Software
Technology
Group

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultéat Informatik, Institut fiir Software- und Multimediatechnik, Lehrstuhl fiir Softwaretechnologie

Master’s Thesis

AUTOMATIC FEEDBACK FOR UML MODELING
EXERCISES AS AN EXTENSION
OF INLOOP

submitted by

Markus Hamann

born 16.August.1987 in Lobau
Matriculation Number: 3490881

Supervisor:

Dr.-Ing. Birgit Demuth

Professor:

Prof. Dr. rer. nat. habil. Uwe Afimann

Submitted 25.February.2020



II



Contents

1

Introduction

1.1
1.2

Motivation . . . . . . . . e
Research Questions . . . . . . . . . . . . ...

Related Work

2.1
2.2

INLOOP . . . o e
Systems for Automatic Modeling Feedback . . . . . . ... ... ... ..
2.2.1 Technical Criteria . . . . . . . . . ..
2.2.2 Model Criteria . . . . . . . . . . . e
2.2.3  Methodologies . . . . . . . ...
2.2.4 Feedback Criteria . . . . . . . . . . . . e
2.2.5  Summary . . o. oL e e

INLOOM - A Constraint-based Modeling Assessment System

3.1
3.2

3.3

3.4

3.5

3.6

3.7

General Requirements . . . . . . . ...
Types of Modeling Tasks . . . . . . . . .. ..
3.2.1 Model Generation and Transformation . . . . . . .. ... ... ... ...
3.2.2  Object-oriented Analysis and Design . . . . . .. ... ... ... ... ..
3.2.3 Difficulty Levels . . . . . . . o
3.2.4 Implications for Realization . . . . . . . .. ... ... ... .. ......
Model Representation . . . . . . . . . .. L Lo
3.3.1 Selection of the Model Representation . . . . . ... .. ... .. .....
3.3.2 Model Definition . . . . . . ... Lo
INLOOM Matching System . . . . . . .. ... ...
3.4.1 Assessment System Type of INLOOM . . . ... ... ... ... .....
3.4.2  Matching Algorithm . . . . . ... ... .. oo
3.4.3 Possible Realization . . . . .. .. .. . 0 o
Integration into the INLOOP Architecture . . . . . . . . . . ... ... ... ...
3.5.1 Student User Interface . . . . . . . .. .. .. L oL
3.5.2 Instructor User Interface . . . . . . . . . . . ... ...
3.5.3 Task Repository and Background Workers . . . . . . ... ... ... ...
Grading and Feedback Options . . . . . . .. . . ... .. ... ... .. ...
3.6.1 Feedback Classes . . . . . . . . . . . e
3.6.2 Textual Feedback . . . . . . . . . . . . ...
3.6.3 Grades. . . . . . . ..
3.6.4 Feedback Format . . . . . . . . . . ... ... ...
3.6.5 Critic and Problems . . . . . . . .. .. ... ...
SUMMATY . . . v v o ot e e e e e e e e e

[NCJEy

© 0 0 O W W

13
14

15
15
17
17
18
19
19
21
21
22
24
24
24
29
30
30
31
32
34
34
35
36
36
38
39

11



Contents

4 Realization of a Analysis Class Diagram Matching Engine

4.1 Analysis Class Diagram Metamodel . . . . . . . . ... ... ... ... ...
4.2 Grading Scheme . . . . . ..
4.3 Constraint-based Model Test Generator . . . . . . . .. ... ... .. ......

4.3.1 Definition of the Master Constraint-Sets . . . . . . . . ... .. ... ...

4.3.2 Implementation of the Master Constraint-Sets. . . . . . .. .. ... ...

4.3.3 Implementation of the Test Generator . . . . . . .. .. ... ... ....
4.4  Constraint-based Model Test Engine . . . . . . . ... ... .. .. ...
4.5 Feedback Generation . . . . . . . . ...
4.6 Critic and Discussion . . . . . . . . . . e

5 Evaluation
5.1 Evaluation of the Uniform Grading Scheme . . . . . ... ... ... ... ....
5.2  Evaluation of the Quality of the Constraint-Sets . . . . . . ... ... ... ...
5.2.1 Preparation of the Exam Solution Data . . . . ... ... ... ......
5.2.2  Comparison between Automatic and Human Assessments . . . . . . . ..
5.2.3 Conclusion . . . . . . ..

6 Conclusion and Future Work
6.1 Research Questions . . . . . . . . . . . ..
6.2 Future Work . . . . . . . e e e e e e
6.3 Conclusion . . . . . . . . . e

A Attachments
A.1 User Guides for the Proof-of-Concept Implementation . . . ... ... ... ...
A.1.1 Requirements . . . . . . . ...
A.1.2 Creating aUML Class Models . . . . . . ... ... ... ... .......
A.1.3 Generating Test-Sets out of an aUML Class Model . . . . . . .. ... ..
A.1.4 Testing an aUML Class Model against the Test-Sets . . . . . . ... ...
A.2 Evaluation Results on the Comparison between Human and Assessment System .

Bibliography
List of Figures
List of Tables

List of Listings

v

41
41
44
46
46
52
o7
60
64
65

67
67
69
69
70
74

7
7
79
81

i
iv
vi

viil
xiii
XVii
XViii

XX



1 Introduction

1.1 Motivation

In recent years, e-learning systems have become an important part of normal and university
education. The T'U Dresden has multiple projects that are using these types of systems. One of
them is the INLOOP [20] project of the Chair of Software Technology. It is used in the software
engineering beginner course to improve the student’s object-oriented programming experience
and significantly improved the quality of exam results. In the last years, there is a growing
interest to extend this automatic feedback to the other part of this beginner course which is the
field of object-oriented modeling, too. The hope is to gain the same improvements in the quality
of the students modeling skills. The other goal of the system stems from the wish of many stu-
dents to have a way to better assess their modeling skills and the quality of their models. One
way to achieve this outcome, is to the extent the already existing e-learning system of INLOOP
with model correcting and feedback possibilities.

This work tries to extends the existing INLOOP with means of automatic correcting and
grading UML models of students on the background of the chairs beginner software engineering
course. To reach this goal, the systems requirements must be established and existing systems
need to be surveyed and categorized, to conclude a method that fits the requirements of this
new system. Then, the method must be integrated into the existing architecture of INLOOP. In
the second step, a proof-of-concept implementation for the automatic correction and grading of
UML analysis class diagrams is given. This implementation is then evaluated against student’s
solutions and their scores from old exams.



1 Introduction

1.2 Research Questions
This thesis establishes multiple research questions:

RQ1 Is there a method that can be used for the automatic correction and grading of student
solutions in a beginner software engineering course?

RQ2 How could a design for the architecture and workflow of the automatic assessment system
look like?

RQ3 How can the system be implemented in the existing INLOOP architecture, without changes
to the architecture?

RQ4 Which data can be extracted from the existing data sets and workflows? How can this
data be reused to help the design process?

RQ5 Is the presented realization suitable for the goals of the system?

The first research question (RQ1) is needed to find the best method for the needs of a beginner
software engineering course. It is answered by giving a literature survey of the existing methods
and systems for automatic model correction and rate them against the requirement of the course.
Answering the second research question (RQ2) should describe the architecture, workflow, and
parts of the system around the chosen correction method, while RQ3 shows the integration of
the parts in the existing INLOOP architecture and possible conflicts. RQ4 evaluates which data
sets are already existing and how they can be used to generate input and rules for the new
system. At last, the usefulness of the example implementation needs to be evaluated to answer
the last research question (RQ5).



2 Related Work

As a first step, the related work needs to be viewed and understood. Since this work builds onto
the INLOOP [20] system, this system must be looked into first. Then a literature survey on
model correcting and feedback systems and methods must be conducted to decide which way
the extension needs to be designed.

2.1 INLOOP

The goal of this work is to extend the already existing INLOOP with automatic model correction
and grading possibilities. For this, an overview of the systems architecture and workflow is
essential to design the components and if necessary extensions.

INLOOP [20] stands for INteractive Learning center for Object-Oriented Programming. It is
a web-based e-learning system that was created by the Chair of Software Technologies of the
Technische Universitit Dresden (TU Dresden) and is also maintained by this chair [21]. It is
currently used to support the beginner software engineering course with additional practical
programming tasks. The programming language currently used for the tasks is Java and the
testing engine for the solutions is JUnit. Tasks solved by the students locally can be uploaded
as solution source files and are automatically tested against pre-generated test cases. At the
moment tasks can be categorized in beginner, exercise and exam categories. All tasks can be
provided with a start and end date automatic publishing and closing them over the course of a
term. To motivate students for exam categorized tasks bonus points for the upcoming exam are
rewarded. To minimize fraud, at the end of the term an automatic plagiarism check is used on
all exam solutions.



2 Related Work

The architecture of INLOOP is depicted in Figure 1 and can roughly be separated into four
individual components [20].

ﬁ Web application (Django) ]

Client C Y

Job broker

Task Background workers
repository | | /
Container runtime (Docker)

Figure 1: The architecture overview of the INLOOP system [20].

The first layer is the Web Application which is implemented in Python. It connects the web-
based browser clients with the rest of the architecture which runs on a private network. It ships
the tasks and associated information and artifacts from the task repository as generated HTML-
websites to the student’s browser. For the solution, file import functionality is provided and
imported solutions can be viewed. For test results, the test engine outputs are transformed into
HTML fragments and integrated into the user interface. As to the date of the work, an online
editor is provided, but no complex integrated web-programming environment (IDE). Students
often need to program the solution offline on their machine and IDE and later test their work
online. So often no immediate feedback is possible. This is negated by allowing the students to
download a test set for their task.

The second component is the job queue and the Background Workers. These workers test
the student’s solutions with a test engine against the test cases of the task defined in the task
repository. There can be multiple workers that work in parallel. Each solution is tested through
a worker in a Docker instance separated from anything else. The used test engine, Docker and
ant run configurations, and other inputs are defined in the Task Repository.

The first and second components are connected by the Job Broker and a persistent Database.
The task of this connecting layer is first to outsource the testing of the solutions to the Back-
ground Worker containers and second to provide data to the test workers and persist user,
solutions, and test results.

The last internal component is the Task Repository. It persists the multiple data sets of the
defined tasks. Globally, it holds configuration data for the workers as well as the used test
engines. For every task itself, it contains the descriptions and attachments that are delivered as
HTML to the students. Also, it contains test cases for every task. This repository is designed
as a Git repository to take advantage of the features of version control systems, like peer-
reviewed changes, branches, change history, roll-backs, and commit-triggered scrips. This type
of repository is also the core of the INLOOP workflow that is described next.



Prepare
pull request

Pull changes,
Generate files

v

i

Peer-review
changes

Push to
stable branch

]

2.1 INLOOP

Figure 2: The Workflow of the publishing or updating of task files in INLOOP (continuous

publishing) [20].

An important part of INLOOP is the workflow of task generation and updating [20]. This
workflow is called continuous publishing (Figure 2) by its creators. It uses the version control
of the Git task repository to streamline and reduce errors in the task generation and updating
process. New content can be prepared on the instructor’s machine and/or a development branch
and can then be committed to the Git repository. In this process, through a pull request, a peer-
review can be completed. After the push on the publishing branch, INLOOP is notified by Git.
It then syncs with the repository and publishes the task. At the same time, the retrieved artifacts

can be transformed or generated.



2 Related Work

2.2 Systems for Automatic Modeling Feedback

In this subsection, several systems or methods that are dealing with automatic correction of
modeling assignments are surveyed. The literature search was conducted by a keyword search
in the most popular scientific catalogs like Google Scholar, ACM and IEFE. For Example,
keywords combined to be used in the search were ”automatic”, ”automated” ”feedback”, ”grad-
ing”,”UML”,”class diagram”, "model”, ”exercises”, ”assessment”, ”e-learning” and similar ones.
One base of the found literature, a reference-based search was conducted on the newer works
to find ground-laying older literature. As a last step, work that features the same systems was
combined or partially put aside. To manage the scope of surveyed literature during the process
a thematic limit was enforced. Only systems that used UML-based models were included. There
were a few exceptions to that rule. The first was more general approaches that mention or used
UML models as examples. The second was some systems with Entity-Relationship (ER) models
because of the similarities to UML class diagrams. The second limit was that only systems or
methods were allowed that correct a student model against an expert solution or task descrip-
tion. Meaning no systems that only check on correctness of the model against its metamodel
are included. Also, no systems that only check against modeling standards or conventions like
anti-patterns [18] are included, too.

In general, it can be mentioned that there is not that much unique literature on the topic of
automatic feedback of model assessment. This is also often mentioned in the literature itself.
But, in the last years the interest in the topic became noticeably larger. Two causes of the
increased interests can be growing student numbers and the prominence of web technologies.

Table 1 gives a complete overview of all found systems or methods sorted decreasing with the
publication date. This was done to show the more current trends. Not all literature was included
in this table since often more than one work was published per system or method without adding
crucial new information. In other cases, multiple pieces of literature, that supplement each other,
were combined in one row of Table 1. In the remainder of this chapter, a row in Table 1 is called
Entry. As a critic, it must be said that there is the possibility that are more systems or methods
than what is sown there. This set of systems and methods should give a good overview of the
field, nonetheless. That is because many projects that are listed here have a similar or nearly
identical way of solving the problem of automatic correction of modeling assessments. In the
next sections, all important criteria are explained and discussed.



2.2 Systems for Automatic Modeling Feedback

Table 1: An overview of model assessment systems that can be found in the literature. The table is sorted from the newest entry to the

oldest one.

Type Editor Methodologies
Paper System  Method Diagramtype Tool Web Metamodel _ labds mxvcigcww% ree ) - Matching — Learning Feedback Grades
Forced Matched “Single Multiple Constraints  Element Constraints Graph Similarity Execute

Bian 2019 [6] x CD x AEM”NM\HF” x x x x x x x
Vachharajani 2019, 2014 [33, 34] x uc x UML x x x x x

Bernius 2019, Krusche 2018 [5, 14] X general X UML X X X x
Beck 2015 [4] x CD/AD x UML x x x x x
Sousa 2015 [26] x general/AD x ﬂwmﬂ ’ x x x x
Striewe 2014 [28] x AD UML x x x
Smith 2013, Thomas 2007 [24, 30] X general /ER x OMM? X x x x
Schramm 2012 23] x CD/AD x (Argo)UML x x x x x

Prados 2011 [22] x general x Graph x x x x x
Hasker 2011 [8] x CD x (RR)UML x x x x x

Striewe 2011 [27] x general UML x x x x x

Soler 2010 [25] x CD x (text)UML x x x x

Demuth 2009 (7] x CD x (EMF)UML x x x x x x

Jayal 2009 [12] x AD UML x x x

Thomas 2008 [31] x SD X UML x x x
Baghaei 2007 [3] x CD x UML x x x x x x

Ali 2007 [1, 2 x CD x (RR)UML x x x x

Le 2006 [16] x CD x (Argo)UML x x x x x x

Higgins 2006, 2002 [9, 10] x general x ER/OO x X x X x
Tselonis 2005 [32] x genaral x Graph x x x X x
Hoggarth 1998 [11] X general X CASE x x x X




2 Related Work

2.2.1 Technical Criteria

The first criterion is the Type of work that is surveyed. First, there are Methods. These are
mostly ideas or prototype implementations of automatic correction systems without a working
outer framework to connect it to a larger student body [2, 6, 7, 12, 16, 26-28, 33]. But these can
have multiple tools to support them. Sometimes, the input of both the expert and the student
model is done by an instructor [6]. The second type of entries is Systems. These have a frame-
work described that allows them to work automatically with many users and give immediate
feedback [3, 4, 8, 10, 11, 14, 22-25, 31, 32]. This criterion is very loose and an entry can often
sit between both types. This criterion should only be used to show the relative range of a system.

The next criterion is the Fditor that an entry uses for model creation. The feedback generator
is in almost all cases a different program and is not meant in this criteria. There a two options
used in the literature: A Local Tool or a Web-based Online Editor. The local tool means that the
student works on his solution with an existing modeling tool like IBM Rational Rose, ArgoUML",
Dia? or an exclusive tool [7, 8, 12, 16, 27]. There are cases, where only the instructor has this
tool to digitized student solutions [6, 12]. This is often the case in method typed entries. These
local tool is often used for specific local course exercises. That type of editor often leads to the
correction of handed in student assessments without immediate feedback. If online capabilities
are needed this type of editor is paired with an online file upload system [27]. This can also be
used to give immediate feedback to a student. If system typed entries use a local tool this file
upload or a editor with online capabilities is used [9, 27, 32]. Web-based online editors are used
by system entries to give immediate feedback to a large student body [4, 10, 15, 22, 23]. They
became more important due to the prominence of online technologies in the last ten years.

2.2.2 Model Criteria

The third and fourth criteria are the Models and Metamodels the entries are designed for. The
metamodel is almost always UML since this was one of the limits for the literature research. If
special implementations of UML are mentioned they are also given in the table. For example,
some entries are using IBM Rational Rose (RR) [2, 8] which saves the models in a textual form
or using their own textual UML annotation (textual) [25]. Other special implementations are
ArgoUML (Argo) [16, 23] and the Eclipse Modeling Framework® (EMF) [6, 7] which save the
models in XML Meta-data Interchange (XMI) format. The EMF UML implementation has the
advantage that many modeling tools and editors support its format. Some special entries have
different metamodels. Bian et al. [6] has an second model for Grades. Higgins et al. [10] and
Smith et al. [24] support ER models which are similar to UML class diagrams and some entries
using general Graph [22, 32] structures with UML as examples. Higgins et al. [9] also using the
more general term of object-oriented models (OO). Hoggarth et al. [11] is often used as a starting
work and describes a general approach to compare CASE models for better feedback in courses
with many students.

"http://argouml.tigris.org, 10.02.2020
http://dia-installer.de, 10.02.2020
3https://www.eclipse.org/modeling/emf, 10.02.2020



2.2 Systems for Automatic Modeling Feedback

The majority of entries only support only one or two UML model types. The most supported
type is the class diagram (CD) with nearly half of the entries specifically mention it [2-4, 6—
8, 16, 23, 25]. This can be due to the fact that class diagrams are often the first diagram type
which is introduced in beginner modeling courses and one that can be the most complex. So
there is a great need in tools to help the student to assesses their skill and for the instructor
to save time correcting the models. After the class diagram, the activity diagram (AD) is
the second most often mentioned UML model [4, 12, 23, 26, 28]. It represents the efforts to
automatically correct behavior-based UML models. Other UML model types are scarcely found
in the literature. Only one unique entry that mentions UML sequence models (SD) [31] and
one for UML use case models (UC) [33] were found. But there are eight entries that describe
methods to correct (UML) models in general [10, 11, 14, 22, 24, 26, 27, 32]. These often use
transformation techniques to transform the UML models into graphs, or constraint sets or use
similarity techniques [22, 24, 26, 27].

2.2.3 Methodologies

The methodologies criteria can be subdivided into three sub-criteria. The most important of
these sub-criteria is the matching technique. Supportive of the matching are the source files,
learning capabilities, and the handling of the model elements labels. Based on the literature,
the used matching techniques could be summarized in five categories. These categories are not
exclusive. An entry can use techniques of multiple categories. The five categories are:

Element Matching:
An algorithm tries to match one element of the student solution model directly to an
element of the model of the expert solution. This can be one the base of labels or sub-
elements and is the simplest form of matching technique [1, 2]. This technique is the
simplest one to implement but can of its one only reach limited results and have many
requirements on the used models like nearly identical labels and structures.

Constraint Matching;:
Rules or constraints are defined and the student solution is matched against those. These
constraints can be rules used by a verification engine or they can be of algorithmic nature.
This technique is one of the broader approaches and can yield a good result with limited
requirements but is very dependent on the quality of its constraints.

Graph Techniques:
Different Graph techniques are used on the student model and the expert solution. Ex-
amples for these techniques are the transformation in a general graph [27], graph match-
ing [22], and graph rewriting [26]. It uses a very general approach and can work on most
UML diagrams.



2 Related Work

Similarity Techniques:

There, the goal is to obtain an abstract value of how similar the student and the expert
model are. This happens by using a means to calculate how similar an element or an
element group is to another element or group. This is often done by a heuristic approach
like converting labels, relationships and attributes of an element in a string and calculate a
number of how similar the strings are [32]. The matching of elements is done by maximizing
the similarity. Based on the similarity algorithm it can be used on all UML diagrams. A
disadvantage of this technique is its dependency on the similarity thresholds which can be
hard to locate. Thomas et al., for example, tries to generate them by using training sets
and machine learning techniques [30, 31].

Execution:
For this technique, the student model is transformed into an executable state and is then
tested. This technique is only used with behavior-based UML models like activity mod-
els [4, 28]. One example is the conversion into Java code and the usage of a testing
environment [4]. Another example is a token-based execution through a reasoner [28].

All techniques found in literature could be categorized in one of those five technique categories.
Also, all of these techniques have been proven to work in automatic model assessment systems
through their literature. Which categories were used were often decided on the requirements
of the entries. After looking through the literature a rough categorization of the categories can
be made. Each category of techniques is categorized in an abstract Generality level. Higher
Generality means that a class has lower requirements on the expert and student model and can
even be used on multiple model types. It should be said that a low Generality level does not
mean that a category is of lower quality. It only means that it has higher requirements to work
and often lower Generality categories are easier to implement like Element Matching. Element
Matching and Execution should have the lowest generality. Element Matching can only be used
in nearly identical models. Execution, on the other hand, can only be used on behavior-based
models like activity, state and sequence diagrams. Constraints Techniques can be of variable
Generality based on the rules that are used. If very simple rules are used they are on the
level of Element Matching. Many general rules can result in a high Generality. Summarized,
constraint-based techniques should be categorized as middle Generality with high variance based
on the implementation. Graph and Similarity techniques are categories with high Generality
because they use very general concepts. Figure 3 was created to visualize the generality of the
technique categories. Lastly, it should be mentioned that most entries using more than one
category of techniques to achieve the best result. Common combinations are Element Matching
and Constraint Matching, and Graph and Similarity Matching. In the first combination, the
simple approach of Element Matching is supported by constraints that allow the matching of
elements of the student solution that are different from the expert solution [3, 6-8, 16, 23]. The
second combinations are graph and similarity techniques. There the model is transformed in a
graph to generalize the elements before the similarity algorithm is activated [26, 32].

10



2.2 Systems for Automatic Modeling Feedback

Low Generality - Matching Technique High
L |
L | Constraint Matching | |
Element Matching Similarity Matching
Execution Matching Graph Matching

Figure 3: Overview of the Generality of the matching techniques. Generality describes the
needed requirements of the techniques. High Generality means less requirements on
the matched models or model types.

Besides the matching techniques, there are multiple other criteria the entries are using. These
criteria are supporting ones that are used in combination with the matching techniques to
improve the results of the systems.

The first supportive criterion is the evaluation of the model element Labels. The majority
of entries choose to force labels. This means the labels the students can use are defined in
the description of the task. This is often used by entries that are using Element Matching
or Constraint Techniques to simplify the process. It should be noted that simple techniques
on labels like lower-casing or trimming are also included in this category. This form of label
evaluation has the advantages of reducing the solution space and is often used in exams of
beginner software engineering course. This simplifies the correction, and the reduced complexity
can help some students to solve the task. The disadvantage is reduced freedom in solving the
task that can hinder some students in solving the task in their own way. The second label
evaluation technique is a complex matching of labels. This means that there are algorithms that
used language processing techniques to match the labels even if they are not identical. That
can be a rather simple algorithm like the Levenshtein distance [17] that checks the number of
changes to transform a label into the other label [6]. Or it can be a multi-layer pipeline that
is using stemming and dictionary techniques to find the meaning behind the label to compare
this to the other label [12, 33]. These algorithms are often necessary if an element matching
or constraint-based system does not want to force labels. The advantages of label matching
are that it gives the student more freedom in his modeling choices and can drastically increase
the scope of possible solution matches of the whole system. The disadvantage is the increased
complexity of the matching system.

