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“Would you tell me, please, which way I ought to go from

here?” “That depends a good deal on where you want to get

to,” said the Cat. “I don’t much care where –” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“– so long as I get somewhere,” Alice added as an

explanation. “Oh, you’re sure to do that,” said the Cat,

“if you only walk long enough.”

— Lewis Carroll, Alice in Wonderland
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Introduction

In this chapter we informally introduce valued constraint satisfaction prob-

lems and the constraint satisfaction framework, we overview the state of

the art, motivate our research, and, finally, we present examples of relevant

computational problems that can be modelled as valued constraint satisfac-

tion problems. All the preliminary concepts are formally defined in Chapter

1. At the end of this introduction we also describe the organisation of the

thesis.

The content of this thesis mainly finds its background in two scientific

disciplines: computational complexity theory and universal algebra. Com-

putational complexity theory focuses on quantifying the amount of resources

(e.g., running time or memory) required by the “best” (i.e., the fastest or the

least memory consumptive) algorithm that solves a given task. Universal

algebra studies properties of algebraic structures. The object of the thesis

is the study of the computational complexity of certain combinatorial opti-

misation problems called valued constraint satisfaction problems, or VCSPs

for short. The requirements and optimisation criteria of these problems are

expressed by sums of (valued) constraints (also called cost functions). More

precisely, the input of a VCSP consists of a finite set of variables, a finite

set of cost functions that depend on these variables, and a cost u; the task

is to find values for the variables such that the sum of the cost functions is

at most u.1 By restricting the set of possible cost functions in the input,

a great variety of computational optimisation problems can be modelled as

VCSPs. We study how the computational complexity of a VCSP depends

on the universal algebraic properties of the (valued) structure determined

by the set of allowed cost functions, in the case in which the range of values

for the variables (the domain) is the set of rational numbers, Q.

1We adopt the so-called threshold formulation of VCSPs. In the existing literature,
VCSPs have also been studied using the minimisation formulation, in which no cost u is
given as part of the instance, and the task is to find values for the variables that minimise
the sum of the cost functions.

1



2 INTRODUCTION

Constraint Satisfaction and Valued Constraint

Satisfaction

Constraints occur in most fields of human endeavour, and they allow us

to naturally and precisely formalise the interdependencies of physical-world

objects as well as of their mathematical abstractions. In Constraint Satis-

faction these dependencies are specified by logical relations among several

variables. However, in many situations some constraints might be violated

at some cost, or, even if all the constraints need be satisfied, there might be

solutions which are preferable to others. These scenarios are captured by

the Valued Constraint Satisfaction framework, in which dependencies and

preferences are specified by cost functions of several variables.

Constraint Satisfaction Problems

An instance of a Constraint Satisfaction Problem, or CSP for short, states

which relations must hold among some given variables. More formally, an

instance of the CSP consists of a finite set of variables defined on a given

domain and a set of relations on subsets of these variables; the computational

task is to find an assignment of values to the variables that satisfies all the

constraints. One of the strengths of the CSP framework is that it provides

a unifying framework for various problems that have been independently

studied before. By specifying properties of the domain and of the constraints

(e.g., the domain can be finite or infinite, discrete or continuous), one can

obtain different classes of problems. In fact, many problems arising from

industry, business, manufacturing, and science can be formulated as CSP

instances, and this is often the method of choice. Identifying restricted

classes of CSPs that are solvable in polynomial time is of theoretical as well

as practical interest in the design of constraint programming languages and

efficient constraint solvers (for examples of practical applications of results

on polynomial-time solvable classes of CSPs see, e.g., [36, 86]).

If the domain of values is a finite set, then it is well known that the

CSP is NP-complete, in general. Therefore, the research on the computa-

tional complexity of finite-domain CSPs has typically focused on specific

restrictions of the problem. In a language-restricted problem, the goal is to

understand how the computational complexity depends on the structure (in

this setting, the allowed constraints are fixed, but they can be combined

in any way). In a structurally-restricted problem the goal is to understand

how the computational complexity depends on the constraints hypergraph

(in this setting the interaction of the constraints is restricted, but any sort

of constraint can be used). Finally, in a hybrid-restricted problem, the goal

is to understand how the computational complexity depends on some com-
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bination of the previous two restrictions of CSPs.

Language-restricted problems have been the focus of research on finite-

domain CSPs for many years. Early results in this direction motivated

Feder and Vardi [39] to conjecture that the CSP for structures over a fi-

nite domain is either polynomial-time solvable or NP-complete, namely they

conjectured that the class of finite-domain CSPs satisfies a complexity di-

chotomy. By Ladner’s Theorem [78], there are NP-intermediate problems2

(unless P=NP), and the Feder-Vardi dichotomy conjecture would imply the

impossibility of encoding them as finite-domain CSPs. The Feder-Vardi con-

jecture was the motivation of an intensive line of research over the last two

decades, and, recently, it has been confirmed in two independent proofs by

Bulatov [24] and Zhuk [101]. The success of the research program on the

Feder-Vardi conjecture is based on the universal algebraic approach intro-

duced by Bulatov, Krokhin, and Jeavons [25], which allows characterising

the computational complexity of the CSP for a given structure by the alge-

braic properties of the structure itself.

If we allow the underlying domain of CSPs to be a set of arbitrary size,

we obtain a more expressive framework capturing, besides all finite-domain

CSPs, many computational problems that cannot be formulated in the finite-

domain setting. Examples include the feasibility of linear programs over Z
(the set of integer numbers), Q (the set of rational numbers), and R (the set

of the real numbers) [91], the model-checking problem for Kozen’s modal

µ-calculus [72], and the solution of linear Diophantine equation systems [31,

62]. However, the increase in expressive power gained from considering CSPs

over arbitrary domains is counterbalanced by some losses. Firstly, infinite-

domain CSPs are not necessarily in NP. In fact, every computational decision

problem over a finite alphabet is equivalent under polynomial-time Turing

reduction to an infinite-domain CSP [3]. Secondly, even if many results of

the universal algebraic theory for finite-domain CSPs can be extended to

the arbitrary domain setting, there are many algebraic properties of finite-

domain structures that do not hold for infinite-domain ones. Remarkably,

the computational complexity of CSPs for structures over arbitrary domains

is not fully characterised by the algebraic properties of the structure only.

In the last ten years, the research on infinite-domain CSPs has followed

two specific directions. One of these directions is the identification of classes

of structures that admit a complexity dichotomy (see [4, 6, 7, 17, 19, 71]).

For such classes, it was shown that the delineation between polynomial-time

solvability and NP-hardness can be described using algebraic and topological

methods. The other direction is to study CSPs over some of the most basic

2An NP-intermediate problem is a problem that belongs to the class NP, and that is
neither in P, nor NP-complete.
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and well-known infinite domains, such as the numeric domains Z, Q, R, or

C (the set of complex numbers); and to focus on constraint relations that

are first-order definable from the usual order, addition, and multiplication

on these domains (see [5, 10, 13, 61]).

Valued Constraint Satisfaction Problems

VCSPs may be considered a variation of (classical) CSPs that capture op-

timisation problems and that provide a common framework for well-know

computational problems as CSPs, Max CSPs (see [30, 32, 67]), finite-valued

CSPs (see [97]), Max Ones problems (see [37, 67]), and Minimum Cost

Homomorphism problems (see [51, 53, 95]).

While in the CSP setting (or classical constraint setting), the constraints

are parametrised by relations on the variables expressing the feasibility of

variable assignments, in the VCSP setting (or valued setting), the con-

straints are parametrised by cost functions applied to the variables express-

ing not only the feasibility but also the preferability of variable assignments.

The non-feasibility of variable assignments is modelled by allowing the cost

functions in the input to evaluate to +∞. In fact, the class of (classical)

CSPs is a subclass of the class of all VCSPs: CSP instances correspond to

VCSP instances in which the cost functions take values in {0,+∞}. There-

fore, every instance of the CSP can be modelled as an instance of the VCSP.

On the other hand, every VCSP instance induces a CSP instance: the prob-

lem of deciding the existence of an assignment with finite cost (the feasibility

problem).

If we allow the cost functions to take only finite values, then we obtain

instances of a finite-valued CSP, which is a mere optimisation problem. If we

allow the cost functions to take only values in {0, 1}, we obtain instances of

Max-CSPs where the goal is to find an assignment maximising the number

of satisfied constraints. Finally, if we only allow cost functions that are

either {0,+∞}-valued or finite-valued, we obtain problems like Max-Ones

problems, and Minimum Cost Homomorphism problems, in which some

feasibility constraints must be satisfied and some additional function of the

variable assignments must be optimised.

Finite-Domain Valued Constraint Satisfaction Problems

Similarly to the classical constraint setting, if the domain of the cost func-

tions is a finite set, then the VCSP is NP-complete3, and, again simi-

larly to the classical constraint setting, the research on the computational

3The problem is NP-complete in the threshold formulation. It is NP-hard in the min-
imisation formulation.
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complexity of VCSPs has focused on the language-restricted problem, the

structurally-restricted problem, and hybrid-restricted problems. In the case

of the language-restricted problem, the algebraic approach was extended

from finite-domain CSPs to finite-domain VCSPs (cf. [33, 34]) and it was

shown that valued structures can be classified by studying their algebraic

properties (cf. [33, 43]). The algebraic approach for finite-domain VCSPs

led to several complexity classifications for special classes of valued struc-

tures: valued structures over a a 2-element (Boolean) domain [34], valued

structures containing all {0, 1}-valued cost functions [70], and finite-valued

structures, in which the feasibility aspect is trivial and the cost functions

only assume finite values, [97]. Moreover, a classification of valued structures

with respect to their exact solvability by a specific algorithm was established

for the basic linear programming relaxation [69], and the Sherali-Adams re-

laxation [98].

Similarly to the finite-domain classical constraint setting, the first com-

plexity classifications for specific finite-domain valued structures had the

form of a dichotomy between polynomial-time solvability and NP-hardness.

This motivated Kozik and Ochremiak [73] to make an analogue of the finite-

domains CSP dichotomy conjecture for finite-domain VCSPs, and proved

the necessity of the algebraic condition that they conjectured to charac-

terise polynomial-time solvable valued structures. It was proved later, by

Kolmogorov, Krokhin, and Rolinek [68], that this algebraic condition is suf-

ficient for polynomial-time solvability, assuming that the underlying feasi-

bility problem is solvable in polynomial time. Since this further assumption

follows from the Feder-Vardi dichotomy conjecture for classical CSPs, the

recent proofs of the Feder-Vardi conjecture immediately settled the com-

plexity dichotomy of finite-domain VCSPs.

Examples of finite-domain VCSPs

We present two examples of problems that can be modelled as VCSPs over

a finite domain.

Example 1. (Max Cut) Given a graph G = (V,E), consider the problem

of finding a subset S of vertices in V that maximises (or bound from below

by a given threshold) the number of edges between S and its complement

V \ S. This problem can be modelled as a VCSP instance over the domain

D = {0, 1}, with objective function ϕ(v1, . . . , vn) =
∑︁

(vi,vj)∈E XOR(vi, vj),

where the variables {v1, . . . , vn} correspond to the vertices in V , and where

the cost function XOR : D2 → Q is defined by

XOR(x, y) :=

{︄
0 if x ̸= y

1 if x = y.
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Assigning a variable to 1 is interpreted as the corresponding vertex belonging

to the subset S. The Max Cut problem is NP-hard4 (see [45]). △

Example 2. (Min (s, t)-Cut) Let G = (V,E) be a directed graph, let

w : E → Q≥0 be a weighting function defined on the edges of G, and let

s, t ∈ V be two distinct vertices. An (s, t)-cut of G is a subset C of ver-

tices in V such that s ∈ C, and t /∈ C. The weight of an (s, t)-cut C is

defined as
∑︁

(u,v)∈E:u∈C,v/∈C w(u, v). The goal of the Min (s, t)-Cut prob-

lem is to find an (s, t)-cut C in G with minimum weight (or with weight

bounded from above by a given threshold). Consider the valued structure

Γcut with domain D = {0, 1}, and cost functions η0, η1 : D → Q ∪ {+∞},

and fwcut : D
2 → Q ∪ {+∞}, for w ∈ Q≥0. Where, for c ∈ {0, 1}, the func-

tion ηc is defined by

ηc(x) :=

{︄
0 if x = c

+∞ otherwise,

and fwcut is defined by

fwcut(x, y) =

{︄
w if x = 0, and y = 1

0 otherwise.

The Min (s, t)-Cut problem can be modelled as an instance of the VCSP

for Γcut with objective function

ϕ(v1, . . . , vn) = η0(s) + η1(t) +
∑︂

(u,v)∈E

f
w(u,v)
cut (u, v),

where the variables {v1, . . . , vn} correspond to the vertices in V , and where

assigning a variable to 0 is interpreted as the corresponding vertex belonging

to the (s, t)-cut C. The unary cost functions η0, η1 ensure that s and t

belong to C and V \ C, respectively. Any instance of the VCSP for Γcut can

be polynomial-time many-one reduced to an instance of the Min (s, t)-Cut

problem, which can be solved in polynomial time (see [47, 75]). △

As we already mentioned, in the finite-domain VCSP setting, there is

another research line that focuses on the structurally-restricted problem,

in which the set of admissible instances is restricted by specifying the al-

lowed interaction of constraints, rather than by specifying a valued structure

(see [29, 44, 48, 49, 81]). The computational complexity of the VCSP for

a finite-domain valued structure may be reduced by considering hybrid re-

strictions of the VCSP, which combine the language restriction with some

4The problem is NP-hard in the minimisation formulation. It is NP-complete in the
threshold formulation.
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structural restrictions. Finally, we mention that there is a further research

line on finite-domain VCSPs that takes into account extensions of VCSPs

with various kinds of global constraints (see [26, 42, 82]), i.e., constraints

that are applied to a non-fixed number of variables. In contrast to hybrid

restrictions, extending a language-restricted finite-domain VCSP with some

global constraint may increase the computational complexity.

Infinite-Domain Valued Constraint Satisfaction Problems

Analogously to the classical CSP setting, several combinatorial optimisation

problems cannot be formulated as VCSPs over a finite domain, but they can

be formulated as VCSPs over an infinite domain, e.g., Q, R, or Z.

Example 3. (Linear Least Square Regression) Consider the prob-

lem of finding the linear function that best approaches how an outcome y

depends on one or more explanatory parameters x0, x1, . . . , xn, by minimis-

ing the sum of the least square deviation from some (statistical or training)

data (yj , xj0, xj1, . . . , xjn), for 1 ≤ j ≤ m and some m ∈ N, or by making it

at most equal to a fixed error tolerance.

This problem can be modelled as an instance of a VCSP over the ratio-

nals, where the variables, v0, v1, . . . , vn, represent the coefficients of a linear

relation constraining x0, x1, . . . , xn and y. The cost functions, fj : Qn+1 → Q,

arise from the objective function,

ϕ(v0, v1, . . . , vn) =
m∑︂
j=1

fj(v0, v1, . . . , vn),

and are defined by

fj(v0, v1, . . . , vn) := (v0 +
n∑︂
i=1

vixji − yj)
2.

These functions represent the least square deviation from the given data

(yj , xj0, xj1, . . . , xjn), for 1 ≤ j ≤ m; and the threshold represents the error

tolerance. Each assignment α : {v0, v1, . . . , vn} → Q corresponds to a linear

function y := α(v0) +
∑︁n

i=1 α(vi)xi.

The Linear Least Square Regression finds applications in areas of

science and technology in which the goal is to predict, forecast, or reduce

errors, e.g., economics, machine learning, biological sciences, and social sci-

ences. Linear Least Square Regression can be solved in polynomial

time (see, e.g., [21]). △
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Figure 1: Linear Least Square Regression

y = α(v0) + α(v1)x

x

y

A set of (2-dimensional) points denoting the given data (xi, yi) and their corresponding
Linear Least Square Regression y = α(v0) + α(v1)x.

Other examples include the Linear Programming problem, where the

task is to optimise a linear function subject to linear inequalities (see Ex-

ample 4), and the minimisation problem for sums of piecewise linear convex

cost functions (see, e.g., [21]). Both of these problems can be solved in

polynomial time, e.g. by the ellipsoid method (see, e.g., [50]).

Despite the great interest in such concrete VCSPs over the rational num-

bers, VCSPs over infinite domains have not yet been studied systematically.

In order to obtain general results, we need to restrict the class of valued

structures that we investigate, because without any restriction it is already

hopeless to classify the complexity of the subclass of all infinite-domain

CSPs.

One class that captures a variety of optimisation problems of theoretical

and practical interest is that which arises from the restriction of the language

to piecewise linear (PL) cost functions. A Q-valued partial function is PL if

it is first-order definable over Q with the usual order relation, the usual sum,

and the identity in Q.5 The name is due to the fact that the representation of

a piecewise linear function on a Cartesian coordinate system is the (disjoint)

union of linear subspaces (pieces). An important example of VCSP for PL

valued structures is Linear Programming.

Example 4. (Linear Programming) Linear Programming, or LP for

short, is an optimisation problem with a linear objective function and a set

of linear constraints imposed upon a given set of underlying variables. A

5In the PL setting the domains Q and R are interchangeable.
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linear program has the form

minimise

n∑︂
j=1

cjxj

subject to

n∑︂
j=1

aijxj ≤ bi, for i ∈ {1, . . . ,m}.

This problem has n variables xj (ranging over Q or R) and m linear inequal-

ities as constraints. The coefficients cj , a
i
j , and bi are rational numbers for

all j ∈ {1, . . . , n}, and all i ∈ {1, . . . ,m}. LP can be solved in polynomial

time (see, e.g., [63, 65, 100]). △

In general, VCSPs for PL valued structures are NP-complete (see Propo-

sition 1.2.16). Therefore it is interesting to study how a further restriction

to special classes of PL valued structures influences the computational com-

plexity. However, studying the computational complexity of all VCSPs for

all PL valued structures is a very ambitious goal. Already, the underlying

CSP for PL (relational) structures, better known as semilinear CSPs has

not been systematically studied, and only several partial results are known

(see [5, 9, 10, 11, 61]). Results for semilinear CSPs suggest that the al-

gebraic approach, so successful in the finite-domain case, is not sufficient

to fully characterise the computational complexity of VCSPs, at least in

the general case in which we allow the cost functions to assume +∞ as a

possible value. However, as in the classical constraint setting, studying the

algebraic properties of PL valued structures might give interesting, though

partial, results and led to prove the polynomial-time solvability for special

PL valued structures.

Another important class of valued structures over the rationals is the

class of piecewise linear homogeneous (PLH) valued structures. A valued

structure is PLH if the cost functions thereof are PLH, i.e., first-order de-

finable over Q using the usual total order, the identity in Q, and the scalar

multiplication by rational numbers. PLH functions arise in several scientific

fields, e.g., some of the activation functions used in neural networks (as the

ReLU and the Leaky ReLU activation functions) [80] are examples of PLH

functions, and the functions arising in the piecewise linear subband coding

schemes [93] used in image analysis and computer vision can be written as

sums of PLH functions. Clearly, PLH valued structures form a subclass

of the class of PL valued structures. Nevertheless the PLH setting is very

expressive (e.g., every finite domain VCSP is equivalent to the VCSP for a

suitable PLH valued structure) and captures many computational problems,

as the examples below show. Finally, PLH valued structures have many in-

teresting mathematical properties, making them a natural and reasonable
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intermediate step between finite-domain valued structures and valued struc-

tures over infinite domains.

Example 5. (Least Correlation Clustering with Partial Infor-

mation) We consider the following problem: we are given an undirected

graph on n vertices such that the set of edges E is partitioned in two classes,

E− and E+. An edge (x, y) ∈ E is either in E+ or in E− depending on

whether x and y have been deemed to be similar or different. The goal

is to (decide whether it is possible to) produce a partition of the vertices,

namely a clustering, that agrees with the edge partition on at least l edges,

where l is a given (rational) number between 0 and |E|. That is, we want

a clustering that bounds the number of disagreements, i.e., the number of

edges from E+ between clusters plus the number of edges from E− inside

clusters. This problem can be seen as an instance of a VCSP with variables

x1, . . . , xn, objective function

ϕ(x1, . . . , xn) =
∑︂

(xi,xj)∈E+

f1(xi, xj) +
∑︂

(xi,xj)∈E−

f2(xi, xj),

and with u := |E| − l. The cost functions f1, f2 : Q2 → Q are defined by

f1(xi, xj) =

{︄
0 if xi = xj

1 otherwise,
and f2(xi, xj) =

{︄
1 if xi = xj

0 otherwise.

Observe that this problem cannot be modelled as a VCSP over a finite

domain, as we do not want to bound the possible number of clusters and we

want to allow graphs with any finite number of vertices as input.

The Least Correlation Clustering with Partial Information

problem that we defined above can model the well-known Min-Correlation

Clustering problem (see [1]). Since Min-Correlation Clustering

problem is NP-complete 6 (see [45, 64]), so is Least Correlation Clus-

tering with Partial Information. △

6The problem is NP-complete in the threshold formulation. It is NP-hard in the min-
imisation formulation.
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Figure 2: Least Correlation Clustering with Partial Information

Left: an instance of the Least Correlation Clustering with Partial Information
problem. The continuous and dashed segments denote edges in E+ and in E−, respec-
tively. Right: an assignment with cost 5; different colours of the vertices denote different
assignment and red edges denote occurrences of the cost functions evaluating to 1.

Example 6. (Minimum Feedback Arc Set) Let G = (V,E) be a directed

graph, and assume we are required to remove some of the edges in E in such a

way to obtain an acyclic graph G′ := (V,E′) while minimising the number of

removed edges, |E \ E′|, or bounding it by a given threshold u. This problem

can be seen as an instance of a VCSP with variables x1, . . . , xn such that

each variable corresponds to a vertex in V , with objective function

ϕ(x1, . . . , xn) =
∑︂

(xi,xj)∈E

f(xi, xj),

and with threshold u, where the cost function f : Q2 → Q is defined by

f(xi, xj) =

{︄
0 if xi < xj

1 if xi ≥ xj .

The Minimum Feedback Arc Set problem is known to be NP-complete
6 (see [45, 64]). △

Figure 3: Minimum Feedback Arc Set

1
2

0 1

−1

Left: an instance of the Minimum Feedback Arc Set problem. Right: an assignment
with cost 1; the red edge denotes the occurrence of the cost function evaluating to 1.
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Example 7. (Min (s, t)-Cut with Hard Order Constraints) Let

G = (V,E) be a directed graph, let w : E → Q≥0 be a weighting function

defined on the edges of G, and let s, t ∈ V be two distinct vertices. The

Min (s, t)-Cut with Hard Order Constraints problem consist of de-

ciding whether G is acyclic and, in this case, finding an (s, t)-cut C of G

with minimum weight (or with weight bounded from above by a threshold),

such that every edge transversal to C and its complement is oriented from

C to V \ C.

Consider the valued structure Γ<cut with domain Q and cost functions

η−, η+ : D → Q ∪ {+∞}, and fw<cut : Q2 → Q ∪ {+∞}, for w ∈ Q≥0, defined

by

η−(x) :=

{︄
0 if x < 0

+∞ otherwise,
η+(x) :=

{︄
0 if x > 0

+∞ otherwise,

and

fw<cut(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 if x < y < 0, or 0 < x < y

w if x < 0 < y

+∞ otherwise.

An instance of the Min (s, t)-Cut with Hard Order Constraints can

be modelled as an instance of the VCSP for Γ<cut with objective function

ϕ(v1, . . . , vn) = η−(s) + η+(t) +
∑︂

(u,v)∈E

f
w(u,v)
<cut (u, v),

where the variables {v1, . . . , vn} correspond to the vertices in V . Assigning

a variables to a negative number is interpreted as the corresponding vertex

belonging to the (s, t)-cut C.

Every instance of the VCSP for Γ<cut and therefore, in particular the

Min (s, t)-Cut with Hard Order Constraints problem, can be solved

in polynomial time, since the cost functions are PLH and submodular (see

Chapter 6). △
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Figure 4: Min (s, t)-Cut with Hard Order Constraints

1

1

2

2

3

5

1
3

s

t

1

2 1
3 1 t

1
2

3
4

−1s

−3

Left: an instance of theMin (s, t)-Cut with Hard Order Constraints problem. Right:
an assignment with cost 10

3
; red edges denote occurrences of the cost functions assuming

non-zero values.

In this thesis, we initiate the systematic investigation of the computa-

tional complexity of VCSPs for PL and PLH valued structures.

Organisation of the thesis

In Chapter 1, we give the formal definition of the VCSP over arbitrary do-

mains together with some preliminary notions and results that we will need

throughout the thesis. In Chapter 2, we show a polynomial-time algorithm

solving the VCSP for the valued structures containing all the convex cost

functions, we show a class of valued structure with domain Q for which the

VCSP is polynomial-time equivalent to the associated CSP, and we present

a family of PL valued structures whose VCSP is NP-hard. In Chapter 3,

we introduce the notion of sampling algorithm for valued structures and

provide an efficient sampling algorithm for PLH valued we present a sam-

pling technique to solve VCSPs for PLH cost functions in polynomial time.

The technique consists of a polynomial-time many-one reduction from the

VCSP for a finite set of PLH cost functions to the VCSP for a sample,

i.e., the same set of cost functions interpreted over a suitable finite domain.

In Chapter 4, we present a sufficient condition under which the VCSP for

infinite-domain valued structures that admit an efficient sampling algorithm

can be solved in polynomial time using a linear programming relaxation. In

Chapter 5, we apply the results of Chapters 3 and 4 to classify the computa-

tional complexity of the VCSP for special classes of PLH valued structures.

Chapter 6 is devoted to submodular PLH valued structures. We provide

two different approaches to solve VCSPs for these valued structures, and we

show that submodularity defines a maximally tractable class of PLH valued

structures. Informally, this means that adding any cost function that is

not submodular leads to an NP-hard VCSP. In Chapter 7, we discuss how
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concepts and results from the algebraic theory for finite-domain VCSPs can

be transferred or extended to the infinite-domain setting. In Chapter 8, we

present a polynomial-time algorithm solving the restriction of the VCSP for

all PL cost functions to instances with a fixed number of variables. Finally,

Chapter 9 contains conclusions and some open problems.

Most of the results in this thesis have appeared in [14, 15, 16]. The con-

tent of Chapter 7 is the unpublished result of a collaboration with Friedrich

Martin Schneider (Technische Universität Dresden).



Chapter 1

Preliminaries

In this chapter, we present the necessary background on valued constraint

satisfaction problems and on the cost functions over the rational numbers

that are studied in the thesis. In Section 1.1, we define valued structures

and valued constraint satisfaction problems. In Section 1.2, we give some

logic preliminaries and introduce the classes of piecewise linear cost func-

tions and of piecewise linear homogeneous cost functions. In Section 1.3, we

show the connection between valued constraint satisfaction problems and

(classical) constraint satisfaction problems. In Section 1.4, we present the

tools from universal algebra that we use to deal with valued constraint sat-

isfaction problems. In Section 1.5, we define submodular cost functions. In

Section 1.6, we define convex cost functions. Section 1.7 is about the Linear

Programming problem. Finally, in Section 1.8, we discuss the generalisa-

tion of valued constraint satisfaction problems to the case in which the cost

functions take values in arbitrary totally ordered commutative rings.

Throughout the thesis we adopt the following notation: we denote by xi
the i-th component of a tuple x. We denote by N, Z, Q, and R, respectively,

the set of natural numbers, integers, rational numbers, and real numbers.

We also use Q≥0 and R≥0 to denote the set of nonnegative rational numbers

and the set of nonnegative real numbers.

1.1 Valued Constraint Satisfaction Problems

We introduce the notions of valued structure and valued constraint lan-

guage. The notion of valued structure has been used in [96]; however, the

existing literature has more often referred to valued constraint languages.

Throughout the thesis, we refer to valued structures. The choice of refer-

ring to valued structures rather than valued constraint languages allows us

to use the established terminology from model theory (e.g., substructure,

reduct, extension, expansion) and avoid to generate confusion (e.g., when

15
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considering subsets or supersets of the domain or the signature).

Definition 1.1.1. A valued structure Γ consists of

• a signature τ consisting of function symbols f , each equipped with an

arity, ar(f),

• a (possibly infinite) set D = dom(Γ) (the domain),

• for each f ∈ τ a cost function, i.e., a function fΓ : Dar(f) → Q ∪ {+∞}.

Here, +∞ is an extra element with the expected properties that for all

c ∈ Q ∪ {+∞}

(+∞) + c = c+ (+∞) = +∞
and c < +∞ iff c ∈ Q.

Let D be a (possibly infinite) set.

Definition 1.1.2. A valued constraint language (over D) (or simply valued

language) is the set of cost functions of a valued structure with domain D.

Throughout the thesis, we identify a valued language with the under-

lying valued structure. By the terminology ‘valued structures’ we refer

to valued structures whose cost functions take values in Q ∪ {+∞} (or in

R ∪ {+∞}). However, it is possible to define valued structures whose cost

functions take values in another totally ordered commutative ring with unit

R (see Section 1.8). In this case, we use the terminology R-valued structure.1

Let Γ be a valued structure with signature τ . The valued constraint sat-

isfaction problem for Γ, denoted by VCSP(Γ), is the following computational

problem.

Definition 1.1.3. An instance I of VCSP(Γ) consists of

• a finite set of variables VI ,

• an expression ϕI of the form

m∑︂
i=1

fi(x
i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and

• a value uI ∈ Q.
1We mention that, in the finite-domain setting, valued structures with cost functions

taking values in more general valuation structures, called linearly-ordered integral Abelian
pomonoid, have also been taken into account (see [55]).
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The task is to decide whether there exists an assignment α : VI → dom(Γ)

whose cost, defined as

m∑︂
i=1

fΓi (α(xi1), . . . , α(xiar(fi)))

is finite, and if so, whether there is one whose cost is at most uI .

The function ϕΓI : dom(Γ) → Q ∪ {+∞} described by the expression ϕI
is also called the objective function. The problem of deciding whether there

exists an assignment with a finite cost is called the feasibility problem, which

can also be modelled as a (classical) constraint satisfaction problem (cf. Sec-

tion 1.3). The choice of defining VCSPs as decision problems, rather than

as optimisation problems, as it is common for VCSPs over finite domains,

is motivated by two major issues that do not occur in the finite-domain

case. First, in the infinite-domain setting, one needs to capture the differ-

ence between a proper minimum and an infimum value that the cost of the

assignment can be arbitrarily close to but never reach. Second, this choice

allows us to model the case in which the infimum is −∞, i.e., when there

are assignments for the variables of arbitrarily small cost.

Remark 1.1.4. Sometimes, to prove the polynomial-time solvability of spe-

cific VCSPs, we exhibit algorithms that take as input only the set of vari-

ables and the objective function, and compute the infimum while specifying

whether it is attained, i.e., whether it is a proper minimum. Such algorithms

can be easily adapted to deal with instances in the form of Definition 1.1.3,

where a threshold uI ∈ Q is given as part of the input, and the task is to

decide whether there exists an assignment of cost smaller or equal to uI .

By the terminologies VCSP over an infinite domain and infinite-domain

VCSP (VCSP over a finite domain, and finite-domain VCSP, respectively)

we will refer to the VCSP for a valued structure with an infinite domain (to

the VCSP for a valued structure with a finite domain, respectively).

Note that, given a valued structure Γ, if the signature τ of Γ is finite, it is

inessential for the computational complexity of VCSP(Γ) how the function

symbols in ϕI are represented. When considering valued structures with

a (countably) infinite signature, the computational complexity of VCSP(Γ)

depends on how the symbols in the signature are represented in the input

instances. VCSPs for valued structures with infinite signatures have been

studied in the case in which the domain is finite. In which case, the typical

choice for the representation of cost functions is to list all their values in

correspondence of every tuple in the domain (usually, when the domain of

Γ is infinite this is no longer an option) or to assume a value-giving oracle
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(in this case the problem is tractable if it can be solved in polynomial time

by using only polynomially many queries to the oracle, see [57]).

Because all the concrete infinite-domain valued structures with infinite

signatures that we consider in this thesis are piecewise linear, in Section

1.2.4 we fix a representation of these cost functions that is strictly related

both to the mathematical properties of piecewise linear functions and to the

algorithmic procedures and mathematical tools that we want to use to deal

with them.

1.2 Cost Functions over the Rationals

The class of all valued structures with arbitrary infinite domains is too

large to allow for complete complexity classifications (see [3]: in general,

every computational decision problem over a finite alphabet is polynomial-

time Turing-equivalent to a CSP over an infinite domain, and therefore to

a VCSP over an infinite domain with values in {0,+∞}), so we have to

restrict our focus to subclasses of infinite-domain VCSPs. In this section,

we describe two natural and large classes of cost functions over the domain

D = Q, the rational numbers. These classes are most naturally introduced

using first-order definability, so we briefly fix the necessary logic concepts.

1.2.1 Logic Preliminaries

We fix some standard logic terminology (see, e.g., [54]).

Definition 1.2.1. A signature is a set τ of function and relation symbols.

Each function symbol f and each relation symbol R is equipped with an

arity ar(f), ar(R) ∈ N. A τ -structure A consists of

• a set A = dom(A), called the domain of A, whose elements are called

the elements of the τ -structure;

• for each relation symbol R ∈ τ a relation RA ⊆ Aar(R);

• for each function symbol f ∈ τ a function fA : Aar(f) → A.

Function symbols of arity 0 are allowed and are called constant symbols.

A relational structure (or structure with relational signature) is a structure

whose signature contains only relation symbols. A functional structure (or

structure with a functional signature) is a structure whose signature con-

tains only function symbols. We want to point out that the definition of

valued structure given in Section 1.1 (Definition 1.1.1) is different from the

definition of structure with a functional signature, in general. In fact, the

cost functions of a valued structure need not take values in the domain of
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the valued structure and might take value +∞, i.e., might be not defined,

in correspondence of some tuples of elements in the domain. However, the

definitions of valued structure and of functional structure coincide whenever

the interpretations of the function symbols assume only finite values ranging

over a set which coincides with the domain.

We give two examples of structures that play an important role in this

thesis.

