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ABSTRACT 

Inverse, multidimensional input-output flow mapping is very important for use of valves in precision 

motion control applications. Due to the highly nonlinear characteristic and uncertain model structure 

of the cartridge valves, it is hard to formulate the modelling of their flow mappings into simple 

parameter estimation problems. This contribution conducts a comprehensive analysis and validation of 

three- and four-dimensional input-output-mapping approaches for a proportional pilot operated seat 

valves. Therefore, a virtual and a physical test-rig setup are utilized for initial measurement, 

implementation and assessment. After modeling and validating the valve under consideration, as a 

function of flow, pressure and temperature different mapping methods are investigated. More 

specifically, state of the art approaches, deep-learning methods and a newly developed approach 

(extPoly) are examined. Especially ANNs and Polynomials show reasonable approximation results 

even for more than two inputs. However, the results are strongly dependent on the structure and 

distribution of the input data points. Besides identification effort, the invertibility was investigated. 

 
Keywords: Valve Control, Flow Mapping , Polynomial Fitting, Artificial Neural Networks, Deep 

Learning

1. INTRODUCTION 

Modern electrohydraulic drive and control tasks 

are subject to high demands in terms of flexibility 

and complexity. Various fields of application can 

be named such as energy-efficient operation, 

high-precision, closed-loop-control-tasks, 

automation, fault detection, condition monitoring 

and diagnostics. The majority of today’s 

hydraulic drive systems incorporate valve-

operated actuators. Especially independent 

metering control systems enable energy efficient 

and high performance operation by decoupling 

meter-in and meter-out flow, using regeneration 

flow and enhanced control possibilities of 

multiple input system structures. The key 

elements of such systems are individual valves, 

preferably of seat type due to advantageous 

dynamic and static properties. Since the 

mathematical models of cartridge valves flow 

mapping is complex, it cannot be described by 

typical analytical nonlinear equations, commonly 

used.  

Main challenges are the complex non-linear 

characteristics of hydraulic components, which 

are exposed to a wide range of external 

environmental and operational effects as well as 

internal factors like aging. Besides mainly oil-

related thermal dependencies, in particular flow-

related friction and throttle losses determine the 

static and dynamic input-output-behavior.  

A common strategy to compensate for these 

nonlinearities is an inverse feedforward 

controller. Usually nonlinear or unknown 

physical relations are modelled using empirical 

coefficients measured at typical operating points. 

In many cases, the achievable accuracy is 

insufficient but the experimental and 

computational effort to raise the mapping-quality 

increases dramatically with higher number of 

measuring points. The present paper aims to 

analyze different approaches for (inverse) input-

output mapping of a pilot operated seat valve. 
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2. STATE OF THE ART 

Experimental system identification, in particular 

the measurement of input-output-signals, has low 

information content regarding internal processes 

and parameter dependencies. A distinction 

between parametric models utilizing explicit 

parameters within mathematical/physical 

equations and nonparametric models, using 

implicit parameters with purely functional 

relationships of behavior, can be made [1]. In 

industrial applications, nonparametric models are 

widespread. Common to all of them is the 

problem of identifying and implementing three- 

or higher-dimensional representations as a 

nonlinear mapping of two (or more) input 

variables 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑖𝑖𝑛 to an output variable 𝑧𝑜𝑢𝑡 =
𝑓(𝑥𝑖𝑛 , 𝑦𝑖𝑛, 𝑖𝑖𝑛). Among others, the following 

methods can be found: 1. grid maps, 2. 

polynomial approximations, and 3. artificial 

neural networks. 

Nonlinear static relationships with grid maps 

are widespread because they are easy to 

implement on Electronic Control Units (ECU). 

Often, equidistant grids with (𝑚 ∙ 𝑛) supporting 

points in combination with surface interpolation 

methods are applied. Since each grid-point must 

correspond to a measuring point, the quality of 

the map significantly depends on the number of 

nodes and the degree of non-linearity. Due to 

computational effort, the number of dimensions 

is limited. The second class of approximation 

methods are higher order polynomials such as 

algebraic polynomials, orthogonal polynomials 

or Chebyshev polynomials. An advantage of this 

type of models is a compact form of mathematical 

representation and an efficient calculation mode. 

