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ABSTRACT 

Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to help with the diagnostic 
and monitoring processes of many diseases, including neurological disorders. Initially, it was assumed that GBCAs carry minimal 
risk, are safe and well tolerated. But recent reports of GBCA-associated deposition in many body tissues have raised concerns 
about the broader health impacts of gadolinium exposure. The aim of this review was to summarise knowledge regarding 
gadolinium deposition, primarily in the brain structures, and of potential GBCA-associated toxicity. Moreover, we discuss the 
current recommendations on the use of GBCAs, as well as alternative contrast agents and imaging techniques. 
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Introduction 

Magnetic resonance imaging (MRI) is one of the fastest 
developing imaging methods and has been widely used for 
diagnostic and monitoring purposes of many pathological 
conditions, including neurological disorders [1]. Introduced 
into clinical practice in the early 1990s, this method of neu-
roimaging quickly became commonly used in the assessment 
of inflammatory and demyelinating lesions, defects of the 
central nervous system (CNS), spinal cord, vascular diseases 
and proliferative processes [2]. 

Of all the benefits of MRI, the greatest are its high tissue 
resolution (where it is the best of all neuroimaging methods), 
its safety (no exposure to ionising radiation), and its non-inva-
siveness. Admittedly, MRI also has a few drawbacks, of which 
the most impactful are low spatial resolution, a long time of 
data acquisition, susceptibility to movement artifacts (the 
necessity of anaesthesia in paediatric patients), and difficulties 
in calcifications imaging [2]. To improve the quality of images, 
this technique has been refined over the years. 

One of the most significant improvements in MRI has been 
the use of gadolinium-based contrast agents (GBCAs) [3]. 

They have long been considered to be highly effective and safe. 
However, recent reports on the retention of GBCAs in human 
tissue, mainly in brain structures, have called into question the 
safety of GBCA administration. Taken together, these reports 
have led to intensive research into MRI techniques which 
could replace the GBCA-enhanced study, into improving 
current imaging methods, and into seeking completely new 
contrast agents. 

In this review, we discuss the current opinions on gado-
linium deposition, mainly in brain structures, and review the 
literature on GBCA-associated toxicity, alternative imaging 
techniques, and contrast agents. Additionally, we summarise 
medical society recommendations and perspectives on the use 
of GBCAs in clinical practice. 

Methods

A comprehensive literature search using the PubMed, 
Google Scholar, and Ovid Medline databases was conduct-
ed for published works regarding Gd deposition, mainly in 
the brain structures, GBCA-associated toxicity, alternative 
non-contrast-enhanced (NCE) techniques of MRI, new 
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GBCAs, and alternative MRI contrast agents. We also reviewed 
the updated recommendations of the European Medicines 
Agency on GBCA usage.

Characteristics of GBCAs

In 1988, the first GBCA, gadopentetate dimeglumine 
(Magnevist®), enhanced MRI was performed. Since then, the 
U.S. Food and Drug Administration (FDA) has approved a fur-
ther eight GBCAs for use (Tab. 1) [3]. All GBCAs contain the 
paramagnetic ion of the rare earth metal gadolinium (Gd3+), 
which possesses the most unpaired electrons of any stable ion 
(seven), creating a high magnetic moment that can enhance 
proton relaxation [4]. 

GBCAs are positive agents that shorten the T1 (increase 
signal to longitudinal) relaxation time of surrounding water 
protons to indirectly produce a signal-enhancing effect [5]. 
In CNS diseases, contrast-enhancement MRI (CE-MRI) 
allows the visualisation of small lesions, the depiction of an 
impaired blood-brain barrier (BBB), and the revelation of 
vessel structures and of primary and secondary CNS tumours. 
It also provides information on the location and grade of 
lesions, treatment planning, and monitoring of responses to 
therapy [3, 6].

It is estimated that today GBCAs are used in more than 
one third of all MRI studies [7]. Every year, over 30 million 
doses of GBCAs are administered worldwide [8]. 

