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Abstract

Physical systems are usually not closed and insight about their internal structure is exper-

imentally derived by scattering. This is efficiently described by resonance eigenfunctions of

non-Hermitian quantum systems with a corresponding classical dynamics that allows for the

escape of particles. For the phase-space distribution of resonance eigenfunctions in chaotic

systems with partial and full escape we obtain a universal description of their semiclassical

limit in terms of classical conditional invariant measures with the same decay rate. For partial

escape, we introduce a family of conditionally invariant measures with arbitrary decay rates

based on the hyperbolic dynamics and the natural measures of forward and backward dynam-

ics. These measures explain the multifractal phase-space structure of resonance eigenfunctions

and their dependence on the decay rate. Additionally, for the nontrivial limit of full escape we

motivate the hypothesis that resonance eigenfunctions are described by conditionally invariant

measures that are uniformly distributed on sets with the same temporal distance to the quan-

tum resolved chaotic saddle. Overall we confirm quantum-to-classical correspondence for the

phase-space densities, for their fractal dimensions, and by evaluating their Jensen–Shannon

distance in a generic chaotic map with partial and full escape, respectively.

Zusammenfassung

Typische physikalische Systeme sind nicht geschlossen, sodass ihre innere Struktur mit

Hilfe von Streuexperimenten untersucht werden kann. Diese werden mit Hilfe einer nicht-

Hermiteschen Quantendynamik und deren Resonanzeigenzuständen beschrieben. Die dabei

zugrunde liegende klassische Dynamik berücksichtigt den Verlust von Teilchen. Für die semik-

lassische Phasenraumverteilung solcher Resonanzeigenzustände in chaotischen Systemen mit

partieller und voller Öffnung entwickeln wir eine universelle Beschreibung mittels bedingt

invarianter Maße gleicher Zerfallsrate. Für partiellen Zerfall stellen wir eine Familie bed-

ingt invarianter Maße mit beliebiger Zerfallsrate vor, welche auf der hyperbolischen Dynamik

und den natürlichen Maßen der vorwärts gerichteten und der invertierten Dynamik aufbauen.

Diese Maße erklären die multifraktale Phasenraumstruktur der Resonanzzustände und deren

Abhängigkeit von der Zerfallsrate. Darüber hinaus motivieren wir für den nicht trivialen

Grenzfall voll geöffneter Systeme die Hypothese, dass Resonanzeigenzustände durch ein be-

dingt invariantes Maß beschrieben werden, welches gleichverteilt auf solchen Mengen ist, die

den gleichen zeitlichen Abstand zum quantenunscharfen chaotischen Sattel haben. Insgesamt

bestätigen wir die quantenklassische Korrespondenz für die Phasenraumdichten, deren frak-

tale Dimensionen und durch Auswertung ihres Jensen–Shannon Abstandes in einer generischen

chaotischen Abbildung sowohl für partielle als auch für volle Öffnung.
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Chapter 1

Introduction

One of the most fundamental concepts in theoretical physics is the correspondence principle

between quantum and classical mechanics. In particular the semiclassical limit of large actions

compared to Planck’s constant relates observable properties of quantum systems to the clas-

sical dynamics. The field of quantum chaos examines this relation in systems with classical

chaotic dynamics. In closed systems the presence of classical chaos has universal implications

on the statistics of eigenvalues of the quantum system [1–4] and on the distribution of its

eigenfunctions [5–7]. In particular, the semiclassical eigenfunction hypothesis relates the lo-

calization properties of regular and chaotic eigenfunctions to the phase-space structures which

are typically explored by corresponding classical orbits. For fully chaotic systems this results

in a uniform distribution for almost all eigenfunctions according to the quantum ergodicity

theorem [8–15].

Experimentally accessible systems are often explored by scattering of waves and particles.

In such a setup an initially prepared, incoming state interacts with the probed system and a

subsequent measurement determines the properties of the outgoing state. Therefore scattering

systems are not closed, which in classical dynamics is seen as an escape or capture of parti-

cles. Quantum mechanically, the energies and finite life times of eigenfunctions are described

by complex resonances that appear as poles of the scattering matrix in the quantum scatter-

ing description [16, 17]. Chaotic scattering has a wide variety of applications [18], reaching

from large scales in celestial mechanics [19, 20] to small scales in chemical reactions [21, 22],

molecular [23], atomic [24] and nuclear physics [25], from fluid mechanics [26–28] to microwave

resonators [29]. Scattering systems are often conveniently described by non-Hermitian Hamil-

tonians [30–32], which naturally appear in open quantum systems with dissipation [33–36]

and recently have drawn a lot of attention especially in the context of topological phases and

many-body systems [37–42]. In dynamical systems, one particularly interesting example are

optical microcavities [43], which have a variety of applications and are experimentally and

theoretically feasible. The classical ray dynamics in such a cavity is characterized by par-

tial reflection and transmission at the boundary. This leads to a localization of resonance

eigenfunctions which influences the emission patterns and lasing properties [43–55]. Thus, a
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fundamental understanding of universal properties of resonances and resonance eigenfunctions

in terms of the classical dynamics is desired, which generalizes the important results of closed

chaotic systems to systems with escape.

The relation between quantum and classical properties is so far best understood in chaotic

systems with full escape, in which particles are completely absorbed or escape to infinity

[56–66]. These systems are typically characterized by a specific phase-space region which acts

as a leak [67]. They model scattering systems, such as the three-disk scatterer [68] or potential

scattering [69]. Classically, chaotic motion which is trapped for arbitrary long times takes place

on a fractal invariant set, called the chaotic saddle. In hyperbolic systems this chaotic saddle

has a stable and an unstable manifold of phase-space points that are trapped under forward and

backward iteration, respectively [70]. The instability of the chaotic saddle leads to escape from

the system, which is governed by the unstable direction: Typical smooth initial distributions

asymptotically decay with a specific rate 𝛾nat, sometimes called classical or natural decay rate,

and are described by a single classical measure, which is smooth along the unstable manifold

of the saddle, the natural measure 𝜇nat [71–74]. This measure is conditionally invariant, which

means that it is invariant up to a global decay factor with rate 𝛾nat.

In contrast, quantum mechanically, the complex resonances imply a large range of quan-

tum decay rates. The relation of their distribution to the fractal dimension of the classical

chaotic saddle is well established in terms of a fractal Weyl law [56, 57, 69, 75–86]. Chaotic

resonance eigenfunctions show fractal structures in a phase-space representation [87], which

change according to their decay rate 𝛾 [59]. This structure is fundamentally related to the

classical system with escape: Resonance eigenfunctions converge to some conditionally invari-

ant measure with the corresponding decay rate [60]. For quantum decay rates close to the

natural decay 𝛾nat this semiclassical limit is assumed to be the natural measure 𝜇nat [87]. For

resonance eigenfunctions with arbitrary decay rates in systems with full escape, an intuitive

understanding of their localization properties is missing and there exists no analogue to the

semiclassical eigenfunction hypothesis.

Even less investigated is the relation between quantum and classical dynamics in systems

with partial escape, in which particles escape with some finite probability or the intensity is

partially absorbed [67]. Classically, the natural conditionally invariant measure 𝜇nat is mul-

tifractal and supported on the full phase space [88]. Quantum mechanically, partial escape

implies finite decay rates, whose distribution is related to classical measures but not given by

a simple fractal Weyl law [48, 89–92]. Again, the longest living resonance eigenfunctions are

well described by the natural measure 𝜇nat, which is also known as steady state probability

distribution in the context of microcavities [47, 54, 55, 67]. Moreover, some aspects of reso-

nance eigenfunctions are investigated in terms of classical periodic orbits [93, 94] and in the

case of single-channel openings [95, 96]. In general, a complete understanding of resonance

eigenfunctions for systems with partial escape is still missing.
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In this thesis we investigate the semiclassical convergence of resonance eigenfunctions of

systems with partial and full escape and present an intuitive description of their phase-space

structure by simple properties of the classical system. The main results are already published

in Refs. [66, 97]. The manuscript is organized as follows. In Chapter 2, based on a quantum

scattering description, we first introduce resonance eigenfunctions of quantum maps with es-

cape. Secondly, we present relevant aspects of classical chaotic scattering which leads to maps

with escape and their invariant structures. Chapter 3 reviews fundamental results about the

phase-space localization of eigenfunctions in closed systems. We consider partial escape in

Chapter 4. First, an overview about spectral properties of quantum maps with partial es-

cape is given. Secondly, we analyze the semiclassical convergence of resonance eigenfunctions

numerically. We prove that the quantum-to-classical correspondence principle implies that

resonance eigenfunctions in systems with partial escape converge to conditionally invariant

measures with the corresponding decay rate. The third part introduces a new family of con-

ditionally invariant measures of the classical map with escape. We finally analyze to which

extent these measures are relevant as limit measures by means of fractal dimensions and quan-

tifying their agreement with the Jensen-Shannon divergence. In Chapter 5 we discuss systems

with full escape as a limiting case of partial escape. We perform the same analysis on the

convergence of resonance eigenfunctions as for partial escape and review some well-established

results regarding their localization. Furthermore, we discuss conditionally invariant measures

of systems with full escape. We propose a resonance eigenfunction hypothesis for chaotic sys-

tems with full escape, which classically explains their phase-space structure and localization.

This hypothesis is again tested quantitatively. The results are summarized and an outlook is

given in Chapter 6.





Chapter 2

Chaotic scattering

Accessible physical systems are never truly closed. Instead, only by interaction it is possible

to experimentally probe a given system. In many cases physical systems are explored using

scattering experiments, where a beam of particles or electromagnetic waves collides with a

sample of interest. For such systems a useful description is given by quantum scattering

theory, which is introduced in Section 2.1. In Section 2.2 we discuss the corresponding classical

scattering system and introduce all relevant properties of classical maps with escape.

2.1 Quantum scattering

Properties of matter are experimentally often accessed by scattering experiments with photons,

electrons, nucleons, ions, or molecules [16, 17, 98, 99]. Scattering theory has been introduced

initially to describe nuclear collisions with short-range interactions [99, 100]. In such systems

initially free particles interact with the sample in a bounded region, e.g., in the vicinity of some

atomic nucleus, and afterwards propagate freely until they are detected. This framework has

been successfully applied to attracting or repelling potentials [69,101], to describe excitations

of atomic and nuclear states [102], and in chemical reactions of molecules [22, 103,104].

In the following we briefly review the quantum mechanical scattering description in terms

of the scattering matrix. This results in an effective non-Hermitian description of quantum

mechanical time evolution in the system of interest, presented in Sec. 2.1.2. A simplified time-

discrete scattering description is given in Sec. 2.1.3. This leads to quantum maps with escape

as time-discrete model systems for resonance scattering in the last section (Sec. 2.1.4).

2.1.1 Scattering matrix

The dynamics of non-relativistic quantum particles is generally described by the Schrödinger

equation

i~𝜕𝑡𝜓 = �̂�𝜓, (2.1)



6 Chapter 2 Chaotic scattering

where the wavefunction 𝜓(𝑞, 𝑡) describes the quantum state at position 𝑞 ∈ R
𝑓 (in systems with

𝑓 degrees of freedom) and time 𝑡 ∈ R, ~ is Planck’s constant and �̂� is the Hamilton operator of

the considered collision system [16]. This Hamiltonian includes the interaction of the quantum

particle with the system of interest. In contrast, the unperturbed particle propagates freely

and is described by the free Hamiltonian, given by the kinetic term �̂�0 = − ~2

2𝑚
∇2. Neglecting

internal degrees of the scattering system, the physical meaning of �̂� and �̂�0 is that in the first

case the interaction of the collision process is ‘turned on’ and in the other ‘turned off’, while

the interaction is given by 𝑉 = �̂� − �̂�0 [16].

In the following we assume that the interaction can be described by a local potential 𝑉 ,

which only depends on the position 𝑞 of the particle such that 𝑉 is diagonal in position

representation. Additionally, let us assume that the potential acts only in a finite region

|𝑞| < 𝑠, characterized by a typical scale 𝑠, or that 𝑉 (𝑞) decays to zero faster than 1/|𝑞|. This
ensures that incoming and outgoing particles can be described by the free Hamiltonian �̂�0

for times 𝑡 → ±∞. Note that this condition is not satisfied for the long-ranged Coulomb

potential, for which the mathematical description is more involved [105].

Experimentally the system is accessible indirectly, by measuring how the final state 𝜑+

depends on some initially prepared state 𝜑−, when it is scattered at the potential 𝑉 , sketched

in Fig. 2.1. These states are generally related by the scattering matrix according to [16,17]

𝜑+ = 𝑆 𝜑−, (2.2)

which was conceptually introduced for the first time by Heisenberg already in 1942 [106], and

thoroughly developed by Lippmann and Schwinger [100]. For a time-independent Hamiltonian

�̂�, the scattering 𝑆-matrix is given in terms of the unitary propagators �̂�(𝑡) = e−i/~ �̂�𝑡 of the

full Hamiltonian �̂� and the free propagator �̂�0(𝑡) = e−i/~ �̂�0𝑡 as

𝑆 = lim
𝑡→∞

�̂�0(−𝑡) �̂�(2𝑡) �̂�0(−𝑡), (2.3)

see e.g., Ref. [16] Chp. 5. In this representation it is clear that 𝑆 is itself unitary, 𝑆𝑆† =

𝑆†𝑆 = 1, which expresses conservation of probability. Moreover, this operator includes the full

𝜑−

𝜑+

𝑉

Figure 2.1: Sketch of scattering problem with incoming 𝜑− and outgoing states 𝜑+.
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measurable information about the system, such as transition probabilities between incoming

and outgoing channels, cross-sections, and delay times [16]. Let 𝜑𝑖, 𝜑𝑓 be eigenfunctions of the

free Hamiltonian �̂�0 with eigenvalues 𝐸𝑖, 𝐸𝑓 , respectively. Considering a Lippmann–Schwinger

equation for the relation of incoming and outgoing waves and using the Dyson perturbation

expansion of the 𝑆-matrix [16, Chp. 6] it is possible to show that the matrix elements of 𝑆 are

given in terms of the free eigenstates as

𝑆𝑖𝑓 := ⟨𝜑𝑓 |𝑆|𝜑𝑖⟩ = 𝛿(𝐸𝑖 − 𝐸𝑓 )
[︁

⟨𝜑𝑓 |𝜑𝑖⟩ − 2𝜋i⟨𝜑𝑓 |𝑇+(𝐸)|𝜑𝑖⟩
]︁

, (2.4)

where 𝑇+(𝐸) is the transition operator

𝑇+(𝐸) = 𝑉 + 𝑉
1

𝐸 − �̂� + i0+
𝑉 . (2.5)

Thus, restricting the scattering problem to the energy shell 𝐸𝑖 = 𝐸𝑓 = 𝐸 the scattering

operator reduces to

𝑆(𝐸) = 1 − 2𝜋i

(︂

𝑉 + 𝑉
1

𝐸 − �̂� + i0+
𝑉

)︂

. (2.6)

From Equation (2.6) follows, that poles of the scattering matrix are given by poles of the

resolvent (𝐸 − �̂� + i0+)−1. Note that this operator is equivalent to the total Green operator

of the scattering problem, see e.g., Ref. [16, 99]. These poles are typically complex valued.

While the poles on the negative real axis, 𝐸 ∈ R−, form a discrete spectrum and are associated

with the bound eigenfunctions of �̂�, there also exist complex poles 𝐸r − iΓ/2 associated with

resonant scattering solutions.

These poles with positive Γ > 0 are related to resonances of finite width measured for

example in cross sections. Consider the forward scattering amplitude 𝑓(𝐸) = −(2𝜋)2𝑇+(𝐸)

as a function of some complex eigenvalue of �̂� [107, Sec. XI.7]. Assuming that 𝑓(𝐸) has

an analytic continuation, close to an isolated pole 𝐸r − iΓ/2 it can be written as 𝑓(𝐸) =
𝐶

𝐸−(𝐸r−iΓ/2)
+ 𝑓𝑏(𝐸) [108, Sec. XII.6], with some constant 𝐶 and where the background 𝑓𝑏(𝐸)

is determined by 𝑉 and is analytic at the pole. The cross section of forward scattering is

proportional to |𝑓(𝐸)|2, which is for small 𝑓𝑏(𝐸r) approximately given by [108]

|𝑓(𝐸)|2 = |𝐶|2
(𝐸 − 𝐸r)2 + Γ2/4

+𝑅. (2.7)

Close to 𝐸 = 𝐸r the remainder 𝑅 is negligible [108] and |𝑓(𝐸)|2 becomes equivalent to the

Breit–Wigner resonance shape, which occurs exactly in the scattering of 𝑠-wave neutrons [98,

Chp. 5.T]. Note that the width at half maximum for this profile is given by Γ. Hence, when

the cross-section is measured experimentally depending on the energy 𝐸 of incoming waves

(or particles), Eq. (2.7) implies a peak at 𝐸 = 𝐸r with a width approximately given by Γ.
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2.1.2 Non-Hermitian quantum mechanics

There are different methods to obtain the complex resonances for a system of interest, e.g., by

complex scaling [109–119] or by means of non-Hermitian Hamiltonians [30–36]. The latter will

be discussed in the following as it leads to time-discrete quantum maps with escape. So far

the scattering problem is considered in terms of the asymptotic states of the free Hamiltonian.

In certain situations it is convenient to decompose the phase space into a compact interaction

region, which is related to the scattering potential 𝑉 , and a set of open channels coupled to

this region [31, 102, 120, 121]. Such a treatment has been applied to open billiards [122] and

electron waveguides [123]. This yields a description of the scattering problem in terms of an

effective non-Hermitian Hamiltonian, which describes time evolution in the interaction region.

Therefore consider a countable set of 𝑀 open channels with an associated set of channel

states 𝜑𝑚,𝐸, with 𝑚 ∈ {1, . . . ,𝑀}, which is continuous in the energy 𝐸, and a discrete set of

states 𝜓𝑛 with 𝑛 ∈ {1, . . . , 𝑁}, associated with the compact interaction region [124]. The full

Hamiltonian is decomposed into a self-adjoint Hamiltonian �̂�cl describing the closed dynamics

of internal states, a free Hamiltonian acting on channel states, and a coupling term �̂� between

both. One advantage of this treatment is that the dimension of the problem reduces effectively

to the 𝑁 × 𝑁 matrix �̂�cl, and the 𝑁 ×𝑀 dimensional coupling term �̂� . The latter has to

be chosen such that the full Hamiltonian is Hermitian [31]. A full derivation is given, e.g.,

in Ref [31] Sec. II.B, and in Ref. [121]. The main result is that the reactance matrix of the

scattering problem is of the form [31]

�̂� = 𝜋�̂� † 1

𝐸 − �̂�cl

�̂� , (2.8)

which is related to the scattering matrix by [99]

𝑆 = (1 − i�̂�)(1 + i�̂�)−1. (2.9)

Inserting Eq. (2.8) into Eq. (2.9) the scattering matrix is rewritten as

𝑆(𝐸) = 1 − 2i𝜋�̂� † 1

𝐸 − �̂�eff

�̂� . (2.10)

Here an effective non-Hermitian Hamilton operator is introduced, which describes the time

evolution of internal states,

�̂�eff = �̂�cl − iΓ̂, (2.11)

where Γ̂ := 𝜋�̂��̂� † satisfies Γ̂† = Γ̂. Thus, the Hermitian operators �̂�cl and Γ̂ decompose the

effective Hamiltonian �̂�eff into its real and imaginary part. We stress that, in contrast to the

full Hamiltonian �̂� appearing in Eq. (2.6), the non-Hermitian �̂�eff cannot be interpreted as
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an observable. It nevertheless describes the time evolution and decay of any state 𝜓 of the

inner region, when there is no input through the coupled channel system. Apparently the

complex eigenvalues 𝐸𝑚 of the effective Hamiltonian, �̂�eff𝜑𝑚 = 𝐸𝑚𝜑𝑚, correspond to poles

of the 𝑆-matrix in Eq. (2.10). Thus, these eigenvalues have the interpretation of resonances.

The intermediate life times of the corresponding resonance eigenfunctions 𝜑𝑚 are caused by

the coupling as follows. Because Γ̂ is a positive operator the eigenvalues 𝐸𝑚 are all located

in the lower half of the complex plane, such that the imaginary part Im𝐸𝑚 = −~𝛾𝑚/2 is

associated with a positive decay rate 𝛾𝑚 > 0 of the norm of eigenfunctions as ‖e− 𝑖
~
�̂�eff 𝑡𝜑𝑚‖2 =

e−
2
~
Im𝐸𝑚𝑡‖𝜑𝑚‖2 = e−𝛾𝑚𝑡. This decay rate corresponds to the width of resonances as Γ = ~𝛾𝑚,

which are discussed in Sec. 2.1.1.

2.1.3 Time-discrete quantum scattering

In this thesis, for simplicity, we consider time-discrete systems. Such dynamics is for example

generated from mappings on Poincaré sections [125, 126] or from stroboscopic mappings of

Hamiltonian systems with periodic driving [127], explained later in Sec. 2.2. Similar to the

derivation in the previous section, it is possible to obtain a scattering matrix for time-discrete

scattering systems using an input-output approach [124,128,129]. For this purpose the phase

space is again divided into internal states 𝜓 and incoming and outgoing states 𝜑− and 𝜑+.

The scattering problem reduces in this context to a linear map [124]

(︃

𝜓(𝑛+ 1)

𝜑+

)︃

= �̂�

(︃

𝜓(𝑛)

𝜑−

)︃

, (2.12)

where the full time-evolution operator �̂� is required to be unitary, �̂� �̂� † = �̂� †�̂� = 1. It is

generally possible to parametrize this matrix as [124]

�̂� =

(︃

𝒰ℛ −𝒰�̂�
�̂� †

√︀

1− �̂� †�̂�

)︃

, (2.13)

where 𝒰 is unitary, we introduced ℛ :=
√︀

1− �̂��̂� †, and the matrix �̂� can be chosen to be

diagonal in a suitable basis as �̂�𝑖𝑗 = 𝛿𝑖𝑗𝑤𝑗 for 𝑖 ≤ 𝑁 and 𝑗 ≤ 𝑀 . The values 𝑤𝑗 ∈ [0, 1] describe

how strong the channel 𝑗 is coupled to the system. Conversely, the operator ℛ describes how

internal states couple to the outgoing system by specifying the probability that remains in the

system. Therefore ℛ is called reflection operator. Without coupling, i.e., �̂� = 0, the reflection

operator is the unit matrix on the inner system, ℛ = 1. In this case the time evolution of

internal states 𝜓 is given by 𝒰𝜓, such that the unitary matrix 𝒰 is identified as the quantum

map of the closed system.
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For a finite coupling, �̂� ̸= 0, the scattering matrix is given by [124]

𝑆(𝜔) =

√︁

1− �̂� †�̂� − �̂� † 1

e−i𝜔 − 𝒰ℛ
𝒰�̂� , (2.14)

relating incoming to outgoing states. The time evolution of any internal state is, according to

Eqs. (2.12) and (2.13), given by 𝜓(𝑛 + 1) = 𝒰ℛ𝜓(𝑛)− 𝒰�̂�𝜑−. Without input, 𝜑− = 0, only

propagation with the operator

𝒰 := 𝒰ℛ (2.15)

takes place. First, probability escapes from the system according to the reflection operator ℛ,

followed by the closed time evolution 𝒰 . Therefore the propagator 𝒰 is called quantum map

with escape. A more detailed discussion of the stroboscopic scattering approach can be found

in Ref. [129] Sec. III.D.

2.1.4 Quantum maps with escape

The quantum map with escape 𝒰 = 𝒰ℛ, Eq. (2.15), consists of a unitary quantum map 𝒰
of a closed, time-discrete system and a reflection operator ℛ, which modifies the probability

distribution of quantum states. In the following we assume that 𝒰 acts on an 𝑁 -dimensional

Hilbert spaceH𝑁 ≃ C
𝑁 , and quantizes a classical map on a bounded phase space𝑀 : Γ → Γ, as

will be discussed in Chapter 3. The reflection operator is associated with a classical reflectivity

function 𝑅 : Γ → R+, leading to a quantized map with partial escape, as explained in detail in

Chapter 4. In the following we discuss some general properties of quantum maps with escape.

Let 𝒰 be a quantum map with escape as in Eq. (2.15) acting on the Hilbert space H𝑁 . The

spectrum 𝜎(𝒰) consists of 𝑁 eigenvalues 𝜆 ∈ C satisfying the eigenvalue equation

𝒰𝜓 = 𝜆𝜓, (2.16)

with the nonzero eigenfunctions 𝜓 ∈ H𝑁 . The eigenvalues are often written as 𝜆 = e−i𝜃−𝛾/2,

where 𝜃 = arg 𝜆 is the phase and 𝛾 = −2 log |𝜆| characterizes the modulus. Comparing

Eq. (2.16) to the definition of the scattering matrix for time-discrete systems, Eq. (2.14), it

becomes evident that the eigenvalues of 𝒰 correspond to the poles of the scattering matrix.

In particular, whenever one has 𝜔 = 𝜃 − i𝛾/2, a resonance condition is fulfilled in Eq. (2.14).

In time-independent scattering systems the eigenphase 𝜃 corresponds to the energy 𝐸 and

𝛾 to the width Γ of the resonance, see Sec. 2.1.1. The norm of an eigenfunction 𝜓 decays

exponentially under time evolution as

‖𝒰𝑛𝜓‖2 = e−𝑛𝛾 ‖𝜓‖2, (2.17)
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such that 𝛾 is called the decay rate of 𝜓. In general 𝛾 can also become negative (leading to

an exponential gain of the norm). If reflectivity functions without gain are considered, i.e.,

𝑅 ≤ 1, it follows that 1 − 𝒰 †𝒰 = 1 − ℛ†ℛ ≥ 0, such that 𝒰 is a contraction with operator

norm ‖𝒰‖∞ ≤ 1 [130, Sec. VI]. In these cases the modulus of all eigenvalues satisfies |𝜆| < 1

and all decay rates are positive.

2.1.4.1 Spectrum and inverse quantum map

In the following we discuss why the choice of order of closed propagation with 𝒰 and reflection

ℛ is not important for the resonances. Therefore we show that the spectra of quantum maps

with escape are the same for both choices, 𝜎(𝒰ℛ) = 𝜎(ℛ𝒰). Let 𝜆 ̸= 0 be an eigenvalue of

𝒰ℛ with eigenfunction 𝜓. Then (ℛ𝒰)ℛ𝜓 = ℛ(𝒰ℛ𝜓) = ℛ𝜆𝜓 = 𝜆ℛ𝜓, such that ℛ𝜓 ̸= 0 is

an eigenfunction of ℛ𝒰 with the same eigenvalue. Since 𝒰 is unitary, for eigenvalues 𝜆 = 0 of

𝒰ℛ there must exist 𝜑 ̸= 0 such that ℛ𝜑 = 0. In this case it is easy to see that 𝒰−1𝜑 ̸= 0 is an

eigenvalue of ℛ𝒰 with eigenvalue 𝜆 = 0. Thus 𝜎(𝒰ℛ) ⊆ 𝜎(ℛ𝒰). Conversely let 𝜆 ∈ 𝜎(ℛ𝒰)
with eigenfunction 𝜙. It then follows that (𝒰ℛ)𝒰𝜙 = 𝒰(ℛ𝒰 𝜙) = 𝒰 𝜆𝜙 = 𝜆𝒰𝜙, such that

𝒰𝜙 ̸= 0 is an eigenfunction of 𝒰ℛ with the same eigenvalue 𝜆. Thus 𝜎(ℛ𝒰) ⊆ 𝜎(𝒰ℛ).

In this thesis we consider the case 𝒰 = 𝒰ℛ with classical reflectivity functions 𝑅 ≤ 1 as the

forward quantum map with escape. It turns out that this map is invertible if ℛ is invertible,

which is the case for strictly positive 𝑅 > 0. The inverse map is given by 𝒰−1 = ℛ−1𝒰−1.

The order of mapping and inverted reflection is exchanged in the inverse quantum map. Due

to the above considerations we can thus think about 𝒰inv := 𝒰−1 as a quantum map with

gain ℛinv := ℛ−1 and closed time evolution 𝒰−1 = 𝒰 †. Consider 𝜆 ∈ 𝜎(𝒰) with 𝜆 ̸= 0 and

eigenfunction 𝜓 ̸= 0. It is easy to see that

𝒰inv 𝜓 = 𝒰inv 𝜆−1(𝒰𝜓) = 𝜆−1 (𝒰inv𝒰)𝜓 = 𝜆−1 𝜓. (2.18)

This implies that 𝒰 and the inverse map 𝒰inv have the same eigenfunctions, and for each

eigenvalue 𝜆 of 𝒰 there exists an eigenvalue 𝜆−1 of 𝒰inv.

2.1.4.2 Eigenfunctions of non-unitary 𝒰

The non-unitarity of 𝒰 has important consequences for its spectrum and the nature of its

eigenfunctions [30,131]. Recall the unitary case 𝒰 † = 𝒰−1 where the modulus of all eigenvalues

𝜆𝑖 is one and the set of eigenfunctions {𝜑𝑖} of 𝒰 is an orthogonal basis ofH𝑁 , i.e., 1 =
∑︀

𝑖
|𝜑𝑖⟩⟨𝜑𝑖|
⟨𝜑𝑖|𝜑𝑖⟩ .

This condition does not hold for the non-unitary operator 𝒰 .
Instead, the eigenvalue problem Eq. (2.16) must be considered for both 𝒰 and its adjoint,

which is given by the hermitian conjugate operator 𝒰 † [131]. One ends with two different
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eigenvalue problems,

𝒰𝜓R
𝑖 = 𝜆𝑖𝜓

R
𝑖 and 𝒰 †𝜓L

𝑖 = 𝜈𝑖𝜓
L
𝑖 . (2.19)

The states 𝜓L and 𝜓R are sometimes called left and right eigenstates of 𝒰 . Let us consider

only non-degenerate spectra 𝜎(𝒰) = {𝜆𝑖} and 𝜎(𝒰 †) = {𝜈𝑗}. It follows for any 𝑖, 𝑗 that

⟨𝜓L
𝑗 |𝒰𝜓R

𝑖 ⟩ = 𝜆𝑖⟨𝜓L
𝑗 |𝜓R

𝑖 ⟩ = ⟨𝒰 †𝜓L
𝑗 |𝜓R

𝑖 ⟩ = 𝜈𝑗⟨𝜓L
𝑗 |𝜓R

𝑖 ⟩, implying that ⟨𝜓L
𝑗 |𝜓R

𝑖 ⟩ = 0 if 𝜆𝑖 ̸= 𝜈𝑗 and

conversely if ⟨𝜓L
𝑗 |𝜓R

𝑖 ⟩ ̸= 0 then 𝜆𝑖 = 𝜈𝑗 [131]. Non-degeneracy implies that there exists only

one 𝜈𝑗 ∈ 𝜎(𝒰 †) such that 𝜆𝑖 = 𝜈𝑗. This shows that the spectra of 𝒰 and 𝒰 † are complex

conjugate to each other. Relabeling the eigenvalues as 𝜆𝑖 = 𝜈𝑖 it follows that

⟨𝜓L
𝑖 |𝜓R

𝑗 ⟩ = 0 for 𝑖 ̸= 𝑗. (2.20)

This is used to prove that the sets of all eigenfunctions {𝜓R
𝑖 }, as well as {𝜓L

𝑖 }, are linearly

independent and thus form a basis, even though they are not orthogonal [131]. Thus, for any

𝜙 ∈ H𝑁 there exist coefficients {𝑐𝑖} such that 𝜙 can be written as 𝜙 =
∑︀

𝑖 𝑐𝑖𝜓
R
𝑖 . Applying the

scalar product with 𝜓L
𝑗 from the left, it follows from Eq. (2.20) that ⟨𝜓L

𝑗 |𝜙⟩ = 𝑐𝑗⟨𝜓L
𝑗 |𝜓R

𝑗 ⟩ and

𝑐𝑗 =
⟨𝜓L

𝑗 |𝜙⟩
⟨𝜓L

𝑗 |𝜓R
𝑗 ⟩

. (2.21)

Altogether a representation of the unit matrix can be established in terms of the dual basis

{𝜓R
𝑖 , 𝜓

L
𝑖 }, given by 1 =

∑︀

𝑖
|𝜓R

𝑖 ⟩⟨𝜓L
𝑖 |

⟨𝜓L
𝑖 |𝜓R

𝑖 ⟩ =
∑︀

𝑖
|𝜓L

𝑖 ⟩⟨𝜓R
𝑖 |

⟨𝜓R
𝑖 |𝜓L

𝑖 ⟩
. Moreover the quantum map with escape and

the inverse map are represented by

𝒰 =
∑︁

𝑖

𝜆𝑖
|𝜓R

𝑖 ⟩⟨𝜓L
𝑖 |

⟨𝜓L
𝑖 |𝜓R

𝑖 ⟩
, 𝒰inv =

∑︁

𝑖

𝜆−1
𝑖

|𝜓R
𝑖 ⟩⟨𝜓L

𝑖 |
⟨𝜓L

𝑖 |𝜓R
𝑖 ⟩

, (2.22)

where 𝜆𝑖 ∈ 𝜎(𝒰). Note that the second equation in Eq. (2.22) is not defined, if 𝒰 has the

eigenvalue zero, 0 ∈ 𝜎(𝒰).
We emphasize that the adjoint propagator 𝒰 † = ℛ†𝒰 † also corresponds to a quantum map

with escape. In particular, the operator ℛ can be chosen Hermitian, such that ℛ† = ℛ. Thus

𝒰 † = ℛ𝒰−1 is the quantum map with escape, where the direction of time is reversed, but the

reflection back into the system is the same (even though the order is switched). Since left

eigenstates of 𝒰 are right eigenstates of 𝒰 †, this implies that a complete understanding of the

right eigenstates of quantum maps with escape is sufficient to also understand the left ones.

Therefore we focus on the right eigenfunctions in this thesis and aim to relate these to the

underlying classical dynamics, which we introduce in the next section.
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2.2 Classical chaotic scattering

In classical Hamiltonian mechanics the state of any particle with 𝑓 degrees of freedom is

described by a point (𝑞, 𝑝) ∈ Γ in phase space, where 𝑞 ∈ R
𝑓 is the position and its conjugate

is the momentum 𝑝 ∈ R
𝑓 . Dynamical time evolution is described by the Hamilton equations

�̇�𝑗(𝑡) = −𝜕𝐻

𝜕𝑞𝑗

(︀
𝑞(𝑡), 𝑝(𝑡), 𝑡

)︀
, 𝑞𝑗(𝑡) =

𝜕𝐻

𝜕𝑝𝑗

(︀
𝑞(𝑡), 𝑝(𝑡), 𝑡

)︀
, (2.23)

where the Hamilton function 𝐻 characterizes the energy of the particle. In time-independent

scattering processes 𝐻 is typically of the form [126, Chp. 5]

𝐻(𝑞, 𝑝) = 𝐻0(𝑝) + 𝑉 (𝑞), (2.24)

where𝐻0(𝑝) = 𝑝2/(2𝑚) describes the free propagation of a non-relativistic particle and 𝑉 is the

scattering potential. As in quantum scattering, Sec. 2.1.1, the potential is supposed to vanish

faster than 1/|𝑞| at large distances, lim|𝑞|→∞ |𝑞|𝑉 (𝑞) = 0. Thus, the dynamics of the particle

before and after the collision can be described by free propagation with 𝐻0. The equations of

motion, Eq. (2.23), define the Hamiltonian flow Φ𝑡(𝑞0, 𝑝0) =
(︀
𝑞(𝑡, 𝑞0, 𝑝0), 𝑝(𝑡, 𝑞0, 𝑝0)

)︀
generated

by the Hamilton function𝐻. Similarly the free Hamiltonian𝐻0 implicates a flow Φ𝑡
0 of particles

not affected by 𝑉 . Note that the phase-space volume is preserved under the Hamiltonian flow

according to Liouville’s theorem [132] .

In analogy to the quantum scattering operator 𝑆, Eq. (2.3), a classical scattering function

Σ is defined, which maps incoming trajectories onto outgoing trajectories as

𝑥out = Σ(𝑥in) = lim
𝑡→∞

Φ−𝑡
0 ∘ Φ2𝑡 ∘ Φ−𝑡

0 (𝑥in) (2.25)

for phase-space points 𝑥in = (𝑞, 𝑝), see e.g., Refs. [126, 133]. This is understood as follows.

Consider some initial condition 𝑥in located inside the collision region. First, Φ−𝑡
0 (𝑥in) maps the

starting point onto an incoming trajectory of a free particle at the time −𝑡. This is taken as the

starting point for time evolution with the full Hamiltonian flow for the time 2𝑡, leading finally

to a free propagation when 𝑡 is large enough. The endpoint is considered correspondingly as

the endpoint of a free particle. Mapping this point backwards with the free flow Φ0 for the

time −𝑡 one obtains the initial point of the outgoing trajectory at time 𝑡 = 0. Thus 𝑥out

is again inside the collision region and corresponds to the initial condition of some outgoing

particle which propagates freely. This establishes a map from the collision region onto itself.

Conceptually simple examples of classical scattering systems are spherical hard-disk scatter-

ers [134,135] or scattering at a periodic potential [136]. In both cases the continuous dynamics

is effectively described by stroboscopic, time-discrete maps. Before discussing a particular

class of such maps we introduce different characterizations of the classical dynamics.
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2.2.1 Characterization of classical dynamics

Chaotic scattering is characterized by its invariant set Γs [126]. This set contains all phase-

space points 𝑥 ∈ Γ, which never escape from the scattering system in both future and past

times, 𝑡 → ±∞, and is constituted by unstable periodic orbits [137]. One defines stable Γf and

unstable Γb manifolds of the invariant set as the sets of points that approach Γs under forward

and backward time evolution, respectively. In general the invariant set may contain regions of

regular motion on Kolmogorov–Arnold–Moser (KAM) tori [138–141]. If such regular regions

exist, the scattering system is called non-hyperbolic [126]. In contrast, in hyperbolic scattering

systems the dynamics close to the invariant set Γs is determined by motion on its unstable and

stable manifolds. In this case the invariant set is called chaotic saddle. Chaotic dynamics is

generally defined by sensitive dependence on initial conditions, a dense set of periodic points

and the existence of a dense orbit [137,142].

The sensitive dependence on initial conditions is quantified with the Lyapunov exponent,

which is defined from the linearized dynamics as follows [137, Sec. 4.4]. For simplicity, we

consider a map 𝑀 : Γ → Γ on a bounded phase space Γ in the following. Let 𝑥0 ∈ Γ with

iterates 𝑥𝑖 := 𝑀 𝑖(𝑥0), and let 𝐷𝑀(𝑥) be the Jacobian of 𝑀 at any phase-space point 𝑥. An

infinitesimal displacement 𝑦0 from 𝑥0 grows as 𝑦𝑛 = 𝐷𝑀(𝑥𝑛−1) ·𝑦𝑛−1 = 𝐷𝑀𝑛(𝑥0) ·𝑦0, where

𝐷𝑀𝑛(𝑥0) = 𝐷𝑀(𝑥𝑛−1) ·𝐷𝑀(𝑥𝑛−2) · ... ·𝐷𝑀(𝑥0). [137]. The Lyapunov exponents for any

such 𝑥0 in the direction 𝑢 = 𝑦0/|𝑦0| is defined as

𝜆L(𝑥0,𝑢) = lim
𝑛→∞

1

𝑛
ln |𝐷𝑀𝑛(𝑥0) · 𝑢|, (2.26)

which characterizes the average stretching or compression of the initial displacement. It is often

convenient to consider the Lyapunov exponents in terms of the nonnegative, hermitian matrix

𝐿𝑛(𝑥0) := [𝐷𝑀𝑛(𝑥0)]
𝑇𝐷𝑀𝑛(𝑥0) as 𝜆L(𝑥0,𝑢) = lim𝑛→∞

1
2𝑛

ln𝑢𝑇 · 𝐿𝑛(𝑥0) · 𝑢 [137]. This

allows choosing 𝑢 parallel to one of the real eigenvectors of 𝐿𝑛, implying one approximate

Lyapunov exponent for each eigenvector [137]. In the limit 𝑛 → ∞ one thereby obtains 𝑑

Lyapunov exponents 𝜆
(𝑖)
L for any 𝑑-dimensional phase space Γ. In two-dimensional hyperbolic

systems there are only two Lyapunov exponents characterizing the stable and the unstable

direction. If the map is volume-preserving on Γ, as in Hamiltonian systems, stretching and

compressing have the same strength, such that 𝜆
(1)
L (𝑥0) = −𝜆

(2)
L (𝑥0).

We stress that in uniformly hyperbolic maps, the tangent space at arbitrary phase space

points splits locally into stable and unstable subspaces, 𝐸s
x ⊕ 𝐸u

x [143, Sec. 3.6]. They satisfy

that stable and unstable subspaces of 𝑥 are mapped by the map𝑀 onto the stable and unstable

subspaces of 𝑀(𝑥), respectively. In particular, there exists 𝐶 > 0 and 𝜆 ∈ (0, 1) such that

‖𝐷𝑀𝑛(𝑥)𝑦‖ < 𝐶𝜆𝑛‖𝑦‖ for all 𝑦 ∈ 𝐸s
x and ‖𝐷𝑀−𝑛(𝑥)𝑦‖ < 𝐶𝜆𝑛‖𝑦‖ for all 𝑦 ∈ 𝐸u

x [143,144].

This means that all points 𝑦 ∈ 𝐸s
x in the stable subspace of 𝑥 approach under forward iteration

the forward iterates of 𝑥, ‖𝑀𝑛(𝑦)−𝑀𝑛(𝑥)‖ → 0. Conversely, points 𝑦 ∈ 𝐸u
x approach under
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backward iterations the backward iterates of 𝑥, ‖𝑀−𝑛(𝑦) −𝑀−𝑛(𝑥)‖ → 0. Thus, the stable

direction on the phase space is given by the stable eigenvector of 𝐿𝑛(𝑥) with negative Lyapunov

exponent, if 𝑛 is large enough. On the other hand, stable and unstable direction interchange,

when 𝑀 is replaced with 𝑀−1. This implies, that the unstable direction on the phase space

Γ is characterized by the stable eigenvector of 𝐿−𝑛(𝑥) for large 𝑛 and arbitrary 𝑥.

The other conditions for chaos are the existence of a dense set of periodic points as well as

a dense orbit on the phase space. They imply that the phase space of chaotic maps has only

one dynamically independent component. In particular, chaotic maps are ergodic which is

defined as follows. Let (Γ,ℬ, 𝜇) be a measure space with the Borel 𝜎-algebra ℬ of measurable

subsets 𝐴 ⊂ Γ and probability measure 𝜇. A measure preserving map 𝑀 : Γ → Γ, i.e.,

𝜇[𝑀−1(𝐴)] = 𝜇(𝐴) for all 𝐴 ∈ ℬ, is called ergodic with respect to 𝜇, if any invariant subset

𝐴 ∈ ℬ has either zero or full measure,

𝑀−1(𝐴) = 𝐴 ⇒ 𝜇(𝐴) ∈ {0, 1}. (2.27)

This means, that there is no decomposition of the phase space in dynamically independent

subsets, which are nontrivial in the sense that they have non-zero measure. For instance, any

periodic orbit 𝑥* = 𝑀𝑝(𝑥*) gives rise to such an invariant set 𝐴 = {𝑀 𝑖(𝑥*) : 0 ≤ 𝑖 < 𝑝}. This
set consists of 𝑝 isolated points, such that 𝜇(𝐴) = 0.

In this thesis we consider maps, derived from Hamiltonian systems, which preserve the phase-

space volume due to the symplectic structure [132]. This measure is given by the Lebesgue

measure 𝜇L on Γ, which is uniform on Γ. For any subset 𝐴 ⊂ Γ it is defined by

𝜇L(𝐴) :=

∫︁

𝐴

d𝜇L =

∫︁

𝐴

d𝑝d𝑞. (2.28)

One important consequence of ergodicity is the Birkhoff ergodic theorem, see e.g., Ref. [145].

Let 𝑀 be ergodic with respect to the uniform measure 𝜇L and 𝑓 : Γ → R be a classical

observable, 𝑓 ∈ 𝐶∞(Γ,R). The Birkhoff ergodic theorem [145, Sec. 1.6] states that for almost

all initial conditions 𝑥 ∈ Γ the time average of the observable 𝑓 converges to the phase-space

average,

lim
𝑛→∞

1

𝑛

𝑛−1∑︁

𝑘=0

𝑓 [𝑀𝑘(𝑥)] =

∫︁

𝑓 d𝜇L. (2.29)

It is generally difficult to prove ergodicity rigorously for specific maps. Systems with large

degrees of freedom are expected to experience ergodic motion, which is known as Boltzmann

ergodic hypothesis [146].

The following property is useful to numerically investigate ergodicity in dynamical sys-

tems. For any two measurable sets 𝐴,𝐵 ⊂ Γ ergodicity is equivalent to the convergence of
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𝜇L[𝑀
−𝑘(𝐴)∩𝐵] in a Cesàro sense towards the product 𝜇L(𝐴)𝜇L(𝐵), i.e., 1

𝑛

∑︀𝑛−1
𝑘=0 𝜇L[𝑀

−𝑘(𝐴)∩
𝐵]

𝑛→∞−−−→ 𝜇L(𝐴)𝜇L(𝐵). Thus, the overlap of two sets is on average given by their relative sizes.

Chaotic systems often meet a stronger condition, where

lim
𝑛→∞

𝜇L[𝑀
−𝑛(𝐴) ∩ 𝐵] = 𝜇L(𝐴)𝜇L(𝐵) (2.30)

holds not just on average. Such systems are called strong mixing [145]. Equation (2.30)

means that the overlap of two regions converges directly towards the product of their rel-

ative sizes. This implies that for large 𝑛 the iteration 𝑀𝑛(𝐴) covers the phase space uni-

formly. Furthermore, if 𝑀 is strong mixing with respect to 𝜇L, any measure 𝜇 which is

absolutely continuous with respect to 𝜇L converges weakly towards the Lebesgue measure

lim𝑛→∞ 𝜇[𝑀−𝑛(𝐴)] = 𝜇L [145, Sec. 6.3]. The mixing property, Eq (2.30), is simple to inves-

tigate numerically. Since mixing implies ergodicity, this can be used to deduce if a system is

ergodic.

Ergodicity has further important consequences for the set of Lyapunov exponents 𝜆
(𝑖)
L (𝑥).

In particular, the multiplicative ergodic theorem [145, Sec. 10.2] implies for almost all 𝑥 ∈ Γ

the same Lyapunov exponents [137]. Therefore one usually drops the dependence on 𝑥 in

the notation of 𝜆
(𝑖)
L . In two-dimensional, ergodic maps usually only the positive Lyapunov

exponent is considered, 𝜆L := 𝜆
(u)
L = −𝜆

(s)
L > 0.

2.2.2 Stroboscopic maps

In this thesis we consider time-discrete maps 𝑀 : Γ → Γ on a bounded phase-space Γ. Such

maps emerge for example in two-dimensional billiards [125] or hard-disk scattering systems as

a Poincaré section at the boundary of the disks [126, Sec. 5.2]. Considering scattering at a

periodic potential also implicates an effective map containing the full dynamics [136]. Another

way to obtain such maps are time-periodically driven systems with one degree of freedom.

These systems are characterized by a Hamiltonian that satisfies 𝐻(𝑞, 𝑝, 𝑡) = 𝐻(𝑞, 𝑝, 𝑡 + 𝑛𝜏).

The Hamiltonian flow generates a stroboscopic map on the phase space Γ as 𝑥(𝑡𝑛) = Φ𝑡𝑛(𝑥0),

when discrete times 𝑡𝑛 = 𝑡0 + 𝑛𝜏 are considered for 𝑛 ∈ Z.

One particularly simple class of time-periodically driven systems are kicked systems, where

the Hamilton function is given by

𝐻(𝑞, 𝑝, 𝑡) = 𝑇 (𝑝) + 𝑉 (𝑞)
+∞∑︁

𝑛=−∞
𝛿(𝑡− 𝑛𝜏). (2.31)

The first term characterizes the kinetic energy, usually considered as 𝑇 (𝑝) = 𝑝2

2𝑚
, which corre-

sponds to free propagation with 𝐻0. The second part corresponds to the kicking potential 𝑉 ,

acting only at integer times 𝑛 ∈ Z. Thus, the Hamiltonian flow in these systems is equivalent

to the free flow Φ𝑡
0 for all times in between the kicks, 𝑡 ∈ (𝑛 + 𝜖, 𝑛 + 1 − 𝜖) for 𝑛 ∈ Z and
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all 𝜖 > 0. The kicking potential 𝑉 acts at times 𝑡 = 𝑛 ∈ Z as a discontinuous jump in the

𝑝-coordinate.

One widely used example of such a kicked map is the Chirikov standard map [147], where

the kicking potential 𝑉 (𝑞) = 𝜅
4𝜋2 cos(2𝜋𝑞) depends on the so-called kicking strength 𝜅. The

resulting map on the two-dimensional phase space Γ is given in dimensionless coordinates

(𝑞, 𝑝) ∈ Γ at times half through the kick by

𝑀(𝑞, 𝑝) =
(︀
𝑞 + 𝑝*, 𝑝* − 𝑉 ′(𝑞 + 𝑝*)/2

)︀
, with 𝑝* = 𝑝− 𝑉 ′(𝑞)/2, (2.32)

where 𝑉 ′(𝑞) = − 𝜅
2𝜋

sin(2𝜋𝑞). We apply periodic boundary conditions, by restricting this map

to the torus Γ := T
2 = [0, 1)× [0, 1), leading to a bounded phase space. One major advantage

of the standard map, Eq. (2.32), is that it allows to investigate different kinds of dynamical

motion depending on the choice of the kicking strength 𝜅.

Typical phase-space portraits of this map are illustrated in Fig. 2.2. At kicking strength

𝜅 = 0 the momentum is conserved such that the system is integrable and all orbits are on

regular tori, appearing as straight lines (a). The regular tori break up into chains of regular

islands (elliptic shape) and chaotic layers (shown in blue) for small 𝜅 = 0.5 (b), which follows

from the Poincaré–Birkhoff theorem [137, 148, 149]. For larger 𝜅 = 2.5, shown in (c), the

phase-space is divided into regular structures (red) surrounded by a large chaotic component

(blue). For 𝜅 = 10 no regular islands are found and the full phase space shows chaotic motion

(d).

We further illustrate the local stable and unstable directions for the chaotic standard map

with 𝜅 = 10 in Fig. 2.3. These directions are calculated for phase-space points chosen on a grid

as discussed in Sec. 2.2.1. For almost all phase-space points we find that the product of these

directions locally spans a two dimensional space, i.e., they are not parallel, see closeup in (c).

Note that the standard map for 𝜅 = 10 is not uniformly hyperbolic and that ergodicity and

(a) 𝜅 = 0 (b) 𝜅 = 0.5 (c) 𝜅 = 2.5 (d) 𝜅 = 10

Figure 2.2: Phase-space portrait of the standard map with kicking strength (a) 𝜅 = 0, (b)
𝜅 = 0.5, (c) 𝜅 = 2.5, and (d) 𝜅 = 10. Illustrated are orbits {𝑀 𝑖(𝑥)}𝑛𝑖=0 belonging to regular
motion (red, 𝑛 = 800) and to chaotic motion (blue, 𝑛 = 3000).
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Figure 2.3: Illustrated are (a) local unstable and (b) local stable direction on phase space
for the chaotic standard map with 𝜅 = 10. These directions are calculated choosing 𝑥 ∈ Γ
on a 50× 50 grid from 𝐿±𝑛(𝑥) with 𝑛 = 20 iterations as discussed in Sec. 2.2.1. The length
indicates the local stretching e𝜆L . (c) Closeup of stable and unstable directions on the box
(0.4, 0.6)× (0.4, 0.6), indicated by dashed lines in (a) and (b).

mixing property can only be observed numerically. These properties, however, are assumed

in many rigorous results regarding the convergence of classical measures. Nevertheless, it is

expected that these results also apply to generic ’chaotic‘ systems like the standard map at

𝜅 = 10 and most numerical investigations will be performed for this system.

This behavior is contained in a minimalistic way in the so-called baker map [150–153],

which obtains a simple phase-space structure. These maps implement stretching and folding of

manifolds along the phase space and are used to model the horseshoe mechanism [143, Sec. 3.5].

The ternary baker map 𝐵3 : T
2 → T

2 is defined by

𝐵3(𝑞, 𝑝) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(3𝑞, 𝑝
3
) for 0 ≤ 𝑞 < 1

3

(3𝑞 − 1, 𝑝+1
3
) for 1

3
≤ 𝑞 < 2

3

(3𝑞 − 2, 𝑝+2
3
) for 2

3
≤ 𝑞 < 1,

(2.33)

illustrated in Fig. 2.4. The phase space is divided into three rectangles, which are compressed

0

1/3

2/3

1

0 1/3 2/3 1

7−→
B3

q

p

7−→
B3

Figure 2.4: Time evolution of the ternary baker map B3 on phase space, see Eq. (2.33).
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in the stable 𝑝-direction and stretched in unstable 𝑞-direction, each by a factor of three, and

then stacked on top of each other. The general definition for an arbitrary number of differently

sized stripes is given in App. A.1. Note that the baker map is equivalent to a shift on symbolic

sequences, which allows for an analytical treatment, see Ref. [150] and App. A.1. It is easy

to see that the baker map is uniformly hyperbolic and ergodic with respect to the uniform

measure 𝜇L. Its particularly simple structure preserves when escape is allowed from the stripes.

2.2.3 Classical maps with escape

In chaotic scattering systems almost all trajectories that are initially in a finite phase-space

volume 𝐴 ⊂ Γ eventually escape from this region. We consider a classical system similar to the

considerations in Sec. 2.1.4, where the time evolution of internal states is effectively described

by the closed map together with a coupling to the outside. This is realized in classical systems

for example by introducing a leaky phase-space region Ω [67], from which particles escape.

In analogy to the quantum map with escape, Eq. (2.15), we generally consider the closed

map 𝑀 together with a classical reflectivity function 𝑅 : Γ → R+, which implements a loss of

intensity as follows. Each particle is considered to carry a weight or intensity 𝐽 . We define

the classical map with escape as the application of the reflectivity 𝑅 on the intensity space,

followed by the closed map 𝑀 . In an extended phase-space Γ× R+ this is written as

(𝑥′, 𝐽 ′) = (𝑀(𝑥), 𝐽 ·𝑅(𝑥)). (2.34)

The choice of order for mapping and reflection is chosen to match the order considered in the

quantum case, see Eq. (2.15). Equation (2.34) can be viewed as the mapping of a localized

phase-space density at 𝑥 with weight 𝐽 . This is often written for arbitrary phase-space densities

𝜌 : Γ → R+ in terms of the Perron-Frobenius operator

𝒫𝜌(𝑥) = 𝑅[𝑀−1(𝑥)] · 𝜌[𝑀−1(𝑥)]. (2.35)

However, phase-space densities exist only for such probability measures 𝜇 on Γ, which are

absolutely continuous with respect to the Lebesgue measure 𝜇L [145, Sec. 0.4]. For this reason,

instead of densities, we consider the more general notion of time evolution for measures 𝜇 in

this thesis. For a closed map the time evolution ℳ̃ of a measure 𝜇 is given by the push-forward

measure,

ℳ̃𝜇(𝐴) := 𝑀*𝜇(𝐴) = 𝜇(𝑀−1(𝐴)) (2.36)

for all measurable 𝐴 ⊂ Γ. For an arbitrary measurable function 𝑓 on Γ, e.g., some observable,

this implies ℳ̃𝜇(𝑓) = 𝜇(𝑓 ∘𝑀). Hence, the closed time evolution of observables is effectively

given by 𝑓 7→ 𝑓 ∘𝑀 . This intuitively means that the iterated measure of some observable is
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the same as the measure of the observable evaluated after one iteration 𝑀 on the phase space.