The system degree determines shape and order of 

the polynomial. With the help of regression 

methods, the unknown polynomial coefficients 

are identified and parameterized [2]. Second 

order polynomials are usually easy to invert 

analytically, whereas functions of higher order 

require a numerical solution. Application 

examples for compensating methods can be 

found in [3], [4]. Artificial neural networks are 

highly capable of approximating and representing 

complex nonlinear and high dimensional 

functions [5]. There are different classes of neural 

networks and corresponding training algorithms, 

each suitable for different approximation 

problems. Typical examples are Multi-Layer-

Perceptrons (MLP) or Radial Base Functions 

(RBF) [6], [7], [8]. 

3. IDENTIFICATION METHODS 

3.1. General aspects 

Experimental modelling (identification) of 

measurement data enables the determination of 

characteristic maps. Figure 1 shows the proposed 

workflow. 

Figure 1: Characteristic map identification workflow 

The first step is to acquire a set of measurement 

data representing all dependencies of interest. It 

is crucial to collect this data under varying 

operating conditions and measuring regimes.  

If the measurement data is limited or 

insufficient, simulation data may be used instead 

or as supplement. This data is referred to as 

synthetic data. A combination of synthetic and 

sensor data may be a reasonable compromise. 

The next step of the workflow is pre-

processing of the raw data. Typically missing or 

faulty values, noise and outliers are processed and 

set up for further steps. In some cases a scaling is 

beneficial, since big values generate great 

residuals. This is equivalent to weighting in 

advance.  

The following task is finding and training (fitting) 

the model that captures the relationship between 

the input and output. Starting point of the 

experimental modeling is the determination of a 

suitable model structure. The corresponding 

model parameters are adapted using optimization 

procedures, to match input/output behavior of 

model and measured data. The selected model 

structure must allow mapping for all physical 

effects of interest. Basically linear and non-linear 

as well as static and dynamic models may be 

distinguished. This contribution deals with static, 

nonlinear models. In general, nonlinear mapping 

f of two input variables xin and yin is formulated 

by:  

𝑧𝑜𝑢𝑡 = 𝑓(𝑥𝑖𝑛, 𝑦𝑖𝑛) (1) 

To optimize the model parameters usually the 

sum square error between the measured output z 

and estimated output ẑ is minimized [9]. 
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𝑅(𝜃) =  ∑(𝑧(𝑖) − 𝑧̂(𝑖))²

𝑛

𝑖=1

 (2) 

The final step is the integration (deployment) 

of the model into the control platform. Memory 

requirements as well as cycle time of the device 

may potentially affect the quality of the model 

results.  

According to [9] the generation of grid maps 

from measurement data can be performed in three 

ways. The approaches are adoptable and valid for 

many identification procedures.  

Method 1: The definition of the grid 

lines/points is either equidistant or it can be 

chosen individually (optimal distribution) 

considering process knowledge. The 

intersections of the grid lines provide direct 

estimates or training points. The procedure does 

not require any optimization. 

Method 2: As in method 1, an a-priori 

definition of a grid points takes place. Using 

optimization techniques the optimal position of a 

grid point from arbitrarily distributed 

measurement data is performed in a post-

processing step. A necessary condition is the 

availability of a sufficient number of data points.  

Method 3: [10] proposes a method for 

optimization of grid point positions and heights at 

the same time. Here nonlinear optimization 

methods are necessary. 

3.2. Grid based look up tables - gridLUT 

Grid-based look-up tables are the most common 

type of nonlinear static models used in practice 

[9], [2]. A nonlinear relationship is modelled by 

storing input-data-tuples [xi, yi] in a grid.  

Figure 2: Areas and grid points used for surface 

interpolation (gridLUT) 

Typically, they are limited to one or two-

dimensional implementations, because 

measuring approaches mostly consider one effect 

at a time for a corresponding output. 

Interpretation and manipulation of 1D-data is 

very easy and user-friendly.  

