

Background

to 4-fluorobenzaldehyde and

Scheme 2. Synthesis of bis(4-fluorophenyl)acetylene (1)

Acetylenic Poly(aryl ether)s: Preparation of the S_NAr Monomer Bis(4-fluorophenyl)acetylene Wail Aljuhani and Thomas W Nalli Department of Chemistry, Winona State University, Winona, Minnesota

RESULTS

Scheme 3. Reaction to form model trimer

Experimental

(E)-1-(4-Fluorophenyl)-N-phenylmethanimine (3) To a suspension of magnesium sulfate (15.96 g, 132 mmol, 1.10 equiv) in CH_2Cl_2 (150 mL, 0.800 M) was added to 4fluorobenzaldehyde (13 mL, 15.04 g, 120 mmol, 1.00 equiv) and aniline (11 mL, 11.22 g, 120 mmol, 1.00 equiv) and the reaction mixture was stirred under nitrogen atmosphere at 23 °C for 15 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The crude product was recrystallized from hexanes by cooling the solution in a dry ice/acetone bath. Recrystallization afforded the title compound as a white solid (21.9 g, 110.4 mmol, 60% yield). 1H NMR (300 MHz, CDCl₃): 8.44 (s, 1H), 7.93 (dd, J = 8.60, 5.59 Hz, 2H), 7.46–7.40 (m, 2H), 7.29–7.25 (m, 1H), 7.24 (d, J = 7.7 Hz, 2H), 7.19 (t, J = 8.6 Hz, 2H). 13C NMR (75 MHz, CDCl3,): 164.8 (d, J = 250.6 Hz), 159.0, 152.0, 132.7 (d, J = 2.1 Hz), 130.9 (d, J = 8.7 Hz), 129.3, 126.2, 121.0, 116.1 (d, J = 21.7 Hz).

Fluorobenzyl benzotriazole (FBBT) (2)

A mixture of 1 H-benzotriazole (18 g, 150 mmol), 4-fluorobenzyl chloride (16 mL, 150 mmol) and potassium carbonate (70 g, 102 mmol) in acetonitrile (300 ml) was refluxed for 1 hour under a positive pressure of nitrogen. After hot filtration, the filtrate was evaporated under reduced pressure. ¹H NMR and C-13 NMR characterized the product as both isomers of the desired product, fluorobenzyl benzotriazole (FBBT) (16.12g, 89%). ¹H NMR (CDCl₃): 8.05 (m, 1.00H), 7.84 (m, 0.76H), 7.37 (m, 5.00H), 7.26 (m, 2.14H), 5.83 (s, 0.83H), 7.79 (s, 2.08H). ¹³C NMR (CDCl₃): Isomer 1: 162.75 (J=247.09), 144.73, 130.60 (J=3.61), 130.38 (J=8.67), 118.18, 115.94 (J=21.67), 59.65. Isomer 2: 162.92 (J=247.81), 146.43, 132.76, 130.69 (J=2.89), 129.53 (J=8.67), 127.62, 124.11, 120.22, 116.08 (J=21.67), 109.63, 45.57.

Bis(4-fluorophenyl)acetylene $(1)^{5}$. A mixture of N-(4fluorobenzylidene)aniline (13.15 g, 66 mmol) and FBBT (14.995 g, 66 mmol) in **DMF** (80 mL) was added to **t-BuOK** (13. g, 180 mmol) in **DMF** (120 mL) on an oil bath (73 °C), stirred for 1 min and then decanted into ice water. After filtration, the crude product (11.166 g, 95%) was dissolved in pet. ether and DCM prior to column chromatography on alumina, using hexane as the elutant. Evaporation of the solvent in vacuo gave the product as a white powder (7.06 g, 51%). ¹H NMR (CDCl₃, d): 7.49 (m, 3.96H), 7.04 (m, 4.00H).

Bis(4-p-tolyloxyphenyl)acetylene.

1 (0.214 g, 1.00 mm) was added to a mixture of **p-Cresol** (0.249 g, 2.3 mm), **t-BuOK** (0.26 g, 2.3 mm) and **DMSO** (6 mL, 6mm) on an oil bath (130 °C, stirred for 15 hours under a positive pressure of nitrogen and then extracted with 1M HCl and washed with **DCM**. Evaporation of the solvent in vacuo gave the product as a tan powder. The resulting product mixture (2.46 g, 35%) was analyzed by ¹H NMR in CDCl₃.

DISCUSSION

Our lab was interested in forming the desired monomer, bis(4fluorophenyl) acetylene (BFPA) in a large scale, which I accomplished by making 7.10 g. The desired monomer was synthesized in two steps (Scheme 2). Fluorobenzyl benzotriazole (FBBT) was synthesized from 1-H benzotriazole and 4-fluorobenzyl chloride⁵ in good yield (16.123 g, 89%). Purity was checked using ¹H and ¹³C NMR, both of which produced complex spectra due to the presence of two isomers of the desired compound, 1-(4fluorobenzyl)benzotriazole and 2-(4-fluorobenzyl)benzotriazole (Figure 2,3). ¹³C resonance assignments were assigned on the basis of a ¹³C NMR predictor. The FBBT mixture of isomers was reacted with N-(4fluorobenzylidene)aniline at 73 °C for 1 min, quenching in ice water. Column chromatography (n-hexane, Activated neutral alumina) afforded a white powder (51%). ¹H and ¹³C NMR characterized the product as BFPA (Figure 4). Yield loss of 49% attributed to inefficient transfers due to the sticky nature of the crude product.

Nalli's lab has used compound 1 in conjunction with the co-monomer bis(hydroxyphenyl)acetylene (BHPA acetylenic to prepare the poly(aryl ether) monomer, poly(oxy-1,4-phenyleneethynylene-1,4-phenylene) (POPEP). (Scheme 4). The conditions employed (NMP, 180 °C) were harsh, however, leading to doubts about the actual polymer structure. One of the goals of my research was to see if the polymerization could be carried out under milder conditions. To test this idea, **1** was reacted with 2 equiv p-cresol to to see if a reasonable yield of the trimer (Scheme 3) could be obtained. The 35% yield of dimer obtained was disappointing so we need to find another method in our continuing experiments.

ACKNOWLEDGEMENTS

I want to acknowledge and thank the Chemistry department at Winona State University for the chemicals and equipment. I want to thank Dr. Thomas Nalli for the opportunity to work on this project and be part of his team. Finally, thanks to my wife, Alejandra, for supporting me and understanding when I had to work in the lab over weekends.

REFERENCES

- Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry; CRC Press: Boca Raton, FL, 2007.
- 2. Simon, E. Ann. Chim. Phys. 1839, 31, 265.
- . Bizier, N. P.; Wackerly, J. W.; Braunstein, E. D.; Zhang, M.; Nodder, S. T.; Carlin, S. M.; Katz, J. L. J. Org. Chem. 2013, 78,5987-5998
- Saunders, K. J. Organic Polymer Chemistry: An Introduction to Organic Chemistry of AdhesiVes, Paints, Plastics, and Rubbers; Chaman and Hall: London, 1973.
- Staudinger, H. Ber. Dtsch. Chem. Ges. 1920, 53, 1073
- 6. Hay, A.S.; Paventi, M. U.S. Patent 5,374,701, Dec. 20, 1994. (b) Hay, A.S.; Paventi, M,; Strukelj, M. *Macromolecules* **1993**, 26, 1777-1778.
- Labadie, J. W.; Hedrick, J.L.; Ueda, M. J. Am. Chem. Soc. 1996, 624, 210-225. 8. Klein, D. Organic Chemistry; John Wiley & Sons: Hoboken, 2012.

