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Introduction

Natural killer (NK) cells are important effectors of the innate 

immune system belonging to the recently defined family of ‘innate 

lymphoid cells’ [1, 2]. They develop in the bone marrow from com-

mon lymphoid progenitors and are generally characterized by sur-

face expression of the neural cell adhesion molecule CD56 

(NCAM) and lack of expression of the T-cell receptor CD3. NK 

cell cytotoxicity is tightly regulated by an array of surface receptors 

with inhibitory or activating signaling functions in a non-major 

histocompatibility complex(MHC)-restricted manner. Since anti-

gen priming is not required for NK cell action, these cells are able 

to rapidly kill transformed cells. Attacks against healthy tissues, on 

the other hand, are prevented through human leukocyte antigen 

(HLA) class I ligand-induced effector inhibition. Thus, NK cells 

are able to distinguish ‘self’ from ‘non-self’. Consequently, tumor 

cells or virally infected cells, which frequently down-regulate HLA 

expression levels to escape a T-cell response become targets for NK 

cell lysis due to ‘missing self’. Classical HLA-A, HLA-B, and 

HLA-C molecules are cognate ligands for an allelic family of NK 

cell receptors, termed killer cell immunoglobulin-like receptors 

(KIRs). The number and kind of KIR family genes define the KIR 

haplotype of an individual. However, KIR genes are inherited inde-

pendently from the MHC class I genes, and not every NK cell in 

the population expresses the entire KIR repertoire. To ensure ‘self-

tolerance’, NK cells are ‘educated’ or ‘licensed’ during their devel-

opment [3]. They gain functional competence through a matura-

tion process involving interactions between KIR receptors and 

their respective HLA ligands. Importantly, a lack of such interac-

tions, in the absence of inhibitory receptors or a matching ligand, 

leaves such cells hypo-responsive [4]. NK cells express another im-

portant inhibitory receptor, the heterodimer CD94 / natural killer 

group (NKG) 2A. NKG2A binds to the non-classical MHC class I 

molecule HLA-E. Interestingly, approximately 13% of circulating 

peripheral blood NK cells seems to lack both inhibitory KIRs and 
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Summary
Clinical application of natural killer (NK) cells against leu-
kemia is an area of intense investigation. In human leu-
kocyte antigen-mismatched allogeneic hematopoietic 
stem cell transplantations (HSCT), alloreactive NK cells 
exert powerful anti-leukemic activity in preventing re-
lapse in the absence of graft-versus-host disease, par-
ticularly in acute myeloid leukemia patients. Adoptive 
transfer of donor NK cells post-HSCT or in non-trans-
plant scenarios may be superior to the currently widely 
used unmanipulated donor lymphocyte infusion. This 
concept could be further improved through transfusion 
of activated NK cells. Significant progress has been 
made in good manufacturing practice (GMP)-compliant 
large-scale production of stimulated effectors. However, 
inherent limitations remain. These include differing 
yields and compositions of the end-product due to donor 
variability and inefficient means for cryopreservation. 
Moreover, the impact of the various novel activation 
strategies on NK cell biology and in vivo behavior are 
barely understood. In contrast, reproduction of the third-
party NK-92 drug from a cryostored GMP-compliant 
master cell bank is straightforward and efficient. Safety 
for the application of this highly cytotoxic cell line was 
demonstrated in first clinical trials. This novel ‘off-the-
shelf’ product could become a treatment option for a 
broad patient population. For specific tumor targeting 
chimeric-antigen-receptor-engineered NK-92 cells have 
been designed.
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NKG2A expression. Thus, a minor fraction of peripheral blood NK 

cells remains hypo-responsive [5]. 

It is now also well established that additional signals, mediated 

through activation receptors, are imperative to induce a NK cell 

cytolytic attack. Important activating receptors include additional 

NKG2 group members, the homodimer NKG2D and the heterodi-

mer CD94/NKG2C and furthermore the natural cytotoxicity re-

ceptors (NCRs) NKp30, NKp44, and NKp46. Among the ligands 

recognized by activating receptors, known to date, stress-induced 

ligands expressed by distressed cells play an important role. 

NKG2D for example binds to non-classical MHC molecules, the 

major histocompatibility complex class I chain-related protein A 

(MICA) A and MICB and UL16-binding proteins (ULBPs). ULBPs 

have been detected on different tumors, including leukemia [6]. 

