STRUCTURE REPORTS

Received 2 August 2014
Accepted 26 August 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; tetrahydroquinoline; pyrrolidine; chirality

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-[(2S*,4R*)-6-fluoro-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one

P. S. Pradeep, ${ }^{\text {a }}$ S. Naveen, ${ }^{\text {b }}$ M. N. Kumara, ${ }^{\text {c }}$ K. M. Mahadevan ${ }^{\text {a }}$ and N. K. Lokanath ${ }^{\text {d }}$

 Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\text {c Department of Chemistry, Yuvaraja's }}$ College, University of Mysore, Mysore 570 005, India, and ${ }^{\text {d}}$ Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India. *Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$, the 1,2,3,4-tetrahydropyridine ring of the quinoline moiety adopts a half-chair conformation, while the pyrrolidine ring has an envelope conformation with the central methylene C atom as the flap. The pyrrolidine ring lies in the equatorial plane and its mean plane is normal to the mean plane of the quinoline ring system, with a dihedral angle value of 88.37 (9$)^{\circ}$. The bridging $\mathrm{N}-\mathrm{C}$ bond distance [1.349 (3) \AA] is substantially shorter than the sum of the covalent radii $\left(d_{\text {cov }}: \mathrm{C}-\mathrm{N}=1.47 \AA\right.$ and $\mathrm{C}=\mathrm{N}=$ $1.27 \AA$), which indicates partial double-bond character for this bond, resulting in a certain degree of charge delocalization. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming sheets lying parallel to ($10 \overline{1}$). These two-dimensional networks are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a three-dimensional structure.

1. Chemical context

Tetrahydroquinolines have been significant synthetic targets due to their ubiquitous distribution in natural products and as medicinal agents (Trost et al., 1991). They are potential anticancer agents and 2-aryl-4-(2-oxopyrrolidin-1-yl)-1,2,3,4tetrahydroquinolines have been reported to be inhibitors of HIV transcription. Furthermore, 2-methyl tetrahydroquinolines have also been found to exhibit high modulating activity in multidrug resistance (MDR) (Hiessbock et al., 1999). In view of their broad spectrum of medicinal properties and in continuation of our work on new quinoline-based therapeutic agents (Pradeep et al., 2014), we have synthesized the title compound and report herein on its spectroscopic and crystallographic characterization.

OPEN \bigodot ACCESS

Figure 1
A view of the molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The molecular structure of the title molecule is shown in Fig. 1. The relative configuration of the asymmetric centers is S for atom C 2 and R for atom C 4 .

The pyrrolidine ring adopts an envelope conformation with the flap atom C15 deviating by 0.197 (2) \AA from the mean plane defined by the atoms N12/C13/C14/C16. The pyrrolidine ring lies in the equatorial plane and its mean plane is perpendicular to the mean plane of the quinoline ring system, as indicated by the dihedral angle of $88.37(9)^{\circ}$. The $\mathrm{N} 12-\mathrm{C} 13$ distance $[1.349$ (3) \AA] is substantially shorter than the sum of the covalent radii $\left[d_{\text {cov }}: \mathrm{C}-\mathrm{N}=1.47 \AA\right.$ and $\mathrm{C}=\mathrm{N}=1.27 \AA$;

Figure 2
A viewed along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{C} 5-\mathrm{C} 10$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.84(3)$	$2.46(3)$	$3.273(2)$	$162(2)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.51	$3.351(3)$	150
$\mathrm{C} 15-\mathrm{H} 15 B \cdots{ }^{\text {iii }}$	0.97	2.48	$3.189(3)$	130
$\mathrm{C} 11-\mathrm{H} 11 C \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.97	2.80	$3.748(3)$	168

$$
\begin{aligned}
& \text { Symmetry codes: (i) } \quad-x+\frac{5}{2}, y-\frac{1}{2},-z+\frac{1}{2} ; \quad \text { (ii) } \quad x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} \text {; } \\
& -x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2} ; \text { (iv) }-x+2,-y+1,-z .
\end{aligned}
$$

Holleman et al., 2007], which indicates partial double-bond character for this bond, resulting in a certain degree of charge delocalization. The $\mathrm{C} 13=\mathrm{O} 1$ bond length of 1.235 (3) \AA confirms the presence of a keto group in the pyrrolidine moiety.