Free gadolinium, by competitive blocking of calcium 
channels, demonstrates strong cytotoxic capabilities which 
significantly disturb the functions of various body cells, 
including nerve cells. Gadolinium also impairs the activity of 
intracellular enzymes by displacing endogenous metals such 
as zinc and copper [9]. The use of gadolinium compounds 
as contrast agents has become possible by combining gado-
linium ions with organic ligands, thereby forming chelating 
molecules. This leads to a reduction in the toxicity of GB-
CAs, their safe intravenous administration, and excretion in 
the bound form by the kidneys or bile [10]. GBCAs can be 
categorised in two ways due to their biochemical structure 
(linear and macrocyclic) and the total compound charge 

(ionic and nonionic) [11]. GBCA structure is important 
because it affects both the stability of the chelate and the 
side effects it causes. Studies indicate that macrocyclic 
compounds compared to linear are characterised by greater 
stability, which is associated with a greater ability to bind 
gadolinium ions [12]. 

Side effects of GBCAs

Adverse reactions 
GBCAs are regarded as being safer than iodine contrast 

agents. The incidence of immediate allergic reactions after 
GBCA administration is low [13]. Immediate adverse re-
actions are hypersensitivity reactions which occur within 
an hour of exposure to GBCAs. According to their severity 
they can be further divided into mild, moderate, and severe 
reactions [14].

The adverse event rate for GBCAs ranges from 0.07% to 
2.4% [15]. The most common adverse reactions are mild. They 
include coldness, warmth, or pain at the injection site, pares-
thesia, nausea, vomiting, headache and dizziness. Allergic-like 
reactions are uncommon and vary in frequency from 0.004% 
to 0.7% [15]. Severe, life-threatening anaphylactic reactions 
are extremely rare, ranging from 0.001% to 0.01% [15]. The 
strongest adverse reaction predictor factor is a history of an 
adverse reaction after previous GBCA administration [16]. 
A recently conducted meta-analysis correlating adverse re-
action occurrence to properties of GBCAs indicates that the 
risk of immediate allergic reactions is based on the chemical 
structure, ionicity and affinity for serum proteins. It has been 
proven that ionic agents, serum protein binding agents and 
macrocyclic compounds increase the risk of immediate aller-
gic-like reactions [17]. 

The risk of such a reaction is not related to the osmolality 
of the contrast agent: the low doses used make the osmolar load 
very small [18]. For the same reason, the risk of post-contrast 
acute kidney injury (PC-AKI) is very low when GBCAs are 
used [18]. There is also no difference in the incidence of acute 
adverse reactions among the gadolinium-based extracellular 
agents [18].

Table 1. Characteristics of FDA-approved GBCAs [2, 3]

Generic name Brand name Chemical structure Elimination pathway

Gadodiamide Omniscan Linear nonionic Renal

Gadoversetamide OptiMARK Linear nonionic Renal

Gadopentetate dimeglumine Magnevist Linear ionic Renal

Gadobenate dimeglumine MultiHance Linear ionic Renal; 4–5% Biliary

Gadoxetic acid Primovist Linear ionic 50% Renal; 50% Biliary

Gadofosveset trisodium Ablavar/Vasovist Linear ionic Renal; 4–5% Biliary

Gadoteridol ProHance Macrocyclic nonionic Renal

Gadobutrol Gadovist/Gadavist Macrocyclic nonionic Renal

Gadoterate meglumine Dotarem Macrocyclic ionic Renal
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Evidence of gadolinium residues accumulation 
in human tissues

The first description of potential gadolinium compound 
accumulation in animal tissues was published in 1995 [19]. 
Gibby et al. in 2003 indicated that GBCAs could accumulate in 
human bones. During hip arthroplasty procedures, the authors 
gathered samples of bone tissue from patients in whom gado-
diamide (linear GBCA) or gadoterydol (macrocyclic GBCA) 
were used. The concentration of gadolinium compounds 
was 2.5 times higher in the former than in the latter patients 
[20]. In 2005, the use of Inductively Coupled Plasma – Mass 
Spectrometry (ICP-MS) confirmed the deposition of gado-
linium in human bone tissue and showed a four-times higher 
concentration of gadolinium compound after gadodiamide 
administration compared to gadoterydol [21]. 

