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ABSTRACT: Flexible metal-organic frameworks (MOFs) are capable of changing their crystal structure as a function of 
external stimuli such as pressure, temperature, and type of adsorbed guest species. DUT-49 is the first MOF exhibiting 
structural transitions accompanied by the counterintuitive phenomenon of negative gas adsorption (NGA). Here, we pre-
sent high pressure in situ 129Xe NMR spectroscopic studies of a novel isoreticular MOF family based on DUT-49. These 
porous materials differ only in the length of their organic linkers causing changes in pore size and elasticity. The series 
encompasses both, purely microporous materials as well as materials with both, micropores and small mesopores. The 
chemical shift of adsorbed xenon depends on xenon-wall interactions and thus, on the pore size of the material. The xenon 
adsorption behavior of the different MOFs can be observed over the whole range of relative pressure. Chemical shift ad-
sorption/desorption isotherms closely resembling the conventional, uptake-measurement based isotherms were obtained 
at 237 K where all materials are rigid. The comparable chemical environment for adsorbed xenon in these isoreticular MOFs 
allows establishing a correlation between the chemical shift at a relative pressure of p/p0 = 1.0 and the mean pore diameter. 
Furthermore, the xenon adsorption behavior of the MOFs is studied also at 200 K. Here, structural flexibility is found for 
DUT-50, a material with an even longer linker than the previously known DUT-49. Its structural transitions are monitored 
by 129Xe NMR spectroscopy. This compound is the second known MOF showing the phenomenon of negative gas adsorp-
tion. Further increase in the linker length results in DUT-151, a material with interpenetrated network topology. In situ 129Xe 
NMR spectroscopy proves that this material exhibits another type of flexibility compared to DUT-49 and DUT-50. Further 
surprising observations are made for DUT-46. Volumetric xenon adsorption measurements show that this non-flexible 
microporous material does not exhibit any hysteresis. In contrast, in situ 129Xe NMR spectroscopically detected xenon chem-
ical shift isotherms exhibit a hysteresis even after longer equilibration times than in the volumetric experiments. This indi-
cates kinetically hindered re-distribution processes and long-lived metastable states of adsorbed xenon within the MOF 
persisting at the time scale of hours or longer. 

INTRODUCTION  

Metal-organic frameworks (MOFs) are highly porous hy-
brid materials based on inorganic secondary building units 
(SBUs) which are connected by organic linkers.1,2 Their 
properties can be tuned by varying the length and func-
tionalization of the organic linkers.3,4 Thus, MOFs became 
a research field of increasing interest.1 Low densities (down 
to 0,124 g/cm3)5 and high surface areas (up to 7839 m2/g)6 
render the materials suitable for various applications. They 
are explored with respect to gas and energy storage, gas 
separation, catalysis, sensing, and as drug delivery systems 
in biomedicine.1,2,4,7–9 Before applying MOFs in gas storage 
and separation, it is especially important to characterize 
the adsorption processes inside the pore system. Flexible 
MOFs are a peculiar subgroup of MOFs with unique prop-
erties. They undergo structural transitions induced by ex-
ternal stimuli such as temperature, pressure, and presence 

of guest molecules. Famous examples are MIL-53, SNU-9, 
DUT-8 and many others.10–12 

The recently discovered material DUT-49 (Dresden Uni-
versity of Technology No.49) is the first flexible MOF show-
ing the surprising phenomenon of negative gas adsorption 
(NGA).13 Adsorbed gases such as methane or xenon are 
partly released from the structure at increasing pressure 
during the structural transition from the open-pore (op) 
into the contracted-pore (cp) state. Inspired by this obser-
vation, an isoreticular series was synthesized which differs 
from DUT-49 only in the length of the linker molecule (cf. 
Figure 1). The xenon adsorption behavior of this isoreticu-
lar series is investigated within the present work using high 

pressure in situ 129Xe NMR spectroscopy. 

