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The exploitation of colloidal building blocks with morphological and functional anisotropy

facilitates the generation of complex structures with unique properties, which are not

exhibited by isotropic particle assemblies. Herein, we demonstrate an easy and scalable

bottom-up approach for the programmed assembly of hairy oppositely charged

homogeneously decorated and Janus particles based on electrostatic interactions

mediated by polyelectrolytes grafted onto their surface. Two different assembly routes

are proposed depending on the target structures: raspberry-like/half-raspberry-like or

dumbbell-like micro-clusters. Ultimately, stable symmetric and asymmetric micro-

structures could be obtained in a well-controlled manner for the homogeneous–

homogeneous and homogeneous–Janus particle assemblies, respectively. The spatially

separated functionalities of the asymmetric Janus particle-based micro-clusters allow

their further assembly into complex hierarchical constructs, which may potentially lead

to the design of materials with tailored plasmonics and optical properties.

1. Introduction

Self-assembly is a process where individual building blocks form higher-ordered,

organized structures as a consequence of specic, local interactions among the

components themselves, in the absence of external guidance.1 Colloidal particles,

which can be synthesized with unprecedented control over their geometry and

interactions, may be considered as programmed building blocks for the rational

design of functional materials, analogous to atoms being the building blocks for

molecules, macromolecules, and crystals.2 Therefore, colloidal self-assembly

represents not only an important model system to study the atomic world,3 but

also a powerful tool for the development of materials with tunable and multi-

functional properties.4–10 Colloidal structures prepared through self-assembly are
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interesting themselves from the theoretical point of view,11–15 and additionally

have a broad variety of potential applications in, for example, photonic/plasmonic

devices, photovoltaics, nanoscale electronics, high efficiency energy-conversion/

energy-storage, miniature diagnostic systems, drug/gene delivery, and hierarchi-

cally structured catalysts.3,16–18

The self-assembly process of colloidal particles can be governed by different

forces including van der Waals, electrostatic, hydrogen bonding, covalent, coor-

dination, capillary, convective, shear, optical, and electromagnetic forces.3,19,20 In

particular, electrostatic interactions between the particles can be utilized to direct

the formation of specially assembled structures.21–24 The strength of the electro-

static interactions can be tuned continuously by screening the charges and by

changing the properties of the medium,25 and therefore, such interactions can be

used to fabricate responsive functional materials.

The aforementioned examples concern the utilization of isotropic colloidal

building blocks and their assembly into symmetrical structures. However, the

addition of asymmetry at the building block level can facilitate the assembly of

such anisotropic building blocks into structures with unique properties, which

are not exhibited by isotropic particle assemblies.11,26–32 For instance, it was sug-

gested that patchy colloids can be used to assemble a diamond lattice of colloidal

particles, which provides a larger photonic band gap than many other structures,

and thus may be of great use for optoelectronic devices or display applications.13

Nonetheless, the programmed fabrication of asymmetric structures remains

a challenge. Difficulties arise particularly when trying to achieve both spatial and

chemical control over the assembly process, which can result in a limited yield,

and thus limited applications of the prepared nanomaterials. One direction worth

exploring in this context is the creation of a specially designed microscale plat-

form with well-dened spatially separated functionalizations for further use in

generating asymmetric assembled structures.

Janus particles (named aer the two-faced Roman god) represent a class of

multifunctional particles, comprising two different functions on their opposite

sides. Their unique anisotropic properties and resemblance to molecular

amphiphiles, such as surfactants, phospholipids, and block copolymers, have

attracted signicant attention in recent years.33 Due to their multifunctional

character, Janus particles have found their applications in a variety of research

elds, including stabilization of emulsions,34–36 chemical catalysis,37,38 drug

delivery,39 display technology,40,41 etc. Progress has also been made in the area of

Janus particle assembly by taking advantage of their asymmetric structure.34,42–47