The toxicity of GBCAs was further confirmed in 2006 by 
Grobner et al. who linked multiple GBCA exposures in patients 
with renal dysfunction to nephrogenic systemic fibrosis (NSF) 
[22]. NSF is a rare, late adverse reaction associated with expo-
sure to GBCAs, which can potentially be life-threatening and 
is characterised by fibrosis of the skin and potential systemic 
involvement of the joints, lungs, heart, liver, and muscles [22, 
23]. The risk factors for NSF can be distinguished into a bio-
chemical structure and stability of GBCAs and patient-related 
factors. NSF occurrence is strictly associated with the use of 
linear GBCAs. Gadodiamide, gadopentetate dimeglumine 
and gadoversetamide are associated with a high risk of NSF, 
and are currently suspended [23]. The main risk factor when 
considering NSF probability is renal function status. It has 
been proven that the risk of NSF is substantially higher in 
patients with acute kidney injury (AKI) or severe chronic 
kidney disease (CKD) (estimated glomerular filtration rate 
[eGFR] < 30 mL/min/1.73 m2), and those on dialysis. It is 
crucial to prevent NSF, due to its incompletely understood 
mechanism and the absence of effective treatment. Therefore, it 
is recommended considering on a case-by-case basis the need 
for contrast-enhanced MRI in patients with severe CKD and 
who are receiving dialysis. Alternatives to an MRI diagnostic 
test should be investigated before GBCAs are used. In cases 
when MRI is deemed unavoidable, macrocyclic GBCAs or 
newer linear GBCAs may be used. The implementation of 
renal function assessment prior to MRI, and greater caution 
in the administration of GBCAs, significantly reduces the 
incidence of NSF [23].

Discussions concerning GBCA safety intensified follow-
ing the reports of gadolinium residues accumulating in the 
brain. The retrospective study by Kanda et al. published in 
2014 indicated a significant correlation between high signal 
intensities on non-enhanced T1-weighted images (T1WI) in 
the globus pallidus (GB) and dentate nucleus (DN) and lin-
ear GBCA administration in patients with normal renal and 
liver function [24]. Moreover, a correlation between signal 
intensity and the quantity of GBCA dosage was proved [24]. 
Many scientific studies are now available in animal, paediatric 

and adult populations indicating a correlation between linear 
GBCA exposure and hyperintensities on non-enhanced T1WI 
in deep grey matter structures of the brain. In fact, the GB and 
the DN are the most commonly affected [25–29]. 

Studies considering a correlation between macrocyclic 
GBCAs and changes in MRI signal intensity have been few in 
number, and their conclusions are unclear. Most published pa-
pers indicate a lack of association between macrocyclic GBCAs 
and MRI changes [30–33]. One study that demonstrated a cor-
relation between macrocyclic GBCAs and hyperintensities in 
MRI was that by Stojanov et al., but this was compromised due 
to a methodological defect (uncertainty regarding previous lin-
ear GBCA exposure) [34]. Next came the study by Bjørnerud 
et al. in which subjects had underlying disease of high-grade 
glioma, and their previous treatment with radiotherapy could 
potentially modify the obtained data [35]. 

T1WI MRI hyperintensity is not a characteristic of gado-
linium accumulation, and may be caused by the accumulation 
of other metals (e.g. iron, copper, manganese), a history of 
brain irradiation, neurofibromatosis type 1, Rendu-Osler-We-
ber disease, or Wilson disease [36, 37]. Post mortem studies 
are vital to prove gadolinium accumulation. Autopsy results, 
carried out on both animal and human models, have shown 
a strong correlation between T1 hyperintensity and gadolin-
ium residues concentration with the use of ICP-MS method. 
This study technique allowed the confirmation of both linear 
and macrocyclic agents gadolinium residues deposition in 
the brain [38–40]. Furthermore, gadolinium compounds can 
deposit not only in deep grey matter but also in the cerebral 
cortex. Even one single-use dosage of a GBCA can lead to 
long-term gadolinium accumulation [41, 42].

GBCAs penetration mechanism

GBCAs cannot directly penetrate an intact BBB [43]. The 
study by Jost et al., based on rat cerebrospinal fluid (CSF) 
analysis using the fluid-attenuated inversion recovery (FLAIR) 
method, documented the enhancement of CSF signal after 
the administration of either linear or macrocyclic GBCAs 
[44]. Recently, this was confirmed in a clinical study where 
gadolinium was detected in the CSF even in patients with 
a presumably intact BBB [45]. 