NMR-spectroscopy offers two general approaches to 
study porous materials like MOFs: On one hand, it is pos-
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sible to investigate the structure and dynamics of the ma-
terial itself by observing NMR-active nuclei in the corre-
sponding compound, such as 13C or 1H.14–16 On the other 
hand, it is possible to load the materials with NMR-active 
probe molecules or atoms, thus, exploiting host-guest in-
teractions. Gases like CO2 or Xe are often applied as 
probe.17–25 

Due to its large electron cloud, the NMR chemical shift 
of xenon exhibits a high sensitivity. Therefore, 129Xe 
(I = 1/2) with a natural abundance of 26.4 % is a well-suited 
probe to study surfaces.26-29  The chemical shift of adsorbed 
xenon in porous materials like zeolites28–30 or MOFs31 can 
be written as:  

 𝛿 = 𝛿s + 𝛿Xe−X𝑒(𝜌Xe, 𝑇) [1] 

The first term, δs, reflects all contributions due to inter-
actions between xenon atoms and the different surface 
sites of the pore system. The second term, δXe-Xe, describes 
the interactions between adsorbed xenon atoms and de-
pends on the density of xenon ρXe and the temperature.26-

28  

Since adsorbed xenon is mobile and can undergo rapid 
exchange and diffusion processes inside the pore system, 
two fundamentally different cases must be distinguished: 
(i) Compounds with pores large enough to adsorb xenon 
but rather small interconnecting windows/channels pre-
venting fast exchange processes between neighboring 
pores. Note that the diameter of xenon amounts to ca. 4.4 
Å. (ii) Compounds with pores interconnected by suffi-
ciently large windows/channels allowing rapid xenon dif-
fusion between different pores. A striking example for case 
(i) are the zeolites Na-A and Ag-A.32–35 Xenon clusters of 
different size are then formed inside the different pores - 
without fast exchange between neighboring pores. This re-
sults in an ensemble of lines of different chemical shift 
caused by the influence of Xe-Xe interactions which de-
pend on the cluster size (cf. eq. [1]). Recently, this behavior 
was also observed for a special MOF denoted as MFU-4 
with remarkably small pore apertures of only 2.4 Å diame-
ter.36 Quite often, however, case (ii) is observed. Rapid dif-
fusion of xenon atoms through the pore system then re-
sults in a single line with a chemical shift representing the 
weighted average along the trajectory of xenon. Note that 
the shape of this line is not necessarily symmetric. For ma-
terials with anisotropic pore systems,  the line shape of ad-
sorbed xenon can be anisotropic as demonstrated previ-
ously.37–42 Note that the line shape is not only depending 
on intracrystalline exchange and diffusion, but also on in-
tercrystalline exchange processes.41 Thus, 129Xe NMR spec-
troscopy provides information about adsorption processes 
as well as xenon dynamics in various porous materials.26–51 

Here, high pressure in situ 129Xe NMR spectroscopy is 
used to investigate host-guest interactions under con-
trolled thermodynamic conditions. The homebuilt high 
pressure apparatus51 allows in situ experiments at variable 
pressures up to saturation and at temperatures down to 
195 K. In addition to the previously studied DUT-49, a 

novel series of MOFs including the materials DUT-48, 
DUT-46, and DUT-50 was studied. These MOFs are built 
from copper paddle-wheels and carbazole-3,6-dicarbox-
ylate forming metal-organic polyhedrons (MOPs). These 
MOPs constitute small cuboctahedral pores. Connecting 
the MOPs with tetratopic, organic linkers results in a 
framework which consists of three different types of pores. 
In addition to the cuboctahedral pores, tetrahedral and oc-
tahedral cavities are formed (cf. Figure 1, a-d).52 The length 
of the organic linkers is varied within the MOF family (Fig-
ure 1, e-h) resulting in MOFs of different pore size and in-
ner surface area (Table 1). The functionalization of the or-
ganic linkers as well as the MOP structure remains un-
changed. DUT-49 shows an extremely high methane stor-
age capacity.52 Comparative investigation of the new iso-
reticular series thus allows to study differences in the ad-
sorption behavior which are purely introduced by the dif-
ferent linkers. Furthermore, it is speculated that the pore 
size may correlate with the chemical shift of adsorbed 
xenon due to the similarity in surface chemistry provided 
by this special MOF series. 

