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ABSTRACT 

With the growth in computing power, speech recognition carries a strong potential in the near future. It 
has even become increasingly popular with the development of mobile devices. Presumably, mobile 
devices have limited computational power, memory size and battery life. In general, speech 
recognition operation requires heavy computation due to large samples per window used. Fast Fourier 
Transfom (FFT) is the most popular transform to search for formant frequencies in speech recognition. 
In addition, FFT operates in complex fields with imaginary numbers. This paper proposes an approach 
based on Discrete Tchebichef Transform (DTT) as a possible alternative to FFT in searching for the 
formant frequencies. The experimental outputs in terms of the frequency formants using FFT and DTT 
have been compared. Interestingly, the experimental results show that both have produced relatively 
identical formant shape output in terms of basic vowels and consonants recognition. DTT has the same 
capability to recognize speech formants F1, F2, F3 on real domains. 
 
Keywords: Formant Estimation, Discrete Tchebichef Transform, Spectrum Analysis, Fast Fourier 

Transform, Orthogonal Transform Function 

1. INTRODUCTION 

Speech recognition systems have become one of the 
useful applications for pattern recognition, machine 
learning, computer-assisted translation and mobile 
devices. Speech is a natural source of interface for 
human machine communication (Erzin, 2009). Formant 
frequency is a significant parameter to interpret 
linguistic as well as non-linguistic speech word 
(Tomas and Obad, 2009). Formant frequency is an 
important element speech feature and rich source of 
information of the uttered word in speech recognition. 
The formant is associated with the free resonance of 
the vocal-tract system (Fattah et al., 2009). 

A detection of the formant frequencies via Fast 
Fourier Transform (FFT) is one of the fundamental 
operations in speech recognition. The FFT is often used 
to compute numerical approximations to continuous 
Fourier transform. However, a straightforward 
application of the FFT often requires a large window to 
be performed even though most of the input data to the 
FFT may be zero. FFT algorithm is a computationally 
complex which requires operating on an imaginary 
domain. It is a complex exponential function that 
defines a complex sinusoidal function. 

The Discrete Tchebichef Transform (DTT) is another 
transform method based on discrete Tchebichef 
polynomials. DTT has a lower computational 
complexity and it does not require complex transform 
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unlike continuous orthonormal transforms (Ernawan et al., 
2011a). At the same time, DTT does not involve any 
numerical approximation on a computationally friendly 
domain. The Tchebichef polynomials have unit weight 
and algebraic recurrence relations involving real 
coefficients. These factors in effect make DTT suitable for 
transforming the speech signal from time domain into 
frequency domain. In the previous work, DTT has been 
applied in audio processing and image processing 
applications. For example, DTT has been used in speech 
recognition (Ernawan et al., 2012a), image projection, 
image super resolution (Abu et al., 2009), image dithering 
(Ernawan et al., 2012b)  and  image compression 
(Ernawan et al., 2011b; 2013a; Abu et al., 2010). 

2. MATERIAL AND METHODS 

The input sounds of five vowels and five consonants 
being used here in this paper are coming from male 
voices at a sampling rate of 11 KHz per second from the 
International Phonetic Alphabet. A sample sound of the 
vowel ‘O’ is shown in Fig. 1. This section provides a 
brief overview on the existing of mathematical 
transforms, namely, Fast Fourier Transform (FFT) and 
Discrete Tchebichef Transform (DTT). 

 2.1. Fast Fourier Transform 

The standard spectrum analysis method for speech 
analysis is the FFT (Saeidi et al., 2010). FFT is a simple 
class of special algorithm that perform Discrete Fourier 
Transform (DFT) with considerable savings in 
computational time. FFT is applied to convert time 
domain signals into frequency domains on the speech 
signals. The FFT takes advantage of the symmetry and 
periodic properties of the Fourier transform to reduce the 
computational time. In this process, the transform is 
partitioned into a sequence of reduced-length transforms 
that are collectively performed with reduced 
computation. FFT is much faster for large values of N, 
where N is the number of samples in the sequence 
(Sukumar et al., 2010). In short, FFT is a complex 
transform which operates on an imaginary number by a 
special algorithm. FFT has not been changed nor being 
upgraded for several decades. 