The model output z for an input vector [x, y] is 

calculated by local interpolation between the 

surrounding nodes. In 1D-case, linear 

interpolation methods may be used. For 2D-case, 

bilinear interpolation between four surrounding 

points (vertex points) is necessary. At grid-point 

positions, the model output is equal to the 

measured data. Intermediate values that lie within 

the grid are calculated with aforementioned 

surface interpolation method [6].  

z = [𝑧𝑖,𝑗(𝑥𝑖+1 −  x)(𝑦𝑖+1 −  y) +

𝑧𝑖+1,𝑗(x − 𝑥𝑖)(𝑦𝑖+1 −  y) + 𝑧𝑖,𝑗+1(𝑥𝑖+1 −

 x)(y − 𝑦𝑗) + 𝑧𝑖+1,𝑗(x − 𝑥𝑖)(y − 𝑦𝑗)] /

 [(𝑥𝑖+1 − 𝑥𝑖)(𝑦𝑗+1 − 𝑦𝑗)]  

(3) 

To determine a desired point [xin, yin] in the input 

space, all the heights z of the four surrounding 

grid-points must be explicitly known. The heights 

of the four vertices are multiplied by the opposing 

areas and then divided by the total area value.  

The number of grid-points in each dimension 

are chosen according to the accuracy demanded. 

However, the number of data point’s nP grows 

exponentially with the number of input 

dimensions k:  

𝑛𝑝 = ∏𝑛𝑖

𝑘

𝑖=1

 (4) 

If measurement data points are incomplete or do 

not correspond to the desired positions of the 

grid, estimation techniques or extra measuring 

activities have to considered to derive additional 

grid points. Additional efforts and costs are to be 

expected. An arbitrary and optimal positioning of 

grid points represents a nonlinear optimization 

problem, which potentially increases the 

resulting quality of the method.  

3.3. Polynomials 

I Algebraic polynomials - algPoly 

Polynomials are typical approximators, 

characterized in particular by a high calculation 

and evaluation speeds [1]. The choice of the 

maximum degree depends on approximation 

accuracy and other factors. With the help of an 

algebraic polynomial z a function f is 

approximated as follows:  
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𝑧(𝑥, 𝑦) = 𝑎0,0 + 𝑎1,0𝑥 + 𝑎0,1𝑦 + 𝑎2,0𝑥
2

+ 𝑎0,2𝑦
2 + 𝑎1,1𝑥𝑦

+ 𝑎𝑚,0𝑥
𝑚 + 𝑎𝑚−1,1𝑥

𝑚−1

+  𝑎1,𝑚−1𝑦
𝑚−1 + 𝑎0,𝑚𝑦

𝑚 

(5) 

Polynomial terms (x,y) are multiplied by the 

coefficients 𝑎𝑖,𝑗, which represent the free 

parameters of the model approach. With the 

maximum degree 𝑘 of the polynomial, the 

number 𝑛𝐶 of unknown coefficients 𝑎𝑖,𝑗 is: 

𝑛𝐶 =  
1

2
(𝑘 + 1)(𝑘 + 2) (6) 

There is an uncertainty regarding the order of the 

polynomials. It should not exceed (𝑛𝑝 − 1), 

where 𝑛𝑝 is the number of data points per input. 

High order polynomials show an increased 

oscillation behaviour. For practical use 3rd to 6th 

order, including interaction-terms, are suitable. 

Generally speaking, polynomials are 

characterized by a very good smoothness, simple 

parameter determination but limited 

extrapolation capabilities [9].  

II Semi empirical flow mapping - twoLine 

In [4] Huhtala proposed a mapping description as 

a function of system variables. The method 

incorporates the variation of one parameter while 

the other remains constant. This results in two 

curves, which are obtained by polynomial fitting. 

The measurement data needs to cover the whole 

range of the operating field. The flow rate 

through a valve can be described as a function of 

pressure drop and input signal. The basis of the 

so-called “two-line-models” are measured data of 

the test valve near the operating boundaries. First, 

the input voltage is kept constant and the pressure 

drop is varied from min to max. Next, the input 

voltage is kept constant at max and the pressure 

drop dependency is measured. With help of these 

two data sets, the flow rate as a function of 

pressure drop can be obtained by using 

polynomial fitting: 

𝑧𝑖(𝑦) = 𝑎𝑖,1𝑒
𝑎𝑖,2𝑦 − 𝑎𝑖,3𝑒

−𝑎𝑖,4𝑦 (7) 

Next step is a min-max normalization: 

𝑧̂𝑖(𝑦) =
𝑧𝑖(𝑦) − 𝑧𝑖(𝑦𝑚𝑖𝑛)

