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ABSTRACT 

In standard pneumatics, the available signals for data analytics are very limited. As a rule, no 

continuous status information is available. Usually only the reaching of the end position is indicated - 

by means of a digital signal of a proximity sensor. This paper examines whether these limited data can 

be used to derive usable and useful information for predictive maintenance. Pneumatic clamps in body-

in-white construction were chosen as application example. The paper describes a continuous run to 

investigate the basic feasibility of predictibility. In the following chapters, possibilities for error 

classification are discussed. Finally, the implementation of the findings in a field test is described.  
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1. INTRODUCTION AND PROBLEM DE-
SCRIPTION 

In the course of digitization the automation 

world, predictive maintenance is becoming more 

and more important. Thanks to continuous 

measurement and analysis, predictive main-

tenance makes it possible to forecast the re-

maining service life of machine components [1]. 

One of the most promising approaches to 

realize predictive maintenance is machine 

learning. Machine learning deals with algorithms, 

that learn from data and predict outcomes that 

will occur with a certain probability [2].  

Figure 1: Typical sensor equipment in pneumatics: 

Linear drives DGC with two proximity 

sensors SMT. 

This paper focuses on the question, whether a 

maintenance requirement for pneumatic standard 

systems using a minimum of sensors can be 

predicted with the help of machine learning 

algorithms. A double acting cylinder is normally 

equipped with an proximity sensor in every end 

position (cp. Figure 1). Does such a system with 

a minimum of sensors generate enough data, 

containing sufficient information about the health 

state of the underlying process and component so 

that is applicable for predictive maintenance? 

From the perspective of control engineering, 

this is rather not possible. A system consisting of 

two limit switches cannot be observed.  

A system is called observable if the initial 

value of the system state at the beginning of the 

time interval can be calculated from the temporal 

course of the output and input signals in a finite 

period of time [3]. If this holds for any initial state 

and not only for a limited set of initial states, the 

system is called complete observable [3, 4]. 

(Föllinger [4] supplements this definition by a 

"no matter where this [initial state] lies"). 

It is obvious that this definition is not fulfilled 

by a pneumatic cylinder with only two proximity 

sensors. If, for example, the initial state is 

somewhere in the motion phase, the first infor-

mation one receives about the system state is 

reaching the next end position - i.e. location 

information at a defined point in time. With this 

information however, it is not possible to 

calculate in which position the cylinder has 

started or even which pressures were prevailing 

in the cylinder chambers at the start time. An 
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observability of the considered pneumatic system 

is therefore not given. The “free flight” between 

the end positions without any sensor information 

makes observation impossible. 

However, it should be noted that this definition 

of observability is based on a classical control 

engineering understanding of a system model. 

This assumes, that state variables such as pressure 

or position can be described continuously over 

time. Another type of model, in which e.g. only 

the average travel speed is described, can be 

derived from the existing digital signals. This 

raises the question whether a prediction of 

possible failures is possible based on such 

rudimentary observability. 

To investigate this, chapter 2 describes the 

state of the art in predictive maintenance. In 

chapter 3, the selected application example - 

pneumatic clamps in body-in-white construction 

- is explained. Chapter 4 describes an endurance 

run with pneumatic clamps in order to fulfill the 

basic proof of predictibility. To generate useful 

information for maintenance personnel in 

addition to a simple "there is a risk of failure", 

chapter 5 deals with possibilities for fault locali-

zation. Finally, chapter 6 describes a field test in 

automotive production. The paper ends with a 

summary and outlook in chapter 7. 

2. STATE OF THE ART IN PREDICTIVE 
MAINTENANCE TECHNOLOGY 

Predictive maintenance is a subgroup of 

condition-based maintenance, in which known 

operating conditions, that can lead to condition 

changes, are preferentially monitored and 

corrected after detection with the objective of 

preventing machine failures. The changing 

operating conditions are identified by root cause 

analysis. Before faulty operating conditions can 

be diagnosed, anomalous process states and 

failures must be detected by comparing them to a 

normal reference condition (fault detection) 

[5, 6]. 

