

Original Research Article

International Journal of Bioassays ISSN: 2278-778X CODEN: IJBNHY OPEN ACCESS

IDENTIFICATION OF CASTOR (RICINUS COMMUNIS L.) ECOTYPES THROUGH MOLECULAR CHARACTERIZATION IN THE SELECTED REGIONS OF THE WESTERN GHATS OF KARNATAKA, INDIA

KG Manjunath and B Sannappa*

Department of Studies in Sericulture Science, University of Mysore, Manasagangotri, Mysore – 570 006, Karnataka, India.

Received for publication: September 20, 2014; Accepted: October 25, 2014

Abstract: Castor (Ricinus communis L.) being a perennial crop widely grown for oil seed production in tropical and subtropical regions of the world. Nevertheless, the leaf of castor serves as a primary food for the eri silkworm, Samia cynthia ricini Boisduval. Eri silkworm being a polyvoltine requires leaf throughout the year for its survival and cocoon production. Keeping this in view, an attempt has been made to identify (through molecular characterization) the best castor ecotype(s) found in different regions of Western Ghats of Karnataka, India for leaf production. The ecotypes were processed through DNA sequencing using ITS4 and ITS5 primers. The sequence results were authenticated through National Centre for Biotechnology Information by way of obtaining accession numbers (phylogenetic tree). Further, leaf samples were subjected to SDS-PAGE to know the variations existed among the ecotypes in protein profile. The results revealed that, ecotypes of different regions exhibits close relation among them and some marginal variations were evident in phylogenetic tree as well as in dendrogram. However, phylogenetic relationship of ecotypes in the major clade II and cluster III showed similar in both phylogeny and dendrogram for eight among 12 ecotypes representing different agroecological regions of Western Ghats of Karnataka. Further, five ecotypes showed close relationship in both phylogenetic as well as in cluster dendrogram, but in clades I and III, bootstrap values showed minor variation among the ecotypes representing different regions of the Western Ghats, whereas, in protein profile clusters I and II showed similarities between the ecotypes having genetic distance of 0.57. The maximum of 18 protein bands were found in KJ130046 ecotype, accordingly, minimum bands (10) were noticed in both KJ000404 and KJ000405 ecotypes.

Key Words: Ecotypes, Molecular Characterization, Ricinus communis, Samia cynthia ricini, Western Ghats.

INTRODUCTION

Castor (*Ricinus communis* L.) belongs to the family Euphorbiaceae and cultivated in wild form for oil seed production since ancient times at Gangetic plains and South Africa. Castor is monotypic and *R. communis* is only species with most polymorphic forms [1]. Castor has medicinal value and grows as perennial in tropical and sub-tropical regions of the world in varied types of soil and climatic conditions. The major castor growing countries in the world are India, China, Brazil, Russia, Thailand, Ethiopia and Philippines [2].

India is also an origin of castor which grows in natural condition and spread through semi wild and wild forms in diverse habitats like forest, sea coast, river bunds, railway tracks, garbage dumps, and waste land. India is in possession of 4373 castor accessions, of which 3416 accessions are being maintained by the Directorate of Oil seeds Research, Hyderabad and remaining 957 accessions were conserved by the National Bureau of Plant Genetic Resources (NBPGR), New Delhi [3]. In India, castor is found in wild condition in the states of Bihar, Uttar Pradesh and Madhya Pradesh with approximately 14 ft. tall and woody perennial type bearing big leaves [4].