Note that for the characteristic function 𝑓 = 1𝐴 of some set 𝐴 one recovers Eq. (2.36), since

1𝐴 ∘𝑀 = 1𝑀−1(𝐴).

The time evolution of the map with escape is generalized to measures in the following

sense. We define the classical map with escape ℳ ≡ ℳ𝑀,𝑅 for any measure 𝜇 on Γ as the

push-forward measure modified by 𝑅,

ℳ𝜇(𝐴) :=

∫︁

𝑀−1(𝐴)

𝑅 d𝜇, (2.37)

for all measurable 𝐴 ⊂ Γ. It is sometimes useful to consider the map with escape ℳ for

a measure applied to some measurable function 𝑓 . In this case the definition in Eq. (2.37)

implies

ℳ𝜇(𝑓) = 𝜇(𝑅 · [𝑓 ∘𝑀 ]), (2.38)

such that application of the map with escape to observables is effectively given by 𝑓 7→
𝑅 · (𝑓 ∘ 𝑀). Note that in the closed limit, 𝑅(𝑥) = 1, the map with escape ℳ becomes

equivalent to the closed map ℳ̃.

For a single phase-space point 𝑥 ∈ Γ the definition of ℳ ensures that the intensity is first

reduced by 𝑅(𝑥) and subsequently mapped with 𝑀 as in Eq. (2.34). Thus, we have the same

order of reflection 𝑅 and mapping 𝑀 as in the quantum map. In order to show this consider

a so-called atomic measures 𝛿y, located solely at some phase-space point 𝑦 ∈ Γ [145, Sec. 6].

It is defined as

𝛿y(𝐴) =

∫︁

𝐴

𝛿(𝑥− 𝑦)d𝜇L(𝑥) =

⎧

⎨

⎩

1 𝑦 ∈ 𝐴,

0 else.
(2.39)

Applying the map with escape ℳ to the measure 𝛿y gives for volume preserving 𝑀 on Γ

ℳ𝛿y(𝐴)
(2.37)
=

∫︁

𝑀−1(𝐴)

𝑅(𝑥) 𝛿(𝑥− 𝑦) d𝜇L(𝑥)

= 𝑅(𝑦)

∫︁

𝐴

𝛿[𝑀−1(𝑥′)− 𝑦] d𝜇L(𝑥
′) = 𝑅(𝑦) 𝛿𝑀(y)(𝐴). (2.40)

Hence the overall weight decreases by the factor 𝑅(𝑦), and the iterated measure is localized

at the iterated phase-space point 𝑀(𝑦), as desired.

2.2.4 Classical maps with full escape

In many situations it is convenient to consider full escape, for example, when particles leave a

bounded region indefinitely after entering a certain region Ω [67,69,119]. Such maps naturally
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arise in scattering systems, when the Hamiltonian flow is reduced to a finite phase-space volume

Γ, which is not invariant. For chaotic dynamics almost all initial conditions within such a finite

region eventually escape. After the escape they propagate freely and do not return to Γ. This

occurs for example in the case of three-disk scattering systems [126]. Full escape is used to

model ideally coupled channels between the system of interest and the surrounding.

In the framework of this thesis, full escape is characterized by a phase-space region Ω

with 𝑅(𝑥 ∈ Ω) = 0, while 𝑅(𝑥 /∈ Ω) ̸= 0. For simplicity we restrict to the simplest case

where 𝑅(𝑥 /∈ Ω) = 1. Thus we obtain a very simple form of the reflection function as

𝑅Ω(𝑥) := 1− 1Ω(𝑥). The classical map with full escape is then defined as ℳΩ := 𝑀*𝑅*
Ω, For

any measure 𝜇 on Γ this leads to

ℳΩ 𝜇(𝐴) = 𝜇[𝑀−1(𝐴) ∩ Ωc], (2.41)

which follows immediately from Eq. (2.37) for partial escape.

In such maps there is usually a nontrivial set of points, which never fall into the opening Ω

under forward and backward iteration,

Γs = {𝑥 ∈ Γ : 𝑀 𝑖(𝑥) /∈ Ω ∀𝑖 ∈ Z}. (2.42)

This set has similar properties to the beforementioned chaotic saddle in scattering systems

and is invariant under the map, 𝑀−1(Γs) = Γs. Its stable manifold Γf consists of points that

approach Γs in positive times, while the unstable manifold Γb approaches Γs in negative times,

Γf := {𝑥 ∈ Γ : lim
𝑖→∞

𝑀 𝑖(𝑥) ∈ Γs}, Γb := {𝑥 ∈ Γ : lim
𝑖→∞

𝑀−𝑖(𝑥) ∈ Γs}. (2.43)

Therefore Γf is called forward trapped set, and Γb is called backward trapped set of the map

with escape. Their intersection is trapped in both directions, such that Γs = Γf ∩ Γb. These

sets are usually fractal sets with phase-space volume 𝜇L(Γs) = 𝜇L(Γb) = 𝜇L(Γf) = 0. On the

other hand, consider the sets of points, that fall onto the opening Ω for the first time after 𝑛

forward iterations, Ω+
0 = Ω, and for 𝑛 > 0

Ω+
𝑛 := 𝑀−𝑛(Ω) ∖

𝑛−1⋃︁

𝑖=0

𝑀−𝑖(Ω). (2.44)

These are the preimages of Ω under the map with full escape, and they consist of all points

escaping from the system in the next step after 𝑛 iterations. Rewriting Γf = {𝑥 ∈ Γ : 𝑀 𝑖(𝑥) /∈
Ω ∀𝑖 ∈ N}, it is easy to see that these sets partition the full phase space together with the

forward trapped set, Γ =
⋃︀∞

𝑛=0 Ω
+
𝑛 ∪ Γf. Similarly one defines the sets, which fall into the
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opening Ω for the first time under backward iterations, Ω−
1 = 𝑀(Ω), and for 𝑛 > 1

Ω−
𝑛 := 𝑀𝑛(Ω) ∖

𝑛−1⋃︁

𝑖=1

𝑀 𝑖(Ω). (2.45)

This leads to the partition Γ =
⋃︀∞

𝑖=0 Ω
−
𝑛 ∪ Γb.

We illustrate the relevant classical sets for the ternary baker map 𝐵3, defined in Eq. (2.33),

with full escape from the middle stripe, Ω = [1/3, 2/3)× [0, 1), in Fig. 2.5. The sets of points

escaping under forward iteration, Ω+
𝑛 shown in (a), and backward direction, Ω−

𝑛 shown in

(b), cover almost the full phase space. The forward trapped set Γf is uniform along the 𝑝-

coordinate, which is the stable direction on phase space (c). It is a fractal Cantor set along

the unstable 𝑞-direction. Vice versa, the backward trapped set Γb is fractal in the 𝑝-direction

and uniform in the 𝑞-direction (d). The chaotic saddle Γs inherits a combination of the fractal

structures of forward and backward trapped sets, see (e), and is perfectly self-similar.

For the chaotic standard map with full escape from the opening Ω = (0.3, 0.6) × [0, 1) we

illustrate the equivalent classical sets in Fig. 2.6. The escaping sets Ω±
𝑛 are stretched and

folded along the phase space, see (a) and (b), and show a much richer structure than for the

baker map. The forward trapped set Γf is stretched smoothly along the local stable direction,

which depends on the phase-space point 𝑥 (c), and has a complex structure along the local

unstable phase-space direction. The backward trapped set Γb is stretched along the local

unstable direction on Γ (d), and is fractal in the stable direction. Again, the chaotic saddle Γs

(a)

p

(b)

q

p

(c)

p

(d)

q

p

(e)

q

p

Figure 2.5: Classical sets of ternary baker map with escape from the middle strip. (a)
Sets Ω+

𝑛 for 0 ≤ 𝑛 ≤ 4 (light yellow to dark blue). (b) Sets Ω−
𝑛 for 1 ≤ 𝑛 ≤ 5. (c) Forward

trapped set Γf, (d) backward trapped set Γb, and (e) chaotic saddle Γs, each approximated
by points being trapped for five iterations (black stripes and points).
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combines the fractal structures in both directions (e).

2.2.5 Fractal structure

Introducing escape to the system changes the nature of the chaotic set. In closed systems this

set is equal to the whole phase space Γ. If full escape is considered through an opening Ω the

system shows transiently chaotic dynamics almost everywhere [67, 70, 154]. This means, that

the sets of points escaping in future times Ω+
𝑛 , Eq. (2.44), cover almost the full phase space,

i.e., its closure satisfies Γ =
⋃︀∞

𝑛=0 Ω
+
𝑛 . The invariant chaotic set, the saddle Γs, usually has

fractal properties and Lebesgue measure zero [137, Chp. 3], see Figs. 2.5(e) and 2.6(e).

In order to define the notion of a fractal it is necessary to consider the concept of generalized

dimensions [155,156], different from the usual topology dimension 𝐷T, also known as Lebesgue

covering dimension [157, Chp. 3]. The definition of 𝐷T [157, Def. III.1] implies that it is

always integer valued, and for any subset 𝐴 ⊂ R
𝑛 one has 0 ≤ 𝐷T ≤ 𝑛, where points are

zero-dimensional, lines are one-dimensional, and so on. For metric spaces a more general

concept is provided by the Hausdorff dimension 𝐷H [157, Chp. VII]. The Hausdorff dimension

for regular subsets of R𝑛, such as points and lines, equals the topology dimension, 𝐷H = 𝐷T.

However, in general 𝐷H is not necessarily integer valued, and leads to the following definition

of fractals [156]: A fractal is defined as a set for which the Hausdorff dimension is strictly

larger than its topology dimension, 𝐷H > 𝐷T. This implies, that every set with non-integer

(a)

p

(b)

q

p

(c)

p

(d)

q

p

(e)

q

p

Figure 2.6: Classical sets of chaotic standard map with full escape from Ω = (0.3, 0.6) ×
[0, 1). (a) Sets Ω+

𝑛 for 0 ≤ 𝑛 ≤ 4 (light yellow to dark blue). Opening Ω = Ω+
0 is shown

as the yellow region. (b) Sets Ω−
𝑛 for 1 ≤ 𝑛 ≤ 5. Iteration of opening, 𝑀(Ω) = Ω−

0 , is
shown as the yellow region. (c) Forward trapped set Γf, (d) backward trapped set Γb, and
(e) chaotic saddle Γs, each approximated by points being trapped for five iterations.
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Hausdorff dimension is a fractal. The Hausdorff dimension 𝐷H is thus referred to as the fractal

dimension.

In order to estimate the Hausdorff dimension for subsets of R𝑛 one usually considers the

conceptually simpler fractal box-counting dimension 𝐷0, also known as Minkowski dimension

[158]. Therefore let 𝒜𝜖 := {𝐴𝜖
𝑖}𝑛𝜖

𝑖=1 be a partition of the phase space, Γ =
⋃︀𝑛𝜖

𝑖=1 𝐴𝑖, dividing

Γ into 𝑛𝜖 boxes of size 𝜖. For any set 𝐵 ⊂ Γ let 𝑁(𝐵, 𝜖) ≤ 𝑛𝜖 be the least number of boxes

within 𝒜 that are necessary to cover 𝐵. The box-counting dimension is then defined as the

scaling of 𝑁(𝐵, 𝜖) with 𝜖 [158],

𝐷0(𝐵) = − lim
𝜖→0

ln𝑁(𝐵, 𝜖)

ln 𝜖
. (2.46)

Note that this limit not necessarily exists, such that strictly speaking upper and lower box-

counting dimensions have to be considered by replacing the limit in Eq. (2.46) with limit

superior (lim sup) and limit inferior (lim inf), respectively. For this thesis such a distinction is

not considered, and fractal dimensions are only estimated numerically for finite grids.

It is possible to generalize the concept of the box-counting dimension, if not only the number

of boxes 𝐴𝑖 covering 𝐵, but also the proportion of their intersection 𝐵 ∩ 𝐴𝑖 is taken into

account. This proportion is given in terms of a probability measure 𝜇𝐵 that is uniform on

𝐵 and normalized on Γ. For arbitrary probability measures 𝜇 on Γ one defines generalized

dimensions of order 𝑞, also called Rényi dimensions, as [159,160]

𝐷𝑞(𝜇) = − lim
𝜖→0

1
1−𝑞

ln
∑︀𝑛𝜖

𝑖=1

[︀
𝜇(𝐴𝜖

𝑖)
]︀𝑞

ln 𝜖
. (2.47)

The term in the nominator is sometimes called Rényi entropy of order 𝑞 and denoted by

𝑆𝑞(𝜇, 𝜖). If 𝜇 = 𝜇𝐵 one obtains in the limit of 𝑞 → 0, where 𝑞 > 0, that [𝜇𝐵(𝐴𝑖)]
𝑞 → 1, if and

only if 𝐵 ∩ 𝐴𝑖 ̸= ∅. Hence, lim𝑞→0 𝑆𝑞(𝜇𝐵, 𝜖) = ln𝑁(𝐵, 𝜖) for all 𝜖, such that the box-counting

dimension is obtained in this limit.

Another relevant dimension for dynamical systems is the information dimension, which is

obtained in the limit 𝑞 → 1. In this limit the weight 𝜇(𝐴𝑖) of each box is considered. Applying

l’Hôpital’s rule to the Rényi entropy of order 𝑞 the usual information entropy of a probability

measure 𝜇 discretized on 𝒜𝜖 is obtained,

𝑆1(𝜇, 𝜖) = −
𝑛𝜖∑︁

𝑖=1

𝜇(𝐴𝜖
𝑖) ln𝜇(𝐴

𝜖
𝑖), (2.48)

where only terms with 𝜇(𝐴𝜖
𝑖) > 0 contribute. This leads to the information dimension

𝐷1(𝜇) = − lim
𝜖→0

𝑆1(𝜇, 𝜖)

ln 𝜖
. (2.49)
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Altogether, the parameter 𝑞 of the generalized Rényi dimensions determines how the measure

of the box 𝜇(𝐴𝑖) is counted. For small 𝑞 → 0 all contributing sets are weighted equally, while

for large 𝑞 only those boxes with the largest values of 𝜇(𝐴𝑖) contribute.

Let us consider the fractal sets in maps with full escape, i.e., the chaotic saddle Γs as well as

forward and backward trapped set Γf,Γb. The linearized hyperbolic dynamics on the saddle

implies a local splitting into stable and unstable direction 𝐸s ⊕𝐸u, as discussed in Sec. 2.2.1.

Therefore the full fractal dimension of Γs decomposes into the partial fractal dimensions 𝐷
(s),(u)
1

along stable and unstable direction [161, Sec. 6.3],

𝐷1(Γs) = 𝐷
(s)
1 (Γs) +𝐷

(u)
1 (Γs). (2.50)

Similarly, the product structure implies for Γf and Γb [67]

𝐷1(Γf) = 1 +𝐷
(u)
1 (Γf), 𝐷1(Γb) = 𝐷

(s)
1 (Γb) + 1. (2.51)

This follows from their definition, which implies that Γf and Γb are smooth along stable and

unstable manifold of Γs, respectively, such that 𝐷
(s)
1 (Γf) = 𝐷

(u)
1 (Γb) = 1. These relations sim-

plify further in time-reversal Hamiltonian systems, where all other partial dimensions coincide,

𝐷
(u)
1 (Γf) = 𝐷

(s)
1 (Γb) = 𝐷

(s),(u)
1 (Γs) [67]. Hence, all partial dimensions are determined by the

fractal dimension of the chaotic saddle 𝐷1(Γs), only.

The fractality of the chaotic saddle is related to the transient chaotic dynamics in systems

with full escape by the Kantz–Grassberger relation [72,161],

𝐷
(u)
1 (Γs) = 1− 𝛾nat

𝜆L

. (2.52)

Here, escape from the system is expressed in terms of the natural decay rate 𝛾nat, explained

in the next section, while the chaotic motion is expressed by the typical Lyapunov exponent

𝜆L = 𝜆L(Γs) on the chaotic saddle, see 2.2.1. A generalization of this relation for systems with

partial escape is given in Refs. [88, 162],

𝐷
(u)
1 (Γs) = 1− 𝛾nat + ln𝑅

𝜆L

, (2.53)

where the average ln𝑅 has to be taken over the chaotic set. We apply the concepts of fractal

dimension to resonance eigenfunctions and conditionally invariant measures of maps with

partial escape in Sec. 4.4.2 and of maps with full escape in Sec. 5.4.2.

2.2.6 Conditionally invariant measures

As discussed in the context of ergodicity, we consider closed maps 𝑀 for which the Lebesgue

measure 𝜇L is invariant, ℳ̃𝜇L(𝐴) = 𝜇L[𝑀
−1(𝐴)] = 𝜇L(𝐴) for all measurable 𝐴 ⊂ Γ. This
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means that 𝜇L is an eigenmeasure of the operator ℳ̃ with eigenvalue one. Recall that in

strongly mixing maps, Eq. (2.30), the uniform measure appears as the weak limit of any

smooth initial measure 𝜇, as lim𝑛→∞ ℳ̃𝑛𝜇(𝐴) = 𝜇L(𝐴). Similarly the uniform measure 𝜇s

on the invariant set Γs is an invariant measure of the map with escape. However, this fractal

measure is unstable under time evolution due to the hyperbolic nature of Γs. Taking the limit

of ℳ𝑛𝜇 for any smooth initial measure does not converge towards 𝜇s. Thus, a more general

concept is required to describe asymptotic behavior in maps with escape.

For this purpose one generalizes the concept of invariant measures to conditionally invariant

measures [71,74]. Let ℳ be a map with escape as defined in Eq. (2.37). A measure 𝜇 is called

a conditionally invariant measure of ℳ (or c-measure), if and only if there exists 𝛾 ∈ R, such

that for any measurable 𝐴 ⊂ Γ

ℳ𝜇(𝐴) = e−𝛾 𝜇(𝐴). (2.54)

Thus, any c-measure is an eigenmeasure of the operator ℳ with eigenvalue e−𝛾 ∈ R+. Apply-

ing the map with escape 𝑛 times to a c-measure 𝜇 one finds an exponential decay of the norm,

‖ℳ𝑛𝜇‖ = e−𝑛𝛾‖𝜇‖, where ‖𝜇‖ := 𝜇(Γ). Therefore 𝛾 is called the decay rate of 𝜇. Classically,

possible values of decay rates 𝛾 are strictly bounded by minimal and maximal values of the

reflectivity as [89]

− lnmax
x∈Γ

{𝑅(𝑥)} ≡ 𝛾min ≤ 𝛾 ≤ 𝛾max ≡ − lnmin
x∈Γ

{𝑅(𝑥)}. (2.55)

This implies strictly positive decay rates 𝛾 ∈ R+ for the typical case of 𝑅 < 1 on some phase-

space regions, leading to an exponential decay of the norm of 𝜇 under the map ℳ. Conversely,

if 𝑅 > 1 on some phase-space regions there occurs an exponential gain [162], which is expressed

here in terms of negative decay rates.

2.2.6.1 Natural measure

In chaotic systems with escape the sensitivity on initial conditions induces transient chaos [163].

Nevertheless it is interesting to understand the asymptotic behavior for long times, particularly

the decay mechanism. It is desired to find a classical measure for maps with escape, which

emerges from time evolution similar to 𝜇L in closed systems [74]. In particular, the question

arises, if there exists a unique measure 𝜇nat describing the asymptotic behavior of ℳ𝑛𝜇 for

any smooth initial measure 𝜇. In this sense, such a measure would emerge naturally from the

time evolution and will therefore be called natural measure.

Even though in general it is not possible to prove such a statement, there are some cases

for which the existence of such a unique measure is shown. For example in Anosov maps with

full escape from rectangular [164] or small holes [165] such a measure exists and is supported

on the backward trapped set Γb. In general, this limit is not necessarily unique [74].
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For systems with partial escape, there are much less rigorous mathematical results, regarding

uniqueness of the limiting measure. Thus, typically the definition of the natural measure is

given in terms of the uniform distribution 𝜇L in the following sense [74]. The natural measure

𝜇nat of the map with escape ℳ is defined as the weak limit

𝜇nat(𝐴) = lim
𝑛→∞

ℳ𝑛𝜇L(𝐴)

‖ℳ𝑛𝜇L‖
, (2.56)

for any measurable 𝐴 ⊂ Γ. The decay rate 𝛾nat of 𝜇nat is given by 𝛾nat = − lim
𝑛→∞

log ‖ℳ𝑛+1𝜇L‖
‖ℳ𝑛𝜇L‖ ,

and is called natural decay rate of the map ℳ. If the limit in Eq. (2.56) exists, it is easy

to see, that 𝜇nat is conditionally invariant with decay rate 𝛾nat. Moreover, for full escape this

definition implies that the natural measure is uniform on the unstable manifold Γb of the

chaotic saddle. We emphasize, however, that this manifold is not uniformly distributed on the

phase space, as seen in Fig. 2.5 and Fig. 2.6, leading to a fractal measure 𝜇nat.

There are several ways to construct the measure 𝜇nat other than time-evolution as in

Eq. (2.56). For example, in the Ulam method [166, 167] the Perron-Frobenius operator,

Eq. (2.35), is discretized on a finite phase-space partition, which yields a nonnegative ma-

trix acting on discrete density vectors. The Perron-Frobenius theorem [145] ensures that the

largest eigenvalue of this matrix is positive and real, and the corresponding eigenvector is

nonnegative. Thus it is interpreted as a probability density. The largest eigenvalue is related

to the natural decay rate as e−𝛾nat , while the eigenvector corresponds to the natural measure

𝜇nat evaluated on a finite grid.

2.2.6.2 Natural measure of the inverse map

The classical map with escape ℳ is invertible, if the closed map 𝑀 is invertible and if the

reflectivity function satisfies 𝑅 > 0 almost everywhere on the phase space Γ [162]. Such

reflectivity functions arise for example in models of optical microcavities, where Fresnel’s laws

of transmission and reflection determine the escape at the boundary [43, 47, 48, 54, 67]. In the

following we use the inverse map to identify another important classical c-measure of the map

with escape ℳ and its decay rate.

The inverse ℳ−1 of the map with escape is given by application of the inverse closed map

𝑀−1 : Γ → Γ, followed by application of the inverse reflectivity 𝑅−1 := 1/𝑅 [162]. The inverse

ℳ−1 is defined as the push-forward operator of 𝑀−1 followed by application of the inverse

reflectivity, which implies for measures 𝜇 on Γ

ℳ−1𝜇(𝐴) =

∫︁

𝑀(𝐴)

𝑅−1 ∘𝑀−1 d𝜇 (2.57)
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for all measurable 𝐴 ⊂ Γ. Rewriting Eq. (2.57) in terms of measurable functions 𝑓 on Γ yields

ℳ−1𝜇(𝑓) = 𝜇([𝑅−1 ∘𝑀−1] · [𝑓 ∘𝑀−1]). (2.58)

In this notation it is easy to see that

ℳ−1ℳ𝜇(𝑓)
(2.38)
= ℳ−1𝜇(𝑅 · [𝑓 ∘𝑀 ])

(2.58)
= 𝜇

(︀
[𝑅−1 ∘𝑀−1] · ([𝑅 · 𝑓 ∘𝑀 ] ∘𝑀−1)

)︀
(2.59)

= 𝜇([𝑅−1 ∘𝑀−1] · [𝑅 ∘𝑀−1]
⏟  ⏞  

=1

· 𝑓 ∘𝑀 ∘𝑀−1

⏟  ⏞  

=𝑓

) = 𝜇(𝑓) (2.60)

for all measurable 𝑓 , and similarly ℳℳ−1𝜇(𝑓) = 𝜇(𝑓). This shows that ℳ−1 is indeed the

inverse of ℳ.

We emphasize that Eqs. (2.57) and (2.58) are equivalent to Eqs. (2.37) and (2.38), when we

replace 𝑀 with 𝑀−1 and 𝑅 with 𝑅−1 ∘ 𝑀−1. Thus the inverse map itself is a chaotic map

with escape, determined by ℳ−1 = ℳ𝑀−1,𝑅−1∘𝑀−1 . Hence, results for ℳ are similarly valid

for ℳ−1. It follows that there exists a natural measure of the inverse map

𝜇inv := 𝜇nat[ℳ−1], (2.61)

which we call the inverse measure of ℳ. This measure is, according to Eq. (2.56), determined

by the weak limit

𝜇inv(𝐴) = lim
𝑚→∞

ℳ−𝑚𝜇L(𝐴)

‖ℳ−𝑚𝜇L‖
, (2.62)

for any 𝐴 ⊂ Γ. The inverse measure is conditionally invariant under the inverse map ℳ−1 and

it grows exponentially with the rate 𝛾nat[ℳ−1] = − log lim
𝑛→∞

‖ℳ−(𝑛+1)𝜇L‖
‖ℳ−𝑛𝜇L‖ . Furthermore, 𝜇inv is

conditionally invariant under the map with escape ℳ with decay rate

𝛾inv := −𝛾nat[ℳ−1]. (2.63)

For the last statement assume that 𝜇 is a c-measure of ℳ−1 with decay rate 𝛾, i.e.,

ℳ−1𝜇(𝐴) = e−𝛾𝜇(𝐴) for all 𝐴 ⊂ Γ, cf. Eq. (2.54). Then for all 𝐴 ⊂ Γ one obtains

ℳ𝜇(𝐴) = ℳ[e𝛾ℳ−1𝜇](𝐴) = e−(−𝛾)𝜇(𝐴), (2.64)

such that 𝜇 is also a c-measure of ℳ with decay rate −𝛾 and vice versa. This further

implies that the natural decay rate is the inverse decay rate of the inverse map with escape,

𝛾nat = −𝛾inv[ℳ−1]. Note that natural 𝛾nat and inverse decay rate 𝛾inv of the map with escape

ℳ are independent [162].

We remark that 𝜇inv can also be obtained using the Ulam method [166,167] from a discretized
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Perron-Frobenius operator of the inverse map. As discussed for the natural measure, the largest

eigenvalue of this finite approximation is given by e−𝛾nat[ℳ−1]. Thus one likes to argue, that it is

also larger than the corresponding eigenvalue e−𝛾inv[ℳ−1], which implies 𝛾nat[ℳ−1] < 𝛾inv[ℳ−1]

and, in general, 𝛾nat < 𝛾inv. This statement is proven in App. C.2.

2.2.6.3 Typical decay

Another important classical decay rate is the average decay of typical orbits. This decay rate

is relevant for the distribution of quantum decay rates in the semiclassical limit [89]. Consider

some phase-space point 𝑥 ∈ Γ and its iterations under the map with escape. This is realized

by iterating the normalized initial measure 𝛿x. The weight after 𝑛 iterations is given by

‖ℳ𝑛𝛿x‖ = 𝑅(𝑥) ·𝑅[𝑀(𝑥)] · . . . ·𝑅[𝑀𝑛−1(𝑥)]‖𝛿𝑀𝑛(x)‖ =
𝑛−1∏︁

𝑖=0

𝑅[𝑀 𝑖(𝑥)], (2.65)

which follows from iterative application of Eq. (2.40). Let ⟨𝛾⟩𝑛(𝑥) be the average decay rate

after 𝑛 steps for this orbit, which is defined by ‖ℳ𝑛𝛿x‖ = e−𝑛 ⟨𝛾⟩𝑛(x). It follows that

⟨𝛾⟩𝑛(𝑥) = − 1

𝑛
ln

𝑛−1∏︁

𝑖=0

𝑅[𝑀 𝑖(𝑥)] = − 1

𝑛

𝑛−1∑︁

𝑖=0

ln𝑅[𝑀 𝑖(𝑥)] (2.66)

is the time average of the function 𝑓(𝑥) = − ln𝑅(𝑥) for initial condition 𝑥. For chaotic maps

Birkhoffs ergodic theorem, Eq. (2.29), implies that this time average converges towards the

same limit for almost all 𝑥 ∈ Γ and is given by the phase-space average of 𝑓 ,

𝛾typ := lim
𝑛→∞

⟨𝛾⟩𝑛(𝑥) = −
∫︁

Γ

ln𝑅 d𝜇L. (2.67)

Thus, almost everywhere on the phase space one obtains the same decay rate for single initial

conditions. This might seem counterintuitive, since we just argued for the natural measure

in Sec. 2.2.6.1 that almost all classical initial measures decay with the natural decay rate.

However, this only holds for smooth initial measures, which corresponds to averaging over an

ensemble of initial points in each iteration. Therefore, the natural decay rate behaves like

e−𝛾nat ≈
∫︀

Γ
𝑅 d𝜇L, which implies 𝛾nat ≈ − ln

∫︀

Γ
𝑅 d𝜇L [67], which contrasts Eq. (2.67). Hence

the difference between natural and typical decay rate lies in the nature of the considered

average.

We remark that the definition of the typical decay rate 𝛾typ in Eq. (2.67) can also be applied

to the inverse map ℳ−1, where the reflectivity function is given by 𝑅−1 ∘𝑀−1. This implies

that the typical decay rate of the inverse map equals 𝛾typ[ℳ−1] =
∫︀

Γ
ln𝑅 d𝜇L. Consequently,

the typical decay rate of the inverse map is just the negative of the typical decay rate of

the forward map, 𝛾typ[ℳ−1] = −𝛾typ. This expresses the fact that the average decay under
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the forward map ℳ must be compensated by its inverse. Even though the typical escape

plays an important role for single trajectories, a relevant conditionally invariant measure 𝜇typ

characterizing this typical decay is not found in the literature. In the outlook of Chap. 4 we

claim the existence of such a measure and outline a definition based on conditionally invariant

measures localizing on typical periodic orbits, introduced in Sec. 4.3.3.

2.2.6.4 Conditionally invariant measures for full escape

In the limit of full escape where 𝑅 = 1 − 1Ω, the structure of any conditionally invariant

measure is determined by its structure on the opening Ω, only [74]. This indicates, how c-

measures with arbitrary decay rates can be constructed. Consider a probability measure 𝜈Ω

supported on Γb ∩ Ω and any 𝛾 ∈ R+. For any 𝛾 ∈ R+ a conditionally invariant measure 𝜇

with decay rate 𝛾 is given by [60,74]

𝜇(𝐴) = (1− e−𝛾)
∞∑︁

𝑖=0

e−𝑖𝛾𝜈Ω[𝑀
𝑖(𝐴)]. (2.68)

Vice versa, any conditionally invariant measure 𝜇 of the map with full escape ℳΩ with 𝛾 < ∞
can be decomposed accordingly by its restriction to Ω, 𝜈Ω(𝐴) :=

𝜇(𝐴∩Ω)
𝜇(Ω)

. We emphasize, that

for maps with partial escape such a decomposition of conditionally invariant measures does

not exist.

Furthermore, let us remark that in systems with full escape the integral on the right hand

side of Eq. (2.67) diverges,

𝛾typ = −
∫︁

Γ

ln𝑅 d𝜇L = −
∫︁

Ω

ln𝑅 d𝜇L

⏟  ⏞  
=∞

−
∫︁

Γ∖Ω
ln𝑅 d𝜇L = ∞, (2.69)

such that typical orbits decay arbitrarily fast. This is consistent with the discussion in Sec. 2.2.4

that almost all phase-space points eventually escape through the opening Ω.



Chapter 3

Eigenfunctions in closed maps

This chapter reviews fundamental results about the semiclassical localization of eigenfunctions

in closed chaotic systems with a focus on chaotic quantum maps. In the first section we intro-

duce the concept of quantization of maps and the phase-space distribution of quantum states.

The second section reviews the semiclassical structure of eigenfunctions in closed systems,

namely the semiclassical eigenfunction hypothesis and the quantum ergodicity theorem.

3.1 Quantization of maps

In general, there exist no unique quantization procedure for time discrete maps 𝑀 : Γ → Γ on

some phase space Γ. The correspondence principle between quantum and classical dynamics,

however, leads to certain necessary axioms of quantization, which are given for maps, e.g.,

in Refs. [168–170]. In the particular case of a periodic phase space, Γ = T
2, one usually

considers a series of finite dimensional Hilbert spaces {H𝑁}𝑁∈N with H𝑁 = C
𝑁 . The dimension

𝑁 of the Hilbert space corresponds to the number of Planck cells of size ℎ = 1/𝑁 , into

which the phase space Γ is divided. Hence, the parameter ℎ is an effective Planck’s constant

in dimensionless units, which determines the semiclassical limit as ℎ → 0 (or equivalently

𝑁 → ∞). The quantization of a classical observable, i.e., a smooth function 𝑎 ∈ 𝐶∞(Γ,C), is

given by a sequence of linear maps {Op𝑁(𝑎)}𝑁∈N acting on H𝑁 , satisfying asymptotically for

𝑁 → ∞ [170]

(a) Op𝑁(�̄�) ∼ Op𝑁(𝑎)
†,

(b) Op𝑁(𝑎𝑏) ∼ Op𝑁(𝑎)Op𝑁(𝑏), and

(c) lim
𝑁→∞

1
𝑁
tr [Op𝑁(𝑎)] =

∫︀
𝑎 d𝜇L.

(3.1)

Here, any two sequences of operators {𝐴𝑁} and {𝐵𝑁} are defined to be semiclassically

equivalent, 𝐴𝑁 ∼ 𝐵𝑁 , if ‖𝐴𝑁 − 𝐵𝑁‖∞ 𝑁→∞−−−→ 0 with the usual operator norm ‖𝐴𝑁‖∞ =

sup𝜙∈H𝑁

‖𝐴𝑁𝜙‖
‖𝜙‖ .

This allows to define a suitable correspondence condition for the quantization of maps as
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follows. The sequence {𝒰𝑁}𝑁∈N of unitary operators 𝒰𝑁 : H𝑁 → H𝑁 quantizes the closed map

𝑀 , if for any smooth observable 𝑎 on Γ the Egorov property holds, that is

𝒰 †
𝑁 Op𝑁(𝑎)𝒰𝑁 ∼ Op𝑁(𝑎 ∘𝑀). (3.2)

This relation ensures that classical and quantum time evolution of observables commute in the

semiclassical limit. Even though quantization is not unique for a given map 𝑀 , it is usually

possible to define a quantum propagator 𝒰𝑁 by taking the classical action as a generating

function, see e.g., Ref. [171] and [172] Sec. 8.2. For certain systems, such as the bakers map,

there are more adapted methods like geometric quantization [151,152,174]. In time-periodically

kicked systems a quantization can be obtained by the Floquet approach [175].

3.1.1 Quantized standard map

The standard map is derived from a time-periodically kicked Hamiltonian, Eq. (2.31), where

the kicking potential 𝑉 (𝑞) acts only at discrete times and the particle propagates freely between

the kicks. The propagator for the freely moving particle is given by e−
i
2~

𝑝2 , while a full

kick corresponds to e−
i
~
𝑉 (𝑞) for position and momentum operators 𝑞 and 𝑝. Considering the

observation time in the middle of the kick, the Floquet propagator [175, 176] for this system

is given by

𝒰 = e−
i
2~

𝑉 (𝑞)e−
i
2~

𝑝2e−
i
2~

𝑉 (𝑞). (3.3)

This operator acts on a Hilbert space corresponding to the full plane R
2. In order to obtain

a quantum map on the torus Γ = T
2 one applies Fourier transformation to the kinetic term

e−
i
2~

𝑝2 and periodic boundary conditions in 𝑞 and 𝑝, see e.g. Ref. [169]. This automatically

implies discrete lattice points

𝑞𝑘 = 2𝜋~(𝑘 + 𝜗𝑝), 𝑝𝑘 = 2𝜋~(𝑘 + 𝜗𝑞), 𝑘 ∈ Z, (3.4)

with the so-called Bloch phases 𝜗𝑞, 𝜗𝑝. The number of lattice points within the interval [0, 1)

determines the dimension of the Hilbert space and is given by 𝑁 = 1/(2𝜋~) = 1/ℎ. Moreover,

periodicity further restricts the choices of 𝜗𝑞, which is either 𝜗𝑞 = 0 for 𝑁 even, or 𝜗𝑞 = 1/2

for 𝑁 odd. Throughout this thesis we always use 𝜗𝑝 = 0. The quantized standard map on

the torus follows in position representation as follows, for a detailed derivation see for example

Ref. [176],

⟨𝑞𝑛|𝒰|𝑞𝑘⟩ =
1

𝑁
e−

i
2~

𝑉 (𝑞𝑛)

𝑁−1∑︁

𝑚=0

e
i
~
𝑝𝑚(𝑞𝑛−𝑞𝑘)e−

i
2~

𝑝2𝑚 e−
i
2~

𝑉 (𝑞𝑘). (3.5)
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3.1.2 Phase-space representation of quantum states

Quantum classical correspondence is often investigated on the phase space. There are different

types of phase-space representations, e.g., the Wigner-representation [177], or the Glauber–

Sudarshan representation [178, 179]. In this thesis we consider the so-called Husimi represen-

tation [180, 181], which has the intuitive interpretation as a phase-space density. The Husimi

function ℋ𝜓 of any quantum state 𝜓 ∈ H𝑁 is defined by

ℋ𝜓(𝑥) := ℎ−1 ⟨𝛼x|𝜓⟩⟨𝜓|𝛼x⟩, (3.6)

where 𝛼x is a coherent state with minimal uncertainty Δ𝑞Δ𝑝 = ~/2 localized at the phase-

space point 𝑥 = (𝑞, 𝑝) ∈ Γ. We consider the simplest case of equal uncertainty in 𝑝 and

𝑞, such that Δ𝑞 = Δ𝑝 =
√︀

~/2. The coherent states 𝛼𝑥 are eigenstates of the annihilation

operator �̂� = 1√
2
(𝑞 + i𝑝), where �̂�𝛼x = (𝑞 + i𝑝)𝛼x, see, e.g., [182]. They are given in position

representation on R
2 in dimensionless units by

𝛼x(𝑞
′) = (2ℎ)1/4 e−

1
2~

[(𝑞−𝑞′)2−2i 𝑝𝑞′] (3.7)

and have to be restricted to the torus phase space Γ = T2 by application of suitable boundary

conditions [182]. Note that it is also possible to consider stretched or tilted coherent states

with Δ𝑝 ̸= Δ𝑞. The specific choice changes the resulting phase-space distributions on the scale

of order ℎ.

Based on coherent states is the anti-Wick quantization of some observable 𝑎 : Γ → R [183],

Opaw
𝑁 (𝑎) := ℎ−1

∫︁

Γ

𝑎(𝑥) |𝛼x⟩⟨𝛼x| d𝜇L(𝑥). (3.8)

This definition means that for all phase-space points 𝑥 ∈ Γ a projector on the localized coherent

state |𝛼x⟩⟨𝛼x| is considered, which is weighted with the value of the observable in 𝑥. Recall

that the quantization of observables is not unique and needs to satisfy certain asymptotic

conditions, see Eq. (3.1). Due to the close relation to coherent states, we only consider the

Anti-Wick quantization in this thesis. In particular, the expectation value of the observable 𝑎

in some quantum state 𝜓 ∈ H𝑁 ,

E𝜓[𝑎] := ⟨𝜓|Op𝑁(𝑎) |𝜓⟩, (3.9)

is for the anti-Wick quantization directly related to the Husimi distribution ℋ𝜓 as

E𝜓[𝑎] = ℎ−1

∫︁

Γ

𝑎(𝑥) ⟨𝜓|𝛼x⟩⟨𝛼x|𝜓⟩ d𝜇L(𝑥) =

∫︁

Γ

𝑎(𝑥)ℋ𝜓(𝑥) d𝜇L(𝑥). (3.10)

This further illustrates that the Husimi distribution is a density on the phase space Γ, which
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implies for each 𝜓 ∈ H𝑁 the Husimi measure

𝜇𝜓(𝐴) :=

∫︁

𝐴

ℋ𝜓(𝑥) d𝜇L(𝑥). (3.11)

Altogether, the Husimi phase-space representation is a versatile tool to investigate the structure

of eigenfunctions in terms of expectation values of classical observables.

3.2 Structure of eigenfunctions

In this section we review the main results for the localization of eigenfunctions of closed

quantum maps, which are the semiclassical eigenfunction hypothesis [5–7, 184, 185] and the

quantum ergodicity theorem [8–15]. Both are based on the correspondence principle between

quantum and classical time evolution. These fundamental statements specify the semiclassical

phase-space structure of eigenfunctions in terms of the set of semiclassical limit measures.

A semiclassical limit measure is defined as follows. Consider a quantization {𝒰𝑁}𝑁∈N of a

classical map 𝑀 : Γ → Γ acting on the Hilbert space H𝑁 and let ℰ𝑁 be the set of eigenfunctions

of 𝒰𝑁 . A classical measure 𝜇 on the phase space Γ is called semiclassical limit measure of the

quantum map, if there exists a sequence of eigenfunctions {𝜓𝑁}𝑁∈N of 𝒰𝑁 such that the

expectation values E𝜓[𝑎] of any smooth observable 𝑎 : Γ → R converge towards the classical

expectation value 𝜇(𝑎),

⟨𝜓𝑁 |Op𝑁(𝑎) |𝜓𝑁⟩ 𝑁→∞−−−→ 𝜇(𝑎) =

∫︁

Γ

𝑎 d𝜇. (3.12)

3.2.1 Semiclassical eigenfunction hypothesis

The semiclassical eigenfunction hypothesis [5–7, 184, 185] relates the structure of resonance

eigenfunctions to classical invariant sets. It is formulated in Ref. [7] as follows: Each semiclas-

sical eigenstate has a Wigner function concentrated on the region explored by a typical orbit

over infinite times. The Wigner function of some quantum state 𝜓 on a two-dimensional phase

space is defined as the Fourier transformation of the product of 𝜓 and its complex conjugate

𝜓* in position representation, separated by the distance 𝑄 [177],

𝒲𝜓(𝑞, 𝑝) =
1

2𝜋~

∫︁

d𝑄 e−i𝑝𝑄/~ 𝜓*(𝑞 −𝑄/2)𝜓(𝑞 +𝑄/2). (3.13)

The Wigner function can become negative and is thus a quasi probability density. A convolu-

tion of the Wigner function with a Gaussian distribution in 𝑞 and 𝑝 with standard deviations

𝜎𝑞𝜎𝑝 ≥ ~/2, however, always yields a non-negative distribution [186]. If the width of the

Gaussian is minimal with respect to the uncertainty principle and symmetric in 𝑝 and 𝑞,

𝜎𝑝 = 𝜎𝑞 =
√︀

~/2, the usual Husimi phase-space distribution for symmetric coherent states is
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recovered, ℋ𝜓(𝑞, 𝑝) =
∫︀∫︀

d𝑞′d𝑝′(ℎ/2) exp
[︁

− (𝑝−𝑝′)2

~
− (𝑞−𝑞′)2

~

]︁

𝒲𝜓(𝑞
′, 𝑝′).

The semiclassical eigenfunction hypothesis leads to a distinction between regular and chaotic

eigenfunctions. Regular eigenfunctions are concentrated on regular tori 𝐶𝑚, which satisfy a

quantization condition of the action [7], 𝐼𝑚 = 1
2𝜋

∮︀

𝐶𝑚
𝑝 · d𝑞 = (𝑚+ 𝛼

4
)~, where 𝛼 is the Maslov

index of the torus [187]. The semiclassical Wigner function of such a regular eigenfunction is

given by [5, 184]

𝒲𝑚(𝑞, 𝑝) ≈
1

2𝜋
𝛿[𝐼(𝑞, 𝑝)− 𝐼𝑚], (3.14)

where 𝐼(𝑞, 𝑝) is the action of the regular torus at (𝑞, 𝑝). The 𝛿-function restricts the Wigner

function to the classical torus with action 𝐼𝑚, which is typically explored by classical orbits

over infinite times [7]. In contrast, in chaotic and thus ergodic systems classical orbits usually

explore complete surfaces of fixed energy determined by the Hamilton function, 𝐻(𝑞, 𝑝) = 𝐸.

For chaotic eigenfunctions the semiclassical Wigner function of an eigenfunction with energy

𝐸 is given by [5, 6]

𝒲(𝑞, 𝑝) ≈ 𝛿[𝐸 −𝐻(𝑞, 𝑝)]
∫︀∫︀

d𝑞d𝑝 𝛿[𝐸 −𝐻(𝑞, 𝑝)]
, (3.15)

which is a uniform distribution on the energy shell.

In systems with a mixed phase space there exist both regular and chaotic motion. This

implies usually a set of regular eigenfunctions concentrated on the regular tori of the system,

and a set of chaotic eigenfunctions spread over the ergodic component of the system. In both

cases, the Wigner functions localize on classical phase-space regions that are invariant under

the closed map 𝑀 . Thus, the eigenfunction hypothesis implies that any semiclassical limit

measure 𝜇 must be invariant under 𝑀 , and that any two different of these measures localize

on dynamically independent regions on Γ.

This is illustrated for the quantized standard map, Eq. (3.5), for 𝜅 = 2.5 in Fig. 3.1. The

classical phase space at 𝜅 = 2.5 inherits regular and chaotic motion as illustrated in (a). The

bottom panel shows a single orbit that is trapped around the regular island chain of period four.

The Husimi distributions of four considered eigenfunctions for ℎ = 1/1000 are shown in (b).

The first two panels show regular eigenfunctions, concentrated on classical tori highlighted

in (a). The chaotic eigenfunction in the third panel localizes on the ergodic component of

the classical phase space with fluctuations on the scale of order ℎ. In the fourth panel we

show an eigenfunction localizing on the boundary between regular and chaotic region, which

reminds of classically trapped orbits, see bottom panel in (a). Similar Husimi distributions

as in (b) are shown in (c) for ℎ = 1/16000. As predicted by the semiclassical eigenfunction

hypothesis, the regular eigenfunctions are much more concentrated on a single torus while the

chaotic eigenfunction spreads uniformly over the chaotic region. Note that one always expects
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(a) 𝜅 = 2.5
(b) ℎ = 1/1000

(c) h = 1/16000

0 maxℋψ

Figure 3.1: Semiclassical eigenfunction hypothesis for mixed phase space Γ. (a) Classical
phase-space portrait of standard map with κ = 2.5. The bottom panel shows a single
trajectory, which is trapped around the island chain of period four. (b) Husimi distribution
ℋ𝜓 of eigenfunction ψ of the quantized standard map for h = 1/1000. Shown are two
regular eigenfunctions, a chaotic eigenfunction, and a trapped eigenfunction (from left to
right). The regular eigenfunctions localize on classical tori highlighted in top panel of (a).
(c) Same as (b) for h = 1/16000. The maximum of the colormap is taken for each ℋ𝜓

individually in (b) and (c), as indicated by the colorbar below.

trapped eigenfunctions at the boundary between regular islands and chaotic sea, even though

their relative number decreases for larger 𝑁 .

3.2.2 Quantum ergodicity theorem

The uniform distribution of chaotic eigenfunctions is rigorously proven for specific systems

with ergodic dynamics in terms of the quantum ergodicity theorem [8–15], which applies to

eigenfunctions of the Laplacian on compact hyperbolic surfaces [9,10], to ergodic billiards [11],

and to arbitrary smooth ergodic maps on the torus [12].

The quantum ergodicity theorem for ergodic maps is formulated as follows [13, 15]. Let

{𝒰𝑁}𝑁∈N be a quantization of the classical map 𝑀 : Γ → Γ acting on the Hilbert space H𝑁 ,

and let 𝑀 be ergodic with respect to the uniform Lebesgue measure 𝜇L. Let ℰ𝑁 denote the

set of eigenfunctions of 𝒰𝑁 for each 𝑁 ∈ N. Then, the semiclassical limit measure of almost

any subsequence {𝜓𝑁}𝑁∈N of eigenfunctions 𝜓𝑁 ∈ ℰ𝑁 is given by the Lebesgue measure 𝜇L. In

other words, there exist subsets ℰ ′
𝑁 ⊂ ℰ𝑁 of eigenfunctions, satisfying lim𝑁→∞

|ℰ ′|
|ℰ| = 1, such
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(a) 𝜅 = 10

(b) ℎ = 1/1000

(c) h = 1/16000

0 maxℋψ

Figure 3.2: Quantum ergodicity for chaotic map. (a) Typical trajectory of the chaotic
standard map with κ = 10 on the phase space (blue). Colored markers indicate three
different classical fixed points (q*, p*). (b) Husimi distribution ℋ𝜓 of chaotic eigenfunctions
ψ of quantized standard map for h = 1/1000. The last panel shows an eigenfunction that
is enhanced on the fixed point (q*, p*) = (0.5, 0.5), see red marker in (a). (c) Same as (b)
for h = 1/16000. The eigenfunction in the last panel is enhanced on two fixed points of M ,
see pink and orange marker in (a).

that for any smooth observable 𝑎

⟨𝜓′
𝑁 |Op𝑁(𝑎) |𝜓′

𝑁⟩
𝑁→∞−−−→ 𝜇L(𝑎) =

∫︁

Γ

𝑎 d𝜇L, (3.16)

where {𝜓′
𝑁}𝑁∈N is any sequence of eigenfunctions with 𝜓′

𝑁 ∈ ℰ ′
𝑁 .

In consequence, the only relevant semiclassical limit measure for chaotic maps is the uni-

form distribution 𝜇L. Furthermore, Eq. (3.16) implies that the Husimi densities ℋ𝜓′
𝑁
of the

eigenfunctions 𝜓′
𝑁 converge in a weak sense towards the uniform measure, i.e., the Husimi

measure defined in Eq. (3.11) satisfies 𝜇𝜓′
𝑁
(𝐴)

𝑁→∞−−−→ 𝜇L(𝐴) for all measurable 𝐴 ⊂ Γ. We

emphasize that such a convergence does not hold point-wise, ℋ𝜓′
𝑁
(𝑞, 𝑝) 9 1, since the Husimi

distribution fluctuates on scales of order ℎ.

Figure 3.2 illustrates Husimi distributions ℋ𝜓 of eigenfunctions 𝜓 of the chaotic standard

map for 𝜅 = 10 and Planck’s constant ℎ ∈ {1/1000, 1/16000}. The classical phase space

is shown in (a) with a typical orbit. In addition, three fixed points of the standard map,

Eq. (2.32), are highlighted. In (b) and (c) we show for both values of ℎ three chaotic eigen-

functions, that cover the phase space uniformly, and one exceptional eigenfunction, which is

enhanced on periodic orbits. We observe that individual Husimi distributions of chaotic eigen-
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functions always fluctuate on scales of order ℎ illustrating why the convergence in Eq. (3.16)

only holds on average, e.g., over some phase-space region 𝐴 ⊂ Γ.

Semiclassical convergence in ergodic systems is investigated often using the distribution of

quantum expectation values E𝜓[𝑎] of some observable 𝑎 at finite ℎ = 1/𝑁 around the classical

expectation value 𝜇L(𝑎) [14, 188–190]. Quantum ergodicity is expressed in the convergence of

the sums

𝑆𝑘(𝑁, 𝑎) =
1

𝑁

∑︁

𝜓∈ℰ𝑁

⃒
⃒
⃒E𝜓[𝑎]− 𝜇L(𝑎)

⃒
⃒
⃒

𝑘 𝑁→∞−−−→ 0 (3.17)

for 𝑘 ≥ 1. Note that convergence of Eq. (3.17) for 𝑘 = 1 is equivalent to the quantum ergod-

icity theorem Eq. (3.16), which follows from Ref. [145] Theorem 1.20. The rate of quantum

ergodicity is defined as the asymptotic scaling 𝑆𝑘 ∼ 𝑁𝜅𝑘 = ℎ−𝜅𝑘 for 𝑁 → ∞. This has been

investigated in particular for the second moment 𝑆2(𝑁, 𝑎), relating it to classical autocorrela-

tion functions [191]. Note that the second moment has a similar form to the variance of the

distribution of E𝜓[𝑎]𝑁 around the mean value 𝜇(𝑎), which is evaluated for a finite sample of

size 𝑁 . In this sense 𝑆2(𝑁, 𝑎) ≈ Var(𝑎𝑁). In chaotic maps one usually expects and observes

an asymptotic scaling of 𝑆1 ∼ 𝑁−1/2 = ℎ1/2 and 𝑆2 ∼ 𝑁−1 = ℎ [182], which is the same as for

random matrices [192].



Chapter 4

Resonance eigenfunctions in maps

with partial escape

In this chapter we investigate the phase-space structure of resonance eigenfunctions in systems

with partial escape. This chapter is divided in four main sections. In the first section the quan-

tization of maps with partial escape is reviewed and resonance eigenvalues of the considered

example system are discussed. In the second section, Sec. 4.2, we analyze resonance eigen-

functions of the quantum system. Therefore we present numerical support for the convergence

of resonance eigenfunctions to fractal phase-space structures. We briefly discuss their fluctua-

tions around the quantum average. We further derive a semiclassical expression for expectation

values of specific phase-space functions generalizing the results of Ref. [59]. Finally we prove

that semiclassical limit measures for quantum maps with partial escape must be conditionally

invariant, generalizing the results of Ref. [60]. Section 4.3 deals with conditional invariant

measures of the classical map with partial escape. First we present a well-known construction

of the natural measure and the inverse measure. Based on this construction, we introduce a

family of conditionally invariant measures for arbitrary decay rates in systems with partial es-

cape. We also derive another class of conditionally invariant measures for partial escape which

are based on periodic orbits. The fourth section is used to compare resonance eigenfunctions

and classical product measures. We first compare their phase-space distributions qualitatively

on the phase space. Secondly we analyze their effective fractal dimensions. We further apply

the Jensen–Shannon divergence as a quantitative distance between resonance eigenfunctions

and classical measures. Finally, we investigate the dependence on the reflectivity of the sys-

tem, by going from an almost closed system to a system with almost full escape. The results

of this chapter have been published in Ref. [97].

4.1 Quantization of maps with partial escape

In systems with partial escape the classical time evolution is given by application of some

reflectivity function 𝑅 : Γ → R+ followed by the closed map 𝑀 as introduced in Sec. 2.2.3.
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The classical maps with escape considered in this thesis are as a map ℳ of measures 𝜇 in

Eq. (2.38) which usually leads to a loss of probability. Hence, the correspondence principle

between quantum and classical maps with escape is slightly different from the Egorov property

for closed maps, Eq. (3.2).

4.1.1 Correspondence principle for partial escape

In analogy to Ref. [60, Axiom 2] the following correspondence principle is required for maps

with escape. Let ℳ be a classical map with escape for the closed map 𝑀 with reflectivity

function 𝑅. The sequence {𝒰𝑁}𝑁∈N of linear operators 𝒰𝑁 : H𝑁 → H𝑁 quantizes the map

with escape ℳ, if for any smooth observable 𝑎 : Γ → R classical and quantum time-evolution

are equivalent in the limit 𝑁 → ∞,

𝒰 †
𝑁 Op𝑁(𝑎)𝒰𝑁 ∼ Op𝑁(𝑅 · (𝑎 ∘𝑀)). (4.1)

Note that if the map 𝑀 is discontinuous on Γ it is additionally required that 𝑎 is compactly

supported on the set 𝐶(𝑀−1) where𝑀−1 is continuous, i.e., 𝑎 ∈ 𝐶∞
𝑐 (𝐶(𝑀−1)) [60]. In contrast

to the Egorov property for closed maps, Eq (3.2), the propagator 𝒰𝑁 appearing on the left

hand side of Eq. (4.1) is not unitary, 𝒰 †
𝑁 ̸= 𝒰𝑁 . Moreover, the observable on the right hand

side in Eq. (4.1) corresponds to the time-evolved observable 𝑎 under the map with escape ℳ
according to Eq. (2.38). Hence, Eq. (4.1) ensures that classical and quantum time-evolution

of observables commute in the semiclassical limit.

