

lower low-density lipoprotein (LDL) cholesterol levels by displacing cholesterol from intestinal micelles.¹ Thus, foods notice for its role in immune function and prevention of some types of cancer and various diseases.^{2–5} Vitamin D_2 in mushrooms is produced by exposure to sunlight and other sources of UV light, a direct consequence of their ergosterol content.⁶ Therefore, commercially produced mushrooms are sometimes UV treated to increase Vitamin D_2 levels.

agents, illustrating the need for more complete knowledge of mushroom sterol profiles.⁹

campesterol and relatively little of the usual dominant ergosterol.⁷

GC-MS analysis of TMS-derivatized sterols from dried morels in our lab verified the presence of ergosterol, brassicasterol, and campesterol. More significantly, our work identified several previously unknown sterols in morels spectra. However, an unidentified compound with a M⁺ at m/z = 468, indicating a trienol, was also detected. The mass be ergosta-5,22,24(28)-trienol (1). An intriguing possibility is that an uncommon biosynthesis pathway to brassicasterol, which proceeds through **1** instead of the normal intermediate, campesterol, occurs in morels.

Figure 1: Mass Spectrum of Unknown Sterol TMS Ether in Morels

followed by hydrolysis of the acetate ester would then afford compound **1** (Scheme 2).

Synthesis of Ergosta-5,22,24(28)-trienol from Stigmasterol Caitlin M. Hilger and Thomas W. Nalli Winona State University, Department of Chemistry, Winona, MN 55987

Procedure

1-Bromo-3-methyl-2-butanone (9)¹⁰

To a 0-5 °C solution of 3-methyl-2-butanone (15 g, 174 mmol) in methanol (105 mL), bromine (28 g, 174 mmol) was added, forming a dark red color. The solution was stirred for 1.5 h during which the reaction temp was allowed to reach 20 °C. Once the red color faded, water (52 mL) was added and the solution was stirred at room temp overnight. Water (160 mL) was added and the solution washed with DCM (4 x 85 mL). The organic layers were combined and washed with aq 10% potassium carbonate (35 mL) and water (2 x 35 mL), then dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo*, yielding the crude product (29.31 g, 102%), which was distilled under reduced pressure to give a light brown liquid product (16.03 g, 56%). The ¹H NMR showed the desired **9** along with the 3-bromo isomeric product in a 91:9 ratio. ¹H NMR (CDCl₃) 3.98 (s, 2H), 2.99-2.92 (m, 1H), 1.15 (d, J= 6.9 Hz, 6H), APCI-MS, *m*/*z* = 164.9, 166.9 (M + H).

1-Benzo[d]thiazol-2-ylthio)-3-methylbutan-2-one (10)¹¹

A suspension of 2-mercaptobenzothiazole (7.31 g, 44 mmol) and t-BuOK (5.40 g, 48 mmol) in THF (60 mL) was refluxed for 30 min. Over 10 min, 9 (8 g, 48 mmol) was added dropwise. The solution was refluxed for 5 h, then cooled to room temp. After water (45 mL) was added, the solution was extracted using DCM (3 x 45 mL) then dried over anhydrous Na₂SO₄. The solvent was removed in vacuo to give the crude product (11.28 g, 93%). The crude (5 g) was purified by silica column chromatography (ethyl acetate: hexane = 1:3) to give a **10** as a light brown solid (3.84 g, 72%): mp 37-41°C; ¹H NMR (CDCl₃) 7.88 (d, J= 8.3) Hz, 1H), 7.73 (d, J= 8.3 Hz, 1H), 7.42 (t, J= 16.5 Hz, 1H), 7.30 (t, J= 16.2, 1H). 4.45 (s, 2H), 3.0-2.9 (m, 1H), 1.21 (d, J= 6.9, 1H). 6H); EI-MS, *m*/*z* = 219, 176, 149, 121, 108, 71, 63. APCI-MS, *m*/*z* = 252.1 (M + H).

1-Benzo[d]thiazol-2-ylsulfonyl)-3-methyl-2-butanone (11)¹¹

To a solution of **10** (1.136 g, 4.5 mmol) in THF (7 mL) was added *m*-CPBA (1.93 g, 11 mmol) in DCM (12 mL) dropwise at room temp. After the reaction was complete, as detected by TLC, sodium bicarbonate (10 mL) was added. The mixture was extracted with ethyl acetate (3 x 25 mL), dried over anhydrous Na₂SO₄, and the solvent removed *in vacuo* to give the crude product (1.5 g, 117%), which was recrystallized (methanol) to afford 11 as a crystalline white solid (0.25 g, 19.5%): mp 104-108°C; IR 2972, 2921, 2875, 2360, 1718 cm-1; ¹H NMR (CDCl₃) 8.15 (d, J= 7.9 Hz, 1H), 7.98 (d, J= 7.6 Hz, 1 H), 7.60-7.53 (m, 2H), 4.63 (s, 2H), 2.87-2.82 (m, 1H), 1.11 (d, J= 6.9 Hz, 6H); EI-MS, m/z = 219, 177, 162, 148, 136, 109, 69, 63, 43; APCI-MS, m/z = 283.70 (M + H).