Another group of activating receptors comprises activating vari-

ants of KIR receptors, also referred to as aKIRs [7]. A promising 

role for aKIRs in preventing disease relapse in transplant patients 

with leukemia has been recently discovered [8].

NK cells have been exploited as immunotherapeutic agents 

since several decades [9, 10]. Their spontaneous cytotoxicity, po-

tentially directed against a broad range of malignancies and infec-

tious diseases (‘non-self’), renders NK cells promising candidates 

for clinical applications. In this review, we summarize work done 

on NK cells and leukemia, starting from the role of NK cells in im-

mune surveillance against leukemogenesis and their anti-leukemic 

activity in preventing relapse post allogeneic transplant. We then 

review the results of clinical studies using NK cells as adoptive 

therapy and emerging novel strategies exploiting NK cells in ther-

apy of leukemia.

Association between KIR-HLA and Leukemia

KIR gene polymorphism may play a role in predisposition to 

leukemia. This has in particular been observed in acute lympho-

blastic leukemia (ALL). One case-control study in Canadian chil-

dren with and without B-cell ALL (B-ALL) showed that harboring 

a higher number of activating KIR genes is associated with reduced 

risk for developing B-ALL in these children [11]. Another study 

involving 320 pediatric B-ALL patients revealed that expression of 

the HLA-C-encoded supertypic epitope C2, which constitutes a 

high-affinity ligand for the inhibitory NK cell receptor KIR2DL1, 

was significantly increased in such patients [12]. A correlation 

could be established between increasing numbers of C2 alleles and 

a higher incidence of late relapse (>2.5 years). Thus, interaction of 

KIRs with HLA-C in NK cell immunosurveillance poses a risk fac-

tor in childhood ALL [12, 13]. Such association has also been re-

ported for acute myeloid leukemia (AML), chronic myeloid leuke-

mia (CML) and chronic lymphocytic leukemia (CLL), where a sig-

nificantly higher frequency of the inhibitory KIR phenotype, re-

lated to the high prevalence of the inhibitory KIR2DL2, was found 

in leukemic patients compared to controls [14]. These observations 

suggest a possible role of NK surveillance in leukemogenesis.

NK Cells and Hematopoietic Stem Cell  
Transplantation for Leukemia

Hematopoietic stem cell transplantation (HSCT) is nowadays a 

well-established medical treatment option for hematologic malig-

nancies, including the 4 main leukemia types ALL, AML, CLL, and 

CML [15]. Allogeneic HSCT (allo-HSCT) has curative potential es-

sentially through the immune-mediated graft-versus-leukemia 

(GvL) effect [16]. In contrast to total-body irradiation or chemo-

therapies, the immune effectors also eradicate malignant stem cells, 

thus minimizing the risk for disease relapse. However, its major 

complication is graft-versus host disease (GvHD) caused by allore-

active T cells attacking healthy host tissues [15].

The role of NK cells in allo-HSCT was first observed in haplo-

identical transplants, which involved extensive T-cell depletion of 

three-loci mismatched hematopoietic stem cell grafts, thus ena-

bling successful transplantation across the MHC barrier. In the ab-

sence of drugs given for GvHD prophylaxis, together with ‘mega-

doses’ of T-cell-depleted grafts, NK cells rapidly recovered and 

played an important role in immune reconstitution as well as ex-

erted powerful anti-leukemic activity [17]. In a landmark study in 

2002, Velardi’s group demonstrated the role for donor-versus-re-

cipient NK cell alloreactivity in transplantation outcome [18]. 

Donor NK cell alloreactivity protected 57 AML and 35 ALL pa-

tients against GvHD and graft rejection in haplotype-mismatched 

family donor transplantations. Most importantly, KIR ligand in-

compatibilities in graft-versus-host direction reduced the probabil-

ity of AML disease relapse at 5 years to 0%, compared to 75% in 

patients where HLA class I alleles matched the donor KIR reper-

toire. The probability of event-free-survival at 5 years increased 

from 5% in the absence of KIR ligand incompatibilities to 60% in 

their presence. However, no such benefits were observed in ALL 

patients. Lack of ALL susceptibility to NK cell killing is consistent 

with in vitro and in vivo findings [19, 20] and is most likely a con-

sequence of missing activating ligands [21]. Furthermore, the size 

of the alloreactive NK cell subset is of relevance. Thus, the KIR 

gene polymorphism needs to be taken into account for the selec-

tion of the best fitting stem cell donors [13]. The field of haploiden-

tical transplantations is rapidly growing and may likely become a 

leading treatment platform in the near future [22].