The tetrahydropyridine ring of the quinoline system adopts a half-chair conformation with atom C 10 deviating by 0.285 (2) \AA from the mean plane defined by atoms $\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 4 /$ C9. This is confirmed by the puckering amplitude $Q=$ 0.496 (2) A. Although the quinoline ring system adopts a distorted half-chair conformation, the torsion angles $\mathrm{C} 9-$ $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$ are -40.8 (2) and $-53.0(2)^{\circ}$, respectively. These differ from the corresponding angles $\left[-47.8(2)\right.$ and $-45.0(2)^{\circ}$, respectively] in 6-ethoxy-1,2,3,4-tetrahydro-2,2,4-trimethylquinoline (Rybakov et al., 2004). This can be attributed to the steric hindrance caused by the change in the substituents on the quinoline ring system.

The conformation of the tetrahydropyridine ring and that of the pyrrolidine ring are similar to those observed in, for example, 1-[2-(2-furyl)-6-methyl-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one (Vizcaya et al., 2012).

Figure 3
A viewed along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$
$M_{\text {r }}$	248.30
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
$a, b, c(\AA)$	11.3414 (3), 9.1909 (3), 12.6799 (4)
$\beta\left({ }^{\circ}\right)$	111.569 (2)
$V\left(\mathrm{~A}^{3}\right)$	1229.17 (7)
Z	4
Radiation type	$\mathrm{Cu} K^{\alpha}$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.79
Crystal size (mm)	$0.23 \times 0.22 \times 0.21$
Data collection	
Diffractometer	Bruker X8 Proteum
Absorption correction	Multi-scan (SADABS; Bruker, 2013)
$T_{\text {min }}, T_{\text {max }}$	0.834, 0.848
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8574, 2009, 1488
$R_{\text {int }}$	0.071
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.585
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.043, 0.122, 1.00
No. of reflections	2009
No. of parameters	168
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.20, -0.22

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010)'.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming sheets lying parallel to (10 $\overline{1})$; see Fig. 2 and Table 1. These two-dimensional networks are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a three-dimensional structure (Table 1 and Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen et al., 2002) for the substructure (1,2,3,4-tetrahydroquinolin-4-yl)pyrrolidin-2-one yielded seven hits. Two of these crystallized in a chiral space group; $P 2_{1} 2_{1} 2_{1}$ for the 2-(4-methoxyphenyl) derivative (refcode: HABXIT; Shen \& Ji, 2008), and $P 6_{1}$ for the trans diastereomer of the 2-(4-nitrophenyl)-5-(5-phenyl-1,2-oxazol-3-yl) derivative (refcode: IKAZEA; Gutierrez et al., 2011a). The crystal structure of the racemic form of the latter has also been reported (refcode: QALCOX; Gutierrez et al., 2011b).

In all seven compounds, the tetrahydropyridine ring has a half-chair conformation, while in three molecules the pyrrolidine ring has an envelope conformation and in another three molecules a twist conformation. The orientation of the pyrrolidine ring with respect to the quinoline ring is very similar if one excludes the two compounds that have a
substituent in the 5-position of the quinoline ring (Gutierrez et al., 2011a,b). The two mean planes are inclined to one another by dihedral angles varying from ca 79.98 to 89.59°, compared to 88.37 (9) ${ }^{\circ}$ in the title compound.

