
A primer on understanding Google Earth Engine APIs
Rui S. Reisab, Nuno Datiaab, M. P. M. Patobc

aISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa
bNovaLincs, FCT – Universidade Nova de Lisboa

cInstituto de Biofı́sica e Engenharia Biomédica, FC-UL
ruisreis@hotmail.com {datia,mpato}@deetc.isel.pt

Abstract— This article introduces the rationale behind the
usage of the Google Earth Engine, and the advantages it offers,
as an alternative to handle large volumes of georeferenced data
using the existing tools we know as Geographic Information
Systems on premises.

Google Earth Engine is an efficient development framework
that presents itself in two basic flavors: one online integrated
development environment which uses the browser JavaScript’s
engine; and two APIs that can be deployed on either a Python
or a NodeJS environment.

After presenting a limited number of use cases, representative
of the Google Earth Engine design patterns, and building a
prototype class using both variants, we conclude that both
platforms are merely proxy APIs to the Google Earth Engine and
do not have any measurable performance difference. However,
since they run on fundamentally diverse contexts — a JavaScript’s
engine on an internet browser, that integrates seamlessly with
Google Maps, and a Python environment — it is argued that
their utility depends on the user requirements instead of being
true alternatives.

Keywords: Google Earth Engine, Javascript, Python,
Code Editor, Georeferenced Data, Multi-spectral Data.

I. INTRODUCTION

Google Earth Engine [1] (GEE) is, primarily, a distributed
parallel computing platform. It is designed around a functional
language pattern, even though supported on an object model,
and a map - reduce [2] distributed workload paradigm.

Leveraging the sheer computing power delivered by the
Google infrastructure and a multi petabyte georeferenced data
repository, GEE is an efficient development framework to
handle all tasks related with selecting, computing calculations
and displaying georeferenced data.

A. Georeferenced data

Working with georeferenced data is a grueling task consid-
ering the large volumes of information, the complexity and
diversity of storage formats.

Using, as an example, remote sensing multi-spectral data
gathered by instruments on board of satellites, it is easy
to understand the complexity of obtaining, interpreting and
making calculations using this kind of data:

• Multi-spectral data is arranged in bands that store the
reflectance measurements on a range of wavelengths. For
instance, the Level-1C instrument’s aboard the Sentinel
2 [3] constellation read 13 reflectance bands and 3
additional data quality bands. For the Sentinel 2 each

coordinate, a pair longitude and latitude values, represents
a 10m2 area and is associated to a vector of 16 values,
one for each of the reflectance and quality bands;

• This data is organized using a set of rules that are, gen-
erally, specific to each satellite. Seldom an interpretation
layer must be used to transform the source format to one
of the standard (or “de facto”) file formats, so that it can
be used by one of the existing libraries (e.g. GDAL [4]);

• The calculations require a lot of resources for storing
and processing. Until recently, many researchers opted
almost exclusively to use calculated products, which are
datasets with multi-spectral calculated data, mostly in the
form of indices, like NDVI [5]. These were published
by organizations (profitable or not) like Copernicus1 or
VITO2, and the availability of these datasets is delayed
in time, considering the actual date of retrieval;

• The usage of calculated products might reduce the com-
plexity of the data, for instance a NDVI dataset has a
single value for each coordinate, but the information
volume is still very large. If we take a single day of
data for a 3.245km2 area in Portugal of NDVI gathered
by the Proba-V [6] instruments, where each coordinate
represents a 300m2 area, we will get an approximately
1Gb [7] GeoTIFF [8] file.

However, besides the storage requirements, to make addi-
tional calculations on this data, an adequate tool must be used.
Consider using, for example, the GDAL [4] library embedded
in an integrated Geographical Information System (GIS) tool,
QGIS [9]. Using this on premises3 setup, and the NDVI dataset
described previously, the calculation of the arithmetic average
of the NDVI value, on every coordinate, for two approximate
areas of 300km2 and 170km2, took close to 5 minutes (using
a computer with an Intel Core i5-6200U, 8Gb RAM and a
256Gb SSD) [7].

The multi-spectral data is very sensitive to the presence
of clouds and atmospheric aerosols. This means that multi-
spectral data is potentially sparse due to the varying weather
conditions and pollution. Methods like Maximum Value Com-
posite [10], that require handling several of the previously
described datasets, in order to obtain significant NDVI values,
will require even larger amounts of storage and computing
resources [7].

1https://www.copernicus.eu/en
2https://vito.be/en
3The software is installed and runs on computers on the premises of the

person or organization using the software, rather than at a remote facility.

i-ETC: ISEL Academic Journal of Electronics,
Telecommunications and Computers
 Vol. 6 , n. 1 (2020) ID-4

http://journals.isel.pt

https://www.copernicus.eu/en
https://vito.be/en

So, the main challenges to handle remote sensing multi-
spectral data are:

• The quantity of storage resources needed;
• The data transformation into convenient formats; and
• The computing power to enable efficient calculations on

these significant volumes of complex data.

B. Google Earth Engine

The GEE is a recent Cloud platform built to handle large
volumes of georeferenced data, using Google’s storage and
computational resources.

It tackles the challenge of understanding the complex orga-
nization of remote sensing data, while unifying its representa-
tion around a set of common formats supported by the API4.
This data is stored in a large database that contains some static
datasets but, most importantly, live datasets, from sources that
produce new data periodically, which are ingested by GEE on
a regular basis, namely remote sensing multi-spectral satellite
data.