𝑧𝑖(𝑦𝑚𝑎𝑥) − 𝑧𝑖(𝑦𝑚𝑖𝑛)
 (8) 

The curves for output z (flow rate) as a function 

of input x (voltage) are identified in the previous 

mentioned way. First the input y (pressure drop) 

is kept constant at min (resp. max) and the input 

voltage is varied from min to max. With help of 

the polynomial fitting, the flow rate as a function 

of input voltage can be obtained. The flow rate as 

a function of pressure drop and input voltage is: 

𝑧(𝑥, 𝑦) = {[𝑧̂2(𝑦) − 𝑧̂1(𝑦)] (
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
)

+ 𝑧̂1(𝑦)} ∙ [𝑧4(𝑥) − 𝑧3(𝑥)]

+ 𝑧3(𝑥) 

(9) 

Figure 3 depicts the working principle of the 

two-line-method (twoLine). 

Figure 3: Principle of operation of two-line-method 

III Extended algebraic polynomials - extPoly 

The proposed polynomial approximation uses the 

following general approach: 

𝑌 = ∑ ∑ …

𝑚1

𝑖1=0

∑ 𝑎𝑖0𝑖1⋯𝑖𝑛𝑌0
𝑖0𝑌1

𝑖1 …𝑌𝑛
𝑖𝑛

𝑚𝑛

𝑖𝑛=0

𝑚0

𝑖0=0

 (10) 

The n-dimensional output 𝑌 is a result of a 

polynomial combination of 1-dimensional 

functional approximation 𝑌𝑛 for each dimension. 

For this paper, 𝑌𝑘 represents a char curve with its 

sampling point tuples (𝑥̂𝑘 , 𝑦̂𝑘): 

𝑌𝑘 = 𝑓𝑐(𝑥̂𝑘 , 𝑦̂𝑘 , 𝑥𝑘) (11) 

The char curve uses the linear interpolation: 

𝑌𝑘 =
𝑦̂𝑖+1 − 𝑦̂𝑖
𝑥̂𝑖+1 − 𝑥̂𝑖 

(𝑥𝑘 − 𝑥̂𝑖) (12) 

For instance, a simple three-dimensional 

relationship has the specific approach: 

𝑌 = 𝑎00 + 𝑎10𝑌0 + 𝑎01𝑌1 + 𝑎11𝑌0𝑌1 (13) 

Figure 4: Polynomial approximation example (extPoly) 
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Figure 4 exemplarily illustrates a result for a 

surface based on 24 parameters (10 for each 

dimension and the four polynomial factors 𝑎𝑖𝑘). 

This approach is advantageous in the software 

development for embedded systems to integrate 

multi-dimensional dependencies with a reduced 

set of parameters. Using a gradient-based 

optimization finds the parameters for each 

approximation. 

3.4. Artificial neural networks - ANN 

Artificial neural networks became very popular 

in the context of Machine Learning and Big-Data 

during the last years. Nevertheless, their 

foundation was laid up back in the 1940s already 

[11]. Since then a broad variety of different 

network architectures was developed. However, 

they all share a common working principle: 

The main idea is to connect the outputs and 

inputs of some information processing units 

(called nodes or neurons) and to modify their 

sensitivity to each other by weighting and biasing 

these connections. Since the nodes and their links 

among each other are quite similar to the nerve 

cells (called neurons) and their connections by 

axons and dendrites the name “artificial neural 

networks” (ANN) was given.  

According to [12] different switching 

functions inside the information processing units 

(e.g. binary, linear or sigmoid), different 

mechanisms for the parametrization of the 

weights (e.g. supervised, unsupervised and 

reinforcement learning) and different network 

architectures (e.g. feed forward, Kohonen or 

Hopfield networks) for the connections between 

the units may be used depending on the 

application. Typical applications are 

classification, function approximation, image 

processing or speech recognition. For function 

approximation multilayer perceptrons (MLPs) or 

radial basis function networks are advised in 

literature. 

The weights and biases of MPLs are usually 

parametrised from known data (inputs and 

associated outputs) in a specialised optimization 

process, which is called backpropagation 

training. Afterwards the resulting network will 

produce similar outputs according to the inputs it 

was “trained” for. Nevertheless, this concept also 

provides some generalization. To a certain extent 

even previously unknown inputs will result in an 

appropriate output if the network represents the 

underlying correlations correctly [13]. 