However, Janus–Janus particle assembly is typically the focus of the investiga-

tions, leaving out the potentially very interesting combination of homogeneous–

Janus particles. For instance, a DNA-directed approach was reported for the

assembly of asymmetric nanoclusters on a prefabricated Janus particle platform,

yielding nanostructures with tunable optical properties.27 Moreover, the assembly

of a binary colloidal system further extends the possibilities to construct complex

structures, as colloidal clusters of identical spheres possess limited exibility in

that sense. It was suggested that it is almost impossible to assemble novel

colloidal crystals using colloidal clusters of all identical spheres as building

blocks.31,48

Herein, we report an easy and scalable bottom-up approach for the pro-

grammed assembly of binary mixtures of oppositely charged colloidal particles
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with hairy polymer shells into specially designed target structures: raspberry-like

and dumbbell-like micro-clusters. Two different kinds of assemblies are explored

in this context: homogeneous–homogeneous particles, and homogeneous–Janus

particles, both of which are based on electrostatic interactions mediated by

polyelectrolytes on the surface of the particles. The homogeneous particles serve

as a platform for generating symmetric structures, while the Janus particles take

part in generating asymmetric structures. The obtained results represent

a generalized assembly route for the engineering of tunable micro-cluster archi-

tectures from the bottom up, which can be further treated as “colloidal mole-

cules” to assemble even more complex hierarchical materials.

2. Experimental section
Materials

Tetraethylorthosilicate (TEOS, Fluka, 99%), ammonium hydroxide (NH4OH,

Acros Organics, 28–30% solution), ethanol abs. (EtOH, VWR, 99.9%), 3-amino-

propyltriethoxysilane (APS, ABCR, 97%), a-bromoisobutyryl bromide (Aldrich,

98%), a-bromoisobutyric acid (Aldrich, 98%), anhydrous dichloromethane (Acros

Organics, 99.8%), triethylamine (99%, Sigma-Aldrich), uorescein o-acrylate

(Aldrich, 97%), rhodamine B isothiocyanate (mixed isomers, BioReagent,

Aldrich), copper(II) bromide (Aldrich, 99.999%), tin(II) 2-ethylhexanoate (Aldrich,

95%), tris(2-pyridylmethyl)amine (TPMA, Aldrich, 98%), N,N,N0,N0 0,N0 0-pentam-

ethyldiethylenetriamine (PMDTA, Aldrich, 99%), anhydrous N,N-dimethylforma-

mide (DMF, Sigma-Aldrich, 99.8%), ethyl a-bromoisobutyrate (EBiB, Aldrich,

98%), toluene (Sigma-Aldrich, 99.8%), chloroform (Sigma-Aldrich, 99.5%),

hydrochloric acid (Sigma, 36.5–38.0%), methanesulfonic acid (Sigma-Aldrich,

99.5%), sodium hydroxide (pellets, Sigma-Aldrich, 97%), diethyl ether (Aldrich,

99.7%), paraffin wax (mp 53–57 �C, Aldrich), N-(3-dimethylaminopropyl)-N0-eth-

ylcarbodiimide hydrochloride (EDC, Sigma-Aldrich), N-hydroxysuccinimide

(NHS, Aldrich, 98%), dichloromethane (Acros Organics, 99.99%), hexane (Sigma-

Aldrich, 95%), and carboxy terminated poly(lauryl methacrylate) (PLMA, Mn:

11 000 g mol�1; Polymer Source) were used as received. tert-Butyl acrylate (tBA,

Aldrich, 98%) and 2-(dimethylamino)ethyl methacrylate (DMAEMA, Aldrich, 98%)

were passed through basic, neutral, and acidic aluminum oxides prior to the

polymerization. Millipore water was obtained from Milli-Q (Millipore, conduc-

tivity: 0.055 mS cm�1).

Scanning electron microscopy (SEM)

All scanning electron microscopy (SEM) images were acquired using a NEON 40

EsB CrossBeam scanning electron microscope from Carl Zeiss NTS GmbH,

operating at 3 keV in the secondary electron mode. In order to enhance the

electron density contrast, samples were coated with platinum (3.5 nm) using

a Leica EM SCD500 sputter coater.

Transmission electron microscopy (TEM) and cryo-TEM

Transmission electron microscopy (TEM) and cryo-TEM images were taken with

a Libra 120 TEM from Carl Zeiss NTS GmbH equipped with a LaB6 source. The

acceleration voltage was 120 kV, and an energy lter with an energy window of
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15 eV was used. Samples for TEMwere prepared by immersing a TEM grid into the

dispersion with the respective particles for 20 s and removing excess liquid

aerwards with lter paper. Gold grids with a carbon lm (300 mesh, CF300-Au-

50) were used for the analysis (Electron Microscopy Sciences, USA). The PAA-100

and PDMAEMA/NH2-JP-200 samples for cryo-TEM were prepared as follows:

particles were dispersed in water (0.5 mg ml�1) by sonication for 20 min; the

dispersion was adjusted to the desired pH value. Prior to the analysis, 3.5 ml of the

sample were taken, blotted and vitried in liquid ethane at �178 �C. Ultimately,

an approximately 200 nm thick ice lm was examined using TEM.