5. Synthesis and crystallization

A catalytic amount of SbF_{3} ($10 \mathrm{~mol} \%$) was added to a mixture of 4-flouroaniline (1 equivalent) and N-vinylpyrrolidone (2-3 equivalents) in acetonitrile ($5-10 \mathrm{ml}$). The reaction mixture was stirred at ambient temperature (292 K) for $20-70 \mathrm{~min}$. After completion of the reaction, as indicated by TLC using ethyl acetate/hexane as eluent, the solvent was removed under vacuo. The crude product was then quenched with water and the catalyst was decomposed by addition of the appropriate amount of sodium bicarbonate solution. It was then extracted with ethyl acetate ($10 \mathrm{ml} \times 5$ times), dried and purified by column chromatography using ethyl acetate/hexane as eluent (petroleum ether/ethyl acetate 80:20 v / v). White crystals were obtained by slow evaporation of the solvent.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of the title compound, the three quadrates at $\delta 1.60,2.95$ and 3.22 p.p.m. correspond to three protons at $\mathrm{C}_{3}-\mathrm{H}, \mathrm{C}_{5^{\prime}}-\mathrm{H}$ and $\mathrm{C}_{4^{\prime}}-\mathrm{H}$, respectively. A doublet at $\delta 5.24$ p.p.m. corresponds to $\mathrm{C}_{4}-\mathrm{H}$, a singlet at $\delta 5.62$ p.p.m. corresponds to the -NH proton and the number of protons is in accordance with the obtained structure. Additional support to elucidate the structure was obtained from ${ }^{13} \mathrm{C}$ NMR (see the archived CIF for more details). The mass spectrum was recorded as additional evidence for the proposed structure: $M+1$ peak at $m / z=250.1$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Acknowledgements

The authors are grateful to the IOE, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2013). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Gutierrez, M., Astudillo, L., Quesada, L., Brito, I. \& LópezRodríguez, M. (2011b). Acta Cryst. E67, o308-o309.
Gutierrez, M., Vallejos, G., Fernández, C., Cárdenas, A. \& Brito, I. (2011a). Acta Cryst. E67, o175-o176.
Hiessbock, R., Wolf, C., Richter, E., Hitzler, M., Chiba, P., Kratzel, M. \& Ecker, G. (1999). J. Med. Chem. 42, 1921-1926.
Holleman, A. F. (2007). Lehrbuch der Anorganischen Chemie, p. 138. Berlin/New York: De Gruyter.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Pradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. \& Lokanath, N. K. (2014). Acta Cryst. E70, o981-o982.
Rybakov, V. B., Alekseev, N. V., Sheludyakov, V. D., Ivanov, Y. A., Frolov, A. Y. \& Aslanov, L. A. (2004). Acta Cryst. E60, o1145o1146.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, S.-S. \& Ji, S.-J. (2008). Chin. J. Chem. 26, 935-940.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Trost, B. M. (1991). Science, 254, 1471-1477.
Vizcaya, L. A., Mora, A. J., Delgado, G. E., Bahsas, A., Mora, U. \& Kouznetsov, V. V. (2012). J. Chem. Crystallogr. 42, 267-270.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of 1-[(2S*,4R*)-6-fluoro-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]pyrrolidin-2-one

P. S. Pradeep, S. Naveen, M. N. Kumara, K. M. Mahadevan and N. K. Lokanath

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010)'.

1-[(2S,4R)-6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}$
$M_{r}=248.30$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=11.3414$ (3) \AA
$b=9.1909$ (3) \AA
$c=12.6799(4) \AA$
$\beta=111.569$ (2) ${ }^{\circ}$
$V=1229.17(7) \AA^{3}$
$Z=4$

Data collection

Bruker X8 Proteum
diffractometer
Radiation source: Bruker MicroStar microfocus rotating anode
Helios multilayer optics monochromator
Detector resolution: 18.4 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.122$
$S=1.00$
2009 reflections
168 parameters
0 restraints