In the following investigation Bayesian 

Regularization backpropagation [14] was used 

for networks with two hidden layers (each 

holding between two and eight neurons). In this 

case the output of a single neuron of the nth layer 

is 

𝜎𝑛𝑗 = 𝜑(𝒘𝑛𝑗
𝑇 ⋅ 𝒙𝑗 + 𝜃𝑛𝑗). (14) 

Using following expression for the weight factor 

matrix 𝑾𝑛 = [𝒘𝑛1 … 𝒘𝑛𝑘𝑛
]
𝑇

 the output of the 

whole network results from the matrix equation  

𝑦 = 𝜑(𝑾𝑛 ⋅ 𝜑(𝑾𝑛−1 ⋅ 𝜑 + 𝜽𝑛−1) + 𝜽𝑛)  (15) 

with the bias vector 𝜽𝒏 = [𝜃𝑛1 …𝜃𝑛𝑘𝑛]
𝑻
 for each 

layer number 𝑛. The number of neurons in layer 

𝑙 is 𝑛𝑛 and the switching function 

𝜑(𝒙) = 2 / (1 +  𝑒𝑥𝑝(−2 ⋅ 𝒙))  −  1 (16) 

is applied element wise and could be substituted 

by any another sigmoid function.  

4. APLLICATION AND MODELLING 

4.1. Proportional flow control valve  

One example for a seat type proportional flow 

control valve is depicted in Figure 5. The 

operating principle of the so-called Valvistor 

(type A - proportional flow from p1 to p2) is based 

on flow feedback for displacement control of the 

main poppet (MP- (3)).  

Figure 5: Seat type proportional valve schematic (left) / 

Simulation model structure (right) 

Due to a negative overlap of the control orifice, 

the pressure pC in the control chamber VC is equal 

to the pressure p1 at the valve inlet V1. Area AC is 

greater than area A1, ensuring a closing of the 

main poppet. Opening the pilot valve (1), enables 

the pilot flow QPV and reduces the control 

pressure pC in the control chamber. The main 
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poppet starts moving until the equilibrium of 

forces is established. Neglecting flow- and 

friction forces and rearranging the force balance 

equation for the main poppet leads to: 

𝑝𝐶 =
𝑝1

𝜑
+ (

𝜑−1

𝜑
) 𝑝2, with 𝜑 =

𝐴1+𝐴2

𝐴1
 (17) 

If the area ratio φ=2, the pressure drop ∆𝑝1𝐶 =
𝑝1 − 𝑝𝐶 across control-orifice is equivalent to the 

pressure drop ∆𝑝𝐶2 = 𝑝𝐶 − 𝑝2 across the pilot 

valve. The flow rate across control-orifice results 

in: 

𝑄𝐶 = 𝑄𝑃𝑉 = 𝐾𝐶(𝑥0 + 𝑥)√∆𝑝1𝐶 (18) 

According to eq. (17) and (18), the following 

interrelation can be obtained: 

𝑥 = (
𝑄𝑃𝑉
𝐾𝐶

√
(𝜑 − 1)

𝜑(𝑝1 − 𝑝2)
) − 𝑥0 (19) 

The flow rate across main poppet is denoted as: 

𝑄𝑀𝑃 = 𝐾𝑀𝑃𝑥√∆𝑝12 (20) 

Neglecting the negative overlap x0 in eq. (19) and 

substituting eq. (19) for eq. (20), results in 

following equation: 

𝑄𝑀𝑃 = (
𝐾𝑀𝑃
𝐾𝐶

√
𝜑 − 1

𝜑
)𝑄𝑃𝑉 (21) 

The total flow rate is: 

𝑄𝑇 = 𝑄𝑀𝑃 + 𝑄𝑃𝑉 (22) 

The “Valvistor” is similar to a transistor, which 

amplifies a small current through the pilot circuit. 

Amongst others, more information can be 

obtained in [15] or [16].  