11



2 Related Work

The second supportive criterion is the expert source data that must be provided to the system
or method to work. The first data that is often provided, is an Expert Model of the solution.
It is used as the foundation for the direct matching of the student model. Almost all entries
are using an expert model as source data for their systems or methods. Some entries are using
Multiple Expert Models. This is done to broaden the space of possible student solutions without
changing the complexity of the matching algorithm. For the feedback, the expert model with
the highest similarity or score to the student solution is used [22, 25]. None of the entries use
the multiple models simultaneously to assess the student solution. The last source of data that
is provided, are Constraint Definitions. These hold the rules and constraints that are used by a
verification engine. This input data is often used to complement an expert model in the matching
process [3, 7, 16]. Some entries are using only global or task-specific constraint definitions for
the matching process, too [4, 27]. Constraints that are only statically included in algorithms of
the matching engine are not included in this subcategory [6].

The last supportive criterion is the notion that a system can learn. Learning means that a
system uses previous results to find suitable feedback for the current student solution. There
are only two entries that describe learning systems and both use different ways to implement
this criterion. The first entry uses multiple expert solutions as sources and checks them with
the student solutions with graph matching techniques [22]. If no suitable match is found an
instructor manually assess the student solution and inserts that solution with feedback as a new
expert solution. The second entry uses semi-automatic machine learning to assess the student
solution [14, 15]. To best of our knowledge, there is no literature that specifies how it is done
in reality. There is only literature on how a text assessment is done with the same system [5].
From that, it is possible that an instructor must do a manual assessment if the machine learning
algorithm is not confident enough. Then the manual assessed student solution is used to train
the machine learning algorithm. The advantages of learning systems are that even a simple
matching algorithm can give very good results if it learned enough. The disadvantage is that
these types of systems need a good learning data set. Generating these sets needs enough sample
data and if the quality is not good enough the quality of the assessment can be lower than by
other techniques.

12



2.2 Systems for Automatic Modeling Feedback

2.2.4 Feedback Criteria

Without surprise, all surveyed automatic assessment system generates a form of feedback for the
student or instructor. The first form of feedback is the tertual Feedback on the student solution
model. All forms of matching techniques are capable of giving this type of feedback. This form
of feedback is mostly given on found elements to help the student finding errors and explaining
already found solution parts. Examples of this type of feedback are:

”City: 2.0/2.0, matches with Class City” [6]

e "Incorrect role name for role crossing from Street” [8]

e ”"Class Route should be associated with a different class than Street” [8]
e "Multiplicity of association named ... is not correct” [25]

e "There is/are <number of elements> <name of element>, this is too much.” [23]

To avoid revealing the solution, feedback on missing parts is rarely given and if, then in a
more general way.

e "Note! <number of missing element(s)> class(es) or attribute(s) missing.” [23]

The second type of feedback is to calculate a Grade or point value (40/100 Points) for the
student solution. This type of feedback is not so common like the textual feedback since a
differentiation between correct, partially correct, and incorrect solutions must be possible to
calculate a sound grade for a solution. Constraint-based techniques are capable of this if there
are constraints for each solution type and each constraint is given a point value [6, 27]. The
entries that can learn are using the assessment grade of an instructor on old solutions to calculate
a grade for a new solution [22]. Similarity techniques are using the similarity value of the elements
or element groups to convert this value to a point value [24, 26, 30, 31].

13



2 Related Work

2.2.5 Summary

Through all entries that are surveyed have sightly different approaches and implementations,
most of them can be abstracted into one of six types of Assessment Systems (AS), each using a
different main approach. These main approaches are based on the already discussed matching
techniques and supportive criteria and each entry was assessed of which criteria were their
defining ones. After this assessment, only six main approaches remained, which can be declared
as the abstract assessment system types that are currently used in model assessments. It should
be noted that each entry can have other matching or support criteria outside their defining ones.
The system types can be seen as a general overview of the topic and are later used to decide on
a system type for the extension of INLOOP. These systems, ranked after the number of included
entries, are shown in Table 2 and are also categorized in generality levels in Figure 4.

Table 2: Summary of the types of automatic model assessment systems that can be found in the
literature. The table is sorted by the number of entries that belong to a type.

Assessment System ﬂ Generality Entry Count Entries
Textual Grades
Constraint-based Assessment Systems X X Middle 8 Bian 2019 [6], Schramm 2012 [23], Hasker 2011 [8],
Striewe 2011 [27], Demuth 2009 [7], Baghaei 2007 [3],
Le 2006 [16], Higgins 2002 [9]
Similarity-based Assessment Systems X X High 3 Sousa 2015 [26], Smith 2013 [24, 30], Thomas 2008 [31]
Element-based Assessment Systems X Low 3 Soler 2010 [25], Ali 2007 [1, 2], Hoggarth 1998 [11]
Label-based Assessment Systems x Middle 2 Vachharajani 2019 [33, 34], Jayal 2009 [12]
Learning-based Assessment Systems X X High 2 Bernius/Krusche 2019/2018 [5, 14], Prados 2011 [22]
Execution-based Assessment Systems X X Low 2 Beck 2015 [4], Striewe 2014 [28]
Low Generality - Assessment Systems High
L ]
[ | Constraint-based AS | |
Element-based AS Label-based AS Similarity-based AS
Execution-based AS Learning-based AS

Figure 4: Overview of the Generality of the assessment system (AS) groups. Generality de-
scribes the needed requirements of the system groups. High Generality means less
requirements on the matched models or model types.

14



3 INLOOM - A Constraint-based Modeling
Assessment System

In this chapter, a possible design for the extension of INLOOP [20] with model assessment
capabilities is discussed. Later in this work, this extension will be called INLOOM (INteractive
Learning center for Object-Oriented Modeling). For this, at first, the general requirements of
the future system will be specified. Then possible types of exercises are analyzed and a plan for
the future implementation is developed. Last a possible implementation design is created and
integrated into the INLOOP architecture. This design includes the user interface for the student
and instructor, possible feedback and grading options, and the selection of the used matching
technique.

3.1 General Requirements

The first task designing a model assessment extension for INLOOP is to specify the requirements
(RQ) and the limitation of the future system.

The first requirement specified out of the main goal of the system. The goal is to prepare the
student for the exam in the beginner software engineering course. That should be achieved by
giving them modeling assessments that are based on the tasks of the exams. The system should
allow to do this. There are multiple ways to achieve this. First, the types of exercises should
be similar to the ones that are used in the exam as well as in the exercise lessons of the course.
This means, that the task descriptions need to include all keywords for the model highlighted.
The students are only to use these keywords when modeling the solution. The next limitation is
the metamodel used in the course. In the analysis phase of the software development cycle, the
course uses a revised metamodel of the UML metamodel called Analysis UML (aUML). This
metamodel removes more technical elements from the UML metamodel and simplifying it in
the process. The system must be able to use these simplified metamodels as well as the normal
UML models for the design phase.

(RQ1)
The system should prepare the students for the exam of the beginner software engineering
course.

(RQL.1)

The system should use exercise types that are used in the exam and exercise lessons.

(RQ1.2)

The system should use forced keywords for the exercises.

(RQ1.3)
The system must use aUML and UML metamodels.

15



3 INLOOM - A Constraint-based Modeling Assessment System

The second requirement requires the system to give feedback to the student without giving the
solution away. For this, the system should give three types of feedback. One, a textual feedback
message to the student that allows him to evaluate his solution. Second, a grade described by
a maximal and a received score, or a similar measurement, should be calculated. And third, a
complete report for the instructor to save for later examination or evaluation. This report could
also be used partially for the feedback of the student like marking the right or wrong elements
in his editor.

(RQ2)

The system should give appropriate feedback to the students and instructors.

(RQ2.1)

The system must give textual feedback to the student for his submitted solution.

(RQ2.2)

The system should give a grade to the student for his submitted solution.

(RQ2.3)
The system must give a complete matching report to the instructor for later evalua-
tion.

The last requirement is that the system must be compatible with the architecture of INLOOP.
This means that the system must be able to work with the continuous publishing paradigm. The
student should be able to upload his or her solution over a web interface. The instructor must
be able to prepare his task and solution easily on his one local machine and publish it over a git
pull request without needing to re-implement any engine algorithm. All needed artifacts should
be able to be generated by importing it into INLOOP.

(RQ3)
The system must be compatible with the architecture of INLOOP.

(RQ3.1)

The system should implement continuous publishing.

(RQ3.2)
The system must have a web interface for the students to receive their tasks and
upload solutions.

(RQ3.3)
The system must give the instructor the ability to upload his task descriptions and
solutions with a Git commit.

16



3.2 Types of Modeling Tasks

3.2 Types of Modeling Tasks

To decide the solution for the requirement RQ1.1 a survey on the exam tasks of the last 11 years
was conducted. The time span of 11 years was decided one the fact that in this span the exam
was roughly the same style as today. In the end, 21 exams of the summer and winter terms
were surveyed after their modeling task. In all 21 exams, a number of 81 modeling tasks can be
found. This data could be interesting for other works and the planning of future exams. In this
work findings important to the topic of assessment systems are discussed. The whole data set
can be found in the digital attachments this work. Table 3 gives an overview of the data this
section is based of.

Table 3: Overview of the modeling tasks of the last 21 exams. Overall 81 task were surveyed.
Each task was categorized by its Phase in the software development cycle, their diagram
Type, and their Difficulty. The difficulty* increases from Diff 1 to Diff 3. Count
summarize all task of the same type and ”%” shows their percentage value to the
complete number of modeling tasks.

Difficulty

Phase Type Diagram Count %
Diff 1 Diff 2 Diff 3
Structure Class 9 6 16 31 38,3
Object 1 2 3 3,7
Sequence 0 0,0
. Activity 1 1 1,2
OOA  Behavior State (B) 1 3 6 74
State (P) 1 4 5 6,2
Context 1 1 1,2
System TLA 1 1 1,2
Use Case 1 3 4 4.9
Structire Class 7 3 4 14 17.3
Object 4 4 4,9
(0]0)D) Sequence 3 5 8 9,9
. Activity
Behavior g e B) 1 1 2 25
State (P) 1 1 1,2

3.2.1 Model Generation and Transformation

The first finding of the survey was that there are two types of modeling tasks. One of them is
the Model Generation task type. There only a textual description of the task is given and the
student must model the desired diagram type. There are 56 tasks of this type which is 69% of
all modeling tasks. The other task type is the Model Transformation task type. This type gives
the student a source model of one type and a description. The student must create a solution
diagram of another type. 25 Tasks (31%) of all tasks are of this type. For the future assessment
system, both types of tasks should be implemented but the focus should be lying on the model
generation task type.

4 See Section 3.2.3 on Page 19

17



3 INLOOM - A Constraint-based Modeling Assessment System

3.2.2 Object-oriented Analysis and Design

The next finding is the phase of the software development cycle. Without surprise, all tasks
are in the Object-oriented Analysis (OOA) or in the Object-oriented Design (OOD) phase. 52
tasks lie in the object-oriented analysis phase (64%) and 29 in the object-oriented design phase
(36%).

The object-oriented analysis phase includes nine diagrams in three diagram types. All but
one (Sequence diagram) are used in exam tasks.

Structure Diagrams:
e (Class Diagram

e Object Diagram

Behavior Diagrams:

Sequence Diagram

Activity Diagram

Behavior State Diagram (State(B))

Protocol State Diagram (State(P))

System Diagrams:
e Context Diagram
e Top Level Architecture Diagram (TLA)
e Use Case Diagram
The object-oriented design phase includes six diagrams in two diagram types. From these six
diagrams, five are used in exam tasks with the exception of the activity diagram.
Structure Diagrams:
e (Class Diagram

e Object Diagram

Behavior Diagrams:

Sequence Diagram

Activity Diagram

Behavior State Diagram (State(B))

Protocol State Diagram (State(P))

From this, it can be concluded that both phases should be included in the assessment system
but the focus should lie on the object-oriented analyses tasks since both the count of tasks and
the number of diagram types are higher. Another fact that supports this decision is that the
exercise lessons of the course also favor the object-oriented analysis phase.

18



3.2 Types of Modeling Tasks

3.2.3 Difficulty Levels

In the process of surveying the exam tasks, a pattern in the Difficulty of exam modeling tasks
was found. It can be seen that the task followed one of three types of difficulty levels. These
three levels can also be seen in the exercise lessons of the course. In the first level of difficulty
(Diff 1), most of the model is already prepared for the student. The student is then tasked to
add some additions to the existing model. In this type, the student’s choices are usually very
limited and the existing model can help to find the solution, often making this type of task the
easiest ones. The second difficulty level (Diff 2) also gives the student a pre-existing model to
work with. In contrast to the first difficulty this pre-existing model only holds a few anchor
points for the student. Most of the model is to be designed by the student. The difference
between the first and second difficulty level can be in times relative unclear. To decide which
difficulty a task is from, the scope of the student work and the pre-existing elements can be
used. For difficulty one roughly more than three-quarters of the work on the model should be
pre-existing. The Distinction is important nonetheless since the two difficulties represent two
different concepts. At the first difficulty, the student only adds to an existing model. At the
second difficulty, the student creates the model with some hints or anchor-elements as help. For
the highest difficulty three (Diff 3) the student must model the complete model him- or herself.
This type of task giving the student the highest degree of freedom and the least help. Because
of this, it should be the highest difficulty for tasks.

In the future system, tasks for all three difficulty levels should be provided. Level one difficulty
should be for beginner categories. Normal or exercise categories could be providing all difficulty
levels with a focus on the first two levels. Exam categories should be focusing one the last
difficulty.

3.2.4 Implications for Realization

After discussing the findings on the surveyed old exams, new requirements for the system can
be concluded. These requirements can be placed below RQ1.1 and must be met to resolve this
requirement.

(RQ1.1)

The system should use exercise types that are used in the exam and exercise lessons.

(RQ1.1.1)

The system must be able to exclude pre-existing elements from feedback generation.

(RQ1.1.2)
The system should be able to be used on many different model types without changing
the core process.

The differentiation between generation and transformation task does not add any new re-
quirements to the system. Both types of tasks have the same process to resolve them in an
assessment. The only point that can be made is that the transformative tasks need a figure of
the source model in the task description. This feature is already included in the HTML artifact
generation of INLOOP. Differently, the difficulty levels generate a new requirement. To imple-
ment these the instructor must be able to mark elements as pre-existing and exclude them from
all feedback generation. Lastly, the system should be able to deal with many different diagram
types possible without needing new code implementations for all.

19



3 INLOOM - A Constraint-based Modeling Assessment System

Through the great number of model types, there is a high possibility that each model type
must be included after each other into INLOOM over a period of time. In this case, it is impor-
tant to classify an order of importance for the inclusion of the modeling types. Looking at the
surveyed data it is clear that the most important model type is the analysis class diagram since
nearly 40% of all exam modeling tasks are of this type. It is also the most prominent model
type in the exercise lessons of the course. Both points suggest that INLOOM should include this
type first. After that other OOA models should be included. Though the design class diagram
is the second most occurring model type in exams the object-oriented analysis itself is much
more prominent in the exam and the exercise lessons. The most important model types after
the analysis class diagram should be the analysis state models followed by the use case diagram.
After that, the rest of the analysis diagrams should be included due to the importance of the
phase in the course. Then the design diagram should be added beginning with the design class
diagram and continuing with the sequence diagram.

That order of implementation has another origin. The aUML models are normally more
simple than the Design UML (dUML) ones. That should make it easier to automatically assess
them and reduces the resources needed to implement an assessment system for them. Because
of this, it would be a good choice to include them in INLOOM first.

Design UML models are often more complex then aUML models. Once, there are more model
element types that can be used in dUML models. Second, there are often multiple solutions for
a task, due to the inclusion of technical design decisions. These can be, for example, used design
patterns, or programming languages. Both problems should make it harder to automatically
assess them. Because of this, they should be included in INLOOM after the aUML models.

20



3.3 Model Representation

3.3 Model Representation

3.3.1 Selection of the Model Representation

After discussing which modeling exercises the INLOOM system should implement a usable model
representation for students solution and possible expert models must be found. A fitting model
representation can help to easily integrate the future system in existing systems like databases
and user interfaces and can drastically reduce development time for the needed model-driven
matching tools.

In the literature of this topic, multiple representations were mentioned though the major-
ity did not discuss the underlying models. Some Systems are using completely original model
representations. These have the advantages that they can be implemented to perfectly fit the
requirements of the future system. The price for this is that everything from matching systems,
user interface tooling to the representation itself must be implemented anew in the process.
Through highly customizable the workload included in this approach is very high. In conclu-
sion, this approach should be only used as a last resort since there are multiple alternatives. The
first existing representation was IBM Rational Rose (RR) models which have an original more
textual description of the model. IBM Rational Rose is a populate modeling tool with multiple
tools working with it. This can have advantages like support and popularity. Negative points
seem to be the closed commercial nature of the products. There also seems to be no tooling to
easily generate new model-driven tools for this representation. In conclusion, new tools must be
implemented. These disadvantages discourage using this model representation especially since
IBM Rational Rose is not used prominently by our course. The second used model representa-
tion is the Eclipse Modeling Framework (EMF) model. An EMF model is based on an Ecore
Metamodel and is saved in XMI format. EMF has multiple advantages and is used with the
Eclipse IDE. First, it is free to use and open source. Second, it has a large pool of tooling choices
that can be used to process models or generate new tooling for the models with relatively less
expenditure. Third, it can be used outside of the Eclipse® IDE. The last point is that the XMI
format is very structured and widespread, making usage outside of the EMF ecosystem possible.
Naturally, the EMF model representation has a few downsides as well. It is highly interlinked
with the Eclipse IDE and working outside of this IDE can be more problematic but is very
possible nonetheless. Also, not all tools and tool generation tooling are available as a standalone
outside of the Eclipse IDE. Before using it a review for each tool is needed. And lastly, there are
problems with the EMF model implementation when working with modern databases or web
technologies like JSON. This can restrict the usage of web services.

As a model representation for the INLOOM system, EMF is chosen. The decision was made
mostly because of the model-driven tool ecosystem and the model format and automatic model
implementation in Java. There is also a UML2® implementation in Java that can be used
with many different external UML modeling programs like MagicDraw”. This could help for a
possible future swap between original EMF models and UML in the tooling if that is needed. The
problems with the standalone tools not available are solved in a later section of this chapter®.
Last, the problems with modern web technologies are already addressed by a couple of helper

5https://Wwvv.eclipse.OJrg7 10.02.2020
Shttps://wiki.eclipse.org/MDT/UML2, 10.02.2020
Thttps://www.nomagic.com /products/magicdraw, 10.02.2020
8 See Section 3.4.3 on Page 29

21



3 INLOOM - A Constraint-based Modeling Assessment System

tools like the emfjson-json project? for web systems or Eclipse CDO Model Repository!'® for
databases. For databases, it is also possible to store model files as a whole in XMI format. This
is enough if no search on the model elements in the database is necessary. In this use case, this
should be the case.

3.3.2 Model Definition

After choosing EMF as our model representation the used models themselves must be defined.
The first question is the scope of the models. There it is to decide if the more general UML2
metamodel implementation of EMF is used or if a new metamodel is created to fit the require-
ments more. The already existing UML2 implementation has the advantages that it is already
existing and it is used by multiple UML model environments that could be used for the student
solution model. The disadvantages are that in the object-oriented analysis of the course only
simplified aUML models (see Figure 5) are used. That means that each received UML2 model
must first be checked against these simplified rules. These checkers must be created for all nine
analysis model types which consume time and resources and can introduce new error sources.
The alternative is to create an original metamodel for each of the simplified aUML model types.
This is a higher initial expenditure but removes the need for checking for structural unnecessary
elements or structural errors. Which our focus of the analysis phase of the software develop-
ment cycle the second option seems to be the better one. Later for the design phase, the UML2
implementation can be used.

Figure 5: Simplified metamodel of the aUML class diagram used in the beginner software engi-

DirectedRelationship «enumeration»
AggregationKind
none

ZF AssociationClass shared
composite
Generalization 1
* * ﬁ Association
ifi 1 | —|qualter association i(isill')eil;ii\:)iirrow
specific {/ 1 genera Property 2. o
* Class i@——— | isDerived memberEnd
. 1 owendAttribute
classifier| property
/general .1 Operation 1 o1
. ownedOperation N source [1.*  1.*| target
multiplicity MultipicityElement
isOrdered[0..1]
lower[0..1]
upper[0..1]
Enumeration 1 EnumerationLiteral
ownedLiteral

neering course of the Chair of Software Technologies of the TU Dresden.

“https://emfjson.github.io, 10.02.2020
Yhttps://www.eclipse.org/cdo, 10.02.2020

22




3.3 Model Representation

GradableElement

isPreExisting: EBoolean = false
points: EFloat = 1.0
mode: EInt =0

BN R

Class Property Association

Figure 6: Implementation of the feedback and grade information in the aUML metamodels for
INLOOM. The GradableElement metaelement hold all these information and other
metaelements inherit from it to be included in the feedback generation. Class, Property
and Association are examples that stand for these elements.

The next decision is on how to design the information necessary for grades. In the literature
one time, the information was saved in its one model, in the expert solution itself or in an
external data sheet. All three alternatives are possible for INLOOP. Since it is already decided
that we use original metamodels for the analysis phase models, including the grading informa-
tion into these metamodels can be done without problems and further resources. This reduces
inter-model complexity and allows every expert solution to have their own grading scheme. On
student solutions, this information can be ignored by the matching engine. Figure 6 shows
the implementation of these grading informations in the metamodels. Every element that is
included for feedback and grade generation inherit from the GradableElement metaclass. With
this inheritance, multiple information for feedback and grades can be set. First is the isPreFa-
isting option that excludes an element from feedback and grade generation if it is set to true.
This allows the system to meet with the requirement RQ1.1.1 and allow tasks with preexisting
elements of the difficulty one and two (Diff 1 and Diff 2). Next, a point value for the element
can be given. This value represents the maximal points that are given to the student if the
matching algorithm can match the element. The last attribute is a mode value. In the exams,
there are often different grading schemes for different elements. The mode attribute is included
to allow the matching algorithm to react to different schemes if it is wished for. For better
student feedback, a standardized grading scheme should be prioritized.

There were two attributes that were considered but in the end not included in the GradableEle-
ment. For completion, these are also mentioned in case of future extensions of the system. First
is the pointDeduct value. It can specific how many points of the maximal point value will be
deducted per error in the student solution element. This was dismissed by the fact that mostly
1 or 0.5 points with 0.5 point reduction were given to an element in the exams so a simple
half point scheme was always sufficient. The last not included attribute is a specific feedback
message for the element. This is not necessary since these messages would not vary enough
between elements of the same type. All assessment systems in literature also only give specific
feedback based on the element type.

23



3 INLOOM - A Constraint-based Modeling Assessment System

3.4 INLOOM Matching System

The next step to the INLOOM System is the design of the matching system. For this, one of
the assessment systems types must be chosen and the chosen system must be designed to work
with continuous publishing.

3.4.1 Assessment System Type of INLOOM

Since INLOOM should use tasks similar to the ones used in the exams there are some already
mentioned restrictions. First, the labels of the used elements are forced to specific keywords
and second the task description is specifically worded to restrict the solution space as much
as possible. With this, assessment systems with high generality like Learning-based AS and
Similarity-based AS are not needed to reach the requirements. Also, there is not too much
already digitized data on the exam task and solutions. So training the learning systems and
calculate similarity thresholds would take many resources and long low-value starting time.
Similarity-based AS can also have difficulties with concrete textual feedback for the student and
their grades can be hard to retrace which can lead to doubt from the students. These costs will
properly not be worth the possible additional gains. An Ezxecution-based AS is also not chosen.
These work best with behavior-based model types and so do not fulfill requirement RQ1.1.2.
Label-based AS are not needed as well since the labels are forced so only small label correction
techniques like lower-casing or trimming are needed. Later on, better label matching techniques
like Levenshtein [17] could be added if needed. Element-based and Constraint-based AS could
both be used under the limitation of the system. A survey of older exam solution shows that
even with the limited solution space there are some differences in expert and student solution
models so pure element matching is not enough. Also, pure element matching can only give
general feedback and rough grades without nuances like half points and error-aware feedback.