Among the Euphorbiaceae family, castor is the only species which has lowest DNA c-value at which genome size of castor bean is around 350 mbp and has been sequenced and assembled in 4x draft using whole genome containing 31,221 proteins, although the function of most of these proteins remain unknown [5]

*Corresponding Author: Dr. B Sannappa, Department of Studies in Sericulture Science, University of Mysore, Manasagangotri, Mysore – 570 006, Karnataka, India. [6]. The sequenced data of castor plant was obtained from various resources like National Centre for Biotechnology Information (NCBI) and J. Craig Venter Institute (JCVI). Molecular phylogenetic analyses indicate that Ricinus is closely related to Sperkansia, a genus native to china, and confirm that Ricinus is part of a natural lineage containing those genera in the tribe Acalyheae [7]. Sequence allows the identification of species from even a small processed material. In plants, the internal transcribed spacer (ITS) region of nuclear ribosomal cistron (18S-5.8S-26S) sequencing is the most commonly used sequence analysis for identification at the species level. Though castor has been mainly cultivated for its oil seed production, nevertheless, the leaves of which can be used for rearing the domesticated vanya silkworm (Samia cynthia ricini Boisduval) for cocoon production, as it serves as a primary food plant. In this backdrop, an attempt has been made to select the best ecotype(s) of castor (wild) in selected regions of the Western Ghats of Karnataka through molecular characterization.

MATERIALS AND METHODS

Study area

The study area includes five selected regions of Western Ghats of Karnataka comprising Heggada Devana Kote, Madikeri, Sakaleshpur, Shimoga and Sirsi along with Mysore for comparison (Figure 1 and Table 1).

Figure 1: Maps showing selected regions of Western Ghats of Karnataka

Table 1: Elevation details of selected regions ofWestern Ghats of Karnataka

SI.	Region	Latitude	Longitude	Altitude
NO.				(MSL)
1.	HEGGADA DEVANA KOTE	12°05 ' N	76°19' E	694
2.	MADIKERI	12°26' N	75°47' E	970
3.	SAKALESHPUR	12°58' N	75°47' E	949
4.	SHIMOGA	12°56' N	75°38' E	569
5.	SIRSI	14°37' N	74°51' E	590
6.	MYSORE (CONTROL)	12°15' N	76°42 ' E	770

Two types of leaves (pink and green) based on their physical appearance were collected in each region of the study area were stored in -20°C. The castor leaf material was immersed in liquid nitrogen and crushed into fine powder using autoclaved mortar and pestle. The samples were processed for identification of ecotypes through molecular characterization based on DNA sequencing using DNA extraction kit (Himedia).

PCR Amplification

The complete ITS region (ITS1, the 5.8S gene and ITS 2) was amplified using primers ITS-4 and ITS-5 [8] and about 25 μ l of reaction mixture containing 100 μ M of deoxynucleoside triphosphate, 0.1 μ M each primer, 1 x PCR buffer, 2 μ l of template DNA and I unit of Taq polymerase. The thermal cycler reaction was involved in initial denaturation at 95°C for 5 min, followed by 30 cycles of denaturation at 94° C for 45 seconds, annealing at 50° C for 45 seconds, extension at 72° C for 40 seconds and final extension at 72°C for 7 min. Following amplification, 5 μ l of the reaction mixture was run on a 1.5% agarose gel in 0.5× TAE buffer to determine an appropriate sized product. PCR products or amplicons were visualized using ethidium bromide under UV light.

Sequencing was performed in an automated ABI 3100 Genetic Analyser (Applied Biosystems, CF, USA) by Amnion Biosciences (Bangalore, India). Forward and reverse sequencing were done individually with ITS4 and ITS5 primers, respectively. Sequence results were submitted to Gen Bank, National Centre for Biotechnology Information (NCBI), Bethesda MD, USA. Sequence of ITS regions was analyzed using BLAST tool in the NCBI website and sequences were deposited in the NCBI nucleotide sequence database, Gen Bank [9].

Sequencing results were processed using Bio Edit software [10]. The processed sequences were subjected to BLAST search in webpage (www.ncbi.nlm.nih.gov) for better identification of sequence at species level and for phylogenetic inference. Sequences were then aligned and compared with other similar sequences retrieved from Gen Bank using online Clustalw software and Bio Edit software, respectively [11] [12]. Alignments were manually edited where necessary and phylogenetic analyses performed by using maximum likelihood (ML) or neighbour joining method in MEGA Version 6.0 (software package) combined with bootstrap analysis with 1,000 replications to assess intra-specific variation among the sequences [13].