Example 1.2.2. Let S be the structure with domain Q and signature

σ := {+, 1,≤} where

• + is a binary function symbol that denotes the usual addition over Q,

• 1 is a constant symbol that denotes 1 ∈ Q, and

• ≤ is a binary relation symbol that denotes the usual linear order of

the rationals. △

Example 1.2.3. Let L be the structure with domain Q and a (countably

infinite) signature τ0 := {<, 1} ∪ {c·}c∈Q where

• < is a relation symbol of arity 2 and <L is the strict linear order of Q,

• 1 is a constant symbol and 1L := 1 ∈ Q, and

• c· is a unary function symbol for every c ∈ Q such that (c·)L is the

function x ↦→ cx (multiplication by c). △

We use the following terminology from model theory for structures and

extend it to valued structures.

Definition 1.2.4. Let Γ and ∆ be (valued) structures over the same do-

main, i.e., dom(Γ) = dom(∆), with signature σ and τ , respectively. We say

that ∆ is a (valued) reduct of Γ if τ ⊆ σ and for every symbol s ∈ τ the

interpretation sΓ coincides with the interpretation s∆. In this case, we also

say that Γ is an expansion of ∆. We say that a (valued) reduct ∆ of a

(valued) structure Γ is a (valued) finite reduct of Γ if ∆ has finite signature.

Definition 1.2.5. Let Γ and ∆ be (valued) structures with the same signa-

ture τ . We say that ∆ is a (valued) substructure of Γ if dom(∆) ⊆ dom(Γ)

and for every symbol s ∈ τ , the interpretation s∆ coincides with the restric-

tion to dom(∆) of the interpretation sΓ. In this case, we also say that Γ

is an extension of ∆. We say that a (valued) substructure ∆ of a (valued)

structure Γ is a (valued) finite substructure of Γ if ∆ has finite domain.
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1.2.2 Quantifier Elimination

We adopt the usual definition of first-order logic. A formula is atomic if it

does not contain logical symbols (connectives or quantifiers). By convention,

we have two special atomic formulas, ⊤ and ⊥, to denote truth and falsity.

Definition 1.2.6. Let τ be a signature. We say that a τ -structure A

has quantifier elimination if every first-order τ -formula is equivalent to a

quantifier-free τ -formula over A.

Theorem 1.2.7 (Ferrante and Rackoff, [40], Section 3, Theorem 1). The

structure S from Example 1.2.2 has quantifier elimination.

Theorem 1.2.8. The structure L from Example 1.2.3 has quantifier elimi-

nation.

Observe that every atomic τ0-formula ϕ has at most two variables:

• if ϕ has no variables, then it is equivalent to ⊤ or ⊥,

• if ϕ has only one variable, say x, then it is equivalent to c·xσ d·1
or to d·1σ c·x for σ ∈ {<,=} and c, d ∈ Q. Moreover, if c = 0 then

ϕ is equivalent to a formula without variables, and otherwise ϕ is

equivalent to xσ d
c ·1 or to d

c ·1σ x for σ ∈ {<,=}, which we abbreviate

by the more common x < d
c , x = d

c , and d
c < x, respectively.

• if ϕ has two variables, say x and y, then ϕ is equivalent to c·xσ d·y or

c·xσ d·y for σ ∈ {<,=}. Moreover, if c = 0 or d = 0 then the formula

ϕ is equivalent to a formula with at most one variable, and otherwise

ϕ is equivalent to xσ d
c ·y or to d

c ·y σ x.

To prove Theorem 1.2.8, it suffices to prove the following lemma.

Lemma 1.2.9. For every quantifier-free τ0-formula φ there exists a quantifier-

free τ0-formula ψ such that ∃x.φ is equivalent to ψ over L.

Proof. We define ψ in five steps.

1. Rewrite φ, using De Morgan’s laws, in such a way that all the negations

are applied to atomic formulas.

2. Replace

• ¬(s = t) by s < t ∨ t < s, and

• ¬(s < t) by t < s ∨ s = t,

where s and t are τ0-terms.
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3. Write φ in disjunctive normal form in such a way that each of the

clauses is a conjunction of non-negated atomic τ0-formulas (this can

be done by distributivity).

4. Observe that ∃x
⋁︁
i

⋀︁
j χi,j , where the χi,j are atomic τ0-formulas, is

equivalent to
⋁︁
i ∃x

⋀︁
j χi,j . Therefore, it is sufficient to prove the

lemma for φ =
⋀︁
j χj where the χj are atomic τ0-formulas. As ex-

plained above, we can assume without loss of generality that the χj
are of the form ⊤, ⊥, xσ c, c σ x, or xσ cy, for c ∈ Q and σ ∈ {<,=}.

If χj equals ⊥, then φ is equivalent to ⊥ and there is nothing to be

shown. If χj equals ⊤ then it can simply be removed from φ. If χj
equals x = c or x = cy then replace every occurrence of x by c · 1 or

by c · y, respectively. Then φ does not contain the variable x anymore

and thus ∃x.φ is equivalent to φ.

5. We are left with the case that all atomic τ0-formulas involving x are

(strict) inequalities, that is, φ =
⋀︁
i χi ∧

⋀︁
i χ

′
i ∧
⋀︁
i χ

′′
i , where

• the χi are atomic formulas not containing x,

• the χ′
i are atomic formulas of the form x > ui,

• the χ′′
i are atomic formulas of the form x < vi.

Then ∃x.φ is equivalent to
⋀︁
i χi ∧

⋀︁
i,j(ui < vj).

Each step of this procedure preserves the satisfying assignments for φ and

the resulting formula is in the required form; this is obvious for all but

the last step, and for the last step follows from the correctness of Fourier-

Motzkin elimination for systems of linear inequalities (see, e.g., [91], Section

12.2). Therefore, the procedure is correct.

Proof (of Theorem 1.2.8). Let φ be a τ0-formula. We prove that it is equiv-

alent to a quantifier-free τ0-formula by induction on the number n of quan-

tifiers of φ. For n = 1 we have two cases:

• If φ is of the form ∃x.φ′ (with φ′ quantifier-free) then, by Lemma 1.2.9,

it is equivalent to a quantifier-free τ0-formula ψ.

• If φ is of the form ∀x.φ′ (with φ′ quantifier-free), then it is equivalent

to ¬∃x.¬φ′. By Lemma 1.2.9, ∃x.¬φ′ is equivalent to a quantifier-

free τ0-formula ψ. Therefore, φ is equivalent to the quantifier-free

τ0-formula ¬ψ.

Now suppose that φ is of the form Q1x1Q2x2 · · ·Qnxn.φ′ for n ≥ 2 and

Q1, . . . , Qn ∈ {∀, ∃}, and suppose that the statement is true for τ0-formulas

with at most n− 1 quantifiers. In particular, Q2x2 · · ·Qnxn.φ′ is equivalent
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to a quantifier -free τ0-formula ψ. Therefore, φ is equivalent to Q1x1.ψ, that

is, a τ0-formula with one quantifier that is equivalent to a quantifier-free τ0-

formula, again by the inductive hypothesis.

1.2.3 PL and PLH Cost Functions

A partial function of arity n ∈ N over a set A is a function

f : dom(f) → A for some dom(f) ⊆ An.

Let A be a τ -structure. A partial function over A is called first-order defin-

able over A if there exists a first-order τ -formula ϕ(x0, x1, . . . , xn) such that

for all a1, . . . , an ∈ A

• if (a1, . . . , an) ∈ dom(f) then A |= ϕ(a0, a1, . . . , an) if and only if

a0 = f(a1, . . . , an), and

• if f(a1, . . . , an) /∈ dom(f) then there is no a0 ∈ A such that

A |= ϕ(a0, a1, . . . , an).

In the following, we consider cost functions over Q, which are functions

from Qn → Q∪{+∞}. It is sometimes convenient to view a cost function as

a partial function over Q. We interpret f(t) = +∞ as t ∈ Qar(f) \ dom(f).

Definition 1.2.10. A cost function f : Qn → Q∪{+∞} (viewed as a partial

function) is called

• piecewise linear (PL) if it is first-order definable over S, piecewise

linear functions are sometimes called semilinear functions;

• piecewise linear homogeneous (PLH) if it is first-order definable over

L (viewed as a partial function).

A valued structure Γ is called piecewise linear (piecewise linear homoge-

neous) if every cost function in Γ is PL (or PLH, respectively).

Every PLH cost function is also PL since all functions of the struc-

ture L are first-order definable in S. The cost functions in the valued

structures from Examples 5-7 are PLH. The Linear Programming prob-

lem (cf. Example 4) can be modelled as a VCSP with PL cost functions

(cf. Section 1.7), but it cannot be expressed as a VCSP with PLH cost func-

tions.

We would like to point out that already the class of PLH cost functions

is very large. In particular, one can view it as a generalisation of the class

of all sets of cost functions over a finite domain D. Indeed, every VCSP for

a valued structure with a finite domain is equivalent to a VCSP for a PLH
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valued structure: by identifying the finite domain D with a subset of Q in an

arbitrary way, for every cost function f : Dd → Q∪{+∞} we obtain the PLH

cost function f ′ : Qd → Q∪{+∞} defined by f ′(x1, . . . , xn) := f(x1, . . . , xn)

if x1, . . . , xn ∈ D, and f ′(x1, . . . , xn) = +∞.

Remark 1.2.11. In both the PL and the PLH context the sets Q and R
are interchangeable (both when considered as the domain of the functions

and when considered as the set of finite values of the functions). However,

when considering PL or PLH valued structures with an infinite signature,

we might assume the variables to range over R, but we always require all the

coefficients to be rational as we need to manipulate them computationally.

1.2.4 Representation of PL Cost Functions

When considering valued structures with a (countably) infinite signature,

the computational complexity of VCSP(Γ) depends on how the symbols in

the signature are represented in the input instances. To represent a PL cost

function, we use the fact that the structure S has quantifier elimination

(cf. [40]).

Definition 1.2.12. A set C ⊆ Qn is a polyhedral set if it is the intersection

of finitely many (open or closed) halfspaces, i.e., it can be specified by a

conjunction of finitely many linear constraints, i.e., for some r ∈ N there

exist linear functions fi : Qn → Q, for 1 ≤ i ≤ r, such that

C =

⎧⎨⎩x ∈ Qn |
p⋀︂
i=1

(fi(x) ≤ 0) ∧
q⋀︂

i=p+1

(fi(x) < 0) ∧
r⋀︂

i=q+1

(fi(x) = 0)

⎫⎬⎭ .

A polyhedral set C ⊆ Qn is open if it is the intersection of finitely many

open halfspaces, i.e., for some p ∈ N there exist fi : Qn → Q linear functions,

1 ≤ i ≤ p, such that C = {x ∈ Qn |
⋀︁p
i=1(fi(x) < 0)}. Similarly, a polyhe-

dral set C ⊆ Qn is closed if it is the intersection of finitely many closed halfs-

paces, i.e., for some q ∈ N there exist fi : Qn → Q linear functions, 1 ≤ i ≤ p,

such that C = {x ∈ Qn |
⋀︁p
i=1(fi(x) ≤ 0) ∧

⋀︁q
i=p+1(fi(x) = 0)}. A polyhe-

dral set C ⊆ Qn is bounded if it is bounded as a subset of Qn. We remark

that the infimum of a linear function in a closed and bounded polyhedral set

is a proper minimum; while the infimum of a linear function in an open or

unbounded polyhedral set is attained only if the linear function is constant.

Since the structure S has quantifier elimination, a PL cost function can

be written in the following form.

Remark 1.2.13 ([88], Definition 2.47). Let f : Qn → Q ∪ {+∞} be a PL

function, then its domain dom(f) defined by Rf can be written as the union
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of finitely many polyhedral sets, relative to each of which f(x) is given by a

linear expression, i.e., there exist finitely many mutually disjoint C1, . . . , Cm
polyhedral sets such that

⋃︁m
i=1Ci = dom(f) ⊆ Qn, and

f(x1, . . . , xn) =

{︄
ai0 + ai1x1 + · · · + ainxn if (x1, . . . , xn) ∈ Ci

+∞ if (x1, . . . , xn) ∈ Qn \ dom(f)

where ai = (ai0, a
i
1, . . . , a

i
n) ∈ Qn+1, for 1 ≤ i ≤ m.2

Sometimes, given a PL cost function f , we refer to the formulas defining

the polyhedral sets in the input representation of f as the case distinctions

of f . Given a PL function f : Qn → Q ∪ {+∞}, we call regions of linearity

the finitely many subset S1, . . . , Sk ⊆ dom(f) such that

•
⋃︁k
i=1 Si = dom(f),

• f|Si
is a linear polynomial for every 1 ≤ i ≤ k, and

• k is minimal.

Every region of linearity is the union of finitely many polyhedral sets.

We fix the following representation of PL cost functions, which we use

throughout the thesis, whenever we consider PL valued structures with an

infinite signature.

Definition 1.2.14. Representation of PL cost functions. We assume

that a PL cost function is represented by a list of linear constraints, spec-

ifying finitely many pairwise disjoint polyhedral sets, and a list of linear

polynomials and +∞s, defining the value of the function in each polyhedral

set. The linear constraints and the linear polynomials are encoded by the

list of their rational coefficients, and +∞ is represented by a special symbol.

The constants for (numerators and denominators of) rational coefficients for

linear constraints and linear polynomials are represented in binary.

Definition 1.2.15. Given a PL valued structure Γ with an infinite signa-

ture, the size of an instance I of VCSP(Γ) is defined as the number of bits

required to represent I as in Definition 1.2.14.

We show now that the VCSP for the valued structure containing all the

PL cost functions is NP-complete.

Proposition 1.2.16. For every valued PL valued structure Γ the problem

VCSP(Γ) is in NP.

2In [88] it was observed that perhaps piecewise linear functions should be called piece-
wise affine functions.
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Proof. An instance I of VCSP(Γ) is given by a set of variables V , by an

objective function given as the sum of finitely many PL cost functions∑︁m
i=1 fi(x), with xi ∈ V ar(fi), and by a threshold u ∈ Q. By Remark 1.2.13,

we can assume every cost function showing up in the instance is given in the

form

fi(x
i) = li,j(x

i) if Ci,j(x
i)

for 1 ≤ j ≤ ki, where li,j(x
i) is either a linear polynomial or the symbol +∞

and Ci,j(x
i) is a conjunction of linear constraints. For every 1 ≤ i ≤ m we

define the new variable ti and the formula

ψi(x
i, ti) :=

ki⋁︂
j=1

[︁
(ti = li,j(x

i)) ∧ Ci,j(xi)
]︁
.

We map the instance I to the formula

∃x1. · · · ∃xn.
m⋀︂
j=1

ψi(x
i, ti) ∧ (t1 + · · · + tm ≤ u).

The map we defined is a polynomial-time many-one reduction from the

VCSP for a PL valued structure to the existential theory of S = (Q;≤,+, 1),

which is in NP as explained in [10].

Remark 1.2.17. The NP-hardness of the VCSP for the valued structure

containing all the PL cost functions follows from the fact that there exist

NP-hard problems, e.g., Least Correlation Clustering with Partial

Information and Minimum Feedback Arc Set (see Examples 5 and 6),

which can be formulated as VCSPs for PL cost functions.

1.3 Constraint Satisfaction Problems

The question of whether an instance of VCSP(Γ) is feasible, that is, whether

it admits an assignment with a finite cost, can be viewed as a (classical) con-

straint satisfaction problem. Formally, the constraint satisfaction problem

for a relational structure A with relational signature τ is the following com-

putational problem, denoted by CSP(A):

• the input is a finite conjunction ψ of atomic τ -formulas (constraints),

and

• the question is whether ψ is satisfiable in A.

Let Γ be a valued structure with signature τ , we can associate Γ with the

following relational structure Feas(Γ): for every function symbol f of arity n
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from τ the signature of Feas(Γ) contains a relation symbol Rf of arity n such

that R
Feas(Γ)
f = dom(fΓ). Every polynomial-time algorithm for VCSP(Γ)

has to solve CSP(Feas(Γ)), in particular. In fact, an instance of VCSP(Γ)

with objective function

ϕ(x) =
m∑︂
i=1

fi(x
i),

can be translated into an instance ψ of CSP(Feas(Γ)) by replacing subex-

pressions of the form f(x1, . . . , xn) in ϕ by Rf (x1, . . . , xn) and by replacing

+ by ∧, i.e.,

ψ(x) = Feas(ϕ)(x) :=
m⋀︂
i=1

Rfi(x
i).

It is easy to see that ϕ is a feasible instance of VCSP(Γ) if, and only if, ψ is

satisfiable in Feas(Γ).

Definition 1.3.1. Let Γ be a valued structure with domain D, and let

ϕ(x) be an objective function for VCSP(Γ) with n free variables. We call

feasibility region the set dom(ϕ) ⊆ Dn, defined by ψ(x) = Feas(ϕ)(x).

Definition 1.3.2. By finite-valued structures we refer to a valued structure

whose cost functions are finite-valued, i.e., they take a finite value on every

point with rational coordinates.

The VCSP for a finite-valued structure is a mere optimisation problem,

and in solving it, one does not have to care about the feasibility of the

optimal solutions.

1.3.1 Semilinear Constraint Satisfaction Problems

Definition 1.3.3. A set that is first-order definable over S (with parameters

from Q) is called semilinear (or PL).

The feasibility region of a PL function is a semilinear set; this is why PL

functions are also called semilinear. The regions of linearity of a PL function

are semilinear sets.

Definition 1.3.4. A relational structure A with domain Q and signature τ

is called semilinear if, for all R ∈ τ , the interpretation RA is semilinear.

Definition 1.3.5. A set that is first-order definable over L (with param-

eters from Q) is called piecewise linear homogeneous (PLH). A relational

structure A with domain Q and relational signature τ is called piecewise

linear homogeneous (PLH) if, for all R ∈ τ , the interpretation RA is PLH.
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Clearly, if Γ is a PL valued structure, then Feas(Γ) is a semilinear rela-

tional structure; and if Γ is a PLH valued structure, then Feas(Γ) is a PLH

relational structure. The computational complexity of semilinear CSPs has

been studied for semilinear expansions of Linear Programming in [5],

semilinear expansions of (R; +) in [61], max-closed semilinear structures in

[9], and median-closed semilinear structures in [11]. We also refer the reader

to Section 4 of [10] for a recent survey on semilinear CSPs.

1.4 Universal Algebraic Tools

Let D be a set. If x1, . . . , xk ∈ Dn and g : Dk → D is a function, then

g(x1, . . . , xk) denotes the n-tuple obtained by applying g componentwise,

i.e.,

g(x1, . . . , xk) := (g(x11, . . . , x
k
1), . . . , g(x1n, . . . , x

k
n)).

Given a set X, and a function ω : X → Q≥0. We define the support of ω as

the set

Supp(ω) := {x ∈ X | ω(x) ̸= 0}.

An important and well-known concept from universal algebra used in the

constraint satisfaction framework is the notion of a homomorphism between

(relational) structures.

Definition 1.4.1. Let A and B be (relational) structures with the same

signature τ and with domain A and B, respectively. A homomorphism from

A to B is a function h : A→ B such that for every relation symbol R ∈ τ

and tuple a ∈ Dar(R)

RA(a) implies RB (g(a)) .

We say that A is homomorphic to B and write A → B to indicate the

existence of a homomorphism from A to B.

A generalisation of the universal algebraic notion of homomorphism to

the valued constraint satisfaction framework has to capture, not only the

satisfiability of the feasibility relations, but also the property of not increas-

ing the value of cost functions. These requirements are fulfilled by the notion

of fractional homomorphism (cf. [96]).

Definition 1.4.2. Let ∆ and Γ be valued structures with the same signature

τ and with domain D and C, respectively. Let CD denote the set of all

functions g : D → C. A fractional homomorphism from ∆ to Γ is a function

ω : CD → Q≥0 with a finite support, Supp(ω) := {g ∈ CD | ω(g) > 0}, such

that
∑︁

g∈CD ω(g) = 1, and such that for every function symbol f ∈ τ and
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tuple a ∈ Dar(f), it holds that∑︂
g∈CD

ω(g)fΓ(g(a)) ≤ f∆(a).

We say that ∆ is fractionally homomorphic to Γ and write ∆ →f Γ to indi-

cate the existence of a fractional homomorphism from ∆ to Γ.

Trivially, if Γ is a valued structure and ∆ is a valued substructure of Γ,

then ∆ is fractionally homomorphic to Γ.

The following proposition is adapted from [96], Proposition 2.1, where

it is stated for valued structures with finite domains.

Proposition 1.4.3. Let ∆ and Γ be valued structures over the same signa-

ture τ and with domain D and C, respectively. Assume that ∆ →f Γ. Let

I be an instance of VCSP(Γ) having variables VI = {x1, . . . , xn}, objective
function ϕI(x1, . . . , xn), and threshold uI ∈ Q. If there exists an assign-

ment h : VI → D with cost ϕ∆I (h(x1, . . . , h(xn)) ≤ uI , then there exists an

assignment h′ : VI → C with cost ϕΓI (h′(x1), . . . , h
′(xn)) ≤ uI . In particular,

it holds that

inf
c∈Cn

ϕΓI (c) ≤ inf
d∈Dn

ϕ∆I (d).

Proof. Let I be an instance of VCSP(Γ) with variables VI = {x1, . . . , xn},

objective function

ϕI(x1, . . . , xn) =
∑︂
j∈J

fj(x
j),

with fj ∈ τ, xj ∈ V
ar(fj)
I , for all j ∈ J , and threshold uI ∈ Q. Let ω be a

fractional homomorphism from ∆ to Γ, and let h : VI → C be an arbitrary

assignment. Then∑︂
j∈J

f∆j (h(xj)) ≥
∑︂
j∈J

∑︂
g∈CD

ω(g)fΓj (g(h(xj))) =
∑︂
g∈CD

ω(g)
∑︂
j∈J

fΓj (g(h(xj))).

Therefore, there exists g ∈ CD such that the cost of the assignment g ◦ h
to the variables of VI when I is considered as an instance of VCSP(Γ) is at

most the cost of the assignment h to variables of VI when I is considered as

an instance of VCSP(∆). In particular, if the cost of h is at most uI , then

the cost of g ◦ h is at most uI , too.

We give now the notions of polymorphism and fractional polymorphism,

which played a key role in the computational complexity classification of

CSPs and VCSPs over finite domains.

Definition 1.4.4. A k-ary operation on a set D is a function g : Dk → D.

For k ∈ N, we denote by O(k)
D the set of all k-ary operations on D and we

let OD :=
⋃︁
k∈NO(k)

D .



1.4. UNIVERSAL ALGEBRAIC TOOLS 29

Definition 1.4.5. Let A be a structure with relational signature τ and

domain D. Then a k-ary operation g : Dk → D is called a polymorphism of

A if for all R ∈ τ we have that g(x1, . . . , xk) ∈ RA for all x1, . . . , xk ∈ RA,

namely RA is preserved by g (where g is applied componentwise).

Observe that a k-ary polymorphism of a structure A is a homomorphism

from Ak to A. The intuition behind the notion of polymorphism is that it

enables to combine many feasible assignments into a new feasible assign-

ment.

Definition 1.4.6. For k ∈ N and 1 ≤ i ≤ k, the ith k-ary projection on a

set D is the function e
(k)
i : Dk → D of the form e

(k)
i (x1, . . . , xk) = xi. For

k ∈ N, we denote by J (k)
D the set of all k-ary projections on D and we let

JD :=
⋃︁
k∈N J (k)

D .

The projections on a set D are polymorphisms of every relational struc-

ture with domain D. In the valued constraint satisfaction framework, the

notion of polymorphism is generalised by the notion of fractional polymor-

phism.

Definition 1.4.7. Let D be a set. An m-ary fractional operation on D with

a finite support is a function ω : O(m)
D → Q≥0 with a finite support such that∑︁

g∈Supp(ω) ω(g) = 1.

Definition 1.4.8. Given a cost function γ : Dn → Q ∪ {+∞}, a k-ary frac-

tional operation ω on D with a finite support is a fractional polymorphism

of γ if, for every tuple a1, . . . , ak ∈ Qar(γ), it holds that

∑︂
g∈Supp(ω)

ω(g)γ(g(a1, . . . , ak)) ≤ 1

k

k∑︂
i=1

γ(ai).

If ω is a fractional polymorphism of a cost function γ : Dn → Q ∪ {+∞}, we

say that γ is improved by ω.

We mention that it is possible to define fractional polymorphisms with

arbitrary supports (see Section 7.4). However, throughout the thesis we al-

ways refer to fractional operations with finite supports, unless it is explicitly

indicated.

Remark 1.4.9. Fractional polymorphisms can be equivalently seen in a

probabilistic setting. A fractional operation ω : O(k)
D → Q≥0 with a finite

support is a fractional polymorphism of a function γ : Dn → Q ∪ {+∞} if ω

is a probability distribution over O(k)
D (with a finite support) and it satisfies

Eg∼ωγ(g(a1, . . . , ak)) ≤ 1

k

k∑︂
i=1

γ(ai),
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for every a1, . . . , ak ∈ Dn, where Eg∼ωγ(g(a1, . . . , ak)) is the expected value

of γ associated with ω.

The intuition behind the notion of fractional polymorphism is that it

enables to combine many feasible assignments into new feasible assignments

such that the expected cost of a new assignment is improved, i.e., it is at

most the average cost of the original assignments.

Example 1.4.10. Let us fix k ∈ N, and c ∈ Q. We define c̃ : Qk → Q to be

the operation such that c̃(a1, . . . , ak) := c, for every a1, . . . , ak ∈ Q. Let us

consider the fractional operation χc : O(k)
Q → Q≥0 defined by setting

χc(g) :=

{︄
1 if g = c̃

0 otherwise.

Then, an n-ary cost function f is improved by χc if, for every a1, . . . , ak ∈ Qn,

it holds that

f(c, . . . , c) ≤ 1

k

k∑︂
i=1

f(ai1, . . . , a
i
n),

which means that the tuple (c, . . . , c) ∈ Qn is expected to have a cost which

is not greater than the average cost of other tuples of Qn. △

Definition 1.4.11. Given a valued structure Γ, we say that ω is a fractional

polymorphism for Γ if ω is a fractional polymorphism of fΓ for every function

symbol f in the signature τ of Γ. The set of all fractional polymorphisms of

a valued structure Γ is denoted by fPol(Γ). The set of all functions that are

improved by a given set of fractional operations Ω is denoted by Imp(Ω).

Definition 1.4.12. Let Γ be a valued structure. We define the support of

Γ by setting

Supp(Γ) :=
⋃︂

ω∈fPol(Γ)

Supp(ω).

It is easy to observe that if ω is a fractional polymorphism of a given

valued structure Γ, then every operation in Supp(ω) is a polymorphism of

Feas(Γ), i.e.,

Supp(Γ) ⊆ Pol(Feas(Γ)).

Example 1.4.13. For every k ∈ N, the fractional operation ω : O(k)
Q → Q≥0

defined by

ω(g) :=

{︄
1
k if g = e

(k)
i , for some i ∈ {1, . . . , k}

0 otherwise
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is a fractional polymorphism of every valued structure with domain Q. △

A k-ary operation g on a set D is idempotent if it holds that

g(x, . . . , x) = x for every x ∈ D.

Example 1.4.14. Let D be a totally ordered set. The binary operations

min and max on D giving, respectively, the smallest and the largest among

two arguments are idempotent. △

A fractional operation is idempotent if every operation in its support is

idempotent.

Remark 1.4.15. Let ω be an idempotent fractional operation on a set D,

let n ∈ N, and let f be an n-ary cost function with domain D. It is easy to

see that if ω improves f , then it also improves the (n− 1)-ary cost function

f(x1, . . . , xi−1, ·, xi+1 . . . , xn) with domain D defined for y ∈ D by

f(x1, . . . , xi−1, ·, xi+1 . . . , xn)(y) = f(x1, . . . , xi−1, y, xi+1 . . . , xn)

is improved by ω for all 1 ≤ i ≤ n, and for all x1, . . . , xi−1, xi+1 . . . , xn ∈ Dn−1.

The next example shows that Remark 1.4.15 becomes false, in general,

if the fractional operation ω is not idempotent.

Example 1.4.16. Let D = {0, 1} and let XOR : D2 → Q be the cost func-

tion defined for x1, x2 ∈ D by

XOR(x1, x2) =

{︄
0 if x1 ̸= x2

1 if x1 = x2.

Let ω¬ be the unary fractional operation whose support contains a unique

operation g on D defined by g(x) = 1 − x. Clearly, ω¬ is not idempotent. It

is easy to verify that ω¬ improves XOR. However, ω¬ does not improve the

unary cost function f : D → Q such that f(x) = XOR(0, x). For instance,

f(g(1)) = 1 ≰ 0 = f(1). △

Let Sk be the symmetric group on {1, . . . , k}. A k-ary operation g is

fully symmetric if, for every permutation π ∈ Sk, it holds that

g(x1, . . . , xk) = g(xπ(1), . . . , xπ(k)).

A k-ary operation g is totally symmetric if it holds that

g(x1, . . . , xk) = g(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}.
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A fractional operation is totally symmetric (fully symmetric, respectively)

if every operation in its support is totally symmetric (fully symmetric, re-

spectively). As every totally symmetric operation is fully symmetric, every

totally symmetric fractional operation is also fully symmetric. The fractional

operations in the two following examples are totally symmetric.

Example 1.4.17. Let D be a totally ordered set. The fractional operation

ωsub : O(2)
D → [0, 1], defined by

ωsub(g) :=

⎧⎪⎪⎨⎪⎪⎩
1
2 if g = min
1
2 if g = max

0 otherwise

is a binary totally symmetric fractional operation. △

Example 1.4.18. Let us define, for every k ≥ 2, the fractional operations

ω
(k)
min : O(k)

D → Q≥0, and ω
(k)
max : O(k)

D → Q≥0 by setting, respectively,

ω
(k)
min(g) :=

{︄
1 if g = min(k)

0 otherwise,

and

ω(k)
max(g) :=

{︄
1 if g = max(k)

0 otherwise.

The fractional operations ω
(k)
min and ω

(k)
max are totally symmetric. △

We give now an example of a fractional operation that is fully symmetric

but not totally symmetric.

Example 1.4.19. Let D be a connected set and let avg(k) : Dk → D be the

k-ary arithmetic average operation defined, for every (x1, . . . , xk) ∈ Dk, by

avg(x1, . . . , xk) :=
1

k

k∑︂
i=1

xi.

Let us define, for every k ≥ 2, the fractional operation ω
(k)
conv : O(k)

D → Q≥0

by setting

ω(k)
conv(g) :=

{︄
1 if g = avg(k)

0 otherwise.

The fractional operations ω
(k)
conv are fully symmetric; however, for k ≥ 3 they

are not totally symmetric, because, e.g.,

{1, 1, 2} = {1, 2, 2}, but
1 + 1 + 2

3
̸= 1 + 2 + 2

3
. △
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Definition 1.4.20. A k-ary operation g : Dk → D is said to be conservative

if for every (x1, . . . , xk) ∈ Dk

g(x1, . . . , xk) ∈ {x1, . . . , xk}.

Example 1.4.21. The k-ary operations min(k) and max(k) giving the small-

est and the largest, respectively, among k arguments are conservative. △

Definition 1.4.22. A k-ary fractional operation ω : O(k)
D → Q≥0 is a conser-

vative fractional operation if every operation in its support is conservative.

Example 1.4.23. The fractional operation ωsub introduced in Example

1.4.17 is conservative. △

Example 1.4.24. The k-ary arithmetic average operation avg(k) : Dk → D

(see Example 1.4.19) is not conservative, because, e.g., avg(2)(1, 2) /∈ {1, 2}.

Therefore, the fractional operations ω
(k)
conv are not conservative. △

Definition 1.4.25. The superposition h[g1, . . . , gm] of an m-ary operation

h with m k-ary operations g1, . . . , gm is the k-ary operation defined by

h[g1, . . . , gm](x1, . . . , xk) = h(g1(x
1, . . . , xk), . . . , gm(x1, . . . , xk)).

The superposition of an m-ary operation h with m k-ary operations

g1, . . . , gm can also be seen as the composition h ◦ (g1, . . . , gm) : Dk → D

of the operation h : Dm → D with the map (g1, . . . , gm) : Dk → Dm. The

following is a standard definition from universal algebra.

Definition 1.4.26. A set O of operations is said to generate an operation g

if g can be obtained by superposition of operations from O and projections.

Example 1.4.27. Let D be a totally ordered set. If O ⊆ OD contains

the binary operation max: D2 → D, then O generates the k-ary operation

max(k) that returns the largest of its k arguments by

max(k)(x1, . . . , xk) = max(x1,max(x2, . . . ,max(xk−1, xk) . . .)). △

Remark 1.4.28. Observe that if a relational structure A is preserved by a

set of operations O ⊆ OA then A is preserved by all operations generated

by O.

Definition 1.4.29. The superposition ω[g1, . . . , gm] of an m-ary fractional

operation ω with m k-ary operations g1, . . . , gm is the k-ary fractional oper-

ation defined by

ω[g1, . . . , gm](h) :=
∑︂

h′|h′[g1,...,gm]=h

ω(h′).
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1.5 Submodularity

Submodular cost functions naturally appear in several scientific fields such

as, for example, economics, game theory, machine learning, social network,

and computer vision, and play a key role in operational research and combi-

natorial optimisation (see, e.g., [41, 74]). Submodularity also played an im-

portant role for the study of the computational complexity of finite-domain

VCSPs, and guided the research on VCSPs for some time (see, e.g., [34, 60]),

even though this might no longer be visible in the final classification obtained

in [68, 69, 73].

Definition 1.5.1. Let D be a totally ordered set and let G be a totally

ordered Abelian group. A partial function f : Dn → G is called submodular

if for all x, y ∈ Dn

f(min(x, y)) + f(max(x, y)) ≤ f(x) + f(y).

Definition 1.5.2. A valued structure Γ is submodular if all cost functions

in Γ are submodular.

Remark 1.5.3. It is easy to see that a function over a totally ordered set

D is submodular if, and only if, it is improved by the binary fractional

operation ωsub introduced in Example 1.4.17.

Note that if f is a submodular partial function and if x, y ∈ dom(f), then

min(x, y) ∈ dom(f) and max(x, y) ∈ dom(f). Therefore, if Γ is a submodu-

lar valued structure then the corresponding relational structure Feas(Γ) (see

Section 1.3) is preserved by the binary operations min and max.