The choice at the end of these advantages and disadvantages is a Constraint-based Assessment
System. Those systems do not need many resources to start running with sufficient results. They
also have a wide range of generality and have been proven to work on many different model types.
They can also be calibrated by their constraints on the limitation of the solution space. The last
point is the ability to give detailed textual feedback and grades through multiple constraints
per element. All these points make them an ideal model assessment system for the existing
limitations and requirements.

3.4.2 Matching Algorithm

After deciding on a Constraint-based Assessment System (CAS), the algorithm must be designed.
In the literature, there are multiple ways to generate and use the constraints.

Sometimes the constraints are implemented as part of an algorithm, or they are designed in
files of their own and then only used by the matching algorithm. Since the INLOOM CAS
should work with many model types and should not change their workflow or implementation
for different model types, the second option seems to be the better one. The second option
makes later changes on the constraints easier since the matching algorithm can stay the same,
too. This would also be a better fit for the continuous publishing paradigm of INLOOP since
the instructor only needs to publish the constraints and do not need to care about the algorithm
behind INLOOM.

24



3.4 INLOOM Matching System

Next must be discussed how the constraints are created. In literature, one way to do that is
that the constraints are designed by the instructor for the task. With this, the instructor can
perfectly customize the constraints to the solution domain that he envisions. The disadvantage is
that the instructor must have high domain knowledge and must be able to design the constraints
in the constraints language. Another way to do it is that the instructor designed an expert
solution model and there are global constraints that are pre-designed for all tasks of a model
type. In this case, the requirements for the instructor are less than in the first option but
the global constraints maybe can not be perfectly matched to the expert solution. Also, both
the expert solution and the global constraints must be interwoven at the time of the matching
process which generates another layer of complexity.

For the INLOOM CAS a two-phase process is proposed that hopefully contains the advantages
of both constraint creation options. It also uses the constraints as individual files and keeps the
underlying algorithm as clean as possible. The abstract process is described ones based on the
activities by Figure 7 and second based on the object or file flow by Figure 8. First, there is the
Preparation Phase. This phase started only when the instructor publishes a new solution for a
specific task. The instructor commits a new model file as an expert solution. This file can be
created by a provided modeling tool and the instructor must not define any constraints, keeping
the requirements for the instructor low. After the upload, the model is automatically given to
a Constraint-based Test Generator. This generator uses the model to automatically generate
a Constraint-based Test-Set out of the model and write the constraints into files for later use.
Each of these files should contain the constraints for one element of the expert solution. The
generator also checks if an element is a gradable element and if the element is pre-existing. For
the later, no constraint file is created and for the former, the grading and feedback information
is included in the constraints. With this, element-based constraints are generated which should
better describe the domain as global constraints but do not need specialized knowledge from
the instructor. This process also generates a text-based abstraction layer between the expert
solution model and the matching to the student solution model. Such an abstraction layer should
make it easier to use the complete process with multiple model types. The generator generates
the element-based constraints on the base of a Master Constraint-Set for the model type of the
expert solution. This master constraint-set is created one time for one model type and can be
used on all expert models of the same type. This set can be created by an expert in the constraint
domain without the instructor’s involvement. In the best case, the master constraint-set includes
for each element type of the model type one file that describes a constraint for that element type
and when they are included to the element-based constraint-set. For the INLOOM CAS these
master constraint-sets are the main quality variable that can be used to customize the quality
of the matching and the scope of covert solution space. A disadvantage of working with these
master constraint-sets is that these sets’ complexity can rise drastically with the count of element
types and the possible solution space. This means that tasks on the base of aUML should be
inside the parameter of the system since aUML models are often simplified and can have, with a
good task description, a small solution space. Normal design UML models could be problematic
to describe in the master constraint-sets since they have a much higher complexity as aUML
models. They often have more model element types and cover a greater solution space. The
greater solution space means that there are multiple possible design solutions for one abstract
one. One cause for this are technical design decisions. First, different design patterns could
be used. Second, the design solution could be for different programming languages. These
languages could have different syntax and limitations. All that is especially the case for UML
design class models and can hinder the usage of INLOOM for dUML models.

25



3 INLOOM - A Constraint-based Modeling Assessment System

Cstudend Lecture

Figure 9: Examples for error found by global constraints (red circles). These include isolated
classes, lower case class names, and directed associations in aUML class diagrams.

After the constraint-based test-sets for a task are generated the second phase of the process can
be started. Each time a student solution is submitted a Constraint-based Test Engine will start
matching that solution against the task-specific test set. This phase can be called the Testing
or Matching Phase. Since the constraint files of this test-set are all equal there is the possibility
of using additional Global Constraint-Sets (see Figure 9) in the same process. These global
constraints can be used for example to check on model conventions like upper-case class names.
Another usage of these can be the grading or feedback to model wide issues like isolated classes.
After the test, an Output File is generated that holds the test results, textual feedback, and
grades for the student. There are multiple advantages of using this isolated second phase. First,
since only textual constraint files are used global constraints can be easily added to improve the
quality of the matching and feedback. Second, the constraint test-sets hold only the important
constraints for only the important elements. All filtering is done in the preparation phase, so the
second phase should be needing fewer resources. This is important since the matching phase will
be triggered by every submitted student solution. The last advantage is that the expert solution
itself is not used in the step. This create an abstract layer between the expert and student
model. This can lead to more security since the solution is not needed to be in the same space
as the tested models. Another point is the flexibility gained by the abstraction. Dependent on
the implementation of the Constraint-based Test Engine, theoretical no model type information
should be needed. But, this could be hard to achieve using the EMF framework. One point of
this flexibility was already mentioned with the additional global constraints but other changes
are also possible. For example, it could be possible to change or add element-based constraints
to generate multiple expert solutions around a core structure of core element-based constraint
test files.

26



3.4 INLOOM Matching System

! «structured»
1 Preparation Phase |

Generating Expert Solution
for a Task

Expert Solution | Master Constraint-Sets for the Model Type

(Generating Task Test—Set}

|

| Task Test-Set |

[Master Constraint-Set changed]

[Expert Solution changed]

«structured» :
Testing Phase

Student Solution

( Testing the Student Solution with the Task Test-Set }

[New Student Solution]

( Feedback for the Student }

Figure 7: Workflow of the INLOOM matching system. There are two phases. In the Preparation
Phase an Constraint-based Test-Set is generated out of an Fxpert Solution Model for a
task and a model type specific Master Constraint-Set. In the second Testing Phase the
Test-Set is used to match a Student Solution Model, generating feedback and grades
for the student.

27



3 INLOOM - A Constraint-based Modeling Assessment System

Constraint-based
Model Test Generator

Constraint-based
Model Test Engine

Out

Test-Set
Element Al

h_l
T

Expert Solution

——>

B Test-Set

O Element A2

Master

Constraint-Set Type A A
B Test-Set

O Element B1

Master ‘H‘
Constraint-Set Type B

B Test-Set
O Element C1

Master
Constraint-Set Type C

Figure 8: Object- or Fileflow of the INLOOM matching system. There are two phases. In the Preparation Phase an Constraint-based
Test-Set is generated out of an Expert Solution Model for a task and a model type specific Master Constraint-Set. In the
second Testing Phase the Test-Set and additional Global Constraint Test-Sets are used to match a Student Solution Model,

generating feedback and grades for the student.

o/ O

BI
T

Test-Set
Global 1

BI
T

Test-Set
Global 2 4&
Student
Solution Model

Test Feedback

28



3.4 INLOOM Matching System

3.4.3 Possible Realization

After describing the abstract concept behind the INLOOM CAS, this section presents a possible
realization for such a matching system. This realization was then used in the next chapter to
implement a proof-of-concept aUML class diagram matching program.

Since we are using the EMF framework as our model representation it would be optimal to
use one of the tools that are already integrated into the framework. This would lessen the time
and resources compared to creating an original tool. One of the tools that can do that is the
Epsilon*! [13] tool collection. Epsilon comes with multiple tools for model transformation and
processing and is running with EMF models like the original aUML models or the EMF UML2
implementation. It also solves the problem of using the EMF models outside of the Eclipse IDE
since it provides the tool as a Java library for standalone applications. Epsilon has multiple
tools and is based on the Epsilon Object Language (EOL) [13, p.25-61] with similar dialects for
all tools. It provides Interfaces to Java libraries, too. Two tools of the Epsilon collection are
interesting for the realization of INLOOM.

First is the Epsilon Generation Language (EGL) [13, p.105-121] engine. This Engine takes a
model file, the metamodel Ecore file, and multiple templates to generate at run-time multiple
textual output files. The templates contain both text and programmable slots like for- and
if-Loops, variable programming, or interface control to Java, the file system and the console. It
can be used to generate the constraint-based test files out of master constraint-sets based on
these template files and the expert model based on EMF.

The second interesting tool is the Epsilon Verification Language (EVL) [13, p.63-82] engine.
This tool is a rule- or constraint-based verification engine. It takes multiple rule files, a model
file, and the metamodel Ecore file to verify the model at run-time based on the provided rules
in the rule text files. It also allows everything the EGL engine allows. If the text file output
of the EGL engine is in the EVL rule format the output files can be used in the EVL engine.
In the context of INLOOM, it means that the constraint-based test files, that were generated
from the EGL engine, can be inserted into the EVL verification engine. Together with a student
solution, an output feedback file in XML format can be generated.

Summarized, the are multiple advantages of Epsilon for INLOOM. First, it can implement the
INLOOM matching process completely inside its tool collection and language space. Second, it
can be used in the form of two small Jar programs outside of eclipse. Naturally, this means that
INLOOM must use the Java architecture. And secondly, the engine implementation itself must
not be changed. All algorithms come from textual input files that can be changed at run-time.
All of these points make Epsilon to a top contender for the implementation of the INLOOM
matching engine.

"https://www.eclipse.org/epsilon, 10.02.2020

29



3 INLOOM - A Constraint-based Modeling Assessment System

3.5 Integration into the INLOOP Architecture

After designing the INLOOM matching engine, the next step is to integrate it into the INLOOP
architecture shown in Figure 1. Another point is the until now overlooked user interfaces for
the students and instructors.

3.5.1 Student User Interface

Two user interface types must be looked after. The first is the web interface for students that
must be integrated into the Web Application component of INLOOP. For the task description
part, no changes must be made. The HTML fragments INLOOP created can be used without
problems for the model domain description and also for the existing model figures of model
transformation tasks. For the solution submission, a few choices must be made.

If the model solution must be created on the student’s local machine the file upload of the
current INLOOP can be used with some adjustments. In this case, a model tool must be provided
for the student to design the EMF-based aUML models. This would be possible through EMF-
based editor which could be provided as a downloadable Eclipse plugin. A possible tool to
create such an editor plugin could be Sirius'2. A second option would be a local or web-based
external modeling tool that could export its models to the EMF /Ecore UML2 implementation.
An example of such a tool would be MagicDraw. In this case, a catalog of tools must be
maintained and possible licenses must be provided. Additionally, a checker and transformer
must be implemented to transform UML2 to aUML models and check for excluded element
types. The advantage of this submission option would be that the student can work on the
task offline and can with the second option use his favorite modeling tool. Also, the check and
transformation into aUML can help to learn the differences between aUML and dUML. There are
disadvantages as well. First, with this option, immediate feedback to the student is not possible
and there is no way to relieve this by giving out test cases like it is done by INLOOP. Second, the
many additional steps to the submission and the result can deter students from using the tool
due to their limited time. And the last disadvantage is the easier way to plagiarise compared to
the next option since the files could be easily shared between students.

The second submission option is to implement its own web-based modeling editor for the
aUML models. Then students could design and upload their solutions directly on the INLOOM
website. With this approach, students would get immediate feedback in the editor and no addi-
tional transformation or model-checking tools would be needed. Also since the student models
directly in INLOOM copy-and-paste plagiarism would be harder to achieve. Another advantage
is the possibility to include the feedback generated from the system directly into the editor for
better visualization. The greatest disadvantage is that there are no really customizable UML
web editors. The used editors must be completely self-implemented. This could be countered by
the notion that aUML models are often simpler as normal UML and that there are good graph
editor tool sets like maGraph'® that can be used for the implementation.

2https://www.eclipse.org/sirius, 10.02.2020
Bhttps://github.com/jgraph/mxgraph, 10.02.2020

30



3.5 Integration into the INLOOP Architecture

For a summary, both submissions options have advantages and disadvantages but with the
increasing importance in web technologies today, and the importance of immediate student feed-
back, the second option of a web-based editor should be prioritized. It should be also mentioned
that most of the newer assessment systems for bigger student bodies that are mentioned in the
literature are using basic web-based editors for their systems.

The creation and design of this web-based editor would be too much for this thesis and could
be considered a perfect future work.

3.5.2 Instructor User Interface

The second user interface is the interface the instructor uses for publishing new tasks. One
part of this is the committing process to the task repository. Since the task repository is based
on Git/GitHub this is already provided. The instructor can commit drafts on a development
branch, ask for peer reviews for commits and later publish onto the master branch. The only
thing that should be observed strictly is the separation of task commits and master constraint-
set commits. Ideally, the task can be uploaded by any instructors with the right rights, while
commits for the master constraint-set should only be made by specialized instructors. A strict
separation of specific development branches should be enforced.

The second part of the process is the preparation of the published artifacts. Since EMF is
used, a prepared Eclipse IDE could be used for this. Eclipse already has Git and Markdown
support plugins for the task descriptions artifacts. For the design of the expert solution, an
EMF modeling tool plugin could be provided. Sirius is for this purpose a lightweight and easy
to use graphical editor toolkit for EMF metamodels. An editor plugin made with Sirius could
be provided for the instructor’s Eclipse instance. Generally, such a prepacked Eclipse IDE with
Git, Markdown, and the editors could be provided as ready-to-start packages by download to
all instructors.

The same could be done for the special instructors that design the master constraint-set.
Their packages could hold the Epsilon plugin and include test data to confirm their constraints.
For example, a test package could include digitized expert solutions and student solutions for old
exams. Together with a data sheet of the original grades, the new master constraint-set could
be tested against these original grades. The new master constraint-set should only be published
if its results are within a certain margin to the old grades. This would increase the quality of
the master constraint-sets. The packaged Eclipse IDE for the constraint-responsible instructors
could include the Epsilon plugin and the model type-based test databases.

31



3 INLOOM - A Constraint-based Modeling Assessment System

3.5.3 Task Repository and Background Workers

This part of the INLOOP architecture is important for the continuous publishing paradigm
(see Figure 2). The workflow of INLOOM that is integrated into the INLOOP continuous pub-
lishing workflow is shown in Figure 10. Like already said, the normal instructor only needs to
prepare the task description artifacts and an expert model solution for the task. This part fulfills
the New content step of the continuous publishing paradigm. After committing these artifacts
to the Task Repository, the Peer-review changes and Push to the stable branch are the same as
in the normal INLOOP. They are normal Git/GitHub provided steps. It should be noted that
on the Git repository, only the expert model needs to be present and not the generated test
sets. This should make the repository cleaner. Also, the correctness of the generated test sets
could be already tested in the Peer-review changes step or before in the development branch. In
the Pull changes, Generate files step INLOOM syncs with the repository. There the constraint-
based test sets are generated out of the master constraint-sets and the Constraint-based Test
Generator, deployed as a Java jar file. They are then saved in the INLOOM intern space for
each task. This step can be accomplished by using the Makefile INLOOP provided. The task
description is also transformed into HTML fragments for the Web Application component. This
process is the same as in the original INLOOP. With the HTML artifacts and the test-ready
constraint-based test sets, the task can be considered Published. The continuous publishing
cycle is now finished. The master constraint-sets are at this step no longer needed and could be
deleted from the INLOOP intern space. This could be done when resources are limited. But it
would mean that they must be imported again at the next publishing cycle.

The master constraint-sets can be published with the same process. They are then used to cre-
ate the constraint-based tests-sets in the Pull changes, Generate files step. After that, they are
no longer used in the Published phase. The only difference is that they are not task-dependent
and can be saved in their own static file structure.

For the Background Worker to work, theoretically only the constraint-based test-set, the
student solution, and the Constraint-based Test Engine is needed. If Epsilon is used as the
test engine, an Ecore metamodel of the model type is needed, too. If a student solution is
submitted, a new Background worker in a Docker instance is created. This can be done by the
same configuration file type INLOOP uses today. The only difference is that not JUnit is called
but the Constraint-based Test Engine jar file. Then the test-set and the student solution are
put in the input folder. At the end of the process, the Constraint-based Test Engine should give
feedback over the standard output. That output is used by INLOOP for feedback. Also, a XML
file output for archival purposes is possible.

32



3.5 Integration into the INLOOP Architecture

! «structured»

Preparation Phase

! «structured» b {structureds
: Instructor Machine A [ Instructor Machine B
LPreparing Master Constraint-SetsJ o L Preparing Task :
Master Constraint-Sets I Expert Solution l | Task Attachments I | Task Description I
Peer Review [denied]
: approved

H [approved] (app |

H Commit

1 «structured»

—
O
@
=
Py
@

°
o
@,
5}

<

i «structured»

H Task-specific Folder
! Master Constraint-Sets g

I Expert Solution l | Task Attachments I | Task Description

INLOOM

Generating Test-Sets with Constraint-based Model Test Generator J

[Generating HTML Fragments}: (Synchronize

«structured»

Task-Specific Folder

Test-Sets
Task HTML Fragments

>| Creating Background Worker}( S K

I

Background Worker

«structured»

Start working on Task

[ Test Student Solution with Costraint-based Model Test Engine J

Feedback

[not sufficient]

[sufficient] I
> ~@®

Figure 10: Workflow of the INLOOM system integrated into the INLOOP continuous publishing
workflow. The green objects are part of the generation of the task-specific test-sets.
Yellow objects are part of the generation of the task-specific Website fragments.

33



3 INLOOM - A Constraint-based Modeling Assessment System

3.6 Grading and Feedback Options

This section discusses the problems and solutions of the topic of feedback and grades for model
assessment systems. There are usually two types of feedback given by a model assessment
system. First, there is the textual feedback that should give hints for the solution, and second
the grades that are a qualified value of the solution overall.

3.6.1 Feedback Classes

Since INLOOM uses a constraint-based matching algorithm, the constraints must have different
feedback categories. These are needed to differentiate between correct, partially correct, and
false solutions. For this reason, a classification is needed that assesses all possible states the
matching of a student solution model element can reach. To find these categories, the results
in exam and exercise correction, as well as old solution models, were surveyed. The following
results for the matching of an element were found. Additionally, for every category, the desirable
textual feedback and grading information is mentioned.

1. Correct:
The element in the student solution matches with the expert solution or differs only a
bit without missing any information. This result would provide the full amount of points
attached to the element. The textual feedback should state that all is correct.

2. Warning:
The element in the student solution does not match with the expert solution, but it is
valid. It is not the optimal solution to the problem described in the task. The student
must know that his solution is correct, but not optimal. That is important in case he wants
to find the optimal one. This result would provide the full amount of points attached to the
element. The textual feedback should state that the solution is correct but not optimal.

3. Error:
The element in the student solution could be matched but has missing information. The
student must know that his solution could be found, but contains errors or is missing
something. This result would provide a reduced amount of points attached to the ele-
ment. The textual feedback should state that the solution partially incorrect or is missing
Information.

4. Missing/Wrong:
The element in the student solution could not be matched to the expert solution. This
result would provide no points to the solution. The textual feedback should not be shown
to the student. That is to avoid giving away parts of the solution.

5. Info:
The element in the student solution breaks style or modeling convention. This result
should not provide or reduce points. The textual feedback should help the student to
improve their models.

34



3.6 Grading and Feedback Options

In INLOOM every constraint should be of one of these categories. The first, second, and
third categories should be covered by the normal element-based constraints of the test-sets.
Since most of the literature does not use feedback on missing elements or elements that only
exist in the student model, no fourth category constraint should be existing. The fived category
can be perfectly covert by global constraint test-sets because constrains of this category must
apply to all elements.

Since every element should only trigger one constraint, these categories force a certain pro-
cessing order to the system. First, an element of the student model must be checked against all
first category constraints. If none of the first category constraints are triggered, it is checked
against all second category constraints. After this, all third category constraints should be
checked. If none of these layers work, the fourth level constraint can trigger, or the element
is discarded. Info constraints are excluded from this process order and can be called for every
element, regardless of other triggered constraints.

3.6.2 Textual Feedback

Textual feedback should be a short sentence that helps the student to understand which parts
of his submitted model are correct or incorrect. It should also give hints on how to improve his
model. That should happen without giving away part of the solution. For this, the text should
be short and as abstract as possible.

The following enumeration shows template sentences that can be used for this purpose. Since
the fourth class should not be used, it was excluded. These templates are based on the surveyed
literature of Section 2.2.

1. Correct:
<Element Type> <Element Name> was found.
The <Relationship Type <between < Source Name> and <Target name> was found.

2. Warning;:
<Element Type> <Element Name> was found but could be modeled in a better way.

3. Error:
<Element Type> <Element Name> was found but was not completely correct.

5. Info:
<FElement Type> <Element Name> does not comply to the used modeling conventions.

Naturally, it is possible to add additional information for the student as well. This can be
especially helpful for beginner tasks. If that is the case, this can increase the complexity of
the constraints. That is because one of multiple messages must be chosen, or the number of
constraints must increase proportionally to the messages.

2. Warning:
<Element Type> <Element Name> was found but could be modeled in a better way.
Why must <Element Name> be a <Element Type>?

3. Error:
<Element Type> <Element Name> was found but was not completely correct. Check
the <Source of Error >.

35



3 INLOOM - A Constraint-based Modeling Assessment System

3.6.3 Grades

A grade should be a qualified value that shows the student how much of the defined problem
his solution solves.

Grades could be shown next to the textual feedback, only as a value to maximal point value
(40/100), or as the value of a percentage. From these options, the first option is often the
preferred one. It gives the student the best information and leads to a transparent grading
scheme for the student.

In INLOOM, all points are based on the GradableElements of the expert solution, which are
defined by the instructor. These point attributes are then included in the constraints, with the
first and second category constraints giving the full amount of points. Third category constraints
give a reduced amount. The maximum amount of points for a task can be calculated from all not
pre-existing GradableElements. It can be then passed to a global main constraint that formats
the output.

Though not necessary, a uniform grading scheme per model type is advisable. This helps the
student to better assess his models and his modeling skills before and after submitting them. It
also helps to later estimate the quality of his exam solution, preventing surprises and frustration.
Unfortunately, the grading schemes for old exams are not uniform. This makes it necessary to
generate an average grading scheme per model type.

3.6.4 Feedback Format

To gather all feedback data for the use in the web-based modeling editor, and for later evaluation,
a uniform feedback format is necessary. This format must be generated by the Constraint-bast
Testing Engine. This can be done in a dynamically and easily changeable way by a specific
global constraint file generated for each task. This constraint file saves all the results of the
other constraints and sends them to the standard output or file.