Table 1. Calculated pore sizes of DUT-48, DUT-46, DUT-49, 
and DUT-50.  

 octahedral-

pore / Å 

tetrahedral 

pore / Å 

cuboctahe-

dral pore / Å 

DUT-

48 

18.7 14.8 10.7 

DUT-

46 

21.8 15.0 10.7 

DUT-

49 

24.8 17.6 10.5 

DUT-

50 

30.7 21.0 10.7 

 

EXPERIMENTAL SECTION 

The dried MOFs were stored under an inert, dry atmos-
phere. For the experiments, the samples were transferred 
into a single crystal sapphire tube and activated overnight 
(100 °C, 10-5 mbar). The high pressure in situ experiments 
were carried out using a homebuilt apparatus.51 A defined 
xenon pressure can be adjusted. All experiments were car-
ried out on an Avance 300 NMR-spectrometer (Bruker, 
Germany) equipped with a HR probe. The NMR spectra 
were recorded at a resonance frequency of 83.04 MHz for 
129Xe using a pulse length of 11 µs and relaxation delays of 
15 s. A BIOSPIN SA BCU-Xtreme unit (Bruker, Germany) 
was used for sample cooling. Measurements were carried 
out at two different temperatures, 237 K and 200 K. To ob-
tain adsorption/desorption isotherms the chemical shift of 
adsorbed xenon was observed over the whole range of pres-
sure up to a relative pressure p/p0 = 1. Equilibration times 
of 15 min after pressure changes and 30 min after tempera-
ture changes were used. The temperature calibration was 
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carried out using the 1H signal of methanol.53,54 As a second 
method of temperature calibration, the condensation pres-
sure of xenon was used to determine the corresponding 
temperature from the phase diagram. The chemical shift is 
referenced relative to xenon gas extrapolated to zero pres-
sure.  

 

 

 

Figure 1. Structure of investigated metal-organic frameworks and their corresponding organic linkers a) DUT-48, b) DUT-46, c) 
DUT-49 and d) DUT-50. Color code: Cu – turquoise, O – red, C – grey, N – blue, H – white, cuboctahedral pore – green, tetrahedral 
pore – blue, octahedral pore – orange. 

RESULTS AND DISCUSSION 

The flexibility of DUT-49, i.e., its phase transformations, 
do not only depend on the type of adsorbed gas, but also 
on the temperature. In the case of xenon adsorption, it be-
haves like a rigid MOF at 237 K, but is flexible at 200 K. 
Therefore, isothermal in situ 129Xe NMR experiments were 
performed at these two temperatures for the isoreticular 
series studied here as well. 

Experiments at 237 K. 129Xe NMR spectra were recorded 
at various pressures covering the entire relative pressure 
range at constant temperature. Such measurements result 
in chemical shift adsorption/desorption isotherms. Figure 
2 compares the chemical shift isotherms for the purely mi-
croporous material DUT-48, as well as DUT-46 and 
DUT-50, which exhibit micropores and small mesopores 
(cf. Table 1). This comparison reveals striking differences 
for the three chemical shift isotherms. First of all, the shape 
of the chemical shift isotherm of DUT-48 resembles a re-
versible Type I(b) isotherm.55 This observation can be ex-
plained by the fact that the 129Xe NMR chemical shift is cor-
related with the amount of xenon adsorbed in the pores as 
predicted by the second term of eq. [1]. This correlation is 
the reason for the similarity between conventional adsorp-
tion/desorption isotherms obtained by uptake measure-
ments (in mass or volume units) and the chemical shift iso-
therms presented  

here. Similar correlations were already observed by our 
group56 for the microporous MOFs UiO-66 and UiO-67 
(Universitetet i Oslo).57 After a steep, almost linear increase 
at low relative pressure, the isotherm starts to level off for 
p/p0 > 0.4. The initial regime with its linear behavior is well 
known for other microporous materials such as zeo-
lites.28,55 In contrast to DUT-48, the isotherm of DUT-50 
exhibits the characteristic S-shape (Type IV) expected for 
mesoporous materials.55 At lower relative pressures, the 
present micropores are preferentially filled and only a 
monolayer of xenon atoms is adsorbed in the mesopores. 
With increasing relative pressure, multilayer adsorption 
occurs inside the mesopores which finally results in capil-
lary condensation. Therefore, a plateau is finally observed 
indicating that the maximum possible density is reached as 
also observed for the microporous DUT-48. However, 
xenon desorption during pressure release shows a hystere-
sis compared to the adsorption branch for the mesoporous 
DUT-50; a characteristic behavior for capillary condensa-
tion inside mesopores. The isotherm of DUT-46 is located 
between the two cases described above.  The chemical shift 
isotherm shows a Type I(b) shape. However, the chemical 
shift increase is slower than for DUT-48 and the plateau is 
finally reached at higher relative pressure. This is due to 
the larger pores of the material. Nevertheless, the obtained 
isotherm is reversible. 
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It is, furthermore, interesting to note that the chemical 
shift of the adsorbed xenon exceeds the chemical shift of 
liquid xenon at the given temperature and high relative 
pressure. The chemical shift of 129Xe at p/p0 = 1 can be deter- 
mined very precisely by extrapolation of the chemical shift 
since the slope of the isotherm decreases and is almost zero 
at relative pressures close to one. It can be concluded from 
this observation in combination with eq. [1] that the xenon 
density inside the pores only slightly changes at sufficiently 
high relative pressures, i.e., that the pore system is filled at 