Let {𝒰𝑁}𝑁∈N be a quantization of the closed map 𝑀 and consider the quantization of the

reflectivity operator

ℛ𝑁 := Op𝑁(𝑅
1/2), (4.2)

which can be chosen to be hermitian, ℛ†
𝑁 = ℛ𝑁 , for real valued reflectivity functions 𝑅. The

Egorov property for closed maps, Eq (3.2), and the quantization condition for observables,

Eq. (3.1), imply that Eq. (4.1) holds for quantum maps with escape as considered in Sec. 2.1.4,

𝒰𝑁 = 𝒰 · ℛ𝑁 , since for 𝑁 → ∞

𝒰 †
𝑁 Op𝑁(𝑎)𝒰𝑁 = ℛ†

𝑁𝒰 †
𝑁 Op𝑁(𝑎)𝒰𝑁ℛ𝑁 (4.3)

Eq. (3.2)∼ Op𝑁(𝑅
1/2)Op𝑁(𝑎 ∘𝑀)Op𝑁(𝑅

1/2) (4.4)

Eq. (3.1)(b)∼ Op𝑁(𝑅
1/2 · 𝑎 ∘𝑀 ·𝑅1/2) = Op𝑁(𝑅 · (𝑎 ∘𝑀)). (4.5)

Hence, any closed quantization gives rise to a quantization for partial escape when the reflec-

tivity operator is suitably chosen.

Furthermore it is desirable to achieve the usual Egorov property for the map with escape,
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when the inverse time evolution is considered instead of the hermitian conjugate. Therefore

assume that 𝑅 > 0 is strictly positive, such that 𝑅−1 is defined on Γ. The second quantization

condition for observables, Eq. (3.1)(b), implies that Op𝑁(𝑅
1/2)Op𝑁(𝑅

−1/2) ∼ Op𝑁(1) = 1𝑁 ,

such that asymptotically ℛ−1
𝑁 = [Op𝑁(𝑅

1/2)]−1 ∼ Op𝑁(𝑅
−1/2). Altogether we consistently

obtain with 𝒰−1
𝑁 = ℛ−1

𝑁 𝒰−1
𝑁 the asymptotic relation

𝒰−1
𝑁 Op𝑁(𝑎)𝒰𝑁 ∼ Op𝑁(𝑎 ∘𝑀), (4.6)

for 𝑁 → ∞, which follows similar to Eqs. (4.3)–(4.5). In the following we omit the suffix 𝑁

whenever suitable.

4.1.2 Resonances in maps with partial escape

In contrast to closed chaotic systems the propagator 𝒰 of the quantum map with escape is in

general subunitary for 𝑅 ≤ 1, as discussed in Sec. 2.1.4. Recall that the eigenvalue equation,

𝒰𝜓 = 𝜆𝜓, see Eq. (2.16), leads to eigenvalues 𝜆 = e−i𝜃−𝛾/2 with modulus less than one.

Therefore the decay rates 𝛾 are all positive. In this section we investigate these eigenvalues

for the chaotic standard map with partial escape. We consider kicking strength 𝜅 = 10 and

escape from a leaky region Ω ⊂ Γ in terms of the reflectivity function

𝑅(𝑞, 𝑝) = 1− (1−𝑅Ω)1Ω(𝑞, 𝑝) =

⎧

⎨

⎩

𝑅Ω (𝑞, 𝑝) ∈ Ω

1 else,
(4.7)

choosing a strip parallel to the 𝑝-direction, Ω = (0.3, 0.6)× [0, 1). The parameter 𝑅Ω controls

the amount of escape from Ω. If not stated otherwise, in the following we consider the reflec-

tivity parameter 𝑅Ω = 0.2, which is considered ’far‘ from the closed limit (𝑅Ω = 1) and ’far‘

from the limit of full escape (𝑅Ω = 0).

We illustrate eigenvalues of the standard map with escape in the 𝜃-𝛾 plane for different

values of effective Planck’s constant ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000} in Fig. 4.1, where

the dimension of the corresponding Hilbert space is 𝑁 = 1/ℎ. The horizontal lines indicate

the classical natural decay rates of forward and inverse map, 𝛾nat (red) and 𝛾inv (green), and

the typical decay rate 𝛾typ (blue). This representation resembles the spectra of chaotic optical

microcavities in the complex frequency plane [48], where 𝜃 is identified as the energy and

𝛾 corresponds to the width of the resonance, see also discussion in Sec. 2.1. We make two

remarkable observations. First, almost all of the resonances fall into a relatively narrow band

of decay rates, 𝛾nat . 𝛾 . 𝛾inv, where 𝛾nat and 𝛾inv are the natural decay rates of forward

and inverse map, see Sec. 2.2.6. Let us remark that there also exists a strict spectral gap

related to the topological pressure of the classical chaotic map [89, 126], where no quantum

resonances are found in classically allowed regions [91, 193]. However, the relative number of
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Figure 4.1: Eigenvalues of the chaotic standard map with partial escape for 𝑅Ω = 0.2 and
Ω = (0.3, 0.6) × [0, 1). Shown is the spectrum of 𝒰 in 𝜃-𝛾 plane for (a) ℎ = 1/250, (b)
ℎ = 1000 (c) ℎ = 4000, and (d) ℎ = 16000. Horizontal lines indicate classical decay rates
γnat ≈ 0.22 (red), 𝛾typ ≈ 0.48 (blue), and 𝛾inv ≈ 0.88 (green).

supersharp resonances with 𝛾 < 𝛾nat goes to zero for ℎ → 0 and they are unlikely to be found

far from 𝛾nat [194]. Since the same can be expected for resonances with 𝛾 > 𝛾inv, we expect

semiclassically almost all decay rates in the range 𝛾nat ≤ 𝛾 ≤ 𝛾inv. We secondly observe no

gaps within the interval [𝛾nat, 𝛾inv]. Hence we expect that the spectrum 𝜎(𝒰) becomes dense

on this interval in the semiclassical limit, even though the distribution visibly depends on 𝛾.

We reveal the distribution of the decay rates by illustrating the probability 𝑃 (𝛾) in Fig. 4.2

for the same values of ℎ as before. This distribution is clearly not uniform. The probability

at 𝛾nat is significantly larger than at 𝛾inv. For decreasing values of ℎ the histogram develops

a maximum close to 𝛾typ. We also confirm that for (a) ℎ = 1/250 and (b) ℎ = 1/1000 there

is a significantly larger probability to find exceptional resonances with 𝛾 < 𝛾nat and 𝛾 > 𝛾inv

than for (d) ℎ = 1/16000. We additionally investigate the distribution of the spectrum with

respect to the angle 𝜃 and observe that 𝑃 (𝜃) becomes uniformly distributed for small ℎ, shown

in App. B.1.

These observations are consistent with the results of Refs [89, 195] that in the semiclassical
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Figure 4.2: Distribution of decay rates 𝛾 for the chaotic standard map with partial escape
for 𝑅Ω = 0.2. Shown is the normalized probability 𝑃 (𝛾) to find the decay rate 𝛾 for (a)
ℎ = 1/250, (b) ℎ = 1/1000 (c) ℎ = 1/4000, and (d) ℎ = 1/16000. Vertical lines indicate
classical decay rates γnat ≈ 0.22 (red), 𝛾typ ≈ 0.48 (blue), and 𝛾inv ≈ 0.88 (green).
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limit almost all resonance eigenfunctions have decay rate 𝛾 = 𝛾typ, even though the emerging

peak is not very prominent. The slow convergence has already been noted in Ref. [89], and

the uniform distribution with respect to 𝜃 has been proven for decay rates close to 𝛾typ in

Ref. [195]. We remark that the shape of the probability distribution at the edges 𝛾nat and

𝛾inv is understood in the context of open quantum graphs [91]. Moreover, the distribution of

decay rates at the lower edge 𝛾nat is related to multifractal properties of the natural measure

𝜇nat [92].

We additionally show the spectra for two other choices of 𝑅Ω in Figs. 4.3 and 4.4. When

less escape from Ω is considered, 𝑅Ω = 0.8, the resonances concentrate on a band which is

narrower than before, see Fig. 4.3. Note that here 𝛾nat and 𝛾inv are much smaller and closer to

each other. There are also significantly more exceptionally small and large resonances outside

of the interval [𝛾nat, 𝛾inv], which is seen for example at ℎ = 1/1000 comparing Fig. 4.3(a) to

Fig. 4.1(b). The corresponding distribution of decay rates is almost symmetric around 𝛾typ,

see Fig. 4.3(c,d).

In contrast, for more escape, 𝑅Ω = 0.05, the spectrum is much broader than before, see
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Figure 4.3: Eigenvalues and distribution of decay rates for the chaotic standard map
with partial escape for 𝑅Ω = 0.8. Shown is the spectrum for (a) ℎ = 1/1000, and (b)
ℎ = 1/16000 as in Fig. 4.1. Probability distribution P (γ) is shown in (c) and (d) for the
same ℎ, respectively. Horizontal (a,b) and vertical (c,d) lines indicate classical decay rates
γnat ≈ 0.060, 𝛾typ ≈ 0.063, and 𝛾inv ≈ 0.075.
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Figure 4.4: Eigenvalues and distribution of decay rates for the chaotic standard map with
partial escape for 𝑅Ω = 0.05 as in Fig. 4.3. Horizontal (a,b) and vertical (c,d) lines indicate
classical decay rates 𝛾nat ≈ 0.25, 𝛾typ ≈ 0.90, and 𝛾inv ≈ 2.1 (red, blue, green).
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Fig. 4.4. We notice that here 𝛾inv is larger than for 𝑅Ω = 0.2, but 𝛾nat is of the same order.

The number of resonances close to 𝛾inv is significantly smaller than before, such that this region

is sparsely filled even for ℎ = 1/16000 (b). The distribution of decay rates is again peaked

around 𝛾typ, but there is also a small peak at 𝛾nat, see Fig. 4.4(c,d). In contrast, close to the

inverse decay rate the probability to find resonances is almost zero.

We conclude that the quantum mechanically relevant region of decay rates is the interval

between the classical decay rates 𝛾nat and 𝛾inv. The phase-space distribution of the correspond-

ing resonance eigenfunctions are investigated in the following section. For an investigation of

the spectrum of quantum maps in the limit of full escape we refer to Sec. 5.1.2 in the next

chapter.

4.2 Phase-space distribution of resonance eigenfunctions

In this section we investigate resonance eigenfunctions for systems with partial escape on

the phase space. The objective is to answer the following questions: Is there convergence of

resonance eigenfunctions to one semiclassical limit measures? Is it meaningful to average over

eigenfunctions in order to reveal their underlying structure?

4.2.1 Single resonance eigenfunctions

For this purpose we first illustrate Husimi distributions ℋ𝜓, defined in Eq. (3.6), of single

resonance eigenfunctions 𝜓 with increasing decay rates closest to 𝛾 ∈ {𝛾nat ≈ 0.22, 0.35, 𝛾typ ≈
0.48, 0.75, 𝛾inv ≈ 0.88} in Fig. 4.5. The decay rate increases from left to right as indicated.

The top row, Fig. 4.5 (a), shows results for ℎ = 1/250. There are two immanent observations.

First, the resonance eigenfunctions are not uniformly distributed. Secondly, their distribution

depends on the decay rate 𝛾, which is seen as a qualitative change of the regions with large

probability between 𝛾nat and 𝛾inv. We decrease Planck’s constant to ℎ = 1/1000 in Fig. 4.5 (b)

confirming both observations. There additionally emerge finer patterns in the phase-space

structure for all 𝛾. Further decreasing ℎ in Fig. 4.5 (c) and (d) to ℎ = 1/4000 and ℎ = 1/16000

reveals that the Husimi distributions resolves filamentary structures always on scales of order

ℎ. This reminds of the behavior of classical fractals. For small ℎ the dependence on the decay

rate 𝛾 is clearly visible, indicating its persistence in the semiclassical limit.

This already leads to the conclusion, that the decay rate 𝛾 is one relevant parameter for the

semiclassical phase-space structure. Hence, if resonance eigenfunctions converge to classical

measures, these measures must depend on the limiting decay rate 𝛾. For any 𝛾 ∈ [𝛾nat, 𝛾inv]

there are, however, many eigenfunctions with decay rates close to 𝛾, which is seen in the

spectra, see Fig. 4.1. Thus it is necessary to examine, if the phase-space structure is the

same for all those eigenfunctions. We emphasize that this can at most be expected to hold

semiclassically and in a weak sense, only. Comparing the phase-space distribution of single
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resonance eigenfunctions with almost the same decay rate is therefore not conclusive, as is

shown in Fig. 4.6. Here, the five resonance eigenfunctions with decay rates 𝛾 closest to 𝛾typ for

ℎ = 1/1000 are presented. They show strong fluctuations on the scale of ℎ. Therefore such a

qualitative comparison is not sufficient to confirm (or to rule out) the same semiclassical limit

measure for the same decay rate 𝛾.

γ = γnat γ = 0.35 𝛾 = 𝛾typ 𝛾 = 0.75 𝛾 = 𝛾inv
(a)

q

p

(b)

q

p

(c)

q

p

(d)

q

p

0 maxℋψ

Figure 4.5: Husimi distribution ℋ𝜓 of single resonance eigenfunctions 𝜓 with decay rate
closest to 𝛾 ∈ {𝛾nat, 0.35, 𝛾typ, 0.88, 𝛾inv} for the chaotic standard map with partial escape
and decreasing Planck’s constant (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d)
ℎ = 1/16000. An individual colormap is used in each panel. Dashed blue line indicates the
position of the opening Ω.
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γ = 0.4828γ = 0.4818

q

p

γ = 0.4815 γ = 0.4832 γ = 0.4836

Figure 4.6: Husimi distribution of the five resonance eigenfunctions with decay rate γ
closest to γtyp ≈ 0.4828 for chaotic standard map with partial escape and ℎ = 1/1000.
Dashed blue line indicates the position of the opening Ω. Same colormap for all panels with
maximum taken from γ ≈ γtyp (middle panel).

4.2.2 Convergence of phase-space distribution

In order to show that resonance eigenfunctions with the same decay rate 𝛾 have the same

semiclassical phase-space structure we investigate expectation values of classical observables

on phase space. Recall that weak convergence of resonance eigenfunctions with the same decay

rate 𝛾 implies, that for a fixed observable 𝑎 : Γ → R the expectation values E𝜓[𝑎], defined in

Eq. (3.9), must converge to the same value. We stress that this value is a priori not known.

Due to the observations in the previous section a dependence on 𝛾 is expected.

4.2.2.1 Expectation values of single eigenfunctions.

Let us consider four different observables on the phase space Γ: The indicator functions

𝑎1,2,3(𝑞, 𝑝) = 1𝐴,𝐵,𝐶(𝑞, 𝑝) of some phase-space areas 𝐴 = (0.3, 0.5)× (0.6, 0.8), 𝐵 = (0.7, 0.9)×
(0.1, 0.3), and 𝐶 = (0.3, 0.5)×(0.1, 0.3) and the smooth observable 𝑎4(𝑞, 𝑝) = sin2(2𝜋𝑞) cos2(𝜋𝑝).

They are chosen such that 𝐴,𝐶 ⊂ Ω and 𝐵 ⊂ Γ ∖ Ω, see illustration in Fig. 4.7. Expectation

values E𝜓[𝑎𝑖] are computed for all resonance eigenfunctions 𝜓 of the chaotic standard map

(a)

A

BC

q

p

(b)

q

p

Figure 4.7: Illustration of the considered observables on the phase space. (a) Indicator
functions of areas A = (0.3, 0.5) × (0.1, 0.3), B = (0.7, 0.9) × (0.1, 0.3), 𝐶 = (0.3, 0.5) ×
(0.6, 0.8). (b) Smooth observable 𝑎4(q, p) = sin2(2𝜋q) cos(𝜋p) as a density between zero
(white) and one (dark green). Dashed blue line indicates position of the considered opening
Ω.
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Figure 4.8: Expectation values E𝜓[a] of different observables a on Γ for single resonance
eigenfunctions 𝜓 as a functions of their decay rate γ. Considered are observables as shown in
Fig. 4.7, (a) a1 = 1𝐴, (b) a2 = 1𝐵, (c) a3 = 1𝐶 , and (d) smooth a4(q, p) = sin2(2πq) cos(πp).
Planck’s constant is ℎ = 1/1000 (left) and ℎ = 1/16000 (right). Gray dashed line indicates
𝜇L(a𝑖) for each observable which is expected in closed systems from Eq. (3.16).

with partial escape by integrating their Husimi distribution ℋ𝜓, see Eq. (3.10). Note that

for the indicator functions, the expectation value E𝜓[1𝐴,𝐵,𝐶 ] is equal to the probability of the

eigenfunction 𝜓 on the sets 𝐴,𝐵,𝐶 ⊂ Γ.

The results are illustrated in Fig. 4.8 for two different values of Planck’s constant, ℎ ∈
{1/1000, 1/16000}. For 𝑎1 the expectation values of all eigenfunctions are shown in (a). The

dotted vertical lines indicate the natural decay rate 𝛾nat (red), the typical decay rate 𝛾typ

(blue) and the inverse decay rate 𝛾inv (green) of the considered system, while the horizontal

gray dashed line indicates the expectation in the closed chaotic system, Ecl[𝑎1] = 𝜇L(𝐴) = 0.04,

see Eq. 3.16. At ℎ = 1/1000 the obtained values for E𝜓[𝑎1] deviate clearly from the closed

uniform expectation (left panel) and quantify the dependence on 𝛾, already seen in Fig. 4.5.

The expectation values increase with 𝛾 while they increasingly fluctuate. Considering ℎ =

1/16000 the expectation values seem to accumulate around a 𝛾-dependent curve (right panel).

Compared to ℎ = 1/1000 the fluctuations around this curve become smaller. For 𝑎2 we

observe that the expectation values decrease with the decay rate 𝛾, while the fluctuations also

become smaller, see (b). For 𝑎3 we find that the expectation E𝜓[𝑎3] first increases with 𝛾 up

to 𝛾 ≈ 0.6, and then decreases again for larger decay rates (c). These three examples show

that in systems with partial escape the expectation values of different observables can have a
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completely distinct dependence on 𝛾.

Additionally for the smooth observable 𝑎4 we obtain a decrease of the expectation value

E𝜓[𝑎4] similar to 𝑎2, but with overall larger values. The decrease is related to the localization

of 𝑎4 mostly outside of the opening Ω, see Fig. 4.7. The larger values are related to the larger

size of the observable, i.e., Ecl[𝑎4] =
∫︀
𝑎4 d𝜇L = 0.25. This shows that for both smooth and

non-smooth observables we get comparable results. In all cases the spreading of the observed

values becomes smaller for ℎ = 1/16000, which is compatible with the same semiclassical limit

measure for all eigenfunctions with the same decay rate 𝛾.

4.2.2.2 Average expectation values.

In order to quantify these observations we consider for a fixed decay rate 𝛾 the set of 𝑆 closest

eigenfunctions, from which 𝑆/2 eigenfunctions have decay rate smaller and larger than 𝛾. In

order to formally define this set for fixed ℎ = 1/𝑁 let {𝛾𝑖}𝑁𝑖=1 be the set of decay rates of the

quantum map 𝒰𝑁 which is ordered like 𝛾𝑖 ≤ 𝛾𝑗 for 𝑖 ≤ 𝑗. We define for given decay rate 𝛾 and

𝑆 ∈ 2N the set

ℐ𝑆
𝛾 := {𝑛− 𝑆

2
, 𝑛− 𝑆

2
+ 1, . . . , 𝑛, . . . , 𝑛+

𝑆

2
− 1} ∩ {1, ..., 𝑁}, (4.8)

where 𝑛 is such that 𝛾𝑛−1 < 𝛾 ≤ 𝛾𝑛. This set is used to index the 𝑆 closest quantum decay rates

to 𝛾 with 𝑆/2 being larger and 𝑆/2 being smaller. Let us remark, that for small 𝛾 there can

be less than 𝑆/2 resonances with smaller decay rates, and vice versa for large 𝛾. For example,

if 𝛾 ≤ 𝛾0 we have ℐ𝑆
𝛾 = {1, . . . , 𝑆

2
} and similarly for 𝛾 > 𝛾𝑁 we get ℐ𝑆

𝛾 = {𝑁 − 𝑆
2
+ 1, . . . , 𝑁},

such that in these cases |ℐ𝑆
𝛾 | < 𝑆. Therefore the considered indices are restricted to values

between 1 and 𝑁 . We implicitly refer to this restriction throughout this thesis whenever an

average over the 𝑆 closest resonances is considered.

We use this restricted index set ℐ𝑆
𝛾 to define the average over 𝑆 eigenfunctions with respect

to the decay rate 𝛾 for expectation values of observables as

⟨𝑎⟩𝛾 :=
1

|ℐ𝑆
𝛾 |

∑︁

𝑖∈ℐ𝑆
𝛾

E𝜓𝑖
[𝑎]. (4.9)

The sample standard deviation of the values E𝜓𝑖
[𝑎] is given by

𝜎𝛾(𝑎) =

⎛

⎝
1

|ℐ𝑆
𝛾 | − 1

∑︁

𝑖∈ℐ𝑆
𝛾

⃒
⃒
⃒E𝜓𝑖

[𝑎]− ⟨𝑎⟩𝛾
⃒
⃒
⃒

2

⎞

⎠

1/2

, (4.10)

where division with |ℐ𝑆
𝛾 | − 1 ensures an unbiased estimator. Similarly for given 𝛾 and 𝑆 the
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average decay rate of the sample is defined as

⟨𝛾⟩𝛾 :=
1

|ℐ𝑆
𝛾 |

∑︁

𝑖∈ℐ𝑆
𝛾

𝛾𝑖 (4.11)

with standard deviation Δ𝛾.

We first confirm that the average decay rate ⟨𝛾⟩𝛾 converges to the considered one in Fig. 4.9.

For 𝛾 ∈ {𝛾nat, 0.35, 𝛾typ, 0.75, 𝛾inv} the average decay rate for 𝑆 = 50 is illustrated over ℎ in (a).

Additionally the standard deviation Δ𝛾 is shown as a shaded region for each 𝛾. As expected,

the average approaches the considered decay rate 𝛾 for small ℎ. For 𝛾 = 𝛾inv we observe a

slower convergence, which is due to the significantly lower number of resonances around 𝛾inv,

see Fig. 4.2. This becomes more clear in Fig. 4.9(b), where the standard deviation Δ𝛾 is

shown over ℎ. We find a power-law scaling of approximately Δ𝛾 ∼ ℎ for all decay rates except

𝛾inv. This is not surprising, since the total number of resonances grows as 1/ℎ within a finite

𝛾-interval. For 𝛾typ this result is semiclassically exact [89, 195]. For smaller decay rates the

scaling of their number with ℎ is non-trivially related to classical fractals [92]. Applying the

considerations in Ref. [92] to much larger decay rates could explain the scaling at 𝛾 = 𝛾inv.

In order to numerically test the convergence of expectation values of observables we present

the mean expectation value ⟨𝑎⟩𝛾 and the standard deviation 𝜎𝛾(𝑎) for the smooth observable

𝑎 = 𝑎4 as a function of ℎ in Fig. 4.10. The considered decay rates are the same as in Fig. 4.9.

We observe that the mean expectation value remains almost constant when ℎ becomes smaller

(a). Again we find that for 𝛾inv there are some stronger fluctuations and a larger standard

deviation. This is related to the before-mentioned larger standard deviation Δ𝛾 for 𝛾inv, see

Fig. 4.9(b), which decreases slower than for the other decay rates. We also observe that the

standard deviation decreases with ℎ, indicated by the shaded regions in (a) and in Fig. 4.9(b).
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∼ h
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Figure 4.9: (a) Average decay rate ⟨γ⟩𝛾 vs. ℎ for γ ∈ {γnat, 0.35, 𝛾typ, 0.75, 𝛾inv} (diamonds,
circles, lower triangles, squares, upper triangles). The average is taken over 𝑆 = 50 reso-
nances. Shaded regions indicate standard deviation ∆𝛾 . Dotted lines indicate selected 𝛾.
(b) Standard deviation ∆𝛾 vs. ℎ for same 𝛾 as in (a). Gray dashed line shows approximate
scaling ∆𝛾 ∼ ℎ.
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Figure 4.10: (a) Mean expectation value ⟨a⟩𝛾 vs. ℎ for γ ∈ {γnat, 0.35, 𝛾typ, 0.75, 𝛾inv}
and smooth observable 𝑎 = 𝑎4. The average is taken over 𝑆 = 50 resonance eigenfunctions.
Shaded regions indicate the corresponding standard deviation σ𝛾(𝑎). (b) Standard deviation
σ𝛾(𝑎) vs. ℎ for same 𝛾 as in (a). Gray dashed line shows approximate scaling σ𝛾(𝑎) ∼ ℎ1/2.

Here we find a power law which is approximately given by 𝜎𝛾(𝑎) ∼ ℎ1/2. For 𝛾 = 𝛾nat there

is a surprising increase of 𝜎𝛾(𝑎) for the smallest considered ℎ. Even though this seems to

spoil the power-law decay, similar fluctuations are seen for different values of 𝛾 and ℎ. This is

confirmed for the other observables in Appendix B.2. This suggests semiclassical convergence

of the E𝜓[𝑎] for resonance eigenfunctions 𝜓 towards a 𝛾-dependent value. Altogether these

observations justify to consider some unknown semiclassical limit measures 𝜇sc
𝛾 , which only

depends on the decay rate 𝛾.

It is desirable to quantify this convergence in terms of a similar quantity as for the 𝑘-th

moment 𝑆𝑘(𝑁, 𝑎) of the distribution around 𝜇L in closed systems, see Eq. (3.17). This could

be achieved by

𝑆𝑘(𝑁, 𝑎) =
1

𝑁

𝑁∑︁

𝑖=1

⃒
⃒E𝛾𝑖 [𝑎]− 𝜇sc

𝛾𝑖
(𝑎)

⃒
⃒
𝑘
, (4.12)

which is for 𝑘 = 2 similar to the average variance of individual eigenfunctions around the

expectation value of their semiclassical limit. The crucial difference is that in contrast to

Eq. (3.17) the semiclassical limit measure depends on the decay rate. Since these measures

are not known, we approximate Eq. (4.12) with

𝑆𝑘(𝑁, 𝑎) ≈ 1

𝑁

𝑁∑︁

𝑖=1

⃒
⃒E𝛾𝑖 [𝑎]− ⟨𝑎⟩𝛾𝑖

⃒
⃒
𝑘
. (4.13)

This quantity can be seen as the squared standard deviation 𝜎2
𝛾(𝑎) averaged over all decay

rates. Figure 4.11 illustrates the dependence of 𝑆2(𝑁, 𝑎) on Planck’s constant ℎ = 1/𝑁 for all

considered observables 𝑎𝑖 in a double-logarithmic scaling. In all cases we observe a power law

dependence like 𝑆2(𝑁, 𝑎) ∼ ℎ, confirming that fluctuations of single resonance eigenfunctions
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Figure 4.11: Convergence of resonance eigenfunctions in terms of the second moment
𝑆2(𝑁, a), see Eq. (4.13), shown as a function of ℎ for the considered observables a1,2,3,4 as
in Fig. 4.7.

on average go to zero semiclassically for all considered observables. The observed speed of

convergence deviates only little from the expectation in closed systems.

In conclusion, for resonance eigenfunctions in systems with partial escape we expect that the

semiclassical limit measures depend on the decay rate 𝛾, only. Most importantly, our numerical

findings suggest that individual eigenfunctions converge weakly to their average phase-space

structure. Hence, in order to obtain a complete description of resonance eigenfunctions it is

sufficient to understand the limit of their average structure and the fluctuations around this

average.

4.2.3 Average phase-space distribution

The results from the previous section imply that it is sufficient to understand and reasonable

to investigate the average phase-space distribution of resonance eigenfunctions. For any decay

rate 𝛾 we define the average Husimi distribution as

⟨ℋ⟩𝑆𝛾 (𝑥) :=
1

|ℐ𝑆
𝛾 |

∑︁

𝑖∈ℐ𝑆
𝛾

ℋ𝑖(𝑥), (4.14)

using the restricted index set ℐ𝑆
𝛾 as in Eq. (4.8) and the Husimi distribution ℋ𝑖 of the eigen-

function 𝜓𝑖 with decay rate 𝛾𝑖, see Eq. (3.6). In the following we always fix the number of

considered eigenfunctions to 𝑆 = 50 as in the previous section and omit this index. The av-

erage Husimi distribution ⟨ℋ⟩𝛾 is intuitively related to the mean expectation value ⟨𝑎⟩𝛾 of an

observable 𝑎,

⟨𝑎⟩𝛾 =
1

|ℐ𝑆
𝛾 |

∑︁

𝑖∈ℐ𝑆
𝛾

E𝜓𝑖
[𝑎]

(3.10)
=

1

|ℐ𝑆
𝛾 |

∑︁

𝑖∈ℐ𝑆
𝛾

∫︁

Γ

𝑎(𝑥)ℋ𝑖(𝑥) d𝑥
(4.14)
=

∫︁

Γ

𝑎(𝑥) ⟨ℋ⟩𝛾(𝑥) d𝑥. (4.15)

It thus defines the probability density for the average expectation value.
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With the aim of obtaining an intuitive picture of the phase-space localization of resonance

eigenfunctions we illustrate average Husimi distributions ⟨ℋ⟩𝛾 in Fig. 4.12 for increasing decay

rates and different values of ℎ, as in Fig. 4.5. In this representation the dependence on 𝛾 is

revealed much clearer even for large values of ℎ = 1/250, see Fig. 4.12(a). The high-density

filaments at decay rates 𝛾nat and 𝛾inv are concentrated on distinct directions on the phase space,

which we identify as the stable and unstable direction of the classical dynamics, see Fig. 2.3.

For intermediate decay rates there is a transition between both densities. For decreasing values

of ℎ the average phase-space distribution shows repeatedly finer scales, seen from top to bottom

γ = γnat γ = 0.35 𝛾 = 𝛾typ 𝛾 = 0.75 𝛾 = 𝛾inv
(a)

q

p

(b)

q

p

(c)

q

p

(d)

q

p

Figure 4.12: Average Husimi distribution ⟨ℋ⟩𝛾 of resonance eigenfunctions with decay
rate closest to 𝛾 ∈ {𝛾nat, 0.35, 𝛾typ, 0.75, 𝛾inv} (from left to right) for chaotic standard map
with partial escape and decreasing Planck’s constant (a) ℎ = 1/250, (b) ℎ = 1/1000, (c)
ℎ = 1/4000, and (d) ℎ = 1/16000. An individual colormap is used in each panel. Dashed
blue line indicates the position of the opening.
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in Fig. 4.12. On these scales the finest filaments reveal a fractal phase-space structure, where

a transition of the high-density filaments takes place between 𝛾nat and 𝛾inv. We conclude that

the semiclassical limit measure has fractal properties. Note that due to the finite sample size

of 𝑆 = 50 fluctuations of single eigenfunctions do not vanish completely.

4.2.4 Fluctuations

The following results are obtained together with Felix Kunzmann during his Bachelor the-

sis [196]. As discussed before, single eigenfunctions fluctuate around their average phase-space

structure. The phase-space structure of single eigenfunctions is fully understood from the aver-

age structure and from the nature of their fluctuations. Even without a-priori knowledge of the

semiclassical limit measure, it is thus an interesting question to understand these fluctuations.

For this purpose we define the rescaled Husimi distribution of an eigenfunction 𝜓 with decay

rate 𝛾 as

ℋ̃𝜓 = ℋ𝜓/⟨ℋ⟩𝛾, (4.16)

which rescales a single Husimi distribution with the average such that it fluctuates around a

constant value of one. An illustration of these distributions is given in Fig. 4.13 for (a) ℎ =

1/1000 and (b) ℎ = 1/16000. The considered decay rates are the same as in Fig. 4.5 (showing

the corresponding single Husimi distributions) and in Fig. 4.12 (showing the corresponding

γ = γnat γ = 0.35 𝛾 = 𝛾typ 𝛾 = 0.75 𝛾 = 𝛾inv
(a)

q

p

(b)

q

p

Figure 4.13: Rescaled Husimi distribution ℋ̃𝛾 = ℋ𝛾/⟨ℋ⟩𝛾 of resonance eigenfunctions 𝜓
with decay rate closest to γ ∈ {γnat, 0.35, 𝛾typ, 0.88, 𝛾inv} (from left to right) for chaotic
standard map with partial escape and decreasing Planck’s constant (a) ℎ = 1/1000 and (b)
ℎ = 1/16000. The average Husimi distribution is calculated using 50 resonances. Dashed
blue line indicates the position of the opening Ω.
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average Husimi distributions). In fact, Fig. 4.13 can be obtained by dividing the densities in

Fig. 4.5 with those in Fig. 4.12 for the two values of ℎ, respectively. The rescaled Husimi

distributions show an almost uniform distribution of the fluctuations for all 𝛾. There is no

visible dependence on the decay rate 𝛾. The obtained distributions qualitatively resemble the

Husimi phase-space distributions observed in closed systems, see Fig. 3.2, where the statistics

of fluctuations is explained by a random wave model [13].

We are interested in the probability distribution 𝑃 (ℋ̃), i.e., the probability that the rescaled

Husimi distribution obtains a certain value. Therefor consider the rescaled Husimi distribution

ℋ̃𝛾 for some decay rate 𝛾, evaluated at the mid points of a grid of size 32 × 32, (𝑞𝑖, 𝑝𝑗) =

( 𝑖+1/2
32

, 𝑗+1/2
32

) with 0 ≤ 𝑖, 𝑗 < 32. We choose this large number of points in order to obtain a

better statistics. Investigations for single phase-space points and regions avoiding symmetry

lines can be found in Ref. [196]. For a chosen decay rate 𝛾 the probability distribution is

calculated considering 𝑆 = 50 resonance eigenfunctions and for all values ℋ̃𝛾(𝑞𝑖, 𝑝𝑗).

The results for 𝑃 (ℋ̃) are presented in Fig. 4.14 for (a) ℎ = 1/1000 and (b) ℎ = 1/16000 and

for the five different decay rates 𝛾 as before. We find very good agreement with the exponential

distribution 𝑃 (𝑥) = e−𝑥 (red line), which is the semiclassical expectation in closed systems [13].

This holds equally well for all decay rates 𝛾. The agreement becomes better if ℎ is considered
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Figure 4.14: Distribution of rescaled Husimi values ℋ̃𝛾 of the 50 eigenfunctions with decay
rate closest to γ ∈ {γnat, 0.35, 𝛾typ, 0.88, 𝛾inv} (from left to right). Considered are all values

ℋ̃(q, p) at the mid points on a grid of size 32× 32, (q𝑖, p𝑗) = ( 𝑖+1/2
32 , 𝑗+1/2

32 ) for 0 ≤ 𝑖, 𝑗 < 32.
Planck’s constant is chosen as (a) ℎ = 1/1000 and (b) ℎ = 1/16000. Red line shows the
exponential distribution P (𝑥) = e−𝑥 for random states [13]. Inset shows the distribution
P (lg ℋ̃) for the same set of data.
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smaller, see (b). The insets show a similar statistics obtained from the same data for the

logarithm lg ℋ̃ = log10(ℋ̃) in double logarithmic representation. This distribution is more

sensitive to small values of ℋ̃. It perfectly agrees with the expected exponential distribution

(red line).

We conclude that fluctuations of values of the rescaled Husimi ℋ̃(𝑞, 𝑝) are distributed expo-

nentially [196] for all decay rates. Hence, for fixed 𝛾, values of the usual Husimi distribution

ℋ𝛾(𝑞, 𝑝) at a given point (𝑞, 𝑝) are also exponentially distributed, but with a different mean

value. The mean values considered here are chosen as the average distribution ⟨ℋ⟩𝛾(𝑞, 𝑝). In
general these fluctuations are expected around a value which is given by the semiclassical limit

measure 𝜇sc
𝛾 .

4.2.5 Semiclassical expectation for iterations of 𝑅

In this section we derive properties of the semi-classical limit measures of resonance eigen-

functions in analogy to the results in Ref. [59] which were obtained for systems with full

escape. They derive an equation for the semiclassical weight on the sets of points, which

fall into the opening Ω under forward iteration for the first time after 𝑚 steps. These sets

are defined as Ω+
𝑚 = 𝑀−𝑚(Ω) ∖ ⋃︀𝑚−1

𝑖=0 𝑀−𝑖(Ω), see Eq. (2.44). For full escape, the expec-

tation values of these sets for eigenfunctions with decay rate 𝛾 converge semiclassically to

E𝜓𝛾 [Ω𝑚]
ℎ→0−−→ e−𝑚𝛾 (1− e−𝛾) [59].

In the following we generalize this to maps with partial escape, considering both forward

and backward time evolution. First, recall the reflectivity function for full escape 𝑅0 = 1−1Ω.

The characteristic function of the sets Ω+
𝑚 can be expressed in terms of the reflectivity function

𝑅0 by 1Ω+
0
= 1 − 𝑅0 and 1Ω+

𝑚
= (1 − 𝑅0 ∘ 𝑀𝑚) · ∏︀𝑚−1

𝑖=0 𝑅0 ∘ 𝑀 𝑖. This is shown by applying

the relation 1𝐴 ∘𝑀 = 1𝑀−1(𝐴). These characteristic functions are immediately generalizable

to arbitrary 𝑅, and we define the analogue expression to the sets Ω+
𝑚 as

𝑇+
𝑚 := (1−𝑅 ∘𝑀𝑚) ·

𝑚−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖 =
𝑚−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖 −
𝑚∏︁

𝑖=0

𝑅 ∘𝑀 𝑖. (4.17)

The interpretation of these functions is simple and analogue to full escape: The function 𝑇+
𝑚

characterizes the phase-space distribution, which escapes from the system after exactly 𝑚+ 1

steps.

In order to determine the expectation value E𝜓𝛾 [𝑇𝑚] in analogy to the result for full escape

we first rewrite the 𝑛-fold application of the propagator 𝒰 = 𝒰ℛ as

𝒰𝑛 = 𝒰ℛ · 𝒰ℛ · . . . · 𝒰ℛ · 𝒰ℛ (4.18)

= 𝒰𝑛 · 𝒰−(𝑛−1)ℛ𝒰𝑛−1 · 𝒰−(𝑛−2)ℛ𝒰𝑛−2 · . . . · 𝒰−1ℛ𝒰 · ℛ (4.19)

= 𝒰𝑛 · ℛ𝑛−1 · . . . · ℛ0, (4.20)
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where the operators ℛ0 := ℛ and ℛ𝑚+1 := 𝒰−1ℛ𝑚𝒰 are introduced. The semiclassical

correspondence of quantum and classical time evolution of the closed map, Egorov property

Eq. (3.2), ensures that for the observable
√
𝑅 with quantization ℛ = Op𝑁(

√
𝑅) we have

ℛ𝑚 ∼ Op𝑁(
√
𝑅 ∘𝑀𝑚) for 𝑁 → ∞. This allows the evaluation of expectation values of the

products
∏︀𝑚

𝑖=0 𝑅 ∘𝑀 𝑖 asymptotically for 𝑁 → ∞ as

E𝜓𝛾

[︃
𝑚−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖

]︃

= ⟨𝜓𝛾|Op𝑁

(︃
𝑚−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖

)︃

𝜓𝛾⟩ (4.21)

∼ ⟨𝜓𝛾|ℛ†
0 · . . . · ℛ†

𝑚−1ℛ𝑚−1 · . . . · ℛ0𝜓𝛾⟩ (4.22)

= ⟨𝜓𝛾|ℛ†
0 · . . . · ℛ†

𝑚−1 · (𝒰 †)𝑚𝒰𝑚 · ℛ𝑚−1 · . . . · ℛ0𝜓𝛾⟩ (4.23)

= ⟨𝒰𝑚𝜓𝛾|𝒰𝑚𝜓𝛾⟩ = e−𝑚𝛾, (4.24)

where the first asymptotic relation follows from Eq. (3.1) for real valued 𝑅 and Eq. (4.20) has

been used in the last line. Hence, for 𝑇+
𝑚 follows with Eq. (4.17) that E𝜓𝛾 [𝑇

+
𝑚 ] ∼ e−𝑚𝛾−e−(𝑚+1)𝛾

and

E𝜓𝛾

[︀
𝑇+
𝑚

]︀ ℎ→0−−→ e−𝑚𝛾 (1− e−𝛾), (4.25)

which generalizes the expression in Ref. [59] to arbitrary reflectivity functions. Equation (4.25)

gives a semiclassical expression for the expected loss of weight in the 𝑚-th time step. Hence,

the total weight 𝑤𝑛 after 𝑛 iterations is given by 𝑤𝑛 = 1−∑︀𝑛
𝑚=0 e

−𝑚𝛾(1− e−𝛾) = e−𝑛𝛾, which

corresponds to the overall decay of resonance eigenfunctions, Eq. (2.17).

If the reflectivity function is strictly positive, 𝑅 > 0, the quantum map with escape 𝒰 is

invertible. In this case we find a similar relation for the functions 𝑇−
𝑚 := (𝑅−1 ∘𝑀−𝑚 − 1) ·

∏︀𝑚−1
𝑖=1 𝑅−1 ∘𝑀−𝑖, by applying similar considerations towards 𝒰−1. We obtain asymptotically

E𝜓𝛾 [𝑇
−
𝑚 ] ∼ e𝑚𝛾 − e(𝑚−1)𝛾 such that

E𝜓𝛾

[︀
𝑇−
𝑚

]︀ ℎ→0−−→ e𝑚𝛾 (1− e−𝛾). (4.26)

An illustration of these expectation values for 𝑇+
𝑛 and 𝑇−

𝑚 is given in Figs. 4.15 and 4.16

for the chaotic standard map with partial escape 𝑅Ω = 0.2 from the phase-space region Ω

as before. The expectation values at the decay rate 𝛾 are calculated as in Eq. (3.10), by

integrating the Husimi distribution ℋ𝜓 of each resonance eigenfunction on a 1024× 1024 grid,

multiplied with 𝑇+
𝑛 and 𝑇−

𝑚 , respectively. For comparison the expectation values 𝜇L(𝑇𝑛) of

the closed systems are shown (gray vertical lines). For 𝑇+
0 the values fall directly onto the

theoretical prediction, Eq. (4.25), for all values of ℎ, see Fig. 4.15(a). This is not surprising,

since the expectation values ⟨𝜓𝛾|1 −ℛ|𝜓𝛾⟩ are exactly given by 1− e−𝛾. The differences, e.g.,

for ℎ = 1/250, are due to the finite width of coherent states in the definition of the Husimi

distribution. This leads effectively to a smoothing of the function 𝑇+
0 which vanishes for
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Figure 4.15: Expectation values of observables T+
𝑛 for (a) 𝑛 = 0, (b) 𝑛 = 1

and (c) 𝑛 = 2 vs. modulus of eigenvalue e−𝛾/2 for single eigenfunctions at ℎ ∈
{1/250, 1/1000, 1/4000, 1/16000} (black, violet, red, green) compared to the semiclassical
prediction, Eq. (4.25) (dashed black lines), and to uniform expectation from closed system,
𝜇L(T

+
0 ) = 0.24, 𝜇L(𝑇

+
1 ) ≈ 0.18, 𝜇L(𝑇

+
2 ) ≈ 0.12 (gray horizontal lines). Dotted vertical lines

indicate e−𝛾/2 for classical decay rates 𝛾inv (green), 𝛾typ (blue) and 𝛾nat (red). Insets show
phase-space distribution of 𝑇+

𝑛 with same colormap for all 𝑛, see (a).
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Figure 4.16: Same as Fig. 4.15, but showing expectation values of 𝑇−
𝑚 for (a) 𝑚 = 1, (b)

𝑚 = 2 and (c) 𝑚 = 3, compared to semiclassical prediction Eq. (4.26) (dashed black lines)
and to uniform expectation from closed closed system, 𝜇L(𝑇0) = 1.2, 𝜇L(𝑇1) ≈ 2.6, 𝜇L(𝑇2) ≈
6.6 (gray horizontal lines). Inset shows phase-space distribution 𝑇−

𝑚 with same colormap
for all 𝑚, see (a).

smaller ℎ. For 𝑇+
1 we observe larger deviations from the semiclassical curve for ℎ = 1/250 and

ℎ = 1/1000 (b). These deviations almost vanish when ℎ is decreased to ℎ = 1/16000. For 𝑇+
2

we observe large deviations (c), even though the expectation values get closer to the prediction

for smaller values of ℎ. We notice, that around 𝛾nat the expectation values are already close

to the prediction, even for large ℎ.

Similar results are shown in Fig. 4.16 for 𝑇−
𝑚 . For 𝑇−

1 we observe a comparable good

agreement between the semiclassical prediction, Eq. (4.26), and the quantum expectation

values as observed for 𝑇+
1 , compare Fig. 4.16(a) with Fig. 4.15(b). For large ℎ there are visible
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deviations, which almost vanish at ℎ = 1/16000. For 𝑇−
2 and 𝑇−

3 the deviations from the

semiclassical curve are much stronger. Again, for smaller values of ℎ the expectation values

become closer to the prediction, but in the numerically explored range do not yet fit to the

expectation for all decay rates. Here we notice that, surprisingly, for decay rates around 𝛾inv

the expectation values are already close to the prediction, even for large values of ℎ.

The observed deviations are due to the limited resolution of phase-space structures. Recall

that the Husimi distribution is smooth on scales of order ℎ. Therefore at the considered values

of ℎ the fine filaments of 𝑇+
2 and 𝑇−

2 are not completely resolved. This obviously causes even

larger deviations for 𝑇−
3 .

So far, we evaluated the semiclassical limit of the expectation value for very specific ob-

servables, 𝑇±
𝑛 , related to forward and backward iterations of 𝑅. Thus, the right-hand side of

Eqs. (4.25) and (4.26) restricts the possible semiclassical limit measures of resonance eigenfunc-

tions. In the following we show more generally that all semiclassical limit measures must be

conditionally invariant. Such measures satisfy Eqs. (4.25) and (4.26), as shown in App. C.1.

4.2.6 Conditional invariance of semiclassical measures

In systems with full escape the semiclassical limit measures are proven to be conditionally

invariant [60]. In the following we generalize Theorem 1 of Ref. [60] to systems with partial

escape. Hereby we use the correspondence principle for the quantization, given in Sec. 3.1 and

Sec. 4.1, see also Refs. [60, 170].

Theorem 4.1 (Semiclassical limit measures). Consider a sequence of eigenfunctions {𝜓𝑁}𝑁∈N

of the quantization {𝒰𝑁}𝑁∈N of a map with escape ℳ = ℳ𝑀,𝑅 with corresponding eigenvalues

{𝜆𝑁}𝑁∈N satisfying 𝛾𝑁 := −2 log |𝜆𝑁 | ≤ 𝜈 < ∞ for some 𝜈. Assume that this sequence

converges to the classical measure 𝜇 on Γ. Let 𝐶(𝑀−1) ⊂ Γ be the set where 𝑀−1 is continuous

and 𝐷(𝑀−1) = Γ ∖ 𝐶(𝑀−1). Then

(i) If 𝜇[𝐶(𝑀−1)] > 0, there exists 𝛾 ∈ [0, 𝜈] such that the eigenvalues 𝜆𝑁 satisfy

|𝜆𝑁 |2 𝑁→∞−−−→ e−𝛾.

For any measurable 𝐴 ⊂ Γ with 𝐴 ∩𝐷(𝑀−1) = ∅ one has ℳ𝜇(𝐴) = e−𝛾𝜇(𝐴).

(ii) If 𝜇[𝐷(𝑀−1)] = ℳ𝜇[𝐷(𝑀−1)] = 0, then 𝜇 is a conditionally invariant measure of the

map with escape ℳ, with decay rate 𝛾.

In particular, if 𝑀 is smooth on the full phase space Γ, the limiting measure 𝜇 is conditionally

invariant.

The first condition means that the measure has positive weight on the continuity set of the

inverse map 𝑀−1, i.e., on all points 𝑥 ∈ Γ on which 𝑀−1 is continuous. Note that if 𝑀 is
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continuous on the full phase-space this condition is always satisfied, e.g., for the standard map.

The proof of Theorem 4.1 follows closely the proof of Theorem 1 of Ref. [60] for quantum maps

with full escape and is given here for completeness.

Proof of Theorem 4.1. The first statement (i) follows from the eigenvalue equation and the

correspondence principle between quantum and classical time evolution, Eq. (4.1). We obtain

from the eigenvalue equation

|𝜆𝑁 |2⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩ = ⟨𝜓𝑁 |𝒰 †Op𝑁(𝑎)𝒰|𝜓𝑁⟩ (4.27)

Since 𝜇[𝐶(𝑀−1)] > 0 we can find some smooth observable defined on this set, 𝑎 ∈ 𝐶∞
𝑐 [𝐶(𝑀−1)],

such that 𝜇(𝑎) =
∫︀
𝑎 d𝜇 > 0. Thus we can apply Eq. (4.1) to the right hand side of Eq. (4.27)

and obtain asymptotically for 𝑁 → ∞

|𝜆𝑁 |2⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩ ∼ ⟨𝜓𝑁 |Op𝑁(𝑅 · (𝑎 ∘𝑀))|𝜓𝑁⟩. (4.28)

Recall that 𝜓𝑁 converges to 𝜇 on Γ, i.e., for any smooth observable 𝑎 the expectation val-

ues converge as lim𝑁→∞⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩ = 𝜇(𝑎). Thus 𝜇(𝑎) > 0 implies that for 𝑁 large

enough ⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩ > 0 becomes larger than zero. This allows to divide Eq. (4.28) by

⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩. We obtain

|𝜆𝑁 |2 ∼
⟨𝜓𝑁 |Op𝑁(𝑅 · (𝑎 ∘𝑀))|𝜓𝑁⟩

⟨𝜓𝑁 |Op𝑁(𝑎)|𝜓𝑁⟩
(4.29)

which asymptotically implies

|𝜆𝑁 |2 𝑁→∞−−−→ 𝜇(𝑅 · (𝑎 ∘𝑀))

𝜇(𝑎)
=

ℳ𝜇(𝑎)

𝜇(𝑎)
. (4.30)

This limit is independent of 𝑎 and we denote it by e−𝛾. Since the indicator function 1𝐴 of any

Borel subset 𝐴 ⊂ 𝐶(𝑀−1) can be approximated by smooth functions supported in 𝐶(𝑀−1)

this further proves that ℳ𝜇(𝐴) = e−𝛾𝜇(𝐴).

The second statement is proven in full analogy to statement (iii) of Theorem 1 in Ref. [60].

First we split any Borel set 𝐴 into disjoint 𝐴 ∩ 𝐷(𝑀−1) and 𝐴𝑐 ≡ 𝐴 ∖ 𝐷(𝑀−1) ⊂ 𝐶(𝑀−1).

This gives

ℳ𝜇(𝐴) = ℳ𝜇(𝐴𝑐) + ℳ𝜇[𝐴 ∩𝐷(𝑀−1)]
⏟  ⏞  

=0

= e−𝛾𝜇(𝐴𝑐) (4.31)

= e−𝛾
(︀
𝜇(𝐴𝑐) + 𝜇[𝐴 ∩𝐷(𝑀−1)]

⏟  ⏞  
=0

)︀
= e−𝛾𝜇(𝐴) (4.32)

which proves that the semiclassical limit measure 𝜇 is conditionally invariant.
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The interpretation of Theorem 4.1 is quite simple for continuous maps. This is for example

the case for the standard map on the torus. In this case Theorem 4.1 tells us that the limit of

any semiclassically convergent sequence of resonance eigenfunctions of a quantum map with

escape has to be a conditionally invariant measure of the corresponding classical map with

escape ℳ. This can be understood intuitively: Resonance eigenfunctions are invariant under

time-evolution up to a global decay with rate 𝛾 (and some phase). In the semiclassical limit,

the quantum time evolution corresponds to the classical one. Thus the limit of resonance

eigenfunctions has to be invariant under classical time evolution up to a global decay with the

same rate 𝛾.

In this section we showed that convergent sequences of resonance eigenfunctions have con-

ditionally invariant semiclassical limit measures with the same decay rate. Moreover, our

numerical investigations in the first subsection suggest that resonance eigenfunctions with de-

cay rates close to each other converge to their average and thus have the same semiclassical

limit measure. For a fixed decay rate there may exist, however, many different classical con-

ditionally invariant measures. Furthermore, so far only for the natural and the inverse decay

rate conditionally invariant measures are constructed, Sec. 2.2.6, but not for arbitrary decay

rates 𝛾. The next section deals with these problems and introduces a family of such measures,

based on the construction of the natural and inverse measures. These are valuable candidates

for the semiclassical limit measures of resonance eigenfunctions.

4.3 Conditionally invariant measures for partial escape

In this section we investigate conditionally invariant measures for systems with partial escape,

in order to understand the semiclassical behavior of resonance eigenfunctions by classical

means. For this purpose we introduce a family of classical conditionally invariant measures

which depend only on the decay rate 𝛾. First, we introduce a construction for the natural

measure and the inverse measure based on time evolution. In the second section we combine

the structure of natural and inverse measure to define a conditionally invariant measure for

arbitrary classical decay rates. We finally present another class of conditionally invariant

measures based on periodic orbits.

4.3.1 Construction of natural and inverse measure

Recall the defining property of the natural measure 𝜇nat: If the dynamics on phase-space

is ergodic and hyperbolic, smooth initial distributions asymptotically decay with the same

characteristic rate 𝛾nat and approach the natural measure 𝜇nat. We refer to Sec. 2.2.6 for a

more general discussion. In the definition of 𝜇nat we restrict to the uniform initial measure 𝜇L,

see Eq. (2.56), which leads to a construction of 𝜇nat by time evolution. Applying the classical
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map with escape 𝑛 times to 𝜇L gives

ℳ𝑛𝜇L(𝐴) =

∫︁

𝐴

𝑛∏︁

𝑖=1

𝑅[𝑀−𝑖(𝑥)] d𝜇L(𝑥). (4.33)

Equation (4.33) follows from successive application of the time evolution of measures, Eq. (2.37),

ℳ𝜇L(𝐴) =
∫︀

𝑀−1(𝐴)
𝑅 d𝜇L =

∫︀

𝐴
𝑅 ∘ 𝑀−1 | det(𝐷𝑀−1)| d𝜇L, where integral transformation is

used. The determinant of the Jacobian equals one, | det(𝐷𝑀−1)| = 1, because the considered

maps 𝑀 are volume preserving. The natural measure is then given by normalizing ℳ𝑛𝜇L for

each 𝑛 and taking the limit 𝑛 → ∞, see Eq. (2.56).

Numerically only finite approximations of 𝜇nat can be obtained for generic systems. Lets

call 𝜇𝑛
nat := ℳ𝑛𝜇L

⧸︀
‖ℳ𝑛𝜇L‖ the 𝑛-step approximation of the natural measure 𝜇nat. Contrary

to the limit measure 𝜇nat, the finite approximation is absolutely continuous with respect to

the Lebesgue measure 𝜇L for all 𝑛 ∈ N, which trivially follows from Eq. (4.33). In partic-

ular, its density 𝜌𝑛nat is given up to normalization by 𝜌𝑛nat(𝑞, 𝑝) ∝ ∏︀𝑛
𝑖=1 𝑅[𝑀−𝑖(𝑞, 𝑝)]. Thus

the density at a phase-space point (𝑞, 𝑝) is proportional to the average decay of its backward

iterates {(𝑞, 𝑝), . . . ,𝑀−𝑛(𝑞, 𝑝)} during the 𝑛 time steps. This leads to the following intuitive

interpretation: Phase-space points which experience the same average decay under 𝑛 back-

ward iterations have the same weight for the natural measure. Thus we call 𝜇nat uniformly

distributed on sets with the same average decay under backward iteration.