In short, the repository contains, to date, a catalog of
some 600 datasets from 50 different sources (devices and
organizations) [11]. Remote sensing data is gathered from
30 satellites, or satellite constellations. All this, according to
Google [12], represented a volume of more than 20PB5 in
2018.

The API exposes an extensive set of operations that can be
used to explore the public repository or other user defined
datasets, that are kept in a private assets area. There is a
common set of objects that structure vector based data and
georeferenced bitmaps which are organized in the repository as
collections. Most functions work on these collections: filtering,
sorting and computing calculations over their data. Primitive
data types (e.g. numbers, strings, etc...) and sets (e.g. lists,
dictionaries, etc...) are also supported by the API.

The paradigm is fully functional, since a call to GEE is
self contained, but it’s built around a set of objects that wrap
each of the data types, and expose methods that operate
on them. The main development environment is the Code
Editor, which is a browser based tool that interacts with GEE
platform using the JavaScript’s engine and is able to use
other Cloud based tools from Google, especially Google Maps
and Google Charts. This technology mix makes it a valuable
tool whenever user interaction with a rich visual interface is
needed, specifically map overlays and prototyping.

GEE can expose applications using, what is called, Earth
Engine Applications6. However, GEE also exposes an API
using Python or NodeJS libraries7 that leverage the develop-
ment of applications that do not fully depend on the Google
infrastructure and leapfrog some of the difficulties of using the
browser based Code Editor, which will be addressed further.

4Application Programming Interface
51PB ≡ 250bytes
6More information can be found at https://www.earthengine.

app/
7At the time of writing, GEE is on the verge of a major update. It is not

clear if the NodeJS is still a priority.

All of these are particularly important given the fact that
Google states, “Earth Engine is not subject to any Service-
Level Agreement (SLA) or deprecation policy” [13], which
might force the developer to use asynchronous resubmitting
strategies to properly make use of GEE.

This article was wrote based on the experience of using the
GEE framework as a development platform [7]. It will pinpoint
the challenges of using Code Editor, as well as the advantages
of making use of it to produce eye catching visual information,
and the quick development of prototypes, as opposed to using
the Python library to leverage the usage of GEE in a rich
development environment8.

C. Motivation

The learning curve of GEE began with exploring the Code
Editor and the JavaScript API in a particular use case sce-
nario [7].

Several issues aroused while using the Code Editor, but two
were prominent:

• The complexity of cross domain scripts that include, in
the same control flow, both local and distributed processes
and data structures;

• The need to extract data that might be used in other
applications (e.g. Microsoft Excel) in such a way that the
whole process could be streamlined and automated.

It soon became clear that Code Editor is a valuable tool
to produce maps and overlays that might be used to illustrate
results obtained, using georeferenced data, but clearly inade-
quate to integrate GEE data or functionality in more elaborate
scenarios.

Even though the Code Editor is a comprehensive tool
that is adequate to explore the framework and interact with
the Google Cloud applications ecosystem, there are some
obstacles using GEE in some use cases, specially those that
require the extraction of information to be reused over time:

• The execution of long running tasks in the browser’s
environment does not allow a proper progress notification
system, the console output is integrated in the graphical
user interface and there is no way to integrate the ex-
ecution path with another control flow, namely using a
callback mechanism;

• The browser’s JavaScript engine does not distinguish
between a badly written piece of code and a proper long
running process, which results in the user being prompted
to confirm if the execution should be aborted;

• Finally, and most important, the data extraction using
the browser is challenging, and it’s integration in a data
flow isn’t feasible, though the platform supports batch
processes that can persist data using Cloud storage (e.g.
Google Drive or Google Cloud).

There is also the issue of concurrency. Sometimes it is
necessary to harness the temporary unavailability of storage
and processing quota due to concurrency issues between users’
processes. In Code Editor it is not easy to control this behavior,

8Google recently has announced a third path, the Colaboratory hosted
Jupyter Notebooks which inherently uses Python.

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

https://www.earthengine.app/
https://www.earthengine.app/

specially while interacting with Google Maps. So, whenever
the platform fails to respond to user queries, or the user quota
is exhausted, an exception is thrown and handled by the Code
Editor and thus the process control flow is interrupted.

Though somewhat over simplifying, we can state that using
the Python API obviates most of this issues, but loses the
benefits of integrating with Google Maps.

Google made an effort to keep both APIs syntactically
equivalent [14]. Most differences are related to the grammar
of each supporting language, JavaScript and Python, but the
bottom line is that they are inherently similar.

D. Testing environment

In the next sections we will browse some of the main GEE
API concepts in order to provide insights on this framework.

To use GEE the user must have a Google account and
request access to the platform9.

The Code Editor does not require any additional setup.
Using the internet browser, after being authenticated using the
Google account, the user navigates to the site using a URL10.

Using the Python environment requires some additional
steps [14] that include the installation of the Python package
earthengine-api.

All experiments were performed using the Google Chrome
browser (version 81.0.4044.122) to access the Code Editor,
and a Python environment (version 3.7.6, 64 bit) including the
GEE earthengine-api package (version 0.1.219). The host was
a computer running Microsoft Windows 10 Enterprise (version
1709, build 16299.1686), using an Intel Core i7-8550U CPU,
16Gb RAM and a 500Gb SSD.

E. Organization

The rest of the paper is organized as follows: Section 2
will elaborate on the several issues faced during the previous
work that led to the usage of both the Code Editor and
the Python API in different scenarios. In this section we
also exemplify a few design patterns of the GEE, common
to all APIs, and explain the interaction between the local
development environment and the remote GEE. In order to
demonstrate all these caveats, in section 3 we introduce two
simple implementations of a same class interface using both
environments. Section 4 presents the conclusions of this work.