2.2. Discrete Tchebichef Transform 

In previous research, Mukundan found that the 
discrete orthonormal Tchebichef moments appear to 
provide a much better support than continuous 
orthogonal moments (Ernawan et al., 2013b). The 
discrete orthonormal Tchebichef polynomials are more 
stable especially whenever Tchebichef polynomials of 

large degree are required to be evaluated. Speech 
recognition requires large samples of data in speech 
signal processing. To avoid such problems, the 
orthonormal Tchebichef polynomials use the set 
recurrence relation to approximate the speech signals. 
For a given positive integer N (the vector size) and a 
value n in the range [1, N-1], the orthonormal version of 
the one dimensional Tchebichef function is given by the 
following recurrence relations {tk} of moment order k in 
polynomials tk(n) (Jassim and Paramesran, 2009): 
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The starting values for the above recursion can be 

obtained from the following Equations: 
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The recurrence relation to compute the polynomial 

value for tk(n) recursion is given below (Jassim and 
Paramesran, 2009): 
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The forward discrete Tchebichef transform of order N 

is defined in Equation 12 as follows: 
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For k = 0,1,…, N-1. The X(k) denotes the 

coefficient of orthonormal Tchebichef polynomials. 

The inverse discrete Tchebichef transform is given in 
Equation 13 by: 
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For n = 0,1,…,N-1. The Tchebichef transform 
involves only algebraic expressions and it can be 
computed easily using a set of recurrence relations in 
Equations 1-11 above. The first five discrete orthonormal 
Tchebichef polynomials are shown in Fig. 2.

 

 
 

Fig. 1. The sample sound of the vowel ‘O’ 
 

 
 

Fig. 2. The first five discrete orthonormal Tchebichef polynomials tk(n) for k = 0,1,2,3 and 4 
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3. RESULTS 

This section presents a step-by-step process on the 
speech recognition algorithm. This section also explores 
the experimental results on each step of the speech 
recognition. The speech recognition involves silence 
detector, pre-emphasis, speech signal windowed, power 
spetral density and autoregressive model. 

3.1. Silence Detector 

Speech signals are highly redundant and typically 
contain a variety of background noise (Dalen and Gales, 
2011). Unfortunate effect from the background noise has 
a severe impact on the performance of speech 
recognition system. By removing the silence part, the 
speech sound can provide useful information of each 
utterance. Certain level of the background noise interfere 
with the speech. At the same time, silence regions have 
quite a high zero-crossings rate as the signal changes 
from one side of the zero amplitude to the other and back 
again. For this reason, the threshold is included in order 
to remove any zero-crossings. In this experiment, the 
threshold is set to be 0.1. This means that any zero-
crossings that start and end within the range of tα, 
where -0.1<tα<0.1, are not included in the total 
number of zero-crossings in that window. 

3.2. Pre-Emphasis 

Pre-emphasis is a technique used in speech 
processing to enhance high frequency signals. It reduces 
the high spectral dynamic range. The use of pre-
emphasis is to flatten the spectrum consisting of 
formants of similar heights. Pre-emphasis is 
implemented as a first-order Finite Impulse Response 
(FIR) filter which is defined in Equation 14 as follows: 
 

= ( ) - [ -1]nS E n αE n  (14) 

 
where, α is the pre-emphasis coefficient. A value used 
for α is typically around 0.9 to 0.95. E(n) is the sample 
data which represents speech signal with n within 0≤n≤ 
N-1, where N is the sample size which represents speech 
signal. The speech signals after pre-emphasis of the 
vowel ‘O’ is shown in Fig. 3. 