We now apply the same arguments to the inverse measure 𝜇inv, which is defined as the

natural measure of the inverse map ℳ−1, see Sec. 2.2.6.2. The inverse time evolution of the

uniform distribution yields

ℳ−𝑛𝜇L(𝐴) =

∫︁

𝐴

𝑛−1∏︁

𝑖=0

𝑅−1[𝑀 𝑖(𝑥)] d𝜇L(𝑥), (4.34)

which follows from Eq. (2.57). The inverse measure 𝜇inv is then obtained by normalizing

ℳ−𝑛𝜇L for each 𝑛 and taking the limit 𝑛 → ∞, as in Eq. (2.62). Defining the 𝑛-step approxi-

mation of the inverse measure as 𝜇𝑛
inv := ℳ−𝑛𝜇L

⧸︀
‖ℳ−𝑛𝜇L‖, we again obtain a measure with

density with respect to 𝜇L. This density, 𝜌
𝑛
inv(𝑞, 𝑝) ∝

∏︀𝑛−1
𝑖=0 𝑅−1[𝑀 𝑖(𝑞, 𝑝)], is proportional to the

average gain of the forward iterations of the phase-space point (𝑞, 𝑝) under 𝑅−1. Thus phase-

space points with the same average gain under 𝑛 forward iterations have the same weight.

Hence, in contrast to 𝜇nat, the inverse measure 𝜇inv is uniformly distributed on sets with the

same average gain under forward iteration.

In Fig. 4.17 the construction of 𝜇nat and 𝜇inv is illustrated for the chaotic standard map

with partial escape 𝑅Ω = 0.2. By construction, the densities of 𝜇𝑛
nat are reduced on the

iterates of the opening, 𝑀 𝑖(Ω). Due to the chaotic phase space, after only a few iterations the

densities become stretched along the unstable phase-space direction, compare with Fig. 2.3.

Conversely, the densities of 𝜇𝑛
inv are enhanced on the opening Ω and its preimages 𝑀−𝑖(Ω).
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(a)

q

p

(b)

q

p

Figure 4.17: Finite approximations of (a) natural measure 𝜇𝑛
nat and (b) inverse measure

𝜇𝑛
inv for 1 ≤ 𝑛 ≤ 5 (from left to right) and the chaotic standard map with partial escape.

Shown are the densities evaluated on a grid of size 1024 × 1024. Dashed blue lines in first
panel indicate opening Ω. Individual colormap is used for each panel going from zero (light
yellow) to the maximum value (black).
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Figure 4.18: Weight of forward and backward iteration ℳ𝜇L and ℳ−1𝜇L of uniform
distribution over time step 𝑛. Considered are 108 uniform initial points on the phase space
Γ. The asymptotic scaling P (𝑛) ∼ e−𝛾nat𝑛 and P (𝑛) ∼ e−𝛾inv𝑛 are shown as dashed lines of
the same colors, where γnat ≈ 0.2165 and 𝛾inv ≈ 0.8820.

The inverse measure stretches along the unstable phase-space direction of 𝑀−1, which is the

stable direction of 𝑀 , compare with Fig. 2.3. Both measures have a nontrivial multifractal

phase-space structure, which is revealed for larger 𝑛. Note that the filaments of largest intensity

become exponentially thin with increasing 𝑛. This construction converges weakly to the natural

measure 𝜇nat and the inverse measure 𝜇inv.

The corresponding decay rates 𝛾nat and 𝛾inv are obtained from the asymptotic scaling of

‖ℳ𝑛𝜇L‖ and ‖ℳ−𝑛𝜇L‖ for large 𝑛. We illustrate the exponential decay under the forward
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map and the exponential gain under the inverse map for a fixed number of uniform initial

conditions on the phase space in Fig. 4.18. The exponential scalings are used to determine

natural 𝛾nat and inverse decay rate 𝛾inv.

These measures are relevant for quantum mechanics in the following sense. The natural

measure 𝜇nat is conjectured to be the semiclassical limit measure of resonance eigenfunctions

with decay rate 𝛾nat [87]. We conjecture that similarly the semiclassical limit measure of

resonance eigenfunctions with decay rate 𝛾inv is given by the inverse measure 𝜇inv [97].

4.3.2 Product measure

In the following we use the natural and the inverse measure to construct conditionally invariant

measures with arbitrary decay rate 𝛾 as presented in Ref. [97]. This is motivated by the

following considerations. Assume there exist two conditionally invariant measures which have

a density with respect to the Lebesgue measure, 𝜇1,2(𝐴) =
∫︀

𝐴
𝜌1,2d𝜇L. (We emphasize that in

general for maps with escape, such measures do not exist and we only use it as a motivation

for the following approach.) For such measures we obtain

ℳ𝜇1,2(𝐴)
Eq. (2.37)

=

∫︁

𝐴

(𝑅 ∘𝑀−1) · (𝜌1,2 ∘𝑀−1) d𝜇L
Eq. (2.54)

= e−𝛾1,2

∫︁

𝐴

𝜌1,2 d𝜇L (4.35)

from time evolution and conditional invariance. Since this holds for all 𝐴 and the integrands

are all positive, we conclude that for almost all 𝑥 ∈ Γ we have 𝑅[𝑀−1(𝑥)] · 𝜌1,2[𝑀−1(𝑥)] =

e−𝛾1,2𝜌1,2(𝑥). Now consider the product density 𝜌𝜉 := 𝜌1−𝜉
1 𝜌𝜉2 for some 𝜉 ∈ R and the corre-

sponding measure 𝜇𝜉(𝐴) =
∫︀

𝐴
𝜌𝜉d𝜇L. Time evolution yields

ℳ𝜇𝜉(𝐴)
Eq. (2.37)

=

∫︁

𝐴

(𝑅 ∘𝑀−1) · (𝜌𝜉 ∘𝑀−1) d𝜇L (4.36)

=

∫︁

𝐴

[︀
(𝑅 ∘𝑀−1) · (𝜌1 ∘𝑀−1)

]︀1−𝜉 [︀
(𝑅 ∘𝑀−1) · (𝜌2 ∘𝑀−1)

]︀𝜉
d𝜇L (4.37)

=

∫︁

𝐴

[︀
e−𝛾1(𝜌1 ∘𝑀−1)

]︀1−𝜉 [︀
e−𝛾2(𝜌2 ∘𝑀−1)

]︀𝜉
d𝜇L (4.38)

= e−[(1−𝜉)𝛾1+𝜉𝛾2] 𝜇𝜉(𝐴), (4.39)

such that it is conditionally invariant with decay rate 𝛾𝜉 = (1− 𝜉)𝛾1 + 𝜉𝛾2. This implies, that

any two conditionally invariant measures with different decay rates 𝛾1 ̸= 𝛾2, that have a density

with respect to 𝜇L could be used to construct conditionally invariant measures 𝜇𝜉 with arbitrary

decay rates 𝛾𝜉. The problem with this approach is, however, that in the considered systems

conditionally invariant measures usually are fractal and do not have a density. Nevertheless,

this motivates us to look for a similar construction of product measures between the natural

measure 𝜇nat and the inverse measure 𝜇inv.

The main idea is to use the local phase-space structure of stable and unstable directions in
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hyperbolic maps, discussed in Sec. 2.2.1. While 𝜇nat is smooth along the unstable direction

and fractal along the stable direction, 𝜇inv is fractal along the unstable and smooth along the

stable direction. This fractal distribution is responsible for fulfilling conditional invariance,

i.e., the partial escape with 𝑅 and iteration with 𝑀 leads to the global decay factors e−𝛾nat

and e−𝛾inv , respectively.

We factorize the reflectivity as 𝑅 = 𝑅1−𝜉𝑅𝜉 for any 𝜉 ∈ R. Consider the natural measure for

the same map 𝑀 but with reflectivity function 𝑅1−𝜉, denoted in the following as 𝜇nat[𝑅
1−𝜉].

The measures 𝜇nat[𝑅
1−𝜉] all have similar structure to the usual 𝜇nat, which is obtained for

𝜉 = 0, illustrated in Fig. 4.19(a). Note that for 𝜉 = 1 the uniform measure 𝜇L is obtained.

Secondly we define the inverse measure for the reflectivity function 𝑅𝜉, denoted as 𝜇inv[𝑅
𝜉].

These measures have similar structure to 𝜇inv, which is obtained for 𝜉 = 1, while for 𝜉 = 0 we

get the uniform distribution, see Fig. 4.19(b).

The hyperbolic phase-space structure implies a local decomposition of 𝜇nat[𝑅
1−𝜉] as the

product of a uniform measure along the unstable, and a fractal measure along the stable direc-

tion, as motivated in App. C.3.2. Similarly 𝜇inv[𝑅
𝜉] is written locally as the product of a fractal

measure in the unstable, and a uniform measure in the stable direction. These considerations

lead to a local product measure of the form 𝜇𝜉 = 𝜇inv[𝑅
𝜉] × 𝜇nat[𝑅

1−𝜉], along unstable and

stable direction. The obtained measures are heuristically shown to be conditionally invariant

under the map with escape ℳ and have decay rate

𝛾𝜉 = 𝛾nat[𝑅
1−𝜉] + 𝛾inv[𝑅

𝜉], (4.40)

see App. C.3.2. For the special case of the generalized bakers map Eq. (4.40) is exact and a

rigorous proof of conditional invariance is given in App. C.3.1.

The explicit construction of the product measures 𝜇𝜉 using time evolution is given by [97]

𝜇𝜉(𝐴) = lim
𝑛→∞

�̃�𝑛
𝜉 (𝐴)

‖�̃�𝑛
𝜉 ‖

, with (4.41)

�̃�𝑛
𝜉 (𝐴) =

∫︁

𝐴

𝑛∏︁

𝑖=1

𝑅1−𝜉[𝑀−𝑖(𝑥)]
𝑛−1∏︁

𝑗=0

𝑅−𝜉[𝑀 𝑗(𝑥)] d𝜇L(𝑥). (4.42)

Apparently these measures are uniformly distributed on sets with the same average decay

under backward iteration and the same average gain under forward iteration. For any 𝑥 ∈ Γ

the final weight is determined only by the overall decay in 𝑛 backward iterations, and does not

depend at which time step the decay takes places (and similarly for the forward iterations).

We illustrate the construction of the measures 𝜇𝜉 for five different values of 𝜉, increasing

between 𝜉 = 0 to 𝜉 = 1 from left to right, in Fig. 4.19. For each 𝜉 we show the approximation

𝜇𝑛
nat[𝑅

1−𝜉] in (a) and 𝜇inv[𝑅
𝜉] in (b) considering 𝑛 = 5 iterations. The corresponding normalized

product measures 𝜇𝑛
𝜉 = �̃�𝑛

𝜉 /‖�̃�𝑛
𝜉 ‖, Eq. (4.42), are illustrated in (c). For 𝜉 = 0 just the first



4.3 Conditionally invariant measures for partial escape 65
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Figure 4.19: Construction of product measures 𝜇𝜉. Illustrated are finite approximations
of (a) 𝜇nat[𝑅

1−𝜉], (b) 𝜇inv[𝑅
𝜉], and (c) 𝜇𝜉, using 𝑛 = 5 steps in the construction for 𝜉 ∈

{0, 0.266, 0.4695, 0.825, 1.0} (from left to right). Each density is shown on a grid of size
1024× 1024. The densities in (c) result from multiplying the densities in (a) and (b). For
𝜉 = 0 we have 𝜇inv[𝑅

𝜉] = 𝜇L (b) and 𝜇𝜉 = 𝜇nat, see (a) and (c). For 𝜉 = 1 we have
𝜇nat[𝑅

1−𝜉] = 𝜇L (a) and 𝜇𝜉 = 𝜇inv, see (b) and (c). Dashed blue line indicates the position
of the opening Ω in the first panel. Individual colormaps are used for each density going
from zero (light yellow) to the maximum value (black).

factor contributes in Eq. (4.42), such that the natural measure is recovered, 𝜇𝜉=0 = 𝜇nat, see

Eqs. (4.33), with decay rate 𝛾nat. This follows from Eq. (4.40) as 𝛾𝜉=0 = 𝛾nat[𝑅] + 𝛾inv[𝑅
0] =

𝛾nat[𝑅]. For 𝜉 = 1 we similarly obtain 𝜇𝜉=1 = 𝜇inv see Eq. (4.34), with decay rate 𝛾𝜉=1 = 𝛾inv.

For intermediate values of 𝜉 ∈ (0, 1) we observe a transition between 𝜇nat and 𝜇inv. The

phase-space densities inherit structures of both measures, with their strength depending on

𝜉, see middle panels of Fig. 4.19(c). These finite approximations already reveal a non-trivial

multifractal distribution on the underlying hyperbolic structure of the dynamics.

For the same values of 𝜉 the decay of the measures 𝜇𝜉 is shown in Fig. 4.20. Here, the

measures 𝜇𝜉 are evaluated on a finite grid of initial conditions using 𝑛 = 𝑛c = 8 forward

and backward iterations in Eq. (4.42). This choice of the construction time 𝑛c for a given

number of initial conditions is discussed in App. C.3.3. We observe an exponential decay of

𝜇𝜉 proportional to ∼ e−𝛾𝜉𝑛 for number of iterations 𝑛 ≤ 𝑛c (colored lines). The decay rate
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Figure 4.20: Decay of product measures, P (𝑛) = ‖ℳ𝑛𝜇𝜉‖, approximated by 𝜇𝑛c
𝜉 with

𝑛c = 8 and 𝑁c = 8196× 8196 initial conditions on a grid. Considered are the same values
of 𝜉 as in Fig. 4.19 corresponding to γ𝜉 ∈ {γnat, 0.35, 𝛾typ, 0.75, 𝛾inv} (red, violet, blue, cyan,
green). For comparison, the expected scaling 𝑃 (𝑛) = e−𝑛𝛾𝜉 is shown up to 𝑛 ≤ 𝑛c. For
more iterations the scaling converges to the natural decay, see gray dashed line.
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Figure 4.21: Classical decay rates 𝛾𝜉 as a function of 𝜉. Shown is the decay rate
𝛾𝜉 = − logℳ𝜇𝜉(Γ) based on conditional invariance, Eq. (2.54), evaluated for numerically
constructed 𝜇𝜉 (blue diamonds). For comparison a numerical evaluation of Eq. (4.40) is plot-
ted (orange), where decay rates of corresponding natural and inverse measures are used.
A closeup of the region with 𝜉 ∈ [0, 1] is shown. For the numerical approximation of 𝜇𝜉,
Eq. (4.42), 𝑁c = 8192 × 8192 initial conditions on a grid and 𝑛 = 8 are used. Horizontal
lines indicate classical decay rates 𝛾 ∈ {𝛾min, 𝛾nat, 𝛾typ, 𝛾inv, 𝛾max} as indicated.

𝛾𝜉 is here evaluated from the first iteration as 𝛾𝜉 = − log ‖ℳ𝜇𝜉‖ based on Eq. (2.54). If we

iterate further than the number of iterations 𝑛c used to construct 𝜇𝜉, the scaling converges to

the natural decay rate 𝛾nat (gray line).

In order to test Eq. (4.40) we evaluate the dependence of 𝛾𝜉 on 𝜉 numerically for the measures

𝜇𝜉 and compare with the result obtained from 𝜇nat[𝑅
1−𝜉] and 𝜇inv[𝑅

𝜉]. This is illustrated in

Fig. 4.21 and we find very good agreement between the theoretical prediction (orange line)

and the numerical results for 𝜇𝜉 (blue diamonds). Here, the measures 𝜇𝜉 are numerically

approximated as before. The theoretical prediction is calculated from the asymptotic scaling
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of 𝜇nat and 𝜇inv, when the reflectivity function is adapted accordingly. The decay rate 𝛾𝜉

continuously increases with 𝜉 from 𝛾min (approached for 𝜉 → −∞) to 𝛾max (approached for

𝜉 → ∞), while for 𝜉 = 0 and 𝜉 = 1 we obtain 𝛾nat and 𝛾inv, respectively. There is perfect

agreement in the quantum mechanical relevant region of 𝜉 ∈ [0, 1] (magnified plot). Note that

the dependence is not linear, as suggested by the motivational considerations, Eq. (4.39).

Let us further remark that the measures 𝜇𝜉 are defined for reflectivity functions 𝑅 > 0,

only. In the limit of a closed map, i.e., when 𝑅(𝑥) = 1, there is no escape and we consistently

obtain 𝛾𝜉 = 0 and the uniform distribution 𝜇𝜉 = 𝜇L for all 𝜉. On the other hand, the limit of

full escape is not trivial and will be discussed later in Sec. 5.3.2.

4.3.3 Periodic orbit measures

In the following we present another class of conditionally invariant measures for partial es-

cape with arbitrary reflectivity functions 𝑅, but which obtain only very specific decay rates.

These measures are based on periodic orbits and localize only on a few points in phase space.

Therefore recall the atomic measure 𝛿y, defined in Eq. (2.39), which localize on 𝑦 ∈ Γ.

The simplest of these measures localize on fixed points of the closed map. Let 𝑦 ∈ Γ be a

fixed point of the closed map 𝑀 , i.e., 𝑀(𝑦) = 𝑦. Then the atomic measure 𝛿y is a c-measure

of the open map ℳ with decay rate 𝛾y = − ln𝑅(𝑦) which is seen as follows. For all 𝐴 ⊂ Γ

we have ℳ𝛿y(𝐴)
(2.40)
= 𝑅(𝑦) 𝛿𝑀(y)(𝐴) = 𝑅(𝑦) 𝛿y(𝐴) = e−𝛾y 𝛿y(𝐴).

Thus, for all fixed points there exists a conditionally invariant measure of ℳ whose decay is

given by the reflectivity function 𝑅 evaluated at the fixed point. In particular this means, that

such a measure exists for a very specific set of decay rates only, 𝛾 ∈ {− ln𝑅(𝑦) : 𝑀(𝑦) = 𝑦}.
For example, if there exists a fixed point 𝑦 with 𝑅(𝑦) = maxΓ 𝑅, the corresponding measure 𝛿y

has the minimal classically allowed decay rate 𝛾min (with 𝛾min = 0 if maxΓ 𝑅 = 1). Conversely

if 𝑅(𝑦) = minΓ 𝑅, the corresponding measure has the maximal decay rate 𝛾max.

Secondly, consider a periodic orbit 𝑝 = {𝑦0,𝑦1} with period 𝑝 = 2, such that 𝑀(𝑦0) = 𝑦1

and 𝑀(𝑦1) = 𝑦0. Let 𝑅0 := 𝑅(𝑦0) and 𝑅1 := 𝑅(𝑦1). Then the measure

𝜇p(𝐴) := 𝑐0 𝛿y0
(𝐴) + 𝑐1 𝛿y1

(𝐴) (4.43)

with 𝑐0 =
√
𝑅1√

𝑅0+
√
𝑅1

and 𝑐1 =
√
𝑅0√

𝑅0+
√
𝑅1

is a conditionally invariant measure of ℳ with decay

rate 𝛾p = − ln(𝑅0𝑅1)
1/2. In order to prove this consider for some 𝐴 ⊂ Γ

ℳ𝜇p(𝐴) = 𝑐0 ℳ𝛿y0
(𝐴) + 𝑐1 ℳ𝛿y1

(𝐴) = 𝑐0𝑅(𝑦0)𝛿y1
(𝐴) + 𝑐1𝑅(𝑦1) 𝛿y0

(𝐴) (4.44)

=

√
𝑅1𝑅0√

𝑅0 +
√
𝑅1

𝛿y1
(𝐴) +

√
𝑅0𝑅1√

𝑅0 +
√
𝑅1

𝛿y0
(𝐴) (4.45)

=
√︀

𝑅0𝑅1

[︀
𝑐1 𝛿y1

(𝐴) + 𝑐0 𝛿y0
(𝐴)

]︀
= e−𝛾p𝜇p(𝐴), (4.46)
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which proves that 𝜇p is conditionally invariant under ℳ.

This can be generalized to periodic orbits of arbitrary length. Therefore, consider a periodic

orbit 𝑝 := {𝑦0, . . . ,𝑦𝑝−1} of period 𝑝, such that 𝑀(𝑦𝑖) = 𝑦𝑖+1 for 𝑖 < 𝑝−1 and 𝑀(𝑦𝑝−1) = 𝑦0.

Let 𝑅𝑖 := 𝑅(𝑦𝑖) as above. Then the measure

𝜇p(𝐴) :=
1

𝐶

𝑝−1
∑︁

𝑖=0

𝑐𝑖 𝛿y𝑖
, with 𝑐𝑖 =

(︃
𝑝−1
∏︁

𝑗=0

𝑅
[(𝑗−𝑖) mod 𝑝]
𝑗

)︃1/𝑝

(4.47)

and normalization 𝐶 =
∑︀𝑝−1

𝑖=0 𝑐𝑖 is a conditionally invariant measure of the map with partial

escape ℳ and has decay rate 𝛾p := − ln
∏︀𝑝−1

𝑗=0 𝑅
1/𝑝
𝑗 . We emphasize that the decay rate is the

average decay rate of the periodic orbit, 𝛾p = −1
𝑝

∑︀𝑝−1
𝑗=0 ln𝑅𝑗. A proof of conditional invariance

and uniqueness of 𝜇p is given in Appendix C.4.

These measures, however, localize on individual periodic orbits. Only in the limit of infinitely

large periods 𝑝 one thereby achieves measures localizing on the full phase space. Since we

do not observe a localization of resonance eigenfunctions on only a few phase-space points

we conclude that for small periods 𝑝 these measures individually do not play a role for the

semiclassical localization of resonance eigenfunctions. We will discuss an outlook in the end

of this chapter, how the average over many of these measures could be used to determine the

semiclassical limit of resonance eigenfunctions for specific decay rates.

4.4 Quantum-to-classical comparison

In this section we compare resonance eigenfunctions with the proposed classical measures 𝜇𝜉.

The goal is to analyze to which extent the measures 𝜇𝜉 describe the phase-space structure of

resonance eigenfunctions and if they are possible semiclassical limit measures.

Therefore we first qualitatively compare the phase-space representations of resonance eigen-

functions and classical measures depending on their decay rate. Secondly, we investigate their

fractal dimensions using effective entropies of coarse grained phase-space densities. Further-

more we quantify the distance between resonance eigenfunctions and classical measures using

the Jensen–Shannon divergence. This distance is used to investigate if the proposed measures

𝜇𝜉 are possible semiclassical limit measures of systems with partial escape. Finally, we modify

the amount of escape through the opening Ω in terms of the considered reflectivity and also

consider openings of different sizes.

4.4.1 Qualitative agreement

We illustrate and compare average Husimi distributions ⟨ℋ⟩𝛾 of resonance eigenfunctions and

classical measures 𝜇𝜉 in Fig. 4.22 for the standard map with partial escape. Note that the

measures 𝜇𝜉 are illustrated on phase space by considering expectation values of Gaussian
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γ = γnat γ = 0.35 𝛾 = 𝛾typ 𝛾 = 0.75 𝛾 = 𝛾inv
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Figure 4.22: Quantum-to-classical correspondence for standard map with partial escape.
Shown are average Husimi distributions ⟨ℋ⟩𝛾 of resonance eigenfunctions averaged over 50
resonances for 𝛾 ∈ {𝛾nat, 0.35, 𝛾typ, 0.75, 𝛾inv} and (a) ℎ = 1/1000, (b) ℎ = 1/4000, and (c)
ℎ = 1/16000 (top row). Bottom row shows Gaussian smoothed phase-space distribution of
c-measures 𝜇𝜉 for 𝜉 ∈ {0, 0.266, 0.470, 0.825, 1} corresponding to same 𝛾. Same colormap
for quantum and classical densities, with maximum given by 1.25 max⟨ℋ⟩ℎ𝛾 .
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distributions 𝑔x,𝜎, centered at 𝑥 ∈ Γ with width 𝜎 =
√︀

~/2. This is the classical equivalent to

the Husimi distribution ℋ𝜓(𝑥), Eq. (3.6), which is defined as the projection of the quantum

state 𝜓 onto coherent states 𝛼x centered at 𝑥 ∈ Γ with minimal uncertainty Δ𝑞 = Δ𝑝 =
√︀

~/2.

This allows for a meaningful qualitative comparison.

For ℎ = 1/1000, shown in Fig. 4.22(a), we observe a remarkable similarity between quan-

tum (top) and classical (bottom) distributions. Both show the same multifractal structure,

which changes dramatically with 𝛾. We confirm for the natural decay rate 𝛾nat that the average

Husimi distribution of resonance eigenfunctions agrees perfectly with the natural measure 𝜇nat.

The distributions at 𝛾nat are stretched along the unstable direction for regions with high inten-

sity (dark red), but also for the lowest intensities (light yellow). Conversely, the distributions

for the inverse decay rate 𝛾inv concentrate along the stable direction and the maximal values

are found inside the opening Ω. There is very good agreement between resonance eigenfunc-

tions at 𝛾inv and the inverse measure 𝜇inv. For intermediate values of 𝛾 the densities inherit

a structure on both, stable and unstable directions, which reveals the hyperbolic structure on

phase space. Recall that the definition of the classical measures 𝜇𝜉 is based on this product

structure, see Sec. 4.3.2. The product structure of the Husimi distributions resembles that

of the classical densities. There are, however, visible differences in the strength of this effect:

For example, at 𝛾 = 𝛾typ (middle panels) a careful inspection reveals stronger peaks along the

stable direction for the classical measures (dark-red diagonal central structure) than for the

resonance eigenfunctions.

We present the same qualitative comparison for ℎ = 1/4000 (b) and ℎ = 1/16000 (c), in

order to check if the observations persist further towards the semiclassical limit. We confirm

this on a qualitative level: For natural decay rate 𝛾nat and inverse decay rate 𝛾inv there is

excellent quantum-to-classical agreement. (left and right panels). The hyperbolic structure is

revealed for the intermediate decay rates on a scale which depends on ℎ (middle panels). The

Husimi distributions change with increasing decay rate 𝛾 similar to the classical measures. The

observed over-enhancement of the classical measures 𝜇𝜉 compared to the Husimi distributions

is still visible in specific phase-space regions, e.g., for 𝛾typ in the diagonal central structure.

However, these differences occur on smaller scales due to the finer phase-space resolution.

Altogether the qualitative similarity of quantum and classical distributions confirms that the

main structure of resonance eigenfunctions has a classical origin. In particular, the dependence

of this structure on the decay rate 𝛾 follows the classical structures of 𝜇𝜉 from the unstable to

the stable direction on the phase space. Classically this dependence is understood from the

definition of 𝜇𝜉, see Sec. 4.3.2. However, a close inspection shows that there are small but

still visible differences between the classical and quantum results for all ℎ, e.g., for 𝛾 = 𝛾typ

in the region around (𝑞, 𝑝) = (0.5, 0.75), see Fig. 4.22. From this qualitative comparison it is

not clear, if these differences vanish in the semiclassical limit. This motivates to pursue more

quantitative comparisons between resonance eigenfunctions and classical measures.
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4.4.2 Fractal dimensions

In order to find a quantitative comparison between quantum and classical phase-space dis-

tribution we first investigate their fractal properties. These are characterized by non-integer

fractal dimensions, see Sec. 2.2.5. Since the support of resonance eigenfunctions for any 𝛾 is

given by the full phase space Γ, their box-counting dimension, Eq. (2.46), must be equal to

the dimension of the phase-space, 𝐷0 = 2. This also holds for the classical product measures

𝜇𝜉 at least in the relevant region for 𝜉 ∈ [0, 1]. Therefore we consider the full spectrum of

generalized Rényi-dimensions 𝐷𝑞, Eq. (2.47), and in particular the information dimension 𝐷1,

Eq. (2.49).

In order to quantify fractality of resonance eigenfunctions, let us apply the definition of

the information entropy 𝑆1(𝜇, 𝜖), Eq. (2.48), to the Husimi measure 𝜇𝜓 which is implied by

the Husimi density ℋ𝜓, see (3.11). Recall that 𝜖 > 0 is the size of the boxes that partition

the phase space, and assume it to be fixed. Any weakly convergent sequence of resonance

eigenfunctions 𝜓ℎ
𝛾 as in Theorem 4.1, with limiting decay rate 𝛾 can be used to define the

semiclassical limit of this entropy as

𝑆sc
1 (𝛾, 𝜖) := lim

ℎ→0
𝑆1(𝜇𝜓ℎ

𝛾
, 𝜖). (4.48)

The semiclassical information dimension of this sequence follows from 𝑆sc
1 (𝛾, 𝜖) by taking the

limit

𝐷sc
1 (𝛾) = − lim

𝜖→0

𝑆sc
1 (𝛾, 𝜖)

ln 𝜖
(4.49)

as in Eq. (2.49). We emphasize that this only leads to non-trivial results, however, if the

limit ℎ → 0 (in the definition of 𝑆sc
1 ) is taken before considering 𝜖 → 0. It is not possible to

interchange these limits, because for finite ℎ the information content of the Husimi measure

𝜇𝜓 does not increase on scales of order 𝜖 .
√
ℎ due to the smoothness of ℋℎ

𝛾 . Therefore

taking the limit 𝜖 → 0 for finite ℎ results in the trivial dimension 𝐷1 = 2 for all resonance

eigenfunctions. These considerations are similarly valid for the generalized Rényi entropies

𝑆𝑞(𝜇, 𝜖) and dimensions 𝐷𝑞(𝜇), Eq. (2.47), by considering arbitrary 𝑞 in Eqs. (4.48) and (4.49).

Nevertheless, we want to quantify the fractality of resonance eigenfunctions at finite values

of ℎ as an effective approximation for the limiting case. For this purpose, let us consider the

effective entropies 𝑆𝑞(𝜇𝜓ℎ
𝛾
, 𝜖) for fixed values of ℎ. Because the phase-space density is smooth

on the order of ℎ this quantity is only reasonable to consider for 𝜖 &
√
ℎ. With this in mind

we define an effective generalized dimension in terms of the local scaling of 𝑆𝑞(𝜇, 𝜖) with ln 𝜖

as

𝐷𝑞(𝜇, 𝜖) := − 𝜕𝑆𝑞(𝜇, 𝜖)

𝜕 ln 𝜖
≈ − 𝑆𝑞(𝜇, 𝜖)− 𝑆𝑞(𝜇, 𝜖+Δ𝜖)

ln 𝜖− ln(𝜖+Δ𝜖)
, (4.50)
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for small Δ𝜖. This is equivalent to the local fractal dimensions discussed for classical measures

in Refs. [92, 197]. It obtains non-trivial values only in the regime of relatively large 𝜖 &
√
ℎ.

In the following we apply this quantity to resonance eigenfunctions 𝜓𝛾 and reveal their fractal

properties effectively for finite values of 𝜖. Numerically we consider the scaling in Eq. (4.50)

for a finite interval of 𝜖 ∈ [1/16, 1/4]. This choice gives numerically reasonable results. For

other choices of 𝜖 we refer to App. B.3.

In Figure 4.23 we illustrate the effective fractal dimensions 𝐷𝑞(𝛾, 𝜖) := 𝐷𝑞(𝜇𝜓𝛾 , 𝜖) of all

resonance eigenfunctions of the standard map with partial escape as a function of their decay

rate 𝛾 at decreasing values of ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000} and compare them to the

classical result for the product measures 𝜇𝜉 with the same decay rate for 𝑞 ∈ {1, . . . , 4}. For

all 𝑞 we observe a nontrivial dependence of 𝐷𝑞(𝛾, 𝜖) on 𝛾. This illustrates the multifractal

nature of resonance eigenfunctions in maps with partial escape, and most importantly, that it

depends strongly on the decay rate. Panel (a) shows the information dimension. We notice that

smaller values of ℎ lead to larger effective 𝐷1 for all decay rates, which is explained by quantum

fluctuations on the order of 𝜖, further analyzed in App. B.3. The shape of the progression,

however, does not change much for different ℎ. First, the dimension increases slightly with

𝛾 up to a maximum value, and then decreases for decay rates with 𝛾 & 0.4 up to minimal

values around 𝛾inv. For ℎ → 0 the obtained effective dimensions of the eigenfunctions will

semiclassically converge to the corresponding effective dimension of the limit measure. Here,

the numerical values for ℎ = 1/16000 (green markers) are closest to this limit and should

be compared to the classical result for 𝜇𝜉 (dashed blue line). The agreement between the

obtained effective quantum and classical information dimensions is excellent. The maximum

of the classical dimensions is around 𝛾 ≈ 0.35 continuously decreasing for larger and smaller

decay rates, with 𝐷1(𝜇nat, 𝜖) ≈ 1.9 and 𝐷1(𝜇inv, 𝜖) ≈ 1.7.

Furthermore, the effective generalized Rényi dimensions 𝐷𝑞(𝛾, 𝜖) are illustrated in (b) 𝑞 = 2,

(c) 𝑞 = 3, and (d) 𝑞 = 4. In all cases the dependence on 𝛾 is nontrivial and changes with

𝑞. This supports the claim, that resonance eigenfunctions have a multifractal character. The

position of the maximum moves closer to 𝛾nat for larger 𝑞, and we also observe overall smaller

values. The effective dimensions have a similar dependence on ℎ as for 𝑞 = 1. For the smallest

value, ℎ = 1/16000, we find that the effective dimensions of resonance eigenfunctions agree

very well with those of the proposed measures 𝜇𝜉. This holds for all considered 𝑞.

So far we considered single resonance eigenfunctions. Let us also consider effective fractal

dimensions of average Husimi distributions ⟨ℋ⟩𝛾, which are similarly defined by Eq. (4.50).

This will be denoted by the same symbol 𝐷𝑞(𝛾, 𝜖) in the following and, whenever necessary, it

will be explicitly stated if single or average eigenfunctions are used. The results are illustrated

in Fig. 4.24 considering ⟨ℋ⟩𝛾 for 𝛾 ∈ [𝛾nat, 𝛾inv] and taking the average over 50 eigenfunctions

as in Sec. 4.2.3. The quantum results are shown as straight lines using the same colors as in

Fig. 4.23, while the classical results for 𝜇𝜉 again are shown for comparison as a dashed blue
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Figure 4.23: Fractal dimensions of single resonance eigenfunctions and classical measures
for partial escape. Shown are effective Rényi-dimensions D𝑞(γ, 𝜖) of Husimi distributions
ℋ𝛾 of resonance eigenfunctions as a function of γ for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}
(black, violet, red, green). Considered are dimensions for (a) q = 1, (b) q = 2, (c) q = 3,
and (d) q = 4, while 𝜖 ∈ [1/4, 1/16]. Results for the classical measures 𝜇𝜉 are shown for
comparison (dashed line). Vertical dotted lines indicate γnat, γtyp and γinv (red, blue, green).

line. Comparing quantum and classical results for 𝐷1(𝛾, 𝜖) in Fig. 4.24(a), we find excellent

agreement for decay rates between 𝛾nat and 𝛾 ≈ 0.35 and also close to 𝛾inv. However, for

intermediate decay rates the information dimension of the quantum system are systematically

larger than the classical ones. Corresponding results for the effective Rényi dimensions 𝐷𝑞

with 𝑞 ∈ {2, . . . , 3} are shown in (b)–(d). Again we observe generally smaller dimensions for

larger 𝑞, while the position of the maximum moves towards 𝛾nat. The results of the quantum

system closely resemble the curve for 𝜇𝜉 for decay rates aroung 𝛾nat and 𝛾inv. For intermediate

decay rates similar differences are seen as for 𝑞 = 1.

We emphasize that there are two main differences between Fig. 4.24 and Fig. 4.23. First, the

averaged Husimis generally show larger fractal dimensions due to the reduction of quantum

fluctuations. Secondly, for ℎ ≥ 1/1000 the obtained quantum results fall almost on top of each

other. The second observation implies, that taking first the average of Husimi distributions

seemingly leads to a much faster convergence of the effective dimensions than for single eigen-

functions. Thus it is very likely that these results are already very good approximations of the
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Figure 4.24: Fractal dimensions of average resonance eigenfunctions and classical mea-
sures for partial escape. Shown are effective Rényi-dimensions D𝑞(γ, 𝜖) as a func-
tion of γ considering average Husimi distributions ⟨ℋ⟩𝛾 of 50 eigenfunctions for ℎ ∈
{1/250, 1/1000, 1/4000, 1/16000} (black, violet, red, green). The parameter q is chosen
as (a) q = 1, (b) q = 2, (c) q = 3, and (d) q = 4, while 𝜖 ∈ [1/4, 1/16]. Results for the
classical measures 𝜇𝜉 are shown for comparison (dashed line). Vertical dotted lines indicate
γnat, γtyp and γinv (red, blue, green).

semiclassical limit, at least for ℎ = 1/16000.

Finally we illustrate the spectrum of effective Rényi dimensions 𝐷𝑞(𝛾, 𝜖) as a function of 𝑞

considering the averaged Husimi distributions ⟨ℋ⟩𝛾 for ℎ = 1/16000 in Fig. 4.25 (open colored

symbols). We chose the same decay rates 𝛾 ∈ {𝛾nat, 0.35, 𝛾typ, 0.75, 𝛾inv} as in Fig. 4.22, and

compare to the classical results for the corresponding 𝜇𝜉 (filled blue symbols). For the box-

counting dimension, 𝑞 = 0, we obtain the trivial result 𝐷0 = 2 for all 𝛾, as expected for both

quantum and classical densities. Increasing 𝑞 leads to smaller effective dimensions 𝐷𝑞(𝛾, 𝜖)

which seem to saturate at finite values. This is observed for the resonance eigenfunctions

as well as for the classical measures. The limit for large 𝑞 depends on the decay rate 𝛾.

This quantum-to-classical comparison shows once again that at the natural decay rate 𝛾nat

the effective Rényi spectra show perfect agreement. This supports the conjecture, that the

semiclassical limit measure at 𝛾nat is the natural measure. We also find excellent agreement

at the inverse decay rate 𝛾inv, which is a strong indication that the semiclassical limit measure
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Figure 4.25: Fractal dimensions of resonance eigenfunctions and classical measures. Shown
are effective Rényi dimensions D𝑞(γ, 𝜖) as a function of q for five different decay rates
γ ∈ {γnat, 0.35, 𝛾typ, 0.75, 𝛾inv} (diamond, circle, lower triangle, square, upper triangle) con-
sidering average Husimis ⟨ℋ⟩𝛾 of 50 eigenfunctions for ℎ = 1/16000 (open symbols) and the
classical measures 𝜇𝜉 (filled symbols).

is 𝜇inv for this decay rate, as we conjectured in Ref. [97]. Interestingly, for 𝛾 = 0.35 quantum

and classical effective dimensions agree up to 𝑞 = 3 (circles). Only for larger 𝑞 we clearly see

deviations. On the other hand, for the typical decay rate 𝛾typ and for 𝛾 = 0.75 there are visible

deviations for all values of 𝑞, which is consistent with the observations in Fig. 4.24.

Altogether this shows, that we are able to effectively quantify multifractal properties of reso-

nance eigenfunctions. The numerical results strongly support the claim, that the semiclassical

limit measures also have nontrivial fractal dimensions, which depend on the decay rate 𝛾, and

are indeed multifractals. Furthermore, the proposed measures 𝜇𝜉 lead to very good approxi-

mations for the multifractal spectrum of Rényi dimensions, with excellent agreement for 𝛾nat

and 𝛾inv, but showing slight deviations for intermediate decay rates. This motivates us to

further investigate a quantitative distance between resonance eigenfunctions and the proposed

measures 𝜇𝜉.

4.4.3 Jensen–Shannon divergence

The distance between quantum and classical measures can be quantified using any metric on

the sets of probability measures. In this thesis we consider the Jensen–Shannon divergence

[76], which quantifies the similarity of two measures. It has various applications, e.g., for

image recognition [198], in information theory [199], and for the analysis of correlations of

DNA segments [200], symbolic sequences [201], citation networks [202], or decision making

problems [203].

Assume a partition of the phase space into sets 𝒜𝜖 = {𝐴𝜖
𝑖} with 𝜇(𝐴𝜖

𝑖) = 𝜖2 as introduced

in Sec. 2.2.5. For any two probability measures 𝜇1 and 𝜇2 the Jensen–Shannon divergence 𝑑𝜖JS
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on the partition 𝒜𝜖 is defined as [76]

𝑑𝜖JS(𝜇1, 𝜇2) = 𝑆1

(︂
𝜇1 + 𝜇2

2
, 𝜖

)︂

− 𝑆1(𝜇1, 𝜖) + 𝑆1(𝜇2, 𝜖)

2
, (4.51)

in terms of the information entropy 𝑆1(𝜇, 𝜖) evaluated for the discretized measures 𝜇1,2(𝐴
𝜖
𝑖), see

definition in Eq. (2.48). The Jensen–Shannon divergence is the difference of the information

entropy of the mean (𝜇1 + 𝜇2)/2 of both measures and the mean of their individual entropies.

In the following we always write 𝑑JS without the superscript 𝜖. The square root of 𝑑JS is

a metric [204], such that it can be used to evaluate the distance between two measures.

This also implies that 𝑑JS(𝜇1, 𝜇2) ≥ 0 with equality if and only if 𝜇1 = 𝜇2. The scale 𝜖

introduced in the definition of 𝑑JS defines the considered coarseness on the phase-space. This

is required, because semiclassical convergence of resonance eigenfunctions is expected only

weakly, see Sec. 4.2.2, e.g., for observables of fixed size 𝜖. For quantum-to-classical comparison

the calculated difference is only meaningful if 𝜖 &
√
ℎ. In the following we consider 𝜖 = 1/16,

which approximately satisfies 𝜖 ≈
√
ℎ for ℎ = 1/250.

The Jensen–Shannon divergence between individual Husimi distributions ℋ𝛾 and several

classical measures is illustrated in Fig. 4.26 for all quantum decay rates 𝛾 at different values

of ℎ. We consider classically the uniform measure 𝜇L (gray circles), the natural measure 𝜇nat

(red boxes), the inverse measure 𝜇inv (green triangles), and the proposed measures 𝜇𝜉 (blue

diamonds) with 𝜉 adapted to the respective 𝛾, see Sec. 4.3.2. Apparently, the distance of

resonance eigenfunctions to the natural measure 𝜇nat has a pronounced minimum at 𝛾 = 𝛾nat

and increases significantly with 𝛾, see Fig. 4.26(a). This quantifies the observation, that the

structure of resonance eigenfunctions at 𝛾nat agrees well with 𝜇nat, but changes with 𝛾. Simi-
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Figure 4.26: Jensen–Shannon divergence between single quantum Husimi distributions ℋ𝛾

and different classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b)
ℎ = 1/4000, and (c) ℎ = 1/16000. The symbols correspond to the considered measures
𝜇𝜉 (blue diamonds), 𝜇nat (red boxes), 𝜇inv (green triangles), and 𝜇L (gray circles). Dotted
vertical lines indicate γnat, γtyp, and γinv (red, blue, green).
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larly the distance to 𝜇inv is minimal at 𝛾inv and increases significantly for smaller decay rates.

The distance to the uniform measure 𝜇L obtains values between these limits and is minimal

at around 𝛾 ≈ 0.35. This shows that in the considered system resonance eigenfunctions at

this decay rate are closer to uniformity, which is also seen in the maximum of the informa-

tion dimension in Fig. 4.23. The distances 𝑑JS between eigenfunctions and the conditionally

invariant measures 𝜇𝜉 are much smaller than for the other measures. We emphasize on the

fact that there is almost no dependence on 𝛾. This means that for the considered phase-space

resolution 𝜖 and Planck’s constant ℎ the proposed measures 𝜇𝜉 are equally suitable to describe

the Husimi distribution ℋ𝛾 irrespective of 𝛾.

Reducing ℎ in Fig. 4.26(b) and (c) we confirm that the Jensen–Shannon divergence between

quantum and classical measures reduces significantly for all 𝛾 only for 𝜇𝜉. For 𝜇nat and 𝜇inv such

a decrease is observed at 𝛾nat and 𝛾inv, respectively, while the distance remains almost constant

for other decay rates. There is no qualitative change of the distances for the uniform measure

𝜇L. Note that variation of 𝜖 >
√
ℎ leads to similar results with overall smaller distances for

larger 𝜖 and vice versa, see Appendix B.4.

We additionally confirm that the proposed measures 𝜇𝜉 agree very well with resonance

eigenfunctions in Fig. 4.27, where the Jensen–Shannon divergence 𝑑JS between average Husimis

⟨ℋ⟩𝛾 and classical measures is shown for the same parameters as in Fig. 4.26. For ℎ = 1/1000

the distance between ⟨ℋ⟩𝛾 and 𝜇𝜉 is approximately one magnitude smaller than between ⟨ℋ⟩𝛾
and 𝜇L, see Fig. 4.27(a). For 𝜇nat and 𝜇inv a sharp minimum is observed at 𝛾nat and 𝛾inv,

respectively. For smaller ℎ = 1/4000 and 1/16000 the distances for 𝜇L do not decrease, while

for 𝜇nat and 𝜇inv the minimum becomes sharper, see Fig. 4.27(b) and (c). The distances for

the product measures 𝜇𝜉 decrease for all decay rates 𝛾 when ℎ becomes smaller. However, for
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Figure 4.27: Jensen–Shannon divergence between average Husimi distributions and differ-
ent classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b) ℎ = 1/4000,
and (c) ℎ = 1/16000. The average in ⟨ℋ⟩𝛾 is taken over 50 eigenfunctions. The considered
classical measures are 𝜇𝜉 (blue), 𝜇nat (red), 𝜇inv (green), and 𝜇L (gray). Dotted vertical
lines indicate γnat, γtyp, and γinv (red, blue, green).



78 Chapter 4 Resonance eigenfunctions in maps with partial escape

intermediate decay rates this is barely visible between ℎ = 1/4000 and ℎ = 1/16000.

Altogether, if the considered classical measure at a given decay rate 𝛾 is not the semiclassical

limit measure, as for 𝜇L, 𝜇nat (large 𝛾) and 𝜇inv (small 𝛾), we see a very fast saturation of

the Jensen–Shannon divergence at finite values. This is independent of the choice of single

or averaged Husimi distributions. On the other hand, the numerical results agree with the

conjectures that 𝜇nat and 𝜇inv are the semiclassical limit measures at 𝛾nat and 𝛾inv, respec-

tively. In the next section we investigate the dependence of 𝑑JS with ℎ in order to quantify to

which extent the product measures 𝜇𝜉 are suitable as semiclassical limit measures of resonance

eigenfunctions with arbitrary decay rates.

4.4.4 Semiclassical limit

Since resonance eigenfunctions converge weakly towards their semiclassical limit measure, their

distance 𝑑JS, defined on a finite partition of the phase space in Eq. (4.51), converges to zero

in the semiclassical limit. Therefore we consider the dependence of 𝑑JS between Husimi distri-

butions and the proposed measures 𝜇𝜉 in order to test if these measures are compatible with

a distance 𝑑JS → 0 in the limit ℎ → 0. We consider 𝜖 = 1/16 as in the previous section.

Figure 4.28(a) illustrates the average Jensen–Shannon divergence ⟨𝑑JS(ℋ𝛾, 𝜇𝜉)⟩ for five dif-

ferent decay rates 𝛾, comparing individual Husimi distributions ℋ𝛾 and the classical measures

𝜇𝜉. For the average 50 eigenfunctions are considered. We observe a power-law decay 𝑑JS ∼ ℎ𝛿

with exponents 0.6 . 𝛿 . 0.8 where larger exponents are observed for smaller decay rates 𝛾.

Distances of the same order and scaling are found when individual Husimi distributions ℋ𝛾 are

compared to average Husimi distributions ⟨ℋ⟩𝛾 at the same decay rates, shown in Fig. 4.27(b).

This has two remarkable implications: First, there exists a large regime of ℎ, where a single

resonance eigenfunction is equally well described by the classical measure 𝜇𝜉 and the average

Husimi distribution ⟨ℋ⟩𝛾. Secondly, the observed decay of the distance 𝑑JS(ℋ𝛾, 𝜇𝜉) is of the

same order as the decay of fluctuations of single eigenfunctions around the average. Combining

the knowledge about the distribution of the fluctuations, discussed in Section 4.2.4, and the

fractal properties of the semiclassical limit measure could be used to establish an explanation

for the exponent 𝛿, but this is not attempted here. Altogether, the results of Fig. 4.28(a) lead

to the conclusion that the classical measures 𝜇𝜉 are indeed compatible with a semiclassical

distance of 𝑑JS → 0.

In order to obtain a more sensitive test to this hypothesis we additionally consider the

Jensen–Shannon divergence between averaged Husimi distributions ⟨ℋ⟩𝛾 and the proposed

measures 𝜇𝜉 as a function of ℎ in Fig. 4.29. This reduces quantum fluctuations and leads

to overall smaller distances for all considered 𝛾. For 𝛾nat and 𝛾inv we again find a power-law

decay of the form 𝑑JS ∼ ℎ𝛿, where the exponents 𝛿 ≈ 0.85 and 𝛿 ≈ 0.75 are slightly larger than

for single eigenfunctions, Fig. 4.28. This indicates that resonance eigenfunctions with decay

rates 𝛾nat and 𝛾inv converge semiclassically towards the natural measure 𝜇nat and the inverse
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Figure 4.28: Quantum-to-classical and quantum-to-average comparison in the semiclas-
sical limit. (a) Shown is the averaged Jensen–Shannon divergence dJS between sin-
gle Husimi distributions ℋ𝛾 and the classical measures 𝜇𝜉 as a function of ℎ for γ ∈
{γnat, 0.35, 𝛾typ, 0.75, 𝛾inv}. (b) Same as (a) considering the averaged dJS between single
ℋ𝛾 and average Husimi distributions ⟨ℋ⟩𝛾 . All averages are taken over 50 resonances.
Gray lines indicate numerical scaling for 𝛾nat (lower) and 𝛾inv (upper).
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Figure 4.29: Quantum-to-classical comparison in the semiclassical limit for average
Husimi distributions. Shown is the Jensen–Shannon divergence dJS between average
Husimi distributions ⟨ℋ⟩𝛾 and the classical measures 𝜇𝜉 as a function of ℎ for 𝛾 ∈
{𝛾nat, 0.35, 𝛾typ, 0.75, 𝛾inv}. Gray lines indicate numerical scaling for 𝛾nat, 𝛾inv, and 𝛾typ
(from lower to upper).

measure 𝜇inv, respectively. Thus we verify the expectation for the natural measure 𝜇nat [47,87]

on a quantitative level for systems with partial escape. Moreover this provides strong evidence

for our conjecture about the inverse measure 𝜇inv, see Sec. 4.3.1.

The observed exponents 𝛿 for the average Husimi distribution are larger than the exponents

for the single Husimi distributions in Fig. 4.28(a). In both cases the Jensen–Shannon diver-

gence 𝑑JS decreases, because the fluctuating, fractal Husimi distributions are integrated over

the fixed scale 𝜖, which converges semiclassically. Additionally, the considered interval of decay

rates used for the average converges towards the considered 𝛾, as discussed in Fig. 4.10. This

has a strong impact on the average Husimi distribution mostly for large values of ℎ, where the
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decrease of 𝑑JS, e.g., for 𝛾nat, is much faster in Fig. 4.29 than in Fig. 4.28(a). Let us further

remark, that in Ref. [97] Fig. 6(b) instead of fixing the number of resonances fixed intervals

around 𝛾 are considered, which implies an increasing number of resonances with smaller ℎ.

This number depends on the distribution of decay rates, see Sec. 4.1.2, and therefore leads

to an additional modification of the exponent 𝛿, which depends non-trivially on 𝛾. Another

problem of this method is, that there is an unknown finite distance between eigenfunctions

(and measures) at the boundary of the considered interval in 𝛾, which becomes relevant in

the semiclassical limit. For this reason, in this thesis we consider only a fixed number of res-

onances, under the price to deal with changing intervals in 𝛾. Here we do not investigate the

exponents 𝛿 any further.

The Jensen–Shannon divergence for intermediate values of 𝛾, shown in Fig. 4.29, show a

much slower decrease with ℎ. There seems to be a very slow power-law decay for 𝛾typ with

a small exponent 𝛿 ≈ 0.18, which is much smaller than for 𝛾nat and 𝛾inv. Furthermore, this

decay is even smaller than the observed exponents for single eigenfunctions. Note that the

opposite is observed for 𝛾nat and 𝛾inv. For 𝛾 = 0.35 and 𝛾 = 0.75 the distance is almost

constant for the smallest values of ℎ. This suggests a saturation towards a finite distance

between Husimi distributions and classical measures for intermediate decay rates 𝛾 in the

semiclassical limit, 𝑑JS(𝛾, 𝜇𝜉) = limℎ→0 𝑑JS(⟨ℋ⟩ℎ𝛾 , 𝜇𝜉) > 0. We expect a similar saturation also

for the individual Husimi distributions in Fig. 4.28(a). However, this saturation can only be

seen, when 𝑑JS(ℋ𝛾, 𝜇𝜉) is of the order of the semiclassical distance 𝑑JS(𝛾, 𝜇𝜉), for which much

larger values of ℎ than currently possible would be required.

In conclusion, we obtain that the product measures 𝜇𝜉 are well-suited as an approximation

of single resonance eigenfunctions for finite values of ℎ and all 𝛾. We also find strong numerical

evidence, that for small decay rates around 𝛾nat and large decay rates 𝛾inv the semiclassical

limit measure is given by 𝜇nat and 𝜇inv. For intermediate decay rates 𝛾, however, our numerical

findings suggest that the measures 𝜇𝜉 are not the semiclassical limit measures of the resonance

eigenfunctions.

4.4.5 Dependence on reflectivity function 𝑅

In this section we qualitatively and quantitatively investigate the dependence on the amount of

escape from the system, i.e., the dependence on the reflectivity 𝑅. For this purpose we consider

the same chaotic map as before with escape from the opening Ω = (0.3, 0.6)× [0, 1), and using

the reflectivity function 𝑅(𝑥) = 𝑅Ω if 𝑥 ∈ Ω and else 𝑅(𝑥) = 1, see Eq. (4.7). Changing the

parameter 𝑅Ω from unity to zero allows to investigate the transition from a closed system to a

system with full escape. Here we restrict to partial escape with 𝑅Ω ∈ (0, 1). For the limit of full

escape, 𝑅Ω = 0, we refer to Chapter 5. Considering different 𝑅Ω not only changes the range

and distribution of quantum decay rates, see Sec. 4.1.2, but also the classically relevant decay

rates. In the following we consider 𝑅Ω ∈ {0.8, 0.4, 0.2, 0.1, 0.05, 0.01}, and give an overview
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about the classical decay rates corresponding to these reflectivity parameters in Table 4.1.

4.4.5.1 Qualitative comparison

We illustrate average Husimi distributions ⟨ℋ⟩𝛾 considering 50 resonances and the classical

measures 𝜇𝜉 for ℎ = 1/4000 for decreasing 𝑅Ω in Fig. 4.30. For the considered decay rates

𝛾 see Table 4.1. If there is almost no escape from the system, 𝑅Ω = 0.8, we find excellent

agreement between quantum and classical densities (a). Between 𝛾nat and 𝛾inv we observe

a transition of the phase-space structure from unstable to stable direction. It is remarkable

how closely the structure of resonance eigenfunctions follows the classical measures 𝜇𝜉, even

though the range of decay rates is much smaller than for 𝑅Ω = 0.2, see Table 4.1. Moreover,

the distributions are close to the uniform distribution, which is seen in the overall darker colors

without approaching zero (light yellow). Recall that in the closed limit 𝑅Ω → 1 the uniform

distribution is obtained for all eigenfunctions as well as for the measures 𝜇𝜉.