II. BASIC CONCEPTS

GEE is a distributed parallel computing platform dedicated
to store and process georeferenced data, which explores the
most adequate programming paradigms to handle very large
volumes of data. Each operation is mostly self contained in a
functional paradigm pattern, and parallelism is implemented
via map-reduce [2] mechanism.

Both development environments, JavaScript and Python,
make an effort to hide the complexity of the object model
and underlying processes.

9https://signup.earthengine.google.com/
10https://code.earthengine.google.com/

This section is not supposed to be a GEE reference guide,
neither a tutorial. It is, instead, an overview of the API,
highlighting its most relevant patterns and data organization
structures. Each different aspect we wish to highlight uses an
object of the GEE model to be used as a showcase.

Though both APIs are almost syntactically equivalent,
all the following use cases will be presented using the
Python environment stressing the differences whenever they
occur. Nonetheless, the GEE user guide singles out some
differences[14] (see Table I).

TABLE I: Some common syntax differences between
JavaScript and Python (source GEE user guide).

Description JavaScript Python

Function definition function fun(){} def fun():

Variable definition var a = ”value” a = ”value”

Logical operators and()
or()
not()

And()
Or()
Not()

Multi-line method chain fa()
.fb()
.fc();

fa()\
.fb()\
.fc()

Dictionary keys {“key”: “value”}
or
{key: “value”}

{“key” : ”value”}

Boolean true
false

True
False

Null values null None

Comment \\ #

In both environments, GEE objects are referenced through
an ee namespace, using a dot notation. In CodeEditor it is
implicit and points to an existing object that supports the
API, while in Python it references a package explicitly using
import ee.

A. Initializing GEE

Any interaction with GEE will have to be preceded by
the establishment of a secure context which will provide user
authentication and session data.

A Python application that uses GEE will always have
to include, beforehand, the call in Listing 1 in order to
authenticate the user and establish a connection to the GEE
platform.

Listing 1: GEE session initialization.

import ee
ee.Initialize()

This is a major difference compared to using JavaScript in
the Code Editor. The Code Editor is a Google integrated Cloud

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

https://signup.earthengine.google.com/
https://code.earthengine.google.com/

application, the user authentication an initialization procedures
are transparent.

B. Primitive types - handling numbers

This section will address the number data type, but most
considerations will apply to other GEE primitive type wrap-
pers.

The ee.Number object encapsulates a numeric value and
exposes a set of functions that act upon it.

For instance, let’s consider the encapsulation of the PI
constant. One could represent the value of PI using a GEE
object and keep it in a variable number. By the way, we could
also represent the calculation of the cosine of this value, by
setting a variable called cosine (see Listing 2).

Notice the symbolic nature of both variables, stressing
that, at the local Python environment (or for this matter,
JavaScript), they are only JavaScript Object Notation (JSON)
representations that maybe used to compose complex GEE
operations, with no intrinsic value. It is this representation
that will be submitted to the GEE for execution.

Listing 2: Cosine calculation of the PI constant in GEE using
ee.Number

import math
number=ee.Number(math.pi)
cosine=number.cos()
print(cosine)

ee.Number({
"type": "Invocation",
"arguments": { "input": 3.141592653589793 },
"functionName": "Number.cos"

})

In this section, whenever print() is used to output a
result to the console, the code listings will be divided in
two regions, split by a single line: the top region contains
the Python code; the bottom region reflects the output to the
console.

Printing the content of the cosine variable does not trigger
any call to the GEE platform. From the generated output, it
is self explanatory that the variable contains GEE’s internal
representation of a call to a cos function using, as single
parameter, the numeric constant.

Every object in GEE exposes a getInfo() method.
Whenever this is called on an instance of a given object, the
representation contained at the local environment is submitted
to GEE, for evaluation, and the result is returned to the caller
in the form of a JSON encoded object (see Listing 3).

Listing 3: Executing and obtaining the value of cosine in
GEE

result=coseno.getInfo()
print(result)

-1.0

Note that result contains a Python native object that is
the result of the evaluation of the representation contained in
cosine on the GEE platform, that is, cos(π) = −1.

In short, at the local environment level, representations
of GEE can be composed to translate increasingly complex
operations. The execution and evaluation of these operations
occurs in the GEE platform explicitly when getInfo(),
or some other function with similar behavior, are invoked,
returning the operation result as a JSON encoded object.

C. Non primitive types - encoding dates

A calendar date is wrapped by an ee.Date object, which
also exposes some functions that act upon it. One of these
functions, fromYMD(), acts as a constructor and encodes a
timestamp given its year, month and day numeric representa-
tions.

Listing 4, once again, underlines the symbolic proxy nature
of the GEE object representation in the local Python environ-
ment.

Listing 4: Setting a date in variable today

today=ee.Date.fromYMD(2019,5,4)
print(today)

ee.Date({
"type": "Invocation",
"arguments": {"year": 2019, "month": 5, "day": 4
},
"functionName": "Date.fromYMD"

})

Using the advance() function, varying the offset param-
eter, it is possible to represent yesterday and tomorrow
(see Listing 5).

Listing 5: Setting variables yesterday and tomorrow.

yesterday=today.advance(-1,"day")
tomorrow=today.advance(1,"day")
print(tomorrow)

ee.Date({
"type": "Invocation",
"arguments": {
"date": {

"type": "Invocation",
"arguments": { "year": 2019, "month": 5, "day"

: 4 },
"functionName": "Date.fromYMD"

},
"delta": 1,
"unit": "day"

},
"functionName": "Date.advance"

})

Evaluating the variable tomorrow (see Listing 6), using
getInfo(), the operation result value is returned.