For INLOOM, a simple XML format is proposed. The design is shown in the Listing 1. For
every student solution, there is one XML file with one TestResult. This TestResult holds the
general TestData, a list of Results, and the ResultPoints. The TestData has two data sets. The
first is RuleModel which holds the name or id of the expert model, the constraints are generated
from. Later the name or id of the task could be added there as well. TestModel hold the id of
the student model that is tested. This id should be combined from a unique model id and the
counter of tries. That helps to better visualize the history of the solution-finding. The list of
Results holds the matching results of all found matches between constraints and student model
elements. The results of global constraint matches are included as well. Each Result holds
multiple data sets. TestObject is the element name in the student solution that got matched
by a constraint. RuleObject is the element in the expert solution that generated the constraint.
RuleSet is the id of the set of constraints. An example is that all class-related constraints could
belong to the RuleSet RO1. Rule is the id of the constraint inside a RuleSet. 0001 is an example
of this. Those two data points show the constraint that delivers the Result. Category means the
feedback category, the constraint belonged to, meaning Correct, Warning, Error, or Info. Points
are the rewarded points for the student through the constraint. Msg means Messages and defines
the textual feedback for the student that is generated by the constraint. The last data inside the
TestResult is the ResultPoints. These represent the grade rewarded to the submitted solution.
This includes the maximal possible points (ModelPoints) and the granted points ( TestPoints).

36



3.6 Grading and Feedback Options

1 <?xml version="1.0" encoding="UTF-8" 7>
2 <TestResult>

3 <TestData>

4 <RuleModel name="ExSS2015_expert” />

5 <TestModel name="ExSS2015_student_1234” />
6 </TestData>

7 <Results>

8 <Result>

9 <TestObject>stellung</TestObject>
10 <RuleObject>Stellung</RuleObject>
11 <RuleSet>R01</RuleSet>
12 <Rule>0010</Rule>
13 <Category>Correct</Category>
14 <Points>1.0</Points>

15 <Msg>Class Stellung was found.</Msg>
16 </Result>

17 ..

18 <Result>

19

20 </Result>

21  </Results>

22  <ResultPoints>

23 <ModelPoints>27.5</ModelPoints>
24 <TestPoints>27.0</TestPoints>
25 </ResultPoints>

26 </TestResult>

Listing 1: A proposed standard XML format for the generated feedback. It includes data for
the instructor as well as the textual feedback messages (Msg) and scores (Points) for
the student.

All of this information should give a complete overview of the matching results that can be
archived for later evaluation. The Points, Messages(Msg), and ResultPoints can be given to the
student as their feedback. A possible format that includes all important feedback information
for this can be:

e <Categoryl>: (<Pointsl> Points) <Msgl>

e <Category2>: (<Points2> Points) <Msg2>

e Grad: <Testpoints> /<ModelPoints>

37



3 INLOOM - A Constraint-based Modeling Assessment System

3.6.5 Critic and Problems

There can be multiple problems with feedback given to students, especially if its immediate
feedback. First, if not given in the right quantity, it can give away parts of the solution of a
task. An example of this is the number of missing elements. If this feedback is given, it would
tell the student the number of elements of all the different types. That is especially the case
if given for an empty model. Another example of this problem is the feedback that a specific
element is not found. That would reveal the element and its type. The last example is the
feedback of an element that should not be included in the solution. Because of this, it should
be avoided to give feedback on wrong or missing elements.

But even corrective feedback can have these effects. For example, someone can try to submit
a model with all nouns in the task description placed as classes. In this case, the feedback on
the correct classes gives away which nouns are classes and which are, for example, attributes.
This problem can not be solved easily since some feedback must be given to the student.

To reduce these problems, in the literature other restrictions were placed on feedback gener-
ation. An often used restriction is the number of tries a student can use to submit a model.
With this restriction, trial and error strategies can not be used by the student. With this, the
problems above will probably be alleviated. The problem with this approach is that more in-
formation must be saved per student. Also, the limitation on tries can be a deterrent for many
students. Another version of this solution is to limit the tries but only block the student for
a specific time frame. This way, the student can submit unlimited solutions in the end. With
this, a trial and error strategy will consume a great amount of time.

The second counter-strategy for the problems above is to limit the feedback and grading the
student sees. That limitation is maintained until he completes a percentage of the model. This
way, trial and error strategies, especially at the beginning of the model process, can be blocked.

Last, there are also multiple options in the literature that say that such trial and error strate-
gies are a normal form of learning. In that light, they do not need to be countered. This can
also be a valid option.

38



3.7 Summary

3.7 Summary

After designing the INLOOM CAS, it must be confirmed that the designed system complied
with all the requirements stated previously.

(RQ1)
The system should prepare the students for the exam of the beginner software engineering
course.

(RQ1.1)
The system should use exercise types that are used in the exam and exercise lessons.
Result: The system can use the same task types as in the exam and exercise. A
complete list can be found in Section 3.2.

(RQ1.1.1)
The system must be able to exclude pre-existing elements from feedback gener-
ation.
Result: The System can exclude elements from the matching using the isPerkx-
isting variable of the metamodel element GradableElement. See Section 3.3.2.

(RQ1.1.2)

The system should be able to be used on many different model types without
changing the core process.

Result: The original expert model is transformed to a constraint-based test-set.
This test-set is of textual nature and can be generated from any model type using
a master constraint-set. The Test Engine only uses this test-set which makes
the process itself unconstrained by model type. Some possible implementations,
like Epsilon, need a metamodel file, but the model type is not included in the
algorithm. It must be said that there can be problems with the complexity of
the master constraint-sets, especially with dUML models. See Section 3.4.2.

(RQ1.2)
The system should use forced keywords for the exercises.
Result: The system can use forced keyword matching in its constraints. It is also
possible to use simple label matching algorithms, like Levenshtein, if needed. That
is dependent on the implementation of the master constraint-sets. See Section 3.4.2.

(RQ1.3)
The system must use aUML and UML metamodels.
Result: The system uses EMF /Ecore as the model representation. Because of this, it
is possible to create different aUML metamodel types to use as well as use the already
existing Ecore/EMF UML2 Implementation. As a disadvantage, that also means that
the system is strongly interwoven with Java and the EMF modeling ecosystem. This
can hinder future extensions or improvements in performance. See Section 3.3.2.

39



3 INLOOM - A Constraint-based Modeling Assessment System

(RQ2)

The system should give appropriate feedback to the students and instructors.

(RQ2.1)
The system must give textual feedback to the student for his submitted solution.
Result: The system can have a textual feedback message for every constraint. It
only gives feedback on found matches and not on missing ones. This message is part
of the output format of the system. See Sections 3.6.2 and 3.6.4.

(RQ2.2)
The system should give a grade to the student for his submitted solution.
Result: The system can have a point value for every constraint. These can be used
to calculate a grade at the end of the matching. This grade, as well as the point
values, are part of the output format of the system. See Sections 3.6.3 and 3.6.4.

(RQ2.3)
The system must give a complete matching report to the instructor for later evalua-
tion.
Result: There is a proposed XML report format that holds all relevant information
about the matching. See Section 3.6.4.

(RQ3)
The system must be compatible with the architecture of INLOOP.

(RQ3.1)
The system should implement continuous publishing.
Result: The workflow of the system is compatible with the continuous publishing
paradigm and the overall architecture of INLOOP. See Section 3.5.3.

(RQ3.2)
The system must have a web interface for the students to receive their tasks and
upload solutions.
Result: The system can use the already existing INLOOP web application together
with a local tool. It is possible to implement a web-based online editor in the web
application to allow immediate feedback. See Section 3.5.1.

(RQ3.3)

The system must give the instructor the ability to upload his task descriptions and
solutions with a Git commit.

Result: Instructors can use a pre-packed Eclipse IDE to prepare their tasks and
design expert model solutions. Specialized instructors can use their own pre-packed
Eclipse IDE to design and test the master constraint-sets. Both can then upload
their work with Git to a task repository that process and publish it to INLOOM. See
Section 3.5.2.

40



4 Realization of a Analysis Class Diagram
Matching Engine

In this chapter a proof-of-concept implementation of the INLOOM CAS matching engine is
presented. Since the most important model type of the exams is the analysis class diagram this
model type will be implemented. Since it is not feasible to implement the whole INLOOP [20]
system with the web application and background workers in the time frame of this thesis only
the two stages matching framework will be implemented. The goal of this implementation is that
it is possible to model a expert model and student solution model and match these two against
each other. Last, the feedback in XML format should be generated. The basic architecture of
the implementation will be the architecture mentioned in the last chapter!'4.

The implementation was realized as follows. First, a metamodel of the analysis class diagram
was generated using the EMF framework. Then a grading scheme was summarized out of the
grading schemes of former exam task for this model type. Third, the master constraint-set was
designed and the model test generator was integrated. Lastly the test engine and the feedback
generation were implemented. The next sections will discuss each of these steps.

4.1 Analysis Class Diagram Metamodel

The first step of the implementation of the INLOOM CAS matching engine was the implemen-
tation of the analysis class diagram metamodel. This was done through the EMF framework.
First, an Ecore model, based on the simplified metamodel shown in Figure 5, was created. In
the process, some changes were made to the simplified metamodel, which makes it easier to
use by the INLOOM engines. This metamodel was then extended by the GradableElement to
include the grading information. The final metamodel is presented in Figure 11.

The metamodel was designed in Ecore and EMF. It was then used to automatically generate
a simple EMF editor. That editor can be used to model the expert solution and digitize student
solution models. The complete description of how to generate the editor and to model aUML
class diagram can be found in the attachments at the of this thesis. The digital version holds
all needed Eclipse projects and includes multiple expert solutions for old exam tasks.

14 See Section 3 on Page 15

41



4 Realization of a Analysis Class Diagram Matching Engine

The following paragraphs describe the metamodel of the aUML class diagram. The whole
model is represented by the OOAClassModel element, which holds the id of the model. The
model holds the AbstractClass element that can be an Enumeration or a Class. Enumerations
have LiteralGroups that hold multiple EnumlLiterals. Classes have Properties and Operations,
which are defined by their name. The former can also have a lower and upper multiplicity value.
The default value is one. Next to these Elements the model also holds relationships. One of
those is the Generalization, which is defined by ¢d. It shows the inheritance between a general
and a specific class. The other type is the Relationship between AbstractClasses. These Rela-
tionships are also defined by their id. They have two RelationshipEnds to two AbstractClasses,
a name, and a readingDirection to one of the ends. Last, they can have an AssociationClassEnd
to symbolize a class as an association class. The RelationshipEnds hold a defining id, multi-
plicity values, and a type. The Relationship Type shows if the Relationship is an Association
(none), an Aggregation (shared), or a Composition (composite). It also tells from which end
the aggregation or composition is starting. Last, a RelationshipEnd can have a Role, defined by
a name. The last element of the metamodel is the GradableElement holding the feedback infor-
mation. AbstractClass, Property, Operation, EnumLiteral, Generalization, Role, Relationship,
and both RelationshipEnd and AssociationClassEnd inherit from this Element. With this, they
are included in the feedback generation. These inheritance candidates were chosen through old
exam grading schemes. Element types that are included in these old grading schemes were set
to inherit from GradableElement. It must be mentioned that the mode attribute of the Grad-
ableElement was not used in this implementation. That is due to the usage of a standardized
grading scheme, leaving only the points changeable. In a later version, if more variability is
needed, support of that could be added.

It should be noted that this metamodel is strictly following the original metamodel, used in
the beginner software engineering course. This means typical model errors that are based on a
misunderstanding of the limitation of aUML can not be produced with this metamodel. That
includes direction arrows in relationships, types of properties, or enumerations as association
classes. That has advantages and disadvantages. First, as an advantage, the student can only
generate valid models and has a better start in learning to model. On the other hand, this can
lead to a dependency on pre-selected options. That can cause problems for some students if they
use more general modeling editors later. This disadvantage could be negated by showing the
student all UML model elements in the later web-based editor but block all not aUML elements.
An advantage of this solution would be that only one editor must be implemented for aUML
and dUML.

After designing this metamodel and generating the editor based on it, new models can be
created. For this, objects of each meta element can be created. Objects of gradable meta
elements can be given individual point numbers. For example, the property age could be worth
0.5 points or the optional property siblings(0...1) could be worth 1.0 points. The metamodel
is the same for the student solution. There is no dedicated metamodel for student solutions.
Instead, feedback information is simply ignored by the test engine.

42



4.1 Analysis Class Diagram Metamodel

GradableElement

2 isPreExisting : EBoolean = false
T points : EFloat = 1
7 mode: EInt = 0

|

[ 8 ceneralization | [ & operation | B Property % AbstractClass B IteralGroup B Role B Relationship
T id : EStrin T name : EStrin, T name : EString T name : EStrin T name : EString . . = name : EStrin
: g : g ) 2 : g : g (1.1 relationship i teuing | 011 relationship

T lower : Elnt = 1

[1..1] enumeration

[0.#] operations [1.1] iteralgroup

[0..*] properties
prop 1111 class [0.%] classes

[0.#] literalgroups

[1..1] class

B Enumeration 1] relationshipEnd [2..2] relationshipEnds [0..1] associationclassEnd
[1..1] general £ RelationshipEnd E AssociationClassend
[1..1] specific T upper : EInt = 0 [0..1] readingDirection
[0.7] iterals T lower : Eint = 0
T type : RelationshipType = none
% id : EString

EH Enumiteral

RelationshipType,

< name : EString -
- none [0.#] relationships
— shared
[1.1] class - composite
] class
[0.*] generalizations
[1.1] _model |
£ OOAClassModel
11,17 _model T ID : EString
[1.1] _model

Figure 11: Ecore metamodel of the analysis class diagram used in the proof-of-concept implementation of the INLOOP matching engine
for aUML class diagrams. The model is taken from the Ecore editor and describes the data structure of the aUML class
models.

43



4 Realization of a Analysis Class Diagram Matching Engine

4.2 Grading Scheme

The second step for the implementation was to find a viable grading scheme for expert models.
In old exams, the grading scheme was not uniform since the number of points was also dependent
on the other tasks. For an assessment system like INLOOP, a Uniform Grading Scheme would
be better. This would help the student to better assess their models and skills since the grades
over all models would be comparable. Another advantage would be the better comparability
of the matching results from an evaluation respective. That is because fewer variables would
be introduced. Last, a uniform grading scheme would reduce the complexity of the constraints.
Because of this, a uniform grading scheme is preferable.

After surveying the grading schemes of old exams, an average uniform grading scheme for
aUML class diagrams was conducted. The scheme includes the following grades for possible
elements.

Class:
1.0 Points for each Class

Property:
0.5 Points for each normal Property
1.0 Points for each special Property with multiplicity or marked as deductible (/age)
0.5 Points for each special Property (multiplicity or deductible) that contains errors
0.25 Points for each normal Property that contains errors

Operation:
0.5 Points for each Operation

Enumeration:
1.0 Points for each Enumeration

LiteralGroup:
1.0 Points for each Literalgroup if all EnumLiterals are correct
0.5 Points for each Literalgroup if EnumLiterals are missing or incorrect

Generalization:
0.5 Points for each Generalization that is correct

Relationship:
1.0 Points for each Relationship that is correct and has no association class (Roles are not
included)
0.5 Points for each Relationship that is matched but has errors and has no association
class (Roles are not included)

Role:
0.5 Points for each Role that is correct
0.0 Points for each Relationship that is matched but is incorrect

44



4.2 Grading Scheme

Association Class:
0.0 Points for each Relationship that has a association class
1.0 Points for each AssociationClassEnd that is correct
0.5 Points for each AssociationClassEnd that is matched but incorrect
1.0 Points for each RelationshipEnd that is correct (maximal 2.0 Points per association
class)
0.5 Points for each RelationshipEnd that is matched but incorrect

This grading scheme is advisable for the future tasks in INLOOM that have the modeling
type of an aUML class diagram. In general full points means a first- or second-level constraint
(Correct or Warning) covers this item. Every partial point is covert by third-level constraints
(Error).

The implementation is not designed for this grading scheme alone. If other point values are
used, the general approach is that the constraints of the first and second categories give full
points. The third category constraints are rewarding half the points. The only exception from
this rule is the Role element, which gives zero points on third category constraints. This is done
to the fact that the role was separated from the Relationship element. This was done to reduce
the variation in the complexity of relationships to get full points. Giving half points to roles
would create too great of a difference to the usual exam grading scheme. Because of this, the
exception was put in this place.

The overall differentiation and element combination is implemented over the master constraint-
sets. If another grading scheme that uses different element combinations is needed, the used
master constraint-sets must be modified. That can be done in combination with the mode
attribute, provided by the GradableElement metamodel element. One number of the mode vari-
able is equivalent to one unique grading scheme. This allows multiple grading schemes to exist
next to each other and be even mixed if necessary. In theory, each of the grading schemes used
in the old exams can be recreated by this. Since this would go over the scope of this thesis and
is only of limited use, it is not realized. Only the INLOOM grading scheme described in this
section will be implemented in the proof-of-context implementation.

45



4 Realization of a Analysis Class Diagram Matching Engine

4.3 Constraint-based Model Test Generator

To implement the Constraint-based Test Generator of the INLOOM CAS, several steps must be
taken. First, master constraint-sets must be designed. Then an implementation method for the
test and the generator must be found and implemented.

4.3.1 Definition of the Master Constraint-Sets

At first, the number and scope of each master constraint-set must be defined. Since the meta-
model holds several element types that inherit from GradableElement, having one set for each
of these types is preferable. This helps with the separation of the constraints and so with the
future extensions of the constraint-sets. Also, each of these meta elements has one subsection
in the uniform grading scheme. A separation of the master constraint-sets along the grading
scheme would help with future extensions of these schemes. There is one exception to this. The
relationship encompasses associations, aggregations, and compositions which each have different
constraints. Because of this, each type of relationship generates its own master constraint-set.
Non-gradable meta element types do not need own constraint-sets since they have no influence
on the feedback and grades. Information from them can be used nonetheless in the constraints
of the gradable elements. These meta element types can also be included later by global con-
straint test-sets. In the end, since all master constraint-sets are converted into test-sets, the
composition of the master constraint-sets does not greatly affect the test engine. This means
the composition can be decided based on the facts mentioned above.

The following Tables 4 till 13 give an overview of the master constraint-sets, with each ta-
ble holding on set. In the end, 54 element-based master constraints were created in 10 master
constraint-sets. This was done by using the experience of assessing the aUML class diagrams of
exams for multiple years (3 terms), as well as holding model exercises of the beginner software
engineering course for multiple years (5 terms), too. From these experiences, common miscon-
ceptions and errors of beginner level students were collected and used to generate the master
constraints. These constraints are by no means complete but should guarantee sufficient match-
ing quality. In the future, by adding more constraints this quality can be further increased. For
comparison, in the literature, some systems for UML class diagrams are using ca. 130 constraints
to match student solutions [3]. The proof-of-context is using simplified aUML, and the number
of constraints could easily be increased. So it can be said that at the moment, the number of
constraints is not too excessive in comparison to other similar systems.

Table 4: Master constraints included in the master constraint-set of the Class element. The
points rewarded by the constraint are the points of the expert solution element multi-
plied by the corresponding number of the Points column (x<number>).

Element RuleSet Rule Category Description Points Textual Feedback
Class RO1 0010  Correct  Matched against class name x1 Class <name>was found.

46



4.3 Constraint-based Model Test Generator

Table 5: Master constraints included in the master constraint-set of the Property element.

Element RuleSet Rule Category Description Points Textual Feedback
1010  Correct  Matched against name, class and multiplicity x1 Property <name>in Class <class name>was found.
P in Cl la f
1011 Error Matched against name without ” /7, and class x0.5 roperty <name>in Class <class name>was found,
but not completely correct.
Matched against ¢ ith the sa ame in another class. .
- atched wwwﬁmﬁ .@ property with the same name in another class Property <name>in Class <class name>was found ,
1020 Warning  The multiplicity is 1. xl but can be modeled in a more optimal wa;
Aggregation to this class with the correct name as role and multiplicity exists. © ) piim ¥
Property RO1 . Matched .mm.n.iwmn .m property with the same name in another class. Property <name>in Class <class name>was found ,
1021  Warning The multiplicity is correct. x1 but can be modeled in a more optimal wa
Aggregation to this class with the name as role and multiplicity of 1 exists. P 5
. . . Propert in Class <class found ,
Matched against a property with the same name in another class. roperty A:mEaVE. ass <class : ame=was foun
1022 Error . . . . x0.5  but can be modeled in a more optimal way.
Aggregation to this class with the name as role exists. . . .
It contains errors/missing things.
Matched against a property with the same name in another class.
1030 Warning MEE W:Havﬁo:.% is 1. . ) <1 Property AszmVE.OEmm <class .smEmVémm found ,
has”-Association to this class with the correct name as role, but can be modeled in a more optimal way.
reading direction and multiplicity exists.
Matched against a property with the same name in another class.
1031 Warning Wrm .MSESEW.S@ is no:m.oﬁ. ) <1 Property AsmEmVE.Qmmm <class .EmEmVsEm found ,
has”-Association to this class with the name as role, but can be modeled in a more optimal way.
reading direction and multiplicity of 1 exists.
Matched against a property with the same name in another class. Property AszmVE.OEmm <class n ame>was found ,
1032 Error L. . : . x0.5  but can be modeled in a more optimal way.
Association to this class with the name as role exists. . . .
It contains errors/missing things.
1040 Warnin Matched against a class with the same name. <l <name>was found ,
8 Aggregation to this class with the correct name as role and multiplicity exists. but can be modeled in a more optimal way.
. . é found
Matched against a class with the same name. Sname=was foun N .
1041 Error . . . x0.5  but can be modeled in a more optimal way.
Aggregation to this class exists. . . .
It contains errors/missing things.
Matched against a class with the same name. nameswas found
1050 Warning ”has”-Association to this class with the correct name as role, x1 ’ .
. R R . but can be modeled in a more optimal way.
reading direction and multiplicity exists.
f s
Matched against a class with the same name. <name>was found T .
1051 Error L. . . x0.5  but can be modeled in a more optimal way.
Association to this class exists. . o .
It contains errors/missing things.
Matched against a property with the same name in another class.
. U Property <name>was found ,
1060 Warning The multiplicity is correct. x1 : . .
oo . . but can be modeled in a more optimal way.
A generalization from this class exists.
. . . Property <name>was found ,
1061 Frror Matched against a property with the same name in another class. 0.5 but can be modeled in a more optimal way.

A generalization from this class exists.

It contains errors/missing things.

47



4 Realization of a Analysis Class Diagram Matching Engine

Table 6: Master constraints included in the master constraint-set of the Operation element.

Element  RuleSet Rule Category Description Points Textual Feedback
. Operation <name>in
2010  Correct  Matched against name and class x1 I .
. Class <class name>was found.
Operation RO1 L. .
Association exists to a class.
- The class name is contained in the operation. <name>was found,
2020 Warning L. . . . x1 . .
Association name is matched against operation name. but can be modeled in a more optimal way.
Reading direction is to the class.
Matched against a operation with Opertation <names>was found
2030 Warning the same name in another class. x1 pertat - ]

A generalization from this class exists.

but can be modeled in a more optimal way.

Table 7: Master constraints included in the master constraint-set of the Enumeration and Lit-
eralgroup elements.

Element RuleSet Rule Category Description Points Textual Feedback
Enumeration 0010  Correct  Matched against name. x1 Enumeration <name>was found.
. 0020  Correct  Matched against all Literals in the group x1 Enume.ratlonhterals Snames=were
LiteralGroup RO2 found in <Enumeration name>.
Enumerationliterals <names>were
0021 Error Matched against some literals in the group x0.5  found in <Enumeration name>,
but were not correct.
as f ,
Enumeration 0030 Error Matched against a class with the same name.  x0.5 <name>was found,
but not correct.
. 0040 Correct Matched again'st z?ll literals in the group « <nam(.:s>wcrc
LiteralGroup but as properties in a class. found in <class name>.
<names>were
Matche ins literals in the gr .
0041 Error atched against some literals in the group x0.5  found in <class name>,

but as properties in a class.

but were not correct.