p/p0 close to 1. A chemical shift difference  is observed 

between the chemical shift δ̅ resulting from the extrapola-

tion of  to p/p0 = 1 and the chemical shift B of bulk liquid 
xenon of ca. 197 ppm at the given measurement tempera-
ture. This difference arises due to the fact that a certain 
fraction of xenon atoms is in direct contact with the MOF 
surface whereas the others in the middle of a sufficiently 
large pore only interact with other xenon atoms as in the 
bulk liquid. Due to the presence of exchange processes, an 
averaged chemical shift results. The insert in Figure 3 illus-
trates this idea. Under the simplifying assumption that the 
surface is chemically homogeneous and the chemical shift 

of xenon in surface contact is given by S, one can then 
write: 

δ = 𝑝𝑆δS + 𝑝BδB 

𝑝B = 1 − 𝑝S 

  = δ − δB = 𝑝S(δS − δB) [2] 

Here, pS and pB denote the probabilities for a xenon atom 
to be in surface contact or in the bulk liquid, respectively. 
Thus, Δδ depends on the probability pS that xenon inter-
acts with the surface. It can be written as: 

𝑝S =
𝑁S

𝑁S + 𝑁B

 

NS and NB denote the numbers of xenon atoms in contact 
with the surface and in the bulk liquid, respectively.  

 
Figure 2. 129Xe NMR adsorption and desorption isotherms of 
DUT-48, DUT-46, and DUT-50 at 237 K. 

 
Figure 3. Correlation of the mean pore diameter, d, and the 

chemical shift difference, , of adsorbed xenon at 237 K for 
DUT-48, DUT-46, DUT-49, and DUT-50. The insert shows the 
model of a xenon-filled pore. 

The probability for a xenon atom to be in surface contact, 
however, will depend on the average pore size of the mate-
rial. In order to test the validity of this consideration, the 

correlation between  and the average pore diameter of 
the studied samples (cf. Table 2) is shown in Figure 3. For 

the materials of the considered isoreticular series,  obvi-
ously follows the expected trend: An increasing average 

pore size leads to decreasing  since the probability for 
surface contact decreases in larger pores. Assuming spher-
ical pores, one would expect a 1/d- dependence for pS. The 
data do not exactly follow this dependence but show a sim-
ilar trend. The deviation is not unexpected because the 
MOFs exhibit not only mesopores but also micropores and 
the above made assumptions are certainly an oversimplifi-

cation. In any case, our observations show that  can be 
used as an easily measurable estimate for the average pore 
size in MOFs of comparable surface chemistry. 

Table 2. Average pore diameter d (for detailed information 
about the calculation, see Table S2) and chemical shift differ-

ence  of adsorbed xenon relative to bulk liquid xenon at 
237 K for DUT-48, DUT-46, DUT-49, and DUT-50. 

 d / Å Δδ / ppm 

DUT-48  15.66 32.0 

DUT-46 17.59 24.2 

DUT-49 20.80 21.3 

DUT-50 26.98 19.2 

 

Experiments at 200 K. As mentioned above, DUT-49 is 
rigid at 237 K but becomes flexible at 200 K.13 The other 
members of the described isoreticular series were found to 
be rigid at 237 K as well. In order to characterize the influ-
ence of decreasing temperature, their behavior at 200 K 



5 

 

was also studied here. Since the 129Xe chemical shift is very 
sensitive to structural changes, differences between chem-
ical shift isotherms and the conventional xenon uptake 
measurements must now be taken into account. 

For DUT-48, an almost reversible Type I(b) isotherm is 
also observed at 200 K (Figure 4). Only a minor hysteresis 
occurs within the experimental error. That means, the mi-
croporous DUT-48 is rigid at both measurement tempera-
tures applied here. 