$$
F(000)=528
$$

$D_{\mathrm{x}}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 2009 reflections
$\theta=4.5-64.4^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, white
$0.23 \times 0.22 \times 0.21 \mathrm{~mm}$
$T_{\text {min }}=0.834, T_{\text {max }}=0.848$
8574 measured reflections
2009 independent reflections
1488 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=64.4^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0682 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.049
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Experimental. ${ }^{1} \mathrm{H}$ NMR was recorded at 400 MHz in Dimethylsulfoxide (DMSO- d_{6}). ${ }^{13} \mathrm{C}$ NMR was recorded at 400 MHz in DMSO-d ${ }_{6}$. Mass spectra was recorded on a Jeol SX 102=DA-6000 (10 kV) fast atom bombardment (FAB) mass spectrometer. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right): \delta=1.12(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{q}, \mathrm{J}=12.00 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 2.26-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.43(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=5.60 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.75(\mathrm{~m}, 1 \mathrm{H})$ p.p.m..
${ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO-d d_{6}): $\delta=17.6,21.6,30.6,33.2,41.6,46.1,47.2,11.7,114.4,119.2,142.9,153.1,155.4$,
174.6 p.p.m..

MS (70 eV) m/z (\%): $250.1\left(M^{+}, 99.63\right)$
HPLC Purity $=97.9 \%$.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
F1	$0.84526(11)$	$0.14151(14)$	$0.28243(11)$	$0.0311(4)$
O1	$1.19100(13)$	$0.59593(18)$	$0.49292(13)$	$0.0316(5)$
N1	$1.15416(15)$	$0.3610(2)$	$0.07073(15)$	$0.0220(6)$
N12	$1.06638(14)$	$0.62374(18)$	$0.30482(14)$	$0.0181(5)$
C2	$1.23865(17)$	$0.4842(2)$	$0.11812(18)$	$0.0208(6)$
C3	$1.16936(17)$	$0.5931(2)$	$0.16463(18)$	$0.0217(6)$
C4	$1.13482(16)$	$0.5243(2)$	$0.25882(17)$	$0.0191(6)$
C5	$0.98300(17)$	$0.3254(2)$	$0.26777(18)$	$0.0201(7)$
C6	$0.92150(17)$	$0.1966(2)$	$0.22961(19)$	$0.0226(7)$
C7	$0.93354(18)$	$0.1203(2)$	$0.14035(19)$	$0.0236(7)$
C8	$1.01288(18)$	$0.1756(2)$	$0.09018(19)$	$0.0224(7)$
C9	$1.07908(16)$	$0.3066(2)$	$0.12729(17)$	$0.0188(6)$
C10	$1.06312(16)$	$0.3830(2)$	$0.21747(17)$	$0.0177(6)$
C11	$1.27895(19)$	$0.5500(3)$	$0.02753(19)$	$0.0280(7)$
C13	$1.09465(18)$	$0.6419(2)$	$0.41705(18)$	$0.0217(7)$
C14	$0.98829(18)$	$0.7274(2)$	$0.4329(2)$	$0.0252(7)$
C15	$0.92345(18)$	$0.7996(2)$	$0.31843(19)$	$0.0246(7)$
C16	$0.94501(18)$	$0.6917(2)$	$0.23558(19)$	$0.0242(7)$
H1N	$1.182(2)$	$0.296(3)$	$0.039(2)$	$0.033(7)^{*}$
H2	1.31410	0.44940	0.18040	0.0250^{*}
H3A	1.09290	0.62550	0.10410	0.0260^{*}
H3B	1.22290	0.67730	0.19400	0.0260^{*}
H4	1.21440	0.49960	0.32060	0.0230^{*}
H5	0.97130	0.37440	0.32730	0.0240^{*}