Listing 6: Evaluating tomorrow

print(tomorrow.getInfo())

{’type’: ’Date’, ’value’: 1557014400000}

The result of an ee.Date object does not translate to a
primitive local timestamp, instead a dictionary is returned that
contains the numeric value that translates to the number of
milliseconds since midnight of the first of January 1970, also
known as an Unix epoch.

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

D. Distribute using map operations - Lists

Lists are encapsulated in ee.List objects. Consider the
representation of a list containing the previous three timestamp
variables in Listing 7.

Listing 7: List dates

dates = ee.List([yesterday, today, tomorrow])

Exploring parallel processing, the workload could be dis-
tributed using the map-reduce paradigm. All objects that
support iteration, including ee.List, expose a map function
which has a single parameter, that will be a reference to
another function, which has a specific set of features: (i) it
will accept the item to process as parameter; (ii) returns the
result of the process; (iii) must be self contained in the sense
that it may not depend on anything that is not in the local
scope of the function.

So, consider the function mapper() in Listing 8, built
around these constraints. Note that it receives element as a
single parameter. It does not have the context of the parameter
type, so casting will be necessary. Finally it returns the
numeric representation of the day.

This last particular feature is important to illustrate that the
data type of the result of the map function might be different
from the elements in dates. In this case, originally, the list
has ee.Date members and the mapper function returns ee
.Number instances.

Listing 8: A parallel processing map function.

def mapper(element):
return ee.Date(element).get("day")

distribute=dates.map(mapper)

Note that distribute is just a representation at the local
level. In order to process the implicit operation and obtain the
result, getInfo() might be used (see Listing 9) to obtain
the evaluated list.

Listing 9: Result of distribute evaluation.

print(distribute.getInfo())

[3, 4, 5]

E. Reducing and aggregating - using image collections

Georeferenced bitmaps11 are kept in GEE using collections
ee.ImageCollection of images ee.Image which, in
turn, may either translate to a single image or sets of multi-
spectral bands. Those that are stored in the GEE repository
are singled out by unique string identifiers.

Images might contain more than a set of values for each rep-
resented coordinate. These values can be part of calculations
using discrete or aggregation operations. The calculation may
affect a single coordinate or all of them. All these operations
are gathered around the concept of “band math” [15] in GEE.

11Also know as raster images

Aggregation operation’s parallelism and distribution are
supported on reducers.

Demonstrating this feature, consider Listing 10 which filters
Sentinel 2 [3] data, for the month of May 2019, bounded by
the portuguese mainland geometry and excluding all images
obscured by more than 20% of clouds.

Listing 10: Reducer operation on a given region.

images=ee.ImageCollection("COPERNICUS/S2")\
.filterDate("2019-05-01", "2019-05-31")\
.filterBounds(portugal.geometry())\
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",

20))
band1=images\

.first()\

.select("B4")
print(band1.reduceRegion(reducer=ee.Reducer.minMax()

,\
geometry=portugal.

geometry(),\
scale=10,\
maxPixels=1e9).getInfo())

{’B4_max’: 6186, ’B4_min’: 392}

The variable band1 represents the eldest image (first in the
collection), the band “B4” contains the reflectance values for
the red wave length. The reducer obtains the minimum and
maximum values observed in the set of coordinates bounded
by the geometry of the portuguese mainland, using a scale of
10m2, capped by a maximum of 109 coordinates.

Another perspective is to aggregate values across a set
of bands to compute another band. The aggregate operation
acts on every set of values in the scope of each coordinate
(see Listing 11), resulting in a new set of values as a band.

Listing 11: Reducer operation resulting in a band.

band2=images\
.select("B4")\
.reduce(ee.Reducer.median())

print(band2.getInfo())

{’type’: ’Image’
,’bands’: [{’id’: ’B4_median’
,’data_type’: {’type’: ’PixelType’

,’precision’: ’double’
,’min’: 0.0
,’max’: 65535.0}

,’crs’: ’EPSG:4326’,
’crs_transform’: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0]}]}

In this case, GEE uses some syntactic sugar [16] that eases
the burden of writing the whole expression. reduce(ee.
Reducer.median()) can be rewritten simply median().

Also note that the result of Listing 11 is a single band,
named after the original band concatenated with the reducer
name, in this case “B4 median”.

III. BUILDING A COMPARISON PROTOTYPE

The main objective is to distinguish between:
• The Code Editor which is an integrated development

environment, internet browser based, that uses JavaScript
as the support language; and

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

• A Python local development environment using the GEE
API package.

So, more than just comparing two APIs, this section will
differentiate two development platforms.

Note that there is not a proper efficiency measure between
both platforms. The only true difference, that can be discarded
for this matter, is the overhead of the local processing. In the
case of the Code Editor it would be difficult to single out the
performance of a script running in the context of the internet
browser without proper instrumentation of the code. Let’s keep
in mind that the relevant processing, and thus the performance
indicators, depend totally on the Google’s infrastructure.

Fig. 1: Sample of the GEE Code Editor profiler after running
a script

Even though it does not make sense to benchmark any of
these scenarios, there is a profiling tool in the Code Editor
that may give us some insight on the usage of the Google’s
infrastructure for a specific script execution, regarding user
processing and memory quota. See Figure 1 for an illustration
of the profiler output after executing a script in Code Editor.