DUT-46 contains both, micropores and small mesopores 
(see Table 1) and exhibits a type IV adsorption/desorption 
isotherm. However, the volumetric uptake-derived iso-
therm does not exhibit a detectable hysteresis. This can be 
explained by the rather small mesopores (21.8 Å diameter) 
where capillary condensation not yet plays a major role. 
However, the NMR-derived 129Xe chemical shift adsorp-
tion/desorption isotherm exhibits a considerable hystere-
sis. It should be noted that the uptake-derived isotherm 
was measured at an even shorter equilibration time of 
about 400 s for each data point than the NMR-derived 
chemical shift isotherm measured with 15 minutes equili-
bration for each data point. The data in the hysteresis 
range at relative pressures between 0.1 and 0.3 were even 
measured after 75 minutes equilibration because the equi-
librium is not reached after 15 minutes. This follows from 
the observation that line width and position still change 
after 15 minutes (cf. Figure S2). The characteristic differ-
ence between the two isotherms, i.e., the absence of a hys-
teresis in the volumetric uptake-derived data, can thus not 
be explained by insufficient equilibration time for the NMR 
experiment. Our explanation for this behavior is a diffu-
sion-limited re-distribution of adsorbed xenon in the pore 
system. Typically, the small pores fill first at low pressures. 
However, the windows of the smallest pores have only 
about 4 Å size and the van-der-Waals diameter of xenon 
amounts to 4.4 Å. At low pressures, xenon is thus probably 
not (or only to a limited extent) adsorbed in these small 
cuboctahedral pores. However, a re-distribution of the ad-
sorbed xenon in the pore system can occur at higher pres-
sure, i.e., the small pores increasingly fill. During desorp-
tion, the cuboctahedral pores are still filled and desorption 
takes place at lower relative pressure. Thus, the hysteresis 
in the NMR-derived isotherm could be explained. It is al-
ready known for another MOF, that xenon is able to pass 
even smaller pore apertures and is trapped inside after-
wards.36 However, this behavior can be observed at lower 
temperatures and pressures for DUT-46. In agreement 
with this idea, the integral intensity of the signal for ad-
sorbed xenon remains almost constant during the whole 
time of the equilibration experiment of 75 minutes (cf. Fig-
ure S3). Only minor changes occur after the first few 
minutes of equilibration. Thus, the significant change in 
chemical shift and line shape occurs most likely due to a 
re-arrangement of already adsorbed xenon atoms. Further 
work is in progress to clarify this observation. In any case, 
it can be stated that DUT-46 and DUT-48 do not show the 
counterintuitive low-temperature NGA behavior of DUT-

49. The reason for this is most likely the linker structure. 
NGA is a spontaneous desorption of gas during pressure 
increase.13 Adsorbed xenon is released because the meso-
pores are contracted. This is accompanied by pronounced 
deformation (bending) of the linkers. The energy needed 
for this bending is overcompensated by the higher adsorp-
tion enthalpies for guests like methane or xenon.58 Obvi-
ously, the organic linkers used in DUT-48 and DUT-46 are 
too short and rigid to allow adsorption-driven bending in 
contrast to DUT-49. However, DUT-50 exhibits an even 
longer linker than DUT-49 in contrast to DUT-48 and 
DUT-46. The 129Xe NMR spectra recorded at 200 K are 
shown in Figure 5 for the adsorption experiment, i.e., 
steadily increasing pressure along with the volumetric up-
take-derived adsorption isotherm. The chemical shift of 
adsorbed xenon steadily increases from 120 ppm to 150 
ppm with relative pressure up to 0.28. At a relative pressure 
of about 0.3, a sudden shift jump of nearly 100 ppm occurs. 
This jump is caused by the structural transition from the 
open-pore (op) state to the closed-pore (cp) state. The re-
sulting higher probability pS for xenon to be in contact with 
the surface in the contracted pores causes the sudden 
chemical shift in-crease similar like in DUT-49.31  

 

 
Figure 4. 129Xe NMR adsorption and desorption isotherms of 
DUT-48 (top) and DUT-46 (bottom) at 200 K. 
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Further pressure increase results in a moderate increase 
for the chemical shift of xenon in the cp state. However, a 
second signal at a lower chemical shift occurs at relative 
pressures beyond 0.45. This can be assigned to xenon ad-
sorbed in DUT-50op. The transformation of DUT-50 from 
the cp state back to the op state takes place over a rela-
tively wide relative pressure range. At p/p0 = 1, only one sig-
nal for xenon remains indicating the complete transfor-
mation of DUT-50 into the op state. 