Table 8: Master constraints included in the master constraint-set of the Generalization element.

Element RuleSet Rule Category Description Points Textual Feedback
0010  Correct  Matched against specific and general classes. x1 Generalization between <specific class>
and <general class>was found.
Generalization RO3 Relationship between <specific class>
0020 Error Matched against a ”is_a”-association. x0.5  and <general class>was found,
but not correct.
Relationship between <specific class>
0030 Error Matched against a aggregation. x0.5  and <general class>was found,
but not correct.
Relationship between <specific class>
0040 Error Matched against a composition. x0.5  and <general class>was found,

but not correct.

48



4.3 Constraint-based Model Test Generator

Table 9: Master constraints included in the master constraint-set of the Association element.
There are two additional general checks. First, on every constraint there is a check if a
role is modeled as an object, with no point penalty. Second, in all error type constraints

it is checked if the association is modeled in the opposite way.

Element  RuleSet Rule Category Description Points Textual Feedback

Matched against all parts of a association. Relationship between <class 1>
0010  Correct  (type, name, end classes, x1

multiplicities, and reading directions) and <class 2>was found.

Association  R04 P > &
Matched against all par.ts 0{ a association. Relationship between <class 1>
. (type, end classes, multiplicities)

0011 Warning . x1 and <class 2>was found,

The name was matched against the role

. . . . but can be modeled better

in the right direction.

Matched against some parts of a association. Relationship between <class 1>
0012 Error (type, end classes, x0.5  and <class 2>was found,

and name/role or multiplicities) but not correct.

g{it:l};idt EETHSZ some parts of a association Relationship between <class 1>
0013 Error ype. x0.5 and <class 2>was found,

(end classes, and role(name)
or multiplicities)

but not correct.

Table 10: Master constraints included in the master constraint-set of the Aggregation element.
There are two additional general checks. First, on every constraint there is a check
if a role is modeled as an object, with no point penalty. Second, in all error type
constraints it is checked if the association is modeled in the opposite way.

Element RuleSet Rule Category Description Points Textual Feedback
¥ aoal P Q aq ¢ ot 3 5 aaq
0010  Correct Matched against all par'tb of <'1 aggregation. <1 Relationship between <class 1>
(type, end classes, multiplicities) and <class 2>was found.
Aggregation RO5
BEtes Matched against all parts . .
PO .. Relationship between <class 1>
. of a "has”-association. -
0011  Warning TR x1 and <class 2>was found,
(type, end classes, multiplicities, name, . o
. . . but it could be more specific.
and reading direction)
. - lationship bet lass 1
Matched against all parts of a composition. Relationship between <class 1>
0012 Error (type, end classes, multiplicities) x0.5  and <class 2>was found,
yPe; ’ P but is not correct.
Matched against some parts of a association. Relationship between <class 1>
0013 Error (end classes, and x0.5  and <class 2>was found,

type or name or multiplicities)

but is not correct.

49



4 Realization of a Analysis Class Diagram Matching Engine

Table 11: Master constraints included in the master constraint-set of the Composition element.
There are two additional general checks. First, on every constraint there is a check
if a role is modeled as an object, with no point penalty. Second, in all error type
constraints it is checked if the association is modeled in the opposite way.

Element RuleSet Rule Category Description Points Textual Feedback
0010  Correct Matched against all paIFS of a composition. <1 Relationship between <class 1>
(type, end classes, multiplicities) and <class 2>was found.
C iti RO6
orpostiion . . Relationship between <class 1>
. Matched against all parts of a aggregation.
0011  Warning (type, end classes, multiplicities) x1 and <class 2>was found,
ype, ’ P but it could be more specific.
Matched against all parts
sz ?, lfabaiiir(lysclailoiar s Relationship between <class 1>
0012 Warning R x0.5  and <class 2>was found,
(type, end classes, multiplicities, name, . .
. . . but it could be more specific.
and reading direction)
Matched against some parts of a association. Relationship between <class 1>
0013 Error (end classes, and x0.5  and <class 2>was found,

type or name or multiplicities)

but is not correct.

Table 12: Master constraints included in the master constraint-set of the Association Class ele-

ment.
Element RuleSet Rule Category Description Points Textual Feedback
0010 Correct Matched against the AssociationclassEnd 1 Association class
of the right association <class name>was found.
Association RO7
Class Matched against a class that is connected
. Class <class name>was found,
by associations to both classes of . . .
0011 Error . . . x0.5  but its Relationship was
the original RelationshipEnds 1ot correctly modeled
of the AC relationship. Y
0110 Matched against & Re.latlonshlp Fud Relationship between <class 1>
/ Correct  (type, class, multiplicity, and x1 -
0120 opposite End) and <class 2>was found,
0111 Matched partially Relationship between <class 1>
Error against a RelationshipEnd. x0.5  and <class 2>was found,
&
0121 (class and opposite End) but is not correct.
Matched against a RelationshipEnd
0112 . . .
/ Warnin (type, class, multiplicity) «1 Relationship between <class 1>
0122 & with the Association class as and <ass. class>was found.
opposite end.
0113 gj‘;fﬁsﬁiargigy(;izss‘c a Relationship between <class 1>
/ Error . pEnd | x0.5  and <ass. class>was found,
with the Association class as .
0123 but is not correct.

opposite end.

50



4.3 Constraint-based Model Test Generator

Table 13: Master constraints included in the master constraint-set of the Role element. Error
type constraints of this constraint-set do not give points since the role originally should
be worth zero points but give away a error message as a hint.

Element RuleSet Rule Category Description Points Textual Feedback
Matched inst the rol
0010  Correct ARCICC ABALISL TAC TO'C TIatie x1 Role <name>was found.
and the including association
Matched against an association name, cnameswas found. but can be
0011 Warning reading direction, and x1 W T
Role RO8 the association itself modeled in a more optimal way.
Matched against the role name
1 P aa f
0012 Error and the including association but x0 ilzonf)tif)cr?;i:wab ound, but
is on the wrong end. ’
Matched against an association name, cnames>was found. but
0013 Error wrong reading direction, and x0 is not correct ’
the association itself. ’
Matched against the role name
0014 Error and the including association but x0 Bole <name>was found, but
- . . is not correct.
missing a derived marking
Matched against a class with cnames>was found. but
0020 Error the same name and two associations x0 . ) ’
.. is not correct.
to the original end classes.
Matched against a class with
the same name and one association cnames>was found. but
0030 Error to original opposite end class and x0 . ’
o is not correct.
one generalization to the
original role end class.
Matched against a association
0040 Error class with the same name and <0 <name>was found, but

two associations to the
original end classes.

is not correct.

o1



4 Realization of a Analysis Class Diagram Matching Engine

Fach master constraint-set has a RuleSet, and each constraint a Rule id which together forms
the complete id of the constraint.

The RuleSet id is given to each set by its defining element type. It has the format RXX.
RO1, for example, stands for class constraints and R02 for enumeration constraints and so on.
In general, each set has its one RuleSet with properties and operation as exceptions. These are
defined by their including class and have the R01 class RuleSet.

The Rule id has 4 digits and can be described by the ABBC' format. The A digit stands for a
general group of constraints. 0-5 are for normal constraint definitions with the implementation
using mostly 0 since there was often no need to differentiate further. 6-9 are defined for helper
constraints not listed in the tables. Examples for these are global constraints for model conven-
tions that have the number 9, or relationship end matching constraints that are included in the
number 6. The B digit can hold a number of constraints per A group. The C digit can describe
constraints that fall under a B group constraint. For example, can the 001(B)0(C) constraint
check, if a property is completely correct as a Correct category constraint. The 001(B)1(C) con-
straint can check roughly the same but with partial correctness as an Error category constraint.

The absolute id of a master constraint is defined as <RuleSet><Rule >. For example, a
normal class master-constraint has the id R010010, and a global class constraint has the id
R019010.

4.3.2 Implementation of the Master Constraint-Sets

After defining the master constraint-set, the implementation of those is the next step. First,
an implementation framework must be chosen. A possible candidate is the Ecore/EMF-based
Epsilon tool kit, already descried in Section 3.4.3. For the realization, the Epsilon Eclipse IDE
plugin was used. Later, this can be changed to a standalone Java application. This application
can use the same files as the plugin.

Like already mentioned, the best option to implement the master constraint-sets and the
Constraint-based Model Test Generator is the EGL tool or engine. There each master constraint-
set can be implemented as an EGL template file. The general format of an EGL template file is
formatted text with slots at variable places. Slots are programmable symbols the EGL engine
later fills with model data. Listing 2 shows examples of these slots.

1 [%=o0Dbj.name%]

2 [% var expertModelPoints = 0.0;%]
3 [% for (obj in col) {%] ... [%}%]
4 % if (exp) {%] ... [%}%]

Listing 2: Example slot types of the EGL template format. From top: include value insertion,
variable definition, for-loop, if-loop

These slots can be used to fill the template with data out of a model (line 1). The slots can also
be used to program with the data of the model before using it in the template. Through using
a Java like dialect called FOL (Epsilon Object Language), all normal programming structures
like variable definition (line 2), for-loops (line 3), and if-loops (line 4) are possible. Especially
the for and if-loops are interesting since they can multiply or hide formatted text inside their
scopes. That can be used to create variable constraints based on their model element’s data.

52



4.3 Constraint-based Model Test Generator

Next, the formatted text inside the EGL file must be designed to be later used by the
Constraint-based Model Test Engine. This engine will be implemented using the EVL tool
of Epsilon, and so the generated test-sets must be in the EVL file format. Listing 3 shows the
simplified general format of this file type. A pre block (lines 1-3) can be used to define variables
or call functions. It is processed before all rules. In the listing, a block variable is defined that
will be explained later. The context block (lines 5-26) defines which element type the inside
rules are called for. It will be processed once for every element of this type. The context guard
expression (line 7) will only allow the context to be processed when true. A context can have
multiple rules (lines 9-20, 24). A rule will be called once per element the context is executed
for. The type can be constraint or critique to show the severity of the rule. This is only shown
in the intern output, which is not actively used in the implementation. Each rule must also
have a unique name. Inside a rule, the guard expression (line 11) will stop the engine from
entering a rule if false. If the engine enters a rule the check expression (line 13) is called, and
if false the message block (lines 15-19) is called. In this implementation, the verification engine
should send the message when a constraint is met. Such, the matching expression will always
be negated. While sending the message, the student feedback is generated. The block variable
is also swapped, and at last, an intern message is sent to the engine. This intern message will
not be used actively since its information value is not high enough. It can be used for a quick
overview in the Eclipse IDE.

pre <block name> {
var <Block Variable Name> = true;
}

1

2

3

4

5 context <model name>!<Model Element> {

6

7 guard : <guard expression of the context>
8

9

<rule type> <rule name> {
10
11 guard : <guard expression of the rule>
12
13 check : not(<matching constraint >)
14
15 message {
16 setOutput (...) ;
17 <Block Variable Name> = false;
18 return "<Intern message>";
19 }
20 }
21
22
23
24 <rule type> <rule name> { ...}
25
26}

Listing 3: General format of the EVL files used in the proof-of-concept implementation

53



4 Realization of a Analysis Class Diagram Matching Engine

After designing the formatted text, for each constraint of a master constraint-set, a rule was
designed. Then slots were inserted to later fill the template constraint-set with the information
from the expert solution. This was done for one EGL file for each master constraint-set. The
following Listing 4 shows this, for the example, for the master constraint-set of the class element
type. The slots will later, through the EGL engine, be filled with the data of one class of the
expert solution at the time. After the generation of the test-set, the id of the element-based
constraint becomes of the format <master constraint id><element name>. In the example
Listing 5, the master constraint R010010 becomes the element-based constrain R010010Stellung.

1

2 pre satisfiabilityClass[%=_class .name%]| {

3 var satisfiabilityClass[%=_class .name%] = true;

1}

)

6 context student! Class {

7

8

9 guard : satisfiabilityClass|[%=_class .name%)]

10

11

12 critique R01.0010_[%=_class .name%] {

13

14 guard : satisfiabilityClass[%=_class .name%]

15

16 check : not(self.name.toLowerCase ()

17 = 7[%=_class .name. toLowerCase () %]”)

18

19 message {

20 setOutput (”R0O1” | 70010,

21 ”Correct”,

22 self .name,

23 "[%= _class .name%]” ,

24 [%=_class . points %],

25 7 Class [%=_class .name%| was found” );
26

27 satisfiabilityClass[%=_class .name%]| = false;
28

29 return "CORRECT: RO01_.0010[[%=_class .name%]] was
30 met for Class "+ self.name;
31 }

32 }

33

34 )

Listing 4: EGL file of the Class master constraint-set

54



4.3 Constraint-based Model Test Generator

First, a variable is defined in the pre block (line 3). This variable saves, whether one con-
straint for this element was already met. It prevents that one element can produce multiple
feedback messages and points. This is important since third category constraints often have
fewer requirements than first category ones. Since the EVL engine calls the constraints from the
top of the file, the order of first, then second, and then third category constraints guarantees
that always the best constraint is met first. It also secures that generated test-set rewards only
once feedback and points. That’s true even in the case of multiple elements with nearly the
same data. To make this variable unique, it ends with the id or name of the expert solution
element the test-set is for. This variable is used in the guards of the constraint rules (line 14).
That is to prevent the rule to be executed if another constraint was already met. To reduce the
resources needed in the verifying process the same is done for the context guard (line 9). This
prevents other student solution elements to be later tested against the test-set.

The context of each constraint-set is set so that only the intended element type of the student
solution are tested against the generated test-set (line 6).

For each constraint defined in the master constraint-set the EGL file belongs to, a rule is
implemented. Next, each rule will be made unique by adding the id or name of the element that
the generated test-set is for (line 12).

The check expression of each rule is now implemented to fulfill the description in its table
row. For that, data from the expert solution element is filled in the implementation with slots.
In the example of Listing 4, the equality equation is filled with the lowercase name of the class
the test-set is for (lines 16-17). The check will later test if the tested element of the student
solution (self) has the same lowercase name as the class in the expert solution.

Each rule has a message block that is executed if the negated expression in check is true. In
this block, first, the feedback is saved by the setOutput function. The function parameters are
pre-filled with the constraint id, the feedback information, and the points of the expert solution
element (lines 19-25). Then the block variable is set false to stop every rule or context execution
from now on for this test-set (line 27). Last, the required intern message for the engine is sent
(lines 29-30).

This template will now be used to generate a test-set as EVL files for every class object that
is defined in the expert model. An example output test-set of the template is shown in Listing 5
for a Class Stellung from an expert model. This test-set file can now be used to verify student
models in the Constraint-based Model Test Engine.

95



4 Realization of a Analysis Class Diagram Matching Engine

1

2 pre satisfiabilityPropertyStellung {

3 var satisfiabilityClassStellung = true;

4}

5

6 context student!Class {

7

8 guard : satisfiabilityClassStellung

9

10 critique R0O1.0010_Stellung {

11

12 guard : satisfiabilityClassStellung

13

14 check : not(self.name.toLowerCase() = ”stellung”)
15

16 message {

17 setOutput ("R0O1”, 700107,

18 ”Correct”,

19 self .name |,

20 ”Stellung”,

21 1.0,

22 ”Class Stellung was found” );
23

24 satisfiabilityClassStellung = false;
25

26 return "CORRECT: RO01.0010[Stellung| was
27 met for Class "4+ self.name;
28 }

29 }

30

31 }

Listing 5: EVL file (test-set) generated from the class Stellung of a expert solution and the
master constraint-set for classes

56



4.3 Constraint-based Model Test Generator

4.3.3 Implementation of the Test Generator

The last step to finish the Constraint-based Model Test Generator is to implement the logic that
combined the expert model with the EGL master constraint-sets. This is done by creating a
main EGX " file. EGX is a coordination language for EGL to coordinate the generation of files
out of EGL templates. This file includes which model element is used to generate a test-set and
the corresponding EGL master constraint-set. In this file, the elimination of preexisting model
elements from the test-set generation is carried out, too. Last, the file contains the format of
naming the generated test files.

Listing 6 shows the general syntax of a EGX file. Like in most of the Epsilon languages, there
is a pre block (lines 2-5) that can be used to initialize variables. In the implementation that
block is used to define the output directory (line 3) and the test-set file extension (line 4). Then
for each element type in the imported model that should generate an output file, a rule must
be implemented (lines 7-11). These rules must have Rule Names, a Reference for the matched
element, and an Element Type (line 7). The rule will then be called once for each element of
that element type in the imported model. Inside of the rule and inside the used template, the
element is referenced by the Element Reference. Next, the rule must have the Path to a template
(line 9) the rule is using to generate the output file. This generation can be controlled by a guard
expression (line 8) that forbids the creation if the expression is false. The last information a
rule needs is the path and name of the output file (target) (line 10).

1

2 pre {

3 var outDirLib : String = 7../evl/”;

4 var extension : String = 7.evl”;

5 }

6

7 rule <rule name> transform <Element Reference> : <Element Type>

{

8 guard : <expression>

9 template: "<Template Path>"

10 target : "<Path for Output File>"
11 }

Listing 6: General syntax of an EGX file that is used in the implementation of the proof-of-
concept matching engine.

In the implementation of the Constraint-based Model Test Generator, these rules are used to
create one EVL test-set for each expert model element. Some examples are shown in Listing 7.
That means, there is one rule for every master constraint-set. The EGL files for these sets are
used as templates (lines 9, 15) in these rules. The guard expression is normally used to check
if an element is marked as pre-existing (line 8). In the case of relationships, this is extended
to a check if association classes existing, and the type of relationship (lines 14-16). The name
and path of the output test-set are generated from the names or ids of the elements (lines 10,
19). There is also the option to generate static files like global constraint test-set out of slot-less
templates (21-24). This only happens once for the expert model. If not needed, such a global
constraint-set could also be created directly as an EVL file.

Yhttps://www.eclipse.org/epsilon/doc/egx, 10.02.2020

o7



4 Realization of a Analysis Class Diagram Matching Engine

1

2 pre {

3 var outDirLib : String = 7../evl/”;

4 var extension : String = 7.evl”;

5 }

6

7 rule class_rule transform _class : Class {

8 guard: not _class.isPreExisting

9 template: "rule_class.egl”

10 target: outDirLib + _class._model.ID + ”/” + "rule_class_” +
_class .name + 7.7 4+ _class._model.ID + extension

11 }

12

13 rule assoziation_rule transform _ass : Relationship {

14 guard: (not _ass.isPreExisting)

15 and _ass.associationclassEnd == null

16 and not _ass.relationshipEnds

.exists (re:RelationshipEnd| re.type.value <> 0)

17 template: "rule_association.egl”

18 target: outDirLib + _ass._model.ID + 7/” + ”rule_association_”
+ _ass.id + 7.7 + _ass._model.ID + extension

19 }

20

21 rule global_rule transform _model : OOAClassModel {

22 template: ”"rule_global.egl”

23 target: outDirLib + _model.ID + ”/” 4+ ”rule_global” +
extension

24}

Listing 7: Examples of EGX rules that are used in the implementation of the proof-of-concept
matching engine.

To start the test generation the Epsilon EGL Engine must be called. This tool takes the place
of the Constraint-based Model Test Generator, mentioned in the former chapter'®. To work, it
now needs the main EGX file, the expert model, and the Ecore metamodel file for the aUML
class diagram as parameters. The EGL template files only need to be found under the path that
is mentioned in the EGX file. Now, an EVL file will be generated for every GradableElement of
the expert model, using the corresponding EGL master constraint-set. A complete user guide for
the test-set generation in an Eclipse IDE can be found in the attachments of this work. Figure 12
shows, as an example, the output test-sets for an old aUML class diagram exam task (Summer
term 2015). These files can now be used to test student models in the Constraint-based Test
Engine. The rule. main_ ExSS2015.evl file will be discussed in the following section'”.

16 See Section 3.4 on Page 24
17 See Section 4.4 on Page 60

58



4.3 Constraint-based Model Test Generator

&y > evl

v (% > ExSS2015_expert

> rule_aggregation_r1_ExSS2015_expert.evi

> rule_aggregation_r2_ExSS2015_expert.evl

> rule_aggregation_r3_ExSS2015_expert.evl

> rule_aggregation_r4_ExSS2015_expert.evl

> rule_association_r5_ExSS2015_expert.evi

> rule_associationclass_ac1_ExSS2015_expert.evl

> rule_associationclass_ac2_ExSS2015_expert.evl

> rule_class_Feld_ExSS2015_expert.evl

> rule_class_Figur_ExSS2015_expert.evl

> rule_class_Stellung_ExSS2015_expert.evl

> rule_class_Zug_ExSS2015_expert.evl

> rule_enum_Farbe_ExSS2015_expert.evl

> rule_enum_Figureart_ExSS2015_expert.evl

> rule_main_ExSS2015_expert.evl

> rule_operation_Stellung_fuehreZugAus_ExSS2015_expert.evl
> rule_operation_Stellung_schlageFigur_ExSS2015_expert.evl
> rule_property_Feld_line_ExSS2015_expert.evi

> rule_property_Feld_reihe_ExSS2015_expert.evl

> rule_property_Stellung_matt_ExSS2015_expert.evi
> rule_property_Stellung_patt_ExSS2015_expert.evl

> rule_property_Stellung_schach_ExSS2015_expert.evl
> rule_role_ac2e1_von_ExSS2015_expert.evi

> rule_role_ac2e2_nach_ExSS2015_expert.evl

> rule_role_r1e2_amZug_ExSS2015_expert.evl

> rule_role_r2e2_farbe_ExSS2015_expert.evl

> rule_role_r3e2_figurenart_ExSS2015_expert.evl

> rule_role_r4e2_umgewandelt_ExSS2015_expert.evl
> rule_role_r5e2_gueltigeZuege_ExSS2015_expert.evl
> % > ExSS2016_expert

> % > ExSS2017_expert

FIFFIIIPRopRIpRIIreRImwermmdeem

Figure 12: Generated test-set files of the class diagram task of the summer term 2015 exam.
Taken from the Eclipse IDE project explorer.

99



4 Realization of a Analysis Class Diagram Matching Engine

4.4 Constraint-based Model Test Engine

The Constraint-based Model Test Engine uses the Epsilon EVL engine. This tool is equivalent
to the Constraint-based Model Test Engine mentioned in the former chapter'®. It generates
feedback out of the test-sets that were generated in the previous section!?, the Ecore metamodel
file, and the student models.

For that, the main EVL file must be created that controlled the testing process. It can be
also called the main script program that the test engine executes. That includes the output
generation and the order of test-set execution. Listing 8 shows the simplified syntax of such a
main EVL file.

1

2 import "<Imported Test—Set 1>7;

3 ...

4 import "<Imported Test—Set N>7;

)

6 pre {

7 // Pre matching work like variable initalization
8 }

9

10 post {

11 // Post matching work like output generation
12}

Listing 8: Simplified syntax of the EVL main file for the test-sets of a expert model.

First, the EVL test-sets are imported (lines 2-4). The order of import decided the order of
execution of the test-sets. After that, a pre block (lines 6-8) can be defined that will launch
before the test-set execution. In it, variables can be defined. These variables can be used in
any imported EVL file. Last, a post block (lines 10-12) can be defined. This block will launch
after the last test-set is executed. In there, cleaning work can be done or output can be generated.

