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ABSTRACT

With the growth in computing power, speech recdgnitarries a strong potential in the near futdtre.
has even become increasingly popular with the agreéent of mobile devices. Presumably, mobile
devices have limited computational power, memorgesiand battery life. In general, speech
recognition operation requires heavy computatioa thularge samples per window used. Fast Fourier
Transfom (FFT) is the most popular transform torskedor formant frequencies in speech recognition.
In addition, FFT operates in complex fields withaiginary numbers. This paper proposes an approach
based on Discrete Tchebichef Transform (DTT) a®ssiple alternative to FFT in searching for the
formant frequencies. The experimental outputs imgeof the frequency formants using FFT and DTT
have been compared. Interestingly, the experimemsllts show that both have produced relatively
identical formant shape output in terms of basiwels and consonants recognition. DTT has the same
capability to recognize speech formants I, F; on real domains.

Keywords. Formant Estimation, Discrete Tchebichef Transfor8pectrum Analysis, Fast Fourier
Transform, Orthogonal Transform Function

1. INTRODUCTION A detection of the formant frequencies via Fast
Fourier Transform (FFT) is one of the fundamental
Speech recognition systems have become one of th@Perations in speech recognition. The FFT is ofteed
useful applications for pattern recognition, maehin © compute numerical approximations to continuous
learning, computer-assisted translation and mobiIeFour.'er. transform. However,. a stralghtforward
devices. Speech is a natural source of interface fo application of the FFT often requwesal_arge windo
human machine communication (Erzin, 2009). Formantbe performed even though most of the input datindo

f . anifi . FFT may be zero. FFT algorithm is a computationally
requency is a significant parameter to interpret complex which requires operating on an imaginary

linguistic as well as non-linguistic speech word gomain. It is a complex exponential function that
(Tomas and Obad, 2009formant frequency is an defines a complex sinusoidal function.

important element speech feature and rich source of The Discrete Tchebichef Transform (DTT) is another
information of the uttered word in speech recogmti  transform method based on discrete Tchebichef
The formant is associated with the free resonarfce opolynomials. DTT has a lower computational
the vocal-tract system (Fattahal., 2009). complexity and it does not require complex transfor
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unlike continuous orthonormal transforms (Ernawtal., large degree are required to be evaluated. Speech
2011a). At the same time, DTT does not involve anyrecognition requires large samples of data in dpeec
numerical approximation on a computationally frignd signal processing. To avoid such problems, the
domain. The Tchebichef polynomials have unit weight orthonormal Tchebichef polynomials use the set
and algebraic recurrence relations involving real recurrence relation to approximate the speech kigna
coefficients. These factors in effect make DTTahlé for ~ FOr @ given positive integell (the vector size) and a
transforming the speech signal from time domair int Value nin the range [1, N-1], the orthonormal i@rsof

frequency domain. In the previous work, DTT hasrbee the one dimensional Tchebichef function is giventhoy

applied in audio processing and image processingfouow'”g recurrence relations,§ of moment order k in

applications. For example, DTT has been used iectpe polynomialst(n) (Jassim and Paramesran, 2009):
recognition (Ernawaret al., 2012a), image projection,  (n)=ant,,(n)+axt, ,(n) +ad,,(n), (1)
image super resolution (Alat al., 2009), image dithering ‘ “ i “
(Ernawan et al., 2012b) and image compression Fork=2,3,...,N-1and n=0,1,N-1 where:
(Ernawaret al., 2011b; 2013a; Abet al., 2010).

2 [ AP-1

2. MATERIAL AND METHODS A= N 2)

The input sounds of five vowels and five consonants ~ (1-N) [ 4k?®-1
being used here in this paper are coming from male® = K NZ — K2 ®3)
voices at a sampling rate of 11 KHz per second fioen
International Phonetic Alphabet. A sample soundhef (k-1) [Zk+1 [N?- (- 1f
vowel ‘O’ is shown inFig. 1. This section provides a &= K ”2k—3 NZ_K2
brief overview on the existing of mathematical
transforms, namely, Fast Fourier Transform (FFTJ an
Discrete Tchebichef Transform (DTT).