One interesting finding indirectly supporting the anti-leukemic 

activity of NK cells post allo-HSCT was the observation that pa-

tients who developed cytomegalovirus (CMV) reactivation/infec-

tion post allo-HSCT have lower relapse rates [23]. Patients experi-

encing CMV reactivation among 674 allogeneic HSCT recipients 

were protected from leukemia relapse and experienced superior 

disease-free survival [24]. Similar findings were reported from a 

study involving 101 ALL and 42 AML pediatric patients [25]. In 

these patients, NK cells matured rapidly into cytotoxic CD56dim 

KIR+ NKG2A– cells as a result of response to stimulatory signals 

provided by CMV. In particular there was significant expansion of 

a NK cell subset with high surface levels of the CD94/NKG2C re-

ceptor [23, 26]. The development into ‘memory’-like long-lived 

NK cells with adaptive immune properties was indicated.
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NK Cell Infusion as Adoptive Immunotherapy for 
Leukemia

Based on the above observations on the anti-leukemic activity of 

NK cells, it is logical to consider adoptive transfer of NK cells for 

treatment of leukemia. In contrast to unmanipulated donor lym-

phocyte infusion (DLI), NK cells have the potential to exert potent 

anti-tumor effects toward susceptible leukemias in HLA-haploi-

dentical allo-HSCT and yet GvHD and graft rejection could be ob-

viated through NK cell lysis of residual host dendritic and T cells. 

Non-hematopoietic healthy host tissues are spared from NK allore-

activity likely accounted by a lack of activating ligands [27, 28].

Donor NK cell infusion has been explored in place of the cur-

rently widely practiced unmanipulated DLI, which may be superior 

especially in donor-recipient combinations where NK alloreactivity 

may be expected to exert anti-leukemic effect. Donor NK cell infu-

sion following HSCT could potentially reduce relapse and protect 

from opportunistic viral infections. NK-DLI was first demon-

strated to be safe and feasible in a pilot study in 5 high-risk myeloid 

leukemia patients (4 AML, 1 CML). NK cells were purified from 

donor leukapheresis products through a two-step immunomag-

netic enrichment process using CD3 T-cell depletion followed by 

CD56 NK cell selection. A median NK cell dose of 1.61 × 107/kg 

NK cells post HSCT was well tolerated, and no GvHD was ob-

served [29]. Similar results were obtained in 30 patients receiving 

up to 3 infusions of 1-step CD56 immunomagnetically selected NK 

cells 8 weeks after transplant [30]. NK-DLI can also be generated 

from granulocyte-colony-stimulating factor-mobilized CD34+ 

progenitor cells. Six weeks culture of magnetically enriched CD34+ 

cells yielded a median dose of 9,28 × 106/kg NK cells from 1 leuka-

pheresis product. Infusion without further T-cell depletion (1% 

contamination) into 14 leukemia patients (11 AML, 1 ALL and 2 

myelodysplastic syndrome patients) 6–7 weeks post-transplant was 

generally well tolerated. GvHD did occur in a fraction of patients, 

which might have been a late consequence of the haplo-HSCT [31]. 

In a 2-center clinical phase II trial, a median dose of 1,21 × 107/kg 

of purified NK cells was given to 16 high-risk leukemia patients on 

days +3, +40, and +100 after transplantation. In a 5.8-year follow-

up, 4/16 patients were still alive [32]. Optimal dosage and timing of 

application to enhance the NK cell-mediated anti-tumor effect will 

need to be determined in subsequent studies.