The main EVL file is also generated out of an EGL template. It is created at the same time
as the other EVL test-set through the EGX file. Listing 9 shows a shortened version of the
generator EGL file. First, the imports are created by iterating through the model elements.
For every not pre-existing element, an import is created using the same naming scheme as in
the EGX file (lines 2-11). After creating the imports for the test-sets, the pre and post blocks
must be defined. These contain mostly static formatted text that will be explained in the next
section?’. Only the rule model name (line 20) and the maximal point amount (lines 33-34, 38)
must be pre-filled through slots. As an example, the Listing 10 shows the generated main EVL
file of the class diagram task of the summer term 2015. That file was generated with the EVL
files shown in Figure 12

8 See Section 3.4 on Page 24
19 See Section 4.3 on Page 46
20 See Section 4.5 on Page 64

60



© 00D U = WN =

4.4 Constraint-based Model Test Engine

[% for (-class in _model.classes) {%]

[% if (not _class.isPreExisting) {%]

[% if (-class.isTypeOf(Class) ) {%]

import ”"rule_class_[%=_class .name%]_[%=_class._model .ID%].evl”;
[%} %]

[% if (-class.isTypeOf(Enumeration) ) {%]

import ”rule_enum_[%=_class .name%]-[%=_class ._model . ID%].evl”;

[%} %]
[%} %]
(%} %]
pre {
var output = ’<?xml version="1.0"” encoding="UTF—-8"?>\n";
output += "<TestResult>\n";
output += ’ <TestData>\n’;
output += ’ <RuleModel name="[%=_model .ID%]”/>\n";
output += ’° <TestModel name=""+student ! OOAClassModel. alllnstances . first ().ID+""/>\n";
output += ' </TestData>\n’;
output += 7 <Results>\n";
var pointSum = 0.0;
var usedRelationships = new Sequence();
¥
post {
[% var expertModelPoints = 0.0;%]
[% for (e in expert!GradableElement. alllnstances){ if( not
e.isPreExisting){expertModelPoints 4= e.points;}} %]
output += 7 </Results>\n";
output += 7 <ResultPoints>\n";
output += 7 <ModelPoints>” + [%=expertModelPoints%] + ”</ModelPoints>\n";
output += 7 <TestPoints>"” + pointSum + 7"</TestPoints>\n";
output += 7 </ResultPoints>\n";
output += "</TestResult >7;
if (fileOutput){
var file =new Native(” java.io.File”) (outputDir + "OUTPUT.” +
student ! OOAClassModel. alllnstances . first () .ID + ”.xml”);
var writer =new Native(” java.io.FileWriter”) (file);
writer . write (output);
writer.close () ;
¥
output.println ();
}

model.

Listing 9: Shortened EGL file for the generation of the EVL main file for the test-sets of a expert

61



4 Realization of a Analysis Class Diagram Matching Engine

1

2 import "rule_class_Stellung_ExSS2015_expert.evl”;

3 import ”"rule_class_Feld_ExSS2015_expert.evl”;

4 import ”rule_class_Zug_ExSS2015_expert.evl”;

5 import ”rule_class_Figur_ExSS2015_expert.evl”;

6 import ”rule_enum_Farbe_ ExSS2015_expert.evl”;

7 import ”"rule_enum_Figureart_ExSS2015_expert.evl”;

8

9 import ”rule_property_Stellung_schach_ExSS2015_expert.evl”;

»

rule_property_-Stellung_-matt_-ExSS2015_expert.evl”;
rule_property_-Stellung_-patt_-ExSS2015_expert.evl”;
rule_operation_Stellung_fuehreZugAus_-ExSS2015_expert.evl”;
rule_operation_-Stellung_schlageFigur_.ExSS2015_expert.evl”;
rule_property-Feld_-line-ExSS2015_expert.evl”;
rule_property_-Feld_-reihe_.ExSS2015_expert.evl”;

10 import
11 import
12 import
13 import
14 import
15 import

»
»
»
»

»

»

17 import
18 import
19 import
20 import
21 import
22 import
23 import

rule_aggregation_.r1 _ExSS2015_expert.evl”
rule_aggregation_-r2_ExSS2015_expert.evl”
rule_aggregation_r3_ExSS2015_expert.evl”
rule_aggregation_.r4 _ExSS2015_expert.evl”
rule_association_-r5_ExSS2015_expert.evl”;

rule_associationclass_acl_ExSS2015_expert.evl”;
rule_associationclass_ac2_ExSS2015_expert.evl”;

»

»

»

»

»

»

25 import rule_role_rle2_amZug_-ExSS2015_expert.evl”;

26 import ”"rule_role_-r2e2_farbe_ExSS2015_expert.evl”;

27 import ”"rule_role_r3e2_figurenart_ExSS2015_expert.evl”;

28 import rule_role_r4e2_umgewandelt .- ExSS2015_expert.evl”;
29 import rule_role_r5e2_gueltigeZuege_ExSS2015_expert.evl”;
30 import rule_role_ac2el_von_-ExSS2015_expert.evl”;

31 import ”rule-role_ac2e2_nach_-ExSS2015_expert.evl”;

»

»

»

»

32

33 pre {

34

35 var output = ’<?xml version="1.0"” encoding="UTF—-8"?>\n";

36 output += "<TestResult>\n";

37 output += ’ <TestData>\n’;

38 output += ’° <RuleModel name="ExSS2015_expert”/>\n’;

39 output += ’ <TestModel name=""+student ! OOAClassModel. alllnstances . first ().ID+"7/>\n";

40 output += ' </TestData>\n’;

41 output += 7 <Results>\n";

42

43 var pointSum = 0.0;

44

45 var usedRelationships = new Sequence();

46

47}

48

49  post {

50

51 output += 7 </Results>\n";

52 output += 7 <ResultPoints>\n";

53 output 4= " <ModelPoints>" + 27.5 + ”"</ModelPoints>\n";

54 output += 7 <TestPoints>" + pointSum + "</TestPoints>\n";

55 output += 7 </ResultPoints >\n";

56 output += "</TestResult >";

57

58 if (fileOutput){

59 var file =new Native(” java.io.File”) (outputDir + ?OUTPUT.” +
student ! OOAClassModel. allInstances . first ().ID + ”.xml”);

60 var writer =new Native(” java.io.FileWriter”) (file);

61 writer . write (output);

62 writer.close () ;

63 3

64

65 output.println ();

66

67 }

68

69 operation setOutput(rs:String, r:String, c:String, to:String, ro:String, p:Real, msg:String){
70

71 output += 7 <Result>\n";

72 output 4= " <TestObject>” + to + "</TestObject>\n";
73 output 4= 7 <RuleObject>" + ro + "</RuleObject>\n";
T4 output += 7 <RuleSet>” 4+ rs + "</RuleSet>\n";

75 output 4= 7 <Rule>" + r + ?</Rule>\n";

76 output += 7 <Category>” + ¢ + "</Category>\n”;

77 output += 7 <Points>” + p + "</Points>\n";

78 output += 7 <Msg>" + msg + "</Msg>\n";

79 output 4= 7 </Result>\n";

80

81 pointSum += p;

82

83 !

Listing 10: EVL main file for the test-sets of the expert model. Generated for the aUML class
diagram task of the summer term 2015 exam.

62



4.4 Constraint-based Model Test Engine

If this main file is existing, the EVL engine can be used to generate feedback from student
models. The engine needs the main EVL file, the Ecore aUML class metamodel, and the
student solution as parameters. Normally, the feedback for the student is sent to the standard
console output. By setting two additional parameters (fileOQutput:Boolean, outputDir:String),
an additional XML file can be generated. A complete user guide for the testing in an Eclipse
IDE can be found in the attachments of this work.

63



4 Realization of a Analysis Class Diagram Matching Engine

4.5 Feedback Generation

At last, the generation of feedback for the student must be discussed. In the proof-of-concept
implementation, the output generation is implemented as simple as possible. The feedback
generation is mostly implemented in the main EVL file. It generates the same XML structure
that was discussed in the previous chapter?!. There are three components.

The first component is the pre block shown in Listing 10 line 33 till 47. There, an output
variable is defined before the execution of the test-set (line 35). This variable is then filled with
the first part of the output XML file structure (line 36-41). This includes the expert models and
the tested model’s ids. Also, a variable for the granted points (line 43) is initialized.

The second component is the provided setOutput operation (lines 69-83). This operation
takes in feedback data from a constraint and generates a corresponding XML Result structure.
It also added the points, granted from the constraint, to the point amount of the solution.
This operation is available for all imported test-sets and is called in the message block of their
constraints.

Last, in the post block (lines 49-67), the XML structure is closed with the addition of the
maximal and granted points (lines 51-56). Then the output is printed to the standard console
output (line 65). If desired, a file output is generated using standard Java libraries (lines 58-63).

There is an advantage of using the EVL main file of a test-set collection, to generate the
feedback. The generation algorithm is so separated from the constraints, making it easy to
change the feedback generation method later. It would also be possible to outsource the feedback
generation to its one EVL file if even more flexibility is needed. It must also be said that the
current way the feedback generation is not optimal. Especially in terms of performances, all
three components could be streamlined further. In the proof-of-concept implementation, this
was purposefully not done. An easy to understand algorithm was prioritized.

21 See Section 3.6.4 on Page 36

64



4.6 Critic and Discussion

4.6 Critic and Discussion

The proof-of-concept implementation described in this chapter successfully implemented the
INLOOM CAS matching engine for aUML class models.

It provided a possibility to generate expert models and digitize student solutions through
the EMF framework. Through, at the moment only the rudimentary EMF standard editor
is available. This editor lacks the comfort of a real graphical or textual editor and is only a
temporary solution.

The use of the Epsilon tool set works fine for the definition of the master constraint-sets.
The generation of the test-sets with EGL works dynamically. This means that all input data
is not compiled and can be changed independently. Only the main EGX file is interwoven
to the master constraint-sets but is in itself also easily changeable. So, the Constraint-based
Model Test Generator has no static constraints defined. The same can be said for the EVL Test
Engine which uses the textual test-sets. These are changeable and, as long the main EVL file is
updated, easily extendable. It also has no compiled static constraints. It must be said that the
implementation of the constraints themselves could be streamlined much further. That is due
to the introduction of a new framework and mindset. Nonetheless, the generation of test-sets
out of old exam tasks solution is done instantly, even on less powerful machines. The same is
true for the testing itself, meaning the performance, for a prototype system is sufficient enough.
The performance in grading will be evaluated in the next chapter.

Sadly, the Constraint-based Model Test Engine is not completely independent of anything but
the test-sets and the student model. Through the limitation of Epsilon, the Ecore metamodel
file is still needed. This limits the separation layer between both steps.

The system can create all necessary feedback for the student and the instructor. It can
collect textual feedback and points from each met constraint. These points will generate a grade
together with the maximal points of the expert model. All this is used to generate the complete
feedback in XML format. The feedback creation is also mostly separated from the constraints.
This means the feedback generation algorithm can be easily changed.

Last, the system uses, at the moment, forced labels with only lowercasing. That is enough
to reach the defined requirements. In the future, complex label matching can be introduced
easily. Normal algorithms like Levenshtein [17] can be implemented like the setOutput opera-
tion??. That can be happening in the main EVL file or in an EVL file of its own. Such, the label
matching could be very variable. Since Epsilon allows access to Java libraries, in the future, ded-
icated label matching frameworks could also be used to some extent. The limitation for that is
only that it would be hard to combine structure-sensitive label matching with the current system.

In conclusion, the proof-of-concept realization of the INLOOP CAS matching engine can
realize many of the concepts of the previously discussed design in a sufficient way. Sadly, it can
not completely separate the model type-dependent test generation from the later testing step.

22 See Section 4.5 on Page 64

65



4 Realization of a Analysis Class Diagram Matching Engine

66



5 Evaluation

After the realization of the INLOOM CAS aUML class model test engine, the next step is to
evaluate the decisions made in the last chapter. Two points can be evaluated. The first is the
quality of the unified grading scheme for aUML class diagrams. The second is the quality of the
assessment results of the class model testing engines.

5.1 Evaluation of the Uniform Grading Scheme

The quality of the unified grading scheme is important for the acceptance of the system by
the students. The wunified grading scheme’s scores could be too far from the scores of exam
grading schemes. In that case, the students would feel that INLOOM would not help them to
assess their modeling skills for the exam. That could be fatal since this is one of the main goals
of INLOOM. But the alternative, changing grading schemes for every task, could confuse the
students, too. This could also lead to the inability to asses their skills. So, a uniform grading
scheme in necessary and the difference range to the original grading schemes must be explored.

To evaluate if the uniform grading scheme is close enough to the exam grading schemes, both
schemes are compared. For that, the last 9 exams expert solutions for class model tasks were
digitized and the maximal score was generated through the implemented test generator engine.
These exams were the most recent ones with most students using them to prepare for the exam.
The older the exams are, the more they lose prominence to the students. So there is a high
probability that these nine exams would be the main comparison target for INLOOM tasks.
The exam of the winter term 2017/2018 (WS 17) was dismissed in the choosing process since it
was using a completely different grading scheme. This would not yield any comparable results
to the rest of the exams. After this, the Difference between the original maximal score of the
exam and the maximal score of the uniform grading scheme was calculated. The results can be
found in Table 14. The digitized exams expert solutions could later be used for testing purposes
or INLOOM tasks. They are included in the digital data set of this thesis.

It can be seen that the uniform grading schemes maximal scores are always higher than the
original exam scores. That is expected since normally roles are not gradable elements themselves
but parts of points for relationships. So, the more roles are in the exam task the more points
the uniform grading scheme differs from the original score. Other factors are the attributes and
operations. These elements often only collectively reward points. Those collective points for
multiple elements of an element type are often used to reduce the maximal score to a necessary
level. That is because exam task scores must fit into a specific score range. The more an exam
uses them in its original grading scheme, the more the uniform grading scheme score differs.
This difference is always positive. Only the summer term 2019 exam has an equal score to the
uniform grading scheme. That is the case because both use the same scheme.

67



5 Evaluation

Table 14: Evaluation of the uniform grading scheme of aUML class models against old exam
grading schemes. Task gives the number of the aUML class model task in the Ezam.
Exam Points are the maximal scores of the exam task using the original grading
scheme. Uniform Points is the maximal score using the uniform grading scheme.
Difference is the percentage of the uniform points to the exam points. Last, the
Average Difference is the arithmetic average over all exams.

Exam Task FExam Points Uniform Points Difference

SS 15 2 22 27.5 125%
WS 15 1 38 47 124%
SS 16 1 20 23,5 118%
WS 16 1 26 32,5 125%
SS 17 1 25 29 116%
WS 17 1 32 - -

SS 18 1 18 27 150%
WS 18 1 24 27 113%
SS 19 1 13 13 100%

Average Difference: 121%

Over all eight exams, the uniform score is roughly 20% above the original grading schemes
scores. The range goes normally between 0% and 25% difference. There is only one exception.
The exam of the summer term 2018 (SS 18) has a 50% difference between the original maximal
score and the uniform maximal score. After checking the exam, it became clear why there is
though a great difference. The exam 7SS 18” is probably a worst-case scenario for the uniform
grading scheme. It gives points to only relationships and these relationships have mostly roles
attached to them. It also gives no points to other elements to equalize the final maximal score.
With the detachment of roles from relationships in the uniform scheme, this generates a large
number of points. This should also mean that the maximal difference should not be much higher
than the 50% of this exam.

In conclusion, the difference between the grading schemes is normally a 0% to 25% difference
in maximal scores. The best-case scenario is that both, the original and the uniform scheme,
using the same grading scheme. Then the difference is 0%. In extreme cases, the difference can
go up to roughly 50%. That should be only the case for worst-case scenarios like the 7SS 18”
exam. But it only happens once in the exams of the last four years.

In literature, nothing can be found on this topic, so there is no comparison to other cases.
In any case, compared to the advantages a uniform grading scheme gives, an average difference
of 20% to old exam schemes should be sufficient enough. So, the uniform grading scheme for
aUML class models can be used by the INLOOM Model Test Engine. To reduce possible future
problems, a transparent approach could be used by telling the students that a uniform grading
scheme is used.

68



5.2 Evaluation of the Quality of the Constraint-Sets

5.2 Evaluation of the Quality of the Constraint-Sets

One of the most important evaluations is the quality of the mater constraint-sets used in the
implemented INLOOM aUML class model test engine. To assess the quality, the results of the
automatic assessment are compared to the results of exam task solutions. These exam task
solutions were manually assessed by an instructor.

5.2.1 Preparation of the Exam Solution Data

For this evaluation, 30 student solutions for old exam tasks were chosen. These 30 solutions were
separated into 3 solution sets. Each set holds 10 solutions for one task of one old exam. The
tasks are naturally all model task for aUML class models. The chosen exams were the summer
term exams of 2017 (SS 17), 2018 (SS 18), and 2019 (SS 19). There are three reasons for using
these exams. First, they are the most recent exams. Second, they are all summer term exams
which are attended by the highest number of students. Last, they represent a worst-case (SS
18), a best-case (SS 19), and a normal case (SS 17) in regards to the uniform grading scheme.
For each set, 10 student solutions were randomly chosen out of all available solutions. The only
real limitation on the randomness was that in the end three of the solutions must be solutions
with high scores, three must be of low scores, and four must be in between. That was done
to reach a broad representation of possible scores. Also, 0 points and full point solutions were
avoided since matching them would be trivial. These student solutions were numbered 1 to 10
for each exam year and ordered after their score. Obviously, the students numbered the same
(for example Student 1) in different years are not the same person.

After that, the student solutions were digitized using the generated EMF' editor. Since the
solution was originally written on paper, the students did not necessarily strictly follow the
aUML metamodel. In the case of a human instructor, this often resulted in a one-time point
reduction for the whole solution. The not metamodel conform elements would then be assessed
normally. In the process of digitizing, this was simulated as much as possible. All non-usable
elements were transformed into metamodel conform elements, giving the student the benefit of
the doubt.

For each solution, the score given by the original instructor was noted. To simulate the
none metamodel elements, the end score was raised by the deducted points for none metamodel
conform elements. Also in the exam correction, there are ” grace points”. These are used to
mark points that are given for borderline wrong elements, out of goodwill from the instructor.
Mostly, a given grace point means 0.5 points more than in a case without grace points. These
points are used to simulate a range of the score given by a human instructor to a solution. The
score with grace points is called the Exam Score and represents the highest score the human
instructor would give for a solution. The score without grace points is called the Clean Exam
Score and is the lowest possible score the human instructor would give for a solution. The Clean
Exam Score is calculated by reducing the Exam Score by 0.5 points for every grace point given.

After this, the already digitized exam expert solution models are now used in the imple-
mented Epsilon Constraint-based Model Test Generator together with the implemented master
constraint-sets. The generated Test-Sets were then used together with the digitized student
solution in the Epsilon Constraint-based Model Test Engine. This generated the Test Score for
the student solution as well as the feedback XML files. The feedback XML files, as well as the
digitized student solutions, can be found in the digital attachments of this thesis.

69



5 Evaluation

It must be said that this process was done again to fine-tune the strictness of the constraint
test sets. But no constraints were added or removed. An example of that is that, in the first run,
a relationship could be found in an Error constraint if the multiplicity of both ends were right.
That was done to avoid to be too lenient. In the end, that was to strict and the instructors
often gave the point if one multiplicity was right. It resulted in, on average, over 30% fewer
relationships were rewarded with partial points then by the instructor. So in the second run
that was changed to one of the multiplicities must be right, to give better feedback.

All data was transformed to percent values to their maximal score. This was done to make
the manual human given scores and the automatic test scores comparable to each other. The
scores given by the human instructor are based on the original grading scheme of the exam,
while the automatic assessment engine uses the uniform grading scheme. By calculating their
percent-based scores both scores become roughly comparable. But since their base is different,
conclusions must be done carefully. Another used value is the Difference between the Exam
Score and the Test Score. It shows how many percentage point the Test Score and the Exam
Score are away from each other. A positive Difference means that the automatic assessment has
given the student a higher score (in percentage points) than the human instructor. This means
the human instructor was more strict as the test engine. The opposite is that the test engine is
more strict than the instructor, resulting in a negative Difference. A Difference close to null is
preferable. This means that the human instructors and the automatic test engine’s assessment
is nearly the same. The whole data set can be found in the digital version and the attachments
of this thesis.

Following the results based of the last run of the test engine are discussed. The feedback of the
assessment system was additionally manually confirmed for roughly half the student solutions.
That was done to find possible errors in the assessment system.

5.2.2 Comparison between Automatic and Human Assessments

Figures 13, 14, and 15 show an overview of the comparison between the scores of a human
instructor and the automatic assessment engine. The blue bar shows the Exam Score of on
Student and the red bar the corresponding Clean Exam Score. The green bar gives away the
Test Score of the automatic assessment engine. All bars using the left axis and show percentage
values to their corresponding maximal scores. The orange line shows the Difference between the
Exam Score and is using the right axis. The scale of the right axis is the same over all three
diagrams. This was done to make comparing this value easier. Even if shown as a line in the
diagrams, the Difference values are independent of each other. The line between the Difference
values per student was included to make it easier to find patterns between the values along the
decreasing scores.

70



5.2 Evaluation of the Quality of the Constraint-Sets

Evaluation of Exam Scores against Test Scores

Summer Term 2017
100 15

AN
o
% Point Difference

40 -15
30 -20
20 -25

Score in % to maximal Points
w
o

-30 W Exam

-35  mmm Exam clean

 Test

<o Difference

Figure 13: Evaluation of the Automatic Assessment System against the manual assessment of an
instructor. The base are ten student solutions of the summer term 2017 exam. The
bars show the Score as percentage of the maximal score. There are the exam score
(blue bar), cleaned exam score(red bar), and the score of the automatic assessment
(green bar). Clean exam scores are scores without ” grace points”. The orange line
shows the Difference between exam and automatic assessment in percent points.

The first thing to mention is the varying range of the maximum exam score and the minimum
exam score between the diagrams. The maximum score of the student solutions of an exam is
always above 80% and below 100%. The minimum score of the student solutions of an exam lies
around 40% in 2017 and 2019 but is roughly 15% in 2018. That difference can have a reason
other than random selection. In 2017 and 2019 class and attribute elements were asked in the
solution for around half the points. These elements are normally easier to find. In 2018 only
relationships gave points which are harder to model right. This could result in a smaller score
range in the 2017 and 2019 exams. This means that the score range of below roughly 30% is
underrepresented in the evaluation.

The next focus point is the difference between the Exam Score and the Clean Exam Score. This
difference is mostly only around or below 5%. That means, the human instructors were mostly
certain of their grading and only sometimes found borderline elements. The only exception
is the solution for Student 4 in the year 2019. There, the instructor was extremely uncertain
about his grading and the difference between Exam and Clean Exam Score was roughly 10%.
The student modeled around an abstract element that, in this context, was not meant to exist
in the task description.

71



5 Evaluation

Evaluation of Exam Scores against Test Scores
Summer Term 2018

100 15
90 10
2 80 9 5
E
& 70 o— 0 g
© c
E 60 5 g
x
&=
£ 50 10 5
2 £
& 40 15 5
a
c
< 30 20 X
[=]
$ 20 25
10 -30 W Exam
0

-35  mmmm Exam clean
[ Test

<o Difference

Figure 14: Evaluation of the Automatic Assessment System against the manual assessment of an
instructor. The base are ten student solutions of the summer term 2018 exam. The
bars show the Score as percentage of the maximal score. There are the exam score
(blue bar), cleaned exam score(red bar), and the score of the automatic assessment
(green bar). Clean exam scores are scores without ” grace points”. The orange line
shows the Difference between exam and automatic assessment in percent points.

The most interesting evaluation is the Difference between Exam and Test Score. This value
shows the similarity of the test engine to a human instructor. Over all three data sets, the
difference of the test engine seems to be mostly between 10 percentage points from a human in-
structor. This means that the assessment system grading is near the human instructors grading.
The arithmetic average in the Difference of all solutions is -4 percent points. It seems that the
assessment system is slightly stricter than the human instructor. That should be normal since
the human is able to find more semantic in the models as the constraint-based system. But it
also seems that the system overall is not configured to lenient.