2.1. Fast Fourier Transform

(4)

The starting values for the above recursion can be
obtained from the following Equations:

1
The standard spectrum analysis method for speechto(”)zﬁ (%)
analysis is the FFT (Saeidi al., 2010). FFT is a simple
class of special algorithm that perform Discreteirar 3
Transform (DFT) with considerable savings in t(n)=(2n+1-N) fm (6)

computational time. FFT is applied to convert time

domain signals into frequency domains on the speech , ,
signals. The FFT takes advantage of the symmetdy an The recurrence re_Iat|o.n to_ compute the pol_ynom|al
periodic properties of the Fourier transform tousglthe ~ Value fort(n) recursion is given below (Jassim and
computational time. In this process, the transfdgsm Paramesran, 2009):

partitioned into a sequence of reduced-length toams

that are collectively performed with reduced ()= |N-K [2k+1 @
computation. FFT is much faster for large values\pf N+kV2k-1"

where N is the number of samples in the sequence

(Sukumaret al., 2010). In short, FFT is a complex tk(1)={1+ k(1+k)}tk ) ®)
transform which operates on an imaginary numbea by 1-N

special algorithm. FFT has not been changed nargbei
upgraded for several decades. t(n) =yt (=1 + 3t (- 2) 9)

2.2. Discrete Tchebichef Transform

In previous research, Mukundan found that the
discrete orthonormal Tchebichef moments appear to
provide a much better support than continuousWhere:
orthogonal moments (Ernawast al., 2013b). The
discrete orthonormal Tchebichef polynomials are emor ylz—k(k+1)—(2n—1)(n -N-1)-n (10)
stable especially whenever Tchebichef polynomidls o n(N - n)

k=1,2,.N-landn= 2,3,..[,%— Jl
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_(n+1)(n-N-1) The inverse discrete Tchebichef transform is giuen

(11)

2 n(N -n) Equation 13 by:
. . N-1
_ Th_e foryvard dls_crete Tcheblchef_transform of orer x(n) = > X (Kt (M) (13)
is defined in Equation 12 as follows: =

N-1 _ _ H
X(K) = > x(M)t (n) (12) _ For n = 0,1,...N 1 The Tc_hebmhef tr_ansform
= involves only algebraic expressions and it can be
computed easily using a set of recurrence relations
For k = 0,1,.., N-1. The X(k) denotes the Equations 1-11 above. The first five discrete ontironal

coefficient of orthonormal Tchebichef polynomials. Tchebichef polynomials are shown irFig. 2.

K Sample signal

0.8

Amplitude

-0.8 ; i F e
0 1024 2048 3072 4096
Time
Fig. 1. The sample sound of the vowel ‘O’
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Fig. 2. The first five discrete orthonormal Tchebichef paynials tk(n) for k = 0,1,2,3 and 4
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3.RESULTS function is used on each frame to smooth the sigaiadi
make it more amendable for spectral analysis. Hagmi

This section presents a step-by-step process on thwindow is a window function used commonly in speech
speech recognitioalgorithm. This section also explores analysis to reduce the sudden changes and undesirab
the experimental results on each step of the speeclrequencies occurring in the framed speech. Hamming
recognition. The speech recognition involves siienc window is defined in Equation 15 as follows:
detector, pre-emphasis, speech signal windowedgepow
spetral density and autoregressive model.

3.1. Silence Detector

Speech signals are highly redundant and typically
contain a variety of background noise (Dalen ante§a Where,L represents the width & andk is an integer,
2011). Unfortunate effect from the background ndige ~ With values 8k<L-1. The resulting windowed segment is
a severe impact on the performance of speechdefined in Equation 16 as follows:
recognition system. By removing the silence parg t
speech sound can provide useful information of eachx(k) =S, w(k) (16)
utterance. Certain level of the background noiseriere
with the speech. At the same time, silence reghme
quite a high zero-crossings rate as the signal gdmn
from one side of the zero amplitude to the other laack
again. For this reason, the threshold is inclusedrder
to remove any zero-crossings. In this experimeme, t
threshold is set to be 0.1. This means that ang-zer
crossings that start and end within the ranget,pf
where -0.1%,<0.1, are not included in the total
number of zero-crossings in that window.

W(k) = 0.54~ 0.4605[%} (15)

where, S, is the signal function andwv(k) is the
window function on FFT. Whereas, DTT consists of
only algebraic expressions and the Tchebichef
polynomial matrix can be constructed easily using a
set of recurrence relations. Therefore the windgw i
very inefficient when the sample data are multiglie
by a value that is close to zero. Any transition
occurring during this part of the window will beslo

so that the spectrum is no longer true real tinpeegh
3.2. Pre-Emphasis recognition using DTT does not use windowing fumati