3.3. Speech Signal Windowed 

Speech recognition consumes a heavy process that 
requires large samples of data which represent speech 
signal for each frame. FFT is calculated on a window of 
speech frame (Mahmood et al., 2012). A windowing 

function is used on each frame to smooth the signals and 
make it more amendable for spectral analysis. Hamming 
window is a window function used commonly in speech 
analysis to reduce the sudden changes and undesirable 
frequencies occurring in the framed speech. Hamming 
window is defined in Equation 15 as follows: 

 
2

( ) 0.54 0.46
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k
w k cos

L
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where, L represents the width of Sn and k is an integer, 
with values 0≤k≤L-1. The resulting windowed segment is 
defined in Equation 16 as follows: 
 

( ) ( )nx k S w k= ⋅  (16) 

 
where, Sn is the signal function and w(k) is the 
window function on FFT. Whereas, DTT consists of 
only algebraic expressions and the Tchebichef 
polynomial matrix can be constructed easily using a 
set of recurrence relations. Therefore the window is 
very inefficient when the sample data are multiplied 
by a value that is close to zero. Any transition 
occurring during this part of the window will be lost 
so that the spectrum is no longer true real time. Speech 
recognition using DTT does not use windowing function. 
In this paper, a sample speech signal has been windowed 
into 4 frames as illustrated in Fig. 4. 

Each window consists of 1024 sample data which 
represents speech signal. This blocking assumes that the 
signals are stationary within each frame. The windowed 
signal is then transformed into spectral domain, giving 
good discrimination and energy compaction. In this 
experiment, the third frame for 2049-3072 sample data is 
used. The speech signals using FFT of the vowel ‘O’ are 
shown in Fig. 5. The speech signals using DTT of the 
vowel ‘O’ are shown in Fig. 6. 

3.4. DTT Coefficient 

Consider the discrete orthonormal Tchebichef 
polynomials definition in 1-12 above, the set of 
coefficients on discrete Tchebichef transform is given 
in Equation 17 and 18. A set of kernel matrix 1024 of 
Tchebichef polynomials are computed with speech 
signal on each window. The coefficients of DTT of 
order n = 1024 sample data for each window are given 
using the formula as follows: 
 

TC = S  (17) 
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where, C is the coefficient of discrete Tchebichef 
transform, which represented by c0, c1, c2, ….,cn-1. T is 
a matrix computation of discrete orthonormal 
Tchebichef polynomials tk (n) for k = 0,1,…., N-1. S is 
the sample of speech signal window which is given by 
x0, x1, x2, …, x(n-1). The coefficient of DTT is given in 
Equation 19 as follows: 

 
-1C = T S  (19) 

 
Next, speech signal on frame 3 is computed with 

1024 discrete orthono1rmal Tchebichef polynomials.  

3.5. Spectrum Analysis 

The spectrum analysis using FFT can be generated in 
Equation 20 as follows: 

 
2

( ) ( )p k c n=  (20) 

 
The spectrum analysis using FFT of the vowel ‘O’ is 

shown in Fig. 7. The spectrum analysis using DTT can 
be defined in Equation 21 and 22 as follows: 
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where, c(n) is the coefficient of DTT, x(n) is the sample 
data at time index n and tk(n) is the computation matrix 
of orthonormal Tchebichef polynomials. The spectrum 
analysis using DTT of the vowel ‘O’ is shown in Fig. 8.  

3.6. Power Spectral Density 

Power Spectral Density (PSD) shows the strength of 
the variations (energy) as a function of frequency. In 
other words, it shows the frequencies at which variations 
are strong and at which frequency variations are weak. 
The one-sided power spectral density using FFT can be 
computed in Equation 23 as follows: 

2

2 1
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X k
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t t
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where, X(k) is a vector of N values at frequency index 
k, the factor 2 is called for here in order to include the 
contributions from positive and negative frequencies. 
The result is precisely the average power of spectrum 
in the time range (t1, t2). The power spectral density in 
(23) and (24) are plotted on a decibel (dB) scale of 
20log10. The power spectral density using FFT for 
vowel ‘O’ on frame 3 is shown in Fig. 9. The power 
spectral density using DTT can be generated in Equation 
24 as follows: 
 

2

2 1

( )
( ) 2

( )

c n
pw k

t t
=

−
 (24) 

 
where, c(n) is the coefficient of discrete Tchebichef 
transform. The power spectral density using DTT for 
vowel ‘O’ on frame 3 is shown in Fig. 10. 