Subsequently the fault diagnosis identifies the 

type of the fault, localizes the fault in the system 

and quantifies the magnitude of the fault effect 

[5, 6]. 

Fault detection and fault diagnosis for 

pneumatic actuators using sensor systems is a 

well-known topic in scientific literature. In [7] the 

dynamic performance of an industrial globe 

control valve unit is monitored via a temperature 

sensor, a pressure transducer, a displacement 

sensor and a flow transmitter. For fault diagnosis 

they analyze waveform characteristics based on 

main statistical properties of the data, captured by 

the sensors. Subbaraj and Kannapiran investi-

gated fault detection in pneumatic actuator valves 

for cooler water spray systems in cement industry 

by using principle component analysis for input 

feature dimension reduction [8] and an artificial 

neural network (ANN) model for classification 

[8, 9]. Further investigations on fault detection 

for pneumatic actuators in control valves using 

ANNs are described in [10, 11]. In [12] three 

different types of cylinder leakages are con-

sidered by an ANN approach to predict the 

leakage orifice. The input features are captured 

by two proximity sensors, one working pressure 

sensor, two pressure transducers in each cylinder 

chamber and a differential pressure transducer for 

air flow determination. Mahmoud et al. [13] use 

sensor-detected acoustic emissions of micro-

structural changes in the material of pneumatic 

cylinders for condition monitoring. The average 

energy of the acoustic emission signal is used as 

metric for fault detection. None of these works 

investigated a minimal sensor use, consisting of 

only two proximity sensors at the end positions of 

a linear pneumatic cylinder towards the practi-

cability of predictive maintenance. 

Predictive maintenance is not only a relevant 

topic in the scientific world, also many 

companies have already presented solutions or 

offer corresponding products. Examples at 

component level are the monitoring of roller 

bearings [14], plastic plain bearings and drag 

chains [14] as well as pumps [16] or electric 

motors [16, 17]. What all these examples have in 

common is, that sensors are available for 

condition monitoring, some of which are even 

supplemented separately. An example is the 

addition of a sound sensor [18]. 

Pneumatic companies also have shown first 

examples for predictive maintenance, e.g. the 

monitoring of shock absorber functions or 

cylinder speeds based on an electro-pneumatic 

valve system [19]. In this case, only the digital 

information of a standard pneumatic system is 

used.  
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3.  APPLICATION EXAMPLE PNEUMATIC 
CLAMPS 

Pneumatic clamping systems were selected as an 

application example to investigate whether 

sufficient data is available in standard pneumatics 

that allow statements about the operating 

conditions of the drive system. Such clamps are 

widely used in body-in-white construction (cp. 

Figure 2). From a pneumatic point of view 

clamps are double acting cylinders with oval 

piston. The piston is part of a toggle joint 

mechanism (cp. Figure 3). 

Clamps are an interesting example, because 

the price pressure for such pneumatic 

components is very high. The willingness of 

automobile manufacturers to pay for additional 

sensor technology for the clamps tends towards 

zero. That’s why in the foreseeable future the 

minimum sensor technology will be installed 

only. On the other hand, a plant shutdown is very 

expensive for manufacturers due to the loss of 

production.  

Figure 2:   Pneumatic clamps in body-in-white 

construction [20]. 

Figure 3:   Structure of a pneumatic toggle level clamp. 

Furthermore, clamping units offer relatively 

clearly defined conditions: All clamps perform a 

very similar movement, the main differences in 

the clamps lie in the size, the angle range and the 

clamping arm used. Thus, the application 

example is very suitable for investigating and 

generalizing the feasibility of predictive main-

tenance for pneumatic linear actuators with a 

minimal sensor use.  

4. ENDURANCE TEST WITH CLAMPING 
UNITS 

In a first step, an endurance run was started in 

which a total of six clamps were tested until end 

of life (cp. Figure 4). The recorded data was used 

to determine whether any changes in the available 

data could be detected before a failure. And if so, 

how far in advance. 