Allowing more escape from the opening, 𝑅Ω = 0.4 and 𝑅Ω = 0.2, we still find very good

qualitative agreement for all decay rates 𝛾, Fig. 4.30(b) and (c). We notice that the phase-

space densities for different values of 𝑅Ω change only in the intensity distribution but not in

their structure, when the classical decay rates are chosen accordingly, e.g., considering 𝛾typ for

all 𝑅Ω. Surprisingly, this holds not only for the classical measures 𝜇𝜉, where such a behavior

is implied by their definition Eq. (4.42), but also for the Husimi distributions. Nevertheless, it

is already possible to distinguish some qualitative differences between quantum and classical

densities at such large values of 𝑅Ω for the intermediate decay rates, as discussed for 𝑅Ω = 0.2

in Sec. 4.4.1.

𝑅Ω 𝛾min 𝛾nat 𝛾(n+t)/2 𝛾typ 𝛾(t+i)/2 𝛾inv 𝛾max

0.8 0 0.05952 0.06323 0.06694 0.07089 0.07483 0.2231

0.4 0 0.1700 0.2224 0.2749 0.3428 0.4108 0.9163

0.2 0 0.2165 0.3497 0.4828 0.6842 0.8820 1.609

0.1 0 0.2368 0.4638 0.6908 1.071 1.450 2.303

0.05 0 0.2461 0.5724 0.8987 1.490 2.082 2.996

0.01 0 0.2532 0.8174 1.382 2.514 3.647 4.602

Table 4.1: Relevant classical decay rates for the chaotic standard map with escape from
Ω = [0.3, 0.6) × [0, 1) and different 𝑅Ω. The relevant classical decay rates are minimal
and maximal decay rates 𝛾min, 𝛾max, Eq. (2.55), natural decay rate 𝛾nat, typical decay rate
𝛾typ, and inverse decay rate 𝛾inv. Additionally 𝛾(n+t)/2 := (𝛾nat + 𝛾typ)/2 and γ(t+i)/2 :=
(γtyp + γinv)/2 are specified, as considered in Fig. 4.30. Natural and inverse decay rates are
computed numerically from 81922 initial conditions using 𝑛 = 8 time steps. The typical
decay rate results from γtyp = −|Ω| ln𝑅Ω with |Ω| = 0.3.
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Figure 4.30: Quantum-to-classical correspondence for standard map with partial escape
considering (a) 𝑅Ω = 0.8, (b) 𝑅Ω = 0.4, (c) 𝑅Ω = 0.2, (d) 𝑅Ω = 0.1, (e) 𝑅Ω = 0.05, and (f)
𝑅Ω = 0.01. The top row in each subplot shows averaged Husimi distributions ⟨ℋ⟩𝛾 using
50 resonances for ℎ = 1/4000 and with decay rates γ ∈ {γnat, γ(n+t)/2, γtyp, γ(t+i)/2, γinv},
see Table 4.1 and . . .
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Figure 4.30 (cont.): . . . bottom row shows Gaussian smoothed phase-space distribution
of the product measures 𝜇𝜉. Individual colormap for each 𝑅Ω and 𝛾 with maximum given
by the classical density. Dashed blue line indicates the position of the opening Ω.
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Further decreasing 𝑅Ω to 𝑅Ω = 0.1 and below, this effect becomes more pronounced, see

Fig 4.30(b)–(c): While for 𝛾nat and 𝛾inv the quantum-to-classical agreement is overwhelming,

the quantum and classical phase-space distributions for intermediate decay rates become more

distinct. Even though there still is a product structure visible in the intermediate resonance

eigenfunctions, it is much broader than classically predicted by 𝜇𝜉. For these measures we

apparently obtain strong peaks in the region of Ω, where both natural measure 𝜇nat and

inverse measure 𝜇inv have large values, see e.g., for the smallest considered 𝑅Ω = 0.01 in

4.30(f) (bottom row). This indicates that in the limit of small 𝑅Ω the product measures 𝜇𝜉

are not suitable approximations for the semiclassical limit of resonance eigenfunctions.

4.4.5.2 Jensen–Shannon divergence

This leads to the question if it is possible to distinguish these different behaviors quantita-

tively using the Jensen–Shannon divergence. Therefore we first calculate the averaged Jensen–

Shannon divergence ⟨𝑑JS(ℋ𝛾, 𝜇𝜉)⟩ between single eigenfunctions and the measures 𝜇𝜉 for dif-

ferent values of ℎ, as in Fig. 4.28. This is shown together with the averaged Jensen–Shannon

divergence ⟨𝑑JS(ℋ𝛾, ⟨ℋ⟩𝛾)⟩ between single and average Husimi distributions in Fig. 4.31 for

𝑅Ω ∈ {0.8, 0.4, 0.1, 0.01}. We secondly illustrate the Jensen–Shannon divergence 𝑑JS(⟨ℋ⟩𝛾, 𝜇𝜉)

between average Husimi distributions and the classical measures 𝜇𝜉 in Fig. 4.32 for the same

values of 𝑅Ω.

Figure 4.31(a) shows the Jensen–Shannon divergence for 𝑅Ω = 0.8 as a function of ℎ for the

same decay rates as considered before, see Tab. 4.1. For all decay rates we observe a power-law

decay 𝑑JS ∼ ℎ𝛿 with 𝛿 ≈ 0.9. Indeed, the obtained values fall almost perfectly on top of each

other for all 𝛾. Moreover, when single and average Husimi distributions are compared (right

panel), the Jensen–Shannon divergence has almost exactly the same dependence on ℎ for all

decay rates. Similar observations are made for 𝑅Ω = 0.4 in Fig. 4.31(b). Again the scaling of

both comparisons are very similar with an exponent of 𝛿 ≈ 0.8. This leads to the conclusion

that for systems with large 𝑅Ω the product measures are excellent approximations for the

semiclassical structure of resonance eigenfunctions.

In contrast, for more escape with 𝑅Ω = 0.1 in Fig. 4.31(c) the observations are similar as

for 𝑅Ω = 0.2, see Fig. 4.28. Comparing left and right panel in Fig. 4.31(c) it becomes obvious

that the scaling of the Jensen–Shannon divergence with ℎ for intermediate decay rates is

much slower when single eigenfunctions are compared to 𝜇𝜉 instead (left) of the average ⟨ℋ⟩𝛾
(right). This means that single eigenfunctions converge faster to their average than to the

classical measures 𝜇𝜉. From this one concludes that the measures 𝜇𝜉 are not the semiclassical

limit measures for intermediate decay rates under the assumption that ⟨ℋ⟩𝛾 is already close to

this limit. Note that this is not seen for 𝛾nat and 𝛾inv and that for 𝛾inv the absolute difference

to 𝜇𝜉 is much larger for large values of ℎ. For even smaller 𝑅Ω = 0.01 these observations are

validated and become more evident, shown in (d).
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Figure 4.31: Quantum-to-classical and quantum-to-average comparison in the semiclassi-
cal limit depending on the amount of escape from the opening. Considered are (a) 𝑅Ω = 0.8,
(b) 𝑅Ω = 0.4, (c) 𝑅Ω = 0.1, and (d) 𝑅Ω = 0.01 (for (c) and (d) see next page). Left panels
show the averaged Jensen–Shannon divergence dJS between single Husimi distributions ℋ𝛾

and the classical measures 𝜇𝜉 as a function of ℎ for 𝛾 as indicated in (a). Right panels
show the averaged Jensen–Shannon divergence dJS between single ℋ𝛾 and averaged Husimi
distributions ⟨ℋ⟩𝛾 . All averages are taken over 50 resonances. Gray lines indicate numerical
scaling for 𝛾nat (lower) and in (c) and (d) also for 𝛾inv (upper). For classical decay rates see
Tab. 4.1.

These observations are further confirmed in Fig. 4.32 for the comparison of average Husimi

distributions ⟨ℋ⟩𝛾 and 𝜇𝜉. For 𝑅Ω = 0.8, even in this much more sensitive test, we find the

same power-law decay for all decay rates (a). The exponent 𝛿 ≈ 0.95 is slightly larger than

in Fig. 4.31(a), which is consistent with the observations in Sec. 4.4.4. For 𝑅Ω = 0.4 shown

in (b), however, we make similar observations as for 𝑅Ω = 0.2 in Fig. 4.28. For 𝛾nat and 𝛾inv

a larger exponent of the power law is observed than in Fig. 4.31(b), while the exponent for

intermediate decay rates is much smaller than before. This effect becomes stronger if more

escape is considered in (c) 𝑅Ω = 0.1 and (d) 𝑅Ω = 0.01. In all cases, the Jensen–Shannon

divergence between the average Husimi distributions and the classical measures, shown in

Fig. 4.32(b)–(d), is consistent with a semiclassical distance of zero for 𝛾nat and 𝛾inv, only. For
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Figure 4.31 (cont.): Quantum-to-classical and quantum-to-average comparison in the
semiclassical limit depending on the escape from the opening.

the other decay rates the distance 𝑑JS almost remains constant for the smallest values of ℎ.

This is consistent with the qualitative observations in Fig. 4.30, where excellent agreement

between resonance eigenfunctions and the proposed measures 𝜇𝜉 is seen for 𝛾nat and 𝛾inv inde-

pendent of the considered 𝑅Ω. The numerical investigation of the Jensen–Shannon divergence,

presented in Figs. 4.31 and 4.32, confirms that in systems with more escape, for small 𝑅Ω,

there is no semiclassical agreement between the product measures 𝜇𝜉 and the phase-space

distribution of resonance eigenfunctions. Conversely, in the closed limit there is excellent

quantum-to-classical agreement. This is seen for 𝑅Ω = 0.8, where for all considered decay

rates the Jensen–Shannon divergence 𝑑JS shows the same dependence on ℎ for all decay rates

𝛾. We conclude that in the regime of almost closed systems the proposed measures 𝜇𝜉 are con-

venient approximations of resonance eigenfunctions at finite values of ℎ. The opposite limit of

full escape, 𝑅Ω → 0, is investigated in Chapter 5.
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Figure 4.32: Quantum-to-classical comparison in the semiclassical limit for average Husimi
distributions depending on the amount of escape from the opening. Considered are (a)
𝑅Ω = 0.8, (b) 𝑅Ω = 0.2 and (c) 𝑅Ω = 0.05. Shown is the Jensen–Shannon divergence dJS
between average Husimi distributions ⟨ℋ⟩𝛾 and the classical measures 𝜇𝜉 as a function of ℎ
for 𝛾 as indicated in (a). Gray lines indicate numerical scaling for 𝛾nat, 𝛾inv, and 𝛾typ (from
lower to upper).

4.4.5.3 Dependence on size of opening

In the following we change the reflectivity function by considering escape from smaller and

larger regions Ω for the same escape with 𝑅Ω. For this purpose we consider the chaotic

standard map as before with partial escape from two different regions, Ω1 = [0.2, 0.4)× [0, 1)

and Ω2 = [0.2, 0.7) × [0, 1), where 𝑅Ω = 0.2. The relevant classical decay rates for these

openings are shown in Tab. 4.2.

We illustrate quantum and classical phase-space densities for both maps with escape in

Fig. 4.33. For both openings we observe a very good qualitative agreement, similar as before.

Especially at 𝛾nat and 𝛾inv there is perfect agreement. For intermediate decay rates we find

deviations between quantum and classical densities, which are still present further in the

semiclassical limit (not shown). Interestingly we notice, that the visual agreement is similar
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Figure 4.33: Quantum-to-classical correspondence for standard map with partial escape
considering (a) Ω1 = (0.2, 0.4) × [0, 1) and (b) Ω2 = (0.2, 0.7) × [0, 1) with each 𝑅Ω = 0.2.
The top row in each subplot shows averaged Husimi distributions ⟨ℋ⟩𝛾 using 50 resonances
for ℎ = 1/4000 and with decay rates γ ∈ {γnat, γ(n+t)/2, γtyp, γ(t+i)/2, γinv}, see Table 4.2.
The bottom row shows Gaussian smoothed phase-space distribution of the corresponding
product measures 𝜇𝜉. Individual colormap for each 𝑅Ω and γ with maximum given by the
classical density. Dashed blue line indicates the position of the opening Ω.

Ω 𝛾min 𝛾nat 𝛾(n+t)/2 𝛾typ 𝛾(t+i)/2 𝛾inv 𝛾max

Ω1 0 0.1704 0.2461 0.3219 0.4133 0.5047 1.609

Ω2 0 0.4195 0.6121 0.8047 1.027 1.249 1.609

Table 4.2: Relevant classical decay rates for the chaotic standard map with partial escape
from Ω1 = [0.2, 0.4)× [0, 1) and Ω2 = [0.2, 0.7)× [0, 1) for 𝑅Ω = 0.2 as in Tab. 4.1. Natural
and inverse decay rates are computed numerically. The typical decay rate results from
𝛾typ = −|Ω| ln𝑅Ω.
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between the smaller opening, shown in (a), and the larger opening (b). Thus, more escape

through a larger opening has not the same effect on the predictive quality of the measures 𝜇𝜉

as allowing more escape by decreasing 𝑅Ω, see Sec. 4.4.5.

4.4.6 Baker map

In the following we qualitatively compare product measures 𝜇𝜉 and resonance eigenfunctions

obtained for the baker map. For this purpose we consider the ternary baker map 𝐵3 and

γnat γ(n+t)/2 γtyp γ(t+i)/2 γinv
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Figure 4.34: Quantum-to-classical correspondence for baker map with partial escape.
(a) Triadic baker map B3 for ℎ = 1/3999 and (b) asymmetric baker map Br with 𝑟 =
(0.25, 0.3, 0.45) for ℎ = 1/4000. Escape is considered from the middle strip, 𝑅 = (1, 0.2, 1).
The top row in each subplot shows averaged Husimi distributions ⟨ℋ⟩𝛾 using 50 resonances
for decay rates 𝛾 ∈ {𝛾nat, 𝛾(n+t)/2, 𝛾typ, 𝛾(t+i)/2, 𝛾inv}, see Table 4.3. The bottom row shows
Gaussian smoothed phase-space distribution of the product measures 𝜇𝜉. Individual col-
ormap for each 𝑅Ω and 𝛾 with maximum given by the classical density. Dashed blue line
indicates the position of the opening Ω.
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𝑟 𝛾min 𝛾nat 𝛾(n+t)/2 𝛾typ 𝛾(t+i)/2 𝛾inv 𝛾max

(1/3, 1/3, 1/3) 0 0.3102 0.4233 0.5365 0.6919 0.8473 1.609

(0.25, 0.3, 0.45) 0 0.2744 0.3786 0.4828 0.6356 0.7885 1.609

Table 4.3: Relevant classical decay rates for the baker map Br with two different 𝑅 and
escape with 𝑅 = (1, 0.2, 1). The relevant classical decay rates are minimal and maximal
decay rates 𝛾min, 𝛾max, Eq. (2.55), natural decay rate 𝛾nat, typical decay rate 𝛾typ, and
inverse decay rate 𝛾inv, which are all computed analytically.

an asymmetric baker map 𝐵r with 𝑟 = (0.25, 0.3, 0.45) with escape from the middle strip as

𝑅 = (1, 0.2, 1), see App. C.3.1. The quantized baker map is defined in App. A.3.

For five decay rates between 𝛾nat and 𝛾inv, see Tab. 4.3, we present for both baker maps

average Husimi distributions ⟨ℋ⟩𝛾 and the corresponding classical measures in Fig. 4.34. Re-

sults for the ternary baker map are shown in (a) and show symmetric phase-space densities.

For 𝛾nat and 𝛾inv we confirm quantum-to-classical agreement. For intermediate decay rates

the agreement is similarly good as observed for the standard map in Fig. 4.22, with the same

limitations. This is also observed for the asymmetric baker map in (b). Note that if escape

takes place only from the middle strip, the product measures 𝜇𝜉 for the triadic baker map are

the same as discussed in Ref. [205], where a more detailed qualitative quantum-to-classical

comparison for this setting is found.
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4.5 Discussion and outlook

In this chapter we gather detailed insight about the semiclassical localization of resonance

eigenfunctions in maps with partial escape. The investigations and observations lead to the

following conclusions.

We observe that resonance eigenfunctions in systems with partial escape converge towards

a class of semiclassical limit measures depending only on their decay rate 𝛾. These limit

measures are conditionally invariant with the same decay rate. For 𝛾nat we numerically confirm

the expectation [87] that resonance eigenfunctions converge towards the natural measure 𝜇nat.

We identify that the opposite edge of the quantum mechanical spectrum is characterized by

the inverse decay rate 𝛾inv. We equivalently conjecture and find numerical support that the

inverse measure 𝜇inv is the relevant semiclassical limit measure for this decay rate. In addition

we present a family of conditionally invariant measures for arbitrary decay rates which is based

on the hyperbolic phase-space structure and which exhibits a simple numerical construction.

These measures qualitatively agree very well with resonance eigenfunctions for all decay rates.

This is shown for different reflectivity functions by varying the strength of escape and the size

of the opening. We find very good agreement in systems with less escape, i.e., with reflectivity

functions 𝑅 close to one, but we do not find equally convincing agreement if 𝑅 becomes

very small in certain regions. For the generic case, we observe that the Jensen–Shannon

divergence semiclassically does not converge to zero for intermediate decay rates. Even though

the proposed product measures 𝜇𝜉 are very good approximations for resonance eigenfunctions

this indicates that they are not the true semiclassical limit measures for arbitrary decay rates.

This leaves the question open about the semiclassical limit measures of resonance eigen-

functions. The particular case of full escape is separately investigated in the next chapter,

where we present an entirely different approach to construct classical conditionally invariant

measures describing resonance eigenfunctions. In order to completely understand systems with

partial escape it is possible that periodic orbits have to be taken into account. We believe that

the singular measures 𝜇p localizing on periodic orbits 𝑝, defined in Sec. 4.3.3, are promising

candidates in this regard.

These measures are defined for all periodic orbits of the closed map 𝑀 , which leads to

two important conclusions. First, recall that the set of all periodic orbits is dense on Γ and

gives rise to the uniform distribution according to the sum rule by Hannay and Ozorio de

Almeida [206]. Thus it seems likely that replacing the uniform distribution on the periodic

orbit 𝑝 in the sum rule by the conditionally invariant measures 𝜇p leads, in a similar way, to

one (or many) conditional invariant measures supported on the whole of Γ instead of isolated

points. Secondly, if the period becomes large, 𝑝 → ∞, it is likely that the probability to find

periodic orbits with decay rate in an interval around 𝛾typ ± 𝜀 converges to unity, since most of

the periodic orbits cover the phase space uniformly [89, 195]. Hence, there exists at least one

classical measure decaying with the typical decay rate, which can be defined as the summation
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of periodic orbit measures 𝜇p in the limit of large periods,

𝜇typ = lim
𝑝→∞

∑︁

p p.o.

|p|=𝑝

𝜇p e−Λp , (4.52)

where e−Λp is the stability of the periodic orbit. In the limit of a closed system, this limit is

equivalent to the sum rule of Ref. [206].

Since in general the computation of periodic orbits with large period is difficult we motivate

an approximation of this measure using non-periodic orbits in Appendix C.5. This approxi-

mation of 𝜇typ is illustrated together with the average resonance eigenfunctions ⟨ℋ⟩𝛾 and the

corresponding product measures 𝜇𝜉 with the decay rate 𝛾typ for the chaotic standard map in

Fig. 4.35. The qualitative agreement between (a) quantum densities and (b) typical measures

improves significantly, compared to the product measures (c). It is a promising and interesting

ℎ = 1/250 ℎ = 1/1000 ℎ = 1/4000 ℎ = 1/16000
(a)

p

(b)

p

(c)

q

p

Figure 4.35: Quantum-to-classical correspondence for chaotic standard map with par-
tial escape at the typical decay γtyp. (a) Average Husimi distribution ⟨ℋ⟩𝛾 for ℎ ∈
{1/1000, 1/4000, 1/16000} (from left to right) over 50 eigenfunctions. (b) Typical mea-
sure 𝜇typ, approximated with 30002 initial conditions and considering 𝑛 = 20 time steps,
see App. C.5. (c) Corresponding product measure 𝜇𝜉 as before. Individual colormap for
each ℎ with maximum given by the density of 𝜇typ. Dashed blue line indicates the position
of the opening Ω.
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future task to investigate this relation further and generalize this approach to arbitrary decay

rates, in order to develop a full understanding of resonance eigenfunctions in maps with partial

escape.





Chapter 5

Resonance eigenfunctions in maps

with full escape

In this chapter we investigate the structure of resonance eigenfunctions for chaotic maps with

full escape. This chapter is divided into four sections. In the first section we consider the

quantization of maps and their resonances in the limit of full escape. The second section

examines resonance eigenfunctions of systems with full escape, which split into long-lived

and short-lived eigenfunctions. In particular, we investigate their semiclassical convergence in

dependence on the decay rate 𝛾.

In Section 5.3 we discuss different families of classical conditional invariant measures for full

escape and discuss their viability as semiclassical limit measures of resonance eigenfunctions.

We motivate a new family of measures 𝜇ℎ
𝛾 which is based on the temporal distance to the

chaotic saddle on the phase space and results in a resonance eigenfunction hypothesis for full

escape. For these measures we present a conceptually simple implementation. In the last

section we compare resonance eigenfunctions to the proposed classical measures, qualitatively

on the phase-space and by their fractal dimensions. This is quantified using the Jensen–

Shannon divergence. We find very good agreement between long-lived resonance eigenfunctions

and the proposed measures 𝜇ℎ
𝛾 . For short-lived resonance eigenfunctions quantum-to-classical

agreement is not found. The results of this chapter have been published in Ref. [66].

5.1 Quantization for full escape

Classical maps with full escape are characterized by an open subset Ω ⊂ Γ where the reflectivity

function becomes zero, see Sec. 2.2.4. The simplest case are reflectivity functions 𝑅(𝑥) =

1− 1Ω(𝑥) projecting on the complement of some opening region Ω. The quantization for full

escape requires an analog correspondence principle as given for partial escape in Sec. 4.1.1,

see Ref. [60, Axioms 2]. In the following we first consider the quantization for full escape as

the limit of a sequence of quantizations for partial escape. We secondly show results for the

convergence of the spectra.
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5.1.1 Limit of full escape

In order to relate systems with full escape to systems with partial escape lets consider a

sequence {𝑅𝛼}𝛼∈R+ of reflectivity functions 𝑅𝛼 : Γ → R+, which converges uniformly towards

a function 𝑅0 : Γ → R≥0,

lim
𝛼→0

sup
𝑥∈Γ

|𝑅𝛼(𝑥)−𝑅0(𝑥)| = 0, (5.1)

where 𝑅0(𝑥) = 1 − 1Ω(𝑥). Consider further a quantization {𝒰𝛼,𝑁}𝑁∈N of the corresponding

maps with partial escape for each 𝛼, as discussed in Sec. 4.1. Define the quantum map with

full escape as

𝒰0,𝑁 := 𝒰𝑁ℛ0,𝑁 (5.2)

whereℛ0,𝑁 = Op𝑁(𝑅
1/2
0 ). Then, for fixed Hilbert-space dimension 𝑁 the sequence of quantum

maps with partial escape 𝒰𝛼,𝑁 converges towards the quantum map with full escape in operator

norm,

lim
𝛼→0

‖𝒰𝛼,𝑁 − 𝒰0,𝑁‖∞ = 0. (5.3)

A proof of this statement is given in App. C.6.1. This also implies that a correspondence

principle between classical and quantum time evolution, as in Eq. (4.1), is satisfied for 𝛼 = 0,

𝒰 †
0,𝑁 Op𝑁(𝑎)𝒰0,𝑁 ∼ Op𝑁(𝑅0 · (𝑎 ∘𝑀)). (5.4)

However, quantum maps with full escape are not invertible. Hence, there is no analogue

relation to Eq. (4.6).

The most important consequences of Eq. (5.3) are, that not only the spectrum of 𝒰𝛼,𝑁

converges to the spectrum of 𝒰0,𝑁 , but also the corresponding resonance eigenfunctions for

partial escape converge to those for full escape. In this sense, if the semiclassical structure

of resonance eigenfunctions of 𝒰𝛼 is understood for arbitrary small 𝛼 > 0, one immediately

obtains the semiclassical structure for full escape as well. The investigations for systems

with partial escape in Sec. 4.4.5, however, suggested that in this limit the proposed classical

measures are not semiclassical limit measures for intermediate decay rates.

5.1.2 Resonances in the limit of full escape

Lets consider the chaotic standard map with 𝜅 = 10 and escape from the opening Ω =

(0.3, 0.6)×[0, 1) in terms of the reflectivity functions 𝑅(𝑞, 𝑝) = 1−(1−𝑅Ω)1Ω(𝑞, 𝑝), see Eq. (4.7)

in Sec. 4.1.2. The limit of full escape is achieved for 𝑅Ω → 0, leading to 𝑅0(𝑞, 𝑝) = 1−1Ω(𝑞, 𝑝).

Note that 𝑅Ω takes the role of the index 𝛼 in the previous section. Quantum mechanically,
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these maps can be written as

𝒰𝑅Ω
= 𝒰

(︁

1 −
(︁

1−𝑅
1/2
Ω

)︁

1Ω

)︁

, (5.5)

where 1Ω := Op(1Ω) is the quantum projection on the opening Ω. These maps converge in the

limit of full escape towards 𝒰0 = 𝒰(1 − 1Ω). Let us remark, that we abuse the notation for

the classical characteristic function and the quantum projection of the opening, 1Ω, and the

meaning should be clear from the context. Note that 1
2
Ω = 1Ω.

The spectra of the corresponding quantum map with partial escape are compared to those

for full escape in Fig. 5.1 for fixed ℎ = 1/1000. We illustrate all eigenvalues with 𝛾 ≤ 2 for

𝑅Ω = 10−2 (blue dots) with 𝑅Ω = 0 (green crosses) on the 𝜃-𝛾 plane in (a). Additionally

natural decay rate 𝛾nat (red) and typical decay rate 𝛾typ (blue) for 𝑅Ω = 10−2 are indicated

as horizontal lines. We observe that around 𝛾nat most of the eigenvalues agree very well. For

larger decay rates there is no agreement of the spectra. The agreement between the spectra

improves significantly when smaller 𝑅Ω are considered, see (b)–(d). The bulk of eigenvalues
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(c) 𝑅Ω = 10−4
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(d) 𝑅Ω = 10−5

0.0

0.5

1.0

1.5
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Figure 5.1: Eigenvalues of the chaotic standard map in the limit of full escape from
Ω = (0.3, 0.6) × [0, 1). Shown are the spectra 𝒰𝑅Ω

in 𝜃-𝛾 plane with 𝛾 ≤ 2 for ℎ = 1/1000
and (a) 𝑅Ω = 10−2, (b) 𝑅Ω = 10−3 (c) 𝑅Ω = 10−4, and (d) 𝑅Ω = 10−5 (blue markers).
Green crosses represent all resonances with γ < 2 for the same system with full escape,
𝑅Ω = 0. Horizontal lines indicate the natural decay rate γnat ≈ 0.25 for all 𝑅Ω (red), and
in (a) the typical decay rate 𝛾typ ≈ 1.38 (blue).
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Figure 5.2: Distribution of decay rates γ for the chaotic standard map in the limit of full
escape. Shown is the normalized probability P (γ) to find the decay rate γ for ℎ = 1/1000
and (a) 𝑅Ω = 10−2, (b) 𝑅Ω = 10−3 (c) 𝑅Ω = 10−4, and (d) 𝑅Ω = 10−5 (blue shaded
histogram). The green colored line represents the distribution P (γ) for the same system
with full escape, 𝑅Ω = 0. Vertical lines indicate classical decay rates for γnat ≈ 0.25 (red),
𝛾typ ∈ {1.38, 2.07, 2.76, 3.45} (blue), and 𝛾inv ∈ {3.65, 5.94, 8.24, 10.5} (green) for the given
values of 𝑅Ω, respectively.

moves to larger 𝛾, while the remaining ones converge towards the eigenvalues for full escape.

Note that already for 𝑅Ω = 10−3 we have 𝛾typ > 2.

This is further visualized in Fig. 5.2, where the distribution of decay rates 𝑃 (𝛾) is compared

for 𝑅Ω > 0 (blue shaded) and 𝑅Ω = 0 (green) for the same parameters as before. The relevant

classical decay rates for partial escape are plotted for comparison as vertical lines. In this

representation the movement of the bulk of decay rates around 𝛾typ → ∞ becomes clear. The

distribution around 𝛾nat converges to the limiting one for full escape. However, this also shows

that for larger decay rates 𝛾 one needs to consider much smaller 𝑅Ω, in order to achieve the

same agreement as for 𝛾nat. We conclude that resonances of the quantum map with full escape

are well approximated by those for finite 𝑅Ω under the condition that 𝛾 ≪ 𝛾typ(𝑅Ω).

Let us now consider the system with full escape, 𝑅Ω = 0. For this we illustrate all eigenvalues

on the 𝜃-𝛾 plane in Fig. 5.3 for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}. The smallest decay

rates converge towards 𝛾nat (red line) for decreasing ℎ. Close to 𝛾nat there are visibly more

eigenvalues than for larger decay rates. Since there exist arbitrarily small eigenvalues, the
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range of decay rates is not bounded, as observed for partial escape in Sec. 4.1.2

The growth rate of the number of resonances with finite decay is related to the fractal

dimension of the chaotic saddle Γs by a fractal Weyl law [56]. For quantum maps with full

escape the fractal Weyl law is formulated as follows [57, 78–82]. Consider the number of

resonances 𝑛res(𝛾c;𝑁) := |{𝜆 ∈ 𝜎(𝒰𝑁) : 𝛾 = −2 ln |𝜆| ≤ 𝛾c}| with decay rate below some cutoff

𝛾c. This number grows asymptotically for 𝑁 → ∞ like

𝑛res(𝛾c;𝑁) ∼ 𝑠(𝛾c) ·𝑁𝐷0(Γs)/2 = 𝑠(𝛾c) · ℎ−𝐷0(Γs)/2, (5.6)

where the so-called shape function 𝑠(𝛾c) [79] depends only on the chosen cutoff, and 𝐷0(Γs) is

the box-counting dimension of the chaotic saddle, see Sec. 2.2.5. The shape function is related

to the distribution of decay rates in truncated unitary matrices [207], which is heuristically

motivated in Ref. [57], and one obtains

𝑠(𝛾) = e𝛾nat
(︂

1− 1− e−𝛾nat

1− e−𝛾

)︂

(5.7)
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Figure 5.3: Eigenvalues of the chaotic standard map with full escape. Shown is the
spectrum in θ-γ plane for (a) ℎ = 1/250, (b) ℎ = 1/1000 (c) ℎ = 1/4000, and (d) ℎ =
1/16000. Red horizontal line indicates the classical natural decay rate γnat ≈ 0.25.
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Figure 5.4: Rescaled distribution of decay rates 𝛾 for the chaotic standard map with full
escape. Shown is the rescaled 𝑃 (𝛾) = 𝑃 (𝛾)/ℎ−𝐷0(Γs)/2 where P (γ) is the probability to
find decay rate γ for (a) ℎ = 1/250, (b) ℎ = 1/1000 (c) ℎ = 1/4000, and (d) ℎ = 1/16000.
For comparison the rescaled asymptotic expectation, Eq. (5.8) is shown (green dashed line).
Red vertical line indicates the classical decay rate γnat ≈ 0.25.
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for 𝛾 ≥ 𝛾nat and 𝑠(𝛾) = 0 else. Hence, in the semiclassical limit the expected probability

density to find decay rates 𝛾 is given by

𝑃 (𝛾) =
d𝑠

d𝛾
· ℎ−𝐷0(Γs)/2 =

1− e−𝛾nat

e−𝛾nat
· e−𝛾

(1− e−𝛾)2
· ℎ−𝐷0(Γs)/2 (5.8)

for 𝛾 ≥ 𝛾nat and 𝑃 (𝛾) = 0 for 𝛾 < 𝛾nat. We illustrate the rescaled probability distribution

𝑃 (𝛾) = 𝑃 (𝛾)/ℎ−𝐷0(Γs)/2 in Fig. 5.4 for the same parameters as in Fig. 5.3, where the Kantz-

Grassberger relation 𝐷0(Γs)/2 ≈ 𝐷
(u)
1 (Γs) = 1 − 𝛾nat

𝜆L
, Eq. (2.52), and 𝜆L ≈ ln(𝜅/2) [57] have

been used. For comparison the (rescaled) asymptotic expectation, Eq. (5.8), is plotted. For

larger ℎ the distribution fluctuates a lot around the predicted behavior, see (a) and (b), but

we find very good agreement for small ℎ, see (c) and (d).

5.2 Phase-space distribution for full escape

In this section we discuss the phase-space distribution of resonance eigenfunctions of quantum

maps with full escape. First, we show that resonance eigenfunctions for partial escape converge

to those of the limit of full escape. Secondly, we illustrate how single resonance eigenfunctions

depend on the decay rate 𝛾 and how they change as a function of ℎ. Furthermore, we investigate

the convergence of expectation values of observables, which leads to the (not sharp) distinction

between long-lived and short-lived resonance eigenfunctions. Finally, we illustrate the average

Husimi distribution revealing underlying classical phase-space structures and review some

general results about the semiclassical localization of resonance eigenfunctions [59, 60].

5.2.1 Eigenfunctions in the limit of full escape

Quantum maps with partial escape converge to the quantum map with full escape, see Sec. 5.1,

if the corresponding reflectivity functions converge uniformly, Eq. (5.3). This implies the

convergence of the spectra, seen in Sec. 5.1.2, and also of the eigenfunctions. Consider a

sequence of eigenvalues {𝜆𝛼}𝛼>0 of 𝒰𝛼 converging to some eigenvalue 𝜆0 of 𝒰0, and let 𝜓𝛼 and

𝜓0 be the corresponding resonance eigenfunction. Then Eq. (5.3) implies

lim
𝛼→0

‖𝜓𝛼 − 𝜓0‖H𝑁
= 0. (5.9)

In the following we consider the quantum maps 𝒰𝑅Ω
as in Eq. 5.5, where 𝑅Ω takes the role

of the parameter 𝛼. As an example we illustrate in Fig. 5.5 the Husimi distributions of two

sequences of resonance eigenfunctions for decreasing 𝑅Ω ∈ {10−2, 10−3, 10−4, 10−5, 0} (from

left to right) for ℎ = 1/1000. The corresponding eigenvalues 𝜆𝑅Ω
are chosen closest to some

eigenvalue 𝜆0 of the system with full escape. The considered decay rates are 𝛾 ≈ 0.666 in (a)

and 𝛾 ≈ 1.616 in (b). In the first case all Husimi distributions are qualitatively very close, even
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for 𝑅Ω = 10−2, Fig. 5.5(a). For smaller values of 𝑅Ω (middle panels) it is hardly possible to

distinguish the Husimi distributions from the one at full escape. For the larger decay rate the

Husimi distributions show structural differences depending on 𝑅Ω, see Fig. 5.5(b). Only for

𝑅Ω = 10−5 the Husimi distribution has the same main features as the one for full escape. This

illustrates that for finite 𝑅Ω the agreement between eigenfunctions 𝜓𝑅Ω
and 𝜓0 depends on the

decay rate 𝛾. For larger decay rates this convergence is seen for even smaller 𝑅Ω. Recall that

we also observed agreement for the eigenvalues under the condition 𝛾 ≪ 𝛾typ(𝑅Ω), Fig. 5.1,

such that for finite 𝑅Ω there is no agreement for 𝛾 & 𝛾typ(𝑅Ω).

In conclusion long-lived resonance eigenfunctions of systems with full escape show the same

features as resonance eigenfunctions of systems with finite but small 𝑅Ω for decay rates 𝛾 ≪
𝛾typ(𝑅Ω). Fixing 𝛾 we can always find an arbitrary but small 𝑅Ω such that this condition is

satisfied eventually, because 𝛾typ(𝑅Ω) → ∞ for 𝑅Ω → 0. Note that semiclassically almost

all eigenfunctions have arbitrary large decay rates which is consistent with Refs. [57, 89].

Resonance eigenfunctions with eigenvalues close to zero correspond to so-called ballistically

decaying quasimodes [58]. For these a universal classical description is not expected. Instead

we are interested in the phase-space distribution of long-lived resonance eigenfunctions with

finite decay rates.

𝑅Ω = 10−2 𝑅Ω = 10−3 𝑅Ω = 10−4 𝑅Ω = 10−5 𝑅Ω = 0
(a)

q

p

(b)

q

p

0 maxℋψ

Figure 5.5: Husimi distribution ℋ𝜓 of resonance eigenfunctions 𝜓 in the limit of full
escape. The considered eigenvalues are each closest to (a) (θ, γ) ≈ (0.05, 0.666) and (b)
(𝜃, 𝛾) ≈ (1.714, 1.616) for chaotic standard map with partial escape from Ω where 𝑅Ω ∈
{10−2, 10−3, 10−4, 10−5, 0} (from left to right) and ℎ = 1/1000. The considered values of
(θ, γ) correspond to a an eigenvalue for 𝑅Ω = 0. Dashed blue line indicates the position of
the opening Ω = (0.3, 0.6)× [0, 1).
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5.2.2 Long-lived resonance eigenfunctions

In the following we investigate properties of resonance eigenfunctions in dependence on their

decay rate. For this purpose we illustrate the Husimi distribution of single resonance eigen-

functions ℋ𝛾 of the example system with small decay rates 𝛾 ∈ {𝛾nat ≈ 0.25, 0.35, 0.5, 0.75, 1}
in Fig. 5.6 and with larger decay rates 𝛾 ∈ {1.5, 2, 4, 6, 8} in Fig. 5.7 for different values of

Planck’s constant ℎ.

The top row of Fig. 5.6 shows long-lived resonance eigenfunctions for ℎ = 1/250. The

γ = γnat γ = 0.35 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1
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Figure 5.6: Husimi distributionℋ𝜓 of resonance eigenfunctions 𝜓 with decay rate closest to
𝛾 ∈ {𝛾nat, 0.35, 0.5, 0.75, 1} for chaotic standard map with full escape from Ω and decreasing
Planck’s constant (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000. An
individual colormap is used in each panel. Dashed blue line indicates the position of the
opening Ω = (0.3, 0.6)× [0, 1).
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distribution is clearly not uniform for all decay rates. We observe one prominent patch on the

phase-space, where the density is nearly zero for all decay rates 𝛾. This region is given by the

classical image of the opening 𝑀(Ω). Moreover, the Husimi distribution is more concentrated

on the opening Ω for increasing decay rate 𝛾. This becomes more evident for smaller Planck’s

constant, ℎ = 1/1000, in Fig. 4.5(b). We find that there are additional regions with zero density

for all 𝛾, which are related to further iterates of the opening Ω. The support of all long-lived

resonance eigenfunctions semiclassically concentrates on the fractal backward trapped set Γb,

Eq. (2.43), and is zero on the sets Ω−
𝑚, Eq. (2.45), which are iterates of the opening Ω [59].

Decreasing ℎ further to ℎ = 1/4000 and ℎ = 1/16000 in Fig. 4.5(c) and (d), the fractal support

is resolved on finer scales. The dependence on the decay rate and the enhanced probability on

γ = 1.5 𝛾 = 2 𝛾 = 4 𝛾 = 6 𝛾 = 8
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Figure 5.7: Same as Fig. 5.6 for larger decay rates 𝛾 ∈ {1.5, 2, 4, 6, 8} as indicated consid-
ering (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000.
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Ω is more pronounced for smaller ℎ.

We similarly illustrate resonance eigenfunctions with larger decay rates 𝛾 ∈ {1.5, 2, 4, 6, 8}
in Fig. 5.7 for the same values of ℎ. Some of these eigenfunctions have a similar structure

as before, in particular for 𝛾 = 1.5. In contrast, there are also eigenfunctions, which mainly

concentrate on single phase-space points, stretched along the unstable direction of the classical

map, e.g., for ℎ = 1/250 and 𝛾 = 6. Such a behavior is expected for ultra-fast decaying modes

[58]. Moreover, for fixed 𝛾 and decreasing ℎ the localization sometimes changes significantly

regarding the support and the regions with maximal intensity. This also occurs for fixed ℎ and

increasing 𝛾 and could be caused by quantum fluctuations of the single Husimi distributions.

In the next section we investigate if these observations can be quantified by expectation

values of some observables. In particular, we are interested if it is possible to distinguish

between two different types of resonance eigenfunctions.

5.2.3 Convergence of phase-space distribution

The considerations about the limit of full escape, Sec. 5.2.1, implicate that all long-lived

resonance eigenfunctions can be seen as the limit of resonance eigenfunctions of systems with

partial escape. Therefore we expect that similar to the observations in systems with partial

escape, Sec. 4.2.2, long-lived resonance eigenfunctions with the same decay rate 𝛾 converge

semiclassically to the same distribution, which only depends on the decay rate 𝛾. For short-

lived eigenfunctions, however, we do not have this expectation. In the following we quantify

this by the same numerical calculations as in Sec. 4.2.2, applied to full escape. First, we

calculate expectation values of exemplary observables 𝑎 on the phase-space for all resonance

eigenfunctions. Secondly, we investigate the average expectation value and the dependence of

the standard deviation around this average for decreasing ℎ.

5.2.3.1 Expectation values of single eigenfunctions

Let us consider the same observables on the phase space Γ as in Sec. 4.2.2, the indicator

functions 𝑎1,2,3(𝑞, 𝑝) = 1𝐴,𝐵,𝐶(𝑞, 𝑝) of the subsets 𝐴 = (0.3, 0.5) × (0.6, 0.8), 𝐵 = (0.7, 0.9) ×
(0.1, 0.3), 𝐶 = (0.3, 0.5) × (0.1, 0.3), and the smooth observable 𝑎4(𝑞, 𝑝) = sin2(2𝜋𝑞) cos(𝜋𝑝).

The expectation values E𝜓[𝑎𝑖] are calculated according to Eq. (3.10) for all eigenfunctions 𝜓.

In Fig. 5.8 we illustrate the expectation values E𝜓[𝑎𝑖] of these observables over the decay

rate 𝛾 considering all resonance eigenfunctions 𝜓 for ℎ ∈ {1/1000, 1/16000}. Results for the

observable 𝑎1 are shown for decay rates up to 𝛾 = 2 in Fig. 5.8(a). At ℎ = 1/1000 (left panel)

we observe that the expectation value at 𝛾nat (red vertical line) is approximately given by the

uniform expectation of closed systems, Ecl[𝑎1] = 𝜇L(𝐴) = 0.04 (gray horizontal line). The

expectation values increase with 𝛾. For large decay rates between 𝛾 ∈ [1, 2] there are only a

few resonances at this value of ℎ. The dependence for larger 𝛾 can be revealed in a double-

logarithmic representation (inset). We observe that E𝜓[𝑎1] increases with 𝛾 up to 𝛾 ≈ 4 and
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Figure 5.8: Expectation values E𝜓[a] of different observables a on Γ for single resonance
eigenfunctions 𝜓 as a function of their decay rate γ. Considered are observables (a) a1 = 1𝐴,
(b) a2 = 1𝐵, (c) a3 = 1𝐶 , and (d) smooth a4(q, p) = sin2(2πq) cos(πp), see Fig. 4.7. Planck’s
constant is ℎ = 1/1000 (left) and ℎ = 1/16000 (right). Gray dashed line indicates 𝜇L(a𝑖)
for each observable. Inset shows the same data for a larger range of decay rates γ in a
double-logarithmic plot.

then saturates for larger decay rates. Considering ℎ = 1/16000 (right panel) the dependence

on 𝛾 is overall the same as for ℎ = 1/1000 for decay rates up to 𝛾 ≈ 1. For larger decay

rates the linear plot shows a saturation of E𝜓[𝑎1]. The double-logarithmic representation in

the inset reveals large fluctuations of E𝜓[𝑎1] for decay rates above 𝛾 ≈ 2. We believe that this

indicates the nonuniversal behavior expected for ultra-fast decaying resonance eigenfunctions.

For the second observable 𝑎2 we find a different dependence on the decay rate 𝛾, Fig. 5.8(b).

The expectation value decreases with 𝛾 and even for ℎ = 1/16000 the observed fluctuations

for 𝛾 & 2 are not prominent in the double-logarithmic plot and only visible on smaller scales.

Note that the observable 𝑎2 is localized outside of the opening Ω, see Fig. 4.7(a). For the

third observable the dependence of E𝜓[𝑎3] on 𝛾 is very similar to that of E𝜓[𝑎1], even though

the scaling is different. We again find that E𝜓[𝑎3] accumulates around a 𝛾-dependent curve

with decreasing ℎ for decay rates up to 𝛾 ≈ 1. For larger decay rates the expectation values

fluctuate a lot (see inset).

We validate these observations with the results for the smooth observable 𝑎4 in Fig. 5.8(d).

Again we observe decreasing expectation values E𝜓[𝑎4] with 𝛾. For ℎ = 1/1000 this behaves

nicely even for large 𝛾 (left panel). However, for ℎ = 1/16000 there are very strong fluctuations
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for decay rates larger than 𝛾 ≈ 2 (right panel, inset). Altogether we confirm that the

expectation values of single resonance eigenfunctions behave similar to those of the system with

partial escape for decay rates up to 𝛾 ≈ 1. For these decay rates the results are compatible

with a semiclassical convergence. For larger decay rates, 𝛾 & 2, the presented data indicated

that there is no convergence.

5.2.3.2 Average expectation values

We quantify these observations by considering average expectation values ⟨𝑎⟩𝛾 and standard

deviations 𝜎𝛾(𝑎), defined in Eqs. (4.9) and (4.10), respectively. For this purpose we average

over 𝑆 = 50 resonance eigenfunctions with decay rate close to 𝛾 as in Sec. 4.2.2.

First of all we confirm that the mean decay rate ⟨𝛾⟩𝛾 converges to the specified 𝛾 in Fig. 5.9.

We illustrate ⟨𝛾⟩𝛾 over ℎ (markers) and additionally indicate the standard deviation Δ𝛾 of

the decay rates as shaded regions (a). For all considered 𝛾 the mean value ⟨𝛾⟩𝛾 converges to

the specified value, but we observe larger standard deviations for larger decay rates. This is

apparently related to the smaller density of resonances at larger values of 𝛾, see discussion

in Sec. 5.1.1 and Fig. 5.4. The standard deviation Δ𝛾 is illustrated in a double-logarithmic

plot as a function of ℎ in Fig. 5.9(b). For all decay rates we find a power-law of the form

Δ𝛾 ∼ ℎ𝐷0(Γb) (dashed line), which is implied by the fractal Weyl law (5.6). For a derivation

see App. C.6.2. This shows that we always average over larger intervals for larger 𝛾, but these

regimes converge in the same way for all decay rates.

The convergence of expectation values of the phase-space observables is numerically tested

for the smooth observable 𝑎4. Fig. 5.10(a) illustrates the mean expectation value ⟨𝑎4⟩𝛾 for the

same decay rates 𝛾 as before. The dashed line is a guide to the eye, and the shaded regions

indicate the standard deviation 𝜎𝛾(𝑎4). We observe that the mean expectation value converges

only for small decay rates (colored markers). For larger decay rates the mean expectation
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Figure 5.9: (a) Average decay rate ⟨γ⟩𝛾 vs. ℎ for decay rates as specified. The average is
taken over 𝑆 = 50 resonances. Shaded regions indicate standard deviation ∆𝛾 . Dotted lines
indicate selected γ. (b) Standard deviation ∆𝛾 vs. ℎ for same γ as in (a). Gray dashed line
shows scaling ∼ ℎ𝐷0(Γs)/2, see App. C.6.2.
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Figure 5.10: (a) Mean expectation value ⟨a⟩𝛾 vs. ℎ for shown decay rates γ and smooth
observable a = a4. The average is taken over 𝑆 = 50 resonance eigenfunctions. Shaded
regions indicates the corresponding standard deviation 𝜎𝛾(a). (b) Standard deviation 𝜎𝛾(a)
vs. ℎ for same decay rates. Gray dashed line shows scaling ∼ ℎ𝛿 for 𝛿 ≈ D0(Γs)/4.

values do not follow a clear trend (black markers). Apparently for 𝛾 = 4 it decreases and

increases again rapidly in between the considered values of ℎ, which is a strong indication that

there is no convergence. This is also seen in the standard deviations 𝜎𝛾(𝑎4), which decrease

only for small decay rates. For 𝛾 = 𝛾nat we find a power law of the form 𝜎𝛾(𝑎1) ∼ ℎ𝛿 where

the exponent approximately satisfies 𝛿 ≈ 𝐷0(Γs)/4. For decay rates above 𝛾 = 1 there is no

convergence of the standard deviation to zero. This implies, that the fluctuations around the

mean value do not vanish semiclassically. Thus, there does not exist a (single) semiclassical

limit measure for very short-lived resonance eigenfunctions. Similar results are found for the

other observables, presented in App. B.2.

The convergence of all long-lived resonance eigenfunctions is further quantified with help of

a similar quantity as in Eq. (4.13) restricted to decay rates smaller than a given cutoff 𝛾c,

𝑆𝑘(𝑁, 𝑎; 𝛾c) =
1

𝑛res(𝛾c;𝑁)

𝑛res(𝛾c;𝑁)
∑︁

𝑖=1

⃒
⃒E𝛾𝑖 [𝑎]− ⟨𝑎⟩𝛾𝑖

⃒
⃒
𝑘
, (5.10)
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Figure 5.11: Convergence of resonance eigenfunctions in terms of the second moment
𝑆2(𝑁, a; γc) restricted to decay rates with γc ≤ 0.75, see Eq. (5.10) shown as a function of
ℎ for the considered observables 𝑎1,2,3,4 as in Fig. 4.7.
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where 𝑛res(𝛾c;𝑁) is the number of eigenvalues with 𝛾 < 𝛾c, see the fractal Weyl law in Eq. (5.6).

Figure 5.11 illustrates the dependence of 𝑆2(𝑁, 𝑎; 𝛾c) on Planck’s constant ℎ for all considered

observables 𝑎𝑖 in a double-logarithmic scaling. In all cases we observe a power law, which

approximately satisfies 𝑆2 ∼ ℎ𝐷0(Γs)/2. Consistently the expected scaling in closed systems

is recovered if the dimension of the chaotic saddle is replaced by the dimension of the whole

phase space, see Sec. 3.2.2.

Altogether, we present strong evidence that only long-lived resonance eigenfunctions con-

verge semiclassically. In conclusion, only for long-lived resonance eigenfunctions we expect

a universal semiclassical limit measure. On the other hand we find indications, that there

is no convergence of single (and average) resonance eigenfunctions for large decay rates 𝛾.

The transition between both regimes appears in the considered system at 𝛾 ≈ 1, but a strict

distinction is not observed.

5.2.4 Average distribution

The previous section implies, that the phase-space distribution of long-lived resonance eigen-

functions is well described by the average distribution ⟨ℋ⟩𝑆𝛾 , see Eq. (4.14), of the 𝑆 closest

resonance eigenfunctions. In the following we consider 𝑆 = 50 as in Sec. 4.2.3 and we omit

the index 𝑆.

The average Husimi distributions ⟨ℋ⟩𝛾 corresponding to the same parameters as in Fig. 5.6

are illustrated in Fig. 5.12. Even for the largest considered ℎ = 1/250 these distributions are

nonuniform, Fig. 5.12(a), and in particular the dependence on 𝛾 is clearer than for the single

eigenfunctions, see Fig. 5.6(a). The density on the opening Ω, indicated by dashed blue lines

in the first panel, increases with 𝛾. This is seen in the concentration of the highest intensities

(dark red colored) within Ω and is well understood [59], see Sec. 5.2.5. For ℎ = 1/1000 we

additionally observe that the distribution within the opening also changes with 𝛾, Fig. 5.12(b).

For example, compare the densities for 𝛾 = 𝛾nat (left) and 𝛾 = 1 (right) in Fig. 5.12(b): At 𝛾nat

the distribution within Ω has only one dominant color-scale on the supported region (dark red),

but at 𝛾 = 1 the density in Ω is more concentrated on two smaller regions (black) compared

to their surrounding (light orange). Hence at larger decay rates resonance eigenfunctions are

less uniform on their support. This effect becomes better visible for smaller values of ℎ, see (c)

and (d). Decreasing ℎ leads to a finer resolution, such that the average Husimi distribution

⟨ℋ⟩𝛾 reveals a fractal support.

Such a fractal support is not seen in the structure of resonance eigenfunctions with large

decay rates, illustrated in Fig. 5.13. We notice that for ℎ = 1/250 the averaged distribution

for large decay rates 𝛾 are almost the same (a), due to the small number of resonances and

the definition of ⟨ℋ⟩𝛾. It would be possible to generate more resonances, by changing the

quantization or by variation of ℎ, as done in Ref. [66]. In this thesis we use resonance eigen-

functions from a single quantum map at fixed ℎ, only, since this effect vanishes semiclassically,
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Figure 5.12: Average Husimi distribution ⟨ℋ⟩𝛾 of resonance eigenfunctions with decay
rate closest to 𝛾 ∈ {𝛾nat ≈ 0.25, 0.35, 0.5, 0.75, 1} for the chaotic standard map with full
escape with (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000 The
average is taken over 𝑆 = 50 eigenfunctions. An individual colormap is used in each panel.
Dashed blue line indicates the opening Ω.

see Fig. 5.10. Apparently the average distribution localizes only on very few and stretched

segments on the phase space, e.g., for 𝛾 = 6 at ℎ = 1/1000 (b). This effect is more pronounced

for smaller ℎ, where the support mainly reduces to a thin filament on the opening, see (c) and

(d). There also occur sudden changes in the localization with 𝛾, e.g., for ℎ = 1/16000 the

position of the maximum peak changes back and forth between 𝛾 = 4 and 𝛾 = 8.

The latter behavior visualizes the previous observations, that for large decay rates 𝛾 the

average distribution of resonance eigenfunctions is dominated by fluctuations of single eigen-

functions and is not converging semiclassically. In the following we will therefore mainly focus
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Figure 5.13: Same as Fig. 5.12 for larger decay rates 𝛾 ∈ {1.5, 2, 4, 6, 8} as indicated
considering (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000.

on the regime of long-lived resonance eigenfunctions with decay rates up to 𝛾 . 1.

5.2.5 Semiclassical expectation for iterations of Ω

As already discussed for partial escape in Sec. 4.2.5 and Sec. 2.2.6 the correspondence principle

between quantum and classical time evolution implies certain restrictions on the semiclassical

limit measures for eigenfunctions with decay rate 𝛾, see Refs. [59, 60, 208]. We briefly repeat

these results in the following.