The co-existence of the cp and op state over a relatively 
wide relative pressure range between 0.46 and 0.92 could 
be explained by two models: (i) the structural transfor-
mation is a collective phenomenon of entire crystallites 
and the sample contains crystallites which exhibit different 
transition pressures. (ii) the pore opening starts locally at 
a certain pressure and does then steadily proceed into 
other regions of the crystallite at increasing pressure (for 
example, from the surface into the bulk). It is anticipated 
that the exchange rate of xenon between the op and cp 
state would be slower for the intercrystalline exchange de-
scribed in (i) than for the intracrystalline exchange in (ii). 
Therefore, we have measured the exchange rate by 2D 
EXSY spectroscopy (Figure 6). The exchange rate can be 
calculated from the dependence of the intensity ratio be-
tween cross peaks and diagonal peaks on the mixing time 

m. For a two-site exchange, the ratio between the intensi-
ties of cross peaks, Icross, and diagonal peaks, Idiagonal, is de-
scribed by the function59 

 𝐼𝑐𝑟𝑜𝑠𝑠

𝐼𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
~ tanh(𝑘𝑒𝑥𝑚) 

[3] 

Figure 6 demonstrates that the data indeed follow this 
function. An exchange rate kex of 95 Hz could be measured 
corresponding to a characteristic exchange time constant 
of 11 ms. This is a typical value for intercrystalline exchange 
processes in microcrystalline materials.51,60 It is thus antic-
ipated that the op-cp structural transition in DUT-50 is a 
collective switching of entire crystallites in an ensemble of 
crystallites with slightly varying switching pressure and 
not a local phenomenon continuously spreading out 
within one crystallite. During desorption experiment (see 
Figure 7), the structural change from DUT-50op to DUT-
50cp occurs at p/p0 = 0.3. The material stays in this state 
even at very low pressure down to 0.01. That means, the 
described structural transitions are not reversible. 

 
Figure 5. 129Xe NMR adsorption spectra (top) and 129Xe NMR 

and volumetric uptake-derived xenon adsorption isotherms 
(bottom) of DUT-50 at 200 K. 
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Figure 6. EXSY spectra of xenon adsorbed on DUT-50 at p = 
2.0 bar and 200 K (top) and correlation between the mixing 
time and the intensity ratio of cross peaks and diagonal peaks 
measured as a function of the mixing time. The red line was 
determined by fitting the data to eq. [3]. 

The adsorption/desorption isotherm obtained from the 
129Xe NMR spectra can be compared with the volumetric 
xenon isotherms (cf. Figures 5 and 7, bottom). During ad-
sorption, the jump of the chemical shift takes place coin-
ciding with the NGA transition. The appearance of the sec-
ond signal for adsorbed xenon shows the gradual transfor-
mation of the cp state back to the op state. During desorp-
tion the structural change of DUT-50 is only observable 
within the 129Xe NMR isotherm, rendering 129Xe NMR spec-
troscopy highly useful to better understand the structural 
transformation. It can thus be stated that DUT-50 is the 
second known material showing the negative gas adsorp-
tion phenomenon.    

Finally, another MOF denoted as DUT-151 (cf. Figure S4) 
with an even longer linker than DUT-50 (four 1,4 substi-
tuted phenylene units in the ligand backbone) was also in-
vestigated with respect to its xenon adsorption behavior. 
Due to its interpenetrated network structure, the MOF was 
not included into the pore size estimation experiments. 

 
Figure 7. 129Xe NMR desorption spectra (top) and 129Xe NMR 

and volumetric uptake-derived xenon desorption isotherms 
(bottom) of DUT-50 at 200 K. 