H7	0.88930	0.03410	0.11480	0.0280^{*}
H8	1.02290	0.12520	0.03040	0.0270^{*}
H11A	1.31770	0.47640	-0.00270	0.0420^{*}
H11B	1.33870	0.62680	0.05990	0.0420^{*}
H11C	1.20600	0.79930	-0.03210	0.0420^{*}
H14A	1.02120	0.66350	0.49250	0.0300^{*}
H14B	0.93040	0.89310	0.45110	0.0300^{*}
H15A	0.96160	0.81320	0.31530	0.0300^{*}
H15B	0.83370	0.62030	0.30230	0.0300^{*}
H16A	0.87740	0.74120	0.21000	0.0290^{*}
H16B	0.95120		0.17030	0.0290^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0307(6)$	$0.0272(8)$	$0.0426(9)$	$-0.0022(5)$	$0.0220(6)$	$0.0062(6)$
O1	$0.0320(8)$	$0.0396(11)$	$0.0193(9)$	$0.0119(7)$	$0.0048(7)$	$0.0021(7)$
N1	$0.0231(8)$	$0.0223(11)$	$0.0230(11)$	$-0.0002(8)$	$0.0113(8)$	$-0.0032(9)$
N12	$0.0185(8)$	$0.0178(10)$	$0.0172(10)$	$0.0019(7)$	$0.0055(7)$	$-0.0011(8)$
C2	$0.0169(9)$	$0.0252(12)$	$0.0189(12)$	$-0.0030(8)$	$0.0048(8)$	$-0.0023(9)$
C3	$0.0197(9)$	$0.0230(12)$	$0.0216(12)$	$-0.0038(8)$	$0.0066(9)$	$-0.0035(9)$
C4	$0.0159(9)$	$0.0208(12)$	$0.0187(12)$	$0.0019(8)$	$0.0042(8)$	$-0.0025(9)$
C5	$0.0223(10)$	$0.0180(12)$	$0.0210(12)$	$0.0035(8)$	$0.0090(9)$	$0.0017(9)$
C6	$0.0206(9)$	$0.0211(12)$	$0.0279(13)$	$0.0013(9)$	$0.0112(9)$	$0.0085(10)$
C7	$0.0225(10)$	$0.0161(12)$	$0.0281(13)$	$-0.0008(8)$	$0.0046(9)$	$0.0019(10)$
C8	$0.0254(10)$	$0.0178(12)$	$0.0226(12)$	$0.0018(9)$	$0.0073(9)$	$-0.0021(9)$
C9	$0.0159(9)$	$0.0185(12)$	$0.0194(12)$	$0.0051(8)$	$0.0035(8)$	$0.0040(9)$
C10	$0.0157(9)$	$0.0163(12)$	$0.0190(11)$	$0.0034(8)$	$0.0040(8)$	$0.0020(9)$
C11	$0.0244(10)$	$0.0359(14)$	$0.0254(13)$	$-0.0044(10)$	$0.0112(9)$	$-0.0019(11)$
C13	$0.0256(10)$	$0.0194(12)$	$0.0213(12)$	$-0.0030(9)$	$0.0099(9)$	$0.0008(10)$
C14	$0.0281(10)$	$0.0227(13)$	$0.0290(13)$	$-0.0002(9)$	$0.0156(9)$	$-0.0012(10)$
C15	$0.0221(10)$	$0.0215(12)$	$0.0298(13)$	$0.0024(9)$	$0.0090(9)$	$-0.0007(10)$
C16	$0.0194(9)$	$0.0266(13)$	$0.0232(12)$	$0.0066(9)$	$0.0038(9)$	$0.0000(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{F} 1-\mathrm{C} 6$	$1.371(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.518(3)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.235(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.528(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.462(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9800
$\mathrm{~N} 1-\mathrm{C} 9$	$1.392(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{~N} 12-\mathrm{C} 4$	$1.453(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{~N} 12-\mathrm{C} 13$	$1.349(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9800
$\mathrm{~N} 12-\mathrm{C} 16$	$1.472(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.84(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 2-\mathrm{C} 11$	$1.510(3)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.519(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.524(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{C} 10$	$1.520(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600