Gel electrophoresis

One gram of fresh leaf samples of each ecotype was homogenate with phosphate buffer (pH 7.0) using pre-chilled mortar and pestle centrifuged at 4° C at 10,000 rpm for 10 min and the supernatant was collected and used for protein profiling through Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS - PAGE) [14]. In the process of running SDS – PAGE, glass plates were assembled by preparing approximate volume of acrylamide (30% acrylamide and 0.8 % bis-acrylamide) and made upto 100 ml with distilled water. The separating gel (10%) was prepared by 3.34 ml of acrylamide, 2.5 ml of Tris HCl (1.5M tris HCl buffer pH 8.8), 0.1 ml of 10% SDS, 10% of ammonium per sulphate (APS) and 20µl of TEMED were mixed with 3.8 ml of distilled water and poured the gel solution in between the glass plates at about 4cm from the top of the plate. Later, about 2-3 drops of isobutanol was added from the top to avoid air bubbles in the gel and leave it for 30 min. Staking gel (5%) was prepared by adding 1.75 ml of acrylamide solution, 2.25 ml of tris HCl (0.5m tris buffer of pH 6.8), 0.1 ml of 10% SDS, 0.1 ml APS, 2.89 ml of distilled water and 10 µl of TEMED were added and mixed well. The mixture was poured to slab without entering air bubbles and comb was inserted immediately to form 1 mm thickness of gel and left for 30min. Comb was removed by adding sample buffer and leaf samples at 1:1 ratio and boiled for 5 min and later allowed for cooling. Equal proportion of protein samples were loaded to each well using medium range protein marker (Genei). The gel was run using tank buffer with 100 volts for about three hours, later the gel was stained with coomassie brilliant blue (R250) for 20 hours and de-stained.

Further, the gel was scanned using Alpha Innotech Gel Documentation Unit and analyzed for the banding pattern of ecotypes.

RESULTS AND DISCUSSION

The results of the study revealed that the 12 castor ecotypes identified from selected regions of Western Ghats of Karnataka recorded a size of 700 base pairs in length as evidenced through the PCR products or amplicons (Fig. 2). Twelve ecotypes were amplified and sequenced nucleotides were submitted to multiple sequenced alignments using Clustalw (Fig. 3). The accession numbers were obtained from NCBI for 12 ecotypes viz., KJ000402, KJ000403, KJ000404, KJ000405, KJ000406, KJ000407, MJ130043, KJ130044, KJ130045, KJ130046, KJ130047 and KJ130048 (Table 2).

Figure 2: Agarose gel electrophoresis showing expected amplicon size around ~700 base M - Marker DNA (1Kb Ladder), 1 - KJ000402, 2 - KJ000403, 3 - KJ000404, 4 - KJ000405, 5 - KJ000406, 6 - KJ000407, 7 - KJ130043, 8 - KJ130044, 9 - KJ130045, 10 - KJ130046, 11 - KJ130047 and 12 - KJ130048

Table 2: Accession numbers of identified ecotypes with size of PCR product in selected regions of Western Ghats of Karnataka

Code	Region	Ecotype	Accession no.	Size of PCR product (bp)
S-1	HEGGADADEVANA KOTE	PINK	KJ000402	705
S-2	HEGGADADEVANA KOTE	GREEN	KJ000403	698
S-3	MADIKERI	PINK	KJ000404	683
S-4	MADIKERI	GREEN	KJ000405	629
S-5	SAKALESHPUR	PINK	KJ000406	683
S-6	SAKALESHPUR	GREEN	KJ000407	690
S-7	SHIMOGA	PINK	KJ130043	672
S-8	SHIMOGA	GREEN	KJ130044	682
S-9	SIRSI	PINK	KJ130045	686
S-10	SIRSI	GREEN	KJ130046	685
S-11	MYSORE	PINK	KJ130047	684
S-12	MYSORE	GREEN	KJ130048	681