4.2. Experimental setup and results 

To evaluate the static and dynamic characteristics 

of the proportional seat-type valve, a test bench 

has been set up. Figure 6 briefly illustrates the 

experimental setup, including pump, sensors and 

the loading valve controlling the pressure drop 

across the test valve. A displacement sensor is 

installed on the main poppet as well as on the 

pilot spool. The test rig setup is restricted to 

Qmax=200 l/min and pmax=200 bar. The test valve 

is set to discrete opening values. Varying the 

outlet pressure, the oil flow through the system 

increases and decreases in a quasi-static manner. 

Figure 6: Experimental setup (top) / simulated and 

measured steady state flow behaviour for 

discrete input-signals Urel (bottom) 

Figure 6 (bottom) shows a comparison of 

measurement data and simulation results for 

constant and varying temperatures. The results 

show a very good correlation. 

5. FLOW MAPPING OF TEST DATA  

5.1. Training data sets 

To test the effectiveness of the approximation 

methods, different simulated and experimental 

data-sets are used, as shown in Figure 7. 

Figure 7: Test source data-types a) structured data / 

b) scattered data / c) noisy data / d) operating 

point data  
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Usually, structured (∆𝑝, 𝑄) curves (Figure 7 a)) 

characterize the flow behaviour of throttle valves. 

These curves are determined at discrete input 

signals, representing the operating range. There is 

a high resolution along the x-axis, whereas only a 

few data point exist along the y-axis. The data-

gap increases the requirements for the training 

procedures (optimization) and eventually creates 

great deviations between model and estimation. 

A comprehensive scatter data-set (Figure 7 b)) 

appears to be advantageous in terms of coverage. 

However, arbitrary data is difficult to interpret 

and to evaluate, which is why the use of such data 

is not very widespread. Limited and noisy flow 

curves like in Figure 7 c) are more common. The 

restrictions mostly result from limited capacities 

of the test rig or system setup. Noise is inherent 

to measurement data, which requires filtering of 

data or smoothing capabilities of the 

approximation procedures.  

Figure 7 d) contains operating point data 

resulting from a typical loading cycle of a 

material handling excavator. The working cycle 

is divided in several phases, Figure 8. After 

picking up the bulk material (1), the operator lifts 

the working equipment (2) from the pile. In 

addition, the attachment’s centre of gravity is 

moving closer to the rotational axis. It decreases 

the inertia before starting to swing of the upper 

carriage (3). Following the rotating phase, the 

working tools are positioned directly above the 

silo’s opening (4). 

Figure 8: Loading cycle of a material handling 

excavator [17] 

The data-point distribution represents a 

combination of different of upstream and 

downstream flow paths.  

5.2. Results and Discussion  

To investigate the quality and limitations of 

input-output mapping of the pilot operated seat 

valve, the methods proposed in ch. 3 are applied 

to the different training- and test-data sets 

(ch. 5.1) and the results are analysed. One 

prerequisite mentioned in the introduction was to 

use the flow-mapping information for control 

purposes. To do so, the characteristic 

interrelation 𝑄 = 𝑓(∆𝑝, 𝑦) needs to be inverted to 

𝑦 = 𝑓(∆𝑝, 𝑄). All procedures are rechecked 

taking into account this premises.  

In order to compare the goodness of fit for the 

different training-data and mapping approaches 

the results of the models are plotted against the 

data source’ output values for each set of input 

variables. With an ideal approximation, all points 

would lie exactly on the 45° diagonal curve. The 

unavoidable deviations are characterised in a box 

plot with regard to their dispersion. This diagram 

shows the median (centerline), the 25th and 75th 

percentiles (upper and lower edges of the box) as 

well as two extreme values, which are determined 

by wmax = 𝑄75 + 1.5 ⋅ 𝐼𝑄𝑅 and 𝑤𝑚𝑖𝑛 = 𝑄25 −
1.5 ⋅ 𝐼𝑄𝑅 respectively. The range between these 

two extreme values covers approximately ±2.7 ⋅
𝜎 for a normally distributed random quantity and 

covers thus 99.3 % of the realizations. All points 

outside these extreme values are called outliers 

marked separately by a “+” symbol. Additionally 

the relative error of the fits are plotted against the 

flow rate to identify critical areas. Each plot 

contains two different data sets. One was used to 

parametrize the models while the other holds 

previously unknown uniformly distributed data 

over the whole range of input values to assess the 

generalization capability of the different mapping 

approaches. 