Dynamic light scattering (DLS) measurements

A Zetasizer Nano ZS (Malvern Instruments, UK) was used for the determination of

the particle size (hydrodynamic diameter) using plastic cells for aqueous

suspensions. The device is equipped with a 633 nm laser and with non-invasive

backscatter (NIBS) technology to increase the particle size sensitivity.

Electrokinetic measurements

The pH-dependent electrokinetic (zeta potential) measurements of the particles

in suspension were carried out using a Zetasizer Nano ZS (Malvern Instruments,

UK) and an MPT-2 autotitrator. For all the measurements, the particles were

suspended in a 10�3MKCl solution in water. The pH of the prepared suspensions

was controlled by adding 0.1 M KOH or HCl aqueous solutions. Three measure-

ments were recorded for each sample at each pH value.

Fluorescence microscopy

Fluorescence microscopy images were obtained using an Axio Imager.A1m

microscope with a 100� oil immersion objective (Carl Zeiss Microscopy GmbH,

Germany) equipped with a mercury lamp. For data acquisition, a standard FITC

(exciter: D480/30x; dichroic: 505DCLP; emitter: D535/40m; Chroma Technology

Corp., USA), or TRITC (exciter: D540/25x; dichroic: 565DCLP; emitter: D605/55m;

Chroma Technology Corp., USA) lter set in conjunction with a Photometrics

Cascade II: 512 camera (Visitron Systems GmbH, Germany) and a MetaMorph

imaging system (Universal Imaging, USA) was used.

Thermogravimetric analysis (TGA) and gel permeation chromatography (GPC)

Thermogravimetric analysis was performed to measure the polymer layer thick-

ness on the particle surface. All measurements were conducted in the air atmo-

sphere on a TGA Q 5000IR analyzer (TA Instruments, USA). The molecular weight

of the bulk polymers obtained aer precipitation was determined using GPC

(Gradient HPLC HP Series 1100, Agilent Technologies Inc., USA). The thickness of

the graed layer on the SiO2 particles as well as the graing density of the

attached polymer chains were determined by the equations described else-

where.49 The graing density of the polymer chains on the particle surface was

0.2–0.3 chains per nm2.
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Synthesis of homogeneously decorated hybrid core–shell particles

Synthesis and pre-modication of monodisperse SiO2 particles. 100–1000 nm

silica particles were synthesized using a multistep hydrolysis–condensation

procedure of TEOS in an ammonia hydroxide–ethanol solution based on the

Stöber approach,50 and described in ref. 51. In brief, TEOS was added sequen-

tially into a mixture of ethanol and ammonia solution. The particles produced

within one step of the synthesis were used as seeds for the next step. Each

reaction was carried out by stirring the mixture at 500 rpm overnight at room

temperature (starting from the last addition of TEOS). Subsequently, the

dispersion with particles of the desired size was separated from the solvent by

centrifugation, yielding monodisperse silica spheres. Puried particles were

dried in a vacuum oven at 60 �C and then modied with (3-aminopropyl)trie-

thoxysilane (APS) to introduce amino groups onto the surface. This was achieved

by stirring the particles for 12 hours in a 5% APS solution in ethanol. The

particles were then puried by repeated washing and centrifugation cycles in

ethanol, and dried. Aerwards, the ATRP-initiator (a-bromoisobutyryl bromide)

was immobilized onto the surface of the dried amino-modied particles. For this

purpose, the particles were dispersed in 35 ml of anhydrous dichloromethane,

followed by the addition of 1.4 ml of triethylamine and 0.7 ml of a-bromoiso-

butyryl bromide. The reaction was carried out at room temperature under

constant stirring for 2 hours. The modied particles were puried by repeated

washing and centrifugation cycles in ethanol, and dried under reduced pressure

at 60 �C.

Graing of PDMAEMA and PtBA using surface-initiated ATRP. Poly(2-dime-

thylaminoethyl methacrylate) (PDMAEMA) was graed from the 1 mm initiator-

modied particles as follows: 3 ml of anhydrous DMF, 48 ml of CuBr2 (0.1 M

solution in DMF), 48 ml of PMDTA (0.5 M solution in DMF), 0.15 ml of EBiB, and

3ml of DMAEMAwere added to a test tube containing the initiator-modied silica

particles (500 mg) and uorescein o-acrylate (40 mg). The test tube was sealed

with a rubber septum and purged with argon. 150 ml of Sn(II) 2-ethylhexanoate

were injected. The polymerization was carried out under continuous stirring at

70 �C in a water bath for 2 hours. Particles with the graed polymer were washed

by centrifugation in DMF and ethanol 8 times, and dried under reduced pressure

at 60 �C.