First, we determine the weight of resonance eigenfunctions on the sets Ω+
𝑚 = 𝑀−𝑚(Ω) ∖

⋃︀𝑚−1
𝑖=0 𝑀−𝑖(Ω), see Eq. (2.44), following the reasoning in Ref. [59]. Recall the definition of the

quantum map with full escape, 𝒰 = 𝒰(1 − 1Ω), Eq. (5.5), where 1Ω is a projection on the
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opening Ω. It satisfies 𝒰 †𝒰 = (1 − 1Ω)
2 = 1 − 1Ω, such that the expectation value, i.e., the

weight on the opening, for eigenfunctions 𝜓𝛾 of 𝒰 with decay rate 𝛾 is given by

E𝜓𝛾 [Ω] = ⟨𝜓𝛾| 1Ω |𝜓𝛾⟩ = ⟨𝜓𝛾|𝜓𝛾⟩ − ⟨𝜓𝛾|𝒰 †𝒰|𝜓𝛾⟩ = 1− e−𝛾. (5.11)

For the expectation on the sets Ω+
𝑚 for 𝑚 > 0 consider the operators Op(1Ω+

𝑚
), for which the

quantum classical correspondence, Eq. (5.4), implies that asymptotically for ℎ → 0

𝒰 † Op(1Ω+
𝑚
)𝒰 ∼ Op(𝑅0 · 1Ω+

𝑚
∘𝑀) = Op((1− 1Ω) · 1𝑀−1(Ω+

𝑚)) = Op(1Ω+
𝑚+1

). (5.12)

The last equality follows from the definition of the sets Ω+
𝑚. This leads to the semiclassical

expectation on Ω+
𝑚 for maps with full escape [59]

E𝜓𝛾

[︀
Ω+

𝑚

]︀ ℎ→0−−→ e−𝑚𝛾(1− e−𝛾). (5.13)

On the other hand, consider the sets which are mapped onto Ω under inverse iteration, Ω−
𝑚 =

𝑀𝑚(Ω)∖⋃︀𝑚−1
𝑖=1 𝑀 𝑖(Ω), as defined in Eq. (2.45), where Ω−

1 = 𝑀(Ω). The quantization Op(1Ω−
1
)

satisfies for ℎ → 0 asymptotically [59, 208]

𝒰 † Op(1Ω−
1
)𝒰 ∼ Op(𝑅0 · 1Ω−

1
∘𝑀

⏟  ⏞  
=1

𝑀−1(Ω−
1 )

=1Ω

) = Op((1− 1Ω) · 1Ω
⏟  ⏞  

=0

) = 0 (5.14)

which is implied by Eq. (5.4). Similarly follows that (𝒰 †)𝑚 Op(1Ω−
𝑚
)𝒰𝑚 ∼ 0. This implies for

eigenfunctions with finite decay rates 𝛾 < ∞, that the expectation on the sets Ω−
𝑚 converges

semiclassically to zero [59, 208],

E𝜓𝛾

[︀
Ω−

𝑚

]︀ ℎ→0−−→ 0. (5.15)

The intuitive implication of the last statement is, that the support of all resonance eigen-

functions with finite 𝛾 < ∞ converges semiclassically to the fractal backward trapped set,

Γb = Γ ∖⋃︀∞
𝑚=1 Ω

−
𝑚, see Sec. 2.2.4. Let us remark, that Eq. (5.13) is generalized to partial es-

cape, see Eq. (4.25) in Sec. 4.2.5, where the functions 𝑇+
𝑚 generalize the sets Ω+

𝑚. In contrast,

the functions 𝑇−
𝑚 in Eq. (4.26) are similar, but not equivalent to the sets Ω−

𝑚.

The expectation values E𝜓𝛾 [Ω
+
𝑚] are illustrated as a function of the modulus of the eigen-

value, |𝜆| = e−𝛾/2, in Fig. 5.14 for the standard map with full escape. They are obtained by

integrating the Husimi distribution of each resonance eigenfunction, evaluated on a 1024×1024

grid, over the considered sets Ω+
𝑚. Note that changing the grid size does not change the results,

as long as it is fine enough. The insets show Ω+
𝑚 on the phase space. For the opening Ω = Ω+

0

in (a), we find very good agreement between the expectation values (colored markers) and the

semiclassical prediction, Eq. (5.13), (dashed black line) for all values of ℎ. The deviations are
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Figure 5.14: Expectation values on the sets Ω+
𝑛 for (a) 𝑚 = 0, (b) 𝑚 = 1

and (c) 𝑚 = 2 vs. modulus of eigenvalue e−𝛾/2 for single eigenfunctions at ℎ ∈
{1/250, 1/1000, 1/4000, 1/16000} (black, violet, red, green) compared to the semiclassical
prediction Eq. (5.13) (dashed black lines), and to uniform expectation from closed system,
𝜇L(Ω

+
0 ) = 0.3, 𝜇L(Ω

+
1 ) ≈ 0.21, 𝜇L(Ω

+
2 ) ≈ 0.12 (gray horizontal lines). Dotted vertical line

indicates e−𝛾nat/2 (red). Inset shows the sets Ω+
𝑚 on the phase space Γ.
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Figure 5.15: Same as Fig. 5.14, but showing expectation values on Ω−
𝑚 for (a) 𝑚 = 1, (b)

𝑚 = 2 and (c) 𝑚 = 3, for which the semiclassical prediction is zero, Eq. (5.15). Shown for
comparison is the uniform expectation from the closed system, 𝜇L(Ω

−
1 ) = 0.3, 𝜇L(Ω

−
2 ) ≈

0.21, 𝜇L(Ω
−
3 ) ≈ 0.12 (gray horizontal lines). Dotted vertical line indicates e−𝛾nat/2 (red).

Inset shows the sets Ω−
𝑚 on the phase space Γ.

due to the finite width of coherent states overlapping with the complement of Ω. The gray

horizontal line shows for comparison the uniform expectation in the closed system, which is

given by the size 𝜇L(Ω) = 0.3. The expectation values for Ω+
1 show deviations to the prediction

for ℎ = 1/250 and 1/1000, but there is excellent agreement for all resonance eigenfunctions

already at ℎ = 1/4000, see (b). For Ω+
2 , however, there are much larger deviations to the pre-

diction (c). The quantum results approach the classical expectation when ℎ becomes smaller,

but even for ℎ = 1/16000 they do not match precisely. We conclude, that much smaller values

of ℎ are required to resolve the filamentary structure of Ω+
2 , shown in the inset. Even for

ℎ = 1/16000 the finite width of the coherent states used in the Husimi distribution is not
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small enough to resolve this set in detail. Surprisingly, for 𝛾nat the agreement is similarly good

for all ℎ, see red dotted vertical line. These observations agree with those for partial escape,

discussed in Sec. 4.2.5.

Figure 5.15 similarly depicts the expectation values E𝜓𝛾 [Ω
−
𝑚] for the same values of ℎ (colored

markers). The insets illustrate the sets Ω−
𝑚. For Ω−

1 the semiclassical expectation of zero is

confirmed for eigenfunctions with finite decay rate (a). While for ℎ = 1/250 the expectation

is significantly larger than zero, it decreases for smaller ℎ. Similar results are found for Ω−
2 ,

where the expectation value decreases significantly with ℎ for decay rates close to 𝛾nat (red

vertical line). For ℎ = 1/16000, however, the expectation value first increases steeply with

the modulus of the eigenvalue until it slowly decreases. The peak corresponds to decay rates

𝛾 ≈ 4, around which the obtained data shows stronger fluctuations for e−𝛾/2 . 0.5, which

corresponds to 𝛾 & 1. Recall that one condition in Eq. (5.15) is that the decay rate 𝛾

is finite. Therefore it may not be applied to ultra-fast decaying eigenfunctions which have

eigenvalues close to zero [58]. We already observed in the previous section that the resonance

eigenfunctions in these regimes are not strictly separated. Since the expectation value of Ω−
2

is not necessarily zero for ultra-fast decaying modes, this explains why we do not observe a

convergence to zero in this regime. The filamentary structure becomes much finer for Ω−
2 than

the quantum mechanical resolution. Hence the expectation values are much larger than zero,

even for ℎ = 1/16000 and also around 𝛾nat.

The class of semiclassical limit measures is restricted by both equations, Eq. (5.13) and

Eq. (5.15). More generally, Theorem 1 of Ref. [60] proves that the semiclassical limit measure

of any convergent sequence of resonance eigenfunctions is a conditional invariant measure of

the classical map with full escape and has the same decay rate 𝛾. For more details we refer to

the generalization of this result to maps with partial escape in Sec. 4.2.6.



114 Chapter 5 Resonance eigenfunctions in maps with full escape

5.3 Conditionally invariant measures for full escape

In this section we introduce and discuss different conditionally invariant measures (c-measures)

for classical maps ℳΩ with full escape. We first introduce a class of c-measures, which is based

on the natural measure and has been successfully applied to explain localization of resonance

eigenfunctions in systems with a partial barrier [65]. Secondly, we briefly discuss the limit of

full escape for the product measures defined in Sec. 4.3.2. Finally, we motivate a resonance

eigenfunction hypothesis based on a uniform distribution on the invariant chaotic saddle Γs

which is finitely resolved quantum mechanically and therefore decays. This leads to a new class

of c-measures depending not only on the decay rate 𝛾, but also on the quantum resolution ℎ.

5.3.1 𝛾-natural measures

One particularly intuitive class of conditionally invariant measures for maps with full escape

are the so-called 𝛾-natural measures 𝜇nat
𝛾 [65, 209]. These measures are based on a uniform

distribution with respect to the natural measure 𝜇nat, depending on the time to escape from the

system. This leads to the following definition. The measures 𝜇nat
𝛾 are (i) conditional invariant

with decay rate 𝛾 and (ii) proportional to the natural measure 𝜇nat on all sets of points with

the same temporal distance to the opening Ω. These sets are given by Ω+
𝑚, see Eq. (2.44). In

particular this leads to a decomposition of the natural measure 𝜇nat as in Eq. (2.68). Using

𝜇nat(Ω) = 1− e−𝛾nat one obtains

𝜇nat
𝛾 (𝐴) =

1− e−𝛾

1− e−𝛾nat

∞∑︁

𝑖=0

e−𝑖𝛾 𝜇nat[𝑀
𝑖(𝐴) ∩ Ω]

=
1− e−𝛾

1− e−𝛾nat

∞∑︁

𝑖=0

e−𝑖(𝛾−𝛾nat) 𝜇nat[𝐴 ∩ Ω+
𝑖 ], (5.16)

which follows from conditional invariance of 𝜇nat. Thereby a family of conditionally invariant

measures is obtained, which are proportional to 𝜇nat on the sets Ω+
𝑚 with the same temporal

γ = γnat γ = 0.35 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

q

p

Figure 5.16: Measures 𝜇nat
𝛾 with 𝛾 ∈ {𝛾nat ≈ 0.25, 0.35, 0.5, 0.75, 1} for chaotic standard

map with full escape smoothed by a Gaussian of width 1/500. Dashed blue line indicates
the opening Ω.
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distance to Ω.

These measures are by definition proportional to 𝜇nat on Ω for all decay rates 𝛾, see Fig. 5.16.

Hence, there does not occur an additional enhancement within the opening, which we observed

for resonance eigenfunctions, e.g., in Fig. 5.12. For this reason the measures 𝜇nat
𝛾 might be

good approximations to the semiclassical limit measures, but this limit necessarily has a more

complex structure.

5.3.2 Limit of product measures

A second class of conditionally invariant measures follows from the product measures 𝜇𝜉 intro-

duced for partial escape in Chapter 4. Recall that the measures 𝜇𝜉 are defined for reflectivity

functions 𝑅 > 0, only. In the simple case, where escape only takes place from a region Ω,

𝑅(𝑥) = 1− (1−𝑅Ω)1Ω(𝑥), full escape is characterized by 𝑅Ω = 0. In this case the map with

escape ℳ is not invertible, such that 𝜇inv is not defined. Moreover the measures 𝜇𝜉 cannot be

constructed directly, but only in the limit where 𝑅Ω → 0. We emphasize that it is important

to consider a fixed decay rate 𝛾, as fixing 𝜉 > 0 and taking 𝑅Ω → 0 leads to a divergence of the

obtained decay rate 𝛾𝜉. This follows from Eq. (4.40), since the inverse decay rate 𝛾inv[𝑅
𝜉] → ∞

for any fixed 𝜉 > 0, when 𝑅Ω → 0.

For a fixed decay rate 𝛾, let 𝜇(𝜉(𝛾,𝑅Ω),𝑅Ω) be the product measure of the system with partial

escape from Ω for reflectivity 𝑅Ω. This leads to a conditional invariant measure of the system

with full escape as the limit

𝜇(𝛾,𝑅Ω=0) := lim
𝑅Ω→0

𝜇(𝜉(𝛾,𝑅Ω),𝑅Ω), (5.17)

where 𝜉(𝛾,𝑅Ω) indicates its dependence on 𝛾 and the reflectivity 𝑅Ω. Note that if the natural

decay rate 𝛾nat of the map with full escape is considered, this sequence converges to the natural

measure, 𝜇(𝛾nat,𝑅Ω=0) = 𝜇nat.

As already discussed in Sec. 4.4.5 and illustrated in Fig. 4.30, the agreement between reso-

nance eigenfunctions and product measures 𝜇𝜉 is less good if more escape is allowed from the

system, i.e., for smaller 𝑅Ω. Even though the product measures include a localization effect

within the opening Ω, it takes place on phase-space regions which are apparently not relevant

for the map with full escape. In particular these measures show a strong enhancement on

phase-space points 𝑥 ∈ Ω whose forward iterates also fall into the opening 𝑀 𝑖(𝑥) ∈ Ω. In the

limit of full escape 𝑅Ω = 0, however, the intensity on future iterations of phase space points

is zero, once they enter the opening Ω. For this reason these iterates are not relevant for

the localization of resonance eigenfunctions in systems with full escape. Thus, the measures

𝜇(𝛾,𝑅Ω=0) are not relevant for the semiclassical phase-space distribution of resonance eigenfunc-

tions. Hence, an entirely different approach is needed to understand resonance eigenfunctions

for full escape.
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5.3.3 Resonance eigenfunction hypothesis for full escape

In the following we heuristically motivate a resonance eigenfunction hypothesis for systems with

full escape. It leads to a specific class of measures, which are possible candidates to describe

resonance eigenfunctions in systems with full escape. The measures 𝜇nat
𝛾 and 𝜇𝜉 discussed

in the previous sections are both missing some of the key elements observed for resonance

eigenfunctions in Sec. 5.2: The measures 𝜇nat
𝛾 do not include any enhancement within the

opening Ω, while the measures 𝜇𝜉 localize on phase-space structures of iterations of Ω which

are not relevant in the systems with full escape.

5.3.3.1 Simplified escape model

Recall the quantum ergodicity theorem for closed chaotic systems which states that almost all

eigenfunctions become uniformly distributed with respect to the invariant uniform measure

𝜇L in the semiclassical limit, Sec. 3.2.2. Thus, it seems reasonable to assume a similar form

of uniformity in systems with full escape, but with respect to the uniform measure on the

saddle Γs. The dynamics on Γs is chaotic and Γs is invariant under the map with full escape

ℳΩ. In contrast to the closed system, however, this invariant set is usually a fractal subset

of Γ, see 2.2.5. Hence, the quantum mechanical uncertainty relation implies a finite resolution

of Γs of the order of Planck’s constant ℎ. This leads to a finitely resolved saddle Γℎ
s for the

quantum system. A similar approach has been used to motivate the fractal Weyl law of the

distribution of resonances [57]. The ℎ-resolved, or quantum-resolved saddle Γℎ
s , however, is

not invariant under time evolution with ℳΩ, but decays along the unstable manifold Γb of

Γs. In the following we combine the assumption of uniformity on the saddle and the finite

quantum resolution to achieve a conditional invariant measure of the classical system.

We consider a simplified model of the escape mechanism on the phase space, as sketched

in Fig. 5.17. The phase space Γ is partitioned by the backward trapped set and the union of

the sets Ω−
𝑚, Eq. (2.45), which correspond to forward iterations of Ω. The relevant classical
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Figure 5.17: Sketch of the simplified escape model. Escape from ℎ-resolved chaotic saddle
Γℎ
s takes place from red region (𝑛 = 0). The iterates of this region (𝑛 = 1, 2) overlap with

the opening Ω (dashed blue area). They become smaller and stretched with 𝑛. After some
finite time step 𝑛 = 𝑚ℎ all iterations of 𝑛 = 0 have escaped through the opening Ω.
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dynamics for long times takes place only on the chaotic saddle and the backward trapped

set. The ℎ-resolved chaotic saddle Γℎ
s is a subset of Γb, which is illustrated by the large gray

circle in Fig. 5.17. This set is not invariant under time evolution. Instead some subset of Γℎ
s ,

denoted by ℰℎ
0 , will escape from it after one time step along the unstable manifold, see red

circle in Fig. 5.17. Conversely, the set Γℎ
s ∖ ℰℎ

0 is again mapped onto the ℎ-resolved saddle.

Time evolution of ℰℎ
0 leads to a stretching along Γb, and we denote this iterate by ℰℎ

1 = 𝑀(ℰℎ
0 ),

which might overlap with the opening Ω. Further iterations define the sets ℰℎ
𝑛 = 𝑀(ℰℎ

𝑛−1 ∖Ω),
each consisting of all points that are mapped onto Γℎ

s in 𝑛 backward iterations. Due to the

finite size of Γℎ
s for given ℎ there is a maximal number of iterations𝑚ℎ, which satisfies ℰℎ

𝑚ℎ
⊂ Ω,

see Fig. 5.17.

Quantum mechanically let us consider an analog decomposition of the Hilbert space H𝑁

for 𝑁 = 1/ℎ. Therefore we define the subspaces H
Ω−

𝑁 belonging to the union of Ω−
𝑚, H

s
𝑁

corresponding to Γℎ
s which includes ℰℎ

0 , and for 0 < 𝑛 ≤ 𝑚ℎ the spaces H
𝑛
𝑁 corresponding to the

escaping sets ℰℎ
𝑛 . With this, we obtain H𝑁 = H

s
𝑁 ⊕H

1
𝑁 ⊕H

2
𝑁 ...⊕H

𝑚ℎ
𝑁 ⊕H

Ω
𝑁 . The dimension of

the space Hs
𝑁 grows with the fractal dimension of the chaotic saddle like ∼ ℎ−𝐷0(Γs)/2 [57]. Let

us remark that a slightly different decomposition is used in Ref. [57] to relate the time evolution

on H
s
𝑁 to truncated random matrices, explaining universal properties of the spectrum and

also the fractal Weyl law, see Sec. 5.1.2. Together with the chaotic dynamics on the invariant

set, this motivates the assumption, that eigenfunctions of the quantum map restricted to the

subspace Hs
ℎ are described by truncated random matrices, where the truncation is proportional

to the size of ℰℎ
0 . These eigenfunctions, however, are uniformly distributed.

Therefore, for resonance eigenfunctions of the map with full escape it is reasonable to assume

a uniform distribution on the subset of the backward trapped set ℰℎ
0 ⊂ Γb which escapes from

the quantum resolved saddle Γℎ
s in one time step. Forward iteration leads to a stretching of

the distribution along the unstable manifold. Conditionally invariance further implies a factor

proportional to e𝛾 in each time step, which implies more weight on those sets ℰℎ
𝑛 with larger

number of iterations 𝑛 from the ℎ-resolved chaotic saddle. These considerations are generalized

by the following hypothesis about the localization of resonance eigenfunctions in systems with

full escape [66].

Resonance eigenfunction hypothesis for systems with full escape. We conjecture

that in chaotic systems with full escape through an opening Ω the phase-space distribution of

resonance eigenfunctions with decay rate 𝛾 for effective Planck’s constant ℎ is described by a

measure that (i) is conditionally invariant with decay rate 𝛾 and (ii) is uniformly distributed

on sets with the same temporal distance to the ℎ-resolved chaotic saddle.

Combining both properties results in a measure

𝜇ℎ
𝛾(𝐴) :=

1

𝒩

∫︁

𝐴

e𝑡ℎ(x)(𝛾−𝛾nat) d𝜇nat(𝑥) (5.18)
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for all 𝐴 ⊂ Γ with normalization constant 𝒩 =
∫︀

Γ
e𝑡ℎ(x)(𝛾−𝛾nat) d𝜇nat(𝑥) and using a temporal

distance 𝑡ℎ(𝑥) ∈ R to the ℎ-resolved chaotic saddle Γℎ
s . Such a distance function can be defined

from the classical dynamics and needs to satisfy

𝑡ℎ[𝑀
−1(𝑥)] = 𝑡ℎ(𝑥)− 1 (5.19)

for almost all 𝑥 ∈ Γb. This excludes, e.g., points on the chaotic saddle 𝑥 ∈ Γs. This condition

is required in order to achieve conditional invariance of 𝜇ℎ
𝛾 , which is proven in Appendix C.6.3.

Let us remark that it is possible to consider a weaker condition, where Eq. (5.19) is assumed

only in the semiclassical limit ℎ → 0, i.e., the condition becomes limℎ→0(𝑡ℎ(𝑥)−𝑡ℎ[𝑀
−1(𝑥)]) =

1. In this case the measures 𝜇ℎ
𝛾 would become conditional invariant only in this limit.

The definition of 𝜇ℎ
𝛾 has some important implications for its phase-space localization. First

of all, for the natural decay rate 𝛾nat it is equal to the natural measure, 𝜇ℎ
𝛾=𝛾nat = 𝜇nat, which

is uniformly distributed on the fractal backward trapped set Γb. For increasing 𝛾 > 𝛾nat the

exponential factor in Eq. (5.18) leads to an enhancement of regions of Γb with larger temporal

distances to the chaotic saddle. Those regions with maximal 𝑡ℎ(𝑥) experience the strongest

enhancement. This maximum is obtained on subsets of the opening Ω, because iterating any

𝑥 ∈ Γb until it enters Ω increases the temporal distance by one for each iteration. Altogether

the hypothesis leads to a prediction for the localization observed for resonance eigenfunctions

in chaotic systems.

5.3.3.2 Implementation of 𝜇ℎ
𝛾

So far we have not specified the precise form of the temporal distance 𝑡ℎ(𝑥), restricted only

by Eq. (5.19). In the following we present a conceptually and numerically simple implemen-

tation of the temporal distance 𝑡ℎ(𝑥) and of the measures 𝜇ℎ
𝛾 [66], which is equivalent to the

simplified escape model, see Fig. 5.17. Therefore we define the ℎ-resolved saddle as a sym-

metric surrounding of the classical saddle, Γℎ
s = {𝑥 ∈ Γ : 𝑑T2(𝑥,Γs) <

√︀

~/2}. Here we use

the Euclidean metric on the two-dimensional torus 𝑑T2(𝑥,𝑦) which is obtained from the usual

Euklidean metric by considering periodic boundary conditions. The temporal distance 𝑡ℎ(𝑥) is

defined as the number of backward iterations to enter the ℎ-resolved saddle for the first time,

𝑡ℎ(𝑥) = 𝑛 ⇔ 𝑀−𝑛(𝑥) ∈ Γℎ
s and 𝑀−𝑖(𝑥) /∈ Γℎ

s ∀𝑖 < 𝑛. (5.20)

This implies that points inside of Γℎ
s also obtain negative temporal distances 𝑡ℎ(𝑥) ≤ 0. For

all 𝑛 ∈ Z define ℰℎ
𝑛 := {𝑥 ∈ Γb : 𝑡ℎ(𝑥) = 𝑛} as the set of points which need 𝑛 backward

iterations to the ℎ-resolved chaotic saddle. For a fixed value of ℎ there is a maximal temporal

distance 𝑚ℎ = maxx∈Γb
𝑡ℎ(𝑥) < ∞. Consequently, the sets ℰℎ

𝑛 with 𝑛 > 𝑚ℎ are empty and

not considered. The remaining sets do not intersect by definition, ℰℎ
𝑛 ∩ℰℎ

𝑚 = ∅ for all 𝑛,𝑚 ∈ Z

with 𝑛 ̸= 𝑚, and they partition the backward trapped set as Γb =
⋃︀𝑚ℎ

𝑛=0 ℰℎ
𝑛 .
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Inserting this partition into Eq. (5.18) simplifies the definition of 𝜇ℎ
𝛾 to

𝜇ℎ
𝛾(𝐴) =

1

𝒩

∫︁

𝐴∩Γb

e𝑛(𝛾−𝛾nat) d𝜇nat(𝑥) =
1

𝒩

𝑚ℎ∑︁

𝑛=−∞

∫︁

𝐴∩ℰℎ
𝑛

e𝑛(𝛾−𝛾nat) d𝜇nat(𝑥) (5.21)

=
1

𝒩

𝑚ℎ∑︁

𝑛=−∞
e𝑛(𝛾−𝛾nat)𝜇nat(𝐴 ∩ ℰℎ

𝑛), (5.22)

where we used that 𝜇nat is supported only on Γb. This implementation of the resonance

eigenfunction hypothesis for full escape is numerically simple to investigate.

5.3.3.3 Illustration

For the standard map with full escape from Ω = (0.3, 0.6)× [0, 1) the temporal distance 𝑡ℎ(𝑥)

on the backward trapped set is illustrated in Fig. 5.18 for different values of ℎ. The backward

trapped set and the chaotic saddle are calculated as in Sec. 2.2.5. Each point 𝑥 ∈ Γb is iterated

backwards or forwards, until for some 𝑛 ∈ Z the condition in Eq. (5.20) is fulfilled. This is,

𝑑T2 [𝑀−𝑛(𝑥),Γs] ≤
√︀

~/2 and 𝑑T2 [𝑀−𝑖(𝑥),Γs] >
√︀

~/2 for all 𝑖 < 𝑛. Thereby we obtain

𝑡ℎ(𝑥) = 𝑛 ∈ Z for all 𝑥 ∈ Γb. The results for ℎ = 1/250 are shown in Fig. 5.18(a). Each

colored subset of Γb corresponds to one of the sets ℰℎ
𝑛 . Note that the white regions are the

sets 𝑀 𝑖(Ω) and thus in the complement of Γb. Together the black, gray and red colored region

with 𝑡ℎ(𝑥) ≤ 0 correspond to the ℎ-resolved chaotic saddle. The red region indicates all points

which leave the chaotic saddle in one time step, while the gray region needs two iterations

and so on. On the other hand we see large stretched blue and yellow regions, which are the

first and second iterate of the red region. Because all points are on the backward trapped set,

they are stretched along the unstable direction. A close inspection reveals green colored sets

with 𝑡ℎ(𝑥) = 3. The set with the maximum 𝑡ℎ(𝑥) = 4 is so small, that it is barely visible in

this resolution. In panel (b) we show results for ℎ = 1/1000. The ℎ-resolved saddle becomes

visibly smaller (black and red). On the opening Ω the sets ℰℎ
1 are less dominant than in (a).

Instead those sets ℰℎ
𝑛 with larger 𝑡ℎ(𝑥) = 𝑛 are more prominent. This process continues for

smaller values of ℎ, see (c) and (d). Comparing (b) and (d), one observes that the regions

with large temporal distances 𝑡ℎ(𝑥) look very similar. For example, compare ℰℎ
3 (green) and

ℰℎ
4 (magenta) in (b) with ℰℎ

4 (magenta) and ℰℎ
5 (petrol) in (d), respectively.

The differences in the saddle distances 𝑡ℎ(𝑥) shown in Fig. 5.18 have two reasons. First, the

geometric distance along the manifold to the ℎ-resolved chaotic saddle depends obviously on

the considered phase-space region. Secondly, the local stretching (or contraction under 𝑀−1)

influences the temporal distance, depending on local Lyapunov exponents. We emphasize

that, if for any two 𝑥,𝑦 ⊂ Γb the difference 𝑡ℎ(𝑥)− 𝑡ℎ(𝑦) remains almost constant for different

values of ℎ, we obtain similar measures. This is easily seen from their definition, Eq. (5.18)

and is further discussed later.
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(a)

p

(b)

p

(c)

q

p

(d)

q

p

th(𝑥) −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2≤ −2

Figure 5.18: Integer temporal distance tℎ(𝑥) ∈ Z on backward trapped set 𝑥 ∈ Γb. Sets
of the same color correspond to the sets ℰℎ

𝑛 with the same temporal distance to Γℎ
s where

𝑛 ≤ 𝑚ℎ for (a) ℎ = 1/250 with 𝑚ℎ = 4, (b) ℎ = 1/1000 with 𝑚ℎ = 5, (c) ℎ = 1/4000 with
𝑚ℎ = 6, and (d) ℎ = 1/16000 with 𝑚ℎ = 7. The sets ℰℎ

𝑛 for 𝑛 = 𝑚ℎ are barely visible due
to their small size. The opening is indicated by the blue dashed line.

In Figure 5.19 we exemplary illustrate the measures 𝜇ℎ
𝛾 for 𝛾 ∈ {0.5, 1} and the same

values of ℎ as in Fig. 5.18. For 𝛾 = 0.5 the illustrated densities are hard to distinguish,

and the underlying structure of the natural measure is still visible. The exponential factor

in the definition of 𝜇ℎ
𝛾 , Eq. (5.22) leads to similar results for all ℎ, even though the shown

temporal distances 𝑡ℎ(𝑥) in Fig. 5.18 are different. This indicates that decreasing ℎ increases

the temporal distance for all points on the backward trapped set in a similar way. Considering

𝛾 = 1 the exponential factor including 𝑡ℎ(𝑥) becomes more important. Therefore we are able

to see differences in the phase-space distributions, see Fig. 5.19(b). For the smallest values of

ℎ the distributions are again very similar (right panels).
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(a) γ = 0.5

q

p

(b) 𝛾 = 1

q

p

Figure 5.19: Phase-space distribution of the measures 𝜇ℎ
𝛾 smoothed by Gaussian of width

1/500 for (a) γ = 0.5 and (b) 𝛾 = 1 and ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}. The opening
is indicated by the blue dashed line.

5.3.3.4 Semiclassical limit of 𝜇ℎ
𝛾

The previous illustrations lead to the question, how the measures 𝜇ℎ
𝛾 behave in the limit of

small ℎ. In the following we will heuristically establish a relation to Lyapunov exponents,

which indicates convergence of these measures in the semiclassical limit.

At first, consider 𝑦 ∈ Γs to be a periodic point of period 𝑝 on the chaotic saddle. For all

points 𝑥 on the unstable manifold of the periodic orbit {𝑀 𝑖(𝑦)}𝑝−1
𝑖=0 we are interested in the

number of backward iterations, until the distance along the manifold is smaller than some

given 𝑑 > 0. If the number of iterations is large for any such 𝑥 a local compression on the

manifolds occurs by a factor e−𝜆
(𝑝)
y , where 𝜆

(𝑝)
y is the finite-time Lyapunov exponent over the

period of the orbit. Hence an initial distance 𝑑0(𝑥) between 𝑥 and 𝑦 becomes smaller than 𝑑

after 𝑛 steps, if

𝑑0(𝑥) · e−𝑛𝜆
(𝑝)
y < 𝑑 ⇔ 𝑛 ≥ 𝑡𝑑(𝑥) := [𝜆(𝑝)

y ]−1 log
𝑑0(𝑥)

𝑑
. (5.23)

Note that choosing 𝑑 =
√︀

~/2 implies 𝑡𝑑(𝑥) = 𝑡ℎ(𝑥) for given ℎ. Comparing two different
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points 𝑥 and �̃� on the same manifold we obtain

𝑡𝑑(𝑥)− 𝑡𝑑(�̃�) = [𝜆(𝑝)
y ]−1

(︂

log
𝑑0(𝑥)

𝑑
− log

𝑑0(�̃�)

𝑑

)︂

= [𝜆(𝑝)
y ]−1 log

𝑑0(𝑥)

𝑑0(�̃�)
, (5.24)

which is independent of the considered 𝑑. In particular for �̃� = 𝑀−1(𝑥) we get 𝑡𝑑(𝑥)−𝑡𝑑(�̃�) ≈ 1

because 𝑑0[𝑀
−1(𝑥)] ≈ 𝑑0(𝑥)e

−𝜆
(𝑝)
y . Lets compare two points 𝑥, �̃� on manifolds of different

periodic orbits 𝑦, �̃� with periods 𝑝, 𝑝, respectively. In this case we get

𝑡𝑑(𝑥)− 𝑡𝑑(�̃�) = log

(︂
𝑑0(𝑥)

𝑑

)︂1/𝜆
(𝑝)
y

− log

(︂
𝑑0(�̃�)

𝑑

)︂1/𝜆
(𝑝)
ỹ

(5.25)

= log
𝑑0(𝑥)

1/𝜆
(𝑝)
y

𝑑0(�̃�)
1/𝜆

(𝑝)
ỹ

−
(︁

1/𝜆(𝑝)
y − 1/𝜆

(𝑝)
ỹ

)︁

log 𝑑, (5.26)

which is not independent of the chosen distance 𝑑. For decreasing values of 𝑑 the difference

𝑡𝑑(𝑥)−𝑡𝑑(�̃�) increases if 𝜆
(𝑝)
y < 𝜆

(𝑝)
ỹ , i.e., when the periodic point 𝑦 is on average less expanding

along its unstable manifold than �̃�.

This could in principle cause trouble when the semiclassical limit ℎ → 0 is considered for

𝑡ℎ(𝑥), because the measures 𝜇ℎ
𝛾 depend on the differences in the temporal distances. The

periodic points, however, are a set of (fractal) measure zero on the saddle Γs. Therefore, some

point on the backward trapped set Γb will for large times typically not experience the contrac-

tion by a factor e−𝜆
(𝑝)
y for a single periodic orbit 𝑦 on the saddle, but on average with a factor

e−𝜆L . Here 𝜆L denotes the averaged Lyapunov exponent of all points on the saddle, which also

appears in the Kantz-Grassberger relation Eq. (2.52). Lets assume that this average stretching

factor is obtained exactly for all iterations after some large number of 𝑘 ≫ 1 iterations. Then

if 𝑚 > 𝑘 the initial distance decreases as 𝑑0(𝑥) · exp
(︁

−∑︀𝑘−1
𝑖=0 𝜆𝑖(𝑥)− (𝑚− 𝑘)𝜆L

)︁

, with 𝜆𝑖(𝑥)

being the stretching exponent at 𝑀−𝑖(𝑥) for 𝑖 < 𝑘. Similar as above, for some finite 𝑑 > 0

this defines a temporal distance for any 𝑥 ∈ Γb by

𝑡𝑑(𝑥) = 𝜆−1
L log

(︃

𝑑0(𝑥)e
−

∑︀𝑘−1
𝑖=0 𝜆𝑖(x)

𝑑

)︃

+ 𝑘. (5.27)

In this case the temporal distance for any two phase-space points 𝑥, �̃� ∈ Γb satisfies a similar

relation to Eq. (5.24),

𝑡𝑑(𝑥)− 𝑡𝑑(�̃�) = �̄�−1 log
𝑑0(𝑥)e

−
∑︀𝑘−1

𝑖=0 𝜆𝑖(x)

𝑑0(�̃�)e−
∑︀𝑘−1

𝑖=0 𝜆𝑖(x̃)
, (5.28)

which is again independent of the considered 𝑑. This equation means, that the initial distance

𝑑0(𝑥) is modified by some local finite time Lyapunov exponent 𝜆𝑖(𝑥) for a finite number of

iterations.
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These considerations suggest a semiclassical convergence of the measures 𝜇ℎ
𝛾 . Note that we

considered a specific form for the ℎ-resolved chaotic saddle for our implementation of 𝜇ℎ
𝛾 , which

does not play a role in Eq. (5.28). We remark that other implementations of the resonance

eigenfunction hypothesis are possible, e.g., by altering the definition of the ℎ-resolved saddle

Γℎ
s . It is not clear, if a limiting result for 𝑡ℎ(𝑥) like Eq. (5.28), holds in general. Moreover,

numerically it is difficult to apply Eq. (5.28), because calculating the initial distance 𝑑0(𝑥)

along the unstable manifold is nontrivial. Therefore, in the following we consider the measures

𝜇ℎ
𝛾 for finite ℎ and in their simplest implementation, only.

5.4 Quantum-to-classical comparison

In this section we test the resonance eigenfunction hypothesis for chaotic maps with full escape.

For this purpose we compare resonance eigenfunctions and the proposed classical measures 𝜇ℎ
𝛾

resulting from the hypothesis. In order to analyze the quantum-to-classical agreement we ex-

amine their phase-space distribution qualitatively in Sec. 5.4.1. This is followed by a numerical

investigation of effective fractal dimensions of quantum and classical densities in Sec. 5.4.2. We

apply the Jensen–Shannon divergence to quantitatively analyze the distance between eigen-

functions and measures, and investigate to which extent they agree in the semiclassical limit,

Sec. 5.4.3. Finally we consider different positions and sizes of the opening, Sec. 5.4.5.

5.4.1 Qualitative agreement

The average phase-space distribution of long-lived resonance eigenfunctions ⟨ℋ⟩𝛾 are illus-

trated and compared to the classical measures 𝜇ℎ
𝛾 in Fig. 5.20. The top row of each sub-

panel (a)–(d) shows the quantum distribution, while the bottom row shows the classical

one for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}, respectively. The considered decay rates are

𝛾 ∈ {𝛾nat, 0.35, 0.5, 0.75, 1} (from left to right). The classical fractal measures are smoothed

with a Gaussian of width 𝜎 =
√︀

~/2 in order to obtain a phase-space density that is comparable

to the Husimi distributions.

We observe a remarkable agreement, already for ℎ = 1/250, see Fig. 5.20(a). For the natural

decay rate 𝛾nat (left panels), both distributions almost perfectly match, even though there

are visible fluctuations in the resonance eigenfunctions. Increasing the decay rate 𝛾 leads to

similar structural changes and localization effects in quantum and classical densities. For 𝛾 = 1

there appear visible differences, where the classical density experiences stronger enhancement

(indicated by darker regions) than for the Husimi distribution. Considering ℎ = 1/1000 in (b)

we confirm these observations, but on a finer resolution. Even for 𝛾 = 1 here it is very difficult

to find qualitative differences between quantum and classical densities. The illustrations for

ℎ = 1/4000 in (c) and ℎ = 1/16000 in (d) expose the capability of the measures 𝜇ℎ
𝛾 , as in all
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γ = γnat γ = 0.35 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1
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Figure 5.20: Quantum-to-classical correspondence for standard map with full escape.
Shown are average Husimi distributions ⟨ℋ⟩𝛾 of resonance eigenfunctions averaged over
50 resonances for 𝛾 ∈ {𝛾nat ≈ 0.25, 0.35, 0.5, 0.75, 1} and (a) ℎ = 1/250, (b) ℎ = 1/1000,
(c) ℎ = 1/4000, and (d) ℎ = 1/16000 (top row). Bottom row shows Gaussian smoothed
phase-space distribution of the measures 𝜇ℎ

𝛾 , Eq. (5.22). The same colormap is used for
quantum and classical densities, with the maximum given for each ℎ and γ individually by
the maximum of the classical density. Dashed blue line indicates position of the opening Ω.

cases there is excellent agreement on the phase space. The differences are only detected by a

careful inspection, and only for the largest decay rates 𝛾.

However, they can be revealed for larger decay rates 𝛾. In analogy to Fig. 5.20 we il-

lustrate phase-space densities of shorter-lived eigenfunctions and measures with 𝛾 ∈ {1.5, 2}
in Fig. 5.21. We observe that quantum densities and classical measures experience a simi-

lar enhancement in the opening Ω, but there are differences in the strength and the specific

regions. Recall that for such relatively large decay rates convergence of single and average

eigenfunctions is not seen, as discussed in Sec. 5.2.3.
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Figure 5.20 (cont.): Quantum-to-classical correspondence for standard map with full
escape for (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000.

In conclusion, the presented phase-space distributions numerically support the resonance

eigenfunction hypothesis for full escape postulated in Sec. 5.3.3. Even though the simplest

implementation of the measures 𝜇ℎ
𝛾 is used, they inherit a similar enhancement of structures

within the opening Ω for increasing decay rates 𝛾. This leads to the conclusion that the average

structural dependence of resonance eigenfunctions on the decay rate 𝛾 has a classical origin in

the temporal distance to the ℎ-resolved chaotic saddle. For large decay rates, however, there

are visible differences, see Fig. 5.21. In this regime of short-lived eigenfunctions, however,

convergence of resonance eigenfunctions is not observed, see Sec. 5.2.3, such that it cannot be

expected to find a description in terms of a single classical limit measure. Thus, for large 𝛾 it

becomes a difficult, if not impossible, task, to determine precisely the single filaments in phase

space, on which the Husimi distributions localize.
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γ = 1.5 𝛾 = 2 𝛾 = 1.5 𝛾 = 2
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Figure 5.21: Quantum-to-classical correspondence at large decay rates for standard map
with full escape. Illustrated are ⟨ℋ⟩𝛾 (top) and 𝜇ℎ

𝛾 (bottom) for 𝛾 ∈ {1.5, 2} and (a)
ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000, as in Fig. 5.20.

5.4.2 Fractal dimensions

In this section we compare fractal dimensions of resonance eigenfunctions and classical mea-

sures. As discussed in Sec. 4.4.2, a comparison for finite quantum phase-space resolution ℎ is

possible, when effective fractal dimensions 𝐷𝑞(𝜇, 𝜖) are considered for some fixed parameter

𝜖 &
√
ℎ, see Eq. (4.50). Here we apply the same considerations to systems with full escape,

numerically investigating the Husimi distributions ℋ𝜓 of resonance eigenfunctions 𝜓 and the

classical measures 𝜇nat
𝛾 , Sec. 5.3.1, and 𝜇ℎ

𝛾 , Sec. 5.3.3.

We present in Fig. 5.22 the effective fractal dimensions 𝐷𝑞(𝛾, 𝜖) = 𝐷𝑞(𝜇𝜓𝛾 , 𝜖) as a function

of the decay rate of the resonance eigenfunction 𝜓𝛾 for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}
(colored markers). Note that 𝜇𝜓𝛾 is the Husimi measure of 𝜓𝛾, see Eq. (3.11). For comparison,

classical results obtained for 𝜇ℎ
𝛾 with ℎ = 1/16000 (green dashed line), as well as for 𝜇nat

𝛾 (gray
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Figure 5.22: Fractal dimensions of single resonance eigenfunctions and classical measures
for full escape. Shown are effective Rényi-dimensions D𝑞(γ, 𝜖) of Husimi distribution ℋ𝛾 of
single resonance eigenfunctions as a function of γ for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}
(black, violet, red, green). Considered are dimensions for (a) q = 1, (b) q = 2, c) q = 3,
and (d) q = 4, while 𝜖 ∈ [1/4, 1/16]. Results for the classical measures 𝜇ℎ

𝛾 with ℎ = 1/16000
(dashed green line) and 𝜇nat

𝛾 (dashed gray line) are shown for comparison. Vertical dotted
line indicates γnat.

dashed line) are shown. The effective information dimension, 𝑞 = 1, is shown in (a). Quantum

mechanically we observe that 𝐷1(𝛾, 𝜖) for decay rates around 𝛾nat increases with decreasing ℎ

and approaches the classical value obtained for 𝜇nat. Note that 𝜇ℎ
𝛾 and 𝜇nat

𝛾 coincide at the

natural decay rate with 𝜇nat. Smaller effective dimensions at large values of ℎ can be explained

by quantum fluctuations of the order of 𝜖, see discussion for partial escape in App. B.3. For

large decay rates, 𝛾 & 1, we observe that the effective information dimension decreases with

ℎ. The reason lies in the localization of eigenfunctions on a few filaments of the backward

trapped set with increasing 𝛾. If ℎ becomes smaller, the quantum resolution of these filaments

is enhanced which implies smaller effective fractal dimensions. For ℎ = 1/16000, we find

excellent agreement between the information dimension of single resonance eigenfunctions and

of the corresponding measure 𝜇ℎ
𝛾 (green dashed line). We notice that the maximum of 𝐷1(𝛾, 𝜖)

for 𝜇ℎ
𝛾 is at 𝛾nat. The reason is, that these measures become less uniform on the backward

trapped set, when 𝛾 increases. This non-uniformity leads to smaller information dimensions.
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For decay rates larger than 𝛾 ≈ 3, the information dimension even becomes smaller than one,

classically for 𝜇ℎ
𝛾 and also for resonance eigenfunctions. This is explained by the localization on

only a few, small phase-space filaments. In contrast, comparison with 𝜇nat
𝛾 shows disagreement

for large 𝛾, especially for smaller values of ℎ. The information dimension of these measures

saturates for large decay rates at finite values 𝐷1(𝛾, 𝜖) ≈ 1.52 (gray dashed line). This is not

surprising, since the measures 𝜇nat
𝛾 are by definition proportional to 𝜇nat on the opening Ω

and 𝜖 is finite. In the limit 𝜖 → 0 one expects 𝐷1(𝜇
nat
𝛾 ) = 𝐷1(𝜇nat). Moreover, this clearly

visualizes that the measures 𝜇nat
𝛾 are not convenient as the semiclassical limit of resonance

eigenfunctions with arbitrary decay rates.

We make similar observations for the effective Rényi dimensions𝐷𝑞(𝛾, 𝜖) shown in Fig. 5.22(b)–

(d) for 𝑞 ∈ {2, 3, 4}. Let us remark, that the effective dimension at the natural decay rate

only changes little with increasing 𝑞. For all 𝑞 we find that the quantum results agree very

well with results for 𝜇ℎ
𝛾 when ℎ = 1/16000 is considered. Note that the classical measures also
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Figure 5.23: Fractal dimensions of average resonance eigenfunctions and classical mea-
sures for full escape. Shown are effective Rényi-dimensions D𝑞(γ, 𝜖) as a function of
γ considering average Husimi distributions ⟨ℋ⟩𝛾 averaged over 50 resonances for ℎ ∈
{1/250, 1/1000, 1/4000, 1/16000} (black, violet, red, green). The parameter q is chosen
as (a) q = 1, (b) q = 2, c) q = 3, and (d) q = 4, while 𝜖 ∈ [1/4, 1/16]. Results for the
corresponding classical measures 𝜇ℎ

𝛾 , smoothed by a Gaussian of width
√︀

~/2, are shown
for comparison (dashed lines). Vertical dotted line indicates γnat.
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correctly predict the regime of decay rates 𝛾, for which 𝐷𝑞(𝛾, 𝜖) becomes smaller than one.

Similarly we calculate effective fractal dimensions using average Husimi distributions ⟨ℋ⟩𝛾.
The results are presented in Fig. 5.23, varying the decay rate in the interval 𝛾nat ≤ 𝛾 ≤ 5 and

averaging over 50 eigenfunctions for each 𝛾. We compare the dimensions𝐷𝑞(𝛾, 𝜖) for ⟨ℋ⟩𝛾 (solid
lines) to those of the corresponding measures 𝜇ℎ

𝛾 (dashed lines) using matching colors for the

same value of ℎ and considering 𝑞 ∈ {1, 2, 3, 4} in (a)–(d). In order to obtain comparable results

we smooth the classical measures on the scale of order ℎ, as for the qualitative comparison

in Fig. 5.20. Note that this mostly effects results for large ℎ, and without smoothing all

classical curves are close to the result for ℎ = 1/16000. The effective information dimension

of averaged Husimi distributions decreases with smaller ℎ for all considered 𝛾 (a), as already

observed for partial escape in Fig. 4.24. Taking the average reduces the fluctuations and leads

to a smooth quantum distribution. For ℎ = 1/250 this is well approximated by the smooth

classical measure 𝜇ℎ
𝛾 for decay rates 𝛾 < 0.5 (black curves). The classical dimension decreases

stronger for larger 𝛾 than for average eigenfunctions. The latter is influenced by the large

intervals in 𝛾 used in the average, see discussion of Fig. 5.9, which becomes less relevant for

smaller ℎ. With decreasing ℎ we find excellent agreement between quantum and classical

information dimension. For ℎ = 1/1000 the quantum results follow the classical prediction up

to 𝛾 ≈ 0.7 before there is a visible deviation. This region of agreement increases with smaller

ℎ, up to 𝛾 ≈ 2 for ℎ = 1/16000. We find similar good agreement for the generalized Rényi

dimensions in Fig. 5.23(b)–(d).

We further consider the spectrum of Rényi dimensions for a fixed set of decay rates in

Fig. 5.24. Here 𝐷𝑞(𝛾, 𝜖) is shown as a function of 𝑞 for the average Husimi distributions ⟨ℋ⟩𝛾
(open colored symbols) at ℎ = 1/16000 for different decay rates 𝛾. For comparison the classical

results for 𝜇ℎ
𝛾 are shown (filled blue symbols). As expected, the box-counting dimension equals
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Figure 5.24: Fractal dimensions of resonance eigenfunctions and classical measures for full
escape. Shown are effective Rényi-dimensions D𝑞(γ, 𝜖) as a function of q for decay rates
γ ∈ {γnat ≈ 0.25, 0.35, 0.5, 0.75, 1, 1.5, 2} (diamond, circle, lower triangle, square, upper
triangle, plus, cross) considering average Husimis ⟨ℋ⟩𝛾 of 50 eigenfunctions (open symbols)
and the classical measures 𝜇ℎ

𝛾 (filled symbols) with ℎ = 1/16000 .
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𝐷0(𝛾, 𝜖) = 2 for all Husimi distributions. Since the classical measures 𝜇ℎ
𝛾 all localize on

Γb, their box-counting dimension is independent on 𝛾 and equals 𝐷0(𝛾, 𝜖) = 𝐷0(Γb, 𝜖) < 2.

The presented results in Fig. 5.24 confirm the perfect agreement of the fractal dimensions at

𝛾 = 𝛾nat for 𝑞 > 0. There is also very good agreement for larger decay rates up to 𝛾 = 1,

where only small deviations occur for 𝑞 > 5. For 𝛾 = 1.5 (pluses) and 𝛾 = 2 (crosses) there

is a visible deviation between quantum and classical results, already seen in Fig. 5.23. The

strong localization of these Husimi densities and classical measures for large 𝛾 leads to effective

dimensions close to or even smaller than one, if 𝑞 increases. Altogether this confirms that the

generalized fractal dimensions are well suited as a measure of the localization of resonance

eigenfunctions.

5.4.3 Jensen–Shannon divergence

In the following we use the Jensen–Shannon divergence 𝑑JS as a quantitative metric between

quantum and classical probability distributions, as defined in Sec. 4.4.3. As in the previous

section a finite partition of the phase space into sets of size 𝜖2 is used with 𝜖 = 1/16. We consider

the distances between individual Husimi distributions ℋ𝛾 and different classical measures as

well as average Husimi distributions ⟨ℋ⟩𝛾.
We illustrate in Fig. 5.25 the Jensen–Shannon divergence between individual Husimi dis-

tributions ℋ𝛾 and several classical measures as a function of the quantum decay rates 𝛾 for

ℎ ∈ {1/1000, 1/4000, 1/16000}. The considered classical measures are the uniform measure 𝜇L

(gray circles), the natural measure 𝜇nat (red boxes), the product measures for partial escape

𝜇𝜉 := 𝜇(𝜉(𝛾,𝑅Ω),𝑅Ω) for small 𝑅Ω = 10−5 (black diamonds), the 𝛾-natural measure 𝜇nat
𝛾 (green

triangles), and the measures 𝜇ℎ
𝛾 of the resonance eigenfunction hypothesis (blue diamonds),

as defined in Sec. 5.3.3. Results for ℎ = 1/1000 are shown in Fig. 5.25(a). For 𝛾 ≈ 𝛾nat the

distances for all measures obtain values around 𝑑JS ≈ 0.03, except for the uniform measure

𝜇L which shows generally larger 𝑑JS. The other considered measures all coincide at the nat-

ural decay rate, such that we expect a similar dependence in the close vicinity of 𝛾nat. With

increasing decay rate 𝛾 & 0.4 at first the distance for the natural measure 𝜇nat increases (red

boxes). This is expected, since the decay rate of 𝜇nat is fixed and not adapted to the quantum

decay, such that it certainly is not a semiclassical limit measure for 𝛾 ̸= 𝛾nat [60]. For decay

rates above 𝛾 & 0.6 we find that the distance for the product measures 𝜇𝜉 increases signifi-

cantly. This is consistent with the observations in Sec. 4.4.5 that the product measures 𝜇𝜉 do

not agree well with resonance eigenfunctions if 𝑅Ω becomes small. For even larger decay rates

𝛾 & 1 we observe that the distances 𝑑JS for 𝜇nat
𝛾 and 𝜇ℎ

𝛾 both increase similarly. For 𝜇nat
𝛾 this

is related to the missing localization effect within the opening Ω, see Sec. 5.3.1. For 𝜇ℎ
𝛾 we ob-

served in Fig. 5.21 that the strength of the localization effect and the corresponding regions do

not perfectly agree between eigenfunctions and measures for large decay rates, which explains

why the distance increases. The Jensen–Shannon divergence 𝑑JS quantifies this observation.
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Figure 5.25: Jensen–Shannon divergence between single quantum Husimi distributions ℋ𝛾

and different classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b)
ℎ = 1/4000, and (c) ℎ = 1/16000 in the system with full escape. The symbols correspond
to the considered measures 𝜇L (gray circles), 𝜇nat (red boxes), 𝜇𝜉 (black diamonds), 𝜇nat

𝛾

(green triangles), and 𝜇ℎ
𝛾 (blue stars). Red vertical line indicates γnat.

Apparently, at this value of ℎ, it is not possible to properly distinguish the measures 𝜇nat
𝛾 and

𝜇ℎ
𝛾 based only on the distance 𝑑JS for the considered scale 𝜖.

Therefore we consider smaller values of ℎ in Fig. 5.25(b), ℎ = 1/4000, and (c), ℎ = 1/16000.

As expected, there is no significant change of the distances for the uniform distribution 𝜇L and

it remains of the same order 𝑑JS & 0.1 for all considered ℎ. For the other considered measures

we observe that around the natural decay rate 𝛾nat the distances decrease significantly. With

increasing 𝛾 the progression of 𝑑JS is similar as in (a): For 𝜇nat and 𝜇𝜉 the distances increase

significantly at smaller values of 𝛾. The slope at which these distances grow with 𝛾 increases

between ℎ = 1/1000 and ℎ = 1/16000. In contrast to (a) there are significant differences

between 𝜇nat
𝛾 and 𝜇ℎ

𝛾 . For ℎ = 1/4000 the distance 𝑑JS for 𝜇ℎ
𝛾 remains slightly smaller than

that for 𝜇nat
𝛾 up to 𝛾 ≈ 2. At this point the distances for 𝜇ℎ

𝛾 become larger. For large decay

rates 𝛾 the localization effect predicted by the measures 𝜇ℎ
𝛾 apparently does not match the

localization effect of resonance eigenfunctions, such that it leads to a worse prediction compared

to the missing localization effect for 𝜇nat
𝛾 . This is also seen for ℎ = 1/16000. Here we observe

significantly smaller distances than before only for the measures 𝜇ℎ
𝛾 . For large decay rates

𝛾 & 3, however, the distance 𝑑JS increases to larger values than for the other measures. These

results are robust under variation of 𝜖 >
√
ℎ, which is seen in App. B.4.

In order to validate these observations with a more sensitive test, we consider average res-

onance eigenfunctions ⟨ℋ⟩𝛾. The Jensen–Shannon divergence between these and the classical

measures is illustrated in Fig. 5.26 for the same parameters as in Fig. 5.25. Taking the average

reduces the fluctuations of the Husimi distribution, such that we find overall smaller distances.

We confirm the much better agreement of resonance eigenfunctions to the measures 𝜇nat
𝛾 and

𝜇ℎ
𝛾 compared to the other measures for ℎ = 1/1000, shown in (a). In contrast to 𝑑JS for the
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Figure 5.26: Jensen–Shannon divergence between average Husimi distributions and differ-
ent classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b) ℎ = 1/4000,
and (c) ℎ = 1/16000 in the system with full escape. The average in ⟨ℋ⟩𝛾 is taken over 50
eigenfunctions. The considered classical measures are 𝜇L (gray circles), 𝜇nat (red boxes),
𝜇𝜉 (black diamonds), 𝜇nat

𝛾 (green triangles), and 𝜇ℎ
𝛾 (blue stars). Red vertical line indicates

γnat.

single Husimi distributions, here we identify a region between 0.5 . 𝛾 . 2, where 𝜇ℎ
𝛾 leads

to smaller distances which shows that it is better suited to describe quantum mechanics than

𝜇nat
𝛾 . This region persists and becomes even larger for smaller values of ℎ, shown in (b) and

(c). For all ℎ we observe a sharp minimum at 𝛾 = 𝛾nat for the natural measure 𝜇nat, which

is much more pronounced than in Fig. 5.25. This region of minimal distances 𝑑JS is slightly

broader for the product measure 𝜇𝜉, followed by 𝜇nat
𝛾 and 𝜇ℎ

𝛾 . In all cases this region becomes

smaller between (a) ℎ = 1/1000 and (c) ℎ = 1/16000. A careful inspection of the progression

for 𝜇nat
𝛾 reveals that for decay rates 𝛾 & 0.6 the distances 𝑑JS increase with decreasing ℎ. This

rules out the possibility that the measures 𝜇nat
𝛾 are semiclassical limit measures of resonance

eigenfunctions.