Extrapolating the theoretical benefit of NK alloreactivity to the 

non-transplant setting is conceptually appealing, with the possibil-

ity of further leukemic control by cell-mediated mechanisms with-

out the toxicity of transplant. Feasibility of this concept was clearly 

demonstrated in the NKAML pilot study involving 10 AML pedi-

atric patients in first complete remission after lymphodepleting 

chemotherapy [33]. A median haploidentical NK cell dose of 2.9 × 

107 cells/kg stimulated with an adjuvant IL-2 therapy was well tol-

erated. NK cells expanded and engrafted transiently giving a 2-year 

event-free survival of 100% [33]. In 13 elderly high-risk AML pa-

tients, alloreactive effectors could be detected in the blood stream 

at day 10 after transfusion of highly purified NK cells and in some 

cases in the bone marrow [34]. Strikingly, expansion of adoptively 

transferred alloreactive NK cells in the patient has also been de-

scribed as a consequence of elevated endogenous levels of the acti-

vating cytokine IL-15 [35]. In this study, there were no GvHD 

complications, and 5 out of 19 AML poor-prognosis patients en-

tered complete remission. Further measures such as depletion of 

immunosuppressive T regulatory cells through IL-2 diphteria fu-

sion protein treatment in addition to lymphodepleting chemother-

apy regimens has been successful in promoting transient in vivo 

expansion of the mismatched NK cells, resulting in improved re-

mission and 1-year disease-free survival in patients with refractory 

AML [36]. Additional manipulation of haploidentical NK cells 

such as priming with tumor lysate has been studied in a phase I 

clinical trial in high-risk AML patients, with possibly some clinical 

efficacy observed [37]. One concern with mismatched NK cells is 

the potential risk of marrow aplasia, presumably due to alloreactiv-

ity against the mismatched host hematopoietic cells, which has 

been observed in cases where there were prolonged NK cell en-

graftment [33, 37]. Exploration of alloreactive NK cells in non-

transplant scenarios is also being studied for the treatment of other 

hematological malignancies such as lymphoma [38] and multiple 

myeloma [39].

Activated NK Cells for Leukemia Treatment

The anti-leukemic potency of NK cells may be further aug-

mented through transfusion of activated effectors. A phase I/II 

clinical comparison between IL-2-activated NK-DLI (aNK-DLI) 

and unstimulated NK-DLI in pediatric leukemia patients pointed 

toward an enhanced effector trafficking potential for activated NK 

cells [40]. Thus, activated NK cells may exert greater immunother-

apeutic effects compared to unstimulated cells. Recent advances in 

cell selection technologies and cell activation modes as well as re-

fined culture media allow routine good manufacturing 

practice(GMP)-compliant large-scale productions of stimulated ef-

fectors [41–47]. Clinical NK cell doses, generally aimed for 5 × 106 

NK cells/ kg to 107 NK cells/kg or even up to 108 NK cells/kg, can 

be reached [41, 44, 47, 48]. However, significant donor variability 

exists with regard to the achievable NK cell harvest and the compo-

sition of the end-product in terms of NK cell subpopulations [41, 

48]. Automatization of NK cell expansions in specifically designed 

bioreactors, such as G-Rex-flasks (Wilson Wolf Manufacturing, 

Minneapolis, MN, USA) or the WAVE bioreactor (GE Healthcare 

Life Sciences, Piscataway, NJ, USA) is a means to further facilitate 

the NK cell expansion process and increase product yield [44, 47, 

49]. Sources other than leukapheresis products, such as umbilical 

cord blood, are also being tested as starting material [50].

A crucial factor in these often complicated production protocols 

is the means by which activation of the NK cell is attained. Various 

very diverse methods have been described. These include for exam-

ple addition of cytokines, such as IL-2 or IL-15 [9, 45, 51, 52], trig-

gering through a lethally irradiated genetically modified feeder cell 

line expressing NK stimulatory 4-1BB ligand and IL-15 (K562-

mb15-41BBL) [53], through an irradiated Epstein-Barr virus-
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transformed B-cell line EBV-TM-LCL [54], or a tumor cell lysate 

from CTV-1 leukemia cells (DSMZ) [37]. Furthermore, alloreac-

tive single-KIR-NK selection and expansion to more specifically 

target HLA-mismatched leukemic blasts have also been described 

[55]. Nonetheless, we are only at the beginning of our understand-

ing on how these often very complex NK cell manipulations alter 

NK effector biology and in vivo behavior. For instance, notable dif-

ferences in genetic profiles of K562-mb15-41BBL-stimulated cells 

compared to controls were described [53]. Also, changes in surface 

receptor expression, such as upregulation of activating receptors 

triggered by cytokines, were found [44, 56]. Most recently, severe 

acute GvHD was reported in 5 of 9 post-HSCT patients – likely as a 

consequence of aNK-DLI, which was generated employing IL-15 

plus 4-1BBL(+)IL-15Ralpha(+) artificial antigen-presenting cells as 

stimulants [57].