The common methods ([10x10]-gridLUT, 

twoLine) show a good approximation quality. 

However, reasonable results can only be assured 

for comprehensive scatter data. An extension to 

even more input variables requires massive 

additional computing effort. Furthermore, they 

are not designed for analytical inversion. Here 

recursive search algorithms of the feedforward 

maps have to be used.  

Regarding approximation quality algebraic 

polynomials (x2y5-algPoly with second order for 

input signal dependency of x and fifth order for 

pressure dependency of y) show similar results. 

They prove to be beneficial with limited and 
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noisy data, though accuracy is decreasing. Using 

an inverse input-output-relationship for 

approximation also results in major deviations 

between model and training data. Limiting the 

polynomial degree to 𝑘𝑦 = 2, an analytical 

inversion is possible without using numerical 

approaches.  

The extended polynomial method ([10×10]-

extPoly) is able to deal with all kinds of input data 

and theoretically any number of input 

dimensions. Regardless of the input data 

distribution, all results are quite close to each 

other, illustrating the reasonable modelling 

accuracy of the proposed method. Since the 

approach utilizes grid-point-position 

optimization, a weighting of different regions 

may be used to considerably increase local 

accuracy. Because the base function eq.(13) is 

linear, it may be rearranged in any desired way 

for inverse input-output-relationship, without any 

adverse effects. 

Using artificial neural networks (MLP-ANN) 

the best fitting results regarding accuracy can be 

obtained. The fitting quality is highly dependent 

on the coverage of the training-data. Again, 

comprehensive scattered data points appear to be 

most beneficial. Just like all other polynomial-

based approaches, ANN show very poor 

extrapolating behavior. To determine the inverse 

I/O-relationship the input and output simply have 

to be interchanged before training. Surprisingly, 

the results differ from natural I/O-assignment. 

Obviously, the missing distinction in the inverse 

pressure-flow-relationship results in major 

deviations between model and training data. An 

implementation of ANN-functions in embedded 

systems could be challenging, since massive 

floating point matrix operations are necessary.  

Table 1 shows the number of parameters 

(coefficients) for the different methods analysed.  

Table 1: Number of parameters 

Method 
No of parameters 

3D 4D 

[10×10]-gridLUT 120 >1200 

twoLine 27 - 

x2y5-algPoly 15 >35 

[10×10]-extPoly 44 74 

MLP-ANN 38 81 

6. CONCLUSION AND OUTLOOK 

Inverse, multidimensional input-output flow 

mapping is very important for use of valves in 

precision motion control applications. Due to the 

highly nonlinear characteristic and uncertain 

model structure of the cartridge valves, it is hard 

to formulate the modelling of their flow 

mappings into simple parameter estimation 

problems. This paper presented an analysis and 

comparison of different identification methods 

and training data sets for 3D- and 4D-flow 

mapping. More specifically, state of the art 

approaches, deep-learning methods and a newly 

developed approach (extPoly) had been 

examined. Especially ANNs and Polynomials 

show reasonable approximation results even for 

more than two inputs. However, the results are 

strongly dependent on the structure and 

distribution of the input data. Besides 

identification effort, the invertibility was 

investigated.  

The next investigation steps are concerned 

with the further development of the proposed 

methods with respect to online identification. 
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Figure 9: Overall result plots of proposed approximation methods for 3D- and 4D-case 

 
 

scattered data

scattered data

limited data

limited data

operating data

grid LUTtwoLinealgPolyextPolyANN

3
D

-tra
in

in
g

-d
a
ta

 𝑄
=
𝑓
∆
𝑝
,𝑦

4
D

-tra
n

in
g

-d
a
ta

 𝑄
=
𝑓
∆
𝑝
,𝑦
, 

Group F Intelligent control Paper F-3 239



NOMENCLATURE 

A Area 

ANN Artificial Neural Network 

ECU Electronic Control Unit 

i Variable 

I/O Input / Output 

IQR Interquartile Range 

MLP Multi-Layer-Perceptron 

MSE Mean Square Error 

n Number 

p Pressure  

Q Flow Rate 

RMSE Root Mean Square Error 

T Temperature 

V Volume 

x Input Variable 

y Input Variable 

z Output Variable 

ϑ Temperature 
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