1.6 Convexity

In Section 1.5, we introduced the notion of submodularity, which gives rise

to the arguably most important property of cost functions in discrete opti-

misation. When moving to the context of continuous optimisation, the un-

doubtedly most important property of cost functions is convexity. Convexity

is a basic notion from geometry which appears in most areas of mathematics

(e.g., functional analysis, algebraic geometry, graph theory, crystallography,

coding theory). It was formally defined for the first time by Archimedes

of Syracuse (see [52]). However, the notion of convexity was used even be-

fore and it is impossible to say who considered it first (see [38]). Convex

functions have a number of properties which are convenient in optimisation

problems (e.g., every local minimum is a global minimum). Furthermore,

convex cost functions arise in many problems from economics, engineering,

computer science, and other sciences (see, e.g., [85]).
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Definition 1.6.1. A set S ⊆ Qn is said to be convex if for any two points x,

y ∈ S every point between them is still in S, i.e., for any λ ∈ Q, 0 ≤ λ ≤ 1,

it holds λx+ (1 − λ)y ∈ S.

Example 1.6.2. Halfspaces and hyperplanes are convex. The set of solu-

tions to an atomic semilinear (i.e., PL) formula is a halfspace or a hyper-

plane, and therefore it is convex. △

Remark 1.6.3. It is easy to see that the intersection of convex sets is a

convex set, and the projection of a convex set onto some of its coordinates

is a convex set.

Example 1.6.4. Polyhedral sets are intersections of halfspaces; therefore,

they are convex. △

Definition 1.6.5. A function f : Qn → Q ∪ {+∞} is said to be convex if

for any two points x, y ∈ Qn and for any λ ∈ Q, 0 ≤ λ ≤ 1, it holds

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

Remark 1.6.6. It is easy to see that a conic combination, i.e., a linear

combination with nonnegative coefficients, of convex functions is a convex

function. The minimum or infimum over some of the coordinates of a convex

function is a convex function (see, e.g., [21], Section 3.2.5).

Definition 1.6.7. A valued structure Γ with domain Q is convex if all cost

functions in Γ are convex. A (relational) structure A with domain Q is

convex if all relations in A are convex.

Clearly, if Γ is a convex valued structure then the relational structure

Feas(Γ) defined in Section 1.3 is a convex relational structure.

Proposition 1.6.8. Let D ⊆ Q be a convex set. Let Γ be a convex valued

structure with domain D. Then, for every k ≥ 2, the valued structure Γ

is improved by the fully symmetric fractional operation ω
(k)
conv : O(k)

D → Q≥0

(see Example 1.4.19) such that

ω(k)
conv(g) =

{︄
1 if g = avg(k)

0 otherwise.

Proof. Let f : Dn → Q ∪ {+∞} be a convex cost function. Jensen’s Inequal-

ity (cf. [58]) implies that for all k ≥ 2 and for all x1, . . . , xk ∈ Dn

f

(︄
1

k

k∑︂
i=1

xi

)︄
≤ 1

k

k∑︂
i=1

f(xi).
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Therefore, for every k ≥ 2, the function f is improved by the fully symmetric

fractional operation ω
(k)
conv.

We remark that for PL functions, there is no correlation between the

notions of submodularity and convexity, as the following example shows.

Example 1.6.9. It is easy to check that:

• the function f : Q2 → Q defined by f(x, y) := max(ax, by) is submod-

ular and convex, for all a, b ∈ Q>0;

• the function f : Q2 → Q defined by f(x, y) := min(ax,−by) is sub-

modular and not convex, for all a, b ∈ Q>0;

• the function f : Q2 → Q defined by f(x, y) := |x+ y| is convex and

not submodular;

• the function f : Q2 → Q defined by

f(x, y) :=

{︄
a if (x ≤ 0 ≤ y) or (y < 0 < x)

b otherwise

is not submodular and not convex, for all a, b ∈ Q≥0 with a < b. △

Observe that all the PL functions exhibited in Example 1.6.9 are also

PLH.

1.7 Linear Programming

Linear Programming, or LP for short, is an optimisation problem with

a linear objective function and a set of linear constraints imposed upon

a given set of underlying variables. The importance of LP in the valued

constraint satisfaction framework relies not only on the fact that it is the

most famous example of infinite-domain VCSPs (it can be actually modelled

as a PL VCSP) but also on the fact that LP is a powerful tool for studying

the computational complexity of VCSPs. Linear programming relaxations,

i.e., relaxations to an LP instance, have been used to show the polynomial-

time solvability of specific classes of finite-domain VCSPs and finite-domain

(classical) CSPs (see, [69, 76]).
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A linear program has the form

minimise

n∑︂
j=1

cjxj

subject to

n∑︂
j=1

aijxj ≤ bi, for i ∈ {1, . . . ,m}.

This problem has n variables xj (ranging over the rationals or over the real

numbers) and m linear inequalities constraints. The coefficients cj , a
i
j , and

bi are rational numbers, for all j ∈ {1, . . . , n}, and all i ∈ {1, . . . ,m}.

The linear constraints,
∑︁n

j=1 a
i
jxj ≤ bi, specify a polyhedral set (see Def-

inition 1.2.12), namely the feasibility polytope over which the objective func-

tion has to be optimised. An LP instance is inconsistent if no feasible

solution exists; in this case, the feasibility polytope is empty, and the LP

instance is said to be infeasible. The feasibility polytope can be bounded

or not, depending on whether so are all the linear constraints defining it.

When the feasibility polytope is unbounded in the opposite direction to the

gradient of the objective function (the gradient of the objective function

is the vector of the coefficients of the objective function), then no optimal

value is attained, and we say that the infimum of the objective function is

−∞.

An algorithm solving LP either finds a point in the feasibility polytope

where the objective function has the smallest value if such a point exists,

or it reports that the instance is infeasible (in this case, we assume that the

output of the algorithm is +∞), or it reports that the infimum of of the

objective function is −∞ (in this case, we assume that the output of the

algorithm is −∞). In the case the objective function has a minimum, it is

attained in one of the extreme point solutions, i.e., in one of the vertices of

the feasibility polytope. The reason for this is that the objective function is

linear, and therefore, in particular, convex; and for a convex function defined

on a convex closed domain, every local minimum is also a global minimum.

The Linear Program Feasibility problem, LPF, is a decision prob-

lem having the form of a standard linear program but without any objective

function to minimise. The output of an algorithm solving LPF is “no” or

“yes”, respectively, depending on whether the polyhedral set defined by the

linear constraints is empty or not. LPF can be modelled as CSP(∆), for a

suitable semilinear relational structure ∆ (see [5, 10]). Similarly, Linear

Programming can be modelled as a VCSP. For n ∈ N, let

Q[X1, . . . , Xn] := {a0 + a1X1 + · · · + anXn | ai ∈ Q for 0 ≤ i ≤ n}
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i.e., the set of linear polynomials in n variables with rational coefficients.

For n, k ∈ N, and for p, q1, . . . , qk ∈ Q[X1, . . . , Xn] let

f (n)p,q1,...,qk
: Qn → Q ∪ {+∞}

be the function such that

f (n)p,q1,...,qk
(x) =

{︄
p(x) if

⋀︁k
i=1(qi(x) ≤ 0)

+∞ otherwise.

We define

ΓLP :=
{︂
f (n)p,q1,...,qk

| p, q1, . . . , qk ∈ Q[X1, . . . , Xn], and n, k ∈ N
}︂
.

The valued language ΓLP (with countably infinite signature) is piecewise

linear and every instance of VCSP(ΓLP) is easily seen to be a linear program,

and vice versa (in particular, CSP(Feas(ΓLP)) =LPF).

In 1979, Khachian [65] showed that Linear Program Feasibility

can be solved in polynomial time using the Ellipsoid method. This ground-

breaking result was followed by several other polynomial-time algorithms

addressing the optimisation version of LP, e.g., Karmarkar’s interior point

projective method [63], and barrier-function interior point methods (see,e.g.,

[100]). All the known polynomial-time algorithms solving LP rely on infinite

approximation procedures.

1.8 VCSPs on Totally Ordered Commutative Rings

We already noticed that in the PL (and PLH) context the sets Q and R are

interchangeable both when considered as the domain of the valued structure

and when considered as the set of finite values taken by the cost functions.

However, we fixed a representation of numeric coefficients (see Definition

1.2.14) that we use throughout the thesis whenever we deal with PL valued

structures with infinite signatures. When fixing such a representation, we

required the coefficients to be rational, because we need to computationally

represent and manipulate them.

However, there are situations in which we would like to abstract from

the details of number representation. For example, on some occasions it is

convenient to extend the domain (and the interpretation) of a PL valued

structure to a subset of a totally ordered commutative ring strictly con-

taining Q (e.g., the set of the reals or, even a non-Archimedean real closed

field), to get properties that are not shared with the original domain (e.g.,

completeness, closure, or boundedness). We point out that extending a PL
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valued structure to a subset of a totally ordered commutative ring strictly

containing Q would affect the values taken by the cost functions, which are

no longer values from Q ∪ {+∞}.

Therefore, in such a situation we can adopt a more general definition

of valued structure in which the cost functions are allowed to take values

in a totally ordered commutative ring with unit. When working with this

more general definition of valued structure, we can no longer assume the

Turing (or bit) machine model. Instead, we adopt the Blum-Chucker-Shub-

Smale, BCSS, machine model (cf. [2]). Such a machine operates on strings of

symbols that represent elements of a totally ordered commutative ring (with

unit), rather than on bits as in the classical Turing machine and algorithms

have access to an oracle that performs a certain set of basic operations on

them. We remark that in a BCSS machine there are no machine constants

except 1 (the ring identity element).

An algorithm is polynomial-time in the BCSS model if it performs a

number of fundamental ring operations which is bounded by a polynomial

in the number of input integers. In general, a polynomial-time algorithm in

the Turing model is not polynomial-time in the BCSS model, nor the vice

versa holds (see [50] for a discussion of this topic).

Definition 1.8.1. An algorithm runs in strongly polynomial time if it is

polynomial-time in the BCSS model and the space needed by the algorithm

is polynomial in the length of the input.

Any strongly polynomial-time algorithm can be converted to a polynomial-

time algorithm in the Turing model by replacing the fundamental ring op-

erations by suitable algorithms performing these operations on a Turing

machine. Therefore, a strongly polynomial-time algorithm is polynomial-

time in both the BCSS and the Turing models. We remark that none of the

known polynomial-time algorithms solving LP is strongly polynomial-time.

A special class of strongly polynomial-time algorithms is the class of fully

combinatorial algorithms.

Definition 1.8.2. Let R be a totally ordered commutative ring with unit.

A problem over R can be solved in fully combinatorial polynomial-time if

there exists a polynomial-time (uniform) machine on R in the sense of [2]

(see Chapters 3-4) solving it by performing only additions and comparisons

of elements in R as fundamental operations.





Chapter 2

Piecewise Linear Valued

Structures

In this chapter, we show some simple initial results on PL valued structures.

In Section 2.1, we show that the VCSP for the valued structure containing

all convex PL cost functions is polynomial-time solvable. In Section 2.2,

we show a class of PL valued structure for which solving the VCSP reduces

to solve the corresponding feasibility problem. Finally, in Section 2.3, we

introduce a sufficient condition for a PL VCSP to be NP-hard1.

2.1 Convex PL Valued Structures

To study the computational complexity of the VCSP for convex PL valued

structures (see Section 1.6) we adopt the minimisation formulation of the

problem, that is, we assume that the input is given as a finite set of vari-

ables and a sum of PL cost functions (the objective function) applied to

the given finite set of variables. The cost functions are represented as in

Definition 1.2.14. For the class of convex PL valued structures, there is a

polynomial-time algorithm that finds the infimum (if it exists) and decides

whether it is attained. The polynomial-time solvability of the decision ver-

sion of the problem, where a threshold is given as part of the instance, is an

immediate consequence (see Remark 1.1.4).

It is well known that the minimisation of a convex PL cost function can

be modelled as a linear program (see, e.g., [21]). We use this idea to deal

with the minimisation of sums of convex PL cost functions whose domains

are given as unions of finitely many polyhedral sets each specified by a

conjunction of strict or weak linear inequalities.

1The problem is NP-hard in the minimisation formulation. It is NP-complete in the
threshold formulation.

41
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Lemma 2.1.1 ([88], Lemma 2.50). Let C1, . . . , Cr be a finite collection of

convex and polyhedral sets in Qn. If the set C =
⋃︁r
k=1Ck ⊆ Qn is convex

then it is a polyhedral set.

It follows that for a convex PL function the feasibility region is not only

a union of polyhedral sets but it is itself a polyhedral set.

Theorem 2.1.2 ([88], Theorem 2.49). Let f : Qn → Q ∪ {+∞} be a func-

tion. Then the following are equivalent:

1. f is convex and PL;

2. for every x ∈ Qn,

f(x) =

{︄
max(l1(x), . . . , lp(x)) if x ∈ D

+∞ if x /∈ D ,

where D = dom(f) is a polyhedral set and li : Qn → Q are linear func-

tions, for 1 ≤ i ≤ p.

From Theorem 2.1.2 it follows that a convex PL cost function is contin-

uous in its domain.

Lemma 2.1.3. Let us consider f1, f2, . . ., fm : Qn → Q ∪ {+∞}, such that

fi(x) =

{︄
max(aTi,1x+ bi,1, . . . , a

T
i,ki
x+ bi,ki) if x ∈ Di

+∞ otherwise,

where Di is a closed polyhedral subset of Qn, the coefficients aTi,j ∈ Qn, and

bi,j ∈ Q, for 1 ≤ j ≤ ki, and for 1 ≤ i ≤ m. Let us define the following linear

program J with rational variables t1, t2,. . ., tm, t, x1, . . . , xn

LP (J) := min t

subject to t = t1 + · · · + tm

t1 ≥ aT1,jx+ b1,j for x ∈ D1, for 1 ≤ j ≤ k1,

...
...

tm ≥ aTm,jx+ bm,j for x ∈ Dm, for 1 ≤ j ≤ km,

where x := (x1, . . . , xn). If there exists x ∈ D =
⋂︁m
i=1Di, then

min
x∈Qn

(f1(x) + f2(x) + · · · + fm(x)) = LP(J).
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Proof. For every i ∈ {1, . . . ,m} and every x ∈ D let us define the following

set:

Ti(x) = {ti ∈ Q | ti ≥ aTi,jx+ bi,j , , for all j ∈ {1, . . . , ki}}

and let

T (x) = {t = t1 + t2 + · · · + tm | ti ∈ Ti(x), i = 1, . . . ,m}.

Observe that for 1 ≤ i ≤ m and for every x0 ∈ Dn it holds that ti ≥ fi(x0),

for all ti ∈ Ti(x0). It follows that t ≥ f1(x0) + f2(x0) + · · · + fm(x0), for all

t ∈ T (x0). Let us observe, also, that for every x0 ∈ Dn,

min
t∈Q

T (x0) = f1(x0) + f2(x0) + · · · + fm(x0).

Then

LP(J) = min
x∈D

(min
t∈Q

T (x)) = min
x∈D

(f1(x) + f2(x) + · · · + fm(x)).

Theorem 2.1.4. Let Γ be a PL valued structure (with a signature of ar-

bitrary cardinality) such that every cost function in Γ is convex. Then

VCSP(Γ) is polynomial-time solvable.

Proof. Let τ be the signature of Γ. An instance of VCSP(Γ) consists of a

set of variables x1, . . . , xd, and an objective function of the form

ϕ(x) = f1(x) + · · · + fm(x),

with f1, . . . , fm ∈ τ , where x = (x1, . . . , xd). Every fΓi : Qar(fi) → Q ∪ {+∞}
has the form

fΓi (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aTi1x+ bi1 if x ∈ Di1

...
...

aTikix+ biki if x ∈ Diki

+∞ otherwise

,

for some aTi1, . . . , a
T
iki

∈ Qar(f), bi1, . . . , biki ∈ Q and with Dij polyhedral sets

such that the interior of Dij is non-empty and for every j and Dij ∩Dij = ∅
for every j ̸= j′.

Using Theorem 2.1.2 we can rewrite every fΓi as

fi(x)Γ =

{︄
max(aTi1x+ bi1, . . . , a

T
iki
x+ biki) if x ∈ Di =

⋃︁ki
j=1Dij

+∞ otherwise,

(see also [21], Exercise 3.29).

For every i ∈ {1, . . . ,m}, the union Di is convex, therefore it is a poly-
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hedral set (Lemma 2.1.1) and it is specified by a finite conjunction of linear

constraints of this form

pi⋀︂
j=1

(li,j(x) ≤ 0) ∧
qi⋀︂

j=pi+1

(li,j(x) < 0) ∧
ri⋀︂

j=qi+1

(li,j(x) = 0)

where li,j is a linear polynomial with rational coefficients for 1 ≤ j ≤ ri.

The list of linear constraints whose conjunction defines Di can be found

in polynomial time by solving a polynomial number of LPF instances (see

Section 1.7): let L be the list of all linear constraints defining some Dij ,

for 1 ≤ j ≤ ki. For every l ∈ L, and for every j ∈ {1, . . . , ki}, if the LPF

instance defined by the linear constraints defining Dij and l is not feasible,

then we remove l from L.

Observe that this procedure is correct. In fact, since the Dijs are pairwise

disjoint (see Definition 1.2.14), if for l ∈ L there exists some Dij that does

not intersect the halfspace H defined by l, then H does not contain the union

Di and we have to remove l from the list L. After this step L contains the

linear constraints defining the smallest polyhedral set containing Di, which

coincides with Di

By Lemma 2.1.3 we can decide the feasibility of ϕ and find its infimum

by solving the following instance I of Linear Programming:

min t

subject to t = t1 + · · · + tm

ti ≥ aTi,jx+ bi,j for 1 ≥ j ≤ ki, 1 ≤ i ≤ m

li,j(x) ≤ 0 for 1 ≤ j ≤ pi, 1 ≤ i ≤ m

li,j(x) ≤ 0 for pi + 1 ≤ j ≤ qi, 1 ≤ i ≤ m

li,j(x) = 0 for qi + 1 ≤ j ≤ ri, 1 ≤ i ≤ m

(we substituted strict inequalities by their corresponding weak inequality),

in this way we can find the minimum of our objective function in the closure

of the feasibility region.

To decide whether the found infimum, min t, is a proper minimum (in the

case it exists and is not −∞) we have to check whether there exists any point

y ∈ D such that min t = ϕ(y). To do this we solve the following LPF instance

with variables y = (y1, . . . , yd), z = (z1, . . . , zm), which contains strict and
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weak linear inequalities:

z1 + · · · + zm = min t

zi ≥ aTi,jy + bi,j for 1 ≥ j ≤ ki, 1 ≤ i ≤ m

li,j(y) ≤ 0 for 1 ≤ j ≤ pi, 1 ≤ i ≤ m

li,j(y) < 0 for pi + 1 ≤ j ≤ qi, 1 ≤ i ≤ m

li,j(x) = 0 for qi + 1 ≤ j ≤ ri, 1 ≤ i ≤ m.

Observe that LPF for a finite set of strict or weak linear inequalities can

be solved in polynomial time (see Proposition 8.0.3). If the LPF instance

above has a solution then min t is a proper minimum, otherwise min t is an

infimum that is not attained in D.

2.2 Median-Improved PL Valued Structures

In this section, we present a class of valued structures with rational domains

that are essentially crisp, i.e., valued structures Γ with domain Q such that

any solution to the problem CSP(Feas(Γ)) is a solution to VCSP(Γ). As a

consequence of this fact, we obtain that the VCSP for a PL valued structure

with a finite signature that is improved by a ternary fractional operation

whose support contains only the median operation is polynomial-time solv-

able.

Definition 2.2.1. Let g be a ternary operation on Q. We say that g is a

majority operation if, for all x, y ∈ Q, it holds that

g(x, x, y) = g(x, y, x) = g(y, x, x) = x.

Similarly, we say that g is a minority operation if for all x, y ∈ Q, it holds

that g(x, y, y) = g(y, x, y) = g(y, y, x) = x.

Example 2.2.2. The ternary operation median, med: Q3 → Q, is defined

by

med(x, y, z) := max(min(x, y),min(y, z),min(z, x))

= min(max(x, y),max(y, z),max(z, x)),

is is a majority operation. △

Proposition 2.2.3. If a valued structure Γ with domain Q is improved by a

fractional operation ωmaj whose support contains a single majority operation

g, then every solution to CSP(Feas(Γ)) is a solution to VCSP(Γ).
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The proof of Proposition 2.2.3 directly follows from the next lemma, and

was given in the finite-domain case in [34]2.

Lemma 2.2.4. A function f : Qn → Q∪{+∞} is improved by a fractional

operation ωmaj whose support contains a single majority operation g if, and

only if, f is constant, i.e., there exists c ∈ Q such that f(x) = c for every

x ∈ Qn.

Proof. By definition, ωmaj improves f if for every x, y, z ∈ Qn

f(g(x, y, z)) ≤ 1

3
(f(x) + f(y) + f(z)) . (2.1)

We prove our statement by induction on the arity n of f . Obviously, if f is

a constant function Inequality (2.1) is satisfied. Let n = 1 and let x, y ∈ Q
be such that x < y. Since f is improved by ωmaj and g(x, y, y) = y, we get

3f(y) ≤ f(x) + 2f(y), i.e. f(y) ≤ f(x). Similarly, since g(x, x, y) = x, we

also get f(x) ≤ f(y). Therefore, f is a constant function.

Let n ≥ 2, let us assume that every function of arity at most n− 1

that is improved by ωmaj is constant, and let f be an n-ary function im-

proved by ωmaj . Let x = (x1, . . . , xn−1, xn), y = (y1, . . . , yn−1, yn) ∈ Qn be

such that x ̸= y. Since ωmaj is idempotent, it improves the unary func-

tion f(y1, . . . , yn−1, ·) : Q → Q ∪ {+∞} (see Remark 1.4.15), and therefore

f(y1, . . . , yn−1, xn) = f(y1, . . . , yn−1, yn). Furthermore, the (n− 1)-ary func-

tion f(·, xn) : Qn−1 → Q ∪ {+∞} is improved by ωmaj , then by the inductive

hypothesis we obtain

f(x1, . . . , xn−1, xn) = f(y1, . . . , yn−1, xn) = f(y1, . . . , yn−1, yn).

Because of the arbitrary choice of x and y, the function f is constant.

Using a similar proof as for Lemma 2.2.4, it is easy to prove that if

a PL valued structure Γ is improved by a fractional operation whose sup-

port contains a single minority operation g, then VCSP(Γ) is equivalent to

CSP(Feas(Γ)). An easy consequence of Proposition 2.2.3 is the polynomial-

time solvability of the VCSP for median-improved PL valued structures.

Definition 2.2.5. We define the fractional operation ωmed : O(3)
Q → Q≥0 by

setting

ωmed(g) :=

{︄
1 if g = med

0 otherwise.

We say that a valued structure Γ is median-improved if it is improved by

the fractional operation ωmed.

2In [34], the authors use the notion of multimorphism rather than the notion of frac-
tional polymorphism.
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From Proposition 2.2.3, it trivially follows that given a PL valued struc-

ture Γ improved by ωmed, solving VCSP(Γ) is equivalent to solve the as-

sociated feasibility problem, i.e., to solve CSP(Feas(Γ)). In this case, the

relational structure Feas(Γ) is preserved by the operation median, and there-

fore it can be solved in polynomial time.

Theorem 2.2.6 ([11], Corollary 5.5). Let A be a semilinear relational struc-

ture with a finite signature. If the operation median preserves A then CSP(A)

can be solved in polynomial time.

As an immediate consequence of the previous theorem, we obtain the

following result.

Corollary 2.2.7. Let Γ be a PL valued structure with a finite signature that

is improved by the fractional operation ωmed. Then VCSP(Γ) can be solved

in polynomial time.

2.3 A Family of NP-hard PL VCSPs

In this section, we generalise to the case of PL valued structures the following

sufficient condition for finite-domain valued structures to have an NP-hard

VCSP.

Proposition 2.3.1 ([34], Proposition 5.1). Let Γ be a valued structure with

a finite domain D and costs in Q ∪ {+∞} (or R ∪ {+∞}). If there exist

a, b ∈ D, and there exist α, β ∈ Q, with α < β, such that the cost function

f : D2 → Q ∪ {+∞} by

f(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
α if x ̸= y ∧ x, y ∈ {a, b}
β if x = y ∧ x, y ∈ {a, b}
+∞ otherwise,

is in Γ, then VCSP(Γ) is NP-hard.

We fix the following notation

]a, b[:= {x ∈ Q | a < x < b}
[a, b[:= {x ∈ Q | a ≤ x < b}
]a, b] := {x ∈ Q | a < x ≤ b}
[a, b] := {x ∈ Q | a ≤ x ≤ b}

(a, b) denotes a set from {]a, b[, [a, b[, ]a, b], [a, b]}.
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Proposition 2.3.2. Let (a, b), (c, d) be two disjoint subsets of ⊂ Q (where

a and d, respectively, can be the symbol −∞ and +∞, respectively), and

α, β ∈ Q, with α < β. Let Γ be a PL valued structure containing the cost

function fα,β(a,b),(c,d) : D2 → Q ∪ {+∞} defined by

f(x, y)α,β(a,b),(c,d) :=

⎧⎪⎪⎨⎪⎪⎩
α if (x, y) ∈ ((a, b) × (c, d)) ∪ ((c, d) × (a, b))

β if (x, y) ∈ (a, b)2 ∪ (c, d)2

+∞ otherwise.

Then VCSP(Γ) is NP-hard.

Proof. We provide a polynomial-time many-one reduction from Max Cut

(see Example 1) to VCSP(Γ). Let I := (V, ϕ, u) be an instance of Max Cut,

i.e., an instance of VCSP(ΓXOR), with set of variables V := {v1, . . . , vd},

objective function

ϕ(v1, . . . , vd) :=

m∑︂
j=1

XOR(vj1 , vj2),

and threshold u ∈ Q (such that 0 ≤ u ≤ m). Our reduction maps I to the

instance I ′ := (V, ψ, u′) of VCSP(Γ) defined by setting

ψ(v1, . . . , vd) :=

m∑︂
j=1

f(vj1 , vj2),

and u′ := mα+ u(β − α) ∈ Q. We claim that there exists an assignment

s : V → {0, 1} with cost ϕΓXOR(s(v1), . . . , s(vd)) ≤ u if, and only if, there

exists an assignment h : V → Q with cost ψΓ(h(v1), . . . , h(vd)) ≤ u′. Let

s : V → {0, 1} be an assignment with cost ϕΓXOR(s(v1), . . . , s(vd)) ≤ u, we

define the assignment h : V → Q by

h(v) :=

{︄
a+b
2 if s(v) = 0
c+d
2 if s(v) = 1.

For every j ∈ {1,≤,m} it holds that:

• if XORΓXOR(s(vj1), s(vj2)) = 0, then s(vj1) ̸= s(vj2). Therefore, the

couple (h(vj1), h(vj2)) is equal to either
(︁
a+b
2 , c+d2

)︁
, or

(︁
c+d
2 , a+b2

)︁
. In

both cases fΓ(h(vj1), h(vj2)) = α.

• If XORΓXOR(s(vj1), s(vj2)) = 1, then s(vj1) = s(vj2). Therefore, the

couple (h(vj1), h(vj2)) is equal to either
(︁
a+b
2 , a+b2

)︁
, or

(︁
c+d
2 , c+d2

)︁
. In

both cases fΓ(h(vj1), h(vj2)) = β.
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Since ϕΓXOR(s(v1), . . . , s(vd)) ≤ u, there are at most u indices j ∈ {1, . . . ,m}
for which XORΓXOR(s(vj1), s(vj2)) = 1, and there are at least m− u indices

j ∈ {1, . . . ,m} for which XORΓXOR(s(vj1), s(vj2)) = 0. Consequently, there

are at most u indices j ∈ {1, . . . ,m} for which fΓ(h(vj1), h(vj2)) = β, and

at least m− u indices j ∈ {1, . . . ,m} for which fΓ(h(vj1), h(vj2)) = α. It

follows that

ψΓ(h(v1), . . . , h(vd)) ≤ (m− u)α+ uβ = u′.

Vice versa, let h : V → Q be an assignment for the variables in V with

cost ψΓ(h(v1), . . . , h(vd)) ≤ u′. Observe that, since u′ ∈ Q, every occur-

rence of fΓ(h(vj1), h(vj2)) in the sum ψΓ(h(v1), . . . , h(vd)) has a finite value,

that is, h(v) ∈ (a, b) ∪ (c, d) for every v ∈ V . We define the assignment

s : V → {0, 1} by

s(v) :=

{︄
0 if h(v) ∈ (a, b)

1 if h(v) ∈ (c, d).

For every j ∈ {1,≤,m} it holds that:

• if fΓ(h(vj1), h(vj2)) = α, then (h(vj1), h(vj2)) belongs to the subset

((a, b) × (c, d)) ∪ ((c, d) × (a, b)). Therefore, s(vj1) ̸= s(vj2), which im-

plies XORΓXOR(s(vj1), s(vj2)) = 0.

• if fΓ(h(vj1), h(vj2)) = β, then (h(vj1), h(vj2)) ∈ (a, b)2 ∪ (c, d)2. There-

fore, s(vj1) = s(vj2), and consequently XORΓXOR(s(vj1), s(vj2)) = 0.

Since ψΓ(h(v1), . . . , h(vd)) ≤ u′ and u′ = (m− u)α+ uβ, there are at most u

indices j ∈ {1, . . . ,m} for which fΓ(h(vj1), h(vj2)) = β. Consequently, there

are at most u indices j ∈ {1, . . . ,m} for which XORΓXOR(s(vj1), s(vj2)) = 1,

which implies that

ϕΓXOR(s(v1), . . . , s(vd)) ≤ u.

Proposition 2.3.2 gives rise to a family of PL valued structures whose

VCSP is NP-hard. In Corollary 7.1.13, we combine Proposition 2.3.2 and

the notion of expressibility. We observe that the PL cost functions fα,β(a,b),(c,d)

defined in Proposition 2.3.2 are, in particular, PLH.

Summary and Outlook

We have seen some simple yet interesting results for PL valued structures.

Some of these are generalisations of known results from the theory of finite-

domain VCSPs. In the next chapter, we focus on the class of PLH valued
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structures whose investigation is a natural intermediate step between the

study of finite-domain valued structures and the study of PL valued struc-

tures.



Chapter 3

Piecewise Linear

Homogeneous Valued

Structures

In this chapter, we focus on PLH valued structures. PLH valued structures

form a subclass of the class of PL valued structures; however, the PLH

setting is still very expressive: every finite-domain VCSP is equivalent to

the VCSP for a suitable PLH valued structure. PLH valued structures

have many mathematical properties (that are not shared, in general, with

other PL valued structures) that make the study of VCSPs for PLH valued

structures a natural intermediate step between finite-domain VCSPs and

VCSPs for PL valued structures.

We prove that the VCSP for a PLH valued structure with a finite sig-

nature is polynomial-time many-one equivalent to the VCSP for a valued

structure over a suitable finite domain. We present this technique in two

steps: firstly we show the reduction for the feasibility problem, i.e., we

prove such a reduction for PLH relational structure; secondly, we extend

this method to solve the optimisation problem, i.e., to find a solution of cost

at most the given input threshold.

We use the following result for PLH valued structures from Section 1.2.2.

Theorem 1.2.8. The structure L from Example 1.2.3 has quantifier elimi-

nation.

3.1 Efficient Sampling for PLH Relational Struc-

tures

We present an efficient sampling algorithm for PLH relational structures.

Let us formally introduce the notion of a sampling algorithm for a relational

51
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structure.

Definition 3.1.1. Let C be a structure with a finite relational signature

τ . A sampling algorithm for C takes as input a positive integer d and com-

putes a finite-domain structure D homomorphic to C such that every finite

conjunction of atomic τ -formulas having at most d distinct free variables is

satisfiable in C if, and only if, it is satisfiable in D. A sampling algorithm

is called efficient if its running time is bounded by a polynomial in d. We

refer to the output of a sampling algorithm by calling it the sample.

The definition above is a slight reformulation of Definition 2.2 from [8]

and it is easily seen to give the same results using the same proofs. We de-

cided to bound the number of variables instead of the size of the conjunction

of atomic τ -formulas because this is more natural in our context. These two

quantities are polynomially related by the assumption that the signature τ

is finite.

Throughout this section, we refer to a fixed PLH relational structure

A with a finite signature τ . We give a formal definition of the numerical

data in A; we need it later on. By quantifier elimination (Theorem 1.2.8),

each of the finitely many relations RA for R ∈ τ has a quantifier-free τ0-

formula ϕR over L. As in the proof of Theorem 1.2.8, we can assume that

all formulas ϕR are positive (that is, they contain no negations). We fix

one such representation that we use from now on. Let At(ϕR) denote the

set of atomic subformulas of ϕR. Each atomic τ0-formula is of the form

t1
<
= t2, where t1 and t2 are terms. We call an atomic formula trivial if

it is equivalent to ⊥ or ⊤, and non-trivial otherwise. As in the proof of

Theorem 1.2.8, we make the assumption that atomic formulas are of the

form ⊥ or ⊤ if they are trivial and, otherwise, of the form either c1 · 1<=xi
or xi

<
=c2 · 1 or c1 · xi <=c2 · xj , with constants c1 and c2 not both negative

and where function symbols ci· are never composed. This assumption can

be made without loss of generality (again, see the proof of Theorem 1.2.8).

Given a set of non-trivial atomic formulas Φ, we define

H(Φ) =

{︃
c1
c2

⃓⃓⃓⃓
t1 = c1 · xi, t2 = c2 · xj , for some t1

<

=
t2 in Φ

}︃
,

K(Φ) =

{︃
c2
c1

⃓⃓⃓⃓
t1 = c1 · xi, t2 = c2 · 1, for some t1

<

=
t2 in Φ

}︃
∪
{︃
c1
c2

⃓⃓⃓⃓
t1 = c1 · 1, t2 = c2 · xj , for some t1

<

=
t2 in Φ

}︃
∪ {1}.