Another hurdle is the observed functional impairment of cryo-

preserved expanded NK cells after thawing. Short-term IL-2 treat-

ment was necessary for the cells to reinstate potency [47, 54]. Yet, 

product manipulation after completed release testing is non-com-

pliant with the stringent quality control requirements. Batch stor-

age of a product with quality control tests done for each batch be-

fore release, however, will satisfy these prerequisites and make it 

possible for repeated NK effector infusions or cell banking.

NK-92 – A Third-Party NK Cell Drug

GMP-compliant banking of a clinical NK cell product promises 

to revolutionize cellular therapy into an ‘off-the-shelf’ product, a vi-

sion that has so far only been tested for the IL-2-dependent perma-

nent NK cell line NK-92 (NantKwest, Culver City, CA, USA) [58]. 

The cryopreserved master-cell bank tested negative for infectious 

blood pathogens, viral particles as well as bacterial, fungal or myco-

plasma contaminants [59]. NK-92 has been extensively character-

ized for its phenotypical and functional properties. It is distin-

guished by a superior cytotoxic potential and a lack of almost all 

inhibitory KIR receptors [19, 60, 61]. Optimized culture conditions 

have been established [62]. After initial cell inoculation of culture 

bags, no further media additions were required and clinical doses 

could be yielded within a few days [59, 63, 64]. A maximal expand-

Table 1. Completed and ongoing clinical NK-92 (activated NK, formerly NeukoplastTM) trials

Reference Clinical trial  

phase

Diseases Number of  

patients

NK-92 dose

(× 109/m2 )

Total number of  

NK-92 cells  

infused (× 109) 

Responses / 

OS, days 

T. Tonn  

et al. [59, 63] 

phase I

single-center

advanced cancers: PNET, soft  

tissue sarcoma, rhabdomyosarcoma, 

osteosarcoma, CLL-transformed,  

adrenal carcinoma, SCLC, soft tissue 

sarcoma, medulloblastoma, colorectal 

cancer, NSCLC, B-NHL 

15 0.85–10 2.3–42.4 PD; MR; SD

OS: 13–801 

S. Arai et al. [65] phase I

single-center

advanced renal cell cancer or  

melanoma

12 0.1–3 max. 9  

(× m2 body surface) 

PD; MR; SD; 

MinR

OS: 101 to >1,450

ClinicalTrials.gov 

NCT00990717

phase I

single-center

hematological malignancies in  

relapse after autologous SCT:  

leukemia, lymphoma, myeloma,  

Hodgkin’s disease

study currently  

completing

estimated  

enrollment:

15

1–5 available upon  

final data  

collection; max. 54  

(× m2 body surface) 

available  

upon final  

data analysis

ClinicalTrials.gov 

NCT00900809

phase I

single-center

refractory or relapsed AML study ongoing

estimated  

enrollment: 18

1–5 available upon  

final data  

collection; max. 9  

(× m2 body surface) 

available  

upon final  

data collection 

and analysis

ClinicalTrials.gov 

NCT02465957

phase II

multi-center

stage IIIB MCC and stage IV  

MCC

study currently  

recruiting

estimated  

enrollment: 24

2 available upon  

final data  

collection; max. 32  

(× m2 body surface) 

available  

upon final  

data collection 

and analysis

OS = Overall survival; PD = progressive disease; SD = stable disease; MR = mixed responses; MinR = minor responses; PNET = primitive neuroectodermal tumor; 

CLL = chronic lymphocytic leukemia; SCLC = small cell lung cancer; NSCLC = non-small cell lung cancer; NHL = non-Hodgkin lymphoma; SCT = stem cell 

transplantation; AML = acute myeloid leukemia; MCC = Merkel cell carcinoma.
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able dose of 1010 cells/m2 body surface was considered achievable in 

the established culture system [63]. Clinical phase I/II testing also 

involving leukemia patients, among other diseases, demonstrated 

feasibility and safety for the treatment with irradiated NK-92 cells. 