All these studies suggest that CSF is a potential gateway 
for GBCA entry into brain tissues. These results have raised 
the question of a correlation between BBB damage and the 
amount of gadolinium residues accumulated in the brain. In 
2019, Jost et al. proved in an animal model that BBB damage 
does not increase the amount of gadolinium retention [46]. 

Clearance of gadolinium from the brain

The GBCA clearance process from the human body is not 
yet fully understood. Smith et al. were the first to describe a re-
duction of gadolinium concentration, of about 50%, 20 weeks 
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after multiple linear GBCAs administration [47]. However, 
these results have been called into question by more recent 
studies. Linear GBCAs probably undergo partial dechelation 
and a large portion of gadolinium is retained in the brain, 
with binding of soluble gadolinium to macromolecules, 
making clearance potentially impossible. On the other hand, 
macrocyclic compounds are retained as original chelates and 
are eliminated over time [42, 48, 49].

Toxicity of gadolinium deposition

The long-term effect of gadolinium accumulation in brain 
structures is unclear and still the subject of intensive research. 
Earlier publications did not find a correlation between the most 
frequently affected brain structures (GP, DN) and Parkinson’s 
Disease and cerebellar syndrome [50, 51]. 

Multiple Sclerosis (MS) patients, due to constant dis-
ease surveillance, are the most exposed to potential GBCA 
toxicity. In patients with early MS, the signal hyperintensity 
observed in the GP, DN and thalamus is associated with 
lifetime cumulative gadodiamide administration without 
clinical or radiological correlates of disease progression [52]. 
Furthermore, gadolinium retention in brain structures of 
MS patients is not correlated with their clinical deterioration 
expressed in the form of the Expanded Disability Status Scale 
(EDSS) [53]. However, not all studies support the hypothesis 
that gadolinium retention does not cause toxicity. An 18-year 
observation of MS patients demonstrated a possible correlation 
between a decrease in verbal fluency scores in connection 
with mainly DN hyperintensity [54]. The latest study, using 
a new method for simultaneous T1 and T2 relaxometry in 
a prospective cohort of patients with MS and healthy controls, 
indicates that previous linear (but not macrocyclic) GBCAs 
administration is associated with higher relaxation rates in 
a dose-dependent manner. Higher relaxation in some regions 
is associated with cognitive impairment, but not physical dis-
ability or fatigue in MS [55]. The lack of clarity of the obtained 
results, in conjunction with the basic MS characteristics, does 
not allow unequivocal conclusions to be drawn but, due to 
repeated GBCA exposure, this group of patients should be 
closely monitored.

The preclinical study by Bower et al. performed on 
a basal ganglia neurons model yielded an interesting result. 
The authors evaluated cell death and several parameters of 
mitochondrial function. They demonstrated that increased 
GBCA toxicity on mitochondrial respiratory function and cell 
viability is correlated with an increase of GBCA concentration 
and a decrease in its kinetic stability [56]. 

A number of studies carried out in animal models are 
available, but their results are also inconclusive. After 20 weeks 
from linear administration to a group of healthy rats, neu-
rotoxicity was not detectable [47]. Moreover, an analysis of 
chosen metabolic markers (cellular homeostasis, excitato-
ry neurotransmitter, and metabolites specific to a cellular 

compartment) with 1H-magnetic resonance spectroscopy 
(1H-MRS) and laser ablation ICP-MS revealed no significant 
metabolism and histological changes between gadodiamide 
and a control group [57]. On the other hand, some studies 
have found relevant alterations after GBCA administration in 
animal models. Murine macrophages exposure to gadolinium 
agents, even at low concentrations, induces mitochondrial 
stress and the production of inflammatory cytokines [58]. A re-
cent study on experimental autoimmune encephalomyelitis 
revealed that after the repeated usage of linear GBCAs ongoing 
inflammation may facilitate the retention of gadolinium in the 
brain tissue. Therefore, it is possible that patients with chronic 
neuroinflammatory disorders form a group with a higher risk 
of the accumulation of gadolinium in brain structures [59]. 