3.7. Autoregressive Model 

Autoregressive (AR) models are used for linear 
prediction model (Hsu and Liu, 2010) to obtain all pole 
estimate of the signal’s power spectrum. Autoregressive 
model is used to determine the characteristics of the 
vocal and to evaluate the formants. The autoregressive 
process of a series yj using FFT of order v is given in 
Equation 25 as follows: 
 

v

1
j k j -k j

k

y a q e
=

= − ⋅ +∑  (25) 

 
where, ak are real value autoregression coefficients, qj 
represents the inverse FFT from power spectral 
density and v is set to 12. The peaks of frequency 
formants using FFT in autoregressive for vowel ‘O’ 
on frame 3 are shown in Fig. 11. The autoregressive 
process of a series yj using DTT of order v is given in 
Equation 26 as follows: 
 

1

v

j k j -k j
k

y a c + e
=

= − ⋅∑  (26) 

 
where, ak are real value autoregression coefficients, v 
is 12 and cj is the coefficient of DTT at frequency 
index j. ej represents the errors that are term 
independent of past samples. The frequency formants 
using DTT which are autoregressive for vowel ‘O’ on 
frame 3 are shown in Fig. 12.  
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3.8. Frequency Formants 

The uniqueness of each vowel is measured by 
formants. The resonance frequencies known as formant 
can be detected as the peaks of the magnitude spectrum 
of speech signals. Formants are defined as the resonance 
frequencies of the vocal tract which are formed by the 
shape of vocal tract (Ozkan et al., 2009).  

A formant is a characteristic resonant region (peak) in 
the power spectral density of a sound. Next, the 
frequency formants shall be detected. The formants of 
the autoregressive curve are found at the peaks using a 
numerical derivative. These vector positions of the 

formants are used to characterize a particular vowel. The 
first two formants (F1, F2) of a vowel utterance cue the 
phonemic identity of the vowel (Patil et al., 2010). The 
third formant F3 is also important for vowel 
categorisation (Kiefte et al., 2010). However, it is 
frequently excluded from vowel plots overshadowed by 
the first two formant. 

The frequency peak formants of the experiment 
result F1, F2 and F3 are compared to referenced 
formants to decide on the output of the vowel. The 
frequency formants of the five vowels and the five 
consonants using FFT and DTT on frame 3 are as 
shown in Table 1 and 2 respectively.

 
Table 1. Frequency formants of five vowels 
 FFT   DTT 
 ---------------------------------------------------------- --------------------------------------------------------- 
Vowel F1 F2 F3 F1 F2 F3 
i 215 2444 3434 226 2411 3466 
e 322 1453 2401 301 1485 2357 
a 667 1055 2637 581 979 2670 
o 462 689 3208 452 710 3219 
u 247 689 3413 301 699 3380 
 
Table 2. Frequency formants of five consonants 
 FFT   DTT 
 ---------------------------------------------------------- --------------------------------------------------------- 
Consonant F1 F2 F3 F1 F2 F3 
k 796 1152 2347 721 1130 2336 
n 764 1324 2519 839 1345 2508 
p 785 1076 2573 753 1065 2562 
r 635 1281 2121 624 1248 2131 
t 829 1152 2519 796 1141 2530 
 

 
 

Fig. 3. Speech signals after pre-emphasis of the vowel ‘O’ 
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 Frame 1  Frame 2  
 

 
 Frame 3 Frame 4 
 

Fig. 4. Speech signal windowed into four frames 
 

 
 
Fig. 5. Imaginary part of FFT for speech signal of vowel 

‘O’ on frame 3 

 
 