Let us remark that the measures 𝜇nat
𝛾 have recently been used to explain the localization

transition in chaotic systems with a single partial barrier [65, 210]. In such a system it is also

possible to apply the resonance eigenfunction hypothesis and obtain the measures 𝜇ℎ
𝛾 . This

leads to a change of the predicted weights on either side of the partial barrier. Depending on

the size of the opening and the size of the barrier, we find that in most cases both predictions,

𝜇nat
𝛾 and 𝜇ℎ

𝛾 , lead to similar agreement. The observed deviations in Ref. [210] for systems

with very large openings but small partial barriers, however, are not explained with the new

approach. One possible reason is, that small partial barriers are not resolved completely by

quantum mechanics, which is not taken into account in our definition of the temporal distance.

It is also not clear if the observed deviations have a classical origin.

Altogether, the Jensen–Shannon divergence saturates at finite values 𝑑JS for those classical

measures which are not the semiclassical limit of resonance eigenfunctions. This observation

holds for individual and averaged Husimi distributions equally and is clearly seen for the
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uniform distribution 𝜇L and the natural measure 𝜇nat, when large decay rates 𝛾 are considered.

Looking more carefully we find that it also holds for 𝜇𝜉 and for 𝜇nat
𝛾 in a regime with 𝛾 > 𝛾nat.

Conversely, we numerically confirm that it is reasonable to expect 𝜇nat as the semiclassical

limit measure for decay rates 𝛾 = 𝛾nat. For the proposed measures 𝜇ℎ
𝛾 from the resonance

eigenfunction hypothesis we find overall the smallest distances 𝑑JS in the regime of long-lived

eigenfunctions. This distance, however, also increases with 𝛾 and the semiclassical dependence

on ℎ is not obvious.

5.4.4 Semiclassical limit

In the following we quantify to which extent the measures 𝜇ℎ
𝛾 are compatible with a semi-

classical distance 𝑑JS → 0 in the limit ℎ → 0. We first consider the average Jensen–Shannon

divergence ⟨𝑑JS(ℋ𝛾, 𝜇
ℎ
𝛾)⟩ of individual Husimi distributions and the measures 𝜇ℎ

𝛾 as well as

⟨𝑑JS(ℋ𝛾, ⟨ℋ⟩𝛾)⟩ between single and average Husimi distributions in Fig. 5.27. All averages

are taken over 50 resonances and 𝜖 = 1/16.

Figure 5.27(a) shows the average Jensen–Shannon divergence ⟨𝑑JS(ℋ𝛾, 𝜇
ℎ
𝛾)⟩ as a function of

ℎ for different decay rates 𝛾. Note that this figure can be obtained by considering the average

of single distances 𝑑JS(ℋ𝛾, 𝜇
ℎ
𝛾) as shown in in Fig. 5.25. For long-lived eigenfunctions with

decay rates 𝛾 . 1 we observe a power-law decay 𝑑JS ∼ ℎ𝛿 where the exponent for 𝛾 = 𝛾nat

(red diamonds) is approximately 𝛿 & 0.75 and becomes larger for smaller decay rates 𝛾. For

large decay rates, 𝛾 = 4, the Jensen–Shannon divergence increases for smaller ℎ, such that a

semiclassical convergence is ruled out (black stars). For the long-lived eigenfunctions we find

distances of similar order and scaling when individual Husimi distributionsℋ𝛾 are compared to
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Figure 5.27: Quantum-to-classical and quantum-to-average comparison in the semiclassi-
cal limit in a system with full escape. (a) Shown is the averaged Jensen–Shannon divergence
dJS between single Husimi distributions ℋ𝛾 and the classical measures 𝜇ℎ

𝛾 as a function of
ℎ for γ ∈ {γnat, 0.35, 0.5, 0.75, 1, 1.5, 2, 4}. (b) Same as (a) considering the averaged dJS
between single ℋ𝛾 and average Husimi distributions ⟨ℋ⟩𝛾 . All averages are taken over 50
resonances. Gray line indicates numerical scaling for 𝛾nat.
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Figure 5.28: Quantum-to-classical comparison in the semiclassical limit for average Husimi
distributions in a system with full escape. Shown is the Jensen–Shannon divergence dJS
between average Husimi distributions ⟨ℋ⟩𝛾 and the classical measures 𝜇ℎ

𝛾 as a function of
ℎ for γ ∈ {γnat, 0.35, 0.5, 0.75, 1, 1.5, 2, 4}. Gray line indicates numerical scaling for 𝛾nat.

the averaged Husimi distributions ⟨ℋ⟩𝛾, illustrated in Fig. 5.27(b). This implies that individual

long-lived eigenfunctions with 𝛾 . 1 are equally well approximated by the classical measures 𝜇ℎ
𝛾

and their average distribution ⟨ℋ⟩𝛾. The observations for short-lived eigenfunctions, however,

are different. In (a) the distances for 𝛾 > 1 are overall larger than in (b) and show an entirely

different scaling. There is no convergence of single to average eigenfunctions (b), which implies

that short-lived single eigenfunctions do not converge semiclassically at all. Thus, it is not

surprising, that we do not see convergence in (a). We deduce from Fig. 5.27, that only in the

long-lived regime the measures 𝜇ℎ
𝛾 are compatible with a semiclassical distance of 𝑑JS → 0.

Thus, the resonance eigenfunction hypothesis does not apply to short-lived resonances with

very large decay rates. Note that we already discussed the issue of convergence of single to

average eigenfunctions in Sec. 5.2.3, and that the results presented in Fig. 5.27 quantify these

findings in terms of a distance metric.

In Figure 5.28 we consider the Jensen–Shannon divergence between average Husimi dis-

tributions ⟨ℋ⟩𝛾 and the proposed measures 𝜇ℎ
𝛾 , which leads to a more sensitive test of the

hypothesis. We obtain overall smaller distances for all 𝛾, compared to Fig. 5.27(a). For decay

rates 𝛾 . 0.5, and in particular for 𝛾 = 𝛾nat, we find a power law 𝑑JS ∼ ℎ𝛿. The exponent at

𝛾nat is approximately given by 𝛿 ≈ 1 and there are systematically smaller exponents for larger

𝛾. This numerically supports the resonance eigenfunction hypothesis for long-lived resonances,

at least in regime of decay rates around 𝛾 = 𝛾nat. Note that the size of the considered interval

of decay rates for the averaging process depends on 𝛾 but converges semiclassically with the

same rate ∼ ℎ𝐷0(Γs)/2 for all 𝛾, as discussed in Fig. 5.9. It is an interesting open question, if

this can be used to derive an analytical expression for the exponent 𝛿, at least for the natural

decay rate 𝛾nat. For large decay rates 𝛾 we do not observe a power-law decay of 𝑑JS. Instead,

in all cases with 𝛾 ≥ 0.75 we find that the distance 𝑑JS increases at certain values of ℎ, e.g., for

𝛾 = 1 at ℎ = 1/2000 and ℎ = 1/8000 (green triangles). The progression for 𝛾 = 0.75 indicates
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either that there are nonuniversal localization effects even for smaller 𝛾, or that the considered

measures 𝜇ℎ
𝛾 eventually lead to a finite semiclassical distance.

In conclusion, we find quantitative numerical support for the resonance eigenfunction hy-

pothesis for long-lived eigenfunctions. Moreover, even for short-lived eigenfunctions the pro-

posed measures 𝜇ℎ
𝛾 are well-suited to approximate their phase-space representation for finite

values of ℎ. However, we do not expect semiclassical convergence for all decay rates, as the pro-

posed measures increasingly deviate from the resonance eigenfunctions for decay rates 𝛾 & 1.

In these cases there occur two problems: First, the regions and the strength of the localization

effect occurring in the measures 𝜇ℎ
𝛾 are different from the ones in the phase-space distributions

of resonance eigenfunctions. Secondly, we show that there is no convergence of the eigen-

functions themselves, since they are strongly localized on different filaments of the backward

trapped set. In the following we present further results for openings Ω with different size.
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5.4.5 Dependence on opening Ω

In this section we present a qualitative quantum-to-classical comparison of the phase-space

densities of resonance eigenfunctions and the proposed measures 𝜇ℎ
𝛾 for different openings Ω.

For this purpose we consider the chaotic standard map as before, but with full escape from

the smaller opening Ω1 = (0.2, 0.4) × [0, 1) where 𝛾nat ≈ 0.21 and from the larger opening

Ω2 = (0.2, 0.7)× [0, 1) where 𝛾nat ≈ 0.51

For the small opening Ω1 quantum and classical phase-space densities are illustrated in

γ = γnat γ = 0.35 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1
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Figure 5.29: Quantum-to-classical correspondence for standard map with full escape from
Ω = (0.2, 0.4) × [0, 1). Shown are average Husimi distributions ⟨ℋ⟩𝛾 of resonance eigen-
functions averaged over 50 resonances for for 𝛾 ∈ {𝛾nat ≈ 0.21, 0.35, 0.5, 0.75, 1., 1.5, 2} and
(a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000 (top row). Bottom
row shows Gaussian smoothed phase-space distribution of the measures 𝜇ℎ

𝛾 , Eq. (5.22). The
same colormap is used for quantum and classical densities, with the maximum given for each
ℎ and γ individually by the maximum of the classical density. Dashed blue line indicates
position of the opening Ω.
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Figure 5.29 (cont.): Quantum-to-classical correspondence for standard map with full
escape for (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000.

Fig. 5.29 and Fig. 5.30 for ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}. The long-lived resonance

eigenfunctions in Fig. 5.29 qualitatively show excellent agreement with the proposed classical

measures. Classically we observe a similar enhancement of the probability with increasing

𝛾 in certain subsets of the opening Ω as quantum mechanically. For decreasing values of ℎ

we observe a change of the localized regions, e.g., for 𝛾 = 1, in both classical and quantum

densities, but with a different strength. For larger decay rates shown in Fig. 5.30 we find

differences in the specific regions of largest enhancement when ℎ is large. For smaller values

of ℎ there is still very good quantum-to-classical agreement even for decay rates up to 𝛾 = 2.

Note that when 𝛾 is chosen much larger we do not find agreement (not shown), as discussed

in the previous section.

For the larger opening Ω2 the system exhibits more decay and 𝛾nat is much larger. The

chaotic saddle and the backward trapped set are here much smaller than for Ω1. Note that
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γ = 1.5 𝛾 = 2 𝛾 = 1.5 𝛾 = 2
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Figure 5.30: Quantum-to-classical correspondence at large decay rates for standard map
with full escape from Ω = (0.2, 0.4) × [0, 1). Illustrated are ⟨ℋ⟩𝛾 and 𝜇ℎ

𝛾 for 𝛾 ∈ {1.5, 2}
and (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000, as in Fig. 5.29

Ω1 ⊂ Ω2 implies that Γb(Ω2) ⊂ Γb(Ω1) by definition Eq. (2.43). This is seen in the support

of the quantum and classical phase-space densities illustrated in Fig. 5.31 for the same values

of ℎ as before. Note that here we consider overall larger decay rates compared to Fig. 5.29.

Again there is excellent quantum-to-classical agreement even for large 𝛾. Note that we also

observe a transition of the maximal intensity when ℎ changes, e.g., comparing the average

Husimi distributions with 𝛾 = 1.5 or 𝛾 = 2 between ℎ = 1/250 and ℎ = 1/1000. Such a

transition is in principle also possible classically for larger values of ℎ, see Sec. 5.3.3, it is

here not observed in the considered implementation. Again if even larger 𝛾 are considered the

agreement declines (not shown).
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γ = γnat γ = 0.75 𝛾 = 1 𝛾 = 1.5 𝛾 = 2
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Figure 5.31: Quantum-to-classical correspondence for standard map with full escape from
Ω = (0.2, 0.7)× [0, 1). Shown are average Husimi distributions ⟨ℋ⟩𝛾 of resonance eigenfunc-
tions averaged over 50 resonances for for 𝛾 ∈ {𝛾nat ≈ 0.51, 0.75, 1, 1.5, 2} and (a) ℎ = 1/250,
(b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000 (top row). Bottom row shows Gaus-
sian smoothed phase-space distribution of the measures 𝜇ℎ

𝛾 , Eq. (5.22). The same colormap
is used for quantum and classical densities, with the maximum given for each ℎ and γ in-
dividually by the maximum of the classical density. Dashed blue line indicates position of
the opening Ω.
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γ = γnat γ = 0.75 𝛾 = 1 𝛾 = 1.5 𝛾 = 2
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Figure 5.31 (cont.): Quantum-to-classical correspondence for standard map with full
escape for (a) ℎ = 1/250, (b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000.
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5.5 Discussion and outlook

Long-lived resonance eigenfunctions of systems with full escape converge semiclassically to-

wards conditionally invariant measures. This convergence is seen numerically for reasonably

small decay rates 𝛾, but we do not observe convergence for very large (but still finite) decay

rates. For 𝛾nat we confirm the expectation that resonance eigenfunctions converge towards the

natural measure 𝜇nat. We motivate a hypothesis about the semiclassical localization of reso-

nance eigenfunctions which is based on the quantum resolution and instability of the chaotic

saddle. This hypothesis implies a class of conditionally invariant measures, for which the

simplest implementation qualitatively agrees very well with resonance eigenfunctions in the

long-lived regime. Thereby we obtain a classical explanation of the local enhancement of the

quantum probability distributions with increasing decay rate 𝛾. Semiclassically we observe

that the Jensen–Shannon divergence converges to zero for decay rates close to 𝛾nat. For large

decay rates a semiclassical convergence is not observed. However, in this regime our quan-

tum observations lead to the conclusion that a universal classical description of resonance

eigenfunctions cannot be expected.

For this reason the question arises if it is possible to determine definite conditions under

which resonance eigenfunctions are expected to converge semiclassically, for example in terms of

a limiting decay rate. Furthermore, we emphasize that it is possible to consider more advanced

implementations for the resonance eigenfunction hypothesis, e.g., with help of a continuous

temporal distance to the chaotic saddle. Our considerations about the limit of these measures,

however, suggest that the specific details of the implementation should become less important

for ℎ → 0. Nevertheless, for finite ℎ this could improve the quantum-to-classical agreement for

long-lived eigenfunctions. Let us remark that a generalization of the resonance eigenfunction

hypothesis to a system with continuous times has been tested for the three-disk scatterer by

Roland Ketzmerick with similarly good agreement than presented for the time-discrete map

in this thesis (not shown). It would be further interesting to apply this also to potential

scattering. Finally, the most important future problem in this regard is to investigate how the

different approaches for full and partial escape can be unified.





Chapter 6

Summary

Resonance eigenfunctions of non-Hermitian quantum systems play an important role in the

description of scattering problems. Their semiclassical phase-space structure is understood

for closed systems by a uniform distribution on classically invariant phase-space regions. The

structure of eigenfunctions changes drastically when escape from the system is allowed. It is

understood that their fractal phase-space structure semiclassically converges towards condi-

tionally invariant measures of the classical dynamics and depends on their decay rate.

In this thesis we perform a detailed investigation about the phase-space structure of res-

onance eigenfunctions in order to understand the generic case of partial escape and to gain

further insight about the limit of full escape. In both cases we relate this structure to condi-

tionally invariant measures of the classical dynamics. For this purpose we investigate a generic

chaotic model map with escape.

For chaotic maps with partial escape we observe in the quantum system that single and

average resonance eigenfunctions converge in the semiclassical limit to multifractal phase-

space distributions. We prove that this semiclassical limit measure must be conditionally

invariant. We investigate classical conditionally invariant measures for partial escape in order

to obtain an explicit construction depending on the decay rate. For the natural measure

𝜇nat it has been conjectured that it is the semiclassical limit of resonance eigenfunctions with

decay rate 𝛾nat [87]. In addition, we conjecture that the natural measure of the inverse map,

the inverse measure 𝜇inv, is the semiclassical limit measure of resonance eigenfunctions with

the decay rate 𝛾inv. Moreover, we propose and construct a class of conditionally invariant

measures for chaotic maps with partial escape, based on the hyperbolic phase-space structure.

These measures are uniform on subsets which have the same average forward and backward

escape under the classical map with partial escape. Qualitatively we find very good quantum-

to-classical agreement between the Husimi distribution of resonance eigenfunctions and the

proposed measures. Quantitatively, for small decay rates close to the natural decay rate 𝛾nat

and large decay rates close to the inverse decay rate 𝛾inv our results support the conjectures

regarding 𝜇nat and 𝜇inv. For intermediate decay rates, however, we do not find semiclassical

convergence of resonance eigenfunctions to the proposed product measures 𝜇𝜉. Even though for
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almost closed systems there is excellent agreement, qualitatively and quantitatively, this does

not hold for systems with larger escape. The main results for partial escape are published

in Ref. [97]. Let us further remark that we successfully generalized the proposed classical

measures to systems with a true time dynamics [211] which is used, e.g., in the description of

optical microcavities.

If the nontrivial limit of full escape is considered, there are long-lived resonance eigenfunc-

tions with finite decay rates but also short-lived ones with arbitrary large decay rates. We first

investigate the semiclassical convergence of resonance eigenfunctions in dependence on their

decay rate. This analysis reveals that there is no universal behavior of resonance eigenfunctions

with large (but still finite) decay rates. Thus, semiclassical convergence is not expected for all

resonance eigenfunctions. On the other hand, there is a large regime of long-lived eigenfunc-

tions which semiclassically converge towards conditionally invariant measures. Heuristically

we motivate a simple model for full escape which leads to a resonance eigenfunction hypothesis

based on the quantum resolution and the instability of the invariant chaotic saddle. It states

that resonance eigenfunctions in systems with full escape are universally described by condi-

tionally invariant measures which are uniform on sets with the same temporal distance to the

quantum-resolved chaotic saddle. This implies a new class of classical conditionally invariant

measures for full escape. Qualitatively we find excellent quantum-to-classical agreement of

the phase-space structure of resonance eigenfunctions and these measures. Quantitatively, our

numerical results support the hypothesis for long-lived eigenfunctions. However, this does not

hold for large decay rates, corresponding to shorter-lived eigenfunctions. Thus, it remains an

open question if all resonance eigenfunctions with finite decay rates eventually develop univer-

sal properties in the semiclassical limit, or if their localization is dominated by fluctuations.

The main results about systems with full escape are published in Ref. [66].

For both, partial and full escape, different classes of conditionally invariant measures are

presented which lead to an intuitive understanding of the phase-space structure of resonance

eigenfunctions based only on simple properties of the classical system. For full escape, the

proposed measures are uniform on subsets which escape from the quantum-resolved invariant

set. For partial escape, the proposed measures are uniform on subsets which have the same

average forward and backward escape. Considering the limit of full escape, however, these

intuitive descriptions do not agree with each other. Therefore it remains a challenging open

task to unify these approaches and to find the true semiclassical limit measures. In order to

advance in this problem a promising class of conditionally invariant measures of the system

with partial escape is presented, which is based on periodic orbits. This is left for future

research.
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Appendix A

Generalized baker map

A.1 Classical baker map

One of the simplest models of chaotic hyperbolic dynamics is the baker map [150–153]. This

map implements stretching and folding on the phase space. In general, the phase space is

divided into 𝑀 parallel rectangles 𝐴𝑖 stretched along the 𝑝-direction with size |𝐴𝑖| = 𝑟𝑖 for

𝑟 = (𝑟0, . . . , 𝑟𝑀−1) ∈ R
𝑀
+ with

∑︀𝑀−1
𝑖=0 𝑟𝑖 = 1. The left boundary of the rectangle 𝐴𝑖 is given

by 𝑎𝑖 =
∑︀𝑖−1

𝑘=0 𝑟𝑘, where 𝑎𝑖 = 0 and 𝑎𝑀 = 1. It follows that 𝐴𝑖 = [𝑎𝑖, 𝑎𝑖+1)× [0, 1). The baker

map is then defined as the

𝐵r(𝑞, 𝑝) =

(︂
𝑞 − 𝑎𝑖
𝑟𝑖

, 𝑟𝑖 · 𝑝+ 𝑎𝑖

)︂

for 𝑞 ∈ [𝑎𝑖, 𝑎𝑖+1), (A.1)

i.e., it stretches the rectangles 𝐴𝑖 along the 𝑞-direction and compresses in the 𝑝-direction by

a factor of 𝑟𝑖, see Fig. 2.4 for the ternary baker map. The image of such a rectangle is given

by 𝐵r(𝐴𝑖) = [0, 1) × [𝑎𝑖, 𝑎𝑖+1). The map 𝐵r is invertible and symplectic on the torus T
2. It

is easy to see that it has discontinuities on the boundaries 𝛿𝐴𝑖 of the rectangles. Within the

rectangle 𝐴𝑖 the Jacobian of 𝐵r is constant and equals

𝐷𝐵r(𝑞, 𝑝) =

(︃

1/𝑟𝑖 0

0 𝑟𝑖

)︃

, for 𝑞 ∈ [𝑎𝑖, 𝑎𝑖+1), (A.2)

such that the expansion along the unstable direction is uniform in 𝐴𝑖 with Lyapunov exponent

𝜆L = 1/𝑟𝑖. Defining the equally spaced baker map 𝐵𝑀 := 𝐵r for 𝑟 = (1/𝑀, . . . , 1/𝑀) one

recovers the two-baker and three-baker maps with 𝑀 = 2 and 𝑀 = 3, respectively. These

maps have a uniform Lyapunov exponent 𝜆L = 1/𝑀 on the full phase-space.

The main advantage of the baker map is the simple structure. It has a complete symbolic

dynamics in terms of the Markov partition {𝐴𝑖}𝑀−1
𝑖=0 . In the following we will briefly recall
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this, see e.g., [60]. Consider the symbolic space Σ = {0, ...,𝑀 − 1}Z. Any sequence 𝜖 ∈ Σ,

𝜖 = · · · 𝜖−𝑛 · · · 𝜖−2𝜖−1.𝜖0𝜖1 · · · 𝜖𝑚 · · · , (A.3)

can be mapped onto the phase-space Γ = T
2 via the map 𝐽r : Σ → T

2 as

𝐽r(𝜖) =

(︃ ∞∑︁

𝑘=0

𝑎𝜖𝑘

𝑘−1∏︁

𝑙=0

𝑟𝜖𝑙 ,

∞∑︁

𝑘=0

𝑎𝜖−(𝑘+1)

𝑘∏︁

𝑙=1

𝑟𝜖−𝑙

)︃

. (A.4)

Note that 𝐽r is not bijective, because e.g., two sequences with 𝜖𝑖<𝑛 = 𝜖𝑖<𝑛, 𝜖𝑛 = 𝜖𝑛 − 1 and

𝜖𝑖>𝑛 = 0 while 𝜖𝑖>𝑛 = 𝑀 − 1 are mapped onto the same point (𝑞, 𝑝). Excluding all sequences

with 𝜖𝑖>𝑛 = 𝑀 − 1 and 𝜖𝑖<𝑚 = 𝑀 − 1 from Σ the restriction of 𝐽r to this set is bijective.

The symbolic shift 𝐵Σ : Σ → 𝜎 is defined as

𝐵Σ(𝜖) = · · · 𝜖−𝑛 · · · 𝜖−2𝜖−1𝜖0.𝜖1 · · · 𝜖𝑚 · · · , (A.5)

i.e., the index shifts by one, [𝐵Σ(𝜖)]𝑖 = 𝜖𝑖+1. The baker map 𝐵r on the torus T
2 conjugates

with the symbolic shift,

𝐵r = 𝐽r ∘𝐵Σ ∘ 𝐽−1
r , (A.6)

such that the dynamics is equivalent on Σ and on the torus.

A.2 Baker map with escape

Consider the baker map 𝐵r for some 𝑟 ∈ R
𝑀
+ with

∑︀𝑀−1
𝑖=0 𝑟𝑖 = 1. The closed map is equivalent

to the shift operator 𝐵Σ on the set Σ of symbolic sequences, see Eq. (A.6). For the map

with escape, let the reflection function be constant on the 𝑀 stripes 𝐴𝑖, and be given by the

𝑀 -tuple 𝑅 = (𝑅0, . . . , 𝑅𝑀−1) such that for all 𝑥 ∈ 𝐴𝑖 one has 𝑅(𝑥) = 𝑅𝑖. This defines the

baker map with escape ℬ(r,R) on the set of measures on Γ = T
2 as in Eq. (2.37).

In order to study the dynamics of the baker map with escape, first consider for 𝑛,𝑚 ∈ N

the finite sequence 𝜖𝑚− .𝜖
𝑛
+ = 𝜖−𝑚 · · · 𝜖−1.𝜖0 · · · 𝜖𝑛. This is used to define a so-called cylinder

on the symbolic space as [𝜖𝑚− .𝜖
𝑛
+] ⊂ Σ, which contains all sequences �̃� ∈ Σ with 𝜖𝑖 = 𝜖𝑖 for

−𝑚 ≤ 𝑖 ≤ 𝑛. This satisfies by construction that 𝐽r([𝜖
𝑚
− .𝜖

𝑛
+]) is a rectangle on the torus

T
2 and a subset of 𝐴𝜖0 . Moreover, applying the inverse baker map to this rectangle yields

𝐵−1
r ∘ 𝐽r([𝜖𝑚− .𝜖𝑛+]) ⊂ 𝐴𝜖−1 .

The baker map with escape is corresponds to a shift with escape ℬΣ
R for measures on the

set of symbolic sequences, 𝜇Σ on Σ. For such a measure ℬΣ
R is defined by

ℬΣ
R 𝜇Σ([𝜖𝑚− .𝜖

𝑛
+]) = 𝑅𝜖−1 · 𝜇Σ([𝜖−𝑚 · · · .𝜖−1𝜖0 · · · 𝜖𝑛]), (A.7)
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for all cylinders [𝜖𝑚− .𝜖
𝑛
+] ⊂ Σ. This follows from the definition of maps with escape, Eq. (2.37),

and the considerations above. Note that due to the conjugacy to the baker map on the torus

one can define a measure 𝜇r on the torus for any 𝜇Σ as the push-forward measure

𝜇r = 𝐽*
r𝜇

Σ = 𝜇Σ ∘ 𝐽−1
r . (A.8)

Most importantly the push-forward 𝐽*
r acts as a semi-conjugacy on the baker map with escape

ℬ(r,R) and the shift with escape ℬΣ
R,

𝐽*
r ℬΣ

R = ℬ(r,R) 𝐽
*
r , (A.9)

with the same restrictions to the symbolic space as in Eq. (A.6). Note that in Ref. [60] these

restrictions are lowered for the case of full escape in one of the sets 𝐴𝑖. In order to prove

Eq. (A.9) consider 𝐴 ⊂ T
2 and [𝜖] ⊂ Σ with 𝐴 = 𝐽r([𝜖]) and measures 𝜇Σ and 𝜇r with

𝜇r = 𝜇Σ ∘ 𝐽−1
r . For these sets and measures

𝐽*
r [ℬΣ

R𝜇
Σ](𝐴) = ℬΣ

R𝜇
Σ ∘ 𝐽−1

r (𝐴) = ℬΣ
R𝜇

Σ([𝜖]) (A.10)

= 𝑅𝜖−1 · 𝜇Σ
(︁

[𝐵Σ]−1([𝜖])
)︁

= 𝑅𝜖−1
⏟ ⏞ 

=𝑅
B−1
r (A)

·𝜇Σ
(︁

[𝐵Σ]−1 ∘ 𝐽−1
r

⏟  ⏞  

𝐽−1
r ∘𝐵−1

r

(𝐴)
)︁

(A.11)

= 𝑅𝐵−1
r (𝐴) · [𝐽*

r𝜇
Σ]

(︀
𝐵−1

r (𝐴)
)︀
= ℬ(r,R) [𝐽

*
r𝜇

Σ](𝐴), (A.12)

holds, which generalizes to arbitrary 𝐴 and corresponding subsets of Σ.

A.3 Quantized baker map

The baker map can be quantized using geometric quantization [151, 152, 174, 212]. In general

it is well defined only, if the coefficients of 𝑟 satisfy [60]

𝑁𝑖 := 𝑁 𝑟𝑖 ∈ N, for 0 ≤ 𝑖 < 𝑀. (A.13)

This condition can be achieved for large enough 𝑁 by modification of 𝑟 → 𝑟 + 𝛿𝑟. The 𝛿𝑟𝑖

can be chosen arbitrarily small in the limit 𝑁 → ∞, thus leading to almost the same classical

dynamics. The quantization ℬr on H𝑁 is given in position basis by the matrix [151,152,212]

ℬr = ℱ−1
𝑁

⎛

⎜
⎜
⎜
⎜
⎝

ℱ𝑁0

ℱ𝑁1

. . .

ℱ𝑁𝑀−1

⎞

⎟
⎟
⎟
⎟
⎠

. (A.14)
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Here ℱ�̃� denotes the discrete Fourier transformation between position and momentum states,

which is for any �̃� ∈ N and arbitrary Bloch phases 𝜗𝑝, 𝜗𝑞 ∈ [0, 1] defined by the matrix

[ℱ�̃� ]𝑚𝑛 = �̃�−1/2 e−2𝜋i (𝑚+𝜗𝑝)(𝑛+𝜗𝑞) / �̃� . (A.15)

In the case of the ternary baker map 𝐵3 choosing the Bloch phases as 𝜗𝑝 = 𝜗𝑞 = 1/2 ensures

the same symmetries of classical and quantum map.
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Additional numerical results

B.1 Distribution of eigenphases

B.1.1 Partial escape.

Consider all eigenvalues 𝜆 = exp(−i𝜃 − 𝛾/2) of a chaotic system with partial escape. In-

stead of the decay rates 𝛾 investigated in Section 4.1.2 here we analyze the distribution of

eigenphases 𝜃. Therefore we consider the chaotic standard map with partial escape from

the region Ω = (0.3, 0.6) × [0, 1) and 𝑅Ω = 0.2 as in Sec. 4.1.2. We illustrate the distri-

bution of the resonances with respect to their eigenphases 𝜃 as a histogram in Fig. B.1 for

ℎ ∈ {1/250, 1/1000, 1/4000, 1/16000}. The number of sampling intervals is 𝑛 = 40 for all ℎ,

leading to better statistics for smaller ℎ as the number of resonances increases. For ℎ = 1/250

(a) the distribution fluctuates around the uniform distribution, shown for comparison as a red

line. With smaller ℎ the fluctuations become smaller, see (b)–(d).

We conclude that for partial escape in the semiclassical limit all resonances are uniformly

distributed with respect to their eigenphase 𝜃. This is rigorously proven in Ref. [195], where it

(a)
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0.2

0.3

0 π 2π

P (θ)

θ

.

(b)

0 π 2πθ

.

(c)
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(d)

0 π 2πθ

.

Figure B.1: Distribution of eigenphases θ for the chaotic standard map with partial
escape for 𝑅Ω = 0.2. Shown is the normalized probability 𝑃 (𝜃) for the eigenvalues
𝜆 = exp (−i𝜃 − 𝛾/2) for (a) ℎ = 1/250, (b) ℎ = 1/1000 (c) ℎ = 1/4000, and (d) ℎ = 1/16000.
Horizontal line shows the uniform expectation P (θ) = (2π)−1 ≈ 0.16. For distribution of
decay rates see Fig. 4.2.
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Figure B.2: Distribution of eigenphases θ for the chaotic standard map with full escape.
Shown is the normalized probability P (θ) of all eigenvalues 𝜆 = exp (−iθ − γ/2) with γ ≤ 1
for (a) ℎ = 1/250, (b) ℎ = 1/1000 (c) ℎ = 1/4000, and (d) ℎ = 1/16000. Horizontal line
shows the uniform expectation P (θ) = (2π)−1 ≈ 0.16. For distribution of decay rates see
Fig. 5.4.

is shown that semiclassically almost all resonances have decay rates within (𝛾typ − 𝜖, 𝛾typ + 𝜖)

and that these resonances are uniformly distributed with respect to their eigenphase. We

remark that in Fig. B.1 we analyze all resonances instead of restricting to those close to 𝛾typ.

B.1.2 Full escape.

We similarly investigate the eigenphases 𝜃 of all long-lived resonances with decay rate 𝛾 < 1

for the system with full escape, i.e., 𝑅Ω = 0. The normalized distribution of 𝜃 is illustrated

in Fig. B.2. We notice stronger fluctuations than in the system with partial escape, which are

due to the smaller number of considered resonances. For smaller values of ℎ these fluctuations

vanish and the probability 𝑃 (𝜃) is almost constant. Note that 𝛾typ = ∞ for full escape

which means that the results in Ref. [195] are applicable only for instantaneously decaying

resonances.

B.2 Quantum expectation of observables

For completeness we present in this section the mean expectation value E𝛾[𝑎] and standard

deviation 𝜎𝛾(𝑎) for the observables 𝑎1,2,3 = 1𝐴,𝐵,𝐶 where 𝐴 = (0.3, 0.5) × (0.6, 0.8), 𝐵 =

(0.7, 0.9)× (0.1, 0.3), and 𝐶 = (0.3, 0.5)× (0.1, 0.3), see Fig. 4.7.

B.2.1 Partial escape

We present numerical results for the same parameters as in Fig. 4.10 for the observables

𝑎1,2,3 = 1𝐴,𝐵,𝐶 , defined in Sec. 4.2.2 in Figs. B.3–B.5, respectively. The observations are

similar as discussed for the smooth observable 𝑎4 in Sec. 4.2.2.
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Figure B.3: Same as Fig. 4.10 for observable a1 = 1𝐴. (a) Mean expectation value ⟨a⟩𝛾
vs. ℎ for γ ∈ {γnat, 0.35, 𝛾typ, 0.75, 𝛾inv}. The average is taken over 𝑆 = 50 resonance
eigenfunctions. Shaded regions indicate the corresponding standard deviation σ𝛾(𝑎). (b)
Standard deviation σ𝛾(𝑎) vs. ℎ for same 𝛾 as in (a). Gray dashed line shows approximate
scaling ∼ ℎ1/2.
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Figure B.4: Same as Fig. 4.10 for observable 𝑎2 = 1𝐵.
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Figure B.5: Same as Fig. 4.10 for observable 𝑎3 = 1𝐶 .

B.2.2 Full escape

We present numerical results for the same parameters as in Fig. 5.10 for the observables

𝑎1,2,3 = 1𝐴,𝐵,𝐶 in Figs. B.6–B.8, respectively. The observations are similar as discussed for the
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Figure B.6: Same as Fig. 5.10 for observable a1 = 1𝐴. (a) Mean expectation value ⟨a⟩𝛾
vs. ℎ for shown decay rates γ. The average is taken over 𝑆 = 50 resonance eigenfunctions.
Shaded region indicates standard deviation 𝜎𝛾(a). (b) Standard deviation 𝜎𝛾(a) vs. ℎ for
same decay rates. Gray dashed line shows scaling ∼ ℎ𝛿 with 𝛿 ≈ D0(Γs)/4.
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Figure B.7: Same as Fig. 5.10 for observable a2 = 1𝐵.
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Figure B.8: Same as Fig. 5.10 for observable a3 = 1𝐶 .

smooth observable 𝑎4 in Sec. 5.2.3.
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B.3 Effective information dimension

We investigate how the effective information dimension 𝐷1(𝛾, 𝜖), see Eqs. (2.49) and (4.50), of

single Husimi distributions ℋ𝛾 depends on the considered parameter 𝜖. For this purpose we

illustrate 𝐷1(𝛾, 𝜖) as a function of 𝛾 for four different values of 𝜖 ∈ {1/8, 1/32, 1/128, 1/512}
in Fig. B.9 and different values of Planck’s constant ℎ.

For ℎ = 1/250 and ℎ = 1/1000, shown in (a) and (b), we observe that first smaller values of

𝜖 lead to smaller effective dimensions, but decreasing 𝜖 further the trivial result 𝐷1(𝛾, 𝜖) = 2

is approached. Similar observations hold for ℎ = 1/4000 and ℎ = 1/16000, shown in (c) and

(d). For the largest considered 𝜖 = 1/8 we have almost the same dependence on 𝛾 for all

values of ℎ. Due to the limited resolution at the larger value of ℎ this changes for smaller 𝜖.

Interestingly, we observe a similar progression for ℎ = 1/250 with 𝜖 = 1/25 and ℎ = 1/4000

with 𝜖 = 1/27. This is also seen between ℎ = 1/1000 and ℎ = 1/16000 for the same 𝜖. In all

of these cases the fraction 𝜖/
√
ℎ < 1 is constant. Altogether, variation of 𝜖 shows that it is

necessary to evaluate the results of effective dimensions carefully for fixed values of ℎ, because

there are nontrivial effects in the regime where 𝜖 is of the order of
√
ℎ or smaller.
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Figure B.9: Fractal information dimensions D1(γ, 𝜖) of single resonance eigenfunc-
tions as a function of their decay rate γ. Considered are four different values of 𝜖 ∈
{1/8, 1/32, 1/128, 1/512} (from dark to light blue) and all eigenfunctions for (a) ℎ = 1/250,
(b) ℎ = 1/1000, (c) ℎ = 1/4000, and (d) ℎ = 1/16000. Vertical dotted lines indicate classical
decay rates γnat ≈ 0.22 (red), 𝛾typ ≈ 0.48 (blue), and 𝛾inv ≈ 0.88 (green).



156 Appendix B Additional numerical results

B.4 Jensen–Shannon divergence for different scales 𝜖

B.4.1 Partial escape

In this section we illustrate the Jensen–Shannon divergence 𝑑JS(ℋ𝛾, 𝜇𝜉), Eq. (4.51), between

single Husimi distributions ℋ𝛾 and the classical measures 𝜇𝜉 for the chaotic standard map with

partial escape from Ω = (0.3, 0.6)× [0, 1) and 𝑅Ω = 0.2 for different scales 𝜖. For 𝜖 = 1/16 see

Fig. 4.26 in Sec. 4.4.3.

In Figure B.10 we consider larger 𝜖 = 1/4, leading to overall smaller distances. The reason

is, that the phase-space distributions are compared on fewer, but larger sets, such that fluctu-

ations and differences can average out. Conversely for smaller 𝜖 = 1/32 we find overall larger

distances, see Fig. B.11. The general dependence of 𝑑JS on 𝛾 and ℎ is similar for all three
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(c)

0.2 0.6 1.0γ

Figure B.10: Jensen–Shannon divergence between single quantum Husimi distributions
and different classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b)
ℎ = 1/4000, and (c) ℎ = 1/16000. Same as Fig. 4.26 but using 𝜖 = 1/4. The symbols
correspond to the considered measures 𝜇𝜉 (blue diamonds), 𝜇nat (red boxes), 𝜇inv (green
triangles), and 𝜇L (gray circles). Dotted vertical lines indicate γnat, γtyp, and γinv (red,
blue, green).
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Figure B.11: Same as Fig. 4.26 and Fig. B.10 but using 𝜖 = 1/32.
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cases and the observations are robust against the specific choice of 𝜖. In the thesis we select

𝜖 = 1/16 since it gives a good phase-space resolution, while at the same time satisfies 𝜖 >
√
ℎ

if ℎ is smaller than ℎ < 1/250.

B.4.2 Full escape

In the following we consider 𝑑𝜖JS(ℋ𝛾, 𝜇) between single Husimi distributions ℋ𝛾 and different

classical measures 𝜇 for the chaotic standard map with full escape from Ω = (0.3, 0.6)× [0, 1),

i.e., 𝑅Ω = 0, for different scales 𝜖. For 𝜖 = 1/16 see Fig. 5.25 in Sec. 5.4.3. In Fig. B.12 we

show analogue results for 𝜖 = 1/4 and in Fig. B.13 for 𝜖 = 1/32. As for partial escape, the

results are robust against reasonable changes in 𝜖.
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Figure B.12: Jensen–Shannon divergence between single quantum Husimi distributions
and different classical measures as a function of the decay rate γ for (a) ℎ = 1/1000, (b)
ℎ = 1/4000, and (c) ℎ = 1/16000 in the system with full escape. Same as Fig. 5.25 but using
𝜖 = 1/4. The symbols correspond to the considered measures 𝜇L (gray circles), 𝜇nat (red
boxes), 𝜇𝜉 (black diamonds), 𝜇nat

𝛾 (green triangles), and 𝜇ℎ
𝛾 (blue stars). Dotted vertical

lines indicate γnat, γtyp, and γinv (red, blue, green).
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Figure B.13: Same as Fig. 5.25 and Fig. B.12 for 𝜖 = 1/32.





Appendix C

Miscellaneous proofs

C.1 Expectation for iterations of 𝑅 for c-measures

In the following we show that if 𝜇 is a conditionally invariant probability measure, ℳ𝜇 = e−𝛾𝜇,

Eq. (2.54), and 𝜇(Γ) = 1, the expectation value of the functions 𝑇+
𝑛 and 𝑇−

𝑚 defined in Sec. 4.2.5

satisfy

𝜇(𝑇+
𝑛 ) = e−𝑛𝛾(1− e−𝛾) and 𝜇(𝑇−

𝑚) = e𝑚𝛾(e𝛾 − 1), (C.1)

which corresponds to the semiclassical results Eqs. (4.25) and (4.26) and is shown as follows.

Recall the notation ℳ𝜇(𝑓) = 𝜇(𝑅 · [𝑓 ∘𝑀 ]), Eq. (2.38). Applying the map with escape 𝑛

times one obtains

ℳ𝑛𝜇(𝑓) = 𝜇(𝑅 · [𝑅 ∘𝑀 ] · · · · · [𝑅 ∘𝑀𝑛−1] · [𝑓 ∘𝑀𝑛]) (C.2)

= 𝜇

(︃
𝑛−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖 · 𝑓 ∘𝑀𝑛

)︃

. (C.3)

Inserting the function 𝑓(𝑥) = 1Γ(𝑥) = 1 and using conditional invariance of 𝜇, we get

𝜇

(︃
𝑛−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖

)︃

= ℳ𝑛𝜇(1Γ)
(2.54)
= e−𝑛𝛾𝜇(1Γ) = e−𝑛𝛾. (C.4)

Applying this towards 𝑇+
𝑛 =

∏︀𝑛−1
𝑖=0 𝑅 ∘𝑀 𝑖 −∏︀𝑛

𝑖=0 𝑅 ∘𝑀 𝑖 we get

𝜇(𝑇+
𝑛 ) = 𝜇

(︃
𝑛−1∏︁

𝑖=0

𝑅 ∘𝑀 𝑖

)︃

− 𝜇

(︃
𝑛∏︁

𝑖=0

𝑅 ∘𝑀 𝑖

)︃

= e−𝑛𝛾(1− e−𝛾), (C.5)

which proves the first part of Eq. (C.1). The second part follows similarly from the inverse

time evolution Eq. (2.58), ℳ−1𝜇(𝑓) = 𝜇(𝑅−1 ∘ 𝑀−1 · 𝑓 ∘ 𝑀−1), applied 𝑚 times to 𝑓 = 1Γ

and using conditional invariance, ℳ−1𝜇 = e𝛾𝜇.
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C.2 Comparison of natural and inverse decay rate

Here we show that for natural and inverse decay rate 𝛾nat < 𝛾inv holds. Heuristically the

idea is quite simple: Assume a finite approximation of the Perron-Frobenius operator, i.e.,

a positive matrix mapping phase-space densities onto phase-space densities. The Perron-

Frobenius theorem implies that the largest eigenvalue Λfwd
+ is non-degenerate and positive,

and it is associated with the natural decay rate Λfwd
+ = e−𝛾nat . Thus any other eigenvalue must

be smaller than Λfwd
+ implying larger decay rates. In particular 𝛾inv > 𝛾nat. Consistently, the

largest eigenvalue Λinv
+ of the Perron-Frobenius approximation of the inverse map is associated

with the inverse decay rate as, Λinv
+ = e𝛾inv. Any other eigenvalue must be smaller than Λinv

+ ,

leading to smaller decay rates.

In the following we first prove the statement 𝛾nat < 𝛾inv for the generalized bakers map with

escape, followed by a generalization to arbitrary maps with escape.

Proof for bakers map. Consider the generalized bakers map 𝐵r with 𝑟 ∈ R
𝑁
+ , such that

∑︀

𝑖 𝑟𝑖 =

1, see App. A.1. Let the reflectivity function be constant on the rectangles 𝐴𝑖 as defined in

Sec. A.2, 𝑅(𝑥) = 𝑅𝑖 for all 𝑥 ∈ 𝐴𝑖. In this case it is easy to see that

e−𝛾nat =
∑︁

𝑖

𝑟𝑖𝑅𝑖, and e𝛾inv =
∑︁

𝑖

𝑟𝑖
1

𝑅𝑖

. (C.6)

In order to show that 𝛾nat < 𝛾inv we show that e−𝛾nat > e−𝛾inv ,

e−𝛾nat/e−𝛾inv =
∑︁

𝑖

𝑟𝑖𝑅𝑖 ·
∑︁

𝑗

𝑟𝑗
1

𝑅𝑗

=
∑︁

𝑖,𝑗

𝑟𝑖𝑟𝑗
𝑅𝑖

𝑅𝑗

(C.7)

=
1

2

∑︁

𝑖,𝑗

(︁

𝑟𝑖𝑟𝑗
𝑅𝑖

𝑅𝑗

+ 𝑟𝑗𝑟𝑖
𝑅𝑗

𝑅𝑖
⏟  ⏞  

=𝑟𝑖𝑟𝑗

(︂

𝑅𝑖
𝑅𝑗

+
𝑅𝑗
𝑅𝑖

)︂

≥2𝑟𝑖𝑟𝑗

)︁

≥
∑︁

𝑖,𝑗

𝑟𝑖𝑟𝑗 =
∑︁

𝑖

𝑟𝑖
∑︁

𝑗

𝑟𝑗 = 1. (C.8)

However, equality is only obtained if 𝑅𝑖 = 𝑅𝑗 for all 𝑖, 𝑗, which relates to the trivial case of a

global factor. For all other cases this proves for the generalized Bakers map that the natural

decay rate is always smaller than the inverse decay rate.
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In order to prove this statement for an arbitrary (hyperbolic) map we follow the ideas and

use notation as in Refs. [67,162], were Eq. (2.53) as a generalization of the Kantz-Grassberger

relation Eq. (2.52) is derived.

Proof for arbitrary map with escape. Consider the 𝑛-th image and preimage of a region of

interest Γ under the closed map 𝑀 . We will consider Γ to be the whole phase space later.

If 𝑛 is large enough, 𝑛 ≫ 1, then one can always identify a set of narrow ”columns” in the

unstable direction and narrow ”strips” along the stable direction, see Fig. 2 in Ref. [162] and

Ref. [137] Chp. 9. Each of these columns and strips contain a periodic point 𝑦 with period

𝑝 = 𝑛 [137, Chp. 9] such that 𝑀𝑛(𝑦) = 𝑦.

Let 𝑦 be such a periodic point with period 𝑝 = 𝑛 at the intersection of strip 𝑗 with column

𝑖. The width of column 𝑖 and strip 𝑗 are determined by the Lyapunov exponents around the

cycle point, 𝜀
′(𝑛)
𝑖 = e𝜆

′(𝑛)
𝑦 and 𝜀

(𝑛)
𝑗 = e−𝜆

(𝑛)
𝑦 [162], where in our case of a volume preserving map

contraction and expansion rate are the same, −𝜆
′(𝑛)
𝑦 = 𝜆

(𝑛)
𝑦 > 0. Note that 𝑛𝜆

(𝑛)
𝑦 is the total

expansion after one period of 𝑦. Consider a uniform distribution of density one in the strip 𝑗

(giving a total weight of 𝜀
(𝑛)
𝑗 ). This distribution is mapped under the closed map 𝑀 in 𝑛 steps

onto the column 𝑖. The points in 𝑗 stay close to the periodic point, such that on average they

obtain a decay with 𝑅
(𝑛)
𝑦 =

(︀∏︀𝑛
𝑘=1 𝑅[𝑀𝑘(𝑦)]

)︀1/𝑛
in each time step. Thus after 𝑛 iterations the

weight on the 𝑖-th column is given by [162]

𝜇
(𝑛)
𝑖 =

𝑛∏︁

𝑘=1

𝑅[𝑀𝑘(𝑦)] · 𝜀(𝑛)𝑗 = e𝑛[ln𝑅
(𝑛)
𝑦 −𝜆

(𝑛)
𝑦 ]. (C.9)

For the natural decay rate 𝛾 = 𝛾nat the sum over all columns satisfies

e−𝑛𝛾nat =
∑︁

𝑖

𝜇
(𝑛)
𝑖 =

∑︁

𝑦 p.p: 𝑝=𝑘𝑛

e𝑛[ln𝑅
(𝑛)
𝑦 −𝜆

(𝑛)
𝑦 ] (C.10)

and can be written as a sum over periodic orbits. Similar considerations for the inverse map

ℳ−1 lead to a mapping of a density on column 𝑖 onto the strip 𝑗, which experiences an average

growth with 1

𝑅
(𝑛)
𝑦

. Thus the weight accumulating on strip 𝑗 equals

𝜇
(𝑛)
𝑗 = e𝑛[− ln𝑅

(𝑛)
𝑦 −𝜆

(𝑛)
𝑦 ] (C.11)

and one obtains an exponential growth for the corresponding c-measure as

e𝑛𝛾inv =
∑︁

𝑗

𝜇
(𝑛)
𝑗 =

∑︁

𝑦 p.p: 𝑝=𝑘𝑛

e𝑛[− ln𝑅
(𝑛)
𝑦 −𝜆

(𝑛)
𝑦 ]. (C.12)
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Altogether we get

e−𝑛𝛾nat/e−𝑛𝛾inv =
∑︁

𝑦 p.p: 𝑝=𝑘𝑛

e𝑛[ln𝑅
(𝑛)
𝑦 −𝜆

(𝑛)
𝑦 ]

∑︁

𝑧 p.p: 𝑝=𝑘𝑛

e𝑛[− ln𝑅
(𝑛)
𝑧 −𝜆

(𝑛)
𝑧 ] (C.13)

=
∑︁

𝑦,𝑧 p.p: 𝑝=𝑘𝑛

e−𝑛𝜆
(𝑛)
𝑦 e−𝑛𝜆

(𝑛)
𝑧

[︁

e𝑛 ln𝑅
(𝑛)
𝑦 e−𝑛 ln𝑅

(𝑛)
𝑧

]︁

⏟  ⏞  
(︃

𝑅
(𝑛)
𝑦

𝑅
(𝑛)
𝑧

)︃𝑛

(C.14)

=
1

2

∑︁

𝑦,𝑧 p.p: 𝑝=𝑘𝑛

e−𝑛𝜆
(𝑛)
𝑦 e−𝑛𝜆

(𝑛)
𝑧

[︃(︃

𝑅
(𝑛)
𝑦

𝑅
(𝑛)
𝑧

)︃𝑛

+

(︃

𝑅
(𝑛)
𝑧

𝑅
(𝑛)
𝑦

)︃𝑛]︃

⏟  ⏞  
≥2

(C.15)

≥
(︃

∑︁

𝑦 p.p: 𝑝=𝑘𝑛

e−𝑛𝜆
(𝑛)
𝑦

)︃(︃
∑︁

𝑧 p.p: 𝑝=𝑘𝑛

e−𝑛𝜆
(𝑛)
𝑧

)︃

𝑛→∞−−−→ 1. (C.16)

Taking the limit in the last step gives unity because we sum over terms e−𝑛𝜆
(𝑛)
𝑦 , corresponding

to one divided by the magnitude of the expanding eigenvalue of the linearization around the

periodic orbit, as for example is given in Ref. [137] (Eq. (9.42), page 367). This corresponds

to the sum rule by Hannay and Ozorio de Almeida [206]. Note that in case of the baker map

the result is already exact for 𝑛 = 1 due to exact self similarity.

C.3 Conditional invariance of product measures

In this section we first rigorously prove conditional invariance for the product measures 𝜇𝜉

constructed for the generalized baker map with partial escape. Secondly we consider general

hyperbolic maps and heuristically derive conditional invariance.

C.3.1 Generalized baker map

In this section we prove conditional invariance for the measures 𝜇𝜉 for the uniformly hyperbolic

baker map with escape, defined in App. A.2. For this purpose, let us consider the specific class

of Bernoulli measures [60]. Therefore we define a weight distribution 𝑃 = (𝑃0, 𝑃1, . . . , 𝑃𝑀)

satisfying 0 ≤ 𝑃𝑖 ≤ 1 for all 𝑖 < 𝑀 and
∑︀𝑀−1

𝑖=0 𝑃𝑖 = 1. For any such 𝑃 consider the Bernoulli

measure 𝜈
Σ+

P , which is defined on one sided cylinders [.𝜖+] ⊂ Σ+ as [60]

𝜈
Σ+

P ([.𝜖𝑛+]) =
𝑛∏︁

𝑘=0

𝑃𝜖𝑘 . (C.17)

This measure can be pushed similar as defined in Eq. (A.8) onto the interval [0, 1) by 𝜈r,P =

𝜈
Σ+

P ∘ 𝐽−1
r . Note that for 𝑃 = 𝑟 the uniform measure on the unit interval 𝜈L is obtained, and

in all other cases the measure 𝜈r,P is not absolutely continuous to the uniform measure, i.e.,
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it has no density [60]. Similarly one defines 𝜈
Σ−

P on the set of cylinders [𝜖−.] ⊂ Σ−.

In the following we generalize Proposition 3 in Ref. [60], given for full escape from one

rectangle 𝐴𝑖, to arbitrary escape: For any weight distribution 𝑃 and given any reflectivity 𝑅

on the sets 𝐴𝑖 there exists a unique auxiliary weight distribution 𝑃 * = (𝑃 *
0 , . . . , 𝑃

*
𝑀−1), defined

by 𝑃 *
𝑖 := 𝑅𝑖𝑃𝑖

(︁
∑︀𝑀−1

𝑗=0 𝑅𝑗𝑃𝑗

)︁−1

, such that the measure

𝜇Σ
P ,R := 𝜈

Σ+

P × 𝜈
Σ−

P * (C.18)

is conditional invariant under the baker shift with escape ℬΣ
R. The corresponding measure

𝜇r,P ,R := 𝜇Σ
P ,R ∘ 𝐽−1

r is a conditional invariant measure of the baker map with escape 𝐵r on

the torus.

Proof. In order to see conditional invariance, consider

ℬΣ
R 𝜇Σ

P ,R ([𝜖𝑚− .𝜖
𝑛
+])

(A.7)
= 𝑅𝜖−1 · 𝜇Σ

P ,R ([𝜖−𝑚 · · · 𝜖−2.𝜖−1𝜖0 · · · 𝜖𝑛]) (C.19)

(C.18)
= 𝑅𝜖−1 𝜈

Σ−

P * ([𝜖−𝑚 · · · 𝜖−2.]) · 𝜈Σ+

P ([.𝜖−1𝜖0 · · · 𝜖𝑛]) (C.20)

(C.17)
= 𝑅𝜖−1𝑃𝜖−1

⏟  ⏞  

=(
∑︀𝑀−1

𝑗=0 𝑅𝑗𝑃𝑗)𝑃 *
𝜖−1

𝑚∏︁

𝑘=2

𝑃 *
𝜖−𝑘

𝑛∏︁

𝑙=0

𝑃𝜖𝑙 (C.21)

=

(︃
𝑀−1∑︁

𝑗=0

𝑅𝑗𝑃𝑗

)︃

𝜇Σ
P ,R([𝜖

𝑚
− .𝜖

𝑛
+]), (C.22)

where the definition of 𝑃 *
𝜖−1

has been used in the last step. This proves that the measure

𝜇Σ
P ,R is an eigenmeasure of ℬΣ

R with eigenvalue ΛP ,R =
∑︀𝑀−1

𝑗=0 𝑅𝑗𝑃𝑗, implying the decay rate

𝛾P ,R = − ln ΛP ,R. Due to the semi-conjugacy of baker map and baker shift with escape this

also proves that 𝜇r,P ,R is conditionally invariant under ℬ(r,R) with the same decay rate,

ℬ(r,R)𝜇r,P ,R(𝐴) = ℬ(r,R) [𝐽
*
r𝜇

Σ
P ,R](𝐴) = 𝐽*

r [ℬΣ
R𝜇

Σ
P ,R](𝐴) = e−𝛾P ,R [𝐽*

r𝜇
Σ
P ,R](𝐴) (C.23)

= e−𝛾P ,R𝜇r,P ,R(𝐴). (C.24)

The natural measure 𝜇nat is given by 𝑃 nat = 𝑟 = (𝑟0, . . . , 𝑟𝑀−1), i.e., the measure along the

unstable direction is the uniform measure 𝜈L, while the distribution along the stable direction

is given by the fractal measure 𝜈nat := 𝜈r,P * with 𝑃 *
nat,𝑖 = 𝑅𝑖𝑟𝑖Λ

−1
nat and Λnat =

∑︀𝑀−1
𝑖=0 𝑅𝑖𝑟𝑖.