A similar procedure was used for the graing of PtBA from the 100, 200, 450,

and 600 nm initiator-modied silica particles. Rhodamine B isothiocyanate was

added during the preparation of these particles in order to label the resulting PAA-

covered particles with a red uorescent dye. For the polymerization, 7.5 mg of

TPMA dissolved in 3 ml of tBA, 50 ml of CuBr2 (0.1 M solution in DMF), and 0.15 ml

of EBiB were added to the particles. The mixture was sonicated and purged with

Ar, followed by the injection of 200 ml of Sn(II) 2-ethylhexanoate. The polymeri-

zation was performed under continuous stirring at 115 �C for 2 hours. Aer the

particles were puried by centrifugation and redispersion cycles in toluene and

dried, hydrolysis was performed to yield polyacrylic acid (PAA). Briey, PtBA-

covered particles were suspended in 5ml of chloroform in a Teon centrifuge vial,

along with 1 ml of methanesulfonic acid, and the mixture was rapidly stirred for

5 minutes. The modied particles were collected by diluting the mixture with

diethyl ether, puried by centrifugation and dried.
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Synthesis of hybrid core–shell Janus particles

Preparation of colloidosomes and graing of the rst polymer. Colloidosomes

with 1 mm large APS-modied silica spheres were prepared using a wax–water

Pickering emulsion approach as described elsewhere.49,51 The ATRP-initiator

(a-bromoisobutyric acid) was then immobilized onto the exposed particle

surface.52 Subsequently, wax was dissolved in hexane, and partly initiator-covered

particles were used for polymerization. PDMAEMA was graed from the modied

particle surface in the same manner as described above for the homogeneously

decorated particles. Fluorescein o-acrylate (2 wt%) was added to the reaction

mixture to label the graed polymer.

Graing of the second polymer. The “graing to” approach was utilized to

gra the second polymer onto the particles modied in the previous step

(PDMAEMA/NH2-JP). For this purpose, silica particles with the graed rst

polymer were dispersed in 20 ml of a 1 wt% carboxy terminated poly(lauryl

methacrylate) (PLMA) solution in chloroform, and stirred for 2 hours. Next, the

solvent was evaporated and the particles were annealed at 150 �C overnight. The

ungraed polymer chains were removed by multiple redispersion cycles of the

particles in appropriate solvents and subsequent centrifugation. As a result, bi-

component PDMAEMA/PLMA-JP-1 mm particles were obtained.

Self-assembly experiments

Self-assembly experiments were carried out by mixing different ratios of PAA-

covered particles with either PDMAEMA homogeneously decorated particles or

PDMAEMA/PLMA Janus particles depending on the target structures: raspberry-

like or dumbbell-like micro-clusters. Mass ratios of small-to-big particles used for

the preparation of raspberry-like micro-clusters were estimated based on the ratio

of the big particle surface area to the area of the small particle projections on the

surface of a big particle. The ratios were then varied in order to experimentally

obtain the dumbbell-like micro-clusters.

For a typical experiment, 1 mg ml�1 dispersions of particles of all sizes were

prepared in DI water; the pH was adjusted to 7 in each of them. All the disper-

sions were kept for an hour in an ultrasonic bath. Then the particles were mixed

in the appropriate ratios by taking aliquots from the initial 1 mg ml�1 disper-

sions depending on the target structures. For the raspberry-like micro-clusters,

the dispersion with central PDMAEMA homogeneously decorated particles (HP)

or PDMAEMA/PLMA Janus particles (JP) was slowly added dropwise to the

dispersion of PAA-covered surrounding particles under continuous stirring. Vice

versa, for the dumbbell-like micro-clusters, the dispersion of PAA-covered

particles was slowly added dropwise to the dispersion of PDMAEMA-HP or

PDMAEMA/PLMA-JP. The resulting mixtures were sonicated for 10 minutes, and

then stirred at 700 rpm for two hours. Samples for SEM imaging were taken at

this point. In order to obtain individual micro-clusters, the mixtures were diluted