The efficient sampling algorithm for A works in two steps. First, the

problem CSP(A) is transferred to the equivalent CSP for a suitable structure
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A⋆ that is an extension of an expansion (or an expansion of an extension) of

A; second, we provide an efficient sampling algorithm for A⋆, which is also

an efficient sampling algorithm for A.

Definition 3.1.2. The ordered Q-vector space Q⋆ is defined as

Q⋆ = {x+ yϵ | x, y ∈ Q}

where ϵ is merely a formal device, namely x+ yϵ represents the pair (x, y).

We define addition and multiplication by a scalar componentwise

(x1 + y1ϵ) + (x2 + y2ϵ) = (x1 + x2) + (y1 + y2)ϵ

c · (x+ yϵ) = (cx) + (cy)ϵ.

Clearly, Q is embedded in Q⋆, by mapping every rational number x into

x+ 0ϵ. The order is induced by Q extended with 0 < ϵ ≪ 1, namely the

lexicographical order of the components x and y

(x1 + y1ϵ) < (x2 + y2ϵ) iff

{︄
x1 < x2 or

x1 = x2 ∧ y1 < y2.

Any τ0-formula has an obvious interpretation in any ordered Q-vector

space Q extending Q, and, in particular, in Q⋆.

Theorem 3.1.3. The first-order theory of ordered Q-vector spaces in the

signature τ0 ∪ {+,−} is complete

Proof. The proof follows from [99, Chapter 1, Remark 7.9].

Proposition 3.1.4. Let ϕ(x1, . . . , xd) and ψ(x1, . . . , xd) be τ0-formulas.

Then ϕ and ψ are equivalent in Q if, and only if, they are equivalent in

any ordered Q-vector space Q extending Q (for instance Q = Q⋆).

Proof. By Theorem 3.1.3, the τ0-sentence

∀x1, . . . , xdϕ(x1, . . . , xd) ⇐⇒ ψ(x1, . . . , xd)

holds in Q if, and only if, it holds in Q.

Proposition 3.1.4 gives us a natural extension A⋆ of A to the domain Q⋆,

that is, the τ -structure obtained by interpreting each relation symbol R ∈ τ

by the relation RA⋆
defined on Q⋆ by the same (quantifier-free) τ0-formula ϕR

that defines RA over Q (by the proposition, the choice of equivalent τ0-

formulas is immaterial).

In the following corollary, we see that there is no difference between A

and A⋆ as long as feasibility is concerned.
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Corollary 3.1.5. Let ϕ be an instance of CSP(A), and let ϕ⋆ be the corre-

sponding instance of CSP(A⋆). Then ϕ is satisfiable if and only if ϕ⋆ is.

Proof. The proof immediately follows from Proposition 3.1.4 by observing

that ϕ (respectively ϕ⋆) is unsatisfiable if and only if it is equivalent to ⊥.

As a consequence of Corollary 3.1.5, we can work in the extended struc-

ture A⋆. Our goal is to prove the following theorem.

Theorem 3.1.6. There is an efficient sampling algorithm for A⋆.

Before giving the proof of Theorem 3.1.6, we present some preliminary

lemmas in which we explicitly define the domain of the wanted sample.

Let ϕ be an atomic τ0-formula. We write ϕ̄ for the formula t1 ≤ t2 if

ϕ is of the form t1 < t2, and for the formula t1 = t2 if ϕ is of the form

t1 = t2. We call ϕ̄ the closure of the formula ϕ. First, we investigate the

positive solutions to the closures of finitely many atomic τ0-formulas. Then,

in a second step that builds on the first one, we investigate the solutions to

finitely many atomic τ0-formulas.

Lemma 3.1.7. Let Φ be a finite set of atomic τ0-formulas having free vari-

ables in {v1, . . . , vd}. Assume that Φ̄ :=
⋃︁
ϕ∈Φ ϕ̄ has a simultaneous solu-

tion (x1, . . . , xd) ∈ Q>0 in positive numbers. Then Φ̄ has a solution taking

values in the set CΦ,d ⊂ Q defined as follows

CΦ,d =

{︄
|k|

s∏︂
i=1

|hi|ei
⃓⃓⃓⃓
⃓ k ∈ K(Φ), e1, . . . , es ∈ Z,

s∑︂
r=1

|er| < d

}︄

where h1, . . . , hs is an enumeration of the (finitely many) elements of H(Φ).

Proof. Let γ ≤ β be maximal such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β},

where si, s
′
i, tj , t

′
j are τ0-terms for all i, j, and Ψ1 ∪ Ψ2 ∪ Ψ3 is satisfiable in

positive numbers. Clearly, the space of positive solutions of Ψ1 ∪ Ψ2 must be

contained in the space of positive solutions of Ψ3. In fact, by construction,

they intersect: consider any straight line segment connecting a solution of

Ψ1 ∪ Ψ2 ∪ Ψ3 and a solution to Ψ1 ∪ Ψ2 not satisfying Ψ3. On this segment,

there must be a solution of Ψ1 ∪ Ψ2 ∪ Ψ3 lying on the boundary of one
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of the inequalities of Ψ3, contradicting the maximality of γ. By the last

observation, it suffices to prove that there is a solution of Ψ1 ∪ Ψ2 taking

values in CΦ,d. Put an edge between two variables xi and xj when they

appear in the same formula of Ψ1 ∪ Ψ2. For each connected component

of the graph thus defined, either it contains at least one variable vi such

that there is a constraint of the form h · vi = k · 1, or all constraints are of

the form h · vi = h′ · vj . In the first case, assign vi = k
h ; in the second case,

assign one of the variables vi arbitrarily to 1. Then, in any case, since the

diameter of the connected component is smaller than d, all the variables

in this connected component are forced to take values in CΦ,d, by simple

propagation of vi.

Lemma 3.1.8. Let Φ be a finite set of atomic τ0-formulas having free vari-

ables in the set {v1, . . . , vd}. Assume that the formulas in Φ are simultane-

ously satisfiable in Q. Then they are simultaneously satisfiable in

DΦ,d := −C⋆Φ,d ∪ {0} ∪ C⋆Φ,d ⊆ Q⋆,

where

C⋆Φ,d = {x+ nxϵ | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q⋆,

CΦ,d is defined as in Lemma 3.1.7, and −C⋆Φ,d denotes the set {−x | x ∈ C⋆Φ,d}.

Proof. We first fix a solution vi = ai for i = 1 . . . d of Φ. In general, some of

the values ai are positive, some are 0, and some others are negative: we look

for a new solution z1, . . . , zd ∈ DΦ,d such that zi is positive, respectively 0

or negative, if and only if ai is. To this aim we rewrite the formulas in Φ

replacing each variable vi with either yi, or 0 (formally 0 · 1), or −yi (formally

−1 · yi). We call Φ+ the new set of formulas, which, by construction, is

satisfiable in positive numbers yi = bi. To establish the lemma, it suffices to

find a solution of Φ+ taking values in C⋆Φ,d.

By Lemma 3.1.7, we have an assignment yi = ci of values c1, . . . , cd in

CΦ+,d ⊆ CΦ,d that satisfies simultaneously all formulas ϕ̄ with ϕ ∈ Φ+. Let

n1, . . . , nd ∈ {n ∈ Z | −d ≤ n ≤ d} be such that for all i, j

ni < nj if, and only if, bi
ci
<

bj
cj
,

0 < ni if, and only if, 1 < bi
ci
,

ni < 0 if, and only if, bi
ci
< 1.

Such numbers exist: simply sort the set {1} ∪
{︁
bi
ci

| i = 1, . . . , d
}︁

and con-

sider the positions in the sorted sequence counting from that of 1. We claim

that the assignment yi = ci + niciϵ ∈ Q⋆, for 1 ≤ i ≤ d, satisfies all formu-
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las of Φ+. To prove this claim, we consider the different cases for atomic

formulas

• k · yi < h · yj : if kci < hcj the formula is obviously satisfied. Other-

wise, kci = hcj ; in this case, k and h are positive and the constraint

kci + kniciϵ < hcj + hnjcjϵ

is equivalent to ni < nj . This, in turn, is equivalent by construction

to bi
ci
<

bj
cj

, which we get by observing that bihcj = bikci < bjhci.

• k · yi = h · yj : obviously, it holds that kbi = hbj and kci = hcj ; there-

fore, it holds that bi
ci

=
bj
cj

, and, as a consequence, also ni = nj , from

which it follows that the formula is satisfied by the chosen assignment.

• k · 1 < h · yj : similarly to the first case, if k < hcj the formula is ob-

viously satisfied. Otherwise, k = hcj ; therefore, k and h are positive

and then the constraint

k · 1 < hcj + hnjcjϵ

is equivalent to 0 < nj . Then we obtain 1 <
bj
cj

, by observing that

hcj = k < hbj .

• k · yi < h · 1: as the case above.

• k · 1 = h · yj : obviously, k · 1 = hbj = hcj ; therefore,
bj
cj

= 1 and nj = 0,

from which it follows that the formula is satisfied by the chosen as-

signment.

• k · yi = h · 1: as the case above.

Proof of Theorem 3.1.6. The sampling algorithm produces the finite sub-

structure A⋆At(τ),d of A⋆ having domainDAt(τ),d where At(τ) :=
⋃︁
R∈τ At(ϕR),

that is, the τ -structure with domain DAt(τ),d in which each relation sym-

bol R ∈ τ denotes the restriction of RA⋆
to DAt(τ),d. It is immediate to

observe that this structure can be computed in polynomial time in d. Since

A⋆At(τ),d is a substructure of A⋆, it is clear that if an instance is satisfiable

in A⋆At(τ),d, then it is a fortiori satisfiable in A⋆.

The vice versa follows from Lemma 3.1.8. Consider a set Ψ of atomic τ -

formulas having free variables x1, . . . , xd. Assume that Ψ is satisfied in A⋆ by

the assignment xi = ai for i ∈ {1, . . . , d}. For each R ∈ Ψ, let ΦR ⊂ At(ϕR)

be the set of atomic subformulas of ϕR which are satisfied by our assign-

ment xi = ai. Clearly, the atomic τ0-formulas Φ :=
⋃︁
R∈Ψ ΦR are simulta-

neously satisfiable. Since the formulas ϕR contain no negations by construc-

tion, any simultaneous solution of Φ must also satisfy Ψ. By Lemma 3.1.8,
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Φ has a solution in the set DΦ,d defined therein. We can observe that

CΦ,d ⊂ CAt(τ),d, hence DΦ,d ⊂ DAt(τ),d and the claim follows.

Corollary 3.1.9. There exists an efficient sampling algorithm for A.

Proof. On input d, the sampling algorithm produces the τ0-reduct of the

sample for A⋆ (on input d) described in the proof of Theorem 3.1.6. By

Corollary 3.1.5 and Theorem 3.1.6, this is an efficient sampling algorithm

for A.

3.1.1 The Tractability of Max-Closed PLH CSPs

A relational structure A is max-closed if it is preserved by the binary oper-

ation max.

In this section, we apply the results from Section 3.1 to prove the fol-

lowing result:

Theorem 3.1.10. Let A be a structure having finite relational signature τ .

Assume that for every R ∈ τ , the interpretation RA is PLH and preserved

by max. Then CSP(A) is polynomial-time solvable.

This result is incomparable to known results about max-closed semilin-

ear relations [12], i.e. semilinear relations that are preserved by the oper-

ation max. In particular, in that case, the weaker bound NP ∩ co-NP has

been shown for a larger class, and the polynomial-time solvability only for

a smaller class (which does not contain many max-closed PLH relations,

for instance x ≥ max(y, z)). To prove Theorem 3.1.10, we use the notion of

totally symmetric polymorphism and a result from [8].

Theorem 3.1.11 ([8], Theorem 2.5). Let A be a structure over a finite

relational signature with totally symmetric polymorphisms of all arities. If

there exists an efficient sampling algorithm for A, then CSP(A) is in P.

Proof of Theorem 3.1.10. Since A is preserved by max, the k-ary operation

max(k) is a polymorphism of A, for all k ≥ 1 (see Example 1.4.27 and Remark

1.4.28). Furthermore, by Corollary 3.1.9 there exists an efficient sampling

algorithm for A. Therefore, from Theorem 3.1.11, it follows that CSP(A)

can be solved in polynomial time.

3.2 Efficient Sampling for PLH Valued Structures

In this section, we introduce the notion of a sampling algorithm for a val-

ued structure and exhibit an efficient sampling algorithm for PLH valued

structures.
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Definition 3.2.1. Let Γ be a valued structure with domain C and a finite

signature τ . A sampling algorithm for Γ takes as input a positive integer d

and computes a finite-domain valued τ -structure ∆ fractionally homomor-

phic to Γ such that, for every finite sum ϕ of τ -terms having at most d

distinct variables, V = {x1, . . . , xd}, and every u ∈ Q, there exists a solu-

tion h : V → C with ϕΓ(h(x1), . . . , h(xd)) ≤ u if, and only if, there exists a

solution h′ : V → D with ϕ∆(h′(x1), . . . , h
′(xd)) ≤ u. A sampling algorithm

is called efficient if its running time is bounded by a polynomial in d. We

refer to the output of a sampling algorithm by calling it the sample.

Remark 3.2.2. Observe that the output ∆d of a sampling algorithm for a

given valued structure Γ with a finite signature τ does not depend on the

rational threshold u. Therefore, given a finite sum ϕ of function symbols

from τ with variables V := {x1, . . . , xn}, it holds that

inf
h : V→dom(Γ)

ϕΓ(h(x1), . . . , h(xn)) = inf
h′ : V→dom(∆d)

ϕ∆d(h′(x1), . . . , h
′(xn)).

3.2.1 The Ring of Formal Laurent Power Series

In the present section, we extend the method developed in Section 3.1 to the

treatment of PLH VCSPs. To better highlight the analogy with Section 3.1,

so that the reader already familiar with it may quickly get an intuition of

the arguments here, we use identical notation to represent corresponding

objects. This choice has the drawback that some symbols, notably Q⋆, need

to be re-defined (the new Q⋆ contains the old one). In this section, we

sometimes skip details that can be borrowed unchanged from Section 3.1.

Definition 3.2.3. Let Q⋆ denote the ring Q((ϵ)) of formal Laurent power

series in the indeterminate ϵ, that is, Q⋆ is the set of formal expressions

+∞∑︂
i=−∞

aiϵ
i

where ai ̸= 0 for only finitely many negative values of i. Clearly, Q is em-

bedded in Q⋆ (the embedding is defined similarly to its corresponding in

Section 3.1). The ring operations on Q⋆ are defined as usual

+∞∑︂
i=−∞

aiϵ
i +

+∞∑︂
i=−∞

biϵ
i =

+∞∑︂
i=−∞

(ai + bi)ϵ
i,

+∞∑︂
i=−∞

aiϵ
i ·

+∞∑︂
i=−∞

biϵ
i =

+∞∑︂
i=−∞

⎛⎝ +∞∑︂
j=−∞

ajbi−j

⎞⎠ ϵi,
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where the sum in the product definition is always finite by the hypothesis on

ai, bi with negative index i. The order is the lexicographical order induced

by Q extended with 0 < ϵ ≪ 1, i.e.,

+∞∑︂
i=−∞

aiϵ
i <

+∞∑︂
i=−∞

biϵ
i iff ∃i ai < bi ∧ ∀j < i aj = bj .

It is well known that Q⋆ is an ordered field, that is, all non-zero elements have

a multiplicative inverse and the order is compatible with the field operations.

We define the following subsets of Q⋆ for m ≤ n

Q⋆
m,n :=

{︄
n∑︂

i=m

ϵiai

⃓⃓⃓⃓
⃓ ai ∈ Q

}︄
⊂ Q⋆ .

Clearly Q is embedded in Q⋆, by mapping every rational number a into∑︁+∞
i=−∞ aiϵ

i such that ai = 0, for every i ̸= 0, and a0 = a.

Definition 3.2.4. We define a new structure L⋆, which is an extension of an

expansion (or an expansion of an extension) of L, having domain Q⋆, signa-

ture τ1 := τ0 ∪ {k}k∈Q⋆
−1,1

, and such that the interpretation of symbols in τ0
is formally the same as for L and the symbols k ∈ Q⋆

−1,1 denote constants

(i.e., functions with arity 0).

Notice that, for technical reasons, we allow only constants from Q⋆
−1,1. In

the remainder of this section, τ1-formulas are interpreted in the structure L⋆.

We make for τ1-formulas the same assumptions as in Section 3.1 (that atomic

formulas are of the form ⊥ or ⊤ if they are trivial, and otherwise of the form

either c1 · 1<=xi, or xi
<
=c2 · 1, or c1 · xi <=c2 · xj with constants c1 and c2 not

both negative and where function symbols ci· are never composed). Also

H(Φ) and K(Φ), where Φ is a set of atomic τ1-formulas are defined similarly

to Section 3.1. Observe that the reduct of L⋆ obtained by restricting the

signature to τ0 is elementarily equivalent to L, i.e., it satisfies the same

first-order sentences.

Similarly as in Section 3.1, for every PLH valued structure Γ and every

positive integer number d, we explicitly give a τ1-structure with a finite

domain D⋆ such that every instance of VCSP(Γ) with at most d distinct

free variables has a solution with values in Q if, and only if, it has a solution

with values in D⋆ ⊆ Q⋆ (Lemma 3.2.7). We need two preliminary results:

Lemma 3.2.5 and Lemma 3.2.6, which are analogues of Lemma 3.1.7 and

Lemma 3.1.8 from Section 3.1. More specifically, in Lemma 3.2.5 we consider

the positive solutions to the closures of finitely many τ1-formulas, and in

Lemma 3.2.6 we consider the positive solutions to finitely many τ1-formulas.
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Lemma 3.2.5. Let Φ be a finite set of atomic τ1-formulas having free vari-

ables in {v1, . . . , vd} and let Φ̄ be the set
⋃︁
ϕ∈Φ ϕ̄. Suppose that there is

0 < r ∈ Q⋆ such that all satisfying assignments of Φ̄ with values (x1, . . . , xd)

in Q⋆ also satisfy 0 < xi ≤ r, for all i ∈ {1, . . . , d}. Let u, α1, . . . , αd be el-

ements of Q⋆. Assume that the formulas in Φ are simultaneously satisfiable

by a point (x1, . . . , xd) ∈ (Q⋆)d such that
∑︁d

i=1 αixi < u. Let us define the

set

CΦ,d =

{︄
|k|

s∏︂
i=1

|hi|ei
⃓⃓⃓⃓
⃓ k ∈ K(Φ), e1, . . . , es ∈ Z,

s∑︂
r=1

|er| < d

}︄
⊆ Q⋆

−1,1,

where h1, . . . , hs is an enumeration of the (finitely many) elements of H(Φ).

Then there is a point in (x′1, . . . , x
′
d) ∈ (CΦ,d)

d ⊆ (Q⋆)d with
∑︁d

i=1 αix
′
i < u

that simultaneously satisfies all ϕ̄, for ϕ ∈ Φ.

Proof. As in the proof of Lemma 3.1.7 (to which we direct the reader for

many details) we take a maximal γ ≤ β such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}
Ψ1 = {s1 = s′1, . . . , sα = s′α}
Ψ2 = {t1 = t′1, . . . , tγ = t′γ}
Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β}

and Ψ1 ∪ Ψ2 ∪ Ψ3 is satisfiable by an assignment (x1, . . . , xd) such that∑︁d
i=1 αixi < u. As in the proof of Lemma 3.1.7 the set of solutions of Ψ1 ∪ Ψ2

satisfying
∑︁d

i=1 αixi < u is contained in the solutions of Ψ3. So, here too, it

suffices to show that there is a solution of Ψ1 ∪ Ψ2 with
∑︁d

i=1 αivi < u tak-

ing values in CΦ,d. The proof of Lemma 3.1.7 shows that there is a solution

of Ψ1 ∪ Ψ2 taking values (x1, . . . , xd) in CΦ,d without necessarily meeting the

requirement that
∑︁d

i=1 αixi < u. We prove that, in fact, any such solution

meets the additional constraint.

Let xi = ai, bi, be two distinct satisfying assignments for Ψ1 ∪ Ψ2 such

that
∑︁d

i=1 αiai < u and
∑︁d

i=1 αibi ≥ u. We know that the first assignment,

xi = ai, exists and we assume the existence of the second assignment, xi = bi,

towards a contradiction. The two assignments must differ; then, without loss

of generality, we can assume that a1 ̸= b1. For t ∈ Q⋆, with t ≥ 0, define

the assignment xi(t) = (1 + t)ai − tbi. Since all constraints in Ψ1 ∪ Ψ2 are

equalities, it is clear that the new assignment xi(t) satisfies Ψ1 ∪ Ψ2 for

all t ∈ Q⋆. Moreover, if t ≥ 0 we obtain

∑︂
i

αixi(t) ≤
∑︂
i

αiai − t

(︄∑︂
i

αibi −
∑︂
i

αiai

)︄
< u.
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Let t = 2r
|b1−a1| . Then

x1(t) = a1 +
2r

|b1 − a1|
(a1 − b1)

is either not smaller than 2r or smaller than 0, depending on the sign

of (a1 − b1). In either case, we have a solution xi = xi(t) of Ψ1 ∪ Ψ2 satisfy-

ing
∑︁

i αixi(t) < u, which must, therefore, be a solution of Φ that does not

satisfy 0 < xi ≤ r.

Lemma 3.2.6. Let Φ be a finite set of atomic τ1-formulas having free

variables in {v1, . . . , vd}. Suppose that there are 0 < l < r ∈ Q⋆ such that

all the assignments (x1, . . . , xd) satisfying Φ in the domain Q⋆ also sat-

isfy l < xi < r, for all i ∈ {1, . . . , d}. Let α1, . . . , αd be rational numbers

and u ∈ Q⋆
−1,1. Assume that the formulas in Φ are simultaneously satisfiable

by a point (x1, . . . , xd) ∈ (Q⋆)d such that
∑︁d

i=1 αixi ≤ u. Then the same for-

mulas are simultaneously satisfiable by a point (x′1, . . . , x
′
d) ∈ (C⋆Φ,d)

d ⊆ (Q⋆)d

such that
∑︁

i α
d
i=1x

′
i ≤ u, where

C⋆Φ,d = {x+ nxϵ3 | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q⋆
−1,4 .

Proof. We consider two cases: either all satisfying assignments with val-

ues (x1, . . . , xd) in (Q⋆)d satisfy the inequality
∑︁

i α
d
i=1xi ≥ u or there is a

satisfying assignment (x1, . . . , xd) for Φ such that
∑︁

i α
d
i=1xi < u.

We claim that, in the first case, all satisfying assignments, in fact,

satisfy
∑︁d

i=1 αixi = u. To prove our claim, assume that xi = ai, bi are

two satisfying assignments such that
∑︁d

i=1 αiai = u and v :=
∑︁d

i=1 αibi > u.

As in the proof of Lemma 3.2.5, let us consider assignments having the

form xi(t) = (1 + t)ai − tbi, for all t ∈ Q⋆. Clearly, for all t > 0 it holds∑︁d
i=1 αixi(t) = u− t(v − u) < u. As in Lemma 3.2.5, the new assignment

must satisfy all the equality constraints in Φ. Each inequality constraint

implies a strict inequality on t (remember that Φ only has strict inequali-

ties). Since all of these implied strict inequalities must be satisfied by t = 0,

there is an open interval of acceptable values of t around 0, and, in partic-

ular, an acceptable value t > 0. Our claim is thus established. Therefore,

in this case, it suffices to find any satisfying assignment for Φ taking values

in C⋆Φ,d. The assignment is now constructed as in the proof of Lemma 3.1.8,

replacing the formal symbol ϵ in that proof by ϵ3. More precisely, take a

satisfying assignment xi = bi for Φ and, by Lemma 3.2.5, a satisfying as-

signment xi = ci for Φ̄ taking values in CΦ,d. Observe that the hypothesis

that all solutions of Φ satisfy l < xi for all i is used here to ensure that all

solutions of Φ̄ assign positive values to the variables, which is required by
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Lemma 3.2.5. Let −d ≤ n1, . . . , nd ≤ d be integers such that for all i, j

ni < nj if, and only if, bi
ci
<

bj
cj
,

0 < ni if, and only if, 1 < bi
ci
,

ni < 0 if, and only if, bi
ci
< 1.

The assignment yi = ci + niciϵ
3 can be seen to satisfy all formulas of Φ by

the same check as in the proof of Lemma 3.1.8. Observe that we have to

replace ϵ appearing in Lemma 3.1.8 by ϵ3 here, so that Q⋆
−1,1 ∩ ϵ3Q⋆

−1,1 = ∅.

For the second case, fix a satisfying assignment xi = bi. By Lemma 3.2.5

there is an assignment xi = ci ∈ CΦ,d such that
∑︁d

i=1 αici < u and this as-

signment satisfies ϕ̄ for all ϕ ∈ Φ. From these two assignments construct

the numbers ni and then the assignment yi = ci + niciϵ
3 as before. For the

same reason it is clear that the new assignment satisfies Φ. To conclude that∑︁d
i=1 αiyi < u we write

d∑︂
i=1

αiyi =
d∑︂
i=1

αici + ϵ3
d∑︂
i=1

αinici < u

because the first summand is in Q⋆
−1,1 and smaller than u, therefore the

second summand is neglected in the lexicographical order.

Lemma 3.2.7. Let Φ be a finite set of atomic τ0-formulas having free vari-

ables in {v1, . . . , vd}. Let u, α1, . . . , αd be rational numbers. Then the fol-

lowing are equivalent:

1. The formulas in Φ are simultaneously satisfiable in Q, by a point

(x1, . . . , xd) ∈ Qd such that
∑︁d

i=1 αixi ≤ u.

2. The formulas in Φ are simultaneously satisfiable in DΦ,d ⊆ Q⋆, by a

point (x′1, . . . , x
′
d) ∈ Dd

Φ,d such that
∑︁d

i=1 αix
′
i ≤ u, where the set DΦ,d

is defined as follows

DΦ,d := −C⋆Φ′,d ∪ {0} ∪ C⋆Φ′,d ⊆ Q⋆
−1,4

Φ′ := Φ ∪ {x > ϵ, x < −ϵ, x > −ϵ−1, x < ϵ−1}.

Remark 3.2.8. Observe that the set DΦ,d depends neither on the αi’s nor

on u. In fact, DΦ,d only depends on the set of formulas Φ and on the number

d of free variables.

Proof. The implication 2 → 1 is immediate observing that the conditions Φ

and
∑︁d

i=1 αixi ≤ u are first-order definable in S. In fact, any assignments

with values in DΦ,d satisfying the conditions is, in particular, an assignment
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in Q⋆, and, by the completeness of the first-order theory of ordered Q-vector

spaces, we have an assignment taking values in Q.

For the vice versa, fix any assignment xi = ai with ai ∈ Q, for every

i ∈ {1, . . . , d}. We pre-process the formulas in Φ producing a new set of

atomic formulas Φ′ as follows. We replace every variable xi such that ai = 0

with the constant 0 = 0 · 1. Then we replace each of the remaining variables

xi with either yi or −yi accordingly to the sign of ai. Finally, we add the con-

straints ϵ < yi and yi < ϵ−1 for each of these variables. Similarly, we produce

the new coefficients α′
i = sign(ai)αi. It is clear that the new set of formu-

las Φ′ has a satisfying assignment in the set of positive rational numbers

with
∑︁d

i=1 α
′
iyi ≤ u. Observing that a positive rational number x always

satisfies ϵ < x < ϵ−1, we see that Φ′ satisfies the hypothesis of Lemma 3.2.6

with l = ϵ and r = ϵ−1. Hence the statement.

Remark 3.2.9. Lemma 3.2.7 provides a polynomial-time many-one reduc-

tion of the VCSP for a PLH valued structure Γ with a finite signature to the

VCSP for a valued structure ∆⋆ with a finite signature having as domain

a finite subset of Q⋆. We want to point out that, however, Lemma 3.2.7

does not give rise to a sampling algorithm: firstly, the cost functions in ∆⋆

take values in Q⋆ rather than in Q ∪ {+∞}; secondly, the signature of ∆⋆

is strictly larger than the signature of Γ. In the next section, we show how

to obtain an efficient sampling algorithm for PLH valued structures using

Lemma 3.2.7.

Once we have reduced the VCSP for a PLH valued structure with a

finite signature to a Q⋆-valued constraint satisfaction problem over a finite

domain D ⊆ Q⋆ (with a finite signature), there are two possible approaches.

The formulas Φ in Lemma 3.2.7 are going to define a subset of the domain

of a PLH function in Q⋆, while the coefficients αi define the function on

that subset. The first approach is to interpret our PLH functions over the

domain Q⋆; the second one is to substitute a suitably small rational value

of ϵ in the formal expression of DΦ,d and thereby map the problem to Q.

In the first case, we have to transfer the known approaches for Q to the

new domain; in the second case, we can use them (after having computed a

suitable ϵ). (For a comparison of the two approaches, we direct the reader

to Section 6.3 of Chapter 6, where we apply both approaches to study the

complexity of VCSPs for submodular PLH valued structures.)

If we interpret our PLH functions in the domain Q⋆, the algorithm solv-

ing the obtained finite-domain VCSP is required to run in strongly polyno-

mial time (see Chapter 1, Section 1.8). However, it is natural to think about

applying the techniques known for finite-domain VCSPs to solve the VCSP

for PLH valued structures that, after having been sampled have the alge-

braic conditions that guarantee the polynomial-time solvability (over finite
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domains). On the other hand, these techniques for finite-domain VCSPs rely

on linear programming relaxations, and none of the known polynomial-time

algorithms solving LP is known to be strongly polynomial-time. Therefore,

if we want to use the characterisation of polynomial-time solvable finite-

domain VCSPs, we have first to map the finite domain DΦ,d into (a subset

of) Q.

3.2.2 Reduction to a VCSP over a Finite Rational Domain

In this section, we use the results achieved in Section 3.2.1 to provide an

efficient sampling algorithm for PLH valued structures.

Let Φ be a finite set of τ0-formulas having at most d distinct free vari-

ables. By Lemma 3.2.7, for every α1, . . . , αd, u ∈ Q the formulas in Φ are si-

multaneously satisfiable in Q by a point (x1, . . . , xd) such that
∑︁d

i=1 αixi ≤ u

if, and only if, they are simultaneously satisfiable in DΦ,d ⊆ Q⋆
−1,4 by a point

(x′1, . . . , x
′
d) such that

∑︁d
i=1 αix

′
i ≤ u. The elements in DΦ,d ⊆ Q⋆

−1,4 are of

the form
4∑︂

i=−1

xiϵ
i where xi ∈ −CΦ,d ∪ {0} ∪ CΦ,d

where CΦ,d is as in Lemma 3.1.7. In L⋆ it holds that

−ϵ−1 < x < −ϵ for every x ∈ −CΦ,d,

ϵ < x < ϵ−1 for every x ∈ CΦ,d.

(See Lemmas 3.2.5, 3.2.6, 3.2.7, and Lemmas 3.1.7, 3.1.8.)

Lemma 3.2.10. Let Φ be a finite set of τ0-formulas having at most d dis-

tinct free variables. Let DΦ,d be defined as in Lemma 3.2.7 (2.) and let

D⋆ be the finite substructure of L⋆ with domain DΦ,d ⊆ Q⋆
−1,4. Then there

exists a positive rational ε with −ε−1 < x < −ε for every x ∈ −CΦ,d, and

ε < x < ε−1 for every x ∈ CΦ,d such that the map η : DΦ,d → Q defined by

η

⎛⎝ 4∑︂
j=−1

xjϵ
j

⎞⎠ =
4∑︂

j=−1

xjε
j

is a homomorphism from the τ0-reduct of D
⋆ to L. Moreover, ε and η are

computable in polynomial time in d.

Proof. Let CΦ,d ⊆ Q be as in Lemma 3.1.7 and let −CΦ,d := {−x | x ∈ CΦ,d}.

We define C := {x− y | x, y ∈ CΦ,d ∪ {0} and x− y > 0}. Observe that it

holds C ⊇ CΦ,d. Define

ε :=
1

6

minC

maxC
.
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The number ε is positive and rational and it can be computed in polynomial

time in d. Furthermore,

0 < ε < 1,

ε < minC < minCΦ,d implying max(−CΦ,d) < −ε, and

maxC = maxCΦ,d < ε−1 implying −ε−1 < min(−CΦ,d).

It follows that −ε−1 < x < −ε for every x ∈ −CΦ,d, and ε < x < ε−1 for

every x ∈ CΦ,d.

It is easy to see that η preserves the scalar multiplication by rational

elements and the identity in Q. We prove now that η is order-preserving

(and therefore injective). Let us consider

x :=

4∑︂
j=−1

xjϵ
j , and y :=

4∑︂
j=−1

yjϵ
j ∈ DΦ,d

such that x is smaller than y in the lexicographic order induced by Q⋆
−1,4.

This means that there exists an index i ∈ {−1, . . . , 4} such that xj = yj for

−1 ≤ j < i and xi < yi. Since ε > 0, it holds that xiε
i < yiε

i and, conse-

quently,
i∑︂

j=−1

xjε
j <

i∑︂
j=−1

yjε
j .

Moreover, if i ̸= 4, then for all j ∈ {i+ 1, . . . , 4} it holds

(xj − yj)ε
j−i ≤ (xj − yj)ε ≤ (maxC)ε =

minC

6
≤ yi − xi

6

because ε < 1 and xj − yj ≤ maxC (indeed, if xj − yj > 0 then xj − yj ∈ C,

otherwise xj − yj is smaller than any element in C). Therefore, we obtain

(xj − yj)ε
j ≤ yi−xi

6 εi and

4∑︂
j=i+1

(xj − yj)ε
j ≤

4∑︂
j=i+1

yi − xi
6

εi ≤ 5

6
(yi − xi)ε

i < (yi − xi)ε
i.

It follows that
4∑︂
j=i

xjε
j <

4∑︂
j=i

yjε
j ,

and, since xj = yj for −1 ≤ j ≤ i− 1,

4∑︂
j=−1

xjε
j <

4∑︂
j=−1

yjε
j ,
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i.e., η preserves the order.

Let Φ be a finite set of τ0-formulas with at most d variables, and let η be

the map introduced in Lemma 3.2.10, we set EΦ,d := η(DΦ,d) ⊆ Q. Lemma

3.2.10 implies the following corollary.

