## Acetylenic Poly(aryl ether)s:

## Preparation of the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Monomer Bis(4-fluorophenyl)acetylene

Wail Aljuhani and Thomas W Nalli
Department of Chemistry, Winona State University, Winona, Minnesota

## Background

Poly(aryl ether)s (PAEs) are important commercial polymers and are a member of the family of materials known as engineering thermoplastics. A sub-class of the PAEs are the poly(aryl ether ketones) (PAEKs), which are semi-
crystalline, thermoplastic polymers, and have high mechanical strength at high temperatures, substantia chemical resistance, low moisture absorption, and good impact strength. ${ }^{1,3}$
The most ordinarily used synthetic route to PAEs involves creating an ether linkage by nucleophilic aromatic substitution ( $S_{N} A r$ ) and requires an electron-withdrawing group to activate the benzene rings. The attached electron-withdrawing group (EWG) is essential to activate the ring and allow the addition of nucleophile
The addition of nucleophile to an activated benzene ring by an electron-withdrawing group (EWG) forms a resonance
stabilized carbanion and the halogen acts as a leaving grou (Scheme 1).


Scheme 1: $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction
For this research, a literature method was used to synthesize bis(4-fluorophenyl)acetylene (1) with the intent of using the ethynylene bond to activate the phenyl rings for $S_{N} A$ polymerization to form PAEs that have alternating alkyne and ether linkages. First, fluorobenzylbenzotriazole (2) was synthesized in $89 \%$ yield as a mixture of isomers (2a and 2b), by
refluxing a mixture of benzotriazole, 4-fluorobenzyl chloride potassium carbonate, and acetonitrile. Then 2 was reacted witb (E)-1-(4-fluorophenyl)-N-phenylmethanimine (3), which was prepared by adding a mixture of magnesium sulfate and dichloromethane to 4-fluorobenzaldehyde and aniline (Scheme2). The formed bis(4-fluorophenyl)acetylene can be sed to synthesize poly(oxy-1,4-phenyleneethynylene-1,4 phenylene) using the ethynylene bond to activate
activate the phenyl rings for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction (Scheme 3 ).


Scheme 2. Synthesis of bis(4-fluorophenyl)acetylene ( $\mathbf{1}$ )

RESULTS

Overview - A monomer for the preparation of the acetylenic poly(aryl ether) (POPEP), bis(4fluorophenyl)acetylene (1) was synthesized. The triple bond activates the phenyl rings for $S_{N}$ Ar reactions which can be used for polymerization. The monomer was characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and APCI-MS and reacted with 2 equiv $p$-cresol in an attempt to model the polymerization reaction.




## Experimenta

## $\frac{\text { (E)-1-(4-Fluorophenyl)-N-phenylmethanimine ( } 3 \text { ) }}{\text { To a suspension of magnesium sulfate ( } 15.96 \mathrm{~g} .132}$