Alternative non-contrast-enhanced 
techniques of MRI  

Recent reports of gadolinium deposition in the brain 
structures have forced a modification in the recommendations 
regarding the use of GBCAs in clinical practice. According 
to these, GBCAs should only be used when absolutely nec-
essary or in research settings with the appropriate guidance 
of protocols [60]. Therefore, efforts are ongoing to find new 
NCE methods which could potentially replace CE-MRI [61]. 

Arterial spin labelling (ASL) allows an estimation of brain 
perfusion [62]. It is possible that ASL could replace GB-
CA-based perfusion techniques such as dynamic contrast-en-
hanced (DCE) MRI. The ASL technique magnetically labels 
water protons in the blood by exposure to a radio-frequency 
pulse. Afterwards, these protons are transported by the blood 
to the organ of interest and incorporated into the tissue. With 
ASL, the imaging is performed twice, first without labelling 
(as a control) and then with labelling [63]. Recent studies 
have shown that ASL could be used to depict arteriovenous 
malformations, and assess dural arteriovenous fistulas and the 
reperfusion process after an acute ischaemic stroke, which is 
strongly associated with clinical outcome [62, 64]. 

Another MRI technique that may be useful in the evalua-
tion of brain perfusion is Intravoxel Incoherent Motion (IVIM) 
imaging. IVIM enables simultaneous evaluation of diffusion 
and perfusion through a multi-b-value diffusion-weighted 
MRI acquisition [65]. Recent work in neuro-oncology has 
shown the potential for IVIM in differentiating tumour 
recurrence from post-treatment effects in the preoperative 
evaluation of tumour grade, and in differentiating primary 
CNS lymphoma from glioblastoma [66–68]. IVIM has also 
been applied in the setting of acute strokes, where perfusion 
imaging without gadolinium is of particular interest [69].

Time of flight (TOF) MRI is an NCE method which meas-
ures and depicts the bloodflow inside a vessel compared to the 
surrounding static tissue [70]. The TOF MRI technique can be 
used or imaging veins and arteries, and therefore could be used 
when evaluating for vessel patency in suspected occlusion or 
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stenosis. However, TOF MRI is proven to be less effective in 
the evaluation of intracranial arterial occlusion than CE-MRI 
[71]. Hyperintense lesions in T1 images, such as lipomas, can 
be mistaken in TOF imaging for a vascular structure such 
as an aneurysm, although fat-saturated sequences can help 
distinguish between these conditions [72]. 

Phase contrast imaging (PC) is another MRI technique 
that can be used to visualise moving fluids. The PC technique 
derives contrast between flowing blood or CSF and stationary 
tissue by using the movement of transverse magnetisation 
to produce image contrast [73]. Multiple applications of 
phase-contrast imaging are actively used in clinical practice. In 
neurological imaging, phase-contrast imaging can be used to 
measure the flow of cerebrospinal fluid or to visualise arterial 
and venous flow [74].

We should mention here a recent prospective study by 
Christensen et al. in which the authors proposed a different 
approach to reducing GBCA enhancement in MRI. Their paper 
presents a comparison of Tmax values between full and half 
dose gadolinium perfusion studies in acute ischaemic stroke 
patients. Despite a somewhat limited study group, the authors 
were able to show high Tmax correspondence with similar 
appearance and numerical values of the calculated Tmax maps, 
indicating that half a dose may be a good solution. The viability 
of this proposed modification should however be confirmed 
in a larger study group [75]. 

Another extensively studied NCE technique is diffu-
sion-weighted imaging (DWI), which depicts the diffusion of 
protons in the tissue. In diffusion MRI, tissues with restricted 
proton movement will appear bright with a low apparent 
diffusion coefficient (ADC). Advanced DWI techniques will 
allow visualisation of the movement of protons along white 
matter tracts or the estimation of perfusion metrics [61]. In 
particular, diffusion tensor imaging (DTI) may be used to map 
and characterise the three-dimensional diffusion of water as 
a function of spatial location. Diffusion methods can be used 
to quantify the changes in tissue microstructure induced by 
pathological conditions. Perfusion imaging has been shown 
to be helpful in the diagnostics of such conditions as strokes 
and tumours [76,77]. Both DWI and DTI have been tested as 
a potential contrast MRI replacement in MS patients. However, 
available results indicate that these techniques can only be used 
as supporting methods to CE-MRI [78–80].