5 times, sonicated for 10 more minutes and le to settle overnight. Samples for

SEM imaging were then taken from the upper layer of the dispersion. A complete

overview of the prepared samples using different small-to-big particle ratios is

displayed in Table 1. At least ve different dispersions were prepared for each of

the particle sizes and mass ratios, and analysed by SEM in order to assess the

reproducibility of the results.
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3. Results and discussion
Synthesis and characterization of the core–shell homogeneous and Janus

particles

Oppositely charged core–shell particles homogeneously decorated with either

negatively charged poly(acrylic acid) (PAA), or positively charged poly(2-dime-

thylaminoethyl methacrylate) (PDMAEMA) were fabricated by graing the

respective polymers from a silica core. The diameter of the PDMAEMA-decorated

particles was 1 mm, while the diameters of the PAA-decorated particles varied from

100 to 600 nm (Table 2). Partly positively charged/amphiphilic 1 mm hybrid hairy

Janus particles were synthesized through a combination of the “graing from”

and “graing to” approaches,49,51,52 and comprised a silica core with PDMAEMA

and poly(lauryl methacrylate) (PLMA) polymer shells on the opposite sides of the

core.

The fabricated particles were further characterized using SEM and TEM. TEM

images revealed the core–shell structure of the PAA and PDMAEMA homoge-

neously decorated particles as well as the Janus particles (Fig. S1†). A complete

overview of the particle samples with their exact diameters obtained from the SEM

images as well as the thicknesses of the graed polymer shells obtained from the

TEM images is displayed in Table 2. Additionally, SEM images of the fabricated

Janus particles revealed their Janus character (Fig. S2†). The estimated Janus ratio

of the particles is 2 : 1 (PDMAEMA : PLMA).

The zeta potential of the polymer-decorated particles as a function of pH was

determined by measuring their electrophoretic mobility (Fig. S3†). The surface

charge on the particles functionalized with acidic (in the case of PAA) or basic

Table 1 Overview of the particle mixtures prepared for the self-assembly experiments

PAA-covered

particle size, nm Mass ratio PAA : PDMAEMA-HP

Mass ratio

PAA : PDMAEMA/PLMA-JP

100 2 : 1 1 : 1 1 : 2 1 : 20 2 : 1 1 : 20

200 2 : 1 1 : 1 1 : 10 1 : 100 2 : 1 1 : 10

450 4 : 1 2 : 1 1 : 5 1 : 50 4 : 1 1 : 5

600 6 : 1 3 : 1 1 : 3.3 1 : 33 6 : 1 1 : 5

Table 2 List of the synthesized core–shell homogeneous and Janus particles, their

diameters (D), and polymer shell thicknesses (H)

Sample ID Dcore (SEM), nm

Dcore+shell (SEM),

nm H (TEM), nm

PAA-100 100 � 10 145 � 10 9 � 2
PAA-200 216 � 12 244 � 7 10 � 2

PAA-450 460 � 15 491 � 5 14 � 3

PAA-600 570 � 22 590 � 14 12 � 3

PDMAEMA-1 mm 920 � 20 950 � 20 17 � 5
PDMAEMA/PLMA-JP-1 mm 920 � 20 945 � 24 8 � 2 (PDMAEMA)
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(in the case of PDMAEMA) surface groups is highly dependent on the pH of the

dispersion. An increase in the negative zeta potential with increasing pH in the

case of the PAA-decorated particles is due to the increased dissociation of acidic

surface groups (Fig. S3,† red circles); the isoelectric point (IEP) of these particles is

at pH < 2. In the case of the basic amino groups on the PDMAEMA-decorated

particles, the number of positively charged groups increases with decreasing pH

due to their protonation (Fig. S3,† black circles); the IEP of these particles is at pH

9.9. When the PDMAEMA polymer on the PDMAEMA-decorated particles is

quaternized (through the addition of iodomethane), the particles become

permanently positively charged: their surface charge becomes independent from

the pH value of the dispersion (Fig. S3,† green circles). No IEP is observed in this