(J130044	ACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 41
(J130047	GACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 42
(J000402	CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 45
(J130043	TCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 33
(Jooo4o5	
(Jooo404	GTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 44
(J130046	CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 45
(Jooo4o6	TCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 46
(Jooo407	AAGTAAAAAGT-CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 56
(J130045	AGTAAAAAGT-CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 55
(Jooo4o3	GTAAAGTAAAAAAGCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 60
(J130048	GTGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG 47

(J130044	AAACCTGCCCTGCAGAACGACCCCGCGAACATGTTTGCTTATTGCAAGGGGGGAGCGGGGG 101
(J130047	AAACCTGCCCTGCAGAACGACCCCGCGAACATGTTTGCTTATTGCAAGGGGGGGG
(J000402	AAACCTGCCCTGCAGAACGACCCCGCGAACATGTTTGCTTATTGCAAGGGGGGGG
(J130043	AAACCTGCCCTGCAGAACGACCCCGCGAACATGTTTGCTTATTGCAAGGGGGGGG

KJ000405 KJ000404 KJ130046 KJ000406 KJ000407 KJ130045 KJ000403 KJ130048 ******

KJ130044	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ130047	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ000402	TCGCCATGGCCCCAGTCCCC-GATGTCGGCGAGAGGGGTGGGGGTGGGGCTTTGCCCCCT 164
KJ130043	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ000405	
KJ000404	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGTGGGGGGCTTTGCCCCCT 163
KJ130046	
KJ000406	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ000407	
KJ130045	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ000403	TCGCCATGGCCCCAGTCCCCC-GATGTCGGCGAGAGGGGGGGGGG
KJ130048	
	********* *****************************
KJ130044	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 220
KJ130047	CATCTCTGCCGTCGGCCGTACAACCAACCCGGCGCGGAGGACGCGCCAAGGAAAATTAAAT 221
KJ000402	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 224
KJ130043	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 212
KJ000405	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 169
KJ000404	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 223
KJ130046	CATCTCTGCCGTCGGCCGTACAACCAACCCGGCGCGGGGGGGG
KJ000406	
KJ000407	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 235
KJ130045	
KJ000403	CATCTCTGCCGTCGGCCGTACAACCAACCCCGGCGCAGGACGCGCCAAGGAAAATTAAAT 239
KJ130048	

KJ130044	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 280
KJ130047	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 281
KJ000402	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 284
KJ130043	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 272
KJ000405	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 229
KJ000404	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 283
KJ130046	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 284
KJ000406	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 285
KJ000407	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 295
KJ130045	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 294
KJ000403	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 299
KJ130048	GAAAAGAGCACGCTGCTGTAGGCCTCGGAAACGATGCGCCTTAGGCACGCGTCGCCCTCT 286

KJ130044	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 340
KJ130047	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 341
KJ000402	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 344
KJ130043	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 332
KJ000405	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 289
KJ000404	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 343
KJ130046	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 344
KJ000406	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 345
KJ000407	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 355
KJ130045	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 354
KJ000403	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 359
KJ130048	TTCGAGAACCATAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACG 346

K	() < /)))))))))))))))))
кJ130044	
KJ130047	
КЈ000402	
KJ130043	CAGCAAAAIGCGAIACIIGGIGIGAAIIGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 392
КЈ000405	CAUCAAAAIGCGAIACIIGGIGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 349
KJ000404	CAGCAAAAIGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 403
KJ130046	
KJ000406	CAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 405
KJ000407	CAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 415
KJ130045	CAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 414
KJ000403	CAGCAAAAIGCGATACTTGGTGTGAATTGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 419
КJ130048	CAGCAAAAIGCGAIACIIGGIGIGAAIIGCAGAATCCCGTGAATCATCGAGTTTTTGAAC 406
	^ <i>^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>