A promising alternative to GBCA-enhanced MRI could 
be the use of magnetic resonance elastography (MRE) which 
can provide extensive information about the mechanical 
properties of studied tissues by analysing their response to 
oscillatory shear stress. This is still an experimental technique. 
Nevertheless, studies conducted in both MS patients and 
animal model experimental autoimmune encephalomyelitis 
(EAE) have proved that inflammation was associated with 
a reduction of brain stiffness [81, 82]. The research of Bigot 
et al. performed on a relapsing-remitting EAE model shows 
that a reduction of brain stiffness correlates with clinical 

disability and is associated with enhanced expression of the 
extracellular matrix protein fibronectin. These results taken 
together suggest that MRE could potentially emerge as a safe 
tool to monitor MS activity [83].

MR spectroscopy (MRS) is a helpful imaging method used 
for differential diagnosis and treatment effect monitoring, pro-
viding information about the chemical composition of studied 
tissues. This method addresses metabolic pathways and their 
steady states in different tissue types. The brain has been one 
of the tissues most studied by MRS. Although 31P-MRS is of 
outstanding efficacy in the evaluation of sources of metabolic 
energy in the brain, 1H-MRS has become the major clinically 
applied method in neurospectroscopy, as it provides informa-
tion on markers of neuronal function, myelin, cell membranes, 
and metabolic active compounds [84]. None of the CE-MRI 
methods can assess tissue properties in the way that MRS 
can, and therefore this method could be useful for tumour 
characterisation and assessing the results of treatment [85]. 

Yet another NCE technique, susceptibility weighted im-
aging (SWI), can be used to depict small areas in the brain 
causing heterogenicity in the magnetic field. Similarly to CE-
T1WI, SWI carries the advantage of being able to depict tiny 
structures with a high lesion-to-background signal. The SWI 
technique is useful in detecting cerebral microbleeds, iron 
deposition, and cerebral calcifications [86].

The last, but not least, NCE technique is amide proton 
transfer (APT) imaging, which was developed to assess tissue 
pH and protein content by MRI [87]. With this method the 
characterisation of tissue properties could be an alternative 
to CE-T1WI depiction of impaired BBB [88]. APT can be 
used, among others, in brain tumour assessment. However, 
proteinaceous cysts or haemorrhages can also increase the 
signal compared to high-grade tumour components [89].

New GBCAs and alternative MRI contrast 
agents

The lack of clinically safe contrast agents in the light of 
GBCA’s retention and possible neurotoxicity has significantly 
intensified research into alternative compounds. 

Today, the only action a clinician can take to reduce pa-
tient exposure to GBCAs is to reduce the administered dose. 
One possible method of achieving such a reduction, without 
losing the quality of the obtained images, is analysis using 
the deep brain method. It is possible that machine learning 
could lead to a 10-fold reduction in the required contrast dose 
[90]. Recently published results of a phase IIb clinical study 
on the new high relaxivity macrocyclic GBCA gadopiclenol 
suggest that a reduced dose of gadopiclenol, compared to 
clinically used dosages, is possible without a reduction in CNS 
image quality [91]. Moreover, there are attempts to improve 
GBCAs by replacing the standard chelate agents with carbon 
nanomaterials. This new T1-enhancing contrast agent class is 
characterised by far greater proton relaxivity (up to 90-fold) 
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which allows the attainment of reliable images with a lower 
dose. Carbon nanomaterials are also capable of translocating 
across membranes and label cells. Their modification with 
the use of biopolymers (DNA, RNA, proteins) causes them 
to have contrast selectivity towards cells and tissues. The 
potential of multifunctionality encompasses multimodal 
imaging and the combination of imaging and therapy [92]. 

Another extensively studied class of contrast agents 
are compounds containing in their structure a metal other 
than gadolinium. One of these agents is manganese-based 
Mn-PyC3A which is characterised by a relaxivity comparable 
to GBCAs. It is cleared via both renal and hepatobiliary ex-
cretion and is eliminated from blood plasma. Furthermore, 
a liquid chromatography examination of blood plasma and 
urine reveals that Mn-PyC3A is cleared intact, without 
undergoing metabolism or degradation [93]. Manganese 
containing mangafodipir, which is no longer authorised 
by the European Medicines Agency for liver imaging, was 
recently used in a group of healthy volunteers to evaluate 
the dynamics of manganese enhancement of the brain. The 
results of this study indicate a successful visualisation of 
intra- and extracranial structures that lie outside the BBB 
without adverse clinical effects [94, 95]. 