Corollary 3.2.11. Let Γ be a PLH valued structure with a finite signature

τ . Then there exists an efficient sampling algorithm for Γ.

Proof. For every cost function f in τ let us consider the quantifier-free τ0-

formula ϕf defining RΓ
f = dom(f) over Q. Let At(ϕf ) denote the set of

atomic subformulas of ϕf and let At(τ) :=
⋃︁
f∈τ At(ϕf ).

On input d, the algorithm produces the valued finite substructure ∆

of Γ having domain η(DAt(τ),d), where η is defined as in Lemma 3.2.10.

It is immediate to see that the valued structure ∆ has polynomial size

in d and can be computed in polynomial time in d, because DAt(τ),d and

η(DAt(τ),d) can be computed in polynomial time in d (see Remark 3.2.8,

and Lemma 3.2.10). Let ϕ be a finite sum of function symbols from τ

with at most d variables from V := {v1, . . . , vd}, and let u be a rational

number. By Lemma 3.2.7, there exists an assignment h : V → Q such that

ϕΓ(h) ≤ u if, and only if, there exists an assignment h′ : V → DAt(τ),d such

that ϕΓ
⋆
(h) ≤ u. Furthermore, by Lemma 3.2.10 there exists a positive ra-

tional number ε such that the map η : DAt(τ),d → Q is a homomorphism

of τ0-structures from the τ0-reduct of D⋆ to L. Since η is injective, the

assignment η ◦ h′ : V → η(DAt(τ),d) has cost ϕ∆(η ◦ h′) ≤ u.

Summary and Outlook

We have shown a polynomial-time many-one reduction of the VCSP for

a PLH valued structure to a finite-domain VCSP. We remark that, in or-

der to prove the polynomial-time solvability of (a class of) PLH valued

structures, we need to show the polynomial-time solvability of the obtained

finite-domain VCSP. To accomplish with this task, we have two options:

either use the efficient sampling algorithm given in Corollary 3.2.11 and ap-

ply the methods from the theory of finite-domain VCSPs, as explained in

the next chapter; or (polynomial-time many-one) map the PLH VCSP onto

a finite-domain VCSP with costs in Q⋆ (see Lemma 3.2.7) and provide a

strongly polynomial-time algorithm (see Section 1.8) that solves the finite-

domain problem in Q⋆. In Chapter 6, we apply both approaches to prove

the polynomial-time solvability of submodular PLH valued structures and

discuss the differences between the two approaches.



Chapter 4

The Power of LP for

Infinite-Domain VCSPs

In this chapter, we give a sufficient algebraic condition under which val-

ued structures that admit an efficient sampling algorithm can be solved in

polynomial time using a linear programming relaxation.

4.1 The Basic Linear Programming Relaxation

Every VCSP over a finite domain has a natural linear programming relax-

ation. Let Γ be a valued structure over a finite domain D with signature

τ , such that the cost functions take values in Q ∪ {+∞}. Let I be an in-

stance of VCSP(Γ) with set of free variables VI = {x1, . . . , xd}, and objective

function

ϕI(x1, . . . , xd) =
∑︂
j∈J

fj(x
j
1, . . . , x

j
nj

),

with fj ∈ Γ, xj = (xj1, . . . , x
j
nj ) ∈ V nj , for all j ∈ J (the set J is finite and

indexing the cost functions that are summands of ϕI). Define the sets W1,

W2, and W of variables λj(t), µxi(a), for j ∈ J , t ∈ Dnj , xi ∈ V , and a ∈ D,

as follows.

W1 := {λj(t) | j ∈ J and t ∈ Dnj},
W2 := {µxi(a) | xi ∈ V and a ∈ D},
W := W1 ∪W2.

The basic linear programming, BLP, relaxation for Γ associated to I (see

[69, 96], and references therein) is a linear program with variables in W and

67
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is defined as follows

BLP(I,Γ) := min
λj(t)∈Q

∑︂
j∈J

∑︂
t∈Dnj

λj(t)f
Γ
j (t)

such that∑︂
t∈Dnj :tl=a

λj(t) = µ
xjl

(a) for all j ∈ J , l ∈ {1, . . . , nj}, a ∈ D (4.1)

∑︂
a∈D

µxi(a) = 1 for all xi ∈ V (4.2)

λj(t) = 0 for all j ∈ J , t /∈ dom(fj) (4.3)

0 ≤ λj(t), µxi(a) ≤ 1 for all λj(t) ∈W1, µxi(a) ∈W2. (4.4)

The variables λj(t), µxi(a) ∈W can assume rational (or real) values in [0, 1].

For every j ∈ J , we can interpret λj as a distribution of probabilities on

tuples in Dnj i.e., λj(t) can be seen as the probability to assign the label t to

(xj1, . . . , x
j
nj ) (observe that

∑︁
t∈Dnj λj(t) = 1 follows from Conditions (4.1)

and (4.2)). In this interpretation, µxi(a) is the probability of assigning the

value a to the variable xi and therefore it is the marginal probability of the

distribution λj for the variable vi (as expressed by Condition (4.1)).

If there is no feasible solution to this linear program, then we obtain

BLP(I,Γ) = +∞. We say that the BLP relaxation solves the instance I of

VCSP(Γ) if BLP(I,Γ) = minx∈Dd ϕI(x). We say that the BLP relaxation

solves the VCSP for Γ if it solves all instances of VCSP(Γ). For a given

instance of a finite-domain VCSP, the corresponding BLP relaxation can be

computed in polynomial time. Therefore, if the VCSP for a valued structure

Γ is solved by the BLP relaxation, then VCSP(Γ) can be solved in polynomial

time.

The valued structures with finite domains that can be solved by the BLP

relaxation have been characterised by Kolmogorov, Thapper, and Živný in

[69].

Theorem 4.1.1 ([69], Theorem 1). Let ∆ be a valued structure with a finite

signature and a finite domain. Then the BLP relaxation solves VCSP(∆) if,

and only if, ∆ has fully symmetric fractional polymorphisms of all arities.

4.2 The Sampling + BLP Algorithm

Let Γ be a valued structure that admits an efficient sampling algorithm.

We may solve VCSP(Γ) by using the following algorithm that on instance

I computes a sample ∆ of Γ and then solves the BLP relaxation for ∆

associated to I.
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ALGORITHM 1: Sampling + BLP Algorithm

Input: I := (VI , ϕI , uI).

Output: accepts if there exists an assignment h : VI → dom(Γ) such that

ϕI(h(x1, . . . , x|VI |)) ≤ uI .

∆ := SamplingΓ(|VI |);
BLP(I,∆);

if BLP(I,∆) ≤ uI then

accept;

else

reject;

end

Note that Algorithm 1 runs in polynomial time in |VI | and if it rejects,

then indeed the answer to VCSP(Γ) is no, without further assumptions.

Lemma 4.2.1. Let Γ be a valued structure admitting an efficient sampling

algorithm. Then Algorithm 1 runs in polynomial time in |VI |.

Proof. Let I := (VI , ϕI , uI) be an instance of VCSP(Γ) and let ∆ be the

finite-domain valued structure computed by the sampling algorithm for Γ

on input |VI |. The sampling algorithm runs in polynomial time in |VI |, so

the size of ∆ is polynomial in |VI |. Since BLP(I,∆) can be implemented

to run in polynomial time in |VI | + |∆|, it follows that the entire algorithm

runs in polynomial time in |VI |.

In the following section, we present a sufficient condition under which

Algorithm 1 correctly solves VCSP(Γ).

4.3 Fully Symmetric Fractional Polymorphisms

The main result of this section, Theorem 4.3.5, states that if Γ is improved

by fully symmetric fractional operations of all arities, then Algorithm 1

correctly solves VCSP(Γ) in polynomial time. Note that there are valued

structures that have fully symmetric fractional polymorphisms of all arities

which are not inherited by the valued structures computed by sampling, as

the next example shows.

Example 4.3.1. Let Γ be a convex PLH valued structure with a finite

signature. For all k ≥ 2, the valued structure Γ is improved by the fully

symmetric fractional operation ω
(k)
conv defined in Example 1.4.19 (see Propo-

sition 1.6.8). Observe that the finite-domain valued structure computed by

a sampling algorithm for Γ might not have fully symmetric fractional poly-

morphisms of all arities. In fact, the fractional polymorphisms ω
(k)
conv are not

even inherited by valued finite substructures of Γ whose domain contains
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more than one element. However, (by Theorem 4.3.5) Algorithm 1 solves

VCSP(Γ). △

Definition 4.3.2. Let ∆ be a valued τ -structure with domain D and let

m ≥ 1. The multiset-structure Pm(∆) [96] is the valued structure with do-

main
(︂(︁

D
m

)︁)︂
, i.e., the set of multisets of elements from D of size m, and

for every k-ary function symbol f ∈ τ , and α1, . . . , αk ∈
(︂(︁

D
m

)︁)︂
the function

fP
m(∆) is defined as follows

fP
m(∆)(α1, . . . , αk) :=

1

m
min

t1,...,tk∈Dm:{tl}=αl

m∑︂
i=1

f∆(t1i , . . . , t
k
i ).

(Here we denote by {tl} the multiset whose elements are the coordinates of

tl.)

Lemma 4.3.3 ([96], Lemma 2.2). Let ∆ be a valued structure with a finite

domain, and m ≥ 2. Then Pm(∆) →f ∆ if, and only if, ∆ has an m-ary

fully symmetric fractional polymorphism.

Lemma 4.3.4. Let Γ be a valued structure (with a finite signature τ), and

let ∆ be a valued structure with a finite domain such that ∆ →f Γ, and

m ≥ 2. If Γ has an m-ary fully symmetric fractional polymorphism, then

Pm(∆) →f Γ.

Lemma 4.3.4 is a generalisation of Lemma 4.3.3 to valued structures with

arbitrary domains. However, while Lemma 4.3.3 follows directly from the

definition of Pm(∆), our proof of Lemma 4.3.4 is inspired by the proof of

[8], Lemma 2.4.

Proof of Lemma 4.3.4. Let C and D be, respectively, the domain of Γ and

the domain of ∆, respectively. Let χ be a fractional homomorphism from ∆

to Γ and let ω be an m-ary fully symmetric fractional polymorphism of Γ.

For every g ∈ Supp(ω) ⊆ O(m)
C and every h ∈ Supp(χ) ⊆ CD, we define

(g ◦ h) :

(︃(︃
D

m

)︃)︃
→ C

by setting, for α = {a1, . . . , am} ∈
(︂(︁

D
m

)︁)︂
,

(g ◦ h)(α) = g(h(a1), . . . , h(am)).

Observe that (g ◦ h) is well defined as g is fully symmetric (the order of

h(a1), . . . , h(am) does not matter). We define the function ω′ : C((Dm)) → Q≥0

by setting, for every g ∈ C((Dm)),

ω′(g′) =
∑︂

g∈Supp(ω)

∑︂
h∈Supp(χ):g◦h=g′

ω(g)χ(h).
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We claim that ω′ is a fractional homomorphism from Pm(∆) to Γ. Indeed,

the support Supp(ω′) = {(g ◦ h) | g ∈ Supp(ω), h ∈ Supp(χ)}, is finite as the

support of ω and the support of χ are finite. It also holds that∑︂
g′∈Supp(ω′)

ω′(g′) =
∑︂

g∈Supp(ω)

ω(g)
∑︂

h∈Supp(χ)

χ(h) =
∑︂

g∈Supp(ω)

ω(g) = 1.

Furthermore, for every k-ary f ∈ τ and tuple (α1, . . . , αk) ∈
(︂(︁

D
m

)︁)︂k
, with

αi = {α1
i , . . . , α

m
i }, it holds that∑︂

g′∈C((Dm))

ω′(g′)fΓ(g′(α1, . . . , αk))

=
∑︂

g∈Supp(ω)

∑︂
h∈Supp(χ)

ω(g)χ(h)fΓ(g(h(α1
1), . . . , h(αm1 )), . . . , g(h(α1

k), . . . , h(αmk )))

≤
∑︂

h∈Supp(χ)

χ(h)

(︄
1

m

m∑︂
i=1

fΓ
(︂
h(α

π1(i)
1 ), . . . , h(α

π1(i)
1 )

)︂)︄
(4.5)

=
1

m

m∑︂
i=1

∑︂
h∈Supp(χ)

χ(h)fΓ
(︂
h(α

π1(i)
1 ), . . . , h(α

π1(i)
1 )

)︂

≤ 1

m

m∑︂
i=1

f∆(α
π1(i)
1 , . . . , α

πk(i)
k ), (4.6)

for every π1, . . . , πk ∈ Sm. Inequality (4.5) holds because ω is a fully sym-

metric fractional polymorphism of Γ and Inequality (4.6) holds because χ is

a fractional homomorphism from ∆ to Γ. Then, in particular, it holds that

∑︂
g′∈C((Dm))

ω′(g′)fΓ(g′(α1, . . . , αk)) ≤
1

m
min

t1,...,tk∈Dm:{tl}=αl

m∑︂
i=1

f∆(t1i , . . . t
k
i )

=fP
m(∆)(α1, . . . , αk),

which concludes the proof.

Theorem 4.3.5. Let Γ be a valued structure with a finite signature having

fully symmetric fractional polymorphisms of all arities. If there exists an ef-

ficient sampling algorithm for Γ, then Algorithm 1 correctly solves VCSP(Γ)

(in polynomial time).

Proof. Let I be an instance of VCSP(Γ) with variables VI = {x1, . . . , xn},

objective function ϕI(x1, . . . , xn) =
∑︁

j∈J γj(x
j) where J is a finite set of

indices, γj ∈ Γ, and xj ∈ V
ar(fj)
I , and threshold uI . Let ∆ be the finite-
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domain valued structure computed by the sampling algorithm for Γ on input

|VI |.

Let C be the (possibly infinite) domain of Γ and D ⊆ C the finite domain

of ∆. Note that if BLP(I,∆) ≰ uI then mind∈Dn ϕI(d) ≰ uI which implies

infc∈Cn ϕI(c) ≰ uI since D was produced by the sampling algorithm for Γ on

input |VI |. We may, therefore, safely reject. Otherwise, if BLP(I,∆) ≤ uI ,

then min
α∈((Dm))

n ϕ
Pm(∆)
I (α) ≤ BLP(I,∆). The proof of this previous state-

ment is contained in the first part of the proof of Theorem 3.2 in [96];

we report it here for completeness. Let (λ⋆, µ⋆) be an optimal solution to

BLP(I,∆) and let M be a positive integer such that M · λ⋆, and M · µ⋆ are

both integral. Let ν : VI →
(︂(︁

D
M

)︁)︂
be defined by mapping the variable xi to

the multiset in which the elements are distributed accordingly to µ⋆xi , i.e.,

for every a ∈ D the number of occurrences of a in ν(xi) is equal to Mµ⋆xi(a).

Let fj be a k-ary function symbol in τ that occurs in a term fj(x
j) of the

objective function ϕI . Now we write

M ·
∑︂
t∈Dk

λ⋆j (t)f
∆
j (t) = f∆j (α1) + · · · + f∆j (αM ),

where the αi ∈ Dk are such that λ⋆j (t)-fractions are equal to t. Let us define

α′
l := (α1

i , . . . , α
M
i ) for 1 ≤ i ≤ k. We get

∑︂
t∈Dk

λ⋆j (t)f
∆
j (t) =

1

M

M∑︂
i=1

f∆j (αi) =
1

M

M∑︂
i=1

f∆j (αi1, . . . , α
i
k)

≥ 1

M
min

t1,...,tk∈DM :{tl}={α′
l}

M∑︂
i=1

f∆j (t1i , . . . , t
k
i ) = f

PM (∆)
j (α′

1, . . . , α
′
k)

=f
PM (∆)
j (ν(x)),

where the last equality follows as the number of a’s in α′
i is

M ·
∑︂

t∈Dk:ti=a

λ⋆j (t) = M · µ⋆xi(a).

Then

BLP(I,∆) =
∑︂
j∈J

∑︂
t∈Dar(fj)

λ⋆j (t)f
∆
j (t) =

∑︂
j∈J

⎛⎝ ∑︂
t∈Dar(fj)

λ⋆j (t)f
∆
j (t)

⎞⎠
≥
∑︂
j∈J

(︂
f
PM (∆)
j (ν(x))

)︂
≥ min

α∈((Dm))
n
ϕ
Pm(∆)
I (α).
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Since we assumed BLP(I,∆) ≤ uI , we obtain

min
α∈((Dm))

n
ϕ
Pm(∆)
I (α) ≤ uI .

Moreover, since Γ has fully symmetric fractional polymorphisms of all arities,

Lemma 4.3.4 implies the existence of a fractional homomorphism

ω : C((D
M)) → Q≥0 .

From Proposition 1.4.3 it follows that

inf
c∈Cn

ϕΓI (c) ≤ min
α∈((Dm))

n
ϕ
Pm(∆)
I (α) ≤ BLP(I,∆) ≤ uI .

We remark that Theorem 4.3.5 generalises the following known result

(that we used in Section 3.1.1 to prove the polynomial-time complexity of

the CSP for max-closed PLH relational structures).

Theorem 3.1.11 ([8], Theorem 2.5). Let A be a structure over a finite

relational signature with totally symmetric polymorphisms of all arities. If

there exists an efficient sampling algorithm for A, then CSP(A) is in P.

More precisely, we extended Theorem 3.1.11 to valued structures and,

at the same time, to the weaker assumption of having fully symmetric frac-

tional polymorphisms of all arities rather than totally symmetric fractional

polymorphisms of all arities. The following example is adapted from [77]

(Example 99) and exhibits a PL valued structure having fully symmetric

polymorphisms of all arities but having no totally symmetric polymorphism

of arity 3.

Example 4.3.6. Let us consider the PL valued structure Γ with domain Q
and signature {f+, f−} such that fΓ+, f

Γ
− : Q3 → Q ∪ {+∞} are defined by

fΓ+(x1, x2, x3) :=

{︄
x1 + x2 + x3 if x1 + x2 + x3 ≥ 1

+∞ otherwise,

and

fΓ−(x1, x2, x3) :=

{︄
x1 + x2 + x3 if x1 + x2 + x3 ≤ −1

+∞ otherwise.

Clearly, the cost functions fΓ+, and fΓ− are PL and it is easy to see that

they are convex. As all cost functions in Γ are PL and convex, by Proposition

1.6.8, the valued structure Γ is improved by the fully symmetric fractional



74 CHAPTER 4. THE POWER OF LP

operations ω
(k)
conv for every k ≥ 2, i.e., Γ has fully symmetric fractional poly-

morphisms of all arities. We already observed that the fractional operations

ω
(k)
conv are not totally symmetric for k ≥ 3 (see Example 1.4.19).

Assume now that ω is a ternary totally symmetric fractional polymor-

phism of Γ and let t : Q3 → Q be a totally symmetric operation in Supp(ω),

then, in particular, t is a polymorphism of Feas(Γ), i.e., t preserves the

feasibility relations

dom(fΓ+) = {(x1, x2, x3) ∈ Q3 | x1 + x2 + x3 ≥ 1}, and

dom(fΓ−) = {(x1, x2, x3) ∈ Q3 | x1 + x2 + x3 ≤ −1}.

By the total symmetry of t, there exists a ∈ Q such that

t(1, 1,−1) = t(1,−1, 1) = t(−1, 1, 1)

=t(−1,−1, 1) = t(−1, 1,−1) = t(1,−1,−1) = a.

Observe that (1, 1,−1), (1,−1, 1), (−1, 1, 1) ∈ dom(fΓ+), then, by applying t

componentwise we get (a, a, a) ∈ dom(fΓ+), i.e., a ≥ 1
3 ; on the other hand,

(−1,−1, 1), (−1, 1,−1), (1,−1,−1) ∈ dom(fΓ−), then, by applying t compo-

nentwise we get (a, a, a) ∈ dom(fΓ−), i.e., a ≤ −1
3 , which is a contradic-

tion. △

Summary and Outlook

We have given a sufficient condition for valued structures admitting an

efficient sampling algorithm to be polynomial-time tractable: if the val-

ued structure has fully symmetric fractional polymorphisms of all arities,

then the VCSP is correctly solved in polynomial time by a combination of

the sampling algorithm with the basic linear programming relaxation. In

the next chapter, we apply Theorem 4.3.5 to prove the polynomial-time

tractability of VCSPs for some classes of PLH valued structures.



Chapter 5

Complexity Results for PLH

Valued Structures

In this chapter, we apply the results of Chapters 3 and 4 to study the

computational complexity of the VCSP for concrete PLH valued structures

(Sections 5.1, and 5.2), and we give a sufficient condition for the maximal

tractability of classes of PLH valued structures (Section 5.3). Submodular

PLH valued structures are not among the classes of valued structures that

we examine in the present chapter because we decided to dedicate them a

whole chapter (Chapter 6).

The following corollary is an immediate consequence of Theorem 4.3.5

and the existence of an efficient sampling algorithm for PLH valued struc-

tures with finite signatures (Corollary 3.2.11).

Corollary 5.0.1. Let Γ be a PLH valued structure with a finite signature

that is improved by fully symmetric fractional operations of all arities. Then

VCSP(Γ) can be solved in polynomial time.

In the next sections, we survey classes of PLH valued structures satisfying

the hypothesis of Proposition 5.0.1.

5.1 Convex PLH Valued Structures

In this section, we study the computational complexity of convex PLH val-

ued structures. Since PLH valued structures are in particular PL, we already

know that the VCSP for a convex PLH valued structure can be solved in

polynomial time (see Chapter 2; we show that the polynomial-time solvabil-

ity of the VCSP for convex PLH valued structures can also be obtained from

an application of Corollary 5.0.1.

75
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We have already seen that a convex valued structure has fully symmetric

fractional polymorphisms of all arities (see Proposition 1.6.8). Therefore, the

next corollary directly follows from Proposition 1.6.8 and Corollary 5.0.1.

Corollary 5.1.1. Let Γ be a PLH valued structure with a finite signature

such that the cost functions in Γ are convex. Then VCSP(Γ) can be solved

in polynomial time.

5.2 Componentwise Decreasing PLH Valued Struc-

tures

In this section, we study the computational complexity of componentwise

decreasing (and componentwise increasing) PLH valued structures.

Definition 5.2.1. Let f : Qn → Q∪{+∞} be an n-ary function. We say

that

• f is componentwise decreasing if

f(x1, . . . , xi−1, yi, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, zi, xi+1, . . . , xn),

for every yi < zi, 1 ≤ i ≤ k, and x1, . . . , xi−1, xi+1, . . . , xn ∈ Q;

• f is componentwise increasing if

f(x1, . . . , xi−1, yi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, zi, xi+1, . . . , xn),

for every yi < zi, 1 ≤ i ≤ k, and x1, . . . , xi−1, xi+1, . . . , xn ∈ Q.

A valued structure Γ is said to be componentwise decreasing (component-

wise increasing, respectively) if all the cost functions in Γ are componentwise

decreasing (componentwise increasing, respectively).

Example 5.2.2. It is easy to see that the PLH function f : Q2 → Q defined

by f(x, y) := −max(x, y) is a componentwise decreasing function, which is

not submodular and not convex. △

In [34], componentwise decreasing functions, and componentwise increas-

ing functions are respectively called antitone functions and monotone func-

tions.

Corollary 5.2.3. Let Γ be a componentwise decreasing PLH valued struc-

ture with a finite signature. Then VCSP(Γ) can be solved in polynomial

time.
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Proof. The proof follows from Proposition 5.0.1, since for every k ≥ 2 the

fully symmetric fractional operation ω
(k)
max, defined in Example 1.4.18, im-

proves Γ as the next lemma shows.

Lemma 5.2.4. A function f : Qn → Q∪{+∞} is componentwise decreas-

ing if, and only if, it is improved by ω
(k)
max, for every k ≥ 2.

Proof. Let k ≥ 2 and let us first assume that f is a componentwise decreasing

function with arity 1. Let us consider x1, . . . , xk ∈ Q and let us assume

without loss of generality that x1 = max(x1, . . . , xk). Then we have that

f(max(x1, . . . , xk)) = f(x1) =

k times⏟ ⏞⏞ ⏟
f(x1) + · · · + f(x1)

k
≤ f(x1) + · · · + f(xk)

k
,

i.e., ω
(k)
max is a fractional polymorphism of f . Assume now n ≥ 2 and that

every (n− 1)-ary componentwise decreasing function is improved by ω
(k)
max.

We prove that for every n ∈ N, an n-ary componentwise decreasing function

f is improved by ω
(k)
max. Let us fix x1, . . . , xk ∈ Qn. The restricted function

f(·,max(x1n, . . . , x
k
n)) : Qn−1 → Q ∪ {+∞} ,

which maps every (z1, . . . , zn−1) ∈ Qn−1 to f(z1, . . . , zn−1,max(x1n, . . . , x
k
n)),

is clearly componentwise decreasing and therefore, by the inductive hypoth-

esis, it is improved by ω
(k)
max, that is,

f(max(x11, . . . , x
k
1), . . . ,max(x1n−1, . . . , x

k
n−1),max(x1n, . . . , x

k
n))

≤
f(x11, . . . , x

1
n−1,max(x1n, . . . , x

k
n)) + · · · + f(xk1, . . . , x

k
n−1,max(x1n, . . . , x

k
n))

k
.

Again by the fact that f is componentwise decreasing we get that the right-

hand side of the last inequality is

≤ 1

k
(f(x11, . . . , x

1
n−1, x

1
n) + · · · + f(xk1, . . . , x

k
n−1, x

k
n)),

i.e., f is improved by ω
(k)
max.

Conversely, if f : Qn → Q∪{+∞} is improved by ω
(k)
max for all k ≥ 2,

then, in particular, it is improved by ωmax = ω
(2)
max. For all i ∈ {1, . . . , n}

and x1, . . . , xi−1, yi, zi, xi+1, . . . , xn ∈ Q such that yi < zi it holds that

f(x1, . . . , xi−1, zi, xi+1, . . . , xn)

≤ f(x1, . . . , xi−1, yi, xi+1, . . . , xn)

2
+
f(x1, . . . xi−1, zi, xi+1, . . . , xn)

2
.
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It follows that

f(x1, . . . , xi−1, zi, xi+1, . . . , xn) ≤ f(x1, . . . xi−1, yi, xi+1, . . . , xn),

i.e., f is componentwise decreasing.

Lemma 5.2.4 and Corollary 5.2.3 may be shown to have a dual form that

holds in the case of componentwise increasing cost functions.

5.3 A Condition for Maximal Tractability of PLH

Valued Structures

In this section, we give a sufficient condition for the maximal tractability of

a specific subclass of valued structures within the class of all PLH valued

structures. We apply this result to prove that the valued structures contain-

ing all componentwise decreasing PLH cost functions, and all componentwise

increasing PLH cost functions, respectively, are maximally tractable within

the class of all PLH valued structures.

Definition 5.3.1. Let us fix a set D. Let V be a class of valued structures

with domain D and let Γ be a valued structure in V. We say that Γ is

maximally tractable within V if

• VCSP(Γ′) can be solved in polynomial time, for every valued finite

reduct Γ′ of Γ; and

• for every valued structure ∆ in V that is an expansion of Γ, there

exists a value finite reduct ∆′ of ∆ such that VCSP(∆′) is NP-hard.

Definition 5.3.2. Given a finite domain D ⊂ Q and a partial function

f : Dn → Q we define the canonical extension of f as the PLH function

f̂ : Qn → Q, by

f̂(x) =

{︄
f(x) x ∈ Dn

+∞ otherwise.

We need the following lemma.

Lemma 5.3.3. Let ω : O(k)
Q → Q≥0 be a conservative fractional operation

with a finite support, for some k ≥ 1. Assume that

• for every PLH valued structure Γ ⊂ Imp(ω) with a finite signature, the

problem VCSP(Γ) can be solved in polynomial time;

• the class of finite-domain valued structures that are improved by ω is

maximally tractable within the class of finite-domain valued structures.
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Then the class of all PLH valued structures that are improved by ω is max-

imally tractable within the class PLH valued structures.

Proof. Let fQ : Qm → Q ∪ {+∞} be a PLH cost function that is not im-

proved by ω, i.e., there exist k many tuples a1, . . . , ak ∈ Qm such that

1

k

k∑︂
i=1

fQ(ai) <
∑︂

g∈Supp(ω)

fQ(g(a1, . . . , ak)).

Let

D := {a11, . . . , a1m, a21, . . . , ak−1
m , ak1, . . . , a

k
m} ⊂ Q,

and let ∆ be the valued structure with domain D, such that its signature τ

contains a function symbol for every cost functions on D that is improved

by ω. Notice that the restriction fQ|D is not improved by ω, for our choice

of D. Therefore, by hypothesis, there exists a valued structure ∆′ having

domain D and signature τ ′ ∪ {f}, where τ ′ ⊆ τ is finite and the cost function

f∆
′

= fQ| D, such that VCSP(∆′) NP-hard.

We define Γ′ to be the valued structure with domain D and signature

τ ′ ∪ {f, χD} such that the functions symbols in the signature are interpreted

as follows:

• for every g ∈ τ ′, the cost function gΓ
′

is the canonical extension of g∆
′
,

• the cost function fΓ
′

is fQ, and

• the unary cost function χΓ′
D : Q → Q ∪ {+∞} is defined, for every

x ∈ Q as

χΓ′
D (x) =

{︄
0 if x ∈ D

+∞ if x ∈ Q \D.

Observe that, for every g ∈ τ ′, since ω is a fractional polymorphism of g∆
′

it is also a fractional polymorphism of gΓ
′
. Moreover, χΓ′

D is PLH and it is

improved by ω, since ω is conservative.

The valued structure Γ′ is both an extension and an expansion of ∆′. We

claim that VCSP(Γ′) in NP-hard. Indeed, for every instance I := (V, ϕI , u)

of VCSP(∆′), with V := {v1, . . . , vn}, we define the instance J := (V, ϕJ , u)

of VCSP(Γ′) such that

ϕJ(v1, . . . , vn) := ϕI(v1, . . . , vn) +
n∑︂
i=1

χD(vi).

Because of the terms involving χD, an assignment h : V → Q is such that

ϕΓ
′
J (h(v1), . . . , h(vn)) is smaller than +∞ if, and only if, h(vi) ∈ D for all



80 CHAPTER 5. COMPLEXITY OF PLH VALUED STRUCTURES

vi ∈ V . In this case,

ϕΓ
′
J (h(v1), . . . , h(vn)) = ϕ∆

′
I (h(v1), . . . , h(vn)).

Therefore, deciding whether there exists an assignment h : V → Q such that

ϕΓ
′
J (h(v1), . . . , h(vn)) ≤ u

is equivalent to decide whether there exists an assignment h′ : V → D such

that

ϕ∆
′

I (h′(v1), . . . , h
′(vn)) ≤ u.

Since J is computable in polynomial time from I, the NP-hardness of

VCSP(Γ′) follows from the NP-hardness of VCSP(∆′).

To prove the maximal tractability of the valued structure containing all

componentwise decreasing PLH cost function within the class of PLH valued

structures, we make use of the following result.

Theorem 5.3.4 (Cohen-Cooper-Jeavons-Krokhin, [34], Theorem 6.15). Let

D be a finite and totally ordered set. Then the valued structure containing

all componentwise decreasing cost functions over D is maximally tractable

within the class of all valued structures with domain D.

Theorem 5.3.5. The valued structure containing all componentwise de-

creasing PLH cost functions is maximally tractable within the class of PLH

valued structures.

Proof. Componentwise decreasing cost functions over Q are characterised

by a conservative fractional polymorphism (see Lemma 5.2.4) and for every

componentwise decreasing PLH valued structure Γ with a finite signature,

VCSP(Γ) can be solved in polynomial time (Corollary 5.2.3). Then the proof

follows from Lemma 5.3.3 and Theorem 5.3.4.

Theorem 5.3.5 may be shown to have a dual form that holds in the case

of componentwise increasing cost functions.

Summary and Outlook

We have shown the polynomial-time solvability of the VCSP for convex PLH

valued structures, and componentwise decreasing PLH valued structures.

We also have given a condition for the maximal tractability of a PLH valued

structure. Such maximal tractability results are of particular importance

for the more ambitious goal to classify the complexity of the VCSP for all

classes of PLH cost functions: to prove a complexity dichotomy it suffices

to identify all maximally tractable classes.



Chapter 6

The Complexity of

Submodular PLH VCSPs

Submodular functions are arguably the most important class of cost func-

tions in combinatorial optimisation and operational research. They nat-

urally appear in several scientific fields such as, for example, economics,

game theory, machine learning, social network, and computer vision (see,

e.g., [41, 74]), and guided the research on finite-domain VCSPs for some

time (see, e.g., [34, 60]). We gave the definition of submodular functions in

Section 1.5. In the present section, we prove that the VCSP for submodular

PLH valued structures is polynomial-time solvable and that submodularity

is, indeed, a condition of maximal tractability for PLH valued structures:

adding any cost function that is not submodular leads to an NP-hard VCSP.

We aim to prove the following result.

Theorem 6.0.1. Let Γ be a PLH valued structure with a finite signature.

Assume that all cost functions in Γ are submodular. Then VCSP(Γ) can be

solved in polynomial time.

To prove Theorem 6.0.1, we exhibit two different polynomial-time algo-

rithms, both relying on the results for PLH valued structures with finite

signatures presented in Chapter 3. In Section 6.1, we show that submodu-

lar valued structures have fully symmetric fractional polymorphisms of all

arities. Therefore submodular PLH valued structures with finite signatures

satisfy the hypothesis of Theorem 5.0.1, that is, the VCSP for these valued

structures can be solved in polynomial time. In Section 6.2, we interpret

our PLH cost functions in the domain Q⋆ and provide a fully combinatorial

polynomial-time algorithm solving the VCSP for the obtained Q⋆-valued

finite-domain valued structure. In Section 6.3, we discuss the differences be-

tween the two algorithms presented and, finally, in Section 6.4 we show that

the subclass of submodular PLH valued structures is maximal with respect

81
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to polynomial-time solvability within the class of PLH valued structures

with finite signatures.