Looking at the development of the Difference with decreasing scores, there seems to be no
causation. In the 2017 data, it seems that the assessment system is more strict in the high score
solution and more lenient in the lower score section compared to a human instructor. But in
other year’s data, the overall Difference is more average over all scores. It also often switches
between positive and negative differences from one score to another. If looking into the data
in detail, all three data sets have another curve. In 2017, the differences become clearly more
positive(more lenient compared to human) the lower the score is. In 2018 the differences are on
average lower (stricter compared to human) in the high score and low score sections. Last, in
2019, the differences become on average lower (stricter compared to human) the lower the score
section is.

72



5.2 Evaluation of the Quality of the Constraint-Sets

Evaluation of Exam Scores against Test Scores

Summer Term 2019
100 15

90 10

Score in % to maximal Points
=
o
% Point Difference

-30  mmmm Exam

B Exam clean

w Test

<o Difference

Figure 15: Evaluation of the Automatic Assessment System against the manual assessment of an
instructor. The base are ten student solutions of the summer term 2018 exam. The
bars show the Score as percentage of the maximal score. There are the exam score
(blue bar), cleaned exam score(red bar), and the score of the automatic assessment
(green bar). Clean exam scores are scores without ” grace points”. The orange line
shows the Difference between exam and automatic assessment in percent points.

All that seems to indicate that the strictness of the assessment system is not dependent on the
score value. That means the master constraint-sets are sufficiently configured in the strictness
of their trigger. With the data like that, in 2017, it seems more likely that the human instructor
was more in favor of good solutions and became stricter when grading poor solutions. Other
possibilities could be a second instructor or a change in personal grading practices. But it must
be said that the difference is not that large.

There are two student solutions that have a larger distinction in Difference than the rest.
First is the solution Student 4 of the data set of 2018. It has a Difference of negative 19 percent
point to a human instructor. That is nearly double the Difference to each of the other student
solutions. Because of this exception from the norm, the feedback was looked into in detail.
It seems that the assessment system and the human instructor agreed almost always in the
assessment of the solution. So, the difference between humans and the system was not that
great. The greatest portion of the later Difference comes from different grading schemes. It
seems the student solution lacks most of the roles. The original grading scheme would deduct
points from their relationships. The system also deducted points of the relationships because
of other errors that also existed in the solution. Because of the missing roles, more points were
lost. The huge Difference comes from this worst-case scenario for the student, caused by the
change in the grading scheme. That concludes that the Difference of the solution of Student 4
is not the automatic assessment systems fault.

73



5 Evaluation

The second exception is the solution of Student 4 of the data-set of 2019. For this data point,
the Difference is -33 percent points. This data point was already mentioned above for its great
difference in Exam and Clean Exam Score. This was caused by the complicated modeling of
the student around a not intended abstract element. The system could not resolve this part of
the model, only rewarding minimal points. That leads to a -33 percent point Difference to the
Exam Score or a -21 percent point Difference to the Clean Exam Score. This shows that the
system, at the moment, can only deal with small structural or semantic changes from the expert
model. But, it should be mentioned that the human instructor was also not clear on how to
grad it or was very generous with its grading. That is shown by the great difference between
the Exam Score and the Clean Exam Score.

In conclusion, there was only one solution of the 30 student solutions that the implemented
automatic assessment system could not assess in a sufficient range to the human instructor. For
a proof-of-concept implementation, that should be a sufficient ratio.

Since the different grading schemes introduce a level of uncertainty to this evaluation, no
further statistical methods were used. That was to prevent conclusions based on small findings
due to an uncertain database.

5.2.3 Conclusion

In the literature, there are only a few systems that published concrete data on the difference
between the system and human instructors.

There is only one other constraint-based system that shows the data of their evaluation [6]. It
is also used on class diagrams but there are no given restrictions on the used UML metamodel,
like aUML. Bian et al. [6] mention that their algorithm-based constraint-based system can
asses student solution with an, on average, less than 14 percentage points difference to a human
instructor. This result should be comparable to the tested implementation of INLOOM, through
the UML specification of Bian et al. is broader.

There are other systems from the literature that provide data as well [24, 29-32]. The problem
is that these systems have other matching techniques like similarity matching. These types of
systems have high accuracy if their thresholds are trained enough. They also use only examples
with small scores like 6 to 8 points for their evaluation. That decreases the comparability with
the evaluated implementation. But, a rough outline can be collected.

In these pieces of literature, every difference under 5 percent points seems to be a great result,
and roughly 10 percentage points seem to be considered good, too. That was concluded from
the point that only results of resulting in roughly these numbers are mentioned in the literature.
From Bian et al. [6] as well, it can be considered that less than 15 percent point is also sufficient
enough.

From this consideration and the evaluation of the last section®3, Table 15 was created.

23 See Section 5.2.2 on Page 70

74



5.2 Evaluation of the Quality of the Constraint-Sets

Table 15: Distribution of the difference between manual instructor assessment and automatic
assessment for the 30 student solutions. The Difference is the difference in percent-
ages points between the manual and automatic assessment. The count row shows
the number of solutions in this Difference range. Count % shows the percentage of
the number to the maximal number of solutions. Cum. % calculate the number of
solutions that have equal or less Difference as a percentages value. A value of below
10% Difference is considered a good value and below 15% a sufficient value.

Difference 0% 0%<x<b% 5%<x<10% 10%<x<15% >15%

Count 6 6 14 2 2
Count % 20% 20% 47% 7% 7%
Cum. % 20% 40% 7% 93% 100%

It can be seen that, with under 5 percentage points Difference, 40% of the assessment results
of the implementation of INLOOM can be considered great assessments. Another 47% are good
matches that reach under 10 percentage points. In the direct comparison with Bian et al. [6],
93% of the resulted feedback is within their mentioned threshold of 14%. This number goes up
t0 96,5% if the result of Student 4 in the year 2018 is considered inside this range. This should
be the case since the Difference of 19 percentage points was due to the different grading schemes.

As a conclusion, the proof-of-concept implementation of an aUML class diagram assessment
system for INLOOM can favorably compare to other assessment systems. It reaches the number
of roughly 95% of assessments with a less than 15 percentage points Difference to a human
instructor. This can be considered a good result.

But, it must be also mentioned that the majority of results are in the higher and only consid-
ered ”good” range between 5 percent to 10 percentage points Difference. There is also one result
that can be considered a failure that has over 30 percent points difference. So it can be said
that the quality and number of constraints should be improved further to increase the accuracy
of the system. This could increase the quality of the assessments even further.

75



5 Evaluation

76



6 Conclusion and Future Work

After designing the INLOOM CAS and implementing the a UML class model assessment engine,
a conclusion must be drawn. For that, the Research Questions that were defined at the start of
this thesis, are answered in this chapter. Also, possible future work based on this work will be
discussed.

6.1 Research Questions

To assess if the thesis has reached its goals, the findings of this work are used to answer the
defined Research Questions.

RQ1 Is there a method that can be used for the automatic correction and grading of student
solutions in the beginner software engineering course?

This Research Question can be answered with yes.

There are multiple types of assessment systems that can be used for grading and feedback
generation on student solutions. These types are Element- and Ezecution-based Matching if there
are high limitations on the student’s modeling. Systems for free modeling of UML diagrams are
Learn- and Similarity-based Systems. For systems that are between these extremes, there are
Constraint- and Label Matching-based Assessment Systems. The systems are described in detail
in Section 2.2

Beginner software courses often use limitations on the student’s modeling but need some
configurable freedom since beginners often make mistakes. That leads to Constraint-based
Assessment Systems as the best choice. These systems are also capable of configurable grade
and feedback generation.

RQ2 How could a design for the architecture and workflow of the automatic assessment system
look like?

In Chapter 3, a design for such a system is presented.

It uses an expert model and master constraint-sets in a Constraint-based Model Test Generator
to generate textual constraint-based test-set. These test-sets are each based on one element of the
expert solution and can be easily interchanged or expanded with other test-sets. The collection
of test-sets is then used with a Constraint-based Model Test Engine to assess a student model
solution. At the end, feedback and a score are generated as an XML file.

This system fulfills all requirements that were found for the automatic assessment system.

7



6 Conclusion and Future Work

RQ3 How can the system be implemented in the existing INLOOP architecture, without changes
to the architecture?

Section 3.5 gives a overview how the system defined in Chapter 3 can be integrated in IN-
LOOP [20].

The design of the expert models and master constraint-sets could be done on the machine of
the specific instructors. The instructors can then commit their work on a Gt Task Repository.
INLOOP/INLOOM will then sync with the repository and publish the task description to its
Web Application. At the same time, the Model Test Generator will be called and the test-sets
will be generated. When a student uploads its solution, a Background Worker will receive the
test-sets, student solution, and the Model Test Engine and generate an output. This output can
be now archived and given to the Web Application to extract score and feedback messages.

This workflow coincides with the existing INLOOP architecture and the continuous publishing
workflow.

RQ4 Which data can be extracted from the existing data sets and workflows? How can this
data be reused to help the design process?

The existing data that could be reused in the process of this thesis are already existing aUML
metamodels and grading schemes. But, the most important data to reuse are the data set
around the old exams. The exams can be reused as tasks in INLOOM and their solutions as
expert models. The archived student solutions can be investigated to find common mistakes and
misconceptions of beginner students. These can be then used to create and refine the master
constraint-set. Digitized, the student solutions can be testing data for these constraint-sets, to
ensure a certain quality of the assessment.

RQ5 Is the presented realization suitable for the goals of the system?

The realization of the aUML class diagram assessment system seems suitable for the goals of
the system. It completely realized the design that was found to fulfill the requirements of the
desired system. Through an evaluation in Chapter 5 with student solutions of old exams, it
was found that it has sufficient accordance with human instructors. The difference to human
instructors was below 15% with roughly 90% of the results below 10%. A comparison with the
information found in the literature shows that these results are considered a successful automatic
assessment.

78



6.2 Future Work

6.2 Future Work

There are a few questions and topics that could not be included in this thesis but are connected
to INLOOM. These topics could be great starting points for research based on this work in the
future.

Web-based UML Modeling Editor
The first topic is a web-based UML modeling editor that could be integrated into the
INLOOM web application. This editor must be configurable to include aUML and normal
UML. It should also easily expendable with new (a)UML modeling types. There is also the
possibility to extend the INLOOM CAS to non-UML model types. A search for existing
options would be needed and, if no suitable product is found, a new one must be designed
and implemented.

Test Suite for Master Constraint-Set

The second topic is to secure the quality of the master constraint-set while they are ex-
tended and refined. This must be done to increase the covered solution space of the
assessment system, as well as decrease the range to human assessments. It is also vital
when designing master constraint-sets for new model types. To do this a testing suite is
needed. This suite must be designed to be easily manageable and must be populated with
test data. This data can be collected out of the solutions of old exams. It should be part
of the development environment of the instructor, which develops the constraints.

Assessment of Textual Task Descriptions

One of the biggest error sources of the new system are the textual task descriptions. In the
assessment of exam solutions, it often happens that these descriptions are not clear enough
or contain errors. This results in an increase of the possible solution space and increases
the difficulty of automatic assessments. Since the expert models in INLOOM are based
on metamodels, this could be resolved by comparing the models and the description. One
way, a modeled expert solution could be compared to the description text and possible
problems could be marked in both. Another way could be the generation of one out of the
other. For example, an expert model could exist first and out of this model, an example
description text could be generated. The instructor could now refine the text and compare
it to the model to find problems arose from the refinement. The opposite would also be
possible. An instructor writes the description text and then generate a starting model.
This model is then refined and compared again to the description.

This system would be a great expansion of the task instructor’s development environment,
greatly increasing the assessment quality.

79



6 Conclusion and Future Work

Motivation and Plagiarism

80

With the start of INLOOM, the point of motivating the students to use the system will
become a problem. INLOOP solves this problem with bonus points for the next exam that
are granted for solving exam tasks. This could also be done by INLOOM. The problem of
this is how to find fraudulent submissions. INLOOP uses a textual plagiarism checker to
find those submissions. In INLOOM, the submissions are in the form of an Ecore/EMF
file which is an XMI format. These files are also generated and not directly written by
the student. This makes them less individual as source code. There are attempts to find
plagiarism by using similarity matching on all submitted solutions [19]. That could work,
but aUML models have relatively few features and the task description and labels limit
the students modeling. So there are concerns that these approaches could not be working
correctly.

Another option would be to limit the viability of plagiarism. That could be done through
the editor by disallowing copy and paste operations or marking solution elements. Another
way would be to use the flexibility of the INLOOM test-sets to generate not one task but a
group of similar tasks around one main task expert model. These sub-tasks differ only by
one or two elements. The students then each get one of these sub-tasks. The testing would
be performed by swapping one or two test-sets before the test, with most of the test-sets
staying the same. That would increase the difficulty of the simplest form of plagiarism.
To look into all these options would necessary to include bonus points to INLOOM.



6.3 Conclusion

6.3 Conclusion

University education has become more and more popular with student numbers rising year after
year. To cope with this increase, e-learning has become an important part of new educational
practices. INLOOP is an e-learning system that helps participants of beginner software engi-
neering courses to train their object-oriented programming skills. This helps them to prepare
for the exams of these courses, too. Since INLOOP helped to increase the quality of the exam
results, the same concept is hoped to be achieved for object-oriented modeling. This thesis gives
an overview of possible automatic assessment systems types that could provide this. It also
introduced the concept of INLOOM. INLOOM is a variable constraint-based model assessment
system build onto the INLOOP architecture. It has a two-stage system to separate the publishing
and preparing of tasks from the testing of student models. It let course instructors define tasks,
expert solution models, and model-type-dependent, highly configurable master constraint-sets.
These are used to generate a textual test-set for each task. These test-sets are later used to,
separated from the first step, assess committed student solutions. It can use the constraints to
reward student solution elements with partial or full points and is able to search for alternative
solution patters. For the students, it generates a grade and textual feedback as help. As a
proof-of-concept, an analysis UML class diagram assessment system, using EMF and Epsilon
was implemented. This realization was compared with the grading of human instructors using
30 student exam solutions from three separate exams. It was shown that the proof-of-concept
realization for class diagrams could compare favorably with other systems described in the liter-
ature. The system was able to assess student solutions within 15% range to the score given by
a human instructor. This range could also decrease in the future by refining and extending the
used constraints. This shows that INLOOM can support beginner software engineering courses
with e-learning capabilities for object-oriented modeling.

Table 16 shows an overview of INLOOM’s information in contrast to other model assessment
systems found in the literature. It can be seen that it uses the same concepts and the same
concept combination as other systems. Its advantage over other systems is the two-stage work-
flow. Through this workflow, it can remove many problems of other constraint-based systems.
First, often constraints are more general global constraints or the task itself must be defined
in task-specific constraints. In INLOOM, the more complex and specialized definition of the
constraints can be done by a separate specialized instructor for each model type. The solution
of the task can be done by a more simple modeling of an expert solution model. This is more
accessible for the majority of instructors. Due to combining these two in the Constraint-based
Test Generator, both the global and the task-specific constraint test-sets can be generated. This
makes it easier for the instructors to define tasks and makes the constraint definition more
variable. The second advantage is that, due to the second stage, the Constraint-based Model
Test Engine is not model type-specific, and the test-sets can be easily replaced. In conclusion,
INLOOM is a very flexible assessment system that can be easily changed and extended. Third,
to our knowledge, INLOOM is the only system that can easily be integrated into the continuous
publishing paradigm of INLOOP. These three advantages help INLOOM to differentiate itself
from other existing model assessment system.

81



6 Conclusion and Future Work

Table 16: An overview of model assessment systems, including the new INLOOM system. The table is sorted from the newest entry to

the oldest one.

Type

Paper

System  Method

Diagramtype

‘Web

Editor

Methodologies

Metamodel

Forced Matched

Element

Graph  Similarity Execute

Learning Feedback Grades

INLOOM 2020 x

Bian 2019 [6]
Vachharajani 2019, 2014 [33, 34]
Bernius 2019, Krusche 2018 [5, 14] x

Beck 2015 [4] x

Sousa 2015 [26]

Striewe 2014 [28]

Smith 2013, Thomas 2007 (24, 30] x
Schramm 2012 (23] x
Prados 2011 [22] x
Hasker 2011 [8] x

Striewe 2011 [27]
Soler 2010 [25] x
Demuth 2009 [7]

Jayal 2009 [12]

Thomas 2008 [31] x
Baghacei 2007 (3] x
Ali 2007 [1, 2]

Le 2006 [16]

Higgins 2006, 2002 [9, 10] X
Tselonis 2005 [32] x
Hoggarth 1998 [11] X

CD/(general)

CD
uc
general

CD/AD

general /AD

AD

general /ER
CD/AD
general
CD
general
CD
CD
AD
SD
CD
CD
CD
general
genaral

general

(EMF)aUML/
(EMF)UML
(EMF)UML,
Grades
UML

X UML
x UML x

Graph,
UML

UML

Graph,
ER
X (Argo)UML X

x Graph
(RR)UML x
UML x
x (text)UML x
(EMF)UML x

UML

UML
X UML X
(RR)UML x
(Argo) UML x
ER/OO X

Graph

CASE x

82



A Attachments

A.1 User Guides for the Proof-of-Concept Implementation

A.1.1 Requirements

The proof-of-concept implementation has the following requirements and is only tested for the
given operating system and tool versions. The implementation can work on other versions, too.

Operating System
Windows 10

Eclipse Modeling Tools
Version: 2019-09 R (4.13.0)
Download: https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-modeling-
tools

Epsilon
Version: 1.5.1
Download: Eclipse Marketplace

All following user guides requiring basic understanding in working with the Eclipse IDE.



A Attachments

A.1.2 Creating aUML Class Models

The following user guide describes how to use the proof-of-concept implementation to generate
a basic EMF editor for aUML class models and use it to create aUML class models.

1. Generating the aUML Class Model Editor
Download the Eclipse Modeling Tool Packages and unpack it.

Start the Eclipse IDE (eclipse.exe) and create a new Workspace.
File—>Import...—> General-> Projects from Folder or Archive.

Ll e

Under “Import source” click on Directory and choose the inloom.emf.ooa.classdiagram
folder (it can be found in the digital attachments under Implementation/emf/ )

Click on Finish
The imported EMF project can be found in the Model Fxplorer
In the project the metamodel data can be found under model-> ooa_ classdiagram.ecore.

Open ooa_classdiagram.genmodel and right-click on Ooa_classdiagram.

© X» N @

Generate the EMF Implementation of the metamodel and the editor with Generate
All.

10. Two new projects that implement the editor should be generated: inloom.emf.ooa.classdiagram.edit
and inloom.emf.ooa.classdiagram.editor

11. Right-click on the inloom.emf.ooa.classdiagram project and then on Run As—> Eclipse
Application.

12. Click on Continue and a new Eclipse instance should open. This instance includes
the working EMF editor for aUML class models.

2. Creating a new aUML Class Model

1. Open the second instance of Eclipse.

2. Create a new project with File—>New—> Project—> General—> Project—> Next.

w

Under ”Project name” insert an name for the new project. Also a Location can be
chosen.

Click on Finish.

Right-click on the new project and choose New—> Folder.
Under ”Folder name” insert an name for the new folder.
Click on Finish.

Right-click on the new folder and choose New-> Other.

S S A o

To create a new aUML class model: FExample EMFE Model Creation Wizards—> Qoa_classdiagram
Model—> Next.

10. Under "File name” insert a name for the new model. Then click on Next.

11. Under "Model Object” choose "O0OA Class Model”.
12. Click on Finish to create the model.

ii



A.1 User Guides for the Proof-of-Concept Implementation

13. Existing models can be dragged into the folder by drag-and-drop out of the file system
or over Import.

3. Editing a aUML Class Model

1. Open the model in the second instance of Eclipse with a double-click or right-click—
> Open.

2. Expand the opened tree-editor till the OOA Class Model node.

3. With Right-click—>New Child—>... on a node, new model elements can be added to
the model. Only metamodel-conform options out of the elements are displayed.

4. To edit a element click on the node. At the bottom of the IDE, the Properties tab
should open. There all attributes of an element can be edited.

5. Tt is important that at least the attribute ID of the OOA Class Model is set.

6. With a right-click—> Validate on the tree, the model can be validated against the
metamodel.

7. Save the model click on Save in the top of the IDE.

8. To export models, simply drag-and-drop them into the file system or other Eclipse
instances.

iii



A Attachments

A.1.3 Generating Test-Sets out of an aUML Class Model

The following user guide describes how to use the existing master constraint-sets for aUML class
models to generate test-sets from an (expert) aUML class model.

1. Import the Master Constraint-Sets for aUML Class Models

o

13.
14.
15.

. Start the Eclipse IDE (eclipse.exe) and open the Workspace with the EMF projects

from the last user guide.

. Install Epsilon from the Eclipse Marketplace: Help—> Eclipse Marketplace and Search

for ”Epsilon” in the search bar. Click on Install and continue through the dialog.

. Open the inloom.emf.oo0a.classdiagram project and click on model->right-click on

ooa_classdiagram.ecore—>Register EPackages.

. Create a new project with File—>New-> Project—> General-> Project—> Next.

Under ”Project name” insert an name for the new project. Also a Location can be
chosen.

6. Click on Finish.
7.
8
9

Right-click on the new project and choose New—> Folder.

. Under ”Folder name” insert an name for the new folder.
. Click on Finish.

10.
11.
12.

Too import the Master constraint-sets right-click on the new folder.
Import...—> General-> File System—> Next.

Under "From directory” click on Browse and choose the egl folder (it can be found
in the digital attachments under Implementation/epsilon/inloom.epsilon.rules/")

Select egl in the left field. All files on the right side should now be selected.
Click on Finish
The imported files can be found in the Model Fxplorer under the new folder.

2. Importing the aUML Class Model

Ll e

v

Right-click on the project created in the last step and choose New-> Folder.
Under ”Folder name” insert an name for the new folder.
Click on Finish.

Import a (expert) aUML class model by dragging it into the folder by drag-and-drop
out of the file system or the other Eclipse instance.



A.1 User Guides for the Proof-of-Concept Implementation

3. Generating the Test-Sets

®» N o«

10.
11.
12.

13.

. To generate the test-sets from a aUML class model, the Epsilon EGL Engine must

be run.

. Right-click on the project in the Model Explorer an choose Run As—>Run Configu-

rations.

Double-click on FGL Generator. A new sub-node should be created. Open it by
clicking on it.

Under the tab "Template”: Click on Browse Workspace under ”Source” and search
for "main.egz”. Select the main.egx file and click on OK.

Under the tab "Models”: Click on Add->EMF Model.
Insert ”expert” in the field Name.
Under "Model file:” click on Browse Workspace.

Search for the model file name of your expert model. Click on the found file and on
OK.

Under ”Metamodels:” a refernce to the ooa_classdiagram should appear. If not, click
on Add file and add the ooa_classdiagram.ecore file.

Click on OK.
Click on Run.

In the project next to the folder with the egl files, a ”evl” folder should be created.
It include the Test-Sets created from the chosen model.

After one successful run, the run can be started again by simply selecting the sub-node
and click on Run.



A Attachments

A.1.4 Testing an aUML Class Model against the Test-Sets

The following user guide describes how to test a (student) aUML class model against existing
test-sets of an expert solution.

1. Import the (Student) aUML Class Model

. Start the Eclipse IDE (eclipse.exe) and open the Workspace from the last two user

guides.

. Create a new folder in the same project in which the evl and egl files can be found.

Another option is the use of the folder of the expert model file.

. Import a (student) aUML class model by dragging it into the folder by Drag-and-drop

out of the file system or the other Eclipse instance.

2. Testing the (Student) aUML Class Model

® N> o

10.
11.

12.
13.
14.

vi

. To test the (student) aUML class model, the Epsilon EVL Engine must be run.
. Right-click on the project in the Model Explorer an choose Run As—>Run Configu-

rations.

. Double-click on EVL Validation. A new sub-node should be created. Open it by

clicking on it.