In Figure 1, the columns represent:(i) The “compute” cost of
the operation; (ii) the “peak mem[ory]” usage of the operation;
(iii) the “count” of running instances of the operation; and
finally (iii) the “description” of the operation.

A. The prototype class

A prototype class, named Territory, was designed so
that the difference between both support languages, using the
same feature set, can be exemplified. The structure of the
Territory class is show in Figure 2.

This class will wrap partial access to a dataset of the
territory boundaries of countries and regions which exists in
the GEE repository12.

The following features will be provided: (i) a list of all coun-
try codes contained in the dataset by using the countries
method; (ii) a list of all regions13 in the database for a given
country code, implemented by the regions method; finally

12Specifically the LSIB: Large Scale International Boundary Polygons,
Simplified published by the United States Department of State

13The concept of region is prone to be equivocal. For instance, in Portugal
the dataset establishes three regions: mainland, Madeira and Azores.

(iii) the geometry of the boundaries for a given region return-
ing a ee.Geometry representation, using the geometry
method.

Fig. 2: Unified Modeling Language (UML) class diagram for
the Territory class

Listing 12: Territory class implemented using JavaScript

exports.Territory = function()
{

var me = {
REGION_FIELD: "country_na",
COUNTRY_FIELD: "country_co",
db: ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017

"),
countries: function()
{

var operation = this.db
.iterate(this.foreach_record(this.

COUNTRY_FIELD), ee.List([]));
return operation
.getInfo();

},
regions: function(country)
{

var operation = this.db
.filter(ee.Filter.eq(this.COUNTRY_FIELD,

country))
.iterate(
this.foreach_record(this.REGION_FIELD),
ee.List([]));

return operation
.getInfo();

},
geometry: function(country, region)
{

var operation = this.db
.filter(
ee.Filter.and(
ee.Filter.eq(this.COUNTRY_FIELD, country),
ee.Filter.eq(this.REGION_FIELD, region)));

return operation;
},
foreach_record: function(field) {

return function(record, list)
{
return ee.List(list)
.add(record.get(field))

}
}

}

return me;
}

Note that the first two methods will return native repre-
sentations of a list of strings as defined in each of the APIs
support languages but the latter will return a JSON proxy

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

representation of an ee.FeatureCollection object (see
Listing 2 and Listing 3 to illustrate the distinction).

There is also a conceptual gap between the UML class dia-
gram and the implementation using both supporting languages.
Neither one supports the visibility scope, and the private
members cannot be strictly enforced using the JavaScript’s
syntax (see the implementation in Listing 12).

The visibility scope is only supported partially, but not
constrained, in Pyhton using the double underscore notation
convention (see Listing 13).

Listing 13: Territory class implemented using Python

import ee

class Territory:
REGION_FIELD = "country_na"
COUNTRY_FIELD = "country_co"

@property
def db(self):

return ee.FeatureCollection("USDOS/LSIB_SIMPLE
/2017")

def countries(self):
operation = self.db\

.iterate(self.__foreach_record(self.
COUNTRY_FIELD), ee.List([]))

return operation\
.getInfo()

def regions(self, country):
operation = self.db\

.filter(ee.Filter.eq(self.COUNTRY_FIELD,
country))\

.iterate(self.__foreach_record(self.
REGION_FIELD), ee.List([]))

return operation\
.getInfo()

def geometry(self, country, region):
operation = self.db\

.filter(\
ee.Filter.And(\

ee.Filter.eq(self.COUNTRY_FIELD, country)
,\

ee.Filter.eq(self.REGION_FIELD, region)))
return operation

def __foreach_record(self, field):
def __iterator(record, list):

return ee.List(list).add(record.get(field))
return __iterator

The iterator method works similarly to a map function
(see Listing 8), except it accepts a list and returns another list,
instead of a single element.

Observing both Listing 12 and Listing 13 it becomes clear
that the relevant differences occur due to the diverse syntactical
rules, but the object model is the same.

B. Referencing and reusing

In both environments a process was developed in order to
output both: the full listing of country codes and the list of
region names for Portugal.

To reuse the class in JavaScript one could include the class
definition in the same script but that would lead to repeat-
ing the same code whenever needed with all the associated

drawbacks. However, the JavaScript browser based platform
is well built and supports the development of reusable code by
enabling the linkage of libraries using two major syntactical
contributions to the JavaScript grammar: (i) a library script
maybe referenced using a function (named requires) which
has a single parameter, the location of the library file, in the
user’s code repository in the Code Editor; (ii) a predicate
(named export) which exposes JavaScript variables and
functions that will be referenced using the previous linked
library.

For instance, considering a script named bar that imple-
ments a function named baz:

export.baz = function()...

A client script would use this library using:
foo = requires("bar")
foo.baz()

In Listing 12 the primitive export is used to expose the
Territory class, while in Listing 14 the reference to a
file is done using the function require. The return for this
function will be a reference to the file kept in a lib variable.
The reference to the Territory class is then possible by
prefixing it with the lib variable.

Assuming the class in Listing 12 is placed in a file named
Territory, in the user private assets in the Code Editor (named
users/geeprimer/lib), the main function will be implemented
using the script in Listing 14.

Listing 14: Main process script in JavaScript

var lib = require("users/geeprimer/lib:Territory");

function main()
{

print("Starting...");
var territories = new lib.Territory();

print("Obtaining country codes:");
var countries = territories.countries();
print(countries);

print("Obtaining Portugal’s regions:");
var regions = territories.regions("PO");
print(regions);

}

main();

The same behavior in Python uses the builtin constructs.
This sets a first meaningful difference between both APIs (see
Listing 15).