KJ130044	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	460
KJ130047	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	461
KJ000402	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	464
KJ130043	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	452
KJ000405	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	409
KJ000404	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	463
KJ130046	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	464
KJ000406	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	465
KJ000407	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	475
KJ130045	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	474
KJ130048	GCAAGTTGCGCCCGAAGCCTTTCGGCCGAGGGCACGCCTGCCT	466

KJ130044		520
KJ130047		521
KJ000402		524
KJ130043	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	512
KJ000405	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	469
KJ000404	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	523
KJ130046	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	524
KJ000406	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	525
KJ000407	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	535
KJ130045	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	534
KJ000403	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	539
KJ130048	CGCCCCCAACCCTTTCGATACATCGAGAGGGGGGGGGGG	526

K 130044	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	580
KJ130047	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGTT	581
KJ000402	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	584
KJ130043	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGTT	572
KJ000405	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	529
KJ000404	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	Г 583
KJ130046	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	T 584
KJ000406	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	T 585
KJ000407	TGCATGCGGTTGGCCTAAAAATTGAGTCCTCGGCGACTATCGCCACGGCAATCGGTGGT	T 595
KJ130045	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	T 594
KJ000403	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	T 599
KJ130048	TGCATGCGGTTGGCCTAAAAATTGAGTCCCCGGCGACTATCGCCACGGCAATCGGTGGT	T 586
2	***************************************	-
K		
KJ130044		640
KJ130047		- 641
KJ000402		- 644
KJ130043		632
KJ000405		- 589
KJ000404		643
KJ130046		644
KJ000406		645
KJ000407		C 655
KJ130045		C 654
KJ000403		C 659
KJ130048	GTAAGACTCTCTAAGGGAAAGACACTCGTCGTCGTCGTCGTCGAGGGGAACCCTCGAGGGAAGACCC **************************	C 646
KJ130044	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGGTC	682
KJ130047	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGGTCA	684
KJ000402	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGGTCAGGCGGGATTCCCCCTT	703
KJ130043	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGT	672
KJ000405	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGT	629
KJ000404	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAGT	683
KJ130046	GATGCTGCCTGTAAAGGGCATGCTCCAACTGCGACCCCAGT	685
KJ000406	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCA	683
KJ000407	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACC	690
KJ130045	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCG	686
KJ000403	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACCCCAG	698
KJ130048	GATGCTGCC-GTAAAGGGCATGCTCCAACTGCGACC	681

KJ130044 --KJ130047 --KJ000402 TT 705 KJ130043 --KJ000405 --KJ000404 --KJ130046 --KJ000406 --KJ000407 --KJ130045 --KJ000403 --KJ130048 --

Figure 3: The sequenced alignment of identified castor ecotypes using Clustalw

The castor ecotypes were initially identified from selected regions of Western Ghats of Karnataka based on the morphological features and all the ecotypes exhibited differences in leaf shape, stem colour and seeds. The classification and description of germplasm collections were generally identified by morphological characterizations [15]. However, phenotypic variations were evident in respect of leaf shape and size, stem colour and seed texture in different cultivars. It is an important to characterize the genetic diversity in present across R. Communis in germplasm from different geographical regions developed a genotyping links in castor bean from the particular sources in the geographical area [16].

Gel electrophoresis

The castor leaf samples from 12 ecotypes were collected from selected regions of Western Ghats of Karnataka was subjected to SDS PAGE to understand the expression of protein profile. Protein profile through electrophoresis is a tool for identification of genetic diversity through SDS PAGE with respect to environmental fluctuations is highly independent from seed storage proteins and consider as a most reliable technique [17]. The electrophoretic protein profile was revealed on the basis of protein marker with medium range of molecular weight (19.1 to 97.4 k Da) and genetic differences in each ecotype were ascertained through dendrogram. The expression of protein bands in castor ecotypes were maximum (18 bands) in KJ130046, however, minimum (10 bands) were observed in KJ000404 and KJ000405. Accordingly, protein bands of 17, 16, 16, 15, 15, 13, 13, 12 and 11 were recorded in other ecotypes namely KJ130047, KJ130048, KJ130045, KJ130044, KJ000406, KJ000402, KJ000403, KJ130043 and KJ000407, respectively (Fig. 4).