Stigmasterol acetate (3)¹²

Acetic anhydride (36 mL, 0.39 mol) was added to a stirred solution of 2 (2.5 g, 6 mmol) in absolute pyridine (72 mL) containing catalytic amounts of DMAP. The resulting solution was stirred at room temp for 0.5 h then treated with NaHCO₃(sat) at 0 °C. The solution was extracted with ethyl acetate (3 x 50 mL) and the organic layers were combined, washed with water (60 mL), dried over Na_2SO_4 , filtered, and concentrated *in vacuo* to give crude **3** with significant contamination by pyridine as determined by ¹H NMR. Thus, the crude was dissolved in ethyl acetate (150 mL) and washed with HCl (0.5 M) and water twice more. After drying and removal of the solvent, **3** was obtained as a pale yellow solid (0.52 g, 19%): ¹H NMR (CDCl₂) 5.15 (dd, J= 15.1, 8.3 Hz, 1H), 5.01 (dd, J= 15.0, 8.4 Hz, 1H) 4.65-4.53 (m, 1H) 2.31 (d, J= 7.6 Hz, 2H), 2.03 (s, 3H).

α and β Epoxides of stigmasterol acetate $(4)^{13}$

To a 0 °C solution of 3 (0.52 g, 1.1 mmol) in DCM (35 mL) was added *m*-CPBA (0.23 g, 1.3 mmol). After 4 h at 0°C, the reaction was diluted with satd. aq. K₂CO₃ (135 mL) and extracted with DCM (3 x 100 mL). The combined organic layers were dry over anhydrous Na₂SO₄ and concentrated *in vacuo* to give a 3:1 mixture of diastereomers (0.56 g, 104%): ¹H NMR (CDCl₃) 5.10 (dd, J= 15.3, 8.4 Hz, 1H), 5.03-4.70 (m, H) 3.07 (d, J= 2.1 Hz, 0.33H), 2.88 (d, J = 4.1 Hz, 0.68H), 2.03 (s, 3H).

Pregnane-20 α -carboxaldehyde-5,6-epoxy-3-yl acetate (5)¹³

A -78 °C solution of 4 (0.35 g, 0.74 mmol) in 1:1 DCM/MeOH (12 mL) was treated with a gaseous stream of ozone (1 g/h) from an A2Z Ozone MP 1000 110V Multi-Purpose Ozone Generator for 1.5 h. The solution was purged with oxygen (5 min). The first two steps in the synthesis of **1**, acetylation of stigmasterol then epoxidation using Triethylamine (0.21 mL, 1.5 mmol) was added and stirred for several days at room temp. The solution was extracted with DCM mCPBA, were accomplished with yields of 19% and 104%. Following epoxidation, both α (50 mL), washed with HCl (3 x 30 mL) and water (30 mL) then dried over Na₂SO₄ and concentrated *in vacuo* to afford a sticky, and β isomers were observed in a ratio of 0.67:0.33. clear substance (0.21 g, 72%): ¹H NMR (CDCl₃) 9.61 (d, J= 3.44 Hz, 0.26H), 9.54 (d, J= 3.44 Hz, 0.12H), 5.01-4.70 (m, 1H), 3.08 (d, 0.27H), 2.89 (d, J= 4.5 Hz, 0.73H).

References

- (1) Racette, S. B.; Lin, X.; Lefevre, M.; Spearie, C. A.; Most, M. M.; Ma, L.; Ostlund, R. E. Am. J. Clin. Nutr. 2010, 91 (1), 32. (2) Holick, M. F. N. Engl. J. Med. 2007, 357 (3), 266.
- (3) Bischoff-Ferrari, H. A.; Giovannucci, E.; Willett, W. C.; Dietrich, T.; Dawson-Hughes, B. Am. J. Clin. Nutr. 2006, 84 (1), 18.
- (4) Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Am. J. Clin. Nutr. 2010, 91 (5), 1255.
- (5) Zhao, X. Y.; Feldman, D. *Steroids* **2001**, *66* (3–5), 293.
- (6) Jasinghe, V.J.; Perera C.O. *Food Chem.* **2006**, 95(4), 638-643
- (7) Phillips, K. M.; Ruggio, D. M.; Horst, R. L.; Minor, B.; Simon, R. R.; Feeney, M. J.; Byrdwell, W. C.; Haytowitz, D. B. J. Agric. Food Chem. 2011, 59 (14), 7841.
- (8) Phillips, K. M.; Horst, R. L.; Koszewski, N. J.; Simon, R. R. PLOS ONE 2012, 7 (8), e40702. (9) Napoli, J. L.; Fivizzani, M. A.; Schnoes, H. K.; Deluca, H. F. Arch. Biochem. Biophys. 1979, 197 (1), 119. (10) Org. Synth. 1976, 55, 24.
- (11) Chai, H.; Guo, R.; Yin, W.; Cheng, L.; Liu, R.; Chu, C. ACS Comb Sci. 2015, 17(3), 147-51
- (12) Wang, S.M.; Zhang, Y.B.; Liu, H.M.; Yu G.B.; Wang, K.R. *Steroids* **2007**, *72* (1), 26–30.
- (13) Hang, J; Dussault, P. *Steroids* **2010**, *75* (12), 879-883