Suppose the class in Listing 13 is placed in a file named
territory.py in the same path as Listing 15, the main function
will be implemented using the script in Listing 15. The same
behavior might be extended to the standard packaging model
used by Python developing new modules.

Another relevant difference, already described in section II,
is the need in Python to use the initialization procedure that
is implicit when using JavaScript in the Code Editor.

Listing 15: Main process script in Python

import ee
from territory import Territory

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

def main():
print("Starting...")
ee.Initialize()
territories = Territory()

print("Obtaining country codes:")
countries = territories.countries()
print(countries)

print("Obtaining Portugal’s regions:")
regions = territories.regions("PO")
print(regions)

main()

C. Console output and execution flow

Both APIs implement a console to support basic user
interaction. The main script process uses the console to present
the user with two human readable lists: one corresponding
to the country codes; and another with the region names for
Portugal’s territorial boundaries. A function print, with the
same syntax in both languages, is used to output text to the
console.

Fig. 3: Console output of the main script execution in a Python
environment.

The output console in Python is the standard output stream
(see Figure 3). Each of the print calls is presented, in-
crementally, to the user as soon as the data is available and
the process flow maybe interrupted without losing the output
already produced (neither the execution context).

Also note that both Territory class methods used
(countries and regions) return the GEE operation result
by using getInfo() (see Listing 13). In Python this is
essential to evaluate the operation result in GEE as shown
in Listing 2 and Listing 3.

The Code Editor lives in a HTML document context and
the user console is rendered as a HTML object (see Figure 4).

The Code Editor behavior is quite different from the
Python’s standard approach: (i) the console output is rendered
once at the end of the script execution, it does not behave
incrementally like a regular text console; (ii) if the process
is interrupted all the execution context and console output are

Fig. 4: Console output of the main script execution in the Code
Editor.

lost, and during the script execution there is no way to present
the user with any kind of progress information; and (iii) the
output is rendered using presentation rules that are adequate to
a rich graphical user interface (note the expanded panel which
exposes the region names list output in Figure 4).

These behavioral differences are mostly visual and are side-
effects of a deeper distinction between running the same script
using a Python environment and the JavaScript’s engine on
the internet browser: (i) there is no difference to the internet
browser’s Javascript engine between a long running script and
a poorly written snippet of JavaScript code, the protection
mechanism will prompt the user if the process takes too
long to execute; and (ii) controlling the execution flow and
recovering from a timeout error is challenging because the
script is executing in a single blocking shared thread.

Finally the Code Editor makes some assumptions concern-
ing the use of the print function. If the Territory class
methods countries and regions are modified so that the
return value (see Listing 12) is the operation instead of
using operation.getInfo(), the content of the console
in Code Editor would be the same as the one shown in
Figure 4. What happens is that the Code Editor assumes that
the user wants to dump the operation value instead of its JSON
representation and implicitly uses the getInfo() method.
This happens whenever a GEE object is passed to the print
function.

However, it must be highlighted that this assumption is
related to the console output in the Code Editor. The cor-
rect implementation of the Territory class is the one in
Listing 12.

D. Extracting data

One of the most challenging issues related to using the Code
Editor is the way it provides functionality to generate data
that can be reused by other processes or integrated in a proper
workflow.

There is an Export object that supports exporting data to
a Cloud based storage (either Google Drive or Google Cloud
Storage) or to the assets folder of the GEE user in the Code
Editor. It is possible to persist data in the form of an image,
a video (sequence of images) or a collection of georeferenced
data using a set of standard formats like Comma Separated
Files (CSV) or other dedicated formats like GeoJSON.

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

In the Code Editor, the procedure begins with creating an
export task using the Export object (see Listing 16).

Listing 16: Creating an export task in Code Editor

var lib = require("users/geeprimer/lib:Territory");

function extract()
{
var territories = new lib.Territory();
Export.table.toDrive(

{collection:territories.db,
description:"ExportRegions",
selectors: [

territories.COUNTRY_FIELD,
territories.REGION_FIELD]});

}

extract();

Once created, the new task will be presented in the “Tasks”
list in the user interface (see Figure 5).

Fig. 5: Tasks list in the Code Editor showing the newly created
task.

When the user starts the task, using the “Run” button, a
dialog is presented where the original settings for the export
task maybe redefined (see Figure 6). Pressing the “Run” button
in the dialog the task will be started.

Fig. 6: Tasks list in the Code Editor showing the newly created
task.

In this case, once generated, a CSV file with two columns
with all the country code and corresponding regions’ names
will be written to the user’s Google Drive.

Even though this process makes sense to most users, whom
usage requirements are fulfilled by the Code Editor, it isn’t
easy to integrate it in a process workflow neither is it practical
to extract data to be used by other systems. Note that, in the
example, the user interaction is needed for the process to be
executed.

If the same data was to be part of an execution flow, the
script in Listing 17 would extract the same data in a data
variable, that could then be used as the input to some other
function in Python.

Listing 17: Extracting the same data using Python

import ee
from territory import Territory

def extract():
ee.Initialize()
territories = Territory()

data = territories\
.db\
.select(

[territories.COUNTRY_FIELD,
territories.REGION_FIELD],
None,
False)\

.getInfo()

return [feature["properties"] for feature in data[
"features"]]

data = extract()

Note that, if the requirement is to generate a file with some
kind of standard format, that could then be reused in a data
flow, the resulting structure kept in the data variable could
now be stored in a file using one of the many libraries in
Python, for instance a “Pickle” file [17].