Figure 4: Protein profile of castor ecotypes identified from selected regions of Western Ghats of Karnataka M - Marker Medium range, 1 - KJ000402, 2 - KJ000403, 3 - KJ000404, 4 - KJ000405, 5 - KJ000406, 6 - KJ000407, 7 - KJ130043, 8 - KJ130044, 9 - KJ130045, 10 - KJ130046, 11 - KJ130047 and 12 - KJ130048

The phylogenetic analysis of castor ecotypes of the Western Ghats of Karnataka was performed using maximum likelihood tree with the help of MEGA 6.06 [10] [11]. The molecular marker has been used for identification of biological organisms through molecular techniques i.e., SDS-PAGE and was found most reliable. Further, it should be common for identification of species, varieties and ecotypes among the genetically diversified species [18] [19]. However, the DNA sequences of single gene generally do not provide adequate phylogenetic resolution for population level in plants [20]. Further, 12 ecotypes were distributed among 3 clades in 3 clusters of polygenetic tree (Fig. 5) and SDS PAGE (Fig. 6), respectively. Among the R. communis, genetic variations were grouped into two clades and it reflects on all castor cultivars derived from limited genetic pool of old world plant from Asia or Africa [16].

	₆₄ KJ1300	44
	KJ1300	43
KJ130048		
KJ130047		
KJ000402		
KJ000404		
KJ130046		
KJ000406		
KJ130045		
KJ000403		
	KJ0004	07
	KJ0004	05

0.0002

Figure 5: Phylogenetic tree represents castor ecotypes using maximum likelihood

Phylogenetic analysis as well as dendrogram protein electrophoresis exhibited similar from clustering with minor variations. The major clade II and cluster III from phylogeny and dendrogram shares eight ecotypes of castor among 12 ecotypes. The ecotypes bearing accession numbers KJ130046, KJ000404, KJ000403, KJ000406 and KJ130045 were found similar and represent close relationship in both phylogeny as well as in cluster dendrogram with well supported bootstrap values and genetic distance, respectively, whereas, KJ130048, KJ130047 and KJ000402 ecotypes represents different clades as well as in cluster. Distance analysis of the data using neighbour-joining yields highly resolved tree as a consequence of the algorithm but has virtually no bootstrap support for any of the group and were extremely small divergences between castor varieties. Consequently, the data suggested that, it cannot be relied upon phylogenetic analysis of preproricin sequences to know much about the relationship between varieties of castor bean plants or their geographical origin [21].

The clade-I (KJ000405 and KJ000407) and clade-III (KJ130043 and KJ130044) consists of two each ecotype in phylogeny with different clades with slight variation genetically. Protein electrophoresis is widely used among the biochemical techniques with SDS-PAGE to identify and describe the genetic structure of crop germplasm [22] [23] [24]. Whereas, in protein profile, cluster-I (KJ130043 and KJ000402) and cluster-II (KJ130048 and KJ130047) showed the genetic difference within the cluster of 0.57 and there is no genetic difference between the clusters.

Figure 6: Dendrogram represents clusters among the castor ecotypes

ACKNOWLEDGMENT

The authors are thankful to the Coordinator, Institution of Excellence, University of Mysore, Mysore for financial assistance and the Chairman, Department of Studies in Sericulture Science, University of Mysore, Mysore, for providing facilities to carry out the current investigation.