To a suspension of magnesium sulfate ( $(15.96 \mathrm{~g}, 132$ mmol, 1.10 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}, 0.800 \mathrm{M})$ was added to 4 -
fluorobenzaldehyde ( $13 \mathrm{~mL}, 15.04 \mathrm{~g}, 120 \mathrm{mmol}$, 1.00 equiv) and aniline ( $11 \mathrm{~mL}, 11.22 \mathrm{~g}, 120 \mathrm{mmol}, 1.00$ equiv) and the reaction mixture was stirred under nitrogen atmosphere at $23^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was filtered and the filtrate was concentrated
in vacuo. The crude product was recrystallized from hexanes by in vacuo. The crude product was recrystallized from hexanes by aoling the solution in a dry iceaceetone banh. Recrystai mmol , $60 \%$ yield). 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $8.44(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (dd, J $=8.60,5.59 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}$ NMR $(75 \mathrm{MHz}$,
CDCl 3,$): 164.8(\mathrm{~d}, \mathrm{~J}=250.6 \mathrm{~Hz}) 159.0,152.0132 .7(\mathrm{~d} \mathrm{~J}=21$ $\mathrm{Hz}), 130.9$ (d, $J=8.7 \mathrm{~Hz}$ ), 129.3, 126.2, 121.0, 116.1 (d, $J=21.7$ $\mathrm{Hz})$,
$\mathrm{Hz})$.
Fluorobenzyl benzotriazole (FBBT) (2)
A mixture of 1 H -benzotriazole ( $18 \mathrm{~g}, 150 \mathrm{mmol}$ ), 4 -fluorobenzyl chloride $(16 \mathrm{~mL}, 150 \mathrm{mmol})$ and potassium carbonate $(70 \mathrm{~g}, 102$
$\mathrm{mmol})$ in acetonitrile $(300 \mathrm{ml})$ was refluxed for 1 hour under a mositive pressure of nitrogen. After hot filtration, the filtrate was evaporated under reduced pressure. ${ }^{1}$ H NMR and C-13 NMR characterized the product as both isomers of the desired product,
fluorobenzyl benzotrizole (FBBT) (16.12g fluorobenzyl benzotriazole (FBBT) ( $16.12 \mathrm{~g}, 89 \%$ ). ${ }^{1} \mathrm{H}$ NMR
$\left.\left(\mathrm{CDCl}_{3}\right): 8.05(\mathrm{~m}, 1.00 \mathrm{H}), 7.84(\mathrm{~m}, 0.76 \mathrm{H}), 7.37(\mathrm{~m}) 5.00 \mathrm{H}\right), 726$ $(\mathrm{m}, 2.14 \mathrm{H})$, $5.83(\mathrm{~s}, 0.83 \mathrm{H}), 7.79(\mathrm{~s}, 2.08 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$ ): Isomer 1: 162.75 ( $\mathrm{J}=247.09$ ), $144.73,130.60$ ( $\mathrm{J}=3.61$ ), 130.38 $(\mathrm{J}=8.67), 118.18,115.94(\mathrm{~J}=21.67), 59.65$. Isomer 2: 162.92 $\mathrm{J}=247.81), 146.43,132.76,130.69 \quad(\mathrm{~J}=2.89), 129.53(\mathrm{~J}=8.67)$,

Bis(4-fluorophenyl)acetylene (1)5. A mixture of N -(4fluorobenzylidene)aniline ( $13.15 \mathrm{~g}, 66 \mathrm{mmol}$ ) and FBBT ( 14.995 $\mathrm{g}, 66 \mathrm{mmol})$ in DMF ( 80 mL ) was added to t -BuOK ( $13 . \mathrm{g}, 180$
$\mathrm{mmol})$ in DMF $(120 \mathrm{~mL})$ on an oil bath $\left(73^{\circ} \mathrm{C}\right)$ stirred for 1 min and then decanted into ice water. After filtration, the crude product and then decanted into ice water. After filtration, the crude product
$(11.166 \mathrm{~g}$, $95 \%$ ) was dissolved in pet. ether and DCM prior to column chromatography on alumina, using hexane as the elutant. Evaporation of the solvent in vacuo gave the product as a white powder ( $7.06 \mathrm{~g}, 51 \%$ ). ${ }^{\mathrm{H}} \mathrm{H}$ NMR ( $\left.\mathrm{CDCI}_{3}, \mathrm{~d}\right): 7.49(\mathrm{~m}, 3.96 \mathrm{H})$, 7.04 (m, 4.00H).