Listing 18: Creating an export task in Python

import ee
from territory import Territory

def extract():
ee.Initialize()
territories = Territory()

return ee.batch.Export.table.toDrive(
collection=territories.db,
description="ExportRegions",
selectors=[

territories.COUNTRY_FIELD,
territories.REGION_FIELD])

task = extract()
Execute the task
task.start()
The execution status of the task
task.status()

{’state’: ’READY’,
’description’: ’ExportRegions’,
’creation_timestamp_ms’: 1587978085189,
’update_timestamp_ms’: 1587978085189,
’start_timestamp_ms’: 0,
’task_type’: ’EXPORT_FEATURES’,
’id’: ’TNMJECYKYC6AXMMQ2INHXAOD’,
’name’: ’projects/earthengine-legacy/operations/

TNMJECYKYC6AXMMQ2INHXAOD’}

Export tasks, like the example in Listing 16, might be of
use in some other integration schemes: (i) some of the datasets
generated by a GEE process can be considerably large and it
would be inefficient, and sometimes impractical, to reuse using
the Python API to serve as an intermediate input to some other
process; (ii) a dataset resulting from a GEE application can
have a single objective to be another item in the user assets
in the GEE repository which might be reused by the user
in other GEE processes or shared with other GEE users; or
(iii) a prototype designed in the Code Editor may not have

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

any other objective other than generate a file to be delivered
to a compatible Cloud storage.

While Listing 18 reproduces the same export task that was
created in the Code Editor (see Listing 16), there are, however,
two differences: (i) the export task is triggered by a call to
task.start; and (ii) the execution status can be obtained
by calling task.status.

The Python API fully supports the export tasks feature and
allows a GEE application to implement asynchronous batch
processes.

E. Imagery

The Google Maps platform is part of the user interface of
the Code Editor and it is fully integrated. Points, lines and
polygons maybe drawn directly in the Google Maps pane,
and imported to a script, creating variables that describe the
geometry drawn by the user.

Using JavaScript it is also possible to render georeferenced
bitmaps or geometries (set of vectors) as layers in the Google
Maps interface.

Listing 19: Render the territorial boundaries of Portugal’s
mainland as a layer in Google Maps using JavaScript

var lib = require("users/geeprimer/lib:Territory");

function overlay()
{
var territories = new lib.Territory();
var mainland = territories.geometry("PO", "

Portugal");
Map.centerObject(mainland);
Map.addLayer(mainland, {color: "blue"}, "Portugal’

s mainland", true);
}

overlay();

Consider the script in Listing 19, it will draw a layer in
the Google Maps pane with the territorial boundaries of the
Portuguese mainland. The geometry is drawn in blue and the
result would be similar to the one in Figure 7.

Fig. 7: Google maps pane in the Code Editor showing Portu-
gal’s mainland boundaries in blue.

Reproducing the same using the Python environment is not
possible because there is no integration with Google Maps
which is an internet browser based tool.

However, it is possible to draw just the Portugal’s mainland
boundaries using the script in Listing 20.

Using the URL representation in url, an internet browser
may be used to visualize the image or the resource referenced
by the URL, and maybe streamed into a local file using a
standard Python library.

Listing 20: Draw the territorial boundaries of Portugal’s main-
land in a bitmap and obtain it’s URL using Python

import ee
from territory import Territory

def overlay():
ee.Initialize()
territories = Territory()

geometry = territories\
.geometry("PO", "Portugal")

image = geometry\
.draw("blue")\
.getThumbURL(

{"dimensions":"1024x768",\
"region": geometry\
.geometry()\
.bounds()\
.getInfo(),\

"format": "png"})

return image

url = overlay()

However, if we observe the generated image, it is noticeable
that it is skewed and distorted. This apparent anomaly is the
result of drawing the geometry projected in a flat surface
instead of the Earth’s surface. The rendering of this data has
to consider a reference system and geodetic datum [18], in
order to make sense. To overcome this issue, we would have
to use more features out of the API scope.

One option would be to use Google Colaboratory [14],
which is a browser based interface that runs in the context
of a remote Python environment. It can be used to support a
small number of features similar to Google Maps.

In short, the distinction between both platforms is summa-
rized in Table II.

TABLE II: Summary of the main differences between the
JavaScript in the Code Editor environment and using the API
in a Python environment.

JavaScript
Code Editor

Python

Internet browser based tool,
no deployment or setup
needed.

There is a setup process that
the user must follow in order
to use the API.

Authentication and initial-
ization are transparent to the
user

Prior to using GEE, a ini-
tialization step is always
needed.

Code libraries can be used
using dedicated grammar
contributions and the Code
Editor code repository

Builtin constructs used to
import packages and code
is organized using Python’s
standard rules.

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

Table II (continued)

JavaScript
Code Editor

Python

The console is presented to
the user only at the end of
the script. If interrupted, the
whole context of the execu-
tion, up to then, is lost.

The console is a true char-
acter stream. The execution
context, if the flow is inter-
rupted, is kept.

Data may be extracted in
the form of files, in batch
processing, and requires hu-
man interaction. The sup-
ported formats are limited.

Export task feature is fully
supported and can be trig-
gered, and monitored, us-
ing code. However, data can
be extracted using conven-
tional patterns and can be
streamed using other for-
mats supported by Python.

Program flow and error re-
covery is limited due to
the fact that the execution
environment is an internet
browser.

The interaction with GEE is
similar to any other API in
Python.

Integration with Google
Maps is tight, and produces
high quality imagery with
ease.

There is no limitation ob-
taining georeferenced data,
producing imagery requires
more effort when compared
to the Code Editor.