In Figure 5 the corresponding circuit diagram of 

the endurance run is depicted. It shows that the 

six clamps are only controlled by three valves. 

The first valve switches one clamp, the second 

valve switches two clamps and the third valve 

switches three clamps. This is quite common in 

real body-in-white production. Here, one valve 

controls a number of 1 to 7 clamps. 

 

Only the valve shifting signal and the two signals 

from the proximity sensors are included in the 

signal evaluation for each clamp. Two times each 

for closing and opening the clamp can be derived 

from these three digital signals, thus in sum four 

times (cp. Figure 6). 

 

  

Figure 4: Picture of endurance test with six clamps. 
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 The reaction time is the time between the 

valve signal and leaving the first end position. 

 The travelling time is the time between 

leaving the first end position and reaching the 

second end position.  

 

The results of this endurance run can be 

summarized as followed: With a lead time of 2 to 

4 days changes occur in the four times described. 

As an example, Figure 7 shows the signal 

characteristics of the travelling times for closing 

(extracting of clamp) and opening (retracting of 

clamp) before failure. Minimum, maximum and 

mean values are given for each direction.  

The endurance run was operated at a higher 

frequency than actually occurs in a production 

line in automotive engineering. Thus, there is a 

chance to make a maintenance recommendation 

sufficiently early by monitoring the clamps. 

Furthermore, the results underline why a 

machine learning approach for clamp monitoring 

makes sense. Although the design was very 

similar for each clamp e.g., same installation 

position and same lever arm, there are individual 

times for each clamp which must be learned 

separately.  

 

Figure 5: Circuit diagram and data acquisition of endurance test. 

 

Figure 6: Time definitions. 
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5. FAULT CLASSIFICATION 

The endurance run has shown that one can 

(hopefully) derive information from the digital 

signals in time, that the operating conditions have 

changed compared to the normal process states at 

the beginning of data recording. The next step is 

to ask in the sense of fault diagnosis whether one 

can also read from the data what is the root cause 

of the changing in the operating condition be-

haveior. This aimed at fault localization and/or 

fault description, both of which can be helpful for 

targeted and faster maintenance.  

First of all, fault classification takes place at 

component level. Using known information from 

the circuit diagram, it can be concluded which of 

the components involved is out of order. If, for 

example, all clamps connected to the same valve 

extend with a delay, this is probably due to a 

cause affecting the whole pneumatic drive 

system, e.g., the valve, the pressure supply or 

leakage. If only one of the clamps extends with a 

delay, it is probably due to a problem with this 

specific clamp. 

Furthermore, fault classification is possible at 

function level of the clamp or the valve. To 

investigate this, a test bench with a single 

clamping unit was created (cp. Figure 8) where 

defined errors easily can be added to the system. 

This is a procedure well-known from condition 

monitoring investigations (cp. [6, 21, 22]). 

In the following subsections, two faults are 

described as examples: A leakage at the upper 

cylinder chamber (chapter 5.1) and a friction at 

the clamping arm (chapter 5.2). The conclusions 

of the test bench results are presented in chapter 

5.3. 

5.1. Leakage at the upper cylinder chamber 

Leakage is one of the well-known possible faults 

of pneumatic systems. Leakage can theoretically 

occur in all pneumatic components: In tubes, 

fittings, valves, one-way flow control valves and 

cylinders. In cylinders (and valves), a distinction 

can be made between internal leakage from one 

 

Figure 7: Exemplary signal characteristics of the travelling time in case of failure of a clamp. 

 

Figure 8: Test bench to add defined errors. 
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chamber to another and external leakage from 

one chamber to the environment.  

As an example, external leakage at the upper 

cylinder chamber of a clamp is investigated 

below. For this purpose, a precisely adjustable 

throttle is integrated between the cylinder 

chamber and the associated throttle check valve, 

which vents the chamber into the environment 

(cp. Figure 9). For the measurements, the throttle 

is set to a desired leakage flow at a given inlet 

pressure. 

The changes in the four times considered for 

different leakages are shown in Table 1. The 

results are explained below. 

In the open position of the clamp (cp. 