Let us remark that this fractal distribution at a given phase-space point 𝑥 depends on the

backward iterations 𝐵−1
r and is proportional to the accumulated reflectivity

∏︀𝑛
𝑖=1 𝑅[𝑀−𝑖(𝑥)],

which follows from multiplication of terms 𝑃 *
nat,𝑗 as in Eq. (C.17) for 𝑃 *. This is in accordance

to the finite approximation of 𝜇nat as in Eq. (4.33). Recalling Eq. (C.18) it turns out that we
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can write

𝜇nat = 𝜈L × 𝜈nat, (C.25)

which is understood for rectangles 𝐴 = 𝐴𝑞 × 𝐴𝑝 ⊂ T
2 as 𝜇nat(𝐴) = 𝜈L(𝐴𝑞) · 𝜈nat(𝐴𝑝). The

natural measure 𝜇nat is uniformly distributed along the unstable manifold. Note that the

fractal distribution along the stable manifold depends on 𝑟 and on the reflectivity 𝑅.

Conversely, the inverse measure 𝜇inv is uniform along the stable manifold, such that 𝑃 *
inv = 𝑟.

This implies a fractal distribution 𝜈inv := 𝜈r,P along the unstable manifold determined by

𝑃inv,𝑖 = 𝑟𝑖
𝑅𝑖

(︁
∑︀𝑀−1

𝑘=0
𝑟𝑘
𝑅𝑘

)︁−1

, such that the eigenvalue is Λinv =
(︁
∑︀𝑀−1

𝑘=0
𝑟𝑘
𝑅𝑘

)︁−1

. The fractal

distribution at some phase-space point 𝑥 depends on the forward iterates of and is proportional

to
∏︀𝑛

𝑖=0 𝑅
−1[𝑀 𝑖(𝑥)], see Eq. (C.17) and compare with Eq. (4.34). Similar to 𝜇nat, the inverse

measure is given by the product of 𝜈inv and 𝜈L,

𝜇inv = 𝜈inv × 𝜈L. (C.26)

For the product measures 𝜇𝜉 we assumed that their distribution along the unstable direction

is determined by the natural measure for the reflection function 𝑅1−𝜉, while the distribution

along the stable direction is given by the inverse measure obtained for 𝑅𝜉. For the baker map

with partial escape defined by 𝑅 as above consider 𝑅𝛽 := (𝑅𝛽
0 , . . . , 𝑅

𝛽
𝑀−1) for 𝛽 ∈ {𝜉, 1− 𝜉}.

Consider the Bernoulli measure defined by 𝑃 𝜉 with

𝑃𝜉,𝑖 := 𝑃 1−𝜉
nat,𝑖 𝑃

𝜉
inv,𝑖 ·

(︃
𝑀−1∑︁

𝑘=0

𝑃 1−𝜉
nat,𝑘 𝑃

𝜉
inv,𝑘

)︃−1

= 𝑟𝑖𝑅
−𝜉
𝑖

(︃
𝑀−1∑︁

𝑘=0

𝑟𝑘𝑅
−𝜉
𝑘

)︃−1

, (C.27)

which corresponds to the product of the weight distributions 𝑃 nat(𝑅
1−𝜉) and 𝑃 inv(𝑅

𝜉). This

implies that 𝑃 *
𝜉 is given by

𝑃 *
𝜉,𝑖 = 𝑅𝑖𝑃𝜉,𝑖

(︃
𝑀−1∑︁

𝑘=0

𝑅𝑘𝑃𝜉,𝑘

)︃−1

= · · · = 𝑟𝑖𝑅
1−𝜉
𝑖

(︃
𝑀−1∑︁

𝑘=0

𝑟𝑘𝑅
1−𝜉
𝑘

)︃−1

, (C.28)

which corresponds to 𝑃 *
𝜉,𝑖 = (𝑃 *

nat,𝑖)
1−𝜉 (𝑃 *

inv,𝑖)
𝜉 ·

(︁
∑︀𝑀−1

𝑘=0 (𝑃 *
nat,𝑘)

1−𝜉 (𝑃 *
inv,𝑘)

𝜉
)︁−1

, which is the

product of the weight distributions 𝑃 *
nat(𝑅

1−𝜉) and 𝑃 *
inv(𝑅

𝜉). The corresponding measure

𝜇𝜉 := 𝜇r,P 𝜉,R is a conditionally invariant Bernoulli measure as discussed above. Its eigenvalue

is thus given by

Λ𝜉 =
𝑀−1∑︁

𝑖=0

𝑅𝑖𝑃𝜉,𝑖 =

∑︀𝑀−1
𝑖=0 𝑟𝑖𝑅

1−𝜉
𝑖

∑︀𝑀−1
𝑘=0 𝑟𝑘𝑅

−𝜉
𝑘

≡ ΛR1−𝜉

nat

(ΛR𝜉

inv)
−1

(C.29)

= e−𝛾inv[R
𝜉]−𝛾nat[R

1−𝜉] = e−𝛾𝜉 (C.30)
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where the decay rate 𝛾𝜉 = 𝛾inv[𝑅
𝜉] + 𝛾nat[𝑅

1−𝜉] is given by the sum of natural decay rate

using 𝑅1−𝜉 and inverse decay rate for 𝑅𝜉. We emphasize that Eq. (C.28) corresponds to the

fractal measures 𝜈R1−𝜉

nat along the unstable direction. Similarly Eq. (C.27) corresponds to 𝜈R𝜉

inv

along the stable direction on the phase-space. Thus for the generalized baker map with partial

escape the product measures 𝜇𝜉 are exactly of the form

𝜇𝜉 = 𝜈R𝜉

inv × 𝜈R1−𝜉

nat , (C.31)

i.e., the fractal distribution along the stable manifold is characterized by the inverse measure

for 𝑅𝜉, while the fractal distribution along the unstable manifold is characterized by the

natural measure obtained for 𝑅1−𝜉. Loosely written this justifies the representation of the

product measures as 𝜇𝜉 = 𝜇𝑅𝜉

inv × 𝜇𝑅1−𝜉

nat .

Let us emphasize that in general it is possible to construct other c-measures by a similar

approach as in Eq. (C.31). However, in the case where escape takes place from a single

strip, only, we expect all of these product-like c-measures of the baker map to be the same.

Such measures are illustrated for the triadic baker map 𝐵3 and for the asymmetric 𝐵r with

𝑟 = (0.25, 0.3, 0.45) in Fig. C.1 and Fig. C.2. Let us remark that the measures constructed and

p

p

p

q q q

Figure C.1: Product measures 𝜇𝜉 for triadic baker map B3 with partial escape from the
middle strip, 𝑅 = (1, 0.2, 1), for 𝜉 ∈ {−1,−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 2} (from top left to
bottom right). Top right and bottem left panels correspond to 𝛾nat (𝜉 = 0) and 𝛾inv (𝜉 = 1),
respectively. The number of steps for construction is 𝑛 = 3. Dashed blue line indicates the
position of the opening Ω.
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p

p

p

q q q

Figure C.2: Product measures 𝜇𝜉 for asymmetric baker map Br with 𝑟 = (0.25, 0.3, 0.45)
and partial escape from the middle strip, 𝑅 = (1, 0.2, 1), for 𝜉 as in Fig. C.1. The number
of steps for construction is 𝑛 = 3. Dashed blue line indicates the position of the opening Ω.

numerically investigated in Ref. [205] for the special case of the triadic baker map with escape

from the middle strip as 𝑅 = (1, 𝛼, 1) are equivalent to the product measures 𝜇𝜉 presented

here. If full escape from the middle strip is considered, 𝑅 = (1, 0, 1), these measures are

equivalent to the Bernoulli measures discussed in Refs. [60, 213].

C.3.2 Hyperbolic maps

In this section we motivate that 𝜇𝜉 is conditionally invariant, ℳ𝜇𝜉 = e−𝛾𝜉𝜇𝜉, if the considered

closed map 𝑀 is uniformly hyperbolic. Note that this condition is rather restrictive and is

not satisfied by the standard map. The main idea is to use the local decomposition into

stable and unstable direction. In this sense, the measures can locally be written as 𝜇𝜉 =

𝜇nat[𝑅
1−𝜉] × 𝜇inv[𝑅

𝜉], as discussed below. The additional factor 𝑅 from the time evolution

ℳ, see Eq. (2.37), is split into two factors 𝑅1−𝜉 and 𝑅𝜉, being compensated by the fractal

measure along stable and unstable direction, leading to the decay rates 𝛾nat[𝑅
1−𝜉] and 𝛾inv[𝑅

𝜉]

in Eq. (4.40).

Let 𝑀 be hyperbolic. Consider a foliation of the phase space Γ under 𝑛 forward and 𝑚

backward iterations. This leads to a partition Γ into cells 𝐶𝑘 where the boundary of each

cell has stable and unstable manifold segments, see [214] or [137, Sec. 9.5]. If 𝑛 and 𝑚 are

large enough, the cells are approximately parallelograms, each containing a periodic point 𝑦𝑘
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of period 𝑝 ≤ 𝑛 + 𝑚. Lets consider the phase-space density of 𝜇nat and 𝜇inv, which is up to

normalization and approximated with a finite number of steps given by

ℬ𝑚(𝑥) :=
𝑚∏︁

𝑖=1

𝑅[𝑀−𝑖(𝑥)], ℱ𝑛(𝑥) :=
𝑛−1∏︁

𝑗=0

𝑅−1[𝑀 𝑗(𝑥)]. (C.32)

The reflectivity 𝑅 is evaluated at the backward iterates approximating 𝜇nat, and 𝑅−1 at the

forward iterates, respectively. For all points in 𝐶𝑘 which are on the unstable manifold of the

periodic point 𝑥 ∈ Γ𝑢
𝑦𝑘
, the distance 𝑑(𝑀−𝑖(𝑥),𝑀−𝑖(𝑦𝑘)) decreases with increasing 𝑖 ∈ N,

such that ℬ𝑚(𝑥) ≈ ℬ𝑚(𝑦𝑘). Similarly for points on the stable manifold 𝑥 ∈ Γ𝑠
𝑦𝑘

we obtain

ℱ𝑛(𝑥) ≈ ℱ𝑛(𝑦𝑘).

For each of the cells 𝐶𝑘 there exists a local coordinate transformation ℎ𝑘 : Γ → R
2 from

the phase-space to the tangential space, such that the parallelogram 𝐶𝑘 is mapped onto a

rectangle as follows. Let the periodic point be mapped onto the origin, ℎ𝑘(𝑦𝑘) = (0, 0), and

its unstable and stable manifolds onto first and second coordinate, respectively. Thus, for all

𝑥 ∈ Γ𝑢
𝑦𝑘

we have ℎ𝑘(𝑥) = (𝑥u, 0) and for all 𝑥 ∈ Γ𝑠
𝑦𝑘

we have ℎ𝑘(𝑥) = (0, 𝑥s) for some 𝑥s, 𝑥u ∈ R.

Last but not least ℎ𝑘 is assumed to preserve the volume between the phase space Γ and R
2 as

𝜇L(𝐶𝑘) = 𝜇L(ℎ𝑘(𝐶𝑘)).

From the considerations above, the mapping ℬ𝑛 ∘ ℎ−1
𝑘 (0, 𝑥u) ≈ ℬ𝑛(𝑦𝑘) is constant along the

first coordinate, while ℱ𝑚 ∘ ℎ−1
𝑘 (𝑥s, 0) ≈ ℱ𝑚(𝑦𝑘) is constant along the second coordinate. Let

ℎ𝑘(𝐶𝑘) = 𝐼u × 𝐼s for some intervals 𝐼u,s ⊂ R. The previous considerations motivate, that the

natural measure can be written as

𝜇nat = 𝜈L × 𝜈nat, (C.33)

𝜇nat(𝐶𝑘) = 𝜈L × 𝜈nat[ℎ𝑘(𝐶𝑘)] =

∫︁

𝐼u

d𝑥u ·
∫︁

𝐼s

d𝜈nat = |𝐼u|
∫︁

𝐼s

d𝜈nat (C.34)

while the inverse measure on 𝐶𝑘 can be written as

𝜇inv = 𝜈inv × 𝜈L, (C.35)

𝜇inv(𝐶𝑘) = 𝜈inv × 𝜈L[ℎ𝑘(𝐶𝑘)] =

∫︁

𝐼u

d𝜈inv ·
∫︁

𝐼s

d𝑥s = |𝐼s|
∫︁

𝐼u

d𝜈inv (C.36)

similar to the baker map, Sec. C.3.1. Since the map 𝑀 is volume preserving the preimage of

𝐶𝑘 is compressed in the unstable, and stretched along the stable direction of 𝑦𝑘 by a factor

e−𝜆𝑦𝑘 , such that ℎ𝑘−1(𝑀
−1(𝐶𝑘)) = e−𝜆𝑦𝑘 𝐼u × e𝜆𝑦𝑘 𝐼s. Equations C.33 and C.35 are thus related
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to conditional invariance of 𝜇nat and 𝜇inv as follows,

e−𝛾nat𝜇nat(𝐶𝑘) = ℳ𝜇nat(𝐶𝑘) = 𝑅[𝑀−1(𝑦𝑘)] · 𝜈L × 𝜈nat[ℎ𝑘−1(𝑀
−1(𝐶𝑘))] (C.37)

= 𝑅[𝑀−1(𝑦𝑘)] · e−𝜆𝑦𝑘 |𝐼u| ·
∫︁

e𝜆𝑦𝑘 𝐼s

d𝜈nat, (C.38)

and

e−𝛾inv𝜇inv(𝐶𝑘) = ℳ𝜇inv(𝐶𝑘) = 𝑅[𝑀−1(𝑦𝑘)] · 𝜈inv × 𝜈L[ℎ𝑘−1(𝑀
−1(𝐶𝑘))] (C.39)

= 𝑅[𝑀−1(𝑦𝑘)] · e𝜆𝑦𝑘 |𝐼s|
∫︁

e−𝜆𝑦𝑘 𝐼u

d𝜈inv. (C.40)

This allows to define the product measure 𝜇𝜉 on the sets 𝐶𝑘 as

𝜇𝜉 := 𝜈inv[𝑅
𝜉]× 𝜈nat[𝑅

1−𝜉]. (C.41)

Applying the map with escape to this measure yields

ℳ𝜇𝜉(𝐶𝑘) = 𝑅[𝑀−1(𝑦𝑘)] ·
∫︁

e−𝜆𝑦𝑘 𝐼u

d𝜈inv[𝑅
𝜉] ·

∫︁

e𝜆𝑦𝑘 𝐼s

d𝜈nat[𝑅
1−𝜉] (C.42)

= 𝑅𝜉[𝑀−1(𝑦𝑘)]

∫︁

e−𝜆𝑦𝑘 𝐼u

d𝜈inv[𝑅
𝜉]

⏟  ⏞  

=e−𝛾inv[𝑅
𝜉 ]·

∫︀

𝐼u
d𝜈inv[𝑅𝜉]·e−𝜆𝑦𝑘

· 𝑅1−𝜉[𝑀−1(𝑦𝑘)]

∫︁

e𝜆𝑦𝑘 𝐼s

d𝜈nat[𝑅
1−𝜉]

⏟  ⏞  

=e−𝛾nat[𝑅
1−𝜉 ]·

∫︀

𝐼s
d𝜈nat[𝑅1−𝜉]·e𝜆𝑦𝑘

(C.43)

= e−(𝛾inv[𝑅
𝜉]+𝛾nat[𝑅1−𝜉]) · 𝜇𝜉(𝐶𝑘), (C.44)

such that the measure 𝜇𝜉 is conditionally invariant on the sets 𝐶𝑘 with decay rate 𝛾𝜉 :=

𝛾inv[𝑅
𝜉] + 𝛾nat[𝑅

1−𝜉]. We emphasize that this is not a rigorous proof. However, we find strong

numerical evidence presented in Sec. C.3.3 that the approximation of the product measures

𝜇𝜉 for finite time steps 𝑛, Eq. (4.42), converge weakly to conditional invariant measures for

𝑛 → ∞.

C.3.3 Construction and convergence of product measures

In this section we present, how the product measures 𝜇𝜉 are approximated numerically for

chaotic maps with escape ℳ. We further check numerically their convergence depending on

the construction parameters. These considerations are taken from Ref. [97].

Numerical construction First, consider a fixed number 𝑛 of time steps for the approxi-

mation �̃�𝑛
𝜉 , see Eq. (4.42). Secondly, select a set 𝑋c of 𝑁c initial conditions is selected. These

initial conditions can be chosen randomly uniform on Γ. In this thesis we consider a
√
𝑁c×

√
𝑁c

grid of phase-space points, such that the distance to the next nearest point is given by 1/
√
𝑁c.
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This distance defines the minimal classical resolution for some subset of interest 𝐴 ⊂ Γ. The

typical scale of 𝐴, e.g., its diameter, should be much larger than 1/
√
𝑁c, such that the number

of initial points within 𝐴 is much larger than one, |𝑋c ∩𝐴| ≫ 1. In particular, for comparison

with quantum mechanics this implies the condition 1/
√
𝑁c ≪

√
ℎ. For each grid point 𝑥 ∈ 𝑋c

we compute the orbit {𝑀𝑘(𝑥)}𝑛−1
𝑘=−𝑛. which is used in Eq. (4.42) and end with the sum of all

contributions of points 𝑥 ∈ 𝑋c ∩ 𝐴,

�̃�𝑛
𝜉 (𝐴) ≈

1

|𝑋c ∩ 𝐴|
∑︁

𝑥∈𝑋c∩𝐴

𝑛∏︁

𝑖=1

𝑅1−𝜉[𝑀−𝑖(𝑥)]
𝑛−1∏︁

𝑗=0

𝑅−𝜉[𝑀 𝑗(𝑥)]. (C.45)

Finally, this measure is normalized with ‖�̃�𝑛
𝜉 ‖ = �̃�𝑛

𝜉 (Γ). We stress that fixing the number of

steps 𝑛 and increasing 𝑁c improves the approximation of �̃�𝑛
𝜉 . On the other hand, for a fixed

number of initial conditions 𝑁c the number of construction steps 𝑛 obtains an optimal value

due to the smallest spacing of sampling points, discussed in detail in Ref. [197].

Convergence of construction In the following we report properties of the classical mea-

sures regarding their conditional invariance, their convergence with 𝑛, and the accuracy of

the classical construction used in this paper. This is illustrated in Figs. C.3 and C.4 for

𝑁𝑐 = 81922 initial phase-space points. Conditional invariance is investigated with the Jensen–

Shannon divergence 𝑑JS between approximation 𝜇𝑛
𝜉 and its normalized iterate ℳ𝜇𝑛

𝜉 /‖ℳ𝜇𝑛
𝜉 ‖,

see Fig. C.3(a). Increasing values of 𝑛 lead to a decreasing 𝑑JS for all considered values of

𝜉 ∈ {0, 0.3, 0.5, 0.7, 1}, up to a maximal number �̃�. Thus 𝜇𝑛
𝜉 satisfies conditional invariance,

Eq. (2.54), with increasing 𝑛. The limiting construction time step �̃� can be explained by the

finite phase-space resolution due to the fixed number of points 𝑁c. Secondly, we numerically

(a)
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ξ = 0.0
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n+1
ξ )

n

(b)
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Figure C.3: Numerical estimation of conditional invariance and convergence for classical
construction of product measures 𝜇𝜉 for fixed number of initial conditions 𝑁𝑐 = 81922.
(a) Shown is the Jensen–Shannon divergence dJS(𝜇

𝑛
𝜉 , 𝜇

𝑛+1
𝜉 ) with 𝜖 = 1/16, see Eq. (4.51),

between numerical constructions with increasing number of time-steps 𝑛 as a function of
the number of construction time steps 𝑛 for 𝜉 ∈ {0, 0.3, 0.5, 0.7, 1}. (b) Considered is dJS
between 𝜇𝑛

𝜉 and its normalized iterate ℳ𝜇𝑛
𝜉 /‖ℳ𝜇𝑛

𝜉 ‖ over number of time-steps 𝑛 for same
𝜉 as in (a).
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dJS(𝜇
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n
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Figure C.4: Numerical estimation of accuracy for classical construction of product mea-
sures 𝜇𝜉 for fixed number of initial conditions 𝑁𝑐 = 81922. Shown is the average Jensen–
Shannon divergence of dJS(𝜇

𝑛
𝜉 , �̂�

𝑛
𝜉 ) with 𝜖 = 1/16, see Eq. (4.51), and the standard deviation

between 𝜇𝑛
𝜉 and 10 different realizations of �̂�𝑛

𝜉 with random-uniform initial points on Γ for
fixed 𝑛 = 8.

show that 𝑑JS(𝜇
𝑛
𝜉 , 𝜇

𝑛+1
𝜉 ) decreases with 𝑛 for all considered 𝜉, see Fig. C.3(b). This indicates

weak convergence of 𝜇𝑛
𝜉 . The same restrictions due to finite 𝑁c apply here. Based on these

results we use 𝜇𝑛
𝜉 with 𝑛 = 8 as an approximation for 𝜇𝜉 throughout the paper.

Moreover, we calculate the Jensen–Shannon divergence 𝑑JS between two different numerical

approximations, first 𝜇𝑛
𝜉 defined above with 𝑁c grid-points (which is used in this thesis), and

second �̂�𝑛
𝜉 with 𝑁c random-uniform initial conditions. This allows to numerically test the

magnitude of classical fluctuations due to the finite sample size. The results are presented

in Fig. C.4, where the average of the distances 𝑑JS(𝜇
𝑛
𝜉 , �̂�

𝑛
𝜉 ) is shown as a function of 𝜉 for

10 realizations of the random-uniform initial distributions. Additionally the corresponding

standard deviation for the considered realizations is shown. We observe that for 𝜉 = 0 (i.e.,

at 𝛾nat) the accuracy is nearly one magnitude smaller than for 𝜉 = 1 (𝛾inv), and that the

dependence is continuous. In all cases the errors are much smaller than the quantum-to-

classical distances investigated in Sec. 4.4.3.

C.4 Conditional invariance of periodic orbit measures

In the following we prove that the measures 𝜇p defined in Eq. (4.47) for any periodic orbit

𝑝 = {𝑦𝑖}𝑝−1
𝑖=0 of length |𝑝| = 𝑝 are conditionally invariant with decay rate 𝛾p = −1

𝑝

∑︀𝑝−1
𝑗=0 ln𝑅𝑗,

where all 𝑦𝑖 ∈ Γ and 𝑅𝑖 = 𝑅(𝑦𝑖). Recall the definition

𝜇p(𝐴) :=
1

𝐶

𝑝−1
∑︁

𝑖=0

𝑐𝑖 𝛿𝑦𝑖 , with 𝑐𝑖 =

(︃
𝑝−1
∏︁

𝑗=0

𝑅
(𝑗−𝑖) mod 𝑝
𝑗

)︃1/𝑝

, (4.47)

where for all 𝑘 ∈ N we have −𝑘 mod 𝑝 = (𝑝− 𝑘) mod 𝑝, e.g., −1 mod 𝑝 = 𝑝− 1.

Proof conditional invariance. In order to prove conditional invariance we want to show that
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for any measurable 𝐴 ⊂ Γ

ℳ
(︃

𝑝−1
∑︁

𝑖=0

𝑐𝑖 𝛿𝑦𝑖(𝐴)

)︃

=

𝑝−1
∑︁

𝑖=0

𝑐𝑖 𝑅𝑖 𝛿𝑦(𝑖+1) mod 𝑝
(𝐴)

!
= e−𝛾p

𝑝−1
∑︁

𝑖=0

𝑐𝑖 𝛿𝑦𝑖(𝐴). (C.46)

Therefore it is sufficient to show that 𝑐𝑖𝑅𝑖 = e−𝛾p𝑐𝑖+1 for all 𝑖 < 𝑝− 1 and 𝑐𝑝−1𝑅𝑝−1 = e−𝛾p𝑐0.

We obtain for 𝑖 < 𝑝− 1

𝑐𝑖 𝑅𝑖 =

(︃

𝑅𝑝
𝑖

𝑝−1
∏︁

𝑗=0

𝑅
(𝑗−𝑖) mod 𝑝
𝑗

)︃1/𝑝

=

(︃

𝑅𝑝
𝑖

𝑝−1
∏︁

𝑘=0

𝑅𝑘

𝑝−1
∏︁

𝑗=0

𝑅
[(𝑗−𝑖) mod 𝑝]−1
𝑗

)︃1/𝑝

(C.47)

=

𝑝−1
∏︁

𝑘=0

𝑅
1/𝑝
𝑘

⏟  ⏞  

=e
−𝛾p

⎛

⎜
⎜
⎝
𝑅𝑝

𝑖

𝑝−1
∏︁

𝑗=0
𝑗 ̸=𝑖

𝑅
(𝑗−[𝑖+1]) mod 𝑝
𝑗 ·𝑅−1

𝑖

⎞

⎟
⎟
⎠

1/𝑝

= e−𝛾p

(︃
𝑝−1
∏︁

𝑗=0

𝑅
(𝑗−[𝑖+1]) mod 𝑝
𝑗

)︃1/𝑝

, (C.48)

= e−𝛾p 𝑐𝑖+1, (C.49)

where for 𝑗 ̸= 𝑖 we used [(𝑗 − 𝑖) mod 𝑝]− 1 = (𝑗 − [𝑖+ 1]) mod 𝑝. The equivalent relation for

𝑖 = 𝑝− 1 is shown similarly. This proves that 𝜇𝑝 is a c-measure of ℳ.

Proof of uniqueness. In order to see that there exists only one c-measure for any given periodic

orbit consider the following sets of linear equations for the normalized coefficients 𝑐𝑖/𝐶 (which

we will call 𝑐𝑖 again in the following). We have for 0 ≤ 𝑖 < 𝑝 − 1 that 𝑐𝑖𝑅𝑖 = Λp𝑐𝑖+1 with

Λp := e−𝛾p =
∏︀𝑝−1

𝑖=0 𝑅
1/𝑝
𝑖 . Note that Λp cannot be chosen freely, as 𝑝-fold application of the

map with escape leads to this factor (to the power of 𝑝) for each of the points on the considered

periodic orbit. We first show, that this already implies that 𝑐𝑝−1𝑅𝑝−1 = Λp𝑐0,

Λp𝑐0 =
Λ2

p𝑐1

𝑅0

=
Λ3

p𝑐2

𝑅0𝑅1

= · · · =
Λ𝑝

p𝑐𝑝−1
∏︀𝑝−2

𝑖=0 𝑅𝑖

=

∏︀𝑝−1
𝑖=0 𝑅𝑖𝑐𝑝−1
∏︀𝑝−2

𝑖=0 𝑅𝑖

= 𝑅𝑝−1𝑐𝑝−1, (C.50)

so that we remove this condition from the linear system of equations. Together with the

normalization
∑︀𝑝−1

𝑖=0 𝑐𝑖 = 1 we obtain the linear equation

𝐾 · 𝑐 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅0 −Λp 0 . . .

0 𝑅1 −Λp 0 . . .

0 0 𝑅2 −Λp 0 . . .
...

. . . . . .

0 . . . 0 𝑅𝑝−2 −Λp

1 . . . 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑐0

𝑐1

𝑐2
...

𝑐𝑝−2

𝑐𝑝−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0
...

0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.51)

implicitly defining the coefficient matrix 𝐾. This equation has exactly one solution, if the
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determinant of the matrix satisfies det(𝐾) ̸= 0. Evaluation of the determinant with Laplace’s

formula applied to the last column of the matrix (highlighted in red) gives using that 𝐾 is

𝑝-dimensional

det(𝐾) =(−1)𝑝+𝑝 · 1 · det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅0 −Λp 0 . . .

0 𝑅1 −Λp 0 . . .
...

. . . . . .

0 0 𝑅𝑝−3 −Λp

0 . . . 0 𝑅𝑝−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(C.52)

+ (−1)𝑝+(𝑝−1)

⏟  ⏞  
=−1

·(−Λp) · det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅0 −Λp 0 . . .

0 𝑅1 −Λp 0 . . .
...

. . . . . .

0 . . . 0 𝑅𝑝−3 −Λp

1 . . . 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(C.53)

=

𝑝−2
∏︁

𝑖=0

𝑅𝑖 + Λp · det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑅0 −Λp 0 . . .

0 𝑅1 −Λp 0 . . .
...

. . . . . .

0 . . . 0 𝑅𝑝−3 −Λp

1 . . . 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⏟  ⏞  

:=𝐾𝑝−1

(C.54)

Thus we iteratively by obtain similarly defining 𝐾𝑝−𝑛

det(𝐾) =

𝑝−2
∏︁

𝑖=0

𝑅𝑖 + Λp ·
(︃

𝑝−3
∏︁

𝑖=0

𝑅𝑖 + Λp · det(𝐾𝑝−2)

)︃

(C.55)

=

𝑝−2
∏︁

𝑖=0

𝑅𝑖 + Λp

𝑝−3
∏︁

𝑖=0

𝑅𝑖 + Λ2
p ·

(︃
𝑝−4
∏︁

𝑖=0

𝑅𝑖 + det(𝐾𝑝−3)

)︃

(C.56)

= · · · =
𝑝−1
∑︁

𝑗=1

Λ𝑗−1
p

𝑝−1−𝑗
∏︁

𝑖=0

𝑅𝑖 + Λ𝑝−1
p , (C.57)

which satisfies det(𝐾) > 0 if all 𝑅𝑖 > 0. This is the case for all strictly positive reflection

functions 𝑅 > 0. Thus for any periodic orbit, there exists only one c-measure, defined by the

solution of Eq. (C.52). This solution is given in Eq. (4.47).
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C.5 Measures on arbitrary orbits

In order to approximate the typical measure defined in Eq. (4.52) we consider arbitrary orbits

instead of periodic orbits in the following. Consider the orbit 𝑦 = {𝑦𝑖}∞𝑖=−∞ of all (forward

and backward) iterations 𝑦𝑖 = 𝑀 𝑖(𝑦0) of some initial point 𝑦0. Let 𝑅𝑖 := 𝑅(𝑦𝑖) for all 𝑖 ∈ Z.

For the finite subset 𝑦𝑛 := {𝑦−𝑛, . . . , 𝑦−1, 𝑦0, 𝑦1, . . . , 𝑦𝑛−1} of 𝑛 backward and forward iterates

of 𝑦0 with length 2𝑛 define a measure in analogy to periodic orbits, Eq. (4.47),

𝜇[y,𝑛] = 1/𝐶
𝑛−1∑︁

𝑖=−𝑛

𝑐𝑛,𝑖𝛿𝑦𝑖 with (C.58)

𝑐𝑛,𝑖 :=
𝑖−1∏︁

𝑘=−𝑛

𝑅𝑘

𝑛−1∏︁

𝑗=−𝑛

𝑅
𝑗−𝑖
2𝑛
𝑗 =

𝑛−1∏︁

𝑗=−𝑛

𝑅
(𝑗−𝑖) mod (2𝑛)

2𝑛
𝑗 , (C.59)

where 𝐶 =
∑︀𝑛−1

𝑖=−𝑛 𝑐𝑛,𝑖 normalizes the measure. Before discussing their conditional invariance

in the limit of large 𝑛 in Sec. C.5.2, consider the average decay of such an orbit,

𝛾y = − lim
𝑛→∞

ln
𝑛−1∏︁

𝑘=−𝑛

𝑅
1
2𝑛
𝑘 (C.60)

= − lim
𝑛→∞

1

2𝑛

𝑛−1∑︁

𝑘=−𝑛

ln𝑅(𝑀𝑘(𝑦0))
(2.29)
= −

∫︁

Γ

ln𝑅 d𝜇L = 𝛾typ, (C.61)

which is given by the typical decay rate for almost all initial conditions, see Eq. (2.67) and [89].

Hence, averaging over many initial conditions, these measures could be used to construct an

approximation to the measure 𝜇typ, defined in Eq. (4.52).

C.5.1 Approximation for typical measure

Consider the measures 𝜇y for many initial conditions on the phase space, such that each of

these measures decays with rate 𝛾typ. If these initial conditions are distributed uniformly it is

sufficient to consider the contribution at the initial point 𝑦0 for each of these measures. Taking

their average still gives a classical measure with decay rate 𝛾typ. The numerical simplest

implementation is achieved by taking a finite sample 𝑋𝑐 of initial conditions uniformly on the

phase space Γ and considering 𝜇[y,𝑛] restricted to the initial point 𝑦0 for a finite number of

time steps 𝑛. The resulting measure is determined by

𝜇
{𝑛,𝑋𝑐}
typ (𝐴) =

1

|𝑋𝑐|
∑︁

𝑦0∈𝑋𝑐∩𝐴

𝑐𝑛,𝑦0
𝐶[y,𝑛]

. (C.62)

Establishing the relation to the measure conjectured in Eq. (4.52) is an interesting task

which remains for future research.



174 Appendix C Miscellaneous proofs

C.5.2 Conditional invariance

By definition, as for the periodic orbits, we obtain for all −𝑛 ≤ 𝑖 ≤ 𝑛− 1

𝑐𝑛,𝑖𝑅𝑖 = e−𝛾[y,𝑛]𝑐𝑛,𝑖+1, where e−𝛾[y,𝑛] :=
𝑛−1∏︁

𝑘=−𝑛

𝑅
1
2𝑛
𝑘 . (C.63)

Thus we get

ℳ𝜇[y,𝑛] = 1/𝐶𝑛

𝑛−1∑︁

𝑖=−𝑛

𝑐𝑛,𝑖 𝑅𝑖 𝛿𝑦𝑖+1
= 1/𝐶𝑛

𝑛−1∑︁

𝑖=−𝑛

e−𝛾[y,𝑛]𝑐𝑛,𝑖+1 𝛿𝑦𝑖+1
(C.64)

= e−𝛾[y,𝑛]/𝐶𝑛

(︃
𝑛−1∑︁

𝑖=−𝑛+1

𝑐𝑛,𝑖𝛿𝑦𝑖 + 𝑐𝑛,𝑛𝛿𝑦𝑛 + 𝑐𝑛,−𝑛𝛿𝑦−𝑛 − 𝑐𝑛,−𝑛𝛿𝑦−𝑛

)︃

(C.65)

= e−𝛾[y,𝑛]𝜇[y,𝑛] + e−𝛾[y,𝑛]
(︀
𝑐𝑛,𝑛𝛿𝑦𝑛 − 𝑐𝑛,−𝑛𝛿𝑦−𝑛

)︀
/𝐶𝑛, (C.66)

which is not conditionally invariant due to the terms 𝑐𝑛,±𝑛/𝐶𝑛. These terms come from the

end points 𝑦−𝑛 and 𝑦𝑛 of the finite orbit. In order to show that the limit 𝜇y = lim𝑛→∞ 𝜇[y,𝑛]

is conditionally invariant, it is necessary to show that lim𝑛→∞ 𝑐𝑛,±𝑛/𝐶𝑛 = 0. Note that for a

periodic orbit with length 2𝑛 the endpoints coincide, 𝑦−𝑛 = 𝑦𝑛, and both terms cancel each

other.

In order to show the convergence recall the coefficients 𝑐𝑛,𝑖 =
∏︀𝑖−1

𝑘=−𝑛 𝑅𝑘

∏︀𝑛−1
𝑗=−𝑛 𝑅

𝑗−𝑖
2𝑛
𝑗 . In order

to simplify the calculation we divide each coefficient with the global factor 𝑐 =
∏︀𝑛−1

𝑗=−𝑛 𝑅
1
2
+ 𝑗

2𝑛
𝑗

and obtain the rescaled coefficients

𝑎𝑛,𝑖 := 𝑐𝑛,𝑖/𝑐 =
𝑖−1∏︁

𝑘=−𝑛

𝑅𝑘

𝑛−1∏︁

𝑗=−𝑛

𝑅
−𝑖
2𝑛
𝑗

𝑛−1∏︁

𝑗=−𝑛

𝑅
− 1

2
𝑗 =

𝑖−1∏︁

𝑘=−𝑛

𝑅
1
2
𝑘

𝑛−1∏︁

𝑗=−𝑛

𝑅
−𝑖
2𝑛
𝑗

𝑛−1∏︁

𝑘=𝑖

𝑅
− 1

2
𝑘 . (C.67)

For 𝑖 = −𝑛 and 𝑖 = 𝑛 we get

𝑎𝑛,−𝑛 =
𝑛−1∏︁

𝑗=−𝑛

𝑅
𝑛
2𝑛
𝑗

𝑛−1∏︁

𝑘=−𝑛

𝑅
− 1

2
𝑘 = 1 and 𝑎𝑛,𝑛 =

𝑛−1∏︁

𝑘=−𝑛

𝑅
1
2
𝑘

𝑛−1∏︁

𝑗=−𝑛

𝑅
−𝑛
2𝑛
𝑗 = 1, (C.68)

respectively. Hence, in order to achieve conditional invariance it is sufficient to show that

lim𝑛→∞ 1/𝐴𝑛 = 0 with the rescaled normalization factor

𝐴𝑛 =
𝑛−1∑︁

𝑖=−𝑛

𝑎𝑛,𝑖 =
𝑛−1∑︁

𝑖=−𝑛

𝑖−1∏︁

𝑘=−𝑛

𝑅𝑘

𝑛−1∏︁

𝑗=−𝑛

𝑅
− 𝑖+𝑛

2𝑛
𝑗 =

2𝑛−1∑︁

𝑖=0

(︃
𝑖−1∏︁

𝑘=0

𝑅
1
𝑖
𝑘−𝑛

)︃𝑖 (︃2𝑛−1∏︁

𝑗=0

𝑅
1
2𝑛
𝑗−𝑛

)︃−𝑖

(C.69)

=
2𝑛−1∑︁

𝑖=0

(︃⟨︀
{𝑅𝑘}𝑖−𝑛

𝑘=−𝑛

⟩︀

geom
⟨︀
{𝑅𝑘}𝑛−1

𝑘=−𝑛

⟩︀

geom

)︃𝑖

, (C.70)
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where an index shift is used in the third equality. In the last step the geometric mean ⟨·⟩geom
of a finite set is applied to the two products. This sum itself looks similar to a geometric

sequence
∑︀2𝑛−1

𝑖=0 𝑟𝑖, which diverges for 𝑟 ≥ 1. However, 𝑟 is not constant here, but depends on

𝑖. Thus 1/𝐴𝑛 → 0 if the number of summands with
⟨{𝑅𝑘}𝑖−𝑛

𝑘=−𝑛⟩geom
⟨{𝑅𝑘}𝑛−1

𝑘=−𝑛⟩geom
> 1 grows with 𝑛.

As an example consider the case that all 𝑅𝑘 = 𝛼 for some 𝛼. Then the geometric mean of

these {𝑅𝑘} equals 𝛼 in both cases, such that 1/𝐴𝑛 = 1/
∑︀2𝑛−1

𝑖=0 1 = (2𝑛)−1 → 0. In general

this is not satisfied. However, ergodicity implies that for almost all initial conditions the orbit

encounters every phase-space region proportional to its size. This means that the average decay

rate of almost all orbits converges to 𝛾typ = −
∫︀

Γ
ln𝑅d𝜇L. For example, if 𝑅(𝑥 ∈ Ω) = 𝑅Ω

and 𝑅(𝑥 /∈ Ω) = 1, the probability 𝑃 (𝑅𝑘 = 𝑅Ω) = 𝜇L(Ω) and 𝑃 (𝑅𝑘 = 1) = 1 − 𝜇L(Ω)

for arbitrary long orbits. Intuitively this leads to divergence of 𝐴𝑛 with increasing 𝑛 (as the

geometric means are of the same order for large 𝑖), and we are able to numerically support

this statement (not shown), even though a rigorous proof cannot be given.

Because the considered system is chaotic it is reasonable to apply these results to (typical)

arbitrary long orbits. In conclusion, if the number of iterations 𝑛 → ∞ we expect

‖ℳ𝜇[y,𝑛] − e−𝛾[y,𝑛]𝜇[y,𝑛]‖ = e−𝛾[y,𝑛]‖(𝛿𝑦𝑛 − 𝛿𝑦−𝑛)/𝐴𝑛‖ (C.71)

≤ e−𝛾[y,𝑛]

(︁

‖𝛿𝑦𝑛‖+ ‖𝛿𝑦−𝑛‖
)︁

· |1/𝐴𝑛| (C.72)

= 2e−𝛾[y,𝑛]/𝐴𝑛
𝑛→∞−−−→ 0, (C.73)

which means that for any 𝑦 the measure 𝜇[y,𝑛] converges to a c-measure of the map with partial

escape ℳ with decay rate 𝛾 = − lim𝑛→∞
1
2𝑛

ln
∏︀𝑛−1

𝑘=−𝑛 𝑅𝑘 = 𝛾typ, which is the typical decay

rate, see Eq. (2.67) and Ref. [89].
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C.6 Full escape

C.6.1 Convergence of quantum map in limit of full escape

In the following we show that the quantum propagator for partial escape converges in the limit

of full escape to the corresponding propagator in operator norm. Consider for fixed 𝑁 the

operators 𝑅𝛼, ℛ𝛼, 𝒰𝛼 and 𝒰0 as in Sec. 5.1.1. The statement

lim
𝛼→0

‖𝒰𝛼,𝑁 − 𝒰0,𝑁‖∞ = 0. (5.3)

The statement follows directly from

‖𝒰𝛼 − 𝒰0‖∞ = ‖𝒰(ℛ𝛼 −ℛ0)‖∞ = ‖𝒰‖∞‖ℛ𝛼 −ℛ0‖∞ = ‖ℛ𝛼 −ℛ0‖∞ (C.74)

and from

lim
𝛼→0

‖ℛ𝛼 −ℛ0‖∞ = 0 (C.75)

with operator norm ‖ · ‖∞, and where {𝑅𝛼}𝛼∈R+ is a set of reflection functions such that

lim𝛼→0 𝑅𝛼 = 𝑅0 := 1− 1Ω converges uniformly.

Equation (C.75) is shown as follows. For fixed 𝑁 let ℛ𝛼 = Op
√
𝑅𝛼 denote the anti-Wick

quantization of the reflection operator of 𝑅𝛼. Then

lim
𝛼→0

‖ℛ𝛼 −ℛ0‖∞ = lim
𝛼→0

sup
𝜓∈H𝑁 ,||𝜓||≤1

‖ℛ𝛼𝜓 −ℛ0𝜓‖H𝑁
(C.76)

= lim
𝛼→0

sup
𝜓∈H𝑁 ,||𝜓||≤1

‖(Op
√︀

𝑅𝛼 −Op
√︀

𝑅0)𝜓‖H𝑁
(C.77)

= lim
𝛼→0

sup
𝜓∈H𝑁 ,||𝜓||≤1

‖
(︂∫︁

√︀

𝑅𝛼(𝑥)|𝑥⟩⟨𝑥| d𝑥−
∫︁

√︀

𝑅0(𝑥)|𝑥⟩⟨𝑥| d𝑥
)︂

𝜓‖H𝑁
(C.78)

= lim
𝛼→0

sup
𝜓∈H𝑁 ,||𝜓||≤1

‖
∫︁ [︁√︀

𝑅𝛼(𝑥)−
√︀

𝑅0(𝑥)
]︁

⏟  ⏞  

≤‖
√
𝑅𝛼−

√
𝑅0‖∞

|𝑥⟩⟨𝑥| d𝑥 𝜓‖H𝑁
(C.79)

≤ lim
𝛼→0

‖
√︀

𝑅𝛼 −
√︀

𝑅0‖∞ sup
𝜓∈H𝑁 ,||𝜓||≤1

‖
∫︁

|𝑥⟩⟨𝑥| d𝑥
⏟  ⏞  

=1

𝜓‖H𝑁
(C.80)

≤ lim
𝛼→0

‖
√︀

𝑅𝛼 −
√︀

𝑅0‖∞ = 0, (C.81)

where the last equality follows from uniform convergence of 𝑅𝛼, and continuity of the square

root.



C.6 Full escape 177

C.6.2 Scaling of 𝛾-interval for fixed number of states

Here we show that the interval in 𝛾 used for calculation of the average distribution for a fixed

number of resonances 𝑆 scales as Δ𝛾 ∼ ℎ𝐷0(Γs)/2. The fractal Weyl law, discussed in Sec. 5.1.2

states that the number of resonance states with decay rate 𝛾 < 𝛾c grows asymptotically with

ℎ like, Eq. (5.6),

𝑛res(𝛾c) ∼ 𝑠(𝛾c) · ℎ−𝐷0(Γs)/2. (C.82)

The derivative of 𝑛res with respect to 𝛾 can be expressed as

d

d𝛾
𝑛res(𝛾) =

d

d𝛾
𝑠(𝛾) · ℎ−𝐷0(Γs)/2 = 𝑠′(𝛾) · ℎ−𝐷0(Γs)/2 (C.83)

≈ 𝑛res(𝛾)− 𝑛res(𝛾 +Δ𝛾)

Δ𝛾

, (C.84)

where the difference in the denominator 𝑛res(𝛾)−𝑛res(𝛾+Δ𝛾) is equal to the number of states

with decay rates in the interval [𝛾, 𝛾 + Δ𝛾]. If we consider a fixed number 𝑆 of decay rates

within the interval [𝛾, 𝛾 +Δ𝛾], i.e., we consider 𝑆 = 50 throughout the thesis, then we obtain

the following scaling for the width Δ𝛾,

Δ𝛾 ≈ 𝑛res(𝛾)− 𝑛res(𝛾 +Δ𝛾)

𝑠′(𝛾)
· ℎ𝐷0(Γs)/2 =

𝑆

𝑠′(𝛾)
· ℎ𝐷0(Γs)/2., (C.85)

which corresponds to the observed scaling ∼ ℎ𝐷0(Γs)/2 in Fig. 5.9. The prefactor is explained

by the shape function 𝑠(𝛾), Eq. (5.7), leading to larger intervals Δ𝛾 for larger decay rates.

C.6.3 Conditional invariance of measures 𝜇ℎ
γ

The measures 𝜇ℎ
𝛾 defined in Eq. (5.18) are conditionally invariant under the map with full

escape ℳ and have decay rate 𝛾.

Proof. Consider a measurable set 𝐴 ⊂ Γ. The definition of 𝜇ℎ
𝛾 , Eq. (5.18), implies that

𝜇ℎ
𝛾(𝐴) =

1

𝒩

∫︁

1𝐴(𝑥) · e𝑡ℎ(x)(𝛾−𝛾nat) d𝜇nat(𝑥) = 𝜇nat[1𝐴 · e𝑡ℎ(𝛾−𝛾nat)], (C.86)

where in the last equality the temporal distance is considered as a function on Γ. The property

of the temporal distance, Eq. (5.19), implies that 𝑡ℎ[𝑀(𝑥)] = 𝑡ℎ(𝑥)−1 for almost all points on

the backward trapped set, which are not in the opening Ω. This is important in the following,

where the reflection function for full escape, 𝑅 = 1−1Ω, excludes all phase-space points 𝑥 ∈ Ω.



178 Appendix C Miscellaneous proofs

Altogether we obtain

ℳ𝜇ℎ
𝛾(𝐴) = ℳ𝜇ℎ

𝛾(1𝐴)
(2.38)
= 𝜇ℎ

𝛾(𝑅 · 1𝐴 ∘𝑀) (C.87)

(C.86)
= 𝜇nat[(1− 1Ω) · 1𝐴 ∘𝑀 · e𝑡ℎ(𝛾−𝛾nat)] (C.88)

= 𝜇nat[(1− 1Ω) · 1𝐴 ∘𝑀 · e(𝑡ℎ∘𝑀−1)(𝛾−𝛾nat)] (C.89)

= e−(𝛾−𝛾nat) 𝜇nat[(1− 1Ω) · 1𝐴 ∘𝑀 · e𝑡ℎ∘𝑀(𝛾−𝛾nat)] (C.90)

(2.38)
= e−(𝛾−𝛾nat) ℳ𝜇nat[1𝐴 · e𝑡ℎ(𝛾−𝛾nat)] (C.91)

= e−(𝛾−𝛾nat) e−𝛾nat 𝜇nat[1𝐴 · e𝑡ℎ(𝛾−𝛾nat)] = e−𝛾𝜇ℎ
𝛾(𝐴), (C.92)

proving that the measures 𝜇ℎ
𝛾 are conditionally invariant measures of the map with full escape

ℳ and have decay rate 𝛾.
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[9] Y. Colin de Verdière: Ergodicité et fonctions propres du laplacien (in French), Com-

mun. Math. Phys. 102 (1985), 497–502. Cited on pages 1, 34, and 36.

[10] S. Zelditch: Uniform distribution of eigenfunctions on compact hyperbolic surfaces , Duke.

Math. J. 55 (1987), 919–941. Cited on pages 1, 34, and 36.

[11] S. Zelditch and M. Zworski: Ergodicity of eigenfunctions for ergodic billiards , Com-

mun. Math. Phys. 175 (1996), 673–682. Cited on pages 1, 34, and 36.



184 Appendix C Bibliography

[12] S. Zelditch: Index and Dynamics of Quantized Contact Transformations ,

Ann. Inst. Fourier 47 (1997), 305–363. Cited on pages 1, 34, and 36.

[13] S. Nonnenmacher and A. Voros: Chaotic Eigenfunctions in Phase Space, J. Stat. Phys.

92 (1998), 431–518. Cited on pages 1, 34, 36, and 54.
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[29] H.-J. Stöckmann: Quantum Chaos: An Introduction, (Cambridge University Press,

Cambridge), (1999). Cited on page 1.

[30] N. Moiseyev: Non-Hermitian Quantum Mechanics , (Cambridge University Press),

(2011). Cited on pages 1, 8, and 11.

[31] Y. V. Fyodorov and H.-J. Sommers: Statistics of resonance poles, phase shifts and time

delays in quantum chaotic scattering: Random matrix approach for systems with broken

time-reversal invariance, J. Math. Phys. 38 (1997), 1918–1981. Cited on pages 1 and 8.

[32] H. Schomerus: From scattering theory to complex wave dynamics in non-Hermitian 𝒫𝒯 -

symmetric resonators , Phil. Trans. R. Soc. A 371 (2013), 20120194. Cited on pages 1

and 8.

[33] D. C. Brody and E.-M. Graefe: Mixed-State Evolution in the Presence of Gain and Loss ,

Phys. Rev. Lett. 109 (2012), 230405. Cited on pages 1 and 8.

[34] I. Yusipov, T. Laptyeva, S. Denisov, and M. Ivanchenko: Localization in Open Quantum

Systems , Phys. Rev. Lett. 118 (2017), 070402. Cited on pages 1 and 8.

[35] E. M. Graefe, B. Longstaff, T. Plastow, and R. Schubert: Lindblad Dynamics of Gaus-

sian States and Their Superpositions in the Semiclassical Limit , J. Phys. A 51 (2018),

365203. Cited on pages 1 and 8.

[36] I. I. Yusipov, O. S. Vershinina, S. Denisov, S. P. Kuznetsov, and M. V. Ivanchenko: Quan-

tum Lyapunov Exponents beyond Continuous Measurements , Chaos 29 (2019), 063130.

Cited on pages 1 and 8.

[37] S. Malzard, C. Poli, and H. Schomerus: Topologically Protected Defect States in Open

Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry ,

Phys. Rev. Lett. 115 (2015), 200402. Cited on page 1.

[38] H. Shen, B. Zhen, and L. Fu: Topological Band Theory for Non-Hermitian Hamiltonians ,

Phys. Rev. Lett. 120 (2018), 146402. Cited on page 1.



186 Appendix C Bibliography

[39] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda: Topolog-

ical Phases of Non-Hermitian Systems , Phys. Rev. X 8 (2018), 031079. Cited on page

1.

[40] S. Yao and Z. Wang: Edge States and Topological Invariants of Non-Hermitian Systems ,

Phys. Rev. Lett. 121 (2018), 086803. Cited on page 1.

[41] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz: Biorthogonal Bulk-

Boundary Correspondence in Non-Hermitian Systems , Phys. Rev. Lett. 121 (2018),

026808. Cited on page 1.

[42] D. J. Luitz and F. Piazza: Exceptional Points and the Topology of Quantum Many-Body

Spectra, Physical Review Research 1 (2019), 033051. Cited on page 1.

[43] H. Cao and J. Wiersig: Dielectric microcavities: Model systems for wave chaos and

non-Hermitian physics , Rev. Mod. Phys. 87 (2015), 61–111. Cited on pages 1 and 27.
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[84] A. Eberspächer, J. Main, and G. Wunner: Fractal Weyl law for three-dimensional chaotic

hard-sphere scattering systems , Phys. Rev. E 82 (2010), 046201. Cited on page 2.

[85] L. Ermann and D. L. Shepelyansky: Ulam method and fractal Weyl law for Perron-

Frobenius operators , Eur. Phys. J. B 75 (2010), 299–304. Cited on page 2.
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asymptotics: From closed to open systems , Phys. Rev. E 86 (2012), 066205. Cited on

page 2.

[91] B. Gutkin and V. A. Osipov: Universality in spectral statistics of open quantum graphs ,

Phys. Rev. E 91 (2015), 060901. Cited on pages 2, 41, and 43.

[92] M. Schönwetter and E. G. Altmann: Quantum signatures of classical multifractal mea-

sures , Phys. Rev. E 91 (2015), 012919. Cited on pages 2, 43, 49, and 72.

[93] G. G. Carlo, R. M. Benito, and F. Borondo: Theory of Short Periodic Orbits for Partially

Open Quantum Maps , Phys. Rev. E 94 (2016), 012222. Cited on page 2.

[94] C. A. Prado, G. G. Carlo, R. M. Benito, and F. Borondo: Role of Short Periodic Orbits

in Quantum Maps with Continuous Openings , Phys. Rev. E 97 (2018), 042211. Cited

on page 2.

[95] D. Lippolis, J.-W. Ryu, S.-Y. Lee, and S. W. Kim: On-manifold localization in open

quantum maps , Phys. Rev. E 86 (2012), 066213. Cited on page 2.

[96] D. Lippolis, J.-W. Ryu, and S. W. Kim: Localization in chaotic systems with a single-

channel opening , Phys. Rev. E 92 (2015), 012921. Cited on page 2.
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mit Einschluss ihrer Anwendungen: Mechanik (Eds. F. Klein and C. Müller), 773–860,

(Vieweg+Teubner Verlag, Wiesbaden), (1911). Cited on page 15.

[147] B. V. Chirikov: A universal instability of many-dimensional oscillator systems ,

Phys. Rep. 52 (1979), 263–379. Cited on page 17.
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