case up to pH 10. The zeta potential curve corresponding to the Janus particles

decorated with positively charged hydrophilic PDMAEMA and uncharged hydro-

phobic PLMA (Fig. S3,† blue circles) is similar to the PDMAEMA-decorated

particle curve due to the swelling of PDMAEMA. However, there is a shi in the

IEP from pH 9.9 to 8.2 due to the presence of the hydrophobic uncharged PLMA

(the IEP value of PLMA-functionalized particles is around pH 4). This indicates

that both polymers are present on the Janus particle surface.52

Next, the pH-responsive swelling behaviour of the PAA and PDMAEMA poly-

mers graed onto the silica particles was evaluated using cryo-TEM (Fig. 1). For

this purpose, particles with a 100 nm diameter homogeneously decorated with

PAA (PAA-100-HP) as well as Janus particles with a 200 nm diameter partly

decorated with PDMAEMA (PDMAEMA/NH2-200-JP) were investigated under

different pH values of the media. As expected, the two polymers demonstrated

opposite swelling behaviour. The PAA polymer chains on the PAA-100-HP parti-

cles are in a highly swollen and stretched out state at pH 10, intermediately

swollen at pH 7, and collapsed at pH 2 (Fig. 1a). On the contrary, the PDMAEMA

polymer chains are highly swollen and stretched out at pH 2, intermediately

swollen at pH 7, and collapsed at pH 10 (Fig. 1b). At pH 7 both of the polymers are

charged and swollen at the same time, therefore, this pH value was used during

the self-assembly experiments. The thicknesses of the polymer shells at different

pH values were evaluated aer statistical analysis of the corresponding TEM

images. The quantied swelling behaviour of PAA and PDMAEMA as well as their

swelling grades under different conditions are given in Table 3.

Fig. 1 pH-Responsive behaviour of the grafted polymers evaluated using cryo-TEM

images of (a) homogeneous PAA-100-HP particles, and (b) Janus PDMAEMA/NH2-200-JP

particles at different pH values, revealing an opposite swelling behaviour of the PAA and

PDMAEMA polymers.

Faraday Discussions Paper

96 | Faraday Discuss., 2016, 191, 89–104 This journal is © The Royal Society of Chemistry 2016

P
u
b
li

sh
ed

 o
n
 1

1
 M

ar
ch

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 b
y
 S

L
U

B
 D

R
E

S
D

E
N

 o
n
 1

1
/1

/2
0
1
9
 1

:3
4
:0

5
 P

M
. 

View Article Online

https://doi.org/10.1039/c6fd00008h


Additionally, the pH-responsive properties of the PAA and PDMAEMA poly-

mers were evaluated using DLS measurements of the corresponding particles

(Fig. S4†). The same tendencies in the swelling behaviour as in the cryo-TEM

measurements were observed. The hydrodynamic diameter of the 100 nm PAA-

decorated particles increases with increasing pH values (Fig. S4a†), while the

hydrodynamic diameter of the 1 mm PDMAEMA-decorated particles decreases

with increasing pH values (Fig. S4b†).

Self-assembly experiments

We investigated the self-assembly of the synthesized colloidal homogeneous and

Janus particles through electrostatic interactions between the charged poly-

electrolytes on the surface of the particles. Two main approaches were pursued

during the design of the self-assembly experiments depending on the target

structures: raspberry-like (or half-raspberry-like in the case of the Janus particles),

and dumbbell-like micro-clusters (Fig. 2). For this purpose, we fabricated three

types of particles: particles of different sizes homogeneously decorated with PAA,

1 mm particles homogeneously decorated with PDMAEMA, and 1 mm Janus

particles decorated with PDMAEMA and PLMA on opposite sides. Large homo-

geneously decorated particles served as an isotropic platform (especially in

approach 1), while the Janus particles served as an anisotropic platform for

selective decoration (Fig. 2). In order to demonstrate the generality of our

approach, we applied a similar assembly procedure to the mixtures of particles

with different size ratios.

First, we explored the self-assembly behaviour of the homogeneously deco-

rated oppositely charged particles by varying the particle mass ratioMPDMAEMA/PAA

¼ mPDMAEMA : mPAA, and the particle size ratio SPDMAEMA/PAA ¼ DPDMAEMA : DPAA

(Fig. 3). SEM images in the obtained self-assembly diagram demonstrate a clear

tendency of the particles to form raspberry-like structures at higher PAA particle

concentrations. As expected, with an increase in the PAA-decorated particle

diameter, the number of PAA-decorated particles on each large PDMAEMA-

decorated particle decreases. With a decrease in the PAA-decorated particle

concentration, a tendency to form dumbbell-like structures takes place. Using the

more concentrated as-prepared samples, we could obtain networks of the micro-

clusters formed during self-assembly (Fig. 3, low magnication images), whereas

upon diluting the samples and leaving the mixtures to settle overnight, individual

micro-clusters can be obtained (Fig. 3, high magnication images).