REFERENCES

- 1. Weiss EA, Castor oilseeds crops, UK Blackwell Science, 2000, 13-52.
- 2. Damodaram T, Hegde DM, Oilseeds situation: A statistical Compendium, Directorate of oilseeds Research, Hyderabad, 2010, 486.
- 3. Anjani K, Hedge DM, Biodiversity in indigenous castor. In: National Consultation Workshop in Agro-Biodiversity Hotspots and Access and Benefit Sharing, S. Kannaiyan, K. Venkataramana (Eds), 2007, 42.
- Anjani K, Castor genetic resources: A primary gene pool for exploitation, Industrial Crops and Products, 2012, 35, 1-14.
- 5. Chan AP, Crabtree J, Draft genome sequence of the oilseeds species *Ricinus communis*, Nature Biotechnology, 2010, 28(9), 951-956.
- 6. Armuganathan K, Earle ED, Nuclear DNA content of some important plant species, Plant Molecular Biology Reporter, 1991, 9, 208-218.

- 7. Wurdack KJ, Hoffman P, Chase MW, Molecular phylogenetic analysis of uni-ovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid *RbcL* and *TrnL*-F DNA sequence, American Journal of Botany, 2005, 92, 1397-1420.
- 8. White TJ, Bruns T, Lee S, Taylor J, Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, In: PCR Protocols: a guide to Methods and applications, Innis MA, Gelfard DH, Sninsky JJ, White TJ (Eds.), New York Academic Press, 1990, 315-322.
- 9. http://www.ncbi.nlm.nih.gov/nucleotide/.
- 10. Hall TA, Bio-edit: A user-friendly biological sequence alignment and analysis program for windows 95/98/NT, Nucleic acids Symposium Series, 1999, 41, 95-98.
- 11. www.ebi.ac.uk/Tools/msa/clustalw2/.
- 12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic acids research, 1997, 25(24), 4876-4882.
- 13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, MEGA 5.2: Molecular evolutionary genetics using maximum likelihood, evolutionary distance and maximum parsimony methods, Molecular Biology and evolution, 2011, 25(10), 2731-2739.
- 14. Laemmli UK, Cleavage of structural proteins during the assembly of the head of Bacteriophage T4, Nature, 1970, 277, 680-685.
- 15. Smith SE, Al-Dos Al, Warburton M, Morphological and agronomic variation in North African and Arabian alfalfa, Crop Science, 1991, 31, 1159-1163.

- Hinckely AC, Genotyping and Bio-forensics of Ricinus communis, Thesis, University of California, Davis, 2006, 53.
- 17. Iqbal SH, Ghaffor A, Ayub N, Relationship between SDS– PAGE markers as *Ascochyta* blight in chickpea, Pakistan Journal of Botany, 2005, 37(1), 87-96.
- Irfan M, Morpho-molecular diversity in Adhatoda vasica A medicinal plant of Azad Jammu and Kashmir BSc. (Hons). Project Report, University College of Agriculture, Rawalakot, 2000, 40.
- 19. Ahmad SD, Kamal YT, Morpo-molecular characterization of local genotypes *Hyppophae* rhamnoides spp. Turkestanica a multipurpose plant from Northern areas of Pakistan, Journal of Biological Science, 2002, 2, 351-354.
- 20. Avise JC, Molecular markers, natural history and evolution, 2nd Sinauer Associates Inc., Sunderland MA, 2004, 684.
- 21. Kevin P, Connell O, Skowronski EW, Discovery and characterization of novel signatures from the *Ricinus communis* (castor bean) genome, report, US Army Edgewood Chemical Biological Centre, Maryland, 2006, 29.
- 22. Anwar RS, Masood MA, Khan, Nasim S, Seed storage protein electrophoresis in groundnut for evaluating genetic diversity, Pakistan Journal of Botany, 2003, 36, 25-29.
- 23. Javid A, Ghaffor A, Anwar R, Seed storage protein electrophoresis in groundnut for evaluating genetic diversity, Pakistan Journal of Botany, 2004, 36(1), 25-29.
- 24. Ahmed K, Ahmed A, Abbas Z, Gulfraz M, Masoos MS, Kisana S, Genetic diversity in wheat (*Triticum aestivam* L.) as revealed by SDS-PAGE analysis, International Journal of Applied Agriculture Research, 2008, 3, 1-8.

Source of support: University of Mysore, Mysore, Karnataka, India. Conflict of interest: None Declared