Promising results have been obtained in studies of 
contrast agents containing iron instead of gadolinium. 
This class includes iron-based contrast agents (IBCA) 
and superparamagnetic iron oxide nanoparticles (SPI-
ONs). In the case of IBCA, two main challenges need to 
be confronted before they can be used in clinical practice. 
Firstly, iron chelates provide far less signal than gado-
linium chelates. Secondly, iron chelates can be toxic at 
high doses, which can manifest in the ability to catalyse 
oxidative Fenton chemistry to produce hydroxyl radicals. 
Studies indicate that both of these challenges can be ad-
dressed with a proper chelate structure design. Recent 
research by Bales et al. has proposed using the Fe-HBED 
analogues which, compared to the parent Fe-HBED, have 
lower serum protein binding and higher relaxivity than 
do a representative GBCA [96]. 

SPIONs are excellent MR contrast agents which possess 
unique magnetic properties with strong shortening effects 
under longitudinal and transverse relaxation. The coating 
of SPIONs with polymers (PVP, PEG, PVA, Dextran) pre-
vents their aggregation and limits their toxic effect on body 
tissues, and this allows for their medical applications. Many 
iron oxide nanoparticles have been evaluated in preclinical 
and clinical trials, and several of them have reached the 
market. However, some of the approved SPIONs have later 
been withdrawn [97]. 

A different approach is metal-free contrast agents with 
organic radical contrast agents (ORCAs) based on para-
magnetic aminoxyl moieties. These are characterised by 
low cytotoxicity and high biodegradability. Compared to 

GBCAs, they have low relaxivity and are reduced rapidly to 
MRI-silent hydroxylamines in physiological conditions. In 
order to improve their efficiency, the attachment of supra-
molecular and biomacromolecular is needed [98].

The general characteristics of the abovementioned al-
ternative contrast agents are set out in Table 2.

Conclusions 

The utility of GBCAs in the initial diagnosis and mon-
itoring of numerous diseases is indisputable. Nevertheless, 
many studies have confirmed gadolinium retention in deep 
brain structures, especially in the GP and DN and recently 
in the cerebral cortex. It has been proved that, due to their 
biochemical structure, linear nonionic GBCAs demonstrate 
the greatest susceptibility to dechelation. Therefore, they 
are responsible for most gadolinium retention in the CNS. 
On the other hand, histopathological studies have indicated 
that macrocyclic GBCAs are likewise accumulated in brain 
tissues but in significantly lower concentrations, which may 
explain why after repeated macrocyclic GBCAs administra-
tion, no intensity change in MRI has been observed.  

Based on this study, the European Medicines Agency has 
published restrictions on the use of linear gadolinium agents 
in body scans. As a result, the marketing authorisations for 
intravenous linear agents other than gadoxetic acid and 
gadobenic acid have been suspended in the European Union. 
Macrocyclic agents were recommended due to their greater 
stability and lesser tendency to gadolinium release. Health-
care professionals should only use gadolinium contrast agents 
when necessary, and with the lowest agent dose possible [99]. 

This suspension, and the possible toxicity of GBCAs, 
has led to an intensification of studies into alternative 
CE-imaging methods and contrast agents. The most highly 
exposed group of neurological patients to the adverse effects 
of GBCAs are MS patients because of the need for frequent 
MRI check-ups to assess disease activity. Future research 
should aim to determine whether taking into account ad-
ditional features of MS pathogenesis elucidated by NC-MRI 
techniques can increase the accuracy of MS diagnosis. 

The unclear effects of the toxicity of gadolinium re-
tention in the brain structures and the lack of dependable 
neurological symptoms occurrence, and long-term risk 
data, should propel healthcare professionals into a thorough 
analysis of the risk/benefits ratio of GBCAs administration, 
especially in patients exposed to repeated contrast agent 
administration. We recommend the scientific literature be 
monitored in terms of subsequent publications on GBCAs, 
and their potential substitution by alternative agents or 
diagnostic methods.

Acknowledgments: The authors thank Professor Jerzy Walecki 
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