Table 3 pH-Responsive behaviour of the grafted PAA and PDMAEMA polymers evaluated

using cryo-TEM measurements

System/swelling grade

Hcryo-TEM, nm

Dry state pH 10 pH 7 pH 2

PAA-100-HP 9 � 2 47 � 4 27 � 4 15 � 2

Swelling grade PAA — 5.0 3.0 1.7
PDMAEMA/NH2-200-JP 10 � 3 14 � 3 42 � 8 80 � 10

Swelling grade PDMAEMA — 1.4 4.0 8.0
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Next, we investigated the self-assembly of homogeneously decorated particles

with Janus particles, again, by varying the particle mass ratioMJP/PAA ¼mJP : mPAA,

and the particle size ratio SJP/PAA ¼ DJP : DPAA (Fig. 4). The spatially separated

regions on a single Janus particle have different chemical properties and surface

charges, thus enabling us to assemble asymmetric structures. As a result, half-

raspberry-like micro-clusters were formed at higher PAA-decorated particle

concentrations, and dumbbell-like micro-clusters were formed at higher Janus

particle concentrations (Fig. 4).

Furthermore, we calculated the maximum number of small PAA-decorated

particles on a single large (homogeneously decorated or Janus) particle surface.

For this purpose, we used the effective diameter of the particles, which was

Fig. 2 Proposed schemes for the programmed assembly of homogeneously decorated

and Janus core–shell particles in dispersions.

Fig. 3 Diagram with representative SEM images of the structures formed during the self-

assembly of particles homogeneously decoratedwith PAA and PDMAEMA; the particle size

ratio SPDMAEMA/PAA, and particle mass ratio MPDMAEMA/PAA were varied.
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estimated based on the polymer shell thickness (H) in the dry state and the

swelling grade of the respective polymer at pH 7. The results for all the particles

are displayed in Table 4. The maximum number of small PAA-covered particles on

a single large particle (N) was calculated as previously described in ref. 27, using

eqn (1) for the homogeneously decorated large particle (HP), and eqn (2) for the

Janus particle (JP), where 2/3 of the particle surface are covered with PDMAEMA

(Table 5). Herein, R is the effective radius of the large particle (homogeneously

decorated or Janus), whereas r is the effective radius of a PAA-decorated small

particle.

N ¼
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 2Rr
p

Rþ r

(1)

Fig. 4 Diagram with representative SEM images of the micro-clusters formed during the

self-assembly of particles homogeneously decorated with PAA and PDMAEMA/PLMA-JP-

1 mm; the particle size ratio SJP/PAA, and particle mass ratio MJP/PAA were varied.

Table 4 Particle effective diameters based on the estimated polymer shell thickness in the

dry state (Hdry state, TEM) and in the swollen state at pH 7 (Hswollen state, cryo-TEM)

System Dcore, nm Hdry state, nm Hswollen state, nm Deffective, nm

PAA-100 100 9 27 154
PAA-200 216 10 30 276

PAA-450 460 14 42 544

PAA-600 570 12 36 642

PDMAEMA-1 mm 920 17 68 1056
PDMAEMA/PLMA-JP-1 mm 920 8 32 984
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N ¼
4

3

 

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 2Rr
p

Rþ r

! (2)

We investigated the surface assembly degree by comparing the experimentally

obtained number of small particles on the surface of a large Janus particle with

the maximum theoretical number (Table 5, Fig. 5). The same trend exists in the

experimental results as in the theoretical ones: with increasing the PAA-covered

particle size, their number on the surface of a large Janus particle decreases

(Fig. 5). However, in the experiments much lower numbers of PAA-covered

particles were attached to the PDMAEMA-covered parts of the Janus particles.

This can be explained by the fact that PAA-decorated particles randomly attach to

the PDMAEMA-covered parts on the Janus particle surface. Unlike in a hexagonal

close packing model, such random attachment of the smaller particles leads to

large empty spaces between the particles. This is further facilitated by the similar

negative charges present on the PAA-covered particles, which act as repulsive

forces. Therefore, the particles cannot come near enough to each other to form

a close packing model. Statistical analysis of the number of PAA-decorated

particles on the surface of a single Janus particle is given in Fig. 6 based on

ve independent experiments for each particle size ratio. Depending on the

Table 5 Theoretical maximum number (Ntheory) and the experimentally obtained average

number (Nexperiment) of the small spheres on a single 1 mm large sphere

PAA system

Ntheory

Nexperiment

PDMAEMA-HP PDMAEMA/PLMA-JP PDMAEMA/PLMA-JP

PAA-100 246 145 36 � 13
PAA-200 92 55 7 � 2

PAA-450 36 20 4 � 1

PAA-600 27 16 2 � 1

Fig. 5 Comparison of the theoretical and experimental numbers (N) of PAA-decorated

particles on a single Janus particle depending on the PAA-decorated particle size.
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PAA-covered particle size, different numbers of particles are preferentially

attached to the Janus particle. A narrow number distribution in the experimental

results indicates that the clusters are easily formed in a controlled manner as well

as showing very good reproducibility of the results (Fig. 6).