6.1 The Algorithm in Q

We already observed, in Section 1.5, that a function over a totally ordered

set D is submodular if, and only if, it is improved by the binary symmetric

fractional operation ωsub : O2
D → Q≥0 such that

ωsub(g) =

⎧⎪⎪⎨⎪⎪⎩
1
2 if g = max
1
2 if g = min

0 otherwise.

In fact, there is another equivalent characterisation of submodularity based

on fractional polymorphisms. For every k ≥ 2 and every i ∈ {1, . . . , k} we

define s
(k)
i : Dk → D to be the operation returning the i-th smallest of its

arguments with respect to the total order on D. Observe that for k = 2, we

have s
(2)
1 = min and s

(2)
2 = max, and ω

(2)
sub is the fractional operation ωsub

characterising submodular functions. We define, for every k ≥ 2, the k-ary

fractional operation ω
(k)
sub : O(k)

D → Q≥0 having support

Supp(ω
(k)
sub) = {s(k)i | 1 ≤ i ≤ k}

by setting

ω
(k)
sub(g) :=

{︄
1
k if g ∈ Supp(ω

(k)
sub)

0 otherwise.

The operations s
(k)
i (x1, . . . , xk) are totally symmetric for all i ∈ {1, . . . , k}

and all k ≥ 2; therefore, the fractional operations ω
(k)
sub are totally symmetric

for all k ≥ 2.

Proposition 6.1.1. Let D be a totally ordered set and f : Dn → Q ∪ {+∞}
be a submodular function. Then the fractional operation ω

(k)
sub improves the

function f , for all k ≥ 2.

Proof. Clearly, ∑︂
g∈Supp(ω(k)

sub)

ω
(k)
sub(g) = 1.

We want to prove that for all k ≥ 2 and for all x1, . . . , xk ∈ Dn it holds that

1

k

k∑︂
i=1

f(s
(k)
i (x1, . . . , xk)) ≤ 1

k

(︂
f(x1) + · · · + f(xk)

)︂
. (6.1)
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By using the submodularity of f we can write

f(x1) + · · · + f(xk) =
1

k − 1

∑︂
1≤i<j≤k

(︁
f(xi) + f(xj)

)︁
≥ 1

k − 1

∑︂
1≤i<j≤k

(︁
f(min(xi, xj)) + f(max(xi, xj))

)︁
=

∑︂
1≤i<j≤k

f(min(xi1, x
j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))

k − 1

≥
k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n, . . . , x

k
n)
)︂
, (6.2)

from which Inequality (6.1) follows. We prove Inequality (6.2) by induc-

tion on the arity n of f . Observe that for every coordinate 1 ≤ l ≤ n, the

following equality between multisets holds:{︂
min(xil, x

j
l ) | 1 ≤ i < j ≤ k

}︂
∪
{︂

max(xil, x
j
l ) | 1 ≤ i < j ≤ k

}︂
=
{︂
s
(k)
1 (x1l , . . . , x

k
l )⏞ ⏟⏟ ⏞

k−1 occurrences

, s
(k)
2 (x1l , . . . , x

k
l )⏞ ⏟⏟ ⏞

k−1 occurrences

, . . . , s
(k)
k (x1l , . . . , x

k
l )⏞ ⏟⏟ ⏞

k−1 occurrences

}︂
. (6.3)

If f has arity n = 1, then Inequality (6.2) immediately follows from Equality

(6.3). Let n ≥ 2, assume that Inequality (6.2) is true for submodular func-

tions of arity at most n− 1, and let us prove it for submodular functions of

arity n. From Equality (6.3) and the inductive hypothesis, it follows that

there exist (k − 1)-many permutations π1, . . . , πk−1 ∈ Sk such that∑︂
1≤i<j≤k

(︂
f(min(xi1, x

j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))
)︂

≥
k−1∑︂
p=1

k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)︂
.

(6.4)

We claim that for every p ∈ {1, . . . , k − 1} it holds that

k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)︂

≥
k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)︂
. (6.5)

To prove Inequality (6.5), let j := max {i ∈ {1, . . . , k} | πp(i) ̸= i}. Then
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there exists l ∈ {1, . . . , j − 1} such that πp(l) = j. By the submodularity of

f we have that

f
(︂
s
(k)
j (x11, . . . , x

k
1), . . . , s

(k)
j (x1n−1, . . . , x

k
n−1), s

(k)
πp(j)

(x1n, . . . , x
k
n)
)︂

+ f
(︂
s
(k)
l (x11, . . . , x

k
1), . . . , s

(k)
l (x1n−1, . . . , x

k
n−1), s

(k)
j (x1n, . . . , x

k
n)
)︂

≥ f
(︂
s
(k)
j (x11, . . . , x

k
1), . . . , s

(k)
j (x1n−1, . . . , x

k
n−1), s

(k)
j (x1n, . . . , x

k
n)
)︂

+ f
(︂
s
(k)
l (x11, . . . , x

k
1), . . . , s

(k)
l (x1n−1, . . . , x

k
n−1), s

(k)
πp(j)

(x1n, . . . , x
k
n)
)︂
.

After this step

k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)︂

≥
k∑︂
i=j

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)︂

+

j−1∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
π′
p(i)

(x1n, . . . , x
k
n)
)︂

where π′p ∈ Sk is the permutation defined by

π′p(i) =

⎧⎪⎪⎨⎪⎪⎩
πp(j) if i = l

j if i = j

πp(i) otherwise.

By reiterating the described procedure at most j − 1 ≤ k times for every

p ∈ {1, . . . , k − 1}, we get the claim. By Inequality (6.5), we can rewrite

Inequality (6.4) as follows∑︂
1≤i<j≤k

(︂
f(min(xi1, x

j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))
)︂

≥
k−1∑︂
p=1

k∑︂
i=1

f
(︂
s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)︂

=

k−1∑︂
p=1

k∑︂
i=1

f
(︂
s
(k)
i (x1, . . . , xk)

)︂
= (k − 1)

k∑︂
i=1

f
(︂
s
(k)
i (x1, . . . , xk)

)︂
,

that is, Inequality (6.2) holds and this concludes the proof.

The next corollary immediately follows from the total symmetry of frac-

tional operations ω
(k)
sub and from Proposition 6.1.1.
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Corollary 6.1.2. Let Γ be a submodular PL (or PLH) valued structure.

Then Γ has totally symmetric fractional polymorphisms of all arities.

Let us recall from Chapter 5 the following result for PLH valued struc-

tures with finite signatures having fully symmetric fractional polymorphism

of all arities.

Corollary 5.0.1. Let Γ be a PLH valued structure with a finite signature

that is improved by fully symmetric fractional operations of all arities. Then

VCSP(Γ) can be solved in polynomial time.

If Γ is a submodular PLH valued structure with a finite signature then

by Corollary 6.1.2 we can solve the VCSP for the computed sample (Section

3.2) using the BLP, after running an efficient sampling algorithm for PLH

valued structures (see Section 3.2.2).

Proof of Corollary 6.0.1. The statement is an immediate consequence of

Corollary 5.0.1, since every submodular PLH valued structure has fully sym-

metric fractional polymorphisms of all arities (Corollary 6.1.2) and every

totally symmetric fractional operation is fully symmetric.

6.2 The Algorithm in Q⋆

Another way to show the polynomial-time solvability of submodular PLH

valued structures with finite signatures is by using Lemma 3.2.7 and inter-

preting the function symbols in the signature in Q⋆.

We already observed that for the polynomial-time solvability of VCSP(Γ)

we need, in particular, CSP(Feas(Γ)) be polynomial-time solvable. If Γ is

a submodular PLH valued structure, then Feas(Γ) is a semilinear relational

structure whose relations are

• first-order definable over L, and

• preserved by the polymorphisms max and min.

Therefore, the tractability of CSP(Feas(Γ)), for a submodular PLH valued

structure Γ with a finite signature, follows from Theorem 3.1.10 that we

restate hereunder.

Theorem 3.1.10. Let A be a structure having finite relational signature τ .

Assume that for every R ∈ τ , the interpretation RA is PLH and preserved

by max. Then CSP(A) is polynomial-time solvable.

As we already discussed in Section 1.8, one can extend Definition 1.1.3

considering VCSPs whose cost functions take values in any totally ordered
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ring containing Q, and in particular in Q⋆. We need to establish the basics

of such extended VCSPs. More precisely, we need to prove Corollary 6.2.3

hereafter, that builds on a fully combinatorial algorithm (for definition see

Section 1.8) due to Iwata and Orlin [56] (Theorem 6.2.2).

Definition 6.2.1. A collection C of subsets of a given set Q is said to be a

ring family if it is closed under union and intersection.

Equivalently, a ring family is a distributive sublattice of P(Q) with re-

spect to union and intersection, notably every distributive lattice can be

represented in this form (Birkhoff’s representation theorem). Computation-

ally, we represent a ring family following Section 6 of [92]. Namely, fixed

a representation for the elements of Q, the ring family C is represented by

the smallest set M ⊆ Q in C, and an oracle that given an element of v ∈ Q

returns the smallest Mv ⊂ Q in C such that v ∈Mv. The construction in

Section 6 of [92] proves that any algorithm capable of minimising submodu-

lar set functions can be used to minimise submodular set functions defined

on a ring family represented in this way. Observe that this construction is

fully combinatorial.

Theorem 6.2.2 (Iwata-Orlin [56] + Schrijver [92]). There exists a fully

combinatorial polynomial-time algorithm over Q that

• taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q,

represented as in [92, Section 6] (namely as above),

• having access to an oracle that computes a submodular set-function

ψ : C → Q,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded

by a polynomial p(n) in the size n of the domain.

Corollary 6.2.3. Let R be a totally ordered commutative ring with unit

(for instance Q⋆). Then, there exists a fully combinatorial polynomial-time

algorithm over R that

• taking as input a finite set Q = {1, . . . , n} and a ring family, C ⊆ 2Q,

represented as in Theorem 6.2.2,

• having access to an oracle that computes a submodular set-function

ψ : C → R,

computes an element S ∈ C such that ψ(S) = minA∈C ψ(A) in time bounded

by a polynomial p(n) in the size n of the domain.
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Proof. Theorem 6.2.2 provides a fully combinatorial algorithm to minimise

submodular functions that, over Q, runs in polynomial time and computes

a correct result. We claim that any such algorithm must be correct and run

in polynomial time over R as well. To show this, we prove the following:

1. The algorithm terminates in time p(n), where p(n) is as in Theorem

6.2.2.

2. The output of the algorithm coincides with the minimum of ψ.

Let Rψ denote the subgroup of the additive group (R,+) generated by ψ(C),

and let Eψ := {g1, . . . , gm} be a set of free generators of Rψ. For any tu-

ple r = (r1, . . . , rm) ∈ Qm, we define a group homomorphism hr : Rψ → Q,

by hr(gi) = ri. Let RN := N · (Eψ ∪ {0} ∪ −Eψ) be the subset of R con-

sisting of the elements having the form ±x1 ± x2 . . .± xk, with k ≤ N and

x1, x2, . . . , xk ∈ Eψ.

In general, the group homomorphisms hr are not order-preserving. We

claim that for all N , there exists r ∈ Qm such that hr|RN
is order-preserving.

Assume that no such tuple r exists. The inequalities denoting that hr|RN
is

order-preserving are expressed by a finite linear program P in the variables

r1, . . . , rm. By the assumption and Farkas’ lemma there is a linear combina-

tion (with coefficients in Z) of the inequalities of P which is contradictory.

Therefore, P is contradictory in any ordered ring, and, in particular, in R.

However, ri = gi, for all i ∈ {1, . . . ,m}, is a valid solution of P in R.

Fix N := N̂ · 2p(n), where N̂ is such that ψ(S) ∈ RN̂ for all S ∈ C. For

this N , let r be a tuple satisfying the claim. We run two parallel instances

of the algorithm, one over R with input ψ, and the other in Q with input

hr ◦ ψ. We can prove that the two runs are exactly parallel for at least p(n)

steps; therefore, since the second run stops within these p(n) steps, also the

first one must do so. Formally, we prove, in a register machine model, that,

at each step i ≤ p(n), if a register contains the value g in the first run, it

must contain the value hr(g) in the second. This is easily established proving

by induction on i that a value computed at step i must be in RN̂ ·2i . Point 1

is thus established.

For point 2, let minR and minQ be the output of the algorithm over (ψ,R)

and (hr ◦ ψ,Q), respectively. The induction above shows, in particular,

that minQ = hr(minR). We know that hr(minR) = minQ = hr ◦ ψ(S0) for

some S0 and hr ◦ ψ(S) ≥ minQ = hr(minR) for each element S of C. By our

choice of N , the corresponding relations, minR = ψ(S0) and ψ(S) ≥ minR
for each element S of C, must hold in R.

The following lemma is essentially contained in [34, Theorem 6.7], except

that we replace the set of values by an arbitrary totally ordered commutative
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ring with unit R. To state the lemma properly, we need to observe that,

given a submodular function f defined on Qd, where Q = {1, . . . , n}, we can

associate to it the following ring family Cf ⊆ P(Q× {1, . . . , d}). For every

x = (x1, . . . , xd) ∈ Qd define

Cx := {(q, i) | q ∈ Q, q ≤ xi} ⊆ Q× {1, . . . , d}

then we let Cf be the union of Cx for all x such that f(x) < +∞.

Lemma 6.2.4. Let R ⊇ Q be a totally ordered ring. There exists a fully

combinatorial polynomial-time algorithm over R that

• taking as input a finite set Q = {1, . . . , n} and an integer d,

• having access to an oracle computing a partial submodular f : Qd → R,

• given the representation of Cf as in Theorem 6.2.2,

computes an x ∈ Qd such that f(x) is minimal, in time polynomial in n

and d.

Proof. The problem reduces to minimising a submodular set-function on the

ring family Cf , for the details see the proof of Theorem 6.7 in [34].

Proof of Theorem 6.0.1. Similarly to the proof of Theorem 3.1.10, we use a

sampling technique. Namely, given an instance I of VCSP(Γ), we employ

Lemma 3.2.7 to fix a valued finite substructure ΓI of Γ, whose domain’s

cardinality is polynomial in |VI |, having a subset Q⋆
I of Q⋆

−1,4 as domain,

such that the variables VI of I have an assignment having cost at most uI
in Q if, and only if, they have one in Q⋆

I . Once we have ΓI , we conclude by

Lemma 6.2.4.

The valued structure ΓI obviously needs to have the same signature τ

as Γ. For each function symbol f ∈ τ we consider a τ0-formula ϕf defining fΓ

and we let fΓI be the function defined in Q⋆ by the same formula. By

Proposition 3.1.4, the choice of ϕf is immaterial. Remains to define the

domain Q⋆
I ⊂ Q⋆.

By quantifier-elimination (Theorem 1.2.8), any piecewise linear homoge-

neous cost function f : Qn → Q∪{+∞} can be written as

f(x1, . . . , xar(f)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tf,1 if χf,1

· · ·
tf,mf

if χf,mf

+∞ otherwise

where tf,1, . . . , tf,mf
are τ0-terms, χf,1, . . . , χf,mf

are conjunctions of atomic

τ0-formulas with variables from {x1, . . . , xar(f)}, and χf,1, . . . , χf,mf
define
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disjoint subsets of Qn. We fix such a representation for each of the cost

functions in Γ, and we collect all the atomic formulas appearing in every

one of the conjunctions χf,i, for f ∈ Γ and 1 ≤ i ≤ mf , into the set Φ.

Clearly, Φ is finite and depends only on the fixed valued structure Γ. Finally,

Q⋆
I := DΦ,|VI |, as defined in Lemma 3.2.7.

The size of Q⋆
I is clearly polynomial by simple inspection of the definition.

Its representation has polynomial size as well if the numbers are represented

in binary, and, with this representation, the evaluation of fΓI for f ∈ τ takes

polynomial time.

Given an assignment α : VI → Q⋆
I of value ≤ uI we have, a fortiori,

an assignment : VI → Q⋆ of value ≤ uI , hence, by the usual complete-

ness of the first-order theory of ordered Q-vector spaces, there is an as-

signment : VI → Q with the same property.

Finally, let β : VI → Q be an assignment having value ≤ uI . We need to

find an assignment β′ : VI → Q⋆
I with value ≤ uI . Let

ϕI =

m∑︂
i=1

fi(x
i
1, . . . , x

i
ar(fi)

)

(cf. Definition 1.1.3). For each i ∈ {1, . . . ,m} select the formula χi among

χfi,1, . . . , χfi,mfi
that is satisfied by the assignment β. Clearly, the conjunc-

tion of atomic τ0-formulas χ :=
⋀︁m
i=1 χi is satisfiable. Moreover, ϕI restricted

to the subset of (Q⋆)|VI | where χ holds is obviously linear. Then we can ap-

ply Lemma 3.2.7, and we get an assignment β′ whose values are in Dχ,|VI |
(where, by a slight abuse of notation, we wrote χ for the set of conjuncts of

χ). We conclude observing that Dχ,|VI | ⊆ DΦ,|VI | = Q⋆
I .

It remains to check that Lemma 6.2.4 applies to our situation. Clearly

R = Q⋆, the function f is the objective function described by ϕI , and we

let n = |Q⋆
I | so that we identify Q with an enumeration of Q⋆

I in increasing

order (which can be computed in polynomial time). The oracle computing f

is straightforward to implement since sums and comparisons in Q⋆ merely

reduce to the corresponding componentwise operations on the coefficients.

The representation of the ring family Cf requires a moment of attention.

To construct the oracle, as well as to find the minimal element M , we need

an algorithm that, given a variable x ∈ VI and a value q ∈ Q⋆
I , finds the

componentwise minimal feasible assignment αx : VI → Q⋆
I that gives to x a

value ≥ q (which is easily seen to exist by observing that the set of feasible

assignments is preserved by the operation min). This algorithm is easy to

construct, observing that the associate feasibility problem is a min-closed

CSP, i.e., a CSP for a relational structure that is invariant under the oper-

ation min. We describe how to find M ; the procedure for Mv is essentially

the same.
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Suppose that for each variable x ∈ VI we can find the smallest ele-

ment β(x) ∈ Q⋆
I such that there is a feasible assignment γx : VI → Q⋆

I such

that γx(x) = β(x), then, by the min-closure, β = minx∈VI γx is the mini-

mal assignment. To find β(x) it is sufficient to solve the feasibility prob-

lem, using Theorem 3.1.10, adding a constraint x ≥ k for increasing values

of k ∈ Q⋆
I .

6.3 Q versus Q⋆

Our special focus on submodularity is justified not only by the important role

of submodularity in many scientific fields and, especially, in optimisation,

but also by the fact that the class of submodular valued structures has

been our training ground in studying the VCSP for PLH valued structures.

Indeed, even if they are used to deal with submodular PLH cost functions,

the two approaches presented in this chapter are quite generic, as much as

the results. We think that both approaches are interesting and worthy of

being presented here. While we do not have a preferred approach and we do

not know which one of the two polynomial-time algorithms is more efficient,

we give the reader some argument to compare the mathematical features of

the two algorithms.

Both approaches rely on Lemma 3.2.7. The first approach (Section 6.1)

consists in performing a polynomial-time many-one reduction that maps our

VCSP to a (Q-valued) finite-domain one and then using an approach known

for (Q-valued) finite-domain VCSPs. The second approach (Section 6.2)

consists in interpreting our PLH functions over the domain Q⋆, performing a

polynomial-time many-one reduction that maps our VCSP to a (Q⋆-valued)

finite-domain one, and then transferring the known approaches for Q to the

new domain.

By using the algorithm in Q, we dispense with non-Archimedean ex-

tensions entirely, and we need not the existence of a fully combinatorial

polynomial-time algorithm (nor a strongly polynomial-time one) that solves

the finite-domain VCSP computed by our polynomial-time reduction. On

the other hand, even if limiting our horizon to Q⋆
−1,4 ≃ Q6 might seem a sim-

plification, in practice it makes things more complicated. For example, on

several occasions in Section 6.2, we used the fact that Q⋆ has a field structure

that makes proofs more direct and intuitive. Also, explicitly choosing an ϵ

small enough obfuscates the ideas in the arguments, which are converted in

an unsightly bureaucracy of inequalities. Even computationally, mapping

everything to Q is tantamount to converting arrays of small integers into

big numbers by concatenation, and therefore, it is hardly an improvement.

Furthermore, in the general case, the existence of a polynomial-time com-
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putable rational value of ϵ that works is not necessary for the algorithm in

Q⋆, even though, in the PLH case, such an ϵ exists.

6.4 The Maximal Tractability of Submodular PLH

Valued Structures

We show that submodular PLH valued structures are maximally tractable

within the class of PLH valued structures. As in the case of componentwise

decreasing (and componentwise increasing) PLH valued structures, the max-

imal tractability of submodular PLH valued structures is an application of

Lemma 5.3.3. We employ the following result for submodular finite-domain

valued structures.

Theorem 6.4.1 (Cohen-Cooper-Jeavons-Krokhin, [34], Theorem 6.7). Let

D be a finite and totally ordered set. Then the valued structure containing

all submodular cost functions over D is maximally tractable within the class

of all valued structures with domain D.

Theorem 6.4.2. The valued structure containing all submodular PLH cost

functions is maximally tractable within the class of PLH valued structures.

Proof. Submodularity is characterised by a conservative fractional polymor-

phism (see Remark 1.5.3) and for every submodular PLH valued structure

Γ with a finite signature, VCSP(Γ) can be solved in polynomial time (The-

orem 6.0.1). Therefore, the proof follows from Lemma 5.3.3 and Theorem

6.4.1.

Summary and Outlook

We have proved that the VCSP for submodular PLH cost functions is

polynomial-time solvable, by providing two algorithms. We remark that

our algorithms not only decide the feasibility problem and whether there

exists a solution of cost at most u, but can also be adapted to efficiently

compute the infimum of the costs of all solutions (which might be −∞),

and decide whether the infimum is attained. The modification is straight-

forward, observing that, for both algorithms, the finite-domain valued struc-

ture computed does not depend on the threshold u. We have also shown that

submodular PLH cost functions are maximally tractable within the class of

PLH cost functions.





Chapter 7

Expressive Power

In the present chapter, we discuss how concepts and results from the alge-

braic theory for finite-domain VCSPs (see [33, 43]) can be transferred or

extended to the infinite-domain setting.

The content of this chapter is the result of a collaboration with Friedrich

Martin Schneider (Institut für Algebra, Technische Universität Dresden).

We extend the notion of expressive power to valued structures over arbitrary

domains (Section 7.1) and discuss the relationship between the expressive

power and the set of fractional polymorphisms of the same infinite-domain

valued structure (Sections 7.2 and 7.3). More precisely, in Section 7.3, we

characterise the set of cost functions that are improved by all fractional

polymorphisms of a valued structure in terms of local expressive power. Fi-

nally, in Section 7.4, we introduce fractional polymorphisms with supports

of arbitrary cardinality.

The notion of expressive power of a valued structure Γ captures all cost

functions that can be simulated in a specific way, as explained in Section 7.1,

by cost functions from Γ.

Example 7.0.1. Let ∆ be the PL valued structure containing the only cost

function δ : Q2 → Q defined, for all (x, y) ∈ Q2, by

δ(x, y) :=

{︄
x− 1 if y ≤ 1

y if y > 1.

Although δ is not PLH, it is easy to observe that, for all (x, y) ∈ Q2, it can

be written (in polynomial time) as the sum γ1(x, y) + γ2(y) of the two cost

functions γ1, : Q2 → Q, and γ2 : Q → Q defined, respectively, by

γ1(t, u) :=

{︄
t if u ≤ 1

0 if u > 1
, and γ2(v) :=

{︄
−1 if v ≤ 1

v if v > 1
,

93
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for all t, u, v ∈ Q. It is easy to check that γ1, and γ2 are submodular and

PLH. Let Γ be the valued structure having γ1, and γ2 as only cost func-

tions. Then, every instance of VCSP(∆) can be written in polynomial time

as an instance of VCSP(Γ). Since Γ is a submodular PLH valued struc-

ture, VCSP(Γ) is polynomial-time solvable (see Chapter 6) and then so is

VCSP(∆). △

In the finite-domain case, the expressive power of a valued structure is

defined as follows.

Definition 7.0.2 ([33], Definition 2.3). Let Γ be a valued structure with a fi-

nite domain D. We say that a cost function ρ : D → Q ∪ {+∞} is expressible

in Γ if there exists an instance I of VCSP(Γ) with variables V = {v1, . . . , vn}
and objective function ϕ, and there exist a list L = {w1, . . . , wr} of variables

from V such that for every x1, . . . , xr ∈ D,

ρ(x1, . . . , xr) = min
s : V→D :

h(wi)=xi,1≤i≤r

ϕΓ(h(v1)), . . . , h(vn)).

The valued language ⟨Γ⟩ containing all cost functions with domain D that

are expressible in Γ is called the expressive power of Γ.

Example 7.0.3 ([33], Example 2.3). Let D be a finite set. Let us consider

the set containing a single variable V := {v}, the list of variables L := {v, v}
from V , and the sum f∅ of no function symbol, namely the empty objec-

tive function. Then, the binary equality cost function ρ= : D2 → {0,+∞},

defined by

ρ=(x, y) :=

{︄
0 if x = y

+∞ otherwise,

can be written as

ρ=(x, y) = min
h : V→D :

h(v)=x,h(v)=y

f∅.

Therefore, the equality cost function is expressible in any valued structure

with a finite domain. △

For any valued structure Γ with a finite domain, adding to Γ a cost func-

tion that is expressible in Γ does not change the computational complexity

of VCSP(Γ) (see [33], Theorem 2.4 ).
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7.1 The Expressive Power of Valued Structures

with Infinite Domains

We extend the notion of expressibility to valued structures with arbitrary

domains. We discuss the effect of adding to a valued structure Γ a cost func-

tion which is expressible in Γ on the computational complexity of VCSP(Γ).

Definition 7.1.1. Let Γ be a valued structure with an arbitrary domain D

and a signature τ , and let ρ : Dr → Q ∪ {+∞} be a cost function. We say

that ρ is an affine conical combination over Γ if there exist

• function symbols γ1, . . . , γm ∈ τ ,

• positive rational numbers λ1, . . . , λm, and a rational number c,

such that for every (x1, . . . , xr) ∈ D, it holds

ρ(x1, . . . , xr) =
m∑︂
j=1

λjγ
Γ
j (xj1, . . . , x

j
rj ) + c,

where xj1, . . . , x
j
rj ∈ {x1, . . . , xr}, for every j ∈ {1, . . . ,m}. We call affine

convex cone, or simply cone, of Γ, the valued structure Cone(Γ) containing

all cost functions over Q that are affine conical combinations over Γ.

Remark 7.1.2. In the classical constraint satisfaction framework (over ar-

bitrary domains), the notion of affine conical combination corresponds to

expressibility using conjunctions (positive formulas).

Example 7.1.3. If Γ is a PL valued structure, then Cone(Γ) is a PL valued

structure. If Γ is a PLH valued structure, then Cone(Γ) is a PL valued

structure. △

The next lemma says that solving VCSP(Cone(Γ)) is not harder than

solving VCSP(Γ).

Lemma 7.1.4. Let Γ be a valued structure with arbitrary domain D and a

finite signature, and let ∆ be a valued finite reduct of Cone(Γ). Then there

exists a polynomial-time many-one reduction from VCSP(∆) to VCSP(Γ).

Proof. We claim that, for every set of variables V := {v1, . . . , vn} and every

finite sum ϕ of function symbols from ∆ with at most n free variables, there

exists a finite sum ϕ′ of function symbols from Γ such that for every u ∈ Q
there exists u′ ∈ Q such that the following holds:

there exists h : V → D with cost ϕ∆(h(v1), . . . , h(vn) ≤ u

if, and only if, there exists (7.1)

h′ : V ′ → D with cost ϕ′Γ(h′(v1), . . . , h
′(vn)) ≤ u′.
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Let σ be the (finite) signature of Γ and let τ ⊇ σ be the (finite) signature of

∆. Let I := (V, ϕ, u) be an instance of VCSP(∆) such that V := {v1, . . . , vn}
and

ϕ(v1, . . . , vn) :=
m∑︂
j=1

γ̂j(v
j
1, . . . , v

j
rj )

where γ̂j ∈ τ and vji ∈ V , for 1 ≤ j ≤ m and for 1 ≤ i ≤ rj . By the definition

of affine conical combination, for every j ∈ {1, . . . ,m} there exist

• function symbols γj,1, . . . , γj,mj ∈ σ,

• numerical coefficients λj,1, . . . , λj,mj ∈ Q≥0, and c ∈ Q

such that for every h : V → D

γ̂∆j (h(vj1), . . . , h(vjrj )) =

mj∑︂
i=1

λj,iγ
Γ
j,i(h(vj,i1 ), . . . , h(vj,irj,i)) + cj ,

where vj,il ∈ V , for 1 ≤ l ≤ rj,i. We define an instance I ′ := (V, ϕ′, u′) of

VCSP(Γ) such that Condition 7.1 holds, I ′ is computable in polynomial

time in the size of I := (V, ϕ, u), and V and ϕ′ do not depend on u. For

every 1 ≤ j ≤ m and for every 1 ≤ i ≤ mj there exist positive integers αj,i
and βj,i such that

λj,i =
αj,i
βj,i

and gcd(αj , βj) = 1.

For 1 ≤ j ≤ m and for 1 ≤ i ≤ mj , let us define

lj := lcm(βj,1, . . . , βj,mj ),

l := lcm(l1, . . . , lm), and

µj,i := lλj,i.

We define

ϕ′(v1, . . . , vn) :=
m∑︂
j=1

mj∑︂
i=1

µj,iγj,i(v
j,i
1 , . . . , v

j,i
rj,i).

Let u′ := l
(︂
u−

∑︁m
j=1 cj

)︂
. Therefore, for every h : V → D it holds that

ϕ∆(h(v1), . . . , h(vr)) ≤ u

if, and only if,

m∑︂
j=1

mj∑︂
i=1

µj,iγj,i(h(vj,i1 ), . . . , h(vj,irj,i)) = ϕ′
Γ
(h(v1), . . . , h(vn)) ≤ u′.
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Definition 7.1.5. Let Γ be a valued structure with arbitrary domain D

and let µ : Dr → Q ∪ {+∞} be a cost function. We say that µ is expressible

in Γ if there exist

• a set of variables V := {v1, . . . , vn},

• a list L := {w1, . . . , wr} of variables from V , and

• an n-ary cost function ρ that is an affine conical combination over Γ,

such that for every (x1, . . . , xr) ∈ D,

µ(x1, . . . , xr) = inf
h : V→D :

h(wi)=xi,1≤i≤r

ρ(h(v1), . . . , h(vn)).

The valued language ⟨Γ⟩ containing all cost functions with domain D that

are expressible in Γ is called the expressive power of Γ.

Remark 7.1.6. From Definition 7.1.5 it follows that the equality cost func-

tion over the rationals, ρ= : Q2 → {0,+∞} is expressible in any valued struc-

ture with rational domain (see Example 7.0.3).

Remark 7.1.7. In the classical constraint satisfaction framework (over ar-

bitrary domains), the notion of expressive power corresponds to express-

ibility using conjunction and existential quantification (primitive positive

formulas). For this reason, the relations that are expressible in a relational

structure A are also called pp-definable in A.

Clearly, we have that Γ ⊆ Cone(Γ) ⊆ ⟨Γ⟩. We would like to know whether,

as in the case of Cone(Γ), the problem VCSP(⟨Γ⟩) can be (polynomial-time

many-one) reduced to VCSP(Γ).

Let Γ be a valued structure with signature τ . The strict valued con-

straint satisfaction problem for Γ, denoted by VCSPs(Γ), is the following

computational problem.

Definition 7.1.8. Let Γ be a valued structure. An instance I of VCSPs(Γ)

consists of

• a finite set of variables VI ,

• an expression ϕI of the form

m∑︂
i=1

fi(x
i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and
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• a value uI ∈ Q.

The task is to decide whether there exists an assignment α : VI → dom(Γ)

whose cost, defined as

m∑︂
i=1

fΓi (α(xi1), . . . , α(xiar(fi)))

is finite, and if so, whether there is one whose cost is strictly smaller than

uI .

Remark 7.1.9. Observe that for a valued structure Γ with a finite do-

main, the problem VCSP(Γ) is polynomial-time many-one equivalent to

VCSPs(Γ).

Remark 7.1.10. It is easy to show, with a proof similar to the proof of

Lemma 7.1.4, that, for every valued structure Γ, the problem VCSPs(Cone(Γ))

is polynomial-time many-one reducible to VCSPs(Γ).

Lemma 7.1.11. Let Γ be a valued structure with a finite signature, and

let ∆ be a valued finite reduct of ⟨Γ⟩. Then there exists a polynomial-time

many-one reduction from VCSPs(∆) to VCSPs(Θ), for some valued finite

reduct Θ of Cone(Γ).

Proof. Let τ be the signature of ∆ and let σ ⊆ τ be the signature of Cone(Γ).

By the definition of expressive power (Definition 7.1.5), for every set of

variables V := {x1, . . . , xr} and every finite sum ϕ of terms over τ there

exist a polynomial-time computable set of variables V ′ := {v1, . . . , vn}, a

list L := {w1, . . . , wr} of variables from V ′, and a finite sum ϕ′ of terms over

σ such that for every u ∈ Q there exists u′ ∈ Q such that

there exists h : V → D with cost ϕ∆(h(x1), . . . , h(xr)) < u

if, and only if, there exists h′ : V ′ → D such that (7.2)

h′(wi) = h(xi), 1 ≤ i ≤ r with cost ϕ′Cone(Γ)(h′(v1), . . . , h(vn)) < u′.