Figure 9), the upper cylinder chamber is 

connected to the supply pressure, the lower 

cylinder chamber to the environment. The added 

leakage slightly reduces the pressure in the upper 

cylinder chamber in this position. If the valve is 

switched, the upper cylinder chamber is 

exhausted. The leakage causes a larger amount of 

air flowing out of the chamber, the pressure drop 

is faster. Thus, the cylinder movement starts 

faster, i.e. the reaction time when closing is 

reduced. During the movement, the leakage acts 

here like a larger opening of the throttle check 

valve, too. The movement time when closing the 

clamp is therefore also reduced. 

In the closed clamping position (cp. Figure 9), 

the upper cylinder chamber is exhausted, and the 

lower chamber is filled with supply pressure. 

After shifting the valve, the upper chamber must 

be filled with pressure. This pressure build-up is 

slowed down due to the leakage, so the reaction 

time during opening is slightly increased. 

However, as long as the leakage remains limited, 

the travelling speed hardly changes. Because of 

the supercritical flow through the exhaust air 

throttle, the movement is initially independent of 

fluctuations in the drive pressure. If, however, the 

leakage in the upper chamber is increased to such 

an extent that the cylinder breaks away much 

later, the chamber pressure in the lower chamber 

drops further and further. This significantly 

increases the movement speed at the beginning of 

the return stroke, which results in a shorter 

travelling time.  

Table 1: Influence of a leakage at the upper cylinder chamber on reaction and travelling time (normalized)  

 closing opening 

 reaction time travelling time reaction time travelling time 

leakage 0 % 100 % 100 % 100 % 100 % 

leakage 6 % 94 % 93 % 103 % 99 % 

leakage 36 % 77 % 72 % 111 % 97 % 

leakage 100 % 62 % 51 % 137 % 89 % 

 

Table 2: Influence of friction at the clamping arm on reaction and travelling time (normalized)  

 closing opening 

 reaction time travelling time reaction time travelling time 

friction 0 % 100 % 100 % 100 % 100 % 

friction 25 % 136 % 97 % 99 % 107 % 

friction 50 % 216 % 99 % 104 % 115 % 

friction 100 % 225 % 133 % 115 % 130 % 

 

Figure 9: Leakage at the upper cylinder chamber. 
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5.2. Friction at the clamping arm 

Changes in friction behavior is a second category 

of possible defects that is important in practice. 

Changes in friction can essentially occur at the 

valve spool or at the dynamic seals of the cylinder 

(clamp). Furthermore, the clamping arm can 

grind, which corresponds to increased friction on 

the load side of the toggle lever gear. This case is 

described in more detail now. On the test bench, 

a screw is placed on the clamping arm so that it 

grinds past the screw (cp. Figure 8). Even if this 

looks rather rough, a grinding of the clamping 

arm is still a case of damage, which occurs in rare 

cases in automobile production.  

It should be noted that the change in friction 

force cannot be adjusted as precisely with the test 

setup as the change in leakage. For this purpose, 

a force sensor and an additional drive would have 

had to be integrated. This effort has not been 

made. Accordingly, the results of the friction 

change shown in Table 2 are to be considered 

rather qualitatively. 

The increased friction on the clamping arm has 

the greatest effect at the start of the closing 

movement of the clamp. The closing movement 

does not begin until the increased static friction 

has been overcome. In order to generate the 

necessary pressure difference, a reaction time that 

increases with increasing friction is necessary. 

With lower friction forces, the travelling time is 

then initially independent of the friction; only 

with very high friction forces does the travelling 

time increase. This is the result of the super-

critical pneumatic movement, which is at first 

approximation independent of the load. 

The influence on the reaction time during 

opening is considerably lower than during clos-

ing. At the beginning of the opening movement, 

the main load of the drive is the overcoming of 

the toggle lever. Therefore, noticeable changes in 

reaction times only occur when friction forces are 

high. The following movement shows a clear 

dependence: the higher the friction, the longer the 

travelling time. The difference between opening 

and closing travelling times can be explained, 

among other things, by the different influence of 

the weight force depending on the direction of 

movement. This means that the mounting situa-

tion of the clamp has a relevant influence on the 

travelling times. 