Fig. 6. Coefficient of DTT for speech signal of the vowel 

‘O’ on frame 3 
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Fig. 7. Imaginary part of FFT for spectrum analysis of the 

vowel ‘O’ on frame 3 
 

 
 
Fig. 8. Coefficient of DTT for spectrum analysis of the 

vowel ‘O’ on frame 3 
 

  
Fig. 9. Power Spectral Density using FFT for vowel ‘O’ on 

frame 3 

 
 
Fig. 10. Power spectral density using DTT for vowel ‘O’ on 

frame 3 
 

 
 
Fig. 11. Autoregressive using FFT for vowel ‘O’ on frame 3 
 

 
 
Fig. 12. Autoregressive using DTT for vowel ‘O’ on frame 3 
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4. DISCUSSION 

In the sample above, the experimental result are 
presented on how the vowels and consonants are 
recognized. The experimental result on speech 
recognition using FFT and DTT is compared and 
analyzed. Speech signals of the vowel ‘O’ using FFT as 
in Fig. 5 produce a speech signal that is clearer 
compared to the DTT. On the other hand, the speech 
signals of the vowel ‘O’ and consonant ‘RA’ using DTT 
as presented in Fig. 6 produce more noise. 

Next, spectrum analysis of the vowel ‘O’ using FFT as 
in Fig. 7 produces a lower power spectrum than DTT. On 
one hand, spectrum analysis using DTT as in Fig. 8 has a 
higher power spectrum than FFT. It is also capable of 
capturing the fourth formant for consonant ‘RA’. Spectrum 
analysis using DTT produces four formants F1, F2, F3 and 
F4 concurrently in spectrum analysis for a consonant. 
The power spectral density of vowel ‘O’ using FFT as 
in Fig. 9 shows that the power spectrum is higher than 
power spectral density using DTT. Next, the power 
spectral density using DTT in Fig. 10 produce more 
noise than FFT in frequency spectrum. 

According to the observation as presented in Fig. 11 and 
12, the peaks of first frequency formant (F1), second 
frequency formant (F2) and third frequency formant (F3) 
using FFT and DTT respectively appear to produce 
identically quite similar output. Based on the result of the 
experiment as presented in Table 1 and 2, the result of 
frequency formants of speech recognition using FFT and 
DTT for five vowels and five consonants respectively is 
nearly equally similar. 

The result showed that the peaks of five vowels and 
five consonants using DTT are identically similar to FFT 
in terms of vowel and consonant recognition. DTT is 
able to capture all three formants concurrently, F1, F2 and 
F3. The frequency formants using FFT and DTT are 
compared and it is evident that they have produced 
relatively identical outputs in terms of speech 
recognition. DTT indeed has the potential to perform 
well in terms of basic vowel and consonant recognition. 

5. CONCLUSION 

Speech recognition using FFT has been a popular 
form of transform over the last decades. Alternatively, this 
paper introduces DTT on speech recognition. As a discrete 
orthonormal transform, DTT produces a simpler and more 
computationally efficient transform than FFT. On the 
one hand, FFT is computationally more complex dealing 
with imaginary numbers but DTT on the other hand 

consumes simpler computation on real rational numbers 
only. Therefore, DTT operates on friendly domain 
which involves only algebraic expressions and it can be 
computed easily using a set of recurrence relations. It is 
ideal for discrete transform in speech recognition to 
transform from the time domain into the frequency 
domain. The autoregressive model using FFT and DTT 
produces the smoother similar shape. DTT has proven 
to perform better in a smaller frame size in the 
recognition of vowels and consonants. 

Furthermore, speech recognition using DTT can be 
extended in the future in terms of time complexity. On 
one hand, FFT algorithm produces the time 
complexity O (nlog n). Next, the computation time of 
DTT produces time complexity O(n2). For future 
research, DTT can be efficiently improved to reduce 
the time complexity from O(n2) to be O(nlog n) using 
convolution algorithm. DTT is capable of increasing 
the speech recognition performance and at the same 
time getting the similar frequency formants in terms 
of speech recognition. 
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