In order to visualize themicro-clusters in dispersion and to exclude the “drying

effect” of the SEM imaging, we stained the PAA-covered particles with a red

uorescent dye (rhodamine), and the PDMAEMA shell of the Janus particles with

a green uorescent dye (uorescein). Three representative examples of the micro-

clusters formed in dispersion from PAA-450 homogeneously decorated particles

and PDMAEMA/PLMA-JP-1 mm Janus particles at a 4 : 1 ratio are displayed in

Fig. 7. Using a standard TRITC lter for imaging, we can see the small PAA-

decorated particles, while using a FITC lter the large Janus particles are seen. By

combining the two colours, we can observe red-orange spots of PAA-covered

particles surrounding the green Janus particle, and forming half-raspberry-like

micro-clusters like the ones observed using SEM.

Fig. 6 Representative SEM images of the micro-clusters formed from PAA-decorated

particles and PDMAEMA/PLMA-JP, and statistical analysis of the number of PAA-deco-

rated particles on a single Janus particle depending on the PAA-decorated particle size: (a)

100 nm; (b) 200 nm; (c) 450 nm; (d) 600 nm. 200–250 clusters were counted for each

particle size ratio (a–d), based on the results from five independent experiments.
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Furthermore, we used cryo-SEM in order to visualize the dumbbell-like

structures formed in dispersion from PAA-450 homogeneously decorated parti-

cles and PDMAEMA/PLMA-JP-1 mm Janus particles at a 1 : 5 ratio (Fig. S5†). The

same micro-clusters as in the dry state were observed in the frozen state (Fig. 4).

Additionally, the stability of the assembled structures was investigated by imaging

the same dispersions using SEM directly aer preparation, and aer one week

(Fig. S6†). PAA-450 and PDMAEMA/PLMA-JP-1 mm assemblies were chosen as the

representative ones for the experiment – both raspberry-like and dumbbell-like

structures. The initial dispersions were prepared as described in the Experimental

section, and were then le untouched for seven days, aer which they were

sonicated for 30 minutes. The same micro-clusters were observed in dispersions

aer 1 week and aer additional sonication, which indicates that the structures

are perfectly stable in dispersions (Fig. S6,† right panel).

4. Conclusions

Conclusively, we demonstrated an easy and adjustable bottom-up approach for

the programmed assembly of hairy oppositely charged colloidal particles:

homogeneously decorated particles and Janus particles. Electrostatic interactions

between the particles were mediated by polyelectrolytes on their surface, which

also introduced pH-responsive properties into the system. We designed two

different assembly routes depending on the target structures: raspberry-like (half-

raspberry-like) or dumbbell-like micro-clusters. Both homogeneous–homoge-

neous and homogeneous–Janus particle assemblies were explored in dispersions

and in the dry state. Ultimately, stable symmetric and asymmetric micro-struc-

tures could be obtained in a well-controlled manner. Moreover, both kinds of

particles (homogeneous and Janus) can be easily prepared on a large scale, thus

Fig. 7 Fluorescence microscopy images obtained with different filters, and with the

colours combined, of the micro-clusters formed in dispersion from PAA-450 homoge-

neously decorated particles and PDMAEMA/PLMA-JP-1 mm Janus particles (4 : 1). PAA

particles adsorb onto one hemisphere of the JPs in the samemanner as in the SEM images

in the dry state (on the right). Scale bars: 1 mm in the fluorescence microscopy images;

200 nm in the SEM images.
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opening more perspectives for the applications of the assembled micro-clusters.

The obtained results therefore represent a generalized assembly route for the

large-scale engineering of tunable micro-cluster architectures using the bottom-

up approach. Furthermore, the spatially separated functionalities of the asym-

metric Janus particle-based micro-clusters allow their further assembly into

complex hierarchical constructs, which may potentially lead to the design of

materials with tailored plasmonics and optical properties.
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