5.3. Conclusion of the test bench results 

As the description of the two test cases leakage at 

the upper cylinder chamber and increased friction 

at the clamping arm have shown, the introduced 

errors have a very different effect on the four 

considered times resulting from the few available 

digital signals. The result is an error-typical 

pattern in the times that can be used for predictive 

maintenance. In the same way as for the two 

example errors, a pattern can also be identified 

for other faults such as leakage or friction 

elsewhere, obstructed throttle or changes in 

supply pressure. Fortunately, these are indeed 

specific patterns that can be explained using 

mechanical and pneumatic expertise.  

The example also shows, that condition-based 

monitoring with limit and trend checking of just 

single sensor signals cannot provide an appro-

priate and exact fault discrimination for fault 

diagnosis. 

Due to the large number of faults, the intensity 

of the effect depending on the degree of error as 

well as the fault interdependencies between 

various sensor signals, more complex methods of 

fault detection and diagnosis are needed to 

describe the anomaly and failure behavior. And 

this is exactly what machine learning can guaran-

tee. The strength of this data analytic techniques 

lies in learning complex patterns and assigning 

them to normal and anomalous states. 

6. FIELD TRIAL 

Due to the promising results, a pilot project was 

started at a car manufacturer to investigate the 

feasibility of the laboratory results in practice. 

Details of the results are subject to confi-

dentiality. The tests are still ongoing. In the 

following section, however, the concept for 

implementing data acquisition and machine 

learning can be briefly discussed. 

Acquiring data can be done on several system 

levels with a different granularity (see Fi-

gure 10). On the very lowest level – the field 

level – data like shifting time of limit switches 

and valves can be directly read from a valve 

terminal via the field bus. This could be a solution 

for retrofitting scenarios where the PLC should 

not be modified. If this restriction does not exist, 

it is also possible to directly contact the PLC for 

acquiring the necessary data. In both cases, a so-

called edge-device or IoT-Gateway is typically 
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capable in receiving this data. On the other hand, 

a plant PC is typically installed close to a machine 

cell which receives data from the PLC.  

With this in mind, two possible targets exist 

for executing analytic models, i.e. an edge-

device/IoT-gateway or the plant PC. 

While the edge-device can be installed without 

interference of the machine, some software 

installations are necessary at the plant PC. In our 

approach, we distinguish between model execu-

tion and training. The training phase requires 

large data batches with historical data and the 

model execution typically has real-time con-

straints and requires streaming data from the 

machine. Therefore, the configuration and train-

ing of analytic models is implemented on an engi-

neering PC or in a cloud platform. This has the 

advantage that only during a training phase data 

needs to be sent to the cloud and later on, only 

analytic results from e.g. the edge-device will be 

transmitted. This reduces the cost for data 

transmission because the high-frequent traffic is 

processed close to the machine. 

Once the model is trained and loaded to the 

computational resource close to the machine, it 

can be executed and will produce results. In such 

a setup, several methods exist for providing 

results to the operator:  

 

1. via dashboards in a cloud,  

2. via a PLC to an MES system or 

3. via a panel installed to the machine cell. 

7. CONCLUSION AND OUTLOOK 

The paper shows that even with the limited 

number of data from a minimum of sensor use in 

standard pneumatics, valuable information about 

the operation process states can be derived. The 

acquired data is sufficient for accurate fault 

detection and fault diagnosis. An endurance run 

with pneumatic clamps has shown that changes 

can be seen in the reaction and travelling times 

about 2 to 4 days before failure. In addition, a test 

bench was used to prove that typical faults in the 

pneumatic system lead to different patterns in the 

four calculated times. Thus, these data can be 

used for a more detailed fault description and 

localization. Finally, a current field test was 

described in which the findings are tested in 

practice. If the practical test is successful, the 

predictive maintenance of the clamps will be 

commercialized.  

 

Figure 10: Concepts for data acquiring. 
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