C5-C6	1.369 (3)
C5-C10	1.392 (3)
C6-C7	1.380 (3)
C7-C8	1.376 (3)
C8-C9	1.405 (3)
C9-C10	1.409 (3)
C13-C14	1.514 (3)
C2-N1-C9	119.93 (17)
C4-N12-C13	123.12 (17)
C4-N12-C16	123.22 (16)
C13-N12-C16	112.59 (17)
C2-N1-H1N	116.2 (17)
C9-N1-H1N	113.5 (18)
C3-C2-C11	112.08 (17)
N1-C2-C3	108.38 (17)
N1-C2-C11	109.48 (18)
C2-C3-C4	110.45 (15)
N12-C4-C10	112.27 (16)
C3-C4-C10	110.07 (16)
N12-C4-C3	112.50 (15)
C6-C5-C10	120.03 (19)
F1-C6-C7	118.91 (17)
F1-C6-C5	118.54 (18)
C5-C6-C7	122.6 (2)
C6-C7-C8	118.04 (18)
C7-C8-C9	121.42 (19)
N1-C9-C10	121.63 (17)
N1-C9-C8	119.20 (18)
C8-C9-C10	119.11 (18)
C4-C10-C9	119.59 (17)
C4-C10-C5	121.56 (17)
C5-C10-C9	118.84 (17)
O1-C13-C14	126.5 (2)
N12-C13-C14	108.20 (18)
O1-C13-N12	125.3 (2)
C13-C14-C15	103.28 (18)
C14-C15-C16	103.30 (16)
N12-C16-C15	102.49 (17)
N1-C2-H2	109.00
C3-C2-H2	109.00
C11-C2-H2	109.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.00
C9-N1-C2-C3	-40.8 (2)
C9-N1-C2-C11	-163.35 (18)
C2-N1-C9-C8	-170.60 (18)
C2-N1-C9-C10	12.4 (3)

$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9700
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9700
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9700
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9700
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9700
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9700

110.00
110.00
110.00
108.00
107.00
107.00
107.00
120.00
120.00
121.00
121.00
119.00
119.00
109.00
109.00
109.00
110.00
109.00
110.00
111.00
111.00
111.00
111.00
109.00
111.00
111.00
111.00
111.00
109.00
$\begin{array}{ll}\mathrm{N} 12-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} & 111.00 \\ \mathrm{~N} 12-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} & 111.00\end{array}$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \quad 111.00$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 111.00$
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.00$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$-156.85(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$24.2(2)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{F} 1$	$178.75(18)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-1.1(3)$

$\mathrm{C} 13-\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 3$	$-133.86(19)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$	$-178.91(19)$
$\mathrm{C} 13-\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 10$	$101.3(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$0.1(3)$
$\mathrm{C} 16-\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 3$	$58.9(2)$	$\mathrm{F} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.47(19)$
$\mathrm{C} 16-\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 10$	$-66.0(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.4(3)$
$\mathrm{C} 4-\mathrm{N} 12-\mathrm{C} 13-\mathrm{O} 1$	$11.8(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.7(3)$
$\mathrm{C} 4-\mathrm{N} 12-\mathrm{C} 13-\mathrm{C} 14$	$-168.15(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-177.40(19)$
$\mathrm{C} 16-\mathrm{N} 12-\mathrm{C} 13-\mathrm{O} 1$	$-179.74(19)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.3(3)$
$\mathrm{C} 16-\mathrm{N} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.4(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$-3.4(3)$
$\mathrm{C} 4-\mathrm{N} 12-\mathrm{C} 16-\mathrm{C} 15$	$-172.51(17)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$177.61(19)$
$\mathrm{C} 13-\mathrm{N} 12-\mathrm{C} 16-\mathrm{C} 15$	$19.0(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$179.63(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{O} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$0.6(3)$	
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{~N} 12-\mathrm{C} 13-\mathrm{C} 13-\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 15$	$160.3(2)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 12$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-19.8(2)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 12$	$30.3(2)$	
$\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$		$-29.9(2)$	
$\mathrm{N} 12-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$-53.0(2)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 5-\mathrm{C} 10$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(3)$	$2.46(3)$	$3.273(2)$	$162(2)$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots 1^{\mathrm{ii}}$	0.93	2.51	$3.351(3)$	150
$\mathrm{C} 15 — \mathrm{H} 15 B \cdots \mathrm{~F} 1^{\mathrm{iii}}$	0.97	2.48	$3.189(3)$	130
$\mathrm{C} 11 — \mathrm{H} 11 C \cdots C^{\mathrm{iv}}$	0.97	2.80	$3.748(3)$	168

Symmetry codes: (i) $-x+5 / 2, y-1 / 2,-z+1 / 2$; (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (iii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (iv) $-x+2,-y+1,-z$.