A maximum dosage of 1010 NK-92 cells/m2 was given [59, 63, 65]. 

Table 1 provides an overview of completed and ongoing clinical tri-

als involving NK-92. Future trial results are warranted for clinical 

efficacy evaluation. This novel concept for clinical usage of perma-

nent NK cell lines may further be extended to other suitable candi-

dates. Studies for such purpose have so far only been initiated with 

the highly cytotoxic NK cell line KHYG-1, which could potentially 

qualify as an alternative in the future [66–69]. Moreover, NK-92 

cells designed to express the Fc receptor CD16 (FcgammaRIIIa) are 

enabled to kill through the mechanism of antibody-dependent cell-

mediated cytotoxicity [70, 71], with the prospective to augment an-

tibody therapy in the future. To further increase efficacy and direct-

ing it specifically to the tumor site, NK-92 has been modified to ex-

press a number of different chimeric antigen receptors (CARs). 

These include targeting CD19 or CD20 to overcome resistance to 

B-cell leukemia [72, 73] among others [74–77]. CD19-CAR-engi-

neered NK-92 cells, for instance, effectively killed CD19-expressing 

B-precursor leukemia cell lines and lymphoblasts from leukemia 

patients, which were otherwise resistant or showed only minor sen-

sitivity to unmodified NK-92 cells [78]. Another excellent example 

for selective tumor targeting is the NK-92 cell line engineered to 

express an ErbB2-specific CAR, which has recently demonstrated 

potent anti-glioblastoma activity in preclinical in vitro and in vivo 

models [79]. The potency of CAR-expressing effector cells has been 

demonstrated by the highly active autologous CD19 CAR T cells 

(CTL019), which showed striking efficacy in CLL and ALL patients 

[80, 81]. Long-term remission could be shown in large patient co-

horts [82]. However, novel effective strategies to manage severe tox-

icities associated with CAR-T-cell therapies, such as cytokine re-

lease syndrome, are warranted [83]. Multiplex genome-edited 

large-scale manufacture of universal T cells may provide a means in 

overcoming limitations of the current personalized CAR-T-cell 

therapies thereby broadening applicability [84]. A major advantage 

for the NK-92 drug remains in its ease of clinical-scale production, 

allowing keeping operational costs at a minimum [59, 64]. Thus, 

clinical testing of the novel NK-92-CAR products is imperative to 

estimate their true potential and for decision-making among the al-

ternative treatment options.

Quite naturally a significant role for transfusion services in this 

field of new cellular therapies arises, considering their long-stand-

ing expertise in classical blood productions, quality control, storage 

facilities and transport logistics, and with regard to their extensive 

clinical network [85, 86]. Thus, an association between blood cen-

ters and GMP-clean room facilities would be of benefit, since pro-

duction steps of these novel cell preparations are not fully re-

stricted to closed systems [87]. However, high operational expendi-

tures for such facilities need to be taken into account [86]. Market-

ing of such ‘advanced medicinal products’, is a complex process 

which in Europe is overseen by the European Medicines Agency 

[85, 88]. Hence, practicability and cost factors pose limits to the 

implementation of such new types of personalized medicines in 

blood centers. It is conceivable that banking of a standardized 

third-party NK cell product, such as NK-92, may be more worka-

ble with broader applicability.

Conclusions

The field of NK cell therapy against leukemia is emerging, and 

much progress has been made. However, still little is known to date 

about the fate of NK cells after transfusion, their persistence in the 

patient, and the duration of engraftment. The risks associated with 

clinical usage of artificially activated NK cells require careful evalu-

ation, and close patient monitoring after infusion is warranted. 

Costs for the often very complex GMP manufacture and regulatory 

matters limit application of advanced-therapy medicinal NK cell 

products to a wider patient population and involvement of transfu-

sion centers in the production process. Clinical applications and 

stable engineering of potent NK cell lines, such as NK-92, could 

pave the way to standardized leukemia treatments and possibly 

also to those in solid tumors. As with the various other forms of 

adoptive cellular therapy currently being intensively studied, the 

exact place for NK cells in the treatment armamentarium for leuke-

mia remains to be defined but prospect appears promising.
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