Bis(4-p-tolyloxyphenyl)acetylene.
$1(0.214 \mathrm{~g}, 1.00 \mathrm{~mm})$ was added to a mixture of p-Cresol $(0.249 \mathrm{~g}$,
$2.3 \mathrm{~mm}) \mathrm{t}$ - $\mathrm{BuOK}(0.26 \mathrm{~g}$
, $2.3 \mathrm{~mm})$, t-BuOK ( $0.26 \mathrm{~g}, 2.3 \mathrm{~mm}$ ) and DMSO ( $6 \mathrm{~mL}, 6 \mathrm{~mm}$ ) on an oil bath $\left(130{ }^{\circ} \mathrm{C}\right.$, stirred for 15 hours under a positive pressure
of nitrogen and then extracted with $\mathbf{1 M} \mathbf{~ H C l}$ and washed with of nitrogen and then extracted with $\mathbf{1 M} \mathbf{~ H C l}$ and washed with
DCM. Evaporation of the solvent in vacuo gave the product as a an powder. The resulting product mixture ( $2.46 \mathrm{~g}, 35 \%$ ) was analyzed by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}$

## DISCUSSION

Our lab was interested in forming the desired monomer, bis(4fluorophenyl) acetylene (BFPA) in a large scale, which I accomplished
by making 70 o (Scheme e). Fluorobenzyl benzotriazole (EBBT) was synthesized from 1 -H
(enzotriazole and 4 -fluorobenzy chloride in good vield ( 16.123 g . $89 \%$ ). benzotriazole and 4 -fluorobenzyl chloride ${ }^{5}$ in good yield $(16.123 \mathrm{~g}, 89 \%)$.
Purity was checked using ${ }^{1} \mathrm{H}$ and ${ }^{1{ }^{1} \mathrm{C}} \mathrm{NMR}$, . spectra due to the presence of two isomers of the desired compound, 1-4flucrobenzyl)benzotriazole and 2 -(4-fluorobenzyl)benzotriazole (Figure 2,3 ).
${ }^{3}$ C resen

 chromatography (n-hexane, Activated neutral alumina) afforded a white
powder ( $51 \%$ ). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR characterized the product an BFPA (Figure powder $(51 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR characterized the product as BFPA (Figure
4). Yied 10 ) 4). Yield loss of 49\% of trude product.

Nalli's lab has used compound $\mathbf{1}$ in conjunction with the bis(hydroxyphenyl)acetylene (BHPA acetylenic to prepare the poly(aryl ether)
monomer,
 leading to doubts about the actual polymer structure. One of the goals of my research was to see if the polymerization could be carried out under milder
conditions. To test this idea, 1 was reacted with 2 equiv $p$-cresol to to see if a
and conditions. To test this idea, 1 was reacted with 2 equivi p-cresos
reasonable yield of the trimer (Scheme 3 ) could be obtained. The $35 \%$ yield of
dmer obtained was disappointing so we need to find dimer obtained was disappointing so we need to find another method in our
continuing experiments. dimer obtained was disa
continuing experiments.

## ACKNOWLEDGEMENTS

I want to acknowledge and thank the Chemistry department at Winona State University for the chemicals and equipment. I want to thank Dr. Thomas Nalli for the opportunity to work on this project and be part of his team. Finally, thanks to my wife, Alejandra, for supporting me and understanding when I had to work in the lab over weekends.

## REFERENCES

## Hiemenz, P. C.; Lodge, T. P. Polymer Chen 2007. Simon, E. Ann. Chim. Phys. 1839, 31, 265. <br> Bizier, N. P.; Wackerly, J. W.; Braunstein, E. D.; Zhang, M.; Nodder, S. T.

 Carlin, S. M., Katz, J. L. J. Org. Chem. 2013, 78,5987-5998 Saunders, K. J. Organic Polymer Chemistry: An Introduction to OrganicChemistry of Adhesives, Paints, Plastics, and Rubbers; Chaman and Hall:
Staudinger, H. Ber. Dtsch. Chem. Ges. 1920, 53, 1073
Hay, A.S., Paventi, M. U. .S. Patent $5,774,001$, Dec. 20, 1994. (b) Hay, A.S Paventi, M,; Strukelj, M. Macromolecules 1993, 26, 1777-1778.
It
Labadie I. W. We. 7. Labadie, J. W.; Hedrick, J.L., Ueda, M. J. Am. Chem. Soc. 1996, 624,
8. Klein, D. Organic Chemisty; John Wiley \& Sons: Hoboken, 2012