IV. CONCLUSION

GEE is a distributed processing platform, leveraged on
the Google infrastructure, and a multi petabyte repository of
georeferenced data, incrementally updated, presented to the
user through an unified object model that hides the complexity
of the sources, both supported on an API that is available
using either JavaScript or Python. The features GEE offers
significantly ease the burden of working with multi-spectral
data compared to a typical on premises use of GIS tools.

Some of the main platform concepts and design patterns
were illustrated with code samples that present an overall
perspective of the GEE as well as exposing some of the
syntactical and semantic differences between JavaScript and
Python APIs.

Any of the APIs developed by Google are merely proxies to
the GEE. The engine’s performance is not warrantied by any
SLA from Google, and is affected by the number of concurrent
users, and the usage level, at any time. Therefore, there is not
a meaningful execution time difference between the internet
browser hosted Code Editor and the Python API using a local
environment. The Code Editor has a profiling feature that
exposes an insight on the execution cost and memory usage
that is of limited utility for this matter.

A prototype was implemented, of a class interface, using
both JavaScript and Python. The prototype was used to
distinguish between all the unique features in the different
execution environments.

We conclude that, while the Code Editor is adequate to

prototype GEE applications that interact with Google Maps to
produce imagery and map overlays, the Python environment
API is more flexible and is able to integrate seamlessly in a
typical software architecture.

REFERENCES

[1] Noel Gorelick, Matt Hancher, Mike Dixon, Simon
Ilyushchenko, David Thau, and Rebecca Moore. Google
Earth Engine: Planetary-scale geospatial analysis for everyone.
Remote Sensing of Environment, 202:18–27, 2017.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’04: Sixth Symposium
on Operating System Design and Implementation, pages 137–
150, San Francisco, CA, 2004.

[3] ESA. Sentinel 2 user guide. https://earth.esa.int/
web/sentinel/user-guides/sentinel-2-msi,
2019. Accessed on 2020-04-25.

[4] GDAL. GDAL - geospatial data abstraction library. https:
//www.gdal.org/, 2019. Accessed on 2020-04-25.

[5] NASA. Measuring vegetation (NDVI & EVI). https:
//earthobservatory.nasa.gov/Features/
MeasuringVegetation/measuring_vegetation_
2.php, 2018. Accessed on 2020-04-25.

[6] Vito Remote Sensing. Product types - proba-v. http:
//proba-v.vgt.vito.be/en/product-types, 2019.
Accessed on 2020-04-25.

[7] Rui S. Reis, Célia Gouveia, Nuno Datia, and M. P. M. Pato.
Modelo preditivo de recuperação da vegetação afetada por
incêndios florestais. In INForum 2019 Atas do 11o Simpósio
de Informática, page 461–472. NOVA.FCT Editorial, 2019.

[8] OGC. OGC GeoTIFF standard. https://www.ogc.org/
standards/geotiff, 2020. Accessed on 2020-04-25.

[9] QGIS. QGIS. https://qgis.org/en/site/, 2019.
Accessed on 2020-04-25.

[10] Brent N Holben. Characteristics of maximum-value composite
images from temporal AVHRR data. International journal of
remote sensing, 7(11):1417–1434, 1986.

[11] Google. Earth Engine data catalog. https://developers.
google.com/earth-engine/datasets/, 2019. Ac-
cessed on 2020-04-25.

[12] Google. Share your analyses using Earth Engine apps.
https://medium.com/google-earth/share-
your-analyses-using-earth-engine-apps-
1ac29939903f, 2018. Accessed on 2020-04-25.

[13] Google. Earth Engine data catalog. https://developers.
google.com/earth-engine/, 2020. Accessed on 2020-
04-26.

[14] Google. Google Earth Engine guides, python instal-
lation. https://developers.google.com/earth-
engine/python_install, 2019. Accessed on 2020-04-
25.

[15] Google. Google Earth Engine guides, band math.
https://developers.google.com/earth-
engine/getstarted#band-math, 2020. [Online;
accessed 2020-01-15].

[16] P. J. Landin. The Mechanical Evaluation of Expressions. The
Computer Journal, 6(4):308–320, 01 1964.

[17] Python Software Foundation. pickle — Python object se-
rialization. https://docs.python.org/3/library/
pickle.html, 2019. [Online; accessed 2020-04-25].

[18] Wikipedia contributors. World Geodetic System — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/
w/index.php?title=World_Geodetic_System&
oldid=938668810", 2020. [Online; accessed 2020-02-03].

R. Reis et al. | i-ETC, Vol. 6, n. 1 (2020) ID-4

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://www.gdal.org/
https://www.gdal.org/
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
http://proba-v.vgt.vito.be/en/product-types
http://proba-v.vgt.vito.be/en/product-types
https://www.ogc.org/standards/geotiff
https://www.ogc.org/standards/geotiff
https://qgis.org/en/site/
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://medium.com/google-earth/share-your-analyses-using-earth-engine-apps-1ac29939903f
https://medium.com/google-earth/share-your-analyses-using-earth-engine-apps-1ac29939903f
https://medium.com/google-earth/share-your-analyses-using-earth-engine-apps-1ac29939903f
https://developers.google.com/earth-engine/
https://developers.google.com/earth-engine/
https://developers.google.com/earth-engine/python_install
https://developers.google.com/earth-engine/python_install
https://developers.google.com/earth-engine/getstarted#band-math
https://developers.google.com/earth-engine/getstarted#band-math
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=938668810"
https://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=938668810"
https://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=938668810"