Nevertheless, the adsorption experiments at 200 K were 
performed for DUT-151 as well. The material shows struc-
tural transformations during adsorption at this tempera-
ture which, however, differ from the behavior of DUT-50. 
After activation (DUT-151act) and start of the adsorption 
experiment at low pressure, the material is found in the 
closed-pore state (DUT-151cp). At low pressure, the signal 
of adsorbed xenon is observed in the range between 118 
ppm and 158 ppm (Figure 8). This signal can be assigned to 
xenon adsorbed on the closed pores at low pressures. Be-
yond a relative pressure of 0.2, a second signal for adsorbed 
xenon occurs at a higher chemical shift of 202 ppm. Thus, 
two signals can be observed simultaneously in this pres-
sure range. However, the signal intensity of the first signal 
at lower chemical shift decreases with increasing pressure 
and the signal finally disappears. 

We assume, that the interpenetrated networks shift rel-
ative to each other beginning from a relative pressure of 
0.2, i.e., the network seems to transform from the closed-
pore structure to an open-pore structure (DUT-151op). The 
chemical shift jump and the appearance of the second sig-
nal is clearly visible within the adsorption isotherm of 
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DUT-151 at 200 K (Figure 8, bottom). This pore opening al-
lows more 

 

 
Figure 8. 129Xe NMR adsorption spectra (top) and 129Xe NMR 
adsorption and desorption isotherm (bottom) of DUT-151 at 
200 K. 

xenon adsorption as seen from the increasing total signal 
intensity. The tendency of the lattice to close – which must 
be overcome by adsorbed xenon – as well as Xe-Xe interac-
tions may cause the higher chemical shift of the second sig-
nal. During desorption, only one signal of adsorbed xenon 
is recorded and a hysteresis is observed. The chemical shift 
jump is observable during desorption at lower relative 
pressure of 0.15. The starting value of the chemical shift of 
adsorbed xenon is reached again after desorption of gas 
and thus, the adsorption-induced structural transition 
seems to be reversible. The reason for the difference in ad-
sorption and switching behavior compared with DUT-49 
and DUT-50 (see above) is the lattice interpenetration pre-
sent in DUT-151. This was found to prevent large scale 
structural contraction and NGA due to a reduced void. 

However, sufficient void space in the pores is required for 
such a structural transition.  

 

CONCLUSSION 

High pressure in situ 129Xe NMR spectroscopy is well-
suited to investigate host-guest interactions and adsorp-
tion processes in porous materials such as MOFs. The fol-
lowing conclusions are drawn from our studies: 

 (1) Chemical shift measurement of adsorbed xenon as a 
function of pressure yields chemical shift adsorption/de-
sorption isotherms which compare well with conventional, 
uptake-measurement based isotherms for rigid MOFs. 
This is due to the fact that the chemical shift and the den-
sity of adsorbed xenon are correlated.  

(2) The difference  between the chemical shift of ad-
sorbed xenon extrapolated to a relative pressure of one and 
the chemical shift of bulk liquid xenon correlates with the 
average pore diameter for MOFs of comparable chemical 
composition, i.e., surface chemistry. This correlation be-
tween Δδ and the mean pore diameter is demonstrated for 
the series of isoreticular MOFs studied here (DUT-48, 
DUT-46, DUT-49, and DUT-50).  The chemical shift differ-
ence of adsorbed xenon decreases with increasing mean 

pore diameter.  The quantity  is easily and accurately 
measurable by high-pressure in situ 129Xe NMR spectros-
copy and allows an estimation of the mean pore size.  

(3) Characterization of the adsorption processes at lower 
temperature (200 K) shows interesting adsorption phe-
nomena. Similar to DUT-49, the novel compound DUT-50 
also shows structural changes of the pore system during 
adsorption causing negative gas adsorption (NGA) as can 
be visualized by 129Xe NMR spectroscopy. 2D EXSY experi-
ments allow to measure the exchange between coexisting 
open and contracted pores. The measured exchange rate 
suggests that structural transitions in DUT-50 are a rather 
collective phenomenon of entire crystallites.  

(4) The interpenetrated compound DUT-151 shows a dif-
ferent switching behavior compared with DUT-49 and 
DUT-50. The transition is not a structural contraction but 
a xenon-adsorption induced mutual shift of the two inter-
penetrating networks from a closed-pore to an open-pore 
state of the MOF.  

(5) The non-flexible compound DUT-46 exhibits a hys-
teresis in the 129Xe NMR isotherm due to diffusion-limited 
adsorption/re-distribution processes at low temperature. 
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High pressure in situ 129Xe NMR spectroscopy is used to investigate host-guest interactions and adsorption processes 
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