Discussion

Synthesis of the modified Julia reagent commenced with the bromination of 3-methyl-2-butanone using molecular bromine (Scheme 1). The desired **9** was obtained with good yield (102%). However, the isomer 3-bromo-3-methyl-2-butanone (9%) was observed in the ¹H NMR spectrum. Distillation to remove the minor isomer was unsuccessful but lowered our yield (56%). The bromoketone mixture was reacted with 2-mercaptobenzothiazole and t-BuOK in THF to afford 10 with a good crude yield (93%). Purification using silica column chromatography (ethyl acetate:hexane = 1:3) gave a pure product (72%) as determined by ¹H NMR. Oxidation with mCPBA gave the desired sulfone, **11**, in a crude yield of 117%. Recrystallization afforded a white powder (17%) with good purity according to ¹H NMR. GC-MS analysis also showed good purity but was puzzling because it showed an apparent M⁺ at m/z = 219. Rather than M+, this corresponds to a loss of SO₂ (64 g/mol) from the molecular ion (m/z = 283) indicating an intriguing rearrangement of the product in the mass spectrometer. APCI mass spectrometry confirmed the molecular weight as 283 showing M+H at m/z = 284.

The synthesis of **1** began with successful acetylation of stigmasterol **2** by acetic anhydride to form stigmasterol acetate **3** (Scheme 2). Although the yield (19%) was disappointing, the ¹H-NMR spectrum closely matched the lit spectrum aside from the presence of ethyl acetate impurity. Epoxidation of **3** using *m*-CPBA resulted in a yield of 104%, with water as the most likely impurity inflating the yield. Additionally, both α and β isomers were observed in the ¹H NMR spectrum in a ratio of 0.67:0.33 in agreement with the literature ratio (0.72:0.28).

The most recent synthesis step completed was the ozonolysis of compound **4**. Due to safety concerns, we deviated from the literature procedure, which called for concentration in *vacuo* after O_3 addition, followed by re-dissolution in $H_2O/AcOH$ and treatment with zinc. Rather, a work-up with triethylamine (2 equiv) was used. For O_3 addition, we used an inexpensive multi-purpose ozone generator (rated at 1 g/h and purchased from Amazon) connected to an O₂ tank. To test the capability of this O₃ generator, a solution of 1-octene in 1:1 DCM/MeOH was treated at -78 °C with a gaseous stream of ozone for 1.5 h, then successfully treated with triethylamine to give heptanal and formaldehyde as indicated by ¹H NMR. This procedure was then used for the attempted ozonolysis of **4**. The product showed two aldehyde doublets (9.61, 9.52 ppm) with the same coupling constant (3.4 Hz) and the predicted 2:1 α/β ratio in the ¹H NMR spectrum (Figure 3). In addition, the side chain double bond was fully reacted as indicated by the disappearance of the doublets of doublets at 5 ppm. Thus, the ozonolysis went to completion. Unfortunately, for reasons we have yet to determine, the integration values of the aldehyde doublets (0.26, 0.12) are small compared to the other peaks and there appear to be additional smaller aldehyde peaks. It is possible that the triethylamine work-up caused epimerization at the α -carbon of the aldehyde, something we were not anticipating, leading to the extra aldehyde peaks observed. Therefore, the next step of this research will be to look further into what is causing the small aldehyde peaks and repeating the ozonolysis with a different reductive work-up reagent, e.g. dimethylsulfide or zinc...

Conclusions

Synthesis of the modified Julia reagent was successfully completed in three steps in which 9, 10, and 11 were produced with good purity and decent yield (56%, 72%, 20%).

Currently, we are looking further into the results of our ozonolysis reaction to determine why the aldehyde peaks are small compared to the other peaks. We may repeat the ozonolysis again with an alternative work-up.

After synthesizing 5 with good purity and yield, we will remove the epoxide using AII_3 because of its potential to react with the nucleophilic Julia reagent (11).

We anticipate that sequential Julia and Wittig reactions followed by hydrolysis of the acetate ester will afford **1**.

Acknowledgements

Winona State University for an Undergraduate Research Grant and Student Travel Grant. Winona State University Chemistry Department for use of lab facilities and instruments. Winona State University Student Senate for funding research travel expenses.