Let I be an instance of VCSPs(∆) such that V := {x1, . . . , xr} and

ϕ(x1, . . . , xr) :=
m∑︂
j=1

γ̂j(x
j
1, . . . , x

j
rj )

where γ̃j ∈ τ and vji ∈ V , for 1 ≤ j ≤ m and for 1 ≤ i ≤ rj . By the definition

of expressive power, for every j ∈ {1, . . . ,m} there exist

• a set of new variables Wj := {vjrj+1, . . . , v
j
nj} such that Wj ∩ V = ∅ and

Wj ∩Wj′ = ∅ for every j′ ̸= j, 1 ≤ j′ ≤ m (it may be that Wj = ∅),
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• an nj-ary function symbol ρj ∈ σ with ρ
Cone(Γ)
j an affine conic combi-

nation over Γ,

such that for every h : V → D

γ̂∆j (h(xj1), . . . , h(xjrj )) = inf
h′ : V ∪Wj→D :

h′|V =h

ρ
Cone(Γ)
j (h′(vj1), . . . , h

′(vjnj
)),

where vjl ∈ V ∪Wj , for 1 ≤ l ≤ nj . We define an instance I ′ := (V ′, ϕ′, u′)

of VCSPs(Cone(Γ)) such that Condition 7.2 holds, I ′ is computable in poly-

nomial time in the size of I := (V, ϕ, u), V ′ and ϕ′ do not depend on u. Let

us set V ′ := V ∪
⋃︁m
j=1Wj = {v1, . . . , vn}. We define

ϕ′(v1, . . . , vn) :=
m∑︂
j=1

ρ
Cone(Γ)
j (vj1, . . . , v

j
nj

),

and let L := {x1, . . . , xr} be an enumeration of the variables in V . Let

u′ := u. Observe that for every h : V → D it holds that

ϕ∆(h(x1), . . . , h(xr)) < u.

Observe that, since the sets of variables Wj are mutually disjoint,

m∑︂
j=1

inf
h′ : V ∪Wj→D :

h′|V =h

ρ
Cone(Γ)
j (h′(vj1), . . . , h′(vjnj

))

= inf
h′ : V ′→D :

h′(wi)=h(xi),1≤i≤r

ϕ′
Cone(Γ)

(h′(v1), . . . , h
′(vn)).

Let us assume that there exists an assignment h⋆ : V ′ → D such that

ϕ′Cone(Γ)(h⋆(v1), . . . , h
⋆(vn)) < u,

then it follows immediately that

inf
h′ : V ′→D :

h′(wi)=h
⋆(xi),1≤i≤r

ϕ′Cone(Γ)(h′(v1), . . . , h
′(vn)) < u,

and, consequently, ϕ∆(h⋆(x1), . . . , h
⋆(xr)) < u.

Vice versa, let us assume that there exists an assignment h : V → D such

that ϕ∆(h(x1), . . . , h(xn)) < u, and let

ε := u′ − inf
h′ : V ′→D :

h′(wi)=h(xi),1≤i≤r

ϕ′Cone(Γ)(h′(v1), . . . , h
′(vn)),
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then, by a property of the infimum, there exists h⋆ : V ′ → D such that

h⋆(wi) = h(xi) for 1 ≤ i ≤ r, and

ϕ′∆(h⋆(v1), . . . , h
⋆(vn)) < inf

h′ : V ′→D :
h′(vi)=h(xi),1≤i≤r

ϕ′∆(h′(v1), . . . , h
′(vn)) + ε = u′.

Proposition 7.1.12. Let Γ be a valued structure with an arbitrary domain

D and a finite signature. Then for every valued finite reduct ∆ of ⟨Γ⟩ there
exists a polynomial-time reduction from VCSPs(∆) to VCSPs(Γ).

Proof. To prove Proposition 7.1.12, it is enough to compose the polynomial-

time reductions provided in Remark 7.1.10 and in Lemma 7.1.11.

We apply Proposition 7.1.12 to find a family of PL valued structures

having an NP-hard VCSPs.

Corollary 7.1.13. Let Γ be a PL valued structure with a finite signature.

If there exist intervals (a, b), (c, d) ⊂ Q (where a and d, respectively, can be

the symbol −∞ and +∞, respectively), and α, β ∈ Q, with α < β, such that

the cost function fα,β(a,b),(c,d) : D2 → Q ∪ {+∞} defined by

f(x, y)α,β(a,b),(c,d) :=

⎧⎪⎪⎨⎪⎪⎩
α if (x, y) ∈ ((a, b) × (c, d)) ∪ ((c, d) × (a, b))

β if (x, y) ∈ (a, b)2 ∪ (c, d)2

+∞ otherwise

is expressible in Γ, then VCSPs(Γ) is NP-hard.

Proof. The strict-threshold version1 of Max Cut is polynomial-time many-

one equivalent to its weak-threshold version. Therefore, it is easy to see, by

using the same proof as for Proposition 2.3.2, that VCSPs(⟨Γ⟩) is NP-hard.

Our statement then follows from Proposition 7.1.12.

7.2 Expressive Power and Fractional Polymorphisms

We now prove that every cost function that is expressible in a valued struc-

ture Γ (with an arbitrary domain) is improved by every fractional polymor-

phism of Γ.

1Given a graph (V,E) and a rational number u, the strict-threshold version of Max
Cut is the problem of deciding whether exist a subset S of V such that the number of
edges between S and its complement V \ S is strictly larger than u; the weak-threshold
version of Max Cut is the problem of deciding whether exist a subset S of V such that
the number of edges between S and its complement V \ S is at least u.
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Lemma 7.2.1. Let Γ be a valued structure with an arbitrary domain D and

values in Q ∪ {+∞} (or R ∪ {+∞}). Every fractional polymorphism of Γ

improves every cost function that is expressible in Γ, that is,

⟨Γ⟩ ⊆ Imp (fPol(Γ)) .

Proof. Let ω be a k-ary fractional polymorphism of Γ, and let us con-

sider ρ be a cost function with domain D and values in Q ∪ {+∞} (or

in R ∪ {+∞}, depending on the set of values of Γ) that is expressible in Γ.

Let x1, . . . , xk ∈ Dr, we want to prove that

∑︂
g∈Supp(ω)

ω(g)ρ(g(x1, . . . , xk)) ≤ 1

k

k∑︂
l=1

ρ(xl).

By definition of expressibility (see Definition 7.1.5), there exist a finite set

of variables V := {v1, . . . , vn}, a list L := {w1, . . . , wr} of variables from

V , finitely many cost functions γ1, . . . , γm ∈ Γ, finitely many coefficients

λ1, . . . , λm ∈ Q≥0, and a constant c ∈ Q such that, for every l ∈ {1, . . . , k}

ρ(xl) = ρ(xl1, . . . , x
l
r) = inf

h : V→D :
h(wi)=x

l
i,1≤i≤r

m∑︂
j=1

λjγj(h(vj)) + c,

where vj ∈ V ar(γj) for 1 ≤ j ≤ m.

Let ϵ > 0 be an arbitrarily small positive rational number. By definition

of infimum, for every l ∈ {1, . . . , k} there exists an assignment hlϵ : V → D

with hlϵ(wi) = xli such that

ρ(xl) ≤
m∑︂
j=1

λjγj(h
l
ϵ(v

j)) + c, and (7.3)

m∑︂
j=1

λjγj(h
l
ϵ(v

j)) + c < ρ(xl) + ϵ. (7.4)
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From Inequality (7.3) we easily get that∑︂
g∈Supp(ω)

ω(g)ρ(g(x1, . . . , xk))

≤
∑︂

g∈Supp(ω)

ω(g)

⎛⎝ m∑︂
j=1

λjγj(g(h1ϵ (v
j), . . . , hkϵ (v

j))) + c

⎞⎠ (7.5)

=
m∑︂
j=1

λj

⎛⎝ ∑︂
g∈Supp(ω)

ω(g)γj(g(h1ϵ (v
j)), . . . , hkϵ (v

j))

⎞⎠+ c.

Since ω is a fractional polymorphism of Γ, it improves γ1, . . . , γm, and there-

fore the last row of Inequality (7.5) is at most

m∑︂
j=1

λj

(︄
1

k

k∑︂
l=1

γj(h
l
ϵ(v

j))

)︄
+ c =

1

k

k∑︂
l=1

⎛⎝ m∑︂
j=1

λjγj(h
l
ϵ(v

j)) + c

⎞⎠
<

1

k

k∑︂
l=1

(ρ(xl) + ϵ),

where the last inequality is justified by the choice of hlϵ for 1 ≤ l ≤ k. Sum-

marising, we get that

∑︂
g∈Supp(ω)

ω(g)ρ(g(x1, . . . , xk)) <
1

k

k∑︂
l=1

ρ(xl) + ϵ

for every rational ϵ > 0, that is,

∑︂
g∈Supp(ω)

ω(g)ρ(g(x1, . . . , xk)) ≤ 1

k

k∑︂
l=1

ρ(xl),

as we wanted to prove.

Remark 7.2.2. Observe that the proof of Lemma 7.2.1 also works in the

case in which the fractional operations considered take real (rather than

rational) values, that is, for a valued structure Γ with an arbitrary domain D

every real-valued fractional polymorphism of Γ improves every cost function

that is expressible in Γ.

In the case of a valued structure Γ with a finite domain and a finite

signature also the converse of Lemma 7.2.1 holds, i.e., ⟨Γ⟩ = Imp (fPol(Γ))

(see [33]). In the case of a valued structure Γ with a finite domain and an

infinite signature, it holds that ⟨Γ⟩Opt = ImpR (fPolR(Γ)) (see [43]), where
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⟨Γ⟩Opt is the topological closure of the closure of ⟨Γ⟩ under the operator

Opt2; and the index in fPolR and ImpR denotes the fact that the frac-

tional operations considered take real (rather than rational) values. Since

the computational complexity of VCSP(Γ) is invariant under adding to Γ

cost functions that are expressible in Γ (and cost functions from ⟨Γ⟩Opt), the

finite-domain valued structures whose VCSP is polynomial-time solvable can

be characterised in terms of fractional polymorphisms. This characterisa-

tion extends the characterisation of the expressive power of finite-domain

relational structures, for which it holds that the set of formulas that are

pp-definable in A coincides with the set of relations that are preserved by

all polymorphisms of A (cf. [20, 46]).

We point out that in the classical constraint setting when moving to the

infinite-domain case, the characterisation of polynomial-time solvable CSPs

in terms of polymorphisms holds in particular cases (see [18]). However, it

does not hold in general for semilinear, i.e., PL, relational structures (see

[10], Section 4)3. This implies that, in general, fractional polymorphisms do

not capture the computational complexity of the feasibility problem asso-

ciated with an infinite-domain VCSP. It is natural to ask what happens if

we restrict our investigation of infinite-domain VCSPs to the finite-valued

case (that is, the case in which the cost functions take values < +∞). In

the next section, we show a local version of the converse of Lemma 7.2.1 for

finite-valued structures with arbitrary domains and arbitrary signatures.

7.3 Applying Farkas’ Lemma to Infinite-Domain

Finite-Valued Structures

In this section, we show a universal algebraic local characterisation of the ex-

pressive power of finite-valued structures with arbitrary countable domains

and arbitrary signatures.

In the remainder of the chapter, we assume that all the cost functions

are defined in some power of a countable infinite set D and take values in R
(rather than R ∪ {+∞}). We also assume that the fractional operations we

consider have values in R (rather than in Q as we assumed so far).

2Given a cost function f : Dn → Q ∪ {+∞}, the cost function
Opt(f) : Dn → Q ∪ {+∞} is defined by Opt(f)(x) = 0 if f(x) = minDn f , and
Opt(f)(x) = +∞ otherwise.

3The authors of [10] exhibit a class of semilinear relational structures (called essentially
convex ) that is not characterised by any polymorphism in Q and, nevertheless, it gives
rise to a class of maximal tractable CSPs. However, this class of semilinear relational
structures is characterised by a polymorphism in Q⋆ = {x+ yϵ | x, y ∈ Q}. Therefore,
so far, there is no counterexample to a possible characterisation of the computational
complexity of semilinear CSPs by polymorphisms in Q⋆.
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Let M be an arbitrary set. We define, as usual, the support of a func-

tion α : M → R as the set Supp(α) := {x ∈M | α(x) ̸= 0}. We consider the

vector space

R[M ] :=
{︁
α ∈ RM | Supp(α) is finite

}︁
.

For any x ∈M , let us define δx ∈ R[M ] by

δx(y) :=

{︄
1 if y = x,

0 otherwise

for y ∈M . Let us also consider R≥0[M ] := {α ∈ R[M ] | ∀x ∈M : α(x) ≥ 0}.

For any set D we define wRel
(r)
D := RDr

for every r ∈ N, and

wRelD :=
⋃︂
r∈N

wRel
(r)
D .

7.3.1 Local Expressive Power

In this section, we introduce the notion of local expressive power of a valued

structure. Informally, given a valued structure Γ with domain D, the local

expressive power of Γ consists of all cost functions whose restrictions to

any finite subset D′ of D can be simulated by using the restrictions of cost

functions from Γ to D′.

Definition 7.3.1. Let D be a set and let us consider Γ ⊆ wRelD. Let us

set

Mk(Γ) :=
{︂

(S, γ)
⃓⃓⃓
γ ∈ Γ, S ∈ Dar(γ)×k

}︂
for k ∈ N. We say that ρ : Dr → R belongs to the local expressive power

of Γ and write ρ ∈ ℓExpr(Γ) if, for every ϵ > 0 and every k ∈ N, every

x1, . . . , xk ∈ Dr, and every finite subset F ⊆ O(k)
D there exist λ ∈ R≥0[Mk(Γ)]

and c ∈ R such that, for each i ∈ {1, . . . , k},⃓⃓⃓⃓
⃓⃓ρ(xi) −

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ
(︂
e
(k)
i (S)

)︂
+ c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ (7.6)

and, for each f ∈ F ,

ρ(f(x1, . . . , xk)) ≤
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c+ ϵ, (7.7)

where e
(k)
i and f are applied to the matrices S componentwise, i.e., to their

rows.

Observe that for every Γ ⊆ wRelD the local expressive power ℓExpr(Γ)



7.3. AN APPLICATION OF FARKAS’ LEMMA 105

is a topologically closed subseteq of wRelD.

Proposition 7.3.2. Let D be a set and let us consider Γ ⊆ wRelD. Then

⟨Γ⟩ ⊆ ℓExpr(Γ). Where ⟨Γ⟩ denotes the topological closure of ⟨Γ⟩.

Proof. Let us consider a cost function ρ : Dr → Q such that ρ ∈ ⟨Γ⟩. By the

definition of expressive power (Definition 7.1.5) there exist

• a set of variables V := {v1, . . . , vn},

• a list L := {w1, . . . , wr} of variables from V ,

• cost function γ1, . . . , γm from Γ,

• positive rational numbers λ1, . . . , λm, and a rational number c,

such that for every (x1, . . . , xr) ∈ D it holds

ρ(x1, . . . , xr) = inf
h : V→D :

h(wl)=xl,1≤l≤r

m∑︂
j=1

λjγ
γ
j (vj) + c,

where vj ∈ V for 1 ≤ j ≤ m. Let us fix ϵ > 0, a positive integer k, and

x1, . . . , xk ∈ Dr. From the definition of infimum, it follows that for every

i ∈ {1, . . . , k} it holds that

1. for every s : V → D with s(wl) = xil for 1 ≤ l ≤ r

ρ(xi) ≤
m∑︂
j=1

λjγj(s(v
j)) + c;

2. there exists si : V → D with si(wl) = xil for 1 ≤ l ≤ r such that⃓⃓⃓⃓
⃓⃓ρ(xi) −

⎛⎝ m∑︂
j=1

λjγj(s
i(vj)) + c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ.

For every j ∈ {1, . . . ,m}, let Sj be the matrix from Dar(γj)×k with columns

s1(vj), . . . , sk(vj). For every f ∈ O(k)
D , let s : V → D be the assignment de-

fined by s(v) := f(s1(v), . . . , sk(v)), for all v ∈ V. Observe that,

(s(w1), . . . , s(wr)) = f

⎛⎜⎝
⎛⎜⎝s

1(w1) . . . sk(w1)
...

...

s1(wr) . . . sk(wr)

⎞⎟⎠
⎞⎟⎠ = f(x1, . . . , xk),
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and for every j ∈ {1, . . . ,m}

s(vj) := (s(vj1), . . . , s(vjar(γj))) = f

⎛⎜⎜⎝
⎛⎜⎜⎝

s1(vj1) . . . sk(vj1)
...

...

s1(vjar(γj)) . . . sk(vjar(γj))

⎞⎟⎟⎠
⎞⎟⎟⎠ = f(Sj).

Therefore, by Condition 1 we obtain ρ(f(Sρ)) ≤
∑︁m

j=1 λjγj(f(Sj)) + c. Let

λ ∈ R≥0[Mk(Γ)] be such that

λ(S, γ) :=

{︄
λj if (S, γ) = (Sj , γj)

0 otherwise.

With this notation we can rewrite Conditions 1 and 2 as follows.

1. For every f ∈ O(k)
D ,

ρ(f(x1, . . . , xk)) ≤
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c;

2. for every e
(k)
i ∈ J (k)

D ,⃓⃓⃓⃓
⃓⃓ρ(e

(k)
i (x1, . . . , xk)) −

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(e
(k)
i (S)) + c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ.

Therefore, ρ ∈ ℓExpr(Γ) and ⟨Γ⟩ ⊆ ℓExpr(Γ). Since ℓExpr(Γ) is topologi-

cally closed, ⟨Γ⟩ ⊆ ℓExpr(Γ).

We now show that for valued structures with finite domains, the local

expressive power coincides with the topological closure of the expressive

power.

Proposition 7.3.3. Let D be a finite set. Let Γ ⊆ wRelD and ρ : Dr → Q.

Then ρ ∈ ℓExpr(Γ) if, and only if, ρ ∈ ⟨Γ⟩, where ⟨Γ⟩ is the topological clo-

sure of ⟨Γ⟩.

Proof. We know that ⟨Γ⟩ ⊆ ℓExpr(Γ) (Proposition 7.3.2). Let us assume

then that ρ ∈ ℓExpr(Γ). We claim that for every ϵ > 0 there exists ρ̃ ∈ ⟨Γ⟩
such that |ρ(x) − ρ̃(x)| < ϵ for every x ∈ Dr, that is, ρ ∈ ⟨Γ⟩.

Let k := |D|r and let x1, . . . , xk be an enumeration of all tuples from

Dr. By the definition of local expressive power there exist λ ∈ R≥0 [Mk(Γ)],

and c ∈ R such that the Conditions (7.6) and (7.7) of Definition 7.3.1 hold

for F = O(k)
D . Since λ ∈ R≥0 [Mk(Γ)] and Γ has finite domain and finite

signature, by definition there exist cost functions γ1, . . . , γm ∈ Γ (not nec-

essarily pairwise distinct), and matrices S1, . . . , Sm ∈ Dk×ar(γj) such that
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Supp(λ) = {(γj , Sj) | 1 ≤ j ≤ m}. Let us set λj := λ(γj , Sj) for 1 ≤ j ≤ m,

and let Sρ ∈ Dr×k be the matrix with columns x1, . . . , xk. Then the follow-

ing two conditions hold

• for all e
(k)
i ∈ J (k)

D ,⃓⃓⃓⃓
⃓⃓ρ(e

(k)
i (Sρ)) −

⎛⎝ m∑︂
j=1

λjγj(e
(k)
i (Sj)) + c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ, (7.8)

• for all f ∈ O(k)
D ,

ρ(f(Sρ)) −

⎛⎝ m∑︂
j=1

λjγj(f(Sj)) + c

⎞⎠ ≤ ϵ. (7.9)

Let us define the cost function ρ̃ : Dr → R such that for every i ∈ {1, . . . , k},

let

ρ̃(xi) := min
f : Dk→D :
f(Sρ)=xi

m∑︂
j=1

λjγj(f(Sj)) + c.

The cost function ρ̃ is well defined since for every x = (x1, . . . , xr) ∈ Dr there

exists an index i ∈ {1, . . . , k} such that (x1, . . . , xr) = (xi1, . . . , x
i
r) = xi. Ob-

serve that ρ̃ ∈ ⟨Γ⟩. To see this, let us associate the rows of Sρ with fresh

variables {v1, . . . , vr}, and let us associate every row of every Sj with a

variable vjl , for 1 ≤ l ≤ ar(γj). Let V be the set of variables defined as

V ={v1, . . . , vr, vr+1, . . . , vn}

:={v1, . . . , vr} ∪ {vjl | 1 ≤ j ≤ m, 1 ≤ l ≤ ar(γj)},

where two variables of V are the same variable whenever they are associ-

ated with two rows that are equal as tuples of Dk. Then every assignment

s : V → D corresponds to a function f : Dk → D, and therefore, it holds that

for every x = (x1 . . . , xr) ∈ Dr

ρ(x) = min
s : V→D :

s(vi)=xi, 1≤i≤r

m∑︂
j=1

λjγj(s(v
j
1), . . . , s(v

j
ar(γj)

)) + c,

that is, ρ ∈ ⟨Γ⟩.

Let i ∈ {1, . . . , k}. We now observe that there exists f i ∈ O(k)
D such that
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f i(Sρ) = xi and ρ̃(xi) =
∑︁m

j=1 λjγj(f
i(Sj)) + c; therefore, we obtain

ρ(xi) ≤

⎛⎝ m∑︂
j=1

λjγj(f
i(Sj)) + c

⎞⎠+ ϵ ≤ ρ̃(xi) + ϵ. (7.10)

On the other hand, from Condition (7.8), it follows that

ρ̃(xi) − ϵ ≤

⎛⎝ m∑︂
j=1

λjγj(e
(k)
i (Sj)) + c

⎞⎠− ϵ ≤ ρ(xi). (7.11)

Therefore, |ρ(xi) − ρ̃(xi)| < ϵ for every i ∈ {1, . . . , k}, i.e., |ρ(x) − ρ̃(x)| < ϵ

for every x ∈ Dr. This proves the claim.

7.3.2 Weighted Polymorphisms

We now give the notion of weighted polymorphism which can be seen as

a generalisation of the notion of fractional polymorphism. The notion of

fractional polymorphism of a valued structure Γ is defined for fractional

operations on Odom(Γ) having a finite support, taking nonnegative values,

and summing up to one. The notion of weighted polymorphism, on the other

hand, is defined for weightings, i.e., for real-valued functions on Odom(Γ)

having a finite support, taking negative values only on projections, and

summing up to zero.

Definition 7.3.4. Let D be an arbitrary set. For each k ∈ N, we define the

set of k-ary weightings on OD as

wO(k)
D :=

⎧⎨⎩ω ∈ R
[︂
O(k)
D

]︂ ⃓⃓⃓⃓⃓ ∑︂
f∈Supp(ω)

ω(f) = 0, ∀f ∈ O(k)
D \ J (k)

D : ω(f) ≥ 0

⎫⎬⎭ .

Moreover, let wOD :=
⋃︁
k∈N wO(k). Given ω ∈ wO(k)

D and ρ ∈ wRel
(r)
D with

k, r ∈ N, we say that ω is a weighted polymorphism of ρ (resp., ρ is weight-

improved by ω) if ∑︂
f∈Supp(ω)

ω(f)ρ(f(x1, . . . , xk)) ≤ 0

for all x1, . . . , xk ∈ Dr. For Γ ⊆ wRelD, we define

wPol(Γ) := {ω ∈ wOD | ∀γ ∈ Γ: ω weighted polymorphism of γ} .
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For Ω ⊆ wOD, we let

wImp(Ω) := {γ ∈ wRelD | ∀ω ∈ Ω: γ is weight-improved by ω}.

Example 7.3.5. We have seen in Remark 1.5.3 that a function on a totally

ordered set D is submodular if, and only if, it is improved by the fractional

operation ωsub on O(2)
D introduced in Example 1.4.17. It is trivial to see that

we can also characterise submodular functions on D as those functions that

are weight-improved by the weighting ωwsub : O(2)
D → R such that

ωwsub(g) :=

⎧⎪⎪⎨⎪⎪⎩
1 if g = min or g = max

−1 if g = e
(2)
1 or g = e

(2)
2

0 otherwise.

△

Remark 7.3.6. Fractional polymorphisms and weighted polymorphisms are

closely related. More precisely, given a function ρ : D → R ∪ {+∞}, every

k-ary fractional operation ω that improves ρ yields the k-ary weighting ωw

of ρ defined, for every g ∈ Ok
D by

ωw(g) :=

{︄
ω(g) if g ∈ O(k)

D \ J (k)
D

ω(g) − 1
k otherwise,

which weight-improves ρ. Also, it is easy to verify that, vice versa, every

weighting that weight-improves ρ yields a fractional operation that improves

ρ (see [102], Remark 2.7). From this observation, it is easy to derive that

for every Γ ⊆ wRelD it holds that Imp(fPol(Γ)) = wImp(wPol(Γ)); there-

fore, from Lemma 7.2.1 it follows that for every valued structure Γ over an

arbitrary domain D and values in R,

⟨Γ⟩ ⊆ wImp(wPol(Γ)).

In Theorem 7.3.7, we provide a characterisation of wImp(wPol(Γ)), in

terms of local expressive power, which holds for finite-valued structures Γ

with arbitrary countable domains.

Theorem 7.3.7. Let D be an arbitrary countable set and let Γ ⊆ wRelD.

Then

wImp(wPol(Γ)) = ℓExpr(Γ).

In order to prove Theorem 7.3.7, we need to set some preliminaries and

to recall two constructions for locally convex topological vector spaces.
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7.3.3 Locally Convex Spaces

In this section, we present some preliminary definitions and results for locally

convex topological spaces.

Throughout the section, by topological vector space we always mean

Hausdorff topological space4 over R. In order to agree on some further

terminology and notation, let X be a topological vector space. As usual, we

say that X is locally convex if 0 ∈ X admits a neighbourhood base consist-

ing of convex (open) subsets of X. We denote by X∗ the topological dual

of X, i.e., the topological vector space of all continuous linear functionals

on X equipped with the weak-∗ topology, which is the initial topology on

X∗ generated by all maps of the form Tx : X∗ → R such that Tx(ϕ) = ϕ(x),

where x ∈ X. It is well known that X∗ is a locally convex topological vec-

tor space (see, e.g., [23], Proposition 3.12). For a subset S ⊆ X, we define

S+ := {ϕ ∈ X∗ | ∀x ∈ S : ϕ(x) ≥ 0}. Furthermore, if Y is another topolog-

ical vector space and the map A : X → Y is linear and continuous, then we

define the continuous linear map A∗ : Y ∗ → X∗ by setting A∗(ψ) := ψ ◦A.

Lemma 7.3.8 (Abstract core of Farkas’ lemma, [94], Lemma 2.1). Let X

and Y be locally convex topological vector spaces. If S is a closed convex

cone in Y and A : X → Y is a linear and continuous map, then it holds that

(A−1(S))+ = A∗(S+).

The following more familiar version of Farkas’ lemma is a mere reformu-

lation of Lemma 7.3.8.

Theorem 7.3.9 (Farkas’ lemma). Let X and Y be locally convex topological

vector spaces and let A : X → Y be a linear and continuous map. Let S be

a closed convex cone in Y and let ϕ ∈ X∗. The following are equivalent.

(1) ∀x ∈ X : A(x) ∈ S =⇒ ϕ(x) ≥ 0.

(2) ϕ ∈ A∗(S+).

Proof. By Lemma 7.3.8, we deduce that

ϕ ∈ A∗(S+) ⇐⇒ ϕ ∈ (A−1(S))+

⇐⇒ ∀x ∈ A−1(S) : ϕ(x) ≥ 0

⇐⇒ ∀x ∈ X : (A(x) ∈ S =⇒ ϕ(x) ≥ 0) .

For our purposes, we need the following refinement of Theorem 7.3.9.

4A topological space is said to be Hausdorff if two distinct points always lie in two
disjoint open sets.
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Corollary 7.3.10. Let X,Y, Z be locally convex topological vector spaces

and let A : X → Y , B : X → Z be linear and continuous maps. Let S ⊆ Y

and T ⊆ Z be closed convex cones and let ϕ ∈ X∗. The following are equiv-

alent.

(1) ∀x ∈ X : (A(x) ∈ S ∧B(x) ∈ T ) =⇒ ϕ(x) ≥ 0.

(2) ϕ ∈ {A∗(µ) +B∗(ν) | µ ∈ S+, ν ∈ T+}.

Proof. Consider the locally convex topological vector spaces X̃ := X and

Ỹ := Y × Z, the continuous linear maps ϕ̃ := ϕ and Ã : X̃ → Ỹ such that

Ã(x) = (A(x), B(x)), and the closed convex cone S̃ := S × T ⊆ Ỹ . It is well

known that the map Ψ: Y ∗ × Z∗ → (Y × Z)∗ given by

Ψ(µ, ν)(y, z) := µ(y) + ν(z) (µ ∈ Y ∗, ν ∈ Z∗, y ∈ Y, z ∈ Z)

is a topological isomorphism. Note that if µ ∈ Y ∗ and ν ∈ Z∗, then

Ã∗(Ψ(µ, ν))(x) = Ψ(µ, ν)(Ã(x)) = Ψ(µ, ν)(A(x), B(x))

= µ(A(x)) + ν(B(x)) = A∗(µ)(x) +B∗(ν)(x)

= (A∗(µ) +B∗(ν))(x)

for all x ∈ X, i.e., Ã∗(Ψ(µ, ν)) = A∗(µ) +B∗(ν). Furthermore, it is easy to

see that for all µ ∈ Y ∗ and, for all ν ∈ Z∗ it holds that

Ψ(µ, ν) ∈ (S × T )+ if, and only if, µ ∈ S+ ∧ ν ∈ T+.

Consequently,

Ã∗(S̃+) =
{︂
Ã∗(Ψ(µ, ν))

⃓⃓⃓
µ ∈ Y ∗, ν ∈ Z∗, Ψ(µ, ν) ∈ S̃+

}︂
=
{︁
A∗(µ) +B∗(ν)

⃓⃓
µ ∈ S+, ν ∈ T+

}︁
.

Because of these observations, the statement of Corollary 7.3.10 for the con-

vex topological vector spaces X,Y, Z, the functional ϕ, the maps A,B, and

the closed convex cones S, T is an immediate consequence of Theorem 7.3.9

applied to X̃, Ỹ , ϕ̃, Ã, S̃.

We now recall two constructions for locally convex topological vector

spaces. First, let E be any vector space over R. We define τE to be the

topology generated by the set of all seminorms on E (see [90], Chapter II,

Section 4), i.e., the finest locally convex topology on E. An additional

argument shows that any linear map from E into a locally convex topological

vector space is necessarily continuous with respect to τE .
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For the second construction, let X and Y be two vector spaces over R and

let β : X × Y → R be any bilinear map. We denote by σβ(X,Y ) the initial

topology on X generated by all maps of the form X → R, x ↦→ β(x, y) with

y ∈ Y . It is not difficult to see that σβ(X,Y ) is a locally convex vector space

topology on X. Moreover, σβ(X,Y ) is Hausdorff if and only if β separates

X, i.e.,

∀x ∈ X : (∀y ∈ Y : β(x, y) = 0) =⇒ x = 0.

Furthermore, if β separates Y , i.e.,

∀y ∈ Y : (∀x ∈ X : β(x, y) = 0) =⇒ y = 0,

then the map ψ : Y → (X,σβ(X,Y ))∗ defined by ψ(y) = (x ↦→ β(x, y)) is an

isomorphism between (X,σβ(X,Y ))∗ and Y .

7.3.4 Proof of Theorem 7.3.7

Everything is in place for stating and proving Theorem 7.3.7. Our argument

runs by an application of Farkas’ lemma in the form of Corollary 7.3.10.

Proof of Theorem 7.3.7. Let ρ : Dr → R, with r ∈ N. For contradiction, we

assume that ρ ∈ ℓExpr(Γ) \ wImp(wPol(Γ)). Then there exist k ∈ N and

ω ∈ wO(k)
D ∩ wPol(Γ) such that ρ is not weight-improved by ω, that is,

we can find x1, . . . , xk ∈ Dr with ϵ :=
∑︁

f∈Supp(ω) ω(f)ρ(f(x1, . . . , xk)) > 0.

Let us define F := Supp(ω) and L := (|F| + 1)(supf∈F |ω(f)| + 1). Since

ρ ∈ ℓExpr(Γ), there exist λ ∈ R≥0[Mk(Γ)] and c ∈ R such that, for each

i ∈ {1, . . . , k},⃓⃓⃓⃓
⃓⃓ρ(xi) −

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ
(︂
e
(k)
i (S)

)︂
+ c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ

2L

and, for each f ∈ F ,

ρ(f(x1, . . . , xk)) ≤
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c+
ϵ

2L
.
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Now, if f ∈ F \ J (k)
D , then ω(f) ≥ 0; thus

ω(f)ρ(f(x1, . . . , xk))

≤ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c+
ϵ

2L

⎞⎠
≤ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c

⎞⎠+
ϵ

2(|F | + 1)
.

On the other hand, if f ∈ F ∩ J (k)
D , then f = e

(k)
i for some i ∈ {1, . . . , k},

and hence

ω(f)ρ(f(x1, . . . , xk)) = ω(f)ρ(xi)

≤ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ
(︂
e
(k)
i (S)

)︂
+ c

⎞⎠+
ϵ

2(|F | + 1)

=ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c

⎞⎠+
ϵ

2(|F | + 1)
.

We conclude that∑︂
f∈Supp(ω)

ω(f)ρ(f(x1, . . . , xk))

≤
∑︂

f∈Supp(ω)

⎛⎝ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c

⎞⎠+
ϵ

2(|F | + 1)

⎞⎠
≤ ϵ

2
+

∑︂
f∈Supp(ω)

ω(f)

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c

⎞⎠
=
ϵ

2
+

∑︂
(S,γ)∈Supp(λ)

λ(S, γ)

⎛⎝ ∑︂
f∈Supp(ω)

ω(f)γ(f(S))

⎞⎠ ≤ ϵ

2
,

which gives the desired contradiction.

Vice versa, let us consider a cost function ρ : Dr → R with r ∈ N, and

suppose that ρ ∈ wImp(wPol(Γ)). We show that ρ ∈ ℓExpr(Γ). In order to

do this, let k ∈ N and x1, . . . , xk ∈ Dr. Set M := Mk(Γ) and N := O(k)
D . Let

us apply Corollary 7.3.10 to the following objects:

• the locally convex topological vector space Z :=
(︁
R[N ], τR[N ]

)︁
(see Sec-

tion 7.3.3),
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• the closed linear subspace X := {ω ∈ R[N ] |
∑︁

f∈Supp(ω) ω(f) = 0} of

Z with the (clearly locally convex) subspace topology,

• the locally convex vector space Y := (RM , σβ(RM ,R[M ])) for the bi-

linear map

β : RM × R[M ] → R, β(x, λ) :=
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)x(S, γ),

which separates both RM and R[M ] (see Section 7.3.3; note also that

σβ(RM ,R[M ]) coincides with the product topology on RM ),

• consider the following continuous linear maps:

• ϕ : X → R defined by ϕ(ω) :=
∑︁

f∈Supp(ω) ω(f)ρ(f(x1, . . . , xk)),

• A : X → Y defined by A(ω)(S, γ) :=
∑︁

f∈Supp(ω) ω(f)γ(f(S)), and

• B : X → Z defined by

B(ω)(f) :=

{︄
ω(f) for f ∈ O(k)

D \ J (k)
D ,

0 for f ∈ J (k)
D .