. Under the tab ”Source”: Click on Browse Workspace under ”Source” and search for

"rule_main*.evl”. Select the rule_main_* EVL file of the test-set you want to use and
click on OK.

Under the tab "Models”: Click on Add—>EMF Model.
Insert ”7student” in the field Name.
Under "Model file:” click on Browse Workspace.

Search for the model file name of your student model. Click on the found file and on

OK.

Under ”Metamodels:” a refernce to the ooa_classdiagram should appear. If not, click
on Add file and add the ooa_classdiagram.ecore file.

Click on OK.

Under the tab ”Parameter” click on Add and insert the following values into the
created parameter.

Name: ”fileOutput”
Type: Boolean

Value: true



15.

16.
17.
18.

19.
20.

21.

A.1 User Guides for the Proof-of-Concept Implementation

Under the tab ”Parameter” click on Add a second time and insert the following values
into the created parameter.

Name: "outputDir”
Type: String

Value: Absolute path of the created output XML file without the filename and with
”\” at the end. All folders must be existing (Example: D:\data\model\). This

parameter is optional if the parameter "fileOutput” is false.
Click on Run.

The output XML file should be created at the registered path. In the bottom of
the IDE the ”"Console” tab holds a copy of the output in XML format. Under the
”Validation” tab the intern messages are displayed.

After one successful run, the run can be started again by simply selecting the sub-node
and click on Run.

vil



A Attachments

A.2 Evaluation Results on the Comparison between Human and
Assessment System

viii



A.2 Evaluation Results on the Comparison between Human and Assessment System

Grading Results $52017 Max Points Max Test Points
25 29
Student Exam Results Test Result Differences
Points Point % Clean Points Clean Point %| Test Points  Test Point % Diff % Clean Diff %

Student 1 24 96 24 96 24,75 85 -11 -11
Student 2 21 84 20 80 21,5 74 -10 -6
Student 3 19,5 78 19,5 78 20,5 71 -7 -7
Student 4 19 76 18,5 74 19,5 67 -9 -7
Student 5 17 68 16 64 17,75 61 -7 -3
Student 6 17 68 17 68 19,75 68 0 0
Student 7 15,5 62 15,5 62 18 62 0 0
Student 8 13 52 12,5 50 18,5 64 12 14
Student 9 13,5 54 13 52 17,75 61 7 9
Student 10 11,5 46 11 44 13,5 47 1 3
Average Clean -2 -1

Average -2 -1
Range Clean 12 -11
Range 12 -11

Aver. Range 4 -9

Figure 16: Evaluation of the comparison between the scores of the automatic assessment system (7est Result) and a human instructor
(Exam Result). The compared models are student solutions for the summer term 2017 exam. Differences shows the difference
between the human instructor and the assessment system in percentage points. Clean values are scores without “grace
points”. Average shows the arithmetic average of all entries (normal and clean are separated). Range shows the maximal and
minimal normal Difference values. Average Clean and Range Clean are the Average and the Range without extreme values
(red entries).

X



A Attachments

Grading Results $52018 Max Points Max Test Points
18 27
Student Exam Results Test Result Differences
Points Point % Clean Points Clean Point %| Test Points  Test Point % Diff % Clean Diff %
Student 1 17 94 16,5 92 26 96 2 5
Student 2 16 89 15 83 23 85 -4 2
Student 3 12,5 69 12 67 16 59 -10 -7
Student 4 11,5 64 11,5 64 12 44 -19 -19
Student 5 11 61 11 61 18 67 6 6
Student 6 10 56 10 56 13,5 50 -6 -6
Student 7 8 44 7,5 42 11 41 -4 -1
Student 8 6 33 6 33 7 26 -7 -7
Student 9 5,5 31 5,5 31 7,5 28 -3 -3
Student 10 3 17 2 11 4,5 17 0 6
Average Clean -3 -1
Average -5 -3
Range Clean 6 -10
Range 6 -19
Aver. Range 2 -9

Figure 17: Evaluation of the comparison between the scores of the automatic assessment system (Test Result) and a human instructor
(Ezxam Result). The compared models are student solutions for the summer term 2018 exam. Differences shows the difference
between the human instructor and the assessment system in percentage points. Clean values are scores without “grace
points”. Average shows the arithmetic average of all entries (normal and clean are separated). Range shows the maximal and
minimal normal Difference values. Average Clean and Range Clean are the Average and the Range without extreme values
(red entries).



A.2 Evaluation Results on the Comparison between Human and Assessment System

Grading Results $52019 Max Points Max Test Points
13 13
Student Exam Results Test Result Difference
Points Point % Clean Points Clean Point %| Test Points  Test Point % Diff % Clean Diff %
Student 1 11 85 11 85 11 85 0 0
Student 2 10,5 81 10,5 81 9,5 73 -8 -8
Student 3 10 77 10 77 11 85 8 8
Student 4 8,5 65 7 54 4,25 33 -33 -21
Student 5 7,5 58 7 54 7,5 58 0 4
Student 6 7 54 6,5 50 6,5 50 -4 0
Student 7 6,5 50 6,5 50 6,5 50 0 0
Student 8 5,5 42 5,5 42 4,5 35 -8 -8
Student 9 5 38 4,5 35 6 46 8 12
Student 10 5 38 5 38 4 31 -8 -8
Average Clean -1 0
Average -4 -2
Range Clean 8 -8
Range 8 -33
Aver. Range 3 -7

Figure 18: Evaluation of the comparison between the scores of the automatic assessment system (7est Result) and a human instructor
(Exam Result). The compared models are student solutions for the summer term 2019 exam. Differences shows the difference
between the human instructor and the assessment system in percentage points. Clean values are scores without “grace
points”. Average shows the arithmetic average of all entries (normal and clean are separated). Range shows the maximal and
minimal normal Difference values. Average Clean and Range Clean are the Average and the Range without extreme values
(red entries).

x1



A Attachments

xii



Bibliography

1]

2]

3]

N. H. Ali, Z. Shukur, and S. Idris. Assessment System For UML Class Diagram Using
Notations Extraction. International Journal of Computer Science and Network Security, 7
(8):181-187, 2007.

N. H. Ali, Z. Shukur, and K. Terengganu. A Design of an Assessment System for UML Class
Diagram. In 2007 International Conference on Computational Science and its Applications
(ICCSA 2007), pages 539-546, Kuala Lampur, Malaysia, 2007. IEEE.

N. Baghaei, A. Mitrovic, and W. Irwin. Supporting collaborative learning and problem-
solving in a constraint-based CSCL environment for UML class diagrams. International
Journal of Computer-Supported Collaborative Learning, 2(2):159-190, 2007.

P.-D. Beck, T. Mahlmeister, M. Ifland, and F. Puppe. COCLAC - Feedback Genera-
tion for Combined UML Class and Activity Diagram Modeling Tasks. In 2. Workshop
“Automatische Bewertung von Programmieraufgaben” (ABP’2015),. CEUR-WS, 2015.

J. P. Bernius and B. Bruegge. Toward the Automatic Assessment of Text Exercises. In
ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @, pages 19-22,
Suttgart, Germany, 2019.

W. Bian, O. Alam, and J. Kienzle. Automated Grading of Class Diagrams. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), pages 700-709, Munich, Germany, 2019. IEEE.

B. Demuth and D. Weigel. Web Based Software Modeling Exercises in Large-Scale Software
Engineering Courses. In 2009 22nd Conference on Software Engineering Education and
Training, pages 138-141, Hyderabad, Andhra Pradesh, India, 2009. IEEE.

R. W. Hasker. UMLGRADER : An Automated Class Diagram Grader. J. Comput. Sci.
Coll., 27(1):47-54, 2011.

C. Higgins, P. Symeonidis, and A. Tsintsifas. The Marking System for CourseMaster. In
Proceedings of the 7th Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’02, pages 46-50, New York, NY, USA, 2002. Association for
Computing Machinery.

C. A. Higgins and B. Bligh. Formative Computer Based Assessment in Diagram Based
Domains. SIGCSE Bull., 38(3):98-102, 2006.

G. Hoggarth and M. Lockyer. An Automated Student Diagram Assessment System.
SIGCSE Bull., 30(3):122-124, 1998.

A. Jayal and M. Shepperd. The Problem of Labels in E-Assessment of Diagrams. J. Educ.
Resour. Comput., 8(4):Article 12, 2009.

xiii



Bibliography

[13]

[14]

[15]

[16]

Xiv

D. Kolovos, L. Rose, R. Paige, and A. Garcia-Dominguez. The Epsilon Book. Eclipse,
07.2018 edition, 2010.

S. Krusche and A. Seitz. ArTEMiS - An Automatic Assessment Management System for
Interactive Learning. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, pages 284-289, Baltimore, Maryland, USA, 2018. Association for Com-

puting Machinery.

S. Krusche et al. Artemis: Interactive Learning with Individual Feedback, 2016. URL
https://github.com/lslintum/Artemis. Last visited 2020-01-20.

N.-T. Le. A Constraint-based Assessment Approach for Free-Form Design of Class Diagrams
using UML. In Proceedings of Workshop on Intelligent Tutoring Systems for Ill-Defined
Domains, 8th International Conference on ITS, pages 11-19, Jhongli, Taiwan, 2006.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707-710, 1966.

M. T. Llano and R. Pooley. UML Specification and Correction of Object-Oriented Anti-
patterns. In 2009 Fourth International Conference on Software Engineering Advances, pages
39-44, Porto, Portugal, 2009. IEEE.

S. Martinez, M. Wimmer, and J. Cabot. Efficient plagiarism detection for software modeling
assignments. Computer Science Education, pages 1-29, 2020.

M. Morgenstern and B. Demuth. Continuous Publishing of Online Programming Assign-
ments with INLOOP. In ISEE 2018: 1st Workshop on Innovative Software Engineering

Education, pages 32-33, Ulm, Germeny, 2018. CEUR-WS.

M. Morgenstern, D. Muhs, and P. Matthes. INLOOP: Interactive learning center for object-
oriented programming., 2015. URL https://github.com/st-tu-dresden/inloop. Last
visited 2020-01-31.

F. Prados, J. Soler, I. Boada, and J. Poch. An Automatic Correction Tool That Can Learn.
In 2011 Frontiers in Education Conference (FIE), pages F1D-1-F1D-5, Rapid City, SD,
USA, 2011. IEEE.

J. Schramm, S. Strickroth, N.-t. Le, and N. Pinkwart. Teaching UML Skills to Novice
Programmers Using a Sample Solution Based Intelligent Tutoring System. In Twenty-Fifth
International Florida Artificial Intelligence Research Society Conference, pages 472-477.

AAAI Publications, 2012.

N. Smith, P. Thomas, and K. Waugh. Automatic grading of free-form diagrams with label
hypernymy. In 2013 Learning and Teaching in Computing and Engineering, pages 136-142,
Macau, China, 2013. IEEE.

J. Soler, 1. Boada, F. Prados, and J. Poch. A web-based e-learning tool for UML class
diagrams. In IEEE EDUCON 2010 Conference, pages 973-979, Madrid, Spain, 2010. IEEE.

R. Sousa and P. Leal. A Structural Approach to Assess Graph-Based Exercises. In
Languages, Applications and Technologies, pages 182-193. Springer International Publish-

ing, 2015.


https://github.com/ls1intum/Artemis
https://github.com/st-tu-dresden/inloop

[27]

Bibliography

M. Striewe and M. Goedicke. Automated Checks on UML Diagrams. In Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer Science

Education, ITiCSE ’11, pages 38-42, Darmstadt, Germany, 2011. Association for Comput-

ing Machinery.

M. Striewe and M. Goedicke. Automated Assessment of UML Activity Diagrams. In
Proceedings of the 2014 Conference on Innovation & Technology in Computer Science

Education, pages 336-336, Uppsala, Sweden, 2014. Association for Computing Machinery.

P. Thomas, W. Hall, and P. Thomas. Marking Diagrams Automatically. Technical Report
January, Department of Computing Faculty of Mathematics and Computing The Open
University, Milton Keynes, United Kingdom, 2004.

P. Thomas, S. Neil, and K. Waugh. Learning and automatically assessing graph-based dia-
grams. In Beyond control: learning technology for the social network generation. Research
Proceedings of the 14th Association for Learning Technology Conference (ALT-C 2007),

number September, pages 61-74, Nottingham University, England, UK, 2007.

P. Thomas, N. Smith, and K. Waugh. Automatic Assessment of Sequence Diagrams. In
12thInternational CAA Conference: Research into e-Assessmen, Loughborough University,

UK., 2008.

C. Tselonis, J. Sargeant, and M. M. Wood. Diagram matching for human-computer collab-
orative assessment. In Proceedings of the 9th CAA Conference, Loughboroug, 2005.

V. Vachharajani and J. Pareek. Framework To Approximate Label Matching For Au-
tomatic Assessment Of Use-Case Diagram. International Journal of Distance Education
Technologies (IJDET), 17(3):75-95, 2019.

V. Vachharajani, J. Pareek, and D. Ph. A Proposed Architecture for Automated Assessment
of Use Case Diagrams. International Journal of Computer Applications, 108(4):35-40, 2014.

XV



Bibliography

xvi



List of Figures

10

11

12

The architecture overview of the INLOOP system [20]. . . . . . . ... ... ... 4
The Workflow of the publishing or updating of task files in INLOOP (continuous
publishing) [20]. . . . . . . . 5

Overview of the Generality of the matching techniques. Generality describes the
needed requirements of the techniques. High Generality means less requirements
on the matched models or model types. . . . . . . ... ... ... ... ..... 11
Overview of the Generality of the assessment system (AS) groups. Generality
describes the needed requirements of the system groups. High Generality means
less requirements on the matched models or model types. . . . . ... ... ... 14

Simplified metamodel of the aUML class diagram used in the beginner software
engineering course of the Chair of Software Technologies of the TU Dresden. . . 22
Implementation of the feedback and grade information in the aUML metamodels
for INLOOM. The GradableElement metaelement hold all these information and
other metaelements inherit from it to be included in the feedback generation.
Class, Property and Association are examples that stand for these elements. . . . 23
Examples for error found by global constraints (red circles). These include isolated
classes, lower case class names, and directed associations in aUML class diagrams. 26
Workflow of the INLOOM matching system. There are two phases. In the Prepa-
ration Phase an Constraint-based Test-Set is generated out of an Fxpert Solution
Model for a task and a model type specific Master Constraint-Set. In the second
Testing Phase the Test-Set is used to match a Student Solution Model, generating
feedback and grades for the student. . . . . . .. ... ... o 0L 27
Object- or Fileflow of the INLOOM matching system. There are two phases. In
the Preparation Phase an Constraint-based Test-Set is generated out of an Fxpert
Solution Model for a task and a model type specific Master Constraint-Set. In
the second Testing Phase the Test-Set and additional Global Constraint Test-Sets
are used to match a Student Solution Model, generating feedback and grades for
the student. . . . . . . oL 28
Workflow of the INLOOM system integrated into the INLOOP continuous pub-
lishing workflow. The green objects are part of the generation of the task-specific
test-sets. Yellow objects are part of the generation of the task-specific Website
fragments. . . . .. 33

Ecore metamodel of the analysis class diagram used in the proof-of-concept imple-
mentation of the INLOOP matching engine for aUML class diagrams. The model
is taken from the Ecore editor and describes the data structure of the aUML class

models. . ... e 43
Generated test-set files of the class diagram task of the summer term 2015 exam.
Taken from the Eclipse IDE project explorer. . . . . . . ... ... ... ..... 59

xvil



List of Figures

13

14

15

16

17

18

xviil

Evaluation of the Automatic Assessment System against the manual assessment of
an instructor. The base are ten student solutions of the summer term 2017 exam.
The bars show the Score as percentage of the maximal score. There are the exam
score (blue bar), cleaned exam score(red bar), and the score of the automatic
assessment (green bar). Clean exam scores are scores without ” grace points”.
The orange line shows the Difference between exam and automatic assessment in
percent points. . . . .. ..o e e
Evaluation of the Automatic Assessment System against the manual assessment of
an instructor. The base are ten student solutions of the summer term 2018 exam.
The bars show the Score as percentage of the maximal score. There are the exam
score (blue bar), cleaned exam score(red bar), and the score of the automatic
assessment (green bar). Clean exam scores are scores without ” grace points”.
The orange line shows the Difference between exam and automatic assessment in
percent points. . . . ... L e e
Evaluation of the Automatic Assessment System against the manual assessment of
an instructor. The base are ten student solutions of the summer term 2018 exam.
The bars show the Score as percentage of the maximal score. There are the exam
score (blue bar), cleaned exam score(red bar), and the score of the automatic
assessment (green bar). Clean exam scores are scores without ” grace points”.
The orange line shows the Difference between exam and automatic assessment in
percent points. . . . . ... Lo e

Evaluation of the comparison between the scores of the automatic assessment sys-
tem (Test Result) and a human instructor (Ezam Result). The compared models
are student solutions for the summer term 2017 exam. Differences shows the
difference between the human instructor and the assessment system in percent-
age points. Clean values are scores without “grace points”. Average shows the
arithmetic average of all entries (normal and clean are separated). Range shows
the maximal and minimal normal Difference values. Awverage Clean and Range
Clean are the Average and the Range without extreme values (red entries).

Evaluation of the comparison between the scores of the automatic assessment sys-
tem (Test Result) and a human instructor (Ezam Result). The compared models
are student solutions for the summer term 2018 exam. Differences shows the
difference between the human instructor and the assessment system in percent-
age points. Clean values are scores without “grace points”. Average shows the
arithmetic average of all entries (normal and clean are separated). Range shows
the maximal and minimal normal Difference values. Awverage Clean and Range
Clean are the Average and the Range without extreme values (red entries).

Evaluation of the comparison between the scores of the automatic assessment sys-
tem (Test Result) and a human instructor (Ezam Result). The compared models
are student solutions for the summer term 2019 exam. Differences shows the
difference between the human instructor and the assessment system in percent-
age points. Clean values are scores without “grace points”. Average shows the
arithmetic average of all entries (normal and clean are separated). Range shows
the maximal and minimal normal Difference values. Awverage Clean and Range
Clean are the Average and the Range without extreme values (red entries).

ix

xi



List of Tables

10

11

12

13

An overview of model assessment systems that can be found in the literature.
The table is sorted from the newest entry to the oldest one. . . . . . .. .. .. 7
Summary of the types of automatic model assessment systems that can be found
in the literature. The table is sorted by the number of entries that belong to a

Master constraints included in the master constraint-set of the Class element. The
points rewarded by the constraint are the points of the expert solution element
multiplied by the corresponding number of the Points column (x<number>). . 46
Master constraints included in the master constraint-set of the Property element. 47
Master constraints included in the master constraint-set of the Operation element. 48

Master constraints included in the master constraint-set of the Enumeration and
Literalgroup elements. . . . . . . . . .. 48
Master constraints included in the master constraint-set of the Generalization
element. . . . ... e 48
Master constraints included in the master constraint-set of the Association ele-
ment. There are two additional general checks. First, on every constraint there
is a check if a role is modeled as an object, with no point penalty. Second, in all
error type constraints it is checked if the association is modeled in the opposite
WAY. o o e e e e e e e e e e e e e 49
Master constraints included in the master constraint-set of the Aggregation ele-
ment. There are two additional general checks. First, on every constraint there
is a check if a role is modeled as an object, with no point penalty. Second, in all
error type constraints it is checked if the association is modeled in the opposite
WAY. o v e e e e e e e e e e e e e e e e 49
Master constraints included in the master constraint-set of the Composition ele-
ment. There are two additional general checks. First, on every constraint there
is a check if a role is modeled as an object, with no point penalty. Second, in all
error type constraints it is checked if the association is modeled in the opposite
WAY. o v v e e e e e e e e e e e e e e e e e e e 50
Master constraints included in the master constraint-set of the Association Class

Master constraints included in the master constraint-set of the Role element.
Error type constraints of this constraint-set do not give points since the role
originally should be worth zero points but give away a error message as a hint. . 51

Xix



List of Tables

XX

14

15

16

Evaluation of the uniform grading scheme of aUML class models against old exam
grading schemes. Task gives the number of the aUML class model task in the
Ezam. Fzam Points are the maximal scores of the exam task using the original
grading scheme. Uniform Points is the maximal score using the uniform grading
scheme. Difference is the percentage of the uniform points to the exam points.
Last, the Average Difference is the arithmetic average over all exams. . . . . . .
Distribution of the difference between manual instructor assessment and auto-
matic assessment for the 30 student solutions. The Difference is the difference
in percentages points between the manual and automatic assessment. The count
row shows the number of solutions in this Difference range. Count % shows the
percentage of the number to the maximal number of solutions. Cum. % calculate
the number of solutions that have equal or less Difference as a percentages value.
A value of below 10% Difference is considered a good value and below 15% a
sufficient value. . . . . . . .. L

An overview of model assessment systems, including the new INLOOM system.
The table is sorted from the newest entry to the oldest one. . . . . . . . ... ..



Listings

O© 00 ~J O T = W N —

—_
=)

Standard format for generated feedback . . . . . ... ... .00

Available EGL slots . . . . . . . . . . e
General format of the EVL files used in the proof-of-concept implementation
EGL file of the class master constraint-set . . . . . . . . ... ... ... ... ..
EVL file generated from the class Stellung . . . . . . ... ... ... ... .. ..
General syntax of a EGX file . . . . . .. .. o o0
Examples of EGX rules of the Realization . . . . . ... ... ... ........
Simplified syntax of the EVL main file for the test-sets of a expert model
Shortened EGL file for the generation of the EVL main file for the test-sets of a
expert model. . . . . ...
EVL main file for the test-sets of the expert model. Generated for the aUML
class diagram task of the summer term 2015 exam. . . . . . .. . ... ... ...

xx1



Listings

xxil



Confirmation

I confirm that I independently prepared the thesis and that I used only the references and aux-
iliary means indicated in the thesis.

Markus Hamann
Dresden, 25.February.2020



	Introduction
	Motivation
	Research Questions

	Related Work
	INLOOP
	Systems for Automatic Modeling Feedback
	Technical Criteria
	Model Criteria
	Methodologies
	Feedback Criteria
	Summary


	INLOOM - A Constraint-based Modeling Assessment System
	General Requirements
	Types of Modeling Tasks
	Model Generation and Transformation
	Object-oriented Analysis and Design
	Difficulty Levels
	Implications for Realization

	Model Representation
	Selection of the Model Representation
	Model Definition

	INLOOM Matching System
	Assessment System Type of INLOOM
	Matching Algorithm
	Possible Realization

	Integration into the INLOOP Architecture
	Student User Interface
	Instructor User Interface
	Task Repository and Background Workers

	Grading and Feedback Options
	Feedback Classes
	Textual Feedback
	Grades
	Feedback Format
	Critic and Problems

	Summary

	Realization of a Analysis Class Diagram Matching Engine
	Analysis Class Diagram Metamodel
	Grading Scheme
	Constraint-based Model Test Generator
	Definition of the Master Constraint-Sets
	Implementation of the Master Constraint-Sets
	Implementation of the Test Generator

	Constraint-based Model Test Engine
	Feedback Generation
	Critic and Discussion

	Evaluation
	Evaluation of the Uniform Grading Scheme
	Evaluation of the Quality of the Constraint-Sets
	Preparation of the Exam Solution Data
	Comparison between Automatic and Human Assessments
	Conclusion


	Conclusion and Future Work
	Research Questions
	Future Work
	Conclusion

	Attachments
	User Guides for the Proof-of-Concept Implementation
	Requirements
	Creating aUML Class Models
	Generating Test-Sets out of an aUML Class Model
	Testing an aUML Class Model against the Test-Sets

	Evaluation Results on the Comparison between Human and Assessment System

	Bibliography
	List of Figures
	List of Tables
	List of Listings