L . . In this paper, a sample speech signal has beerowel
Pre-emphasis is a technique used in Speec"]nto4f$ar$1es as iIIusF:rate% Fig. 4 g

processing to enhance high frequency signalsdiioes Each window consists of 1024 sample data which
the high spectral dynamic range. The use of pré-rgnrasents speech signal. This blocking assumesttha
emphasis is to flatten the spectrum consisting ofgignals are stationary within each frame. The winetb
formants of similar heights. Pre-emphasis s sjgnal is then transformed into spectral domairjngi
implemented as a first-order Finite Impulse Respons good discrimination and energy compaction. In this

(FIR) filter which is defined in Equation 14 aslés: experiment, the third frame for 2049-3072 sampla é&a
used. The speech signals using FFT of the vowehi®’
S, = E(n)-aE[n-1] (14) shown inFig. 5. The speech signals using DTT of the

vowel ‘O’ are shown irFig. 6.

where,a is the pre-emphasis coefficient. A value used 3.4. DTT Coefficient

for o is typically around 0.9 to 0.95. E(n) is the sagnpl ) . .
data which represents speech signal with n witkin<0 Consider the discrete orthonormal Tchebichef
N-1, whereN is the sample size which represents speechPolynomials definition in 1-12 above, the set of
signal. The speech signals after pre-emphasis ef th coefficients on discrete Tchebichef transform igegi
vowel ‘O’ is shown irFig. 3. in Equation 17 and 18. A set of kernel matrix 1@#4

i . Tchebichef polynomials are computed with speech
3.3. Speech Signal Windowed signal on each window. The coefficients of DTT of
Speech recognition consumes a heavy process tha@rder n = 1024 sample data for each window arergive
requires large samples of data which representchpee using the formula as follows:
signal for each frame. FFT is calculated on a winadd
speech frame (Mahmood al., 2012). A windowing TC=S a7
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where, C is the coefficient of discrete Tchebichef
transform, which represented by, ci, C,, .....Ch.i. T iS
a matrix computation of discrete orthonormal
Tchebichef polynomial§ (n) fork =0,1,....,N-1. Sis
the sample of speech signal window which is givgn b
Xos X1, X2, ..., Xn-1)- The coefficient of DTT is given in
Equation 19 as follows:
Cc=T's (19)
Next, speech signal on frame 3 is computed with
1024 discrete orthonolrmal Tchebichef polynomials.

3.5. Spectrum Analysis

X (K)*

k)=2
s (tz _tl)

(23)

where,X(k) is a vector olN values at frequency index
k, the factor 2 is called for here in order to irdguthe
contributions from positive and negative frequescie
The result is precisely the average power of spettr
in the time ranget{, t,). The power spectral density in
(23) and (24) are plotted on a decibel (dB) scdle o
20loge. The power spectral density using FFT for
vowel ‘O’ on frame 3 is shown ifFig. 9. The power
spectral density using DTT can be generated in imua
24 as follows:

c(n)?

(t,-t) (24)

pw(k) =2

where, c(n) is the coefficient of discrete Tchebichef
transform. The power spectral density using DTT for
vowel ‘O’ on frame 3 is shown iRig. 10.

3.7. Autoregressive Model

The spectrum analysis using FFT can be generated in  Autoregressive (AR) models are used for linear

Equation 20 as follows:

p(k) =[c(n)f* (20)

The spectrum analysis using FFT of the vowel ‘O’ is
shown inFig. 7. The spectrum analysis using DTT can
be defined in Equation 21 and 22 as follows:

p(k) =c(n)* (21)

x(n)

22
t(n) (22)

c(n) =

where,c(n) is the coefficient of DTTx(n) is the sample
data at time index n arg{n) is the computation matrix
of orthonormal Tchebichef polynomials. The spectrum
analysis using DTT of the vowel ‘O’ is shownFkig. 8.

3.6. Power Spectral Density

prediction model (Hsu and Liu, 2010) to obtain fzdle
estimate of the signal’s power spectrum. Autoregives
model is used to determine the characteristicshef t
vocal and to evaluate the formants. The autoreiyeess
process of a serieg ysing FFT of order v is given in
Equation 25 as follows:

Yi :_Zak o)., +e (25)
k=1

where,ay are real value autoregression coefficienfs,
represents the inverse FFT from power spectral
density andv is set to 12. The peaks of frequency
formants using FFT in autoregressive for vowel ‘O’
on frame 3 are shown iRig. 11. The autoregressive
process of a serigg using DTT of ordew is given in
Equation 26 as follows:

Y= a6+ (26)
k=1

Power Spectral Density (PSD) shows the strength ofwhere,a, are real value autoregression coefficients,

the variations (energy) as a function of frequenicy.
other words, it shows the frequencies at whichatams
are strong and at which frequency variations arakwe
The one-sided power spectral density using FFThzan
computed in Equation 23 as follows:

////A Science Publications 355

is 12 andgc; is the coefficient of DTT at frequency
index j. & represents the errors that are term
independent of past samples. The frequency formants
using DTT which are autoregressive for vowel ‘O’ on
frame 3 are shown iRig. 12.
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3.8. Frequency Formants formants are used to characterize a particular kole
first two formants (I F,) of a vowel utterance cue the

The uniqueness of each ""V_Ve' is measured byphonemic identity of the vowel (Patt al., 2010). The
formants. The resonance frequencies known as f(Irmarlthird formant § is also important for vowel

can be detected as the peaks of the magnituderspect categorisation (Kiefteet al., 2010). However, it is

of speech signals. Formants are d_eflned as theaese frequently excluded from vowel plots overshadowgd b
frequencies of the vocal tract which are formedthy the first two formant

shape of VOC&.‘I tract (Oka.al." 2009). ) . The frequency peak formants of the experiment
A formant is a characteristic resonant region (p&ak ogt R, F, and R are compared to referenced

the power spectral density of a sound. Next, theformants to decide on the output of the vowel. The
frequency formants shall be detected. The formafits frequency formants of the five vowels and the five
the autoregressive curve are found at the peakg i  consonants using FFT and DTT on frame 3 are as
numerical derivative. These vector positions of theshown in Table 1 and 2 respectively.

Table 1. Frequency formants of five vowels

FFT DTT
Vowel F F Fs Fy F F
i 215 2444 3434 226 2411 3466
e 322 1453 2401 301 1485 2357
a 667 1055 2637 581 979 2670
0 462 689 3208 452 710 3219
u 247 689 3413 301 699 3380

Table 2. Frequency formants of five consonants

FFT DTT
Consonant F F> Fs Fy F> Fs
k 796 1152 2347 721 1130 2336
n 764 1324 2519 839 1345 2508
p 785 1076 2573 753 1065 2562
r 635 1281 2121 624 1248 2131
t 829 1152 2519 796 1141 2530
¥
- A Speech signal after pre-emphasis
N

Amplitude

-0.3

L X

0 1024 2048 3072 4096
Time

Fig. 3. Speech signals after pre-emphasis of the vowel ‘O’
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Fig. 5. Imaginary part of FFT for speech signal of vowel Fig.6.Coefficient of DTT for speech signal of the vowel
‘O’ on frame 3
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4. DISCUSSION consumes simpler computation on real rational numbe
only. Therefore, DTT operates on friendly domain
In the sample above, the experimental result arewhich involves only algebraic expressions and it ba
presented on how the vowels and consonants areomputed easily using a set of recurrence relatilris
recognized. The experimental result on speechideal for discrete transform in speech recognitton
recognition using FFT and DTT is compared and transform from the time domain into the frequency
analyzed. Speech signals of the vowel ‘O’ using RIET domain. The autoregressive model using FFT and DTT
in Fig. 5 produce a speech signal that is clearer produces the smoother similar shape. DTT has proven
compared to the DTT. On the other hand, the speechio perform better in a smaller frame size in the
signals of the vowel ‘O’ and consonant ‘RA’ using D recognition of vowels and consonants.
as presented iRig. 6 produce more noise. Furthermore, speech recognition using DTT can be
Next, spectrum analysis of the vowel ‘O’ using FES'  extended in the future in terms of time complex®n
in Fig. 7 produces a lower power spectrum than DTT. Ongne hand, FFT algorithm produces the time
one hand, spectrum analysis using DTT aBiga8 has a  complexity O (nlog n). Next, the computation time o
h|gher_ power spectrum than FFT. It is a‘\lso’ capatile 7 produces time complexity Ofn For future
cap}url_ng the foBthg forn:jant fo:c confsonant RA .?:Spunc; research, DTT can be efficiently improved to reduce
analysis using produces four formanis i, Fs an the time complexity from O@ to be O(nlog n) using

F, concurrently in spectrum analysis for a consonant. . . . . ;
The power spectral density of vowel ‘O’ using FFT a convolution algorithm. DTT is capable of increasing

in Fig. 9 shows that the power spectrum is higher thanth€ Speech recognition performance and at the same
power spectral density using DTT. Next, the power time getting the similar frequency formants in term
spectral density using DTT ifig. 10 produce more  Of speech recognition.

noise than FFT in frequency spectrum.
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