• note that S := {x ∈ RM | ∀(S, γ) ∈M : x(S, γ) ≥ 0} is a closed convex

cone in RM , while T := {ω ∈ R[N ] | ∀f ∈ N : ω(f) ≤ 0} is a closed

convex cone in R[N ].

We now claim that Statement (1) of Corollary 7.3.10 is satisfied. Other-

wise, there would exist some x ∈ X such that A(x) ∈ S and B(x) ∈ T , but

ϕ(x) < 0, i.e., there would be some ω ∈ R
[︂
O(k)
D

]︂
with

∑︁
f∈Supp(ω) ω(f) = 0

such that

(a)
∑︁

f∈Supp(ω) ω(f)γ(f(S)) ≥ 0 for all (S, γ) ∈M ,

(b) ω(f) ≤ 0 for all f ∈ O(k)
D \ J (k)

D , and

(c)
∑︁

f∈Supp(ω) ω(f)ρ(f(x1, . . . , xk)) < 0,

so that −ω ∈ wPol(Γ) (by (a) and (b)), while −ω would not weight-improve

ρ (due to (c)), which would be a contradiction. Therefore, statement (1) of

Corollary 7.3.10 holds, thus (2) as well.

To show that ρ ∈ ℓExpr(Γ), let ϵ > 0 and let F be a finite subset of

O(k)
D . Without loss of generality, we may and will assume that J (k)

D ⊆ F .

By statement (2) of Corollary 7.3.10, there exist µ ∈ S+ and ν ∈ T+ such

that for all f ∈ F , and for all e ∈ J (k)
D it holds that

|ϕ(δf − δe) − (µ(A(δf − δe)) + ν(B(δf − δe)))| ≤
ϵ

2
. (7.12)
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Note that ϕ(δf − δe) = ρ(f(x1, . . . , xk)) − ρ(e(x1, . . . , xk)) whenever f ∈ F
and e ∈ J (k)

D . Furthermore, since (RM , σ(RM ,R[M ]))∗ ∼= R[M ] (see Sec-

tion 7.3.3), there exists λ ∈ R[M ] such that

for all x ∈ RM , µ(x) =
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)x(S, γ).

Since µ ∈ S+, it follows that λ(S, γ) = µ(δ(S,γ)) ≥ 0, for all (S, γ) ∈M . Fur-

thermore, it holds that

µ(A(δf − δe)) =
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)(γ(f(S)) − γ(e(S)))

=
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(s)) −
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(e(s)),

for all f ∈ F , e ∈ J (k)
D . Moreover, B(δf − δe) = δf for all f ∈ F , e ∈ J (k)

D .

Let us define

cf := ρ(f(x1, . . . , xk)) −
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(s)) − ν(δf ),

Ke := ρ(e(x1, . . . , xk)) −
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(e(s))

for f ∈ F , and e ∈ J (k)
D . Then, we can rewrite Inequality (7.12) as follows

for all f ∈ F , and for all e ∈ J (k)
D , |cf −Ke| ≤

ϵ

2
. (7.13)

Let us define c := minf∈F cf . From Inequality (7.13), it follows that, for each

e ∈ J (k)
D , |c−Ke| ≤ ϵ

2 , which, by a further application of Inequality (7.13),

entails |c− cf | ≤ ϵ, for every f ∈ F . Let us prove that for every f ∈ F it

holds that

ρ(f(x1, . . . , xk)) ≤
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c+ ϵ. (7.14)

Note that, for every f ∈ N , from −δf ∈ T and ν ∈ T+, it follows that

ν(δf ) = −ν(−δf ) ≤ 0. Consequently, for each f ∈ F ,∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + c

≥
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(f(S)) + ν(δf ) + c

= ρ(f(x1, . . . , xk)) − cf + c ≥ ρ(f(x1, . . . , xk)) − ϵ,
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which proves (7.14). Finally, we prove that for every i ∈ {1, . . . , k}⃓⃓⃓⃓
⃓⃓ρ(xi) −

⎛⎝ ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ
(︂
e
(k)
i (S)

)︂
+ c

⎞⎠⃓⃓⃓⃓⃓⃓ ≤ ϵ. (7.15)

In order to do this, let us consider i ∈ {1, . . . , k} and set e := e
(k)
i . Then it

holds that ∑︂
(S,γ)∈Supp(λ)

λ(S, γ)γ(e(S)) + c

≤
∑︂

(S,γ)∈Supp(λ)

λ(S, γ)γ(e(S)) +Ke +
ϵ

3

≤ ρ(e(x1, . . . , xk)) +
ϵ

2
= ρ(xi) +

ϵ

2
.

The last inequality, together with Inequality (7.14) and the fact that e ∈ F ,

implies Inequality (7.15). Hence, ρ ∈ ℓExpr(Γ).

7.4 Fractional Polymorphisms with Arbitrary

Supports

In this section, we introduce fractional polymorphisms with arbitrary sup-

ports. In the previous section, we have seen that in the case of a finite-valued

structure Γ with an arbitrary domain the fractional polymorphisms (with

a finite support) of Γ are only known to provide a local characterisation of

the expressive power. A natural question to ask is whether we could obtain

global information on the expressive power and, therefore, on the computa-

tional complexity of VCSPs for infinite-domain finite-valued structures by

extending the definition of fractional polymorphisms to fractional operations

with possibly infinite supports.

We start by formally defining the notions of a fractional operation and a

fractional polymorphism with an arbitrary support over an arbitrary domain

D.

Definition 7.4.1. Let D be an arbitrary set, and let k be a positive integer.

A k-ary fractional operation over D is a probability measure on O(k)
D , i.e., a

map µ : P(O(k)
D ) → R≥0 such that

• µ(∅) = 0, and µ(O(k)
D ) = 1;

• µ satisfies the countable additivity property, i.e., for all countable col-

lections {Xn}n∈N of pairwise disjoint subsets Xn ⊆ O(k)
D , it holds that

µ(
⋃︁
n∈NXn) =

∑︁
n∈N µ(Xn).
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As usual, given a k-ary fractional operation µ over a domain D, we define

its support as the set

Supp(µ) := {x ∈ O(k)
D | µ({x}) > 0}.

Definition 7.4.2. A k-ary fractional operation µ over an arbitrary domain

D with an arbitrary support improves a function ρ : Dn → R ∪ {+∞} if it

satisfies

Eg∼µρ(g(a1, . . . , ak)) ≤ 1

k

k∑︂
i=1

ρ(ai),

for every a1, . . . , ak ∈ Dn, where Eg∼µρ(g(a1, . . . , ak)) is the expected value

of ρ associated to µ.

The next proposition is a well-known result from probability measure

theory and shows that the support of a fractional operation over an arbitrary

domain is countable. We report the proof for completeness.

Proposition 7.4.3. Let µ be a probability measure on an arbitrary space

X. Then the support of µ is countable.

Proof. Let us define, for all n ∈ N, the subset An :=
{︁
x ∈ X | µ({x}) ≥ 1

n

}︁
.

We can write the support of µ as Supp(µ) =
⋃︁
n∈NAn. Observe that, for

every n ∈ N, the set An is finite. If this was not the case, then there

would exist a sequence (xi)i∈N ∈ (An)N of pairwise distinct elements and,

by the countable additivity property, we would obtain that µ({xi | i ∈ N})

=
∑︁

i∈N µ({xi}) ≥
∑︁

i∈N
1
n = +∞, which contradicts the assumption that

µ({xi | i ∈ N}) ≤ µ(X) = 1. Therefore, Supp(µ) is countable, because it is

the countable union of finite sets.

Because of Proposition 7.4.3, we can give an alternative definition of

fractional operations with arbitrary supports improving cost functions over

arbitrary domains.

Given a k-ary fractional operation µ over an arbitrary set D, we define

µ(g) := µ({g}), for every g ∈ O(k)
D .

Definition 7.4.4. A k-ary fractional operation µ over an arbitrary domain

D improves a function ρ : Dn → R ∪ {+∞} if it satisfies

∑︂
g∈Supp(ω)

µ(g)ρ(g(a1, . . . , ak)) ≤ 1

k

k∑︂
i=1

ρ(ai),

for every a1, . . . , ak ∈ Dn.
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Definition 7.4.5. Let D be an arbitrary set, and let Γ be a valued structure

with domain D. We say that µ is a fractional polymorphism with an arbitrary

support of Γ if µ improves every cost function of Γ. The set of all fractional

polymorphisms (with arbitrary supports) of a valued structure Γ is denoted

by fPol∞(Γ). The set of all functions that are improved by a given set of

fractional operations (with arbitrary supports) Ω is denoted by Imp(Ω).

If Γ is a valued structure with a finite domain, then fPol(Γ) = fPol∞(Γ).

If Γ is a valued structure with an infinite domain, then fPol(Γ) ⊆ fPol∞(Γ),

and therefore it holds that Imp(fPol∞(Γ)) ⊆ Imp(fPol(Γ)). The following

result can be proved using the same proof as for Lemma 7.2.1 (in fact, in

that case, the finiteness of the support of fractional polymorphisms did not

play any role in the argument).

Proposition 7.4.6. Let D be an infinite set, and let Γ be a valued structure

with an arbitrary domain D. Then, every fractional polymorphism of Γ

improves every cost function that is expressible in Γ, that is,

⟨Γ⟩ ⊆ Imp (fPol∞(Γ)) .

Summary and Outlook

In this chapter, we have presented some extension of concepts and results

from the algebraic theory of finite-domain valued structures to the arbitrary-

domain case. In particular, we have characterised the set of cost functions

which are improved by all fractional polymorphisms of a finite-valued struc-

ture. This characterisation was given in terms of local expressive power of a

finite-valued structure. Whether fractional polymorphisms characterise the

expressive power of infinite-domain finite-valued structures remains an open

question.



Chapter 8

PL VCSPs with Fixed

Number of Variables

For valued structures with infinite signatures, it makes sense to consider the

restricted version of the VCSP where only a fixed number of variables is

allowed in the input. In general, the VCSP for all PL cost functions is NP-

complete (see Proposition 1.2.16 and Remark 1.2.17). In this chapter, we

prove that the restriction of the VCSP for all PL cost functions to instances

with a fixed number of variables is polynomial-time solvable.

The restriction to a fixed number of variables has been studied for several

problems in computational optimisation and, usually, this kind of restriction

has led to an improvement in the computational complexity: two remarkable

examples of this situation are the combinatorial polynomial-time algorithm

of Megiddo [83] to solve the restriction to a fixed number of variables of

Linear Programming (in its full generality, Linear Programming can

be solved in polynomial time (see, e.g., [63, 65, 100]), but all the known

algorithms rely on infinite approximation procedures); and the algorithm

of Lenstra [79] to solve the restriction to a fixed number of variables of

Integer Programming Feasibility (which is a NP-complete problem in its full

generality).

Throughout the chapter, we assume that the input is given as a sum of

PL cost functions (the objective function), which are represented as in Defi-

nition 1.2.14, i.e., the coefficients for linear polynomials and the coefficients

for linear constraints showing up in the input are represented in binary.

We first formalise the problem that we want to focus on.

Definition 8.0.1. Let d be a positive integer, and let V := {x1, . . . , xd} be

a set of variables. An instance I of the valued constraint satisfaction problem

(VCSP) for PL cost functions with variables in V consists of an expression

119
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ϕ of the form
m∑︂
i=1

fi(x
i
1, . . . , x

i
ar(fi)

),

where f1, . . . , fm are finitely many PL cost functions represented as in Def-

inition 1.2.14 and all the xij are variables from V . The task is to find the

infimum cost of ϕ, defined as

inf
α : V→Q

m∑︂
i=1

fi(α(xi1), . . . , α(xiar(fi))),

and to decide whether it is attained, i.e., whether it is a proper minimum.

In the remainder of the chapter, we use the fact that Linear Program

Feasibility for a set of linear constraints containing also strict inequalities

can be solved in polynomial time. Given a set of linear constraints l and

a linear expression obj, we denote by LPF (l) the LPF instance defined by

the linear constraints in l, and we denote by LP (l, obj) the LP instance de-

fined by the linear constraints in l and by the objective function obj. In LP

and LPF the feasibility polytope is defined by weak linear inequalities, i.e.,

by linear constraints of the form
∑︁n

j=1 ajxj ≤ b. The feasibility of a set of

linear constraints containing also strict linear inequalities (i.e., of the form∑︁n
j=1 ajxj < b) can be solved by solving a linear number of linear programs,

as shown in [59], where the authors give a polynomial-time algorithm decid-

ing the feasibility of a set of Horn disjunctive linear constraints. However,

the feasibility of a set of linear constraints containing strict and weak linear

inequalities can be decided by solving only one LP instance.

Lemma 8.0.2 (Motzkin Transposition Theorem [84, 89]). Let A ∈ Qk1×d,

and B ∈ Qk2×d be matrices such that max(k1, d) ≥ 1. The system{︄
Ax < 0

Bx ≤ 0

has a solution x ∈ Qd if, and only, if the system{︄
AT y +BT z = 0

y ≥ 0, z ≥ 0

does not admit a solution (y, z) ∈ Qk1+k2 such that y ̸= (0, . . . , 0).

Proposition 8.0.3. The Linear Program Feasibility problem (LPF)

for a finite set of strict or weak linear inequalities is polynomial-time many-

one reducible to LP, and therefore it can be solved in polynomial time.
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Proof. Let us assume that the linear constraints in the input consist of

k1 strict inequalities, and k2 weak inequalities, i.e., we have to check the

satisfiability of the following system{︄∑︁d
i=1 aj,ixi + aj,d+1 < 0 for 1 ≤ j ≤ k1∑︁d
i=1 bj,ixi + bj,d+1 ≤ 0 for 1 ≤ j ≤ k2.

(8.1)

Let us first observe that the system (8.1) is equivalent to the following one⎧⎪⎪⎨⎪⎪⎩
∑︁d+1

i=1 aj,iti < 0 for 1 ≤ j ≤ k1

−td+1 < 0∑︁d+1
i=1 bj,iti ≤ 0 for 1 ≤ j ≤ k2.

(8.2)

Indeed, if (t1, . . . , td, td+1) is a solution for (8.2), then (x1, . . . , xd) with

xi := ti
td+1

is a solution for (8.1); vice versa if (x1, . . . , xd) is a solution for

(8.1), then (x1, . . . , xd, 1) is a solution for (8.2). Let us consider the following

linear program

minimise

k1+1∑︂
j=1

(−yj)

subject to AT y +BT z = 0 (8.3)

−y ≤ 0

−z ≤ 0,

with variables y1, . . . , yk1+1, z1, . . . , zk2 ,where A ∈ Q(k1+1)×(d+1) is the ma-

trix such that (A)ji = aji for 1 ≤ j ≤ k1 and 1 ≤ i ≤ d+ 1 and the (k1 + 1)-

th row of A is (0, . . . , 0,−1); and the matrix B ∈ Q(k2)×(d+1) is such that

(B)ji = bji.

Observe that the linear program (8.3) can be computed in polynomial

time (in the size of the input). By Lemma 8.0.2, the system (8.2) is satisfiable

if, and only if, the feasibility polytope determined by the linear constraints in

(8.3) does not admit a solution (y, z) ∈ Q(k1+1)+k2 such that y ̸= (0, . . . , 0).

If the output of the algorithm for LP on the input instance (8.3) is +∞
or a tuple having 0 in the first k1 + 1 coordinates, then the system (8.1) is

satisfiable, and therefore we accept. Otherwise, if the output is −∞ or a

tuple (y, z) ∈ Q(k1+1)+k2 such that y ̸= (0, . . . , 0), then the system (8.1) is

not satisfiable and we reject.

We exhibit a polynomial-time algorithm that finds the infimum of the

objective function while saying whether it is attained, i.e., whether it is a

proper minimum. The polynomial-time solvability of the problem in the
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threshold formulation trivially follows (see Remark 1.1.4). The following

theorem uses an idea that appeared in [10], Observation 17.

Theorem 8.0.4. Let V be a finite set of variables. Then there is an algo-

rithm that solves the VCSP for PL cost functions having variables in V in

polynomial time.

Proof. We prove that Algorithm 2 correctly solves the VCSP for PL cost

functions with variables in V in polynomial time. An input of an instance

of the VCSP is a representation of an objective function ϕ as the sum of

a finite number of given cost functions, f1, . . . , fn, applied to some of the

variables in V = {x1, . . . , xd}, that is,

ϕ(x1, . . . , xd) =
n∑︂
i=1

fi(x
i),

where xi ∈ V ar(fi) for 1 ≤ i ≤ d. We want to point out that even if, a priori,

every cost function fi has a certain arity that does not depend on d, as it

is applied to a tuple xi = (xi1, . . . , x
i
ar(fi)

) ∈ V ar(fi) we can see fi as a d-ary

function. Therefore, for 1 ≤ i ≤ d, we can assume that the cost function fi
is defined for every x ∈ Qd by

fi(x) =

{︄∑︁d
j=1 a

i,l
j xj + bi,l if Ci,l(x), for some 1 ≤ l ≤ mi

+∞ otherwise.

For every 1 ≤ l ≤ mi the formulas Ci,l(x) have the following form:

Ci,l(x) =

p⋀︂
j=1

(hi,lj (x) ≤ 0) ∧
q⋀︂

j=p+1

(hi,lj (x) < 0) ∧
r⋀︂

j=q+1

(hi,lj (x) = 0),

for some p, q, r ∈ N and for some linear polynomials hi,lj : Qd → Q, where

1 ≤ j ≤ r. We assume that the cost functions fi are represented as in Defi-

nition 1.2.14.

Algorithm 2 first extracts the list of linear polynomials p1, . . . , pk that

appear in the list of linear constraints defining some cost function fi , i.e.,

{p1, . . . , pk} :=
n⋃︂
i=1

mi⋃︂
l=1

⋃︂
j

{︂
hi,lj

}︂
.

Observe that the linear polynomials p1, . . . , pk decompose the space Qd into

σ polyhedral sets, where

σ ≤ τd(k) =

d∑︂
i=0

2i
(︃
k

i

)︃
(8.4)
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and that this bound is tight, i.e., σ = τd(k) whenever the hyperplanes defined

by pi(x) = 0, for 1 ≤ i ≤ k, are in general position.

Inequality (8.4) can be verified by induction on the number, k, of hyper-

planes. Clearly, for all d ∈ N, one hyperplane divides Qd into 3 = 20 + 21

polyhedral sets. Suppose now that k ≥ 2 and that Inequality (8.4) is true

for every d and for at most k − 1 hyperplanes. Suppose that the k hyper-

planes are in general position (we get in this way the upper bound τd(k)).

Observe that, by adding the hyperplanes one-by-one, the k-th hyperplane

intersects at most τd−1(k − 1) of the polyhedral sets obtained until the pre-

vious step. In fact, this number is equal to the number of polyhedral sets

in which a hyperplane (that is, a subspace of dimension d− 1) is divided by

k − 1 subspaces of dimension d− 2.

Suppose that we know how the space is decomposed into polyhedral

sets by the hyperplanes p1(x) = 0, . . . , pk−1(x) = 0. Adding pk(x) = 0 to

the list of hyperplanes decomposing the space, each one of the polyhedral

sets intersecting it is divided into three polyhedral sets (corresponding to

pk(x) < 0, pk(x) = 0, and pk(x) > 0, respectively). Summing up, at every

step we add to the “old polyhedral sets” (i.e., polyhedral sets obtained

until the previous step) two more polyhedral sets for each of the old ones

intersecting pk(x) = 0, then it follows that

τd(k) = τd(k − 1) + 2τd−1(k − 1).

Using this equality and the inductive hypothesis we obtain

τd(k) =2
d−1∑︂
i=0

2i
(︃
k − 1

i

)︃
+

d∑︂
i=0

2i
(︃
k − 1

i

)︃

=

d∑︂
i=1

2i
(︃(︃

k − 1

i− 1

)︃
+

(︃
k − 1

i

)︃)︃
+ 1

=
d∑︂
i=1

2i
(︃
k

i

)︃
+ 1 =

d∑︂
i=0

2i
(︃
k

i

)︃
.

In particular, the number σ of polyhedral sets is bounded by a polynomial

in k, and the Algorithm 2 produces a tree, which has 3k branches a priori

but actually has polynomially many branches.

The algorithm computes the list of all non-empty polyhedral sets by com-

puting at most
∑︁k−1

i=1 τd(i) instances of linear program feasibility, and then it

computes the infimum of the objective function in every non-empty polyhe-

dral set by computing at most 3τd(k) linear programs. Observe that the only

closed and bounded non-empty polyhedral sets computed by Algorithm 2

are 0-dimensional subspaces, i.e., points, and all the other polyhedral sets
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computed are open or unbounded. Therefore, in order to check whether the

infimum in a polyhedral set C is a proper minimum, it is enough to check

whether the objective function is constant in C, that is, whether its infimum

in C is equal to its supremum in C. This check is done by solving at most

3τd(k) further linear programs. The linear expression of the objective func-

tion in a polyhedral set can be computed by running a number of Linear

Program Feasibility instances that is polynomial in the size of the input

instance. Globally, the running time of Algorithm 2 is polynomial in the

size of the input instance.
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ALGORITHM 2: Algorithm for PL VCSPs with a Fixed Number of Variables

Input: ϕ(x) = f1(x) + · · · + fn(x) with fi(x) = fij(x) if x ∈ Cij , and the

Cij ’s each given as a finite set of linear conditions, for 1 ≤ j ≤ ni, and

1 ≤ i ≤ n.

Output: (val, attr) where val is the value of the infimum of the objective

function, and attr is a string which specifies whether val is attained

(attr = “ min ”) or not (attr = “ inf ”).

{p1, . . . , pk} := the set of all the linear functions appearing in the Cij ’s;

L := {{}} (the set of polyhedral sets in which the pi’s divide the space);

for i = 1, ..., k do

for each l in L do

l−1 := l ∪ {pi < 0};

l0 := l ∪ {pi = 0};

l1 := l ∪ {−pi < 0};

for j = −1, 0, 1 do

if LPF(lj) = yes then
L := (L \ {l}) ∪ {lj}

end

end

end

end

val := +∞;

attr :=′′ inf ”;

for each l in L do

lc := {} (the closure of l);

for each c ∈ l do

if c is of the form (p < 0) then
lc := lc ∪ {p ≤ 0}

else
lc := lc ∪ {c}

end

end

for i = 1, ..., n do

gi := +∞;

for j = 1, . . . , ni do

if LPF(l ∪ Cij) = yes then
gi(x) := fij(x)

end

end

end

obj :=
∑︁n

i=1 gi(x) (the linear expression of the ϕ in l);

m := LP(lc, obj} (the infimum of ϕ in l);

M := −LP(lc, − obj) (the supremum of ϕ in l);

if m < val then

if m = M then
attr := “ min ”(the infimum is attained iff ϕ is constant in l)

else
attr := “ inf ”

end

end

end

return (val, attr);





Chapter 9

Conclusion and Open

Problems

In this final chapter, we summarise the results of the thesis and list some

open problems.

With this thesis, we initiated the systematic research on VCSPs over

infinite domains. We focussed on piecewise linear (PL) and piecewise linear

homogeneous (PLH) valued structures, which provide a mathematically ele-

gant framework for many interesting computational problems. In Chapter 2,

we proved that the VCSP for all convex PL cost functions is polynomial-time

solvable, exhibited a class of PL valued structures whose VCSP is equivalent

to the corresponding feasibility problem and presented a family of PL valued

structures whose VCSP is NP-hard. In Chapter 3, we provided an efficient

sampling algorithm for PLH valued structures, i.e., a polynomial-time many-

one reduction of their VCSPs to finite-domain ones. In Chapter 4, we gave a

sufficient condition for the polynomial-time solvability of VCSPs for valued

structures admitting an efficient sampling algorithm: if the valued structure

has fully symmetric fractional polymorphisms of all arities, then the VCSP

is correctly solved in polynomial time by a combination of the sampling

algorithm and the basic linear programming relaxation. In Chapter 5, we

applied results of Chapters 3, and 4 to show the polynomial-time solvability

of convex PLH and componentwise decreasing PLH (and its dual class of

componentwise increasing PLH valued structures) valued structures. We

also showed that the class of componentwise decreasing valued structures

(as its dual class of componentwise increasing valued structures) is maxi-

mally tractable within the class of PLH valued structures. Such maximal

tractability results are of particular importance for the more ambitious goal

to classify the complexity of the VCSP for all classes of PLH valued struc-
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tures: to prove a dichotomy it suffices to identify all maximally tractable

classes. Submodular PLH valued structures are the object of Chapter 6, in

which we exhibited two different approaches to solve the VCSP for submod-

ular PLH valued structures in polynomial time, and we showed that this

class of valued structures is maximally tractable. Both approaches used to

show the polynomial-time solvability of submodular PLH VCSPs rely on the

efficient sampling algorithm for PLH valued structures: the first approach

is a combination of the sampling algorithm and the basic linear program-

ming relaxation; the second approach consists in transferring the problem

in the ring of formal Laurent power series, Q⋆, and using a fully combinato-

rial polynomial-time algorithm to solve the finite-domain Q⋆-valued problem

obtained by sampling. In Chapter 7, we extended some concepts from the

algebraic theory of finite-domain VCSPs to the infinite-domain case and

showed that the expressive power of finite-valued structures with arbitrary

countable domains is locally characterised by its fractional polymorphisms.

Finally, in Chapter 8, we provided a polynomial-time algorithm solving the

restriction of the VCSP for all PL valued cost functions to a fixed number

of variables.

9.1 Open Problems

We list some interesting open questions and challenges for future research

on infinite-domain VCSPs.

Submodular PL Valued Structures

We have shown (in Chapter 6) that the VCSP for submodular PLH valued

structures is polynomial-time solvable; this result relies on the existence of

an efficient sampling algorithm for PLH valued structures. A challenge is

to extend our tractability result to the class of all submodular PL VCSPs.

We believe that submodular PL VCSPs are polynomial-time solvable. How-

ever, proving our conjecture would require an approach that is not based on

a sampling technique. In fact, already the relational structure (Q; 0, S,D)

where S := {(x, y) | y = x+ 1}, and D := {(x, y) | y = 2x} (which has both

min and max as polymorphisms) does not admit an efficient sampling algo-

rithm (it is easy to see that for d ∈ N, every sample computed on input d

must have exponentially many vertices in d).

The PLH Cost Function k

Let us consider the valued structure Γ with domain Q and a signature con-

taining a unique function symbol k whose interpretation is the cost function
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kΓ : Q2 → Q defined by

kΓ(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y if − x ≤ y ≤ x

x if − y ≤ x ≤ y

−y if x ≤ y ≤ −x
−x if y ≤ x ≤ −y.

We aim to determine the computational complexity of VCSP(Γ). Observe

that, since Γ is PLH, there is an efficient sampling algorithm for Γ (see

Chapter 3). However, if ∆ is the finite-domain sample for Γk computed

on some input n > 0, then ∆ satisfies the sufficient condition for the NP-

hardness of the VCSP for finite-domain finite-valued structures (see [97]). To

see this it is enough to observe that x ∈ dom(∆) implies −x ∈ dom(∆), and

that arg min(k∆) = {(−d, d), (d,−d)}, where d := max{|d| | d ∈ dom(∆)}.

Binary Fully Symmetric Fractional Polymorphisms

A finite-domain valued structure Γ has fully symmetric fractional polymor-

phisms of all arities if, and only if, it has a binary fully symmetric fractional

polymorphism (cf. [69]). We ask whether this characterisation can be ex-

tended to valued structures with domains of arbitrary cardinality. Note

that the proof in the finite-domain case relies on the finiteness of the do-

main, and therefore it cannot work in the infinite-domain case. We think,

instead, that to answer our question, one should take into account fractional

polymorphisms with arbitrary supports (see Section 7.4). Proving that the

existence of binary fully symmetric fractional polymorphisms characterises

of the existence of fully symmetric polymorphisms of all arities for valued

structures with arbitrary domains would imply the polynomial-time solv-

ability of VCSPs for PLH valued structures improved by a binary fractional

polymorphism whose complexity is not known, e.g., bisubmodular PLH val-

ued structures. The notion of bisubmodularity was defined for functions

over domains with 3 element (see, e.g., [87]), however this definition can be

extended to functions over Q 1. A valued structure Γ with domain Q (or

R) is bisubmodular if every cost functions f : Qn → Q ∪ {+∞} in Γ has the

binary fractional polymorphism ω defined by

ω(g) :=

{︄
1
2 if g = min0 , or g = max0

0 otherwise,

1The definition of bisubmodular functions with domain Q was suggested by Johan
Thapper.
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where

min0(x, y) :=

{︄
min(x, y) if x · y > 0

0 otherwise,

max0(x, y) :=

{︄
max(x, y) if x · y > 0

0 otherwise,

for every x, y ∈ Q.

The Expressive Power of Infinite-Domain Finite-Valued CSPs

The computational complexity of the VCSP for a valued structure Γ with

a finite domain can be determined by studying the expressive power of Γ

which turns out to be equal to the set of cost functions that are improved

by all fractional polymorphisms of Γ (see [33, 43]). In the infinite-domain

setting, fractional polymorphisms already fail to characterise the computa-

tional complexity of the feasibility problem associated with the VCSP for

a PL valued structure (see [10]). In Chapter 7, we have seen that in the

finite-valued case (that is, the case in which the cost functions take values

< +∞), fractional polymorphisms characterise the local expressive power of

valued structures (with an arbitrary signature) over an arbitrary countable

domain.

However, we do not know whether there exist infinite-domain finite-

valued structures that are not captured by any fractional polymorphism

and nevertheless have a polynomial-time solvable VCSP. Deciding whether

fractional polymorphisms provide a global characterisation of the computa-

tional complexity of the VCSP for infinite-domain finite-valued structures,

or at least for PL finite-valued structures, remains an open challenge.

Promise VCSPs over Arbitrary Domains

Let A and B be two (relational) structures over the same signature τ and

domain A and B, respectively, such that there exists a homomorphism from

A to B. The Promise Constraint Satisfaction Problem (see [22, 27]) for

A and B, or Promise CSP(A,B) for short, is the following computational

problem.

Definition 9.1.1. An instance I of Promise CSP(Γ,∆) consists of a finite

conjunction ψ of atomic τ -formulas. The task is to output

• yes if ψ is satisfiable in A;

• no if ψ is not satisfiable in B.
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The notion of Promise CSPs can be extended to capture optimisation

problems in a similar way as CSPs can be extended to VCSPs.

Let Γ and ∆ be two valued structures over the same signature τ and

domain C and D, respectively, such that there exists a fractional homomor-

phism from Γ to ∆. The Promise Valued Constraint Satisfaction Problem2

for Γ and ∆, or Promise VCSP(Γ,∆) for short, is the following computa-

tional problem.

Definition 9.1.2. An instance I of Promise VCSP(Γ,∆) consists of

• a finite set of variables VI ,

• an expression ϕI of the form

m∑︂
i=1

fi(x
i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and

• a value uI ∈ Q.

The task is to output

• yes if there exists an assignment α : VI → dom(Γ) with cost

m∑︂
i=1

fΓi (α(xi1), . . . , α(xiar(fi))) ≤ u;

• no if every assignment β : VI → dom(∆) has cost

m∑︂
i=1

f∆i (β(xi1), . . . , β(xiar(fi))) ≰ u.

We think that the computational complexity of Promise VCSPs for val-

ued structures Γ and ∆ having, respectively, a finite and an infinite do-

main is an interesting topic for future research, which is closely related with

the study of infinite-domain valued structures. For example, it is easy to

prove using a similar argument as in Chapter 4 that if ∆ has fully sym-

metric fractional polymorphisms of all arities, then Promise VCSP(Γ,∆) is

polynomial-time solvable.

2Promise VCSPs have been defined (for finite-domain valued structures) by Alexandr
Kazda (personal communication).
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Semialgebraic VCSPs with Fixed Number of Variables

We would like to continue the line of research on the computational complex-

ity of VCSPs with a fixed number of variables by studying the computational

complexity of the VCSP with a fixed number of variables and semialgebraic

cost functions. A function f : Rn → R ∪ {+∞} is called semialgebraic if its

domain can be represented as the union of finitely many basic semialgebraic

sets (see [10]) of the form {x ∈ Rn | χ(x)} where χ is a conjunction of (weak

or strict) polynomial inequalities with integer coefficients, relative to each

of which f(x) is given by a polynomial expression with integer coefficients.

The VCSP for all semialgebraic cost function is equivalent to the exis-

tential theory of the reals (see [10]), which is in PSpace (see [28]). The

restriction of the feasibility problem associated with a semialgebraic VCSP

to a fixed number of variables is polynomial-time solvable by cylindrical

decomposition (cf. [35]). However, we do not know whether this approach

can solve our optimisation problem in polynomial time. Another contri-

bution related with our open problem was given in [66] by Khachiyan and

Porkolab, who proved that the problem of minimising a convex polynomial

objective function with integer coefficients over a fixed number of integer

variables, subject to polynomial constraints with integer coefficients that

define a convex region, can be solved in polynomial time in the size of the

input.
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to promise constraint satisfaction. In Proceedings of the 51st ACM

Annual Symposium on Theory of Computing (STOC), page 602–613,

New York, NY, USA, 2019. Association for Computing Machinery.

URL: https://doi.org/10.1145/3313276.3316300.

[28] John Canny. Some algebraic and geometric computations in PSPACE.

In Proceedings of the 20th ACM Annual Symposium on Theory of

Computing (STOC), pages 460–467, New York, NY, USA, 1988. ACM.

URL: https://doi.org/10.1145/62212.62257.

[29] Clément Carbonnel, Miguel Romero, and Stanislav Živný. The com-
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