

and dilute iron alloys 

Diffusion coefficients of O and v in bcc Fe containing a pre-existing concentration of 

oxygen: Calculation using a further generalization of the AKMC-based efficient 

method 

In the following bcc Fe with an oxygen concentration total

OC  close to the thermal 

solubility is considered. Due to pre-existing oxygen, in thermal equilibrium the total 

vacancy concentration is higher than in perfect iron due to the strong attraction 

between O and v. During migration O may be temporarily trapped by v (formation of a 

Ov pair), by Ov (formation of a O2v cluster) and by other clusters containing O and v. 

During vacancy diffusion v may be temporarily trapped by O (formation of a Ov pair), 

by Ov (formation of a Ov2 cluster), etc. In the following only trapping by v or O and Ov 

is considered.  

Oxygen diffusion  

The product of the O diffusion coefficient and time corresponds to a total sum of 

squared displacements of the migrating oxygen. This total sum consists of the squared 

displacements in the interaction regions with v and Ov, and in perfect bcc Fe (index 

“free”):  

total inter_v inter_v inter_Ov inter_Ovfree freeDt D t D t D t                                         (A1) 

with  

total inter_v inter_Ovfreet t t t                                                          (A2) 

inter_v inter_Ov

total total total

1
freet t t

t t t
                                                            (A3) 

If one follows the diffusion of oxygen over a long time, one observes that O may be 

trapped by v, or by Ov, or it may migrate freely in pure bcc Fe. In other words, Ov pairs 

and O2v clusters are temporarily formed. Thus, one can say that averaged over time 

the total oxygen concentration corresponds to the sum over the equilibrium 
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concentrations of O (monomer), Ov, and two times the equilibrium concentration of O2v. 

This may be written as 

total

O O Ov O2v2C C C C                                                           (B1) 

or 

O Ov O2v

total total total

O O O

2
1

C C C

C C C
                                                           (B2) 

In the sense of this averaging the concentration ratios in (B2) may be identified with 

the time ratios in (A3). 

The concentrations OvC  and  O2vC  can be determined using the method of Schuler 

et al. [A]: 

total

v

total

O

O vFe

exp

(O) exp

( ) ( (O) )

j

j j

j B

j

j j

j B

j bind j j

j

C n g
k T

C m g
k T

E j m n





  

 
  

 

 
  

 

  







                                              (C) 

where 
jm , 

jn  and 
jg  denote the number of oxygen and vacancies in the cluster j , and 

the number of the equivalent geometrical configurations of this cluster, respectively. 

The quantity bindE   is the total binding energy of the cluster j  . O   and 
vFe   are the 

chemical potentials of O and v monomers, with f

vFe vF    , where f

vF   is the free 

formation energy of the vacancy in bcc Fe. The method described in Ref. [A] allows 

the consideration of clusters of different sizes. In the following we only consider Ov, 

O2v and Ov2. In the following, for a cluster with a given composition only the most 

relevant value of bindE  is taken into account. Then, the total O concentration may be 

also written as 

Ov O2v
total O O vFe O vFe
O

1* 1* 1* 2* 1*
1*3exp 1*6exp 2*3expbind bind

B B B

E E
C

k T k T k T

              
       

     

(D) 



113 
 

In this expression the stars show explicitly the multiplications with the corresponding 

values of 
jm , 

jn  and 
jg . Data for the geometrical factor

jg may be found in Ref. [A]. 

Using 

O Oexp
3B

C

k T

 
 

 
       (E1)      and         vFe

v exp
B

C
k T

 
  

 
       (E2) 

leads to 

2Ov O2v
total O
O O O v v2 exp 6 exp

3

bind bind

B B

E C E
C C C C C

k T k T

     
      

    
                           (F) 

Obviously, the last expression gives wrong results in the (hypothetical) limit of zero 

binding energies: 

2
total O
O O O v v

2
2

3

C
C C C C C                                                       (G1) 

which is not equal to OC , as it should be. 

Therefore, one may introduce corrections 

Ov 2 O2v 2
total O O
O O O v O v v v

2 2
2 exp 2 exp

3 3

bind bind

B B

E C E C
C C C C C C C C

k T k T

    
       

   
             (G2) 

which yield right results in that limit. However, for sufficiently high absolute values of 

binding energies, which is the standard application of Schuler’s expressions, and due 

to the fact that v 1C   and also 
O 1C   the correction terms are negligible compared 

to the others. 

If the term with O2v

bindE   is removed, the above expression corresponds to Lomer’s 

equation [B] 

Ov
total bind
O O v v1 2 2 exp

B

E
C C C C

k T

  
    

  
                                             (H) 

which is also implicitly used in Eqs. (5.5) and (5.16) of chapter 5.  

For the reasons mentioned above, the correction terms are neglected in the following.  
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Comparison of (B1) with (F) leads to 

Ov

Ov O v2 exp bind

B

E
C C C

k T

 
  

 
   (I1)         

O2v
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1
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3
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B

E
C C C

k T

  
   
   

   (I2) 

and therefore 

O

total Ov O2v
otal O

v O v

1

2
1 2 exp exp

3

free

t bind bind

B B

t C

t C E E
C C C

k T k T

 
     
     

    

                          (J1) 
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v O v

2 exp

2
1 2 exp exp

3

bind

B

bind bind

B B

E
C

t k TC

t C E E
C C C

k T k T

 
 
  

     
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32
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 
 
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     

    

                       (J3) 

The expression for 
total/freet t , together with Eq. (5.6) of chapter 5, is used in section 5.5 

of chapter 5 to determine the O diffusion coefficient. The interaction terms in Eq. (A1) 

can be neglected since they are much lower than the term that contains 
freeD . 

 

Vacancy diffusion 

The v diffusion under the influence of O and Ov is treated similarly to the above 

procedure for oxygen. That means the temporary formation of Ov and Ov2 clusters 

must be considered. The total oxygen concentration is then given by 

Ov Ov2
total O O vFe O vFe
O

1* 1* 1* 2*
1*3exp 1*6exp 1*1expbind bind

B B B

E E
C

k T k T k T

              
       

     
 

(K1) 

or 

Ov Ov2
total 2

O O O v O v

1
2 exp exp

3

bind bind

B B

E E
C C C C C C

k T k T

    
     

   
                              (K2) 

total

O O Ov Ov2C C C C                                                             (K3) 
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Then the monomer O concentration can be determined by 

total

O
O Ov Ov2

2

v v

1
1 2 exp exp

3
bind bind

B B

C
C

E E
C C

k T k T


    

    
   

                                      (K4) 

The total vacancy concentration is obtained from 

total

v v Ov Ov22C C C C                                                            (L)                                                     

with (see above)    

Ov2
2

Ov2 O v

1
exp

3

bind

B

E
C C C

k T

 
  

 
                                                      (M)                      

Then the relevant time ratio for vacancy diffusion is 

v

total Ov Ov2
otal v

O O v

1

2
1 2 exp exp

3

free

t bind bind

B B

t C

t C E E
C C C

k T k T

 
     
     

    

                          (N)                          

The expression for 
total/freet t , together with an equation similar to Eq. (5.6) of chapter 

5, is used in section 5.5 of chapter 5 to determine the v diffusion coefficient.   

The following DFT data for binding energies were determined and used in this work: 

Ov

bindE  -1.596 eV, O2v

bindE  -3.349 eV, Ov2

bindE